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Abstract

Let G be a locally compact group. We shall study the Banach algebras which are the group
algebra L'(G) and the measure algebra M (G) on G, concentrating on their second dual algebras.
As a preliminary we shall study the second dual Co(€)” of the C*-algebra Co(Q2) for a locally
compact space 2, recognizing this space as C(ﬁ), where € is the hyper-Stonean envelope of (2.

We shall study the C*-algebra of B(Q2) of bounded Borel functions on ©, and we shall
determine the exact cardinality of a variety of subsets of § that are associated with Bb(Q).

We shall identify the second duals of the measure algebra (M (G), ) and the group algebra
(L'(G), %) as the Banach algebras (M (G), O) and (M (®), O), respectively, where O denotes the
first Arens product and G and ® are certain compact spaces, and we shall then describe many of
the properties of these two algebras. In particular, we shall show that the hyper-Stonean envelope
G determines the locally compact group G. We shall also show that (G 0) is a semigroup if
and only if G is discrete, and we shall discuss in considerable detail the product of point masses
in M (CNJ) Some important special cases will be considered.

We shall show that the spectrum of the C*-algebra L°°(G) is determining for the left topo-
logical centre of L'(G)”, and we shall discuss the topological centre of the algebra (M (G)”, O).
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1. Introduction

Our aim in this memoir is to study the Banach algebras which are the second dual
algebras (M (G)”, O) and (L*(G)”, O) of the measure algebra (M (G), ) and the group
algebra (L' (G), * ), respectively, of a locally compact group G. Here O denotes the (first)
Arens product on the second dual space A” of a Banach algebra A. We are particularly
interested in the case where the group G is not discrete; the discrete case was studied in
our earlier memoir [18]. Thus we must discuss in some depth a compact space G which
we call the hyper-Stonean envelope of a locally compact group G, and also the subspace
D of 67 where @ is the character space, or spectrum, of the C*-algebra L (G). The space
G is analogous to the semigroup (45, O) which is the Stone-Cech compactification of
a semigroup S (see [18]), and we shall discuss the ‘semigroup-like’ properties of (C~¥, 0O);
however, we shall prove that (é, 0) is actually only a semigroup in the special case where
G is discrete.

As a preliminary to our discussion of G we shall develop the theory of the hyper-
Stonean envelope Qof a locally compact space €); in our approach, Q is the character
space of the second dual Cy(Q2)” of Cy(€2). Many of these results are known, and indeed
they go back to the seminal paper of Dixmier [24] of 1951. However we cast the material
in a different context, and prove some new results that we shall require later.

The present chapter contains a review of some notation that we shall use and back-
ground material involving Banach spaces, Banach algebras, and their second duals. A
summary of our results and some acknowledgements are given at the end of this chapter.

Basic notation We shall use the following notation.

The rational, real, and complex fields are Q, R, and C, respectively. We denote the
set of integers by Z, and set Zt ={n€Z:n>0} and N={n € Z:n > 0}; forn € N,
we set Z} ={0,...,n} and N,, = {1,...,n}. Further,

T={z€C:|z]=1} and I=]0,1] CR.
However, for p € N, we set
Z,={0,1,...,p—1};
this set is a group with respect to addition modulo p. Further, we set
D,=7y ={c=(c;:j€N):g; €Z, (jEN)}.
The set D), is a group with respect to the coordinatewise operations.

The cardinality of a set S is denoted by |S|; the first infinite cardinal is Rp; the first
uncountable cardinal is Np; the cardinality of the continuum is denoted by ¢, so that

5]



6 H. G. Dales, A. T.-M. Lau, and D. Strauss

¢ = 2% and the continuum hypothesis (CH) is the assertion that X; = ¢; the generalized
continuum hypothesis (GCH) implies that 2¢ = 2% = Ry and that 22° = Rj.

The characteristic function of a subset S of a set is denoted by xg; the function
constantly equal to 1 on a set .S is also denoted by 1g or 1. The symmetric difference of
two subsets S and T of a given set is denoted by SAT.

Let E be a linear space (always taken to be over the complex field C), and let S be
a subset of E. The convex hull of S is (S), and the linear span of S is lin S. The set of
extreme points of a convex subset S of E is denoted by ex S.

Algebras and modules Let A be an algebra, which is always taken to be linear and
associative. The following notation is as in [13].

The identity of A (if it exists) is e4; the algebra formed by adjoining an identity to a
non-unital algebra A is denoted by A#, and A# = A when A has an identity. The centre
of Ais 3(A). For a subset S of A, we set

SB = {ab:a,be S} and S%=1lin SP.
A character on A is a homomorphism from A onto the field C; the character space of A
is the collection of characters on A, and it is denoted by ®4. For a € A, we define
L,:b—ab, R,:b—ba, A—A.

Suppose that B is a subalgebra of A and that I is an ideal in A. Then the product in

B x I is given by
(b1, 21)(b2, w2) = (bib2,b12a + w1b2 + 2122)  (b1,b2 € B, 21,72 € I);

in this case A is a semi-direct product of B and I, written A = B x I.

Let E be an A-bimodule, so that E is a linear space and there are bilinear maps

(a,z) —a- -z, (a,2)—2x-a, AXE—E,
such that a - (b-2)=ab -z, (x-b)-a=x -ba,anda - (z-b)=(a-z) -bfora,be A
and z € E. In this case, set
A-E={a-z:a€A,x€FE}, AE=IlnA-FE,

and similarly for £ - A and E'A. Suppose that A has an identity e4. Then the bimodule
Eis unital ifeq -z =2 - ea =z (r € E). In general, an A-bimodule E is neo-unital if
A-E=FE- - A=A

For details on bimodules, see [13, §1.4].

Banach spaces Throughout our terminology and notations for Banach spaces and al-
gebras will be in accord with that in [13], where further details may be found. We recall
some notation.

Let E be a Banach space. The closed unit ball in £ is E[jj. The dual space and second
dual space of E are denoted by E’ and E”, respectively; we write (xz, A) for the action
of A € E' on z € E and (M, \) for the action of M € E” on A\ € E’, etc.; the weak-x*
topology on E’ is o(F’', E), so that (Efl],O'(E/, E)) is always compact; we set

(kp(x), Ny =(x, \) (r€E,\e€E'),
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so defining the canonical embedding kg : E — E”, and we set
M, kpr(A\))y =M, \) (A€ E',MeE"),
so defining the canonical embedding kp: : E" — E"'. Of course, kg (Ep)) is o(E", E')-

dense in Eﬁ] and

(kp(x), kpr(\)) ={(x, \) (zxe€E,AN€E).

We shall often identify E with kg (F), and regard it as a || - ||-closed subspace of E”.
We first recall some standard results of functional analysis that will be used more
than once.

ProroOSITION 1.1. Let E be a non-zero Banach space.
(i) The space (E[’l],a(E’,E)) is metrizable if and only if (E,||-||) is separable.
(ii) The following are equivalent conditions on an element M € E":
(a) M e E;
(b) M is continuous on (E',o(E', E));
(¢) M is continuous on (Ejy),0(E', E)).
(iii) Suppose that |E| = k. Then |E'| < 2.
Proof. For (i) and (ii), see [26, Theorems V.5.1, V.5.6], for example. For (iii), we have
[E'| <|CEl=c"=2" m

The elements M of E” which satisfy the equivalent conditions of clause (ii), above,
are the normal elements of E”.

Let E and F be normed spaces. Then we write B(E, F) for the space of bounded linear
operators from F to F'; this space is taken with the operator norm. A map T : E — F'is
a linear homeomorphism if T is a bijection and if T € B(E,F) and T~! € B(F, E). The
spaces E and F' are linearly homeomorphic if there is a linear homeomorphism from F
to F', and E and F are isometrically isomorphic if there is a linear isometry from E onto
F'; in the later case, we write £ = F.

Let X be a linear subspace of a Banach space E. Then

X°={\Ne E :\|X =0},
so that X' is isometrically isomorphic to E'/X°.

Banach algebras Let A be a Banach algebra. We recall that all characters on A are
continuous, and that ® 4 is a locally compact subspace of the unit ball (Afl], a(A’, A)) of
A’. In the case where A has an identity e4, we have

Dy C {)\EA/ : <6A, )\) = H)\H = 1},

and ® 4 is compact.
A bounded approzimate identity in A is a bounded net (e,) in A such that

limaey, =limeja=a (a € A).
(03 [e3
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The theory of Banach A-bimodules is given in [13]. Indeed, a Banach A-bimodule is
an A-bimodule E which is a Banach space and such that

max{fla - x|, ||z - all} < lall [z]| (a€ A, =€ E).

For example, A is a Banach A-bimodule over itself. Let E be a Banach A-bimodule. Then
the dual space E’ is also a Banach A-bimodule for the operations defined by:

(x,a-N=(x-a,\), (@, X -a)={a- -z,)\) (a€A, z€eFE NeF).

In particular, A’ is the dual module of A, and lin (A - A’) is a closed submodule of A’.
Further, the second dual A” is a Banach A-bimodule. A Banach A-bimodule F is essential
if

AE=FEA=F.

We shall use the following result, which is a version of Cohen’s factorization theorem [13,
Corollary 2.9.31].

PROPOSITION 1.2. Let A be a Banach algebra with a bounded approximate identity, and

let E be an essential Banach A-bimodule. Then E is neo-unital. In particular, A = AP,
and A - A" - A is a closed submodule of A’. m

A Banach algebra A is said to be a dual Banach algebra if there is a closed A-
submodule E of A’ such that B = A as a Banach space; in this case, E is a predual of
A. Tt is easy to see that a Banach space E is a predual of A in this sense if and only
if ' = A and multiplication in A is separately o(A, F)-continuous. For example, each
von Neumann algebra is a dual Banach algebra [102, Examples 4.4.2(c)]. For further
details, see [15, Chapter 2] and [102, §4.4]; for recent accounts of dual Banach algebras,
see [19, 20].

We shall refer briefly to the very extensive theory of amenable Banach algebras; for
the general theory of these algebras, see [13, 59], and for characterizations involving the
algebras that we shall be concerned with, see [18].

Arens products and topological centres Let A be a Banach algebra. Then there are
two natural products on the second dual A” of A; they are called the Arens products, and
are denoted by O and <, respectively. They were introduced by Arens [2], and studied
in [10]; for further discussions of these products, see [13, 15, 18], for example.

We recall briefly the definitions. As above, A’ and A” are Banach A-bimodules. For
Ae A and M e A7, define A - M€ A’ and M - A € A’ by

(a, N\ -M)y=(M,a-A), (M- AN=M A -a) (a€A).
For M,N € A", define
(MON, A) =(M,N - ), (MON, \)=(N,A-M) (AeA).

THEOREM 1.3. Let A be a Banach algebra. Then (A”,0) and (A", &) are Banach
algebras containing A as a closed subalgebra. m

The Arens products O and < are determined by the following formulae, where all
limits are taken in the weak-* topology o(A”, A") of A”. Let M,N € A”, and take nets
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(aq) and (bg) in A such that M = lim,, a, and N = limg bg. Then
MDN:Iimliénaabg, MON:Iiélllimaabg. (1.1)
The two maps M — MON and M +— NOM are weak-* continuous on A” for each
Ne A"

We shall use the following equation. Let A be a Banach algebra, let a € A, and let
@ € ® 4. Then clearly a - p = (a, p)p. Thus, taking weak-* limits, we see that

M-p=M p)p MeA” pedy). (1.2)
PROPOSITION 1.4. (i) Let A and B be Banach algebras, and suppose that 0 : A — B is

a continuous homomorphism. Then the map 0" : (A", 0) — (B”,0) is a continuous
homomorphism with range contained in the o(B”, B')-closure of 0(A).

(ii) Let A be a Banach algebra, and let E be a Banach A-bimodule. Then E" is a
Banach (A”, O)-module in a natural way.

(iii) Let A be a Banach algebra, let E and F be Banach A-bimodules, and then take
T : E — F to be a continuous A-bimodule homomorphism. Then T" : E"' — F" is a
continuous (A", O)-bimodule homomorphism.

Proof. These are contained in [13, §2.6], or follow directly from results there; in particular,
see Theorem 2.6.15 and equation (2.6.26) of [13]. m

Let A be a dual Banach algebra with predual E, where E regarded as a subset of A’,
so that E° ={M € A” : M| E = 0}. Then

(A", 0)=AxE° (1.3)
as a semidirect product [15, Theorem 2.15].

DEFINITION 1.5. Let A be a Banach algebra. Then the left and right topological centres
of A" are

DA ={Me A" :MON=MON (Ne A"},
3(AY={Me A" :NOM=NOM (N e A"},
respectively. The topological centre is 3:(A”) = 3%5)(14”) N SET)(A”).
We also recall that
39(A")={M € A” : Ly : N> MON is weak-+ continuous on A"},
(A"y={M € A" : Ryy : N — NOM is weak-* continuous on A"} .
In the case where A is commutative, we have
MON=NOM (M,NeA),

and so 3%6)(/1”) and S,Er)(A") are each just the (algebraic) centre 3(A”) of the algebra
(A//, 0O )'

PROPOSITION 1.6. Let A be a Banach algebra. Then A C 3;(A") = By)(A”)ﬁSy)(A”). n

The following definitions were given in [15]. Further, many examples showing the
possibilities that can occur were given in [15, Chapter 4].
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DEFINITION 1.7. Let A be a Banach algebra. Then A is Arens regular if
Bgf)(A//) _ 3)(:?")14//) — A"

left strongly Arens irreqular if

(A =4,

right strongly Arens irreqular if
gr) (A/I) = A,

and strongly Arens irregular if it is both left and right strongly Arens irregular.

A closed subalgebra and a quotient algebra of an Arens regular Banach algebra are
themselves Arens regular.

DEFINITION 1.8. Let A be a left strongly Arens irregular Banach algebra. Then a subset
V of A" is determining for the left topological centre of A” if M € A whenever

MON=MON (NeV).

Thus A" is determining for the left topological centre whenever A is left strongly
Arens irregular, and possibly smaller subsets of A” have this property.

The above definition was first given in [18, Definition 12.4]; care is required because
this term has been used in a slightly different sense elsewhere.

Let S be a semigroup, and let £1(S) be the corresponding semigroup algebra. In
[18], it is shown that, in the case where S belongs to an interesting class of semigroups
which is strictly larger than the class of cancellative semigroups, certain subsets V' of
B8 of cardinality 2 are determining for the left topological centre of ¢1(S)”; for strong
versions of this and other related results, see [7] and [31]. There are some related results
for subsemigroups of the real line in [14, Chapter 9]. We shall address similar questions
in Chapter 9.

Introverted subspaces We recall the definition of introverted subspaces of the dual
module A’ of a Banach algebra A. Our definition is slightly more general than the one in
[15, Definition 5.1] in that now we do not require X to be closed in A’.

DEFINITION 1.9. Let A be a Banach algebra, and let X be a left (respectively, right) A-
submodule of A’. Then X is left-introverted (respectively, right-introverted) if M - A € X
(respectively, A - M € X) whenever A € X and M € A”; a sub-bimodule X of A’ is
introverted if it is both left- and right-introverted.

Let X be a faithful, left-introverted subspace of A’. Then X is also a left-introverted
subspace of A’, and X° is a weak-* closed ideal in (A", O): this is proved in [15, Theorem
5.4(ii)], but was actually given earlier in [83, Theorem 3.2]. Thus A”/X° is a quotient
Banach algebra; the product in this algebra is again denoted by O. Since X’ = A”/X°
as a Banach space, we may regard (X’, O) as a Banach algebra; the formula for the
product in X’ is

MON, M)=(M,N-)X) (AeX).
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DEFINITION 1.10. Let A be a Banach algebra. For A € A’, set
KA ={a-X:acAp}. (1.4)
The element M is [weakly] almost periodic if the map
ara-X\, A— A,

is [weakly] compact.

Thus K(A) is a convex subset of A’. We take K () to be the closure of K(\) in
(A%, || - I; by Mazur’s theorem, K () is also equal to the closure of K () in (4, 0(A’, A”)).
It is always true that the closure of K(\) in (4’,0(A’, A)) is

Koy~ - {M-xMeap},

and of course K(\) C K(A) 7 Thus A is almost periodic if and only if K(A) is

compact in (A',|-]]), and weakly almost periodic if and only if K()\) is compact in

(A, o(A, A)).

DEFINITION 1.11. Let A be a Banach algebra. Then the Banach spaces of almost periodic
and weakly almost periodic functionals on A are denoted by

AP(A) and WAP(A),

respectively.

Thus AP(A) C WAP(A), and it is easily seen that both AP(A) and WAP(A) are
Banach A-submodules of A’. By [93] (see [15, Proposition 3.11]), A € WAP(A) if and
only if

(MON,\) = (MON,\)  (M,N e A”),

and so A € WAP(A) if and only if
lim lim({a,, by, A\) = limlim{a,,b,, A)

whenever (a,,) and (b,) are bounded sequences in A and both iterated limits exist.

The following result, from [93], is also contained in [15, Theorem 3.14, Proposition
5.7].

PROPOSITION 1.12. Let A be a Banach algebra. Then A is Arens regular if and only if
WAP(A)=A'. »

We consider the relation between the space WAP(A) and the two sets A" - A and
A AL

First, as in [15, Example 4.9(i)], let A be a non-zero Banach algebra with A2 = {0}.
Then A is Arens regular, and so WAP(A) = A’ but A’ - A=A - A = {0}, and so
A’A C WAP(A). Second, let A = £1(G) for an infinite group G, as described below. Then
we shall see that WAP(A) = WAP(G), the space of weakly almost periodic functions
on G, whereas, in this case, A’ - A= A" = (>(G), and so WAP(A) C A’ - A.
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Now suppose that A has a bounded approximate identity. Clause (i) of the following
result is contained in [15, Propositions 2.20 and 3.12], following [71, Proposition 3.3];
clause (ii) is part of [79, Theorem 3.6].

ProroSITION 1.13. Let A be a Banach algebra with a bounded approximate identity.
Then:
(i) AP(A) and WAP(A) are neo-unital Banach A-bimodules, with
AP(A) CWAP(A) C (A" - A)u (A - A);
(ii) WAP(A) = A" - A if and only if A - A”  317(A"). u
For a further discussion of AP(A) and WAP(A), see [15, 25, 83].

We shall also use the following propositions. The first is exactly [75, Lemma 1.2];
clause (ii) was given earlier in [83, Theorem 3.1].

PROPOSITION 1.14. Let A be a Banach algebra, and let X be a left A-submodule of A’.
Then X is left-introverted if and only if

)Y e x

for each A € X. Further, suppose that X is an A-submodule of A’. Then:

(i) X is introverted whenever X is weak-x closed;

(ii) X is introverted whenever X C WAP(A). m

In particular, in the case where A is Arens regular, each || - ||-closed, A-submodule of
A’ is introverted, and so (X', O) is a Banach algebra.

ProPoOSITION 1.15. Let A be a Banach algebra, and let X be a left-introverted subspace
of A’. Then the following are equivalent conditions on X :

(a) X C AP(A);

(b) the product
is jointly continuous with respect to the weak-+ topology o(X', X) on X'.
Proof. (a) = (b) Let (M,) and (Ng) be nets in X[’I] converging in the weak-* topology
to M and N in X [’1]7 respectively. By taking norm-preserving extensions, we may suppose
that all these elements belong to Aﬁ].

Let A € X, so that A € AP(A) by (a), and hence the set K(\) is relatively compact
in the Banach space (A’, || -||). The identity map

(ROVI1-1) = (KO, o(4', 4))

is a continuous map from a compact space onto a Hausdorff space, and so the topologies
o(A’, A) and || - || agree on K () and

m:{M~>\:M€X[/1]}.
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The net (Ng - A) converges to N - A in (A’,0(A’, A)), and so (N - \) converges to
N - Xin (A, |- |). Hence
[(Ma BNg, A) = (MON, A)|
< |<M0¢ DNﬁa )‘> - <M0t ON, )‘>| + |<Ma ON, )‘> - <MDN7 )‘>|
<SIINg - A=N- A+ [(Ma, N - ) = (M, N - A,

and so

(liIIﬁl) (Mg ONg, A) = (MON, \),

where the limit is taken over the product directed set. This holds for each A € X, and so
(b) follows.

(b) = (a) Let A € X|, and consider the map
pA:M—=M- X\, (X[,l],CT(X/,X))—>(X[1],0'(X,X/)).
We claim that py is continuous. Indeed, let (M,,) converge to M in (X[/1]v o(X’, X)), and
take N € X’. Then (N, py(Mg)) = (NOM,, A} — (NOM, A\) = (N, pA(M)), giving the
claim. (At this point, we are using only the separate continuity of the product.) It follows
that py (X[’l]), the weak- closure of K(\), is weakly compact in the space X, and hence
in A’.

Let (M) be a net in X[’l]. Then (M, - A) is a net in K ()\); by passing to a subnet, we
may suppose that M, — M in (X', o(X’, X)) for some M € X[’l] and that M, - A — M - A
in (4,0(A,A")).

We next claim that (Mg - A) = M - Ain (A4, ]| -|]). Assume towards a contradiction
that this is not the case. Then, by passing to a subnet, we may suppose that there exists

e > 0 such that [[Mq - A =M - A > & for each a. For each a, choose Ny € X; such
that

[((Mg - A=M - X\, Ny)| >e.
Again by passing to a subnet, if necessary, we may suppose that the net (N, ) converges
to N in (X’,0(X’, X)). Now we have
e<|{My - A=M - A\, Np)|
<[(NagOMq, A) = (NOM, A\)| + (NOM, A) — (N, OM, M) .

But the limit of both terms on the right-hand side is 0 by (b), and so we obtain the
required contradiction. Thus the claim holds.

The claim implies that K(\) is compact in (A, | -]|), and hence that A\ € AP(A),
giving (a). m

Let I be a closed ideal in a Banach algebra A, with the embedding ¢ : I — A. Then
(' : A’ — I' is a continuous surjection which is an A-bimodule homomorphism. Let X be
a || - ||-closed, A-submodule of A’. Then Y := ¢/(X) is Banach A-submodule of I’. We use
the above notation in the following proposition.
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PROPOSITION 1.16. Suppose that X is introverted in A’. Then Y is introverted in I,
and there is a continuous A-bimodule monomorphism

Y STV - X = AT/XC.
Further, T : (Y',0) — (X', 0) is a continuous embedding identifying Y' as a closed
ideal in X'.
Suppose that ' : X — 'Y is an injection. Then 7:Y' — X' is a surjection, and so'Y
is introverted in I' if and only if X is introverted in A’.

Proof. To show that Y is left-introverted in I’, we apply Proposition 1.14.
Let A € //(X), and let K be the closure of {a - A : a € I} in the topology o(I', I).

Let (aa) be a net in Ijyy such that an - A — pin (I',0(I’,I)). Then there exist A € X

and gt € A’ such that L/(X) = X and /(i) = p. By passing to a subnet, we may suppose

that a, - A — Ji in (4, 0(A’, A)). Since A € X and X is left-introverted in A’, it follows

from Proposition 1.14 that g € X, and so p € /(X). Thus K, C Y, and so /(X) is

left-introverted in I’, again by Proposition 1.14. Hence Y is left-introverted in I’.
Similarly, Y is right-introverted in I’, and so Y is introverted in I’.

The existence of the specified map 7 is clear. By Proposition 1.4, the map
V(17 0) (A", D)
is a continuous injection, and it follows easily that 7 : (Y’, O) — (X', O) is a continuous
embedding.
Certainly (I”, O) is a closed ideal in (A”, O), and so (Y’, 0) is a closed ideal in
(X', O). It is also clear that X is introverted in A" whenever Y is introverted in I’ in the
case where 7 : Y/ — X' is a surjection. m

We recall the standard result that every C*-algebra A is Arens regular, and that its
second dual (A”, O) is also a C*-algebra, for an identification of (A”, O) using universal
representations, see [13, Theorem 3.2.36]. In the present work, we wish to avoid using the
representation theory of C*-algebras, and to give direct proofs.

We have obtained the following result, using Proposition 1.14(ii).

PROPOSITION 1.17. Let A be a C*-algebra, and let X be a Banach A-submodule of A’.
Then X is introverted, X° is a weak-+ closed ideal in the C*-algebra (A", O), and (X', O)
is a C*-algebra. m

Lau algebras It will be seen that the main examples that we shall consider later are
examples of ‘Lau algebras’; we introduce these algebras here in an abstract manner.
DEFINITION 1.18. A Lau algebra is a pair (A, M), where:

(i) A is a Banach algebra and M is a C*-algebra which is isometrically isomorphic to
A’ as a Banach space;

(ii) the identity of M is a character on A.

In this case, M is a von Neumann algebra; every von Neumann algebra has an identity.
It is a standard fact [112, Corollary II1.3.9] that there is a unique (as a Banach space, up
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to isometric isomorphism) predual M, of each von Neumann algebra M; thus A = M,
as a Banach space. Further, the product in M is separately continuous when M has
the o(M, A)-topology (see [104, Theorem 1.7.8]). Thus M is a dual Banach algebra,
and A is a Banach M-submodule of A”. For u € M, define continuous linear operators
L, R,:A— Aby

(Lya, vy ={a, p - vy, (Rua,v)={a,v-puy (a€A veM). (1.5)

(In fact, for each a € A, the elements L,a and R,a are defined as members of A”, but
they are continuous on (M, o(M, A)) because the product in M is separately o (M, A)-
continuous, and so they belong to A by Proposition 1.1(ii).)

We shall usually write A’ for M and regard A itself as a Lau algebra; we shall denote
the identity of A’ by e. The class of Lau algebras was introduced in [70], where they were
called ‘F-algebras’; they were re-named as ‘Lau algebras’ in [92].

Examples of Lau algebras include the group algebra and the measure algebra of a
locally compact group G (see Chapter 6), the Fourier algebra A(G) and the Fourier—
Stieltjes algebra B(G) of a locally compact group G (see [30]), the measure algebra M (.S)
of a locally compact semi-topological semigroup S (see [39]), the convolution measure
algebras studied by Taylor [114], the ‘L-algebras’ considered by McKilligan and White
[83], the predual of a Hopf-von Neumann algebra [111], and the algebras L'(K) (in the
case where K has a ‘left Haar measure’) and M (K) of a locally compact hypergroup K
[27, 100, 107] or of semi-convos [57].

DEFINITION 1.19. Let A be a Lau algebra. A closed subspace X of A’ is a left- (respec-
tively, right-) introverted C*-subalgebra of A’ if:

(i) X is a C*-subalgebra of A’;

(ii) X is a left-introverted (respectively, right-introverted) A-submodule of A’.
The space X is an introverted C*-subalgebra if it is both left- and right-introverted.

In particular, A’ itself is an introverted C*-subalgebra.

Let A be a Lau algebra, so that A’ is a C*-algebra. We denote by P(A) the cone
of elements of A which act as positive linear functionals on A’. The set of elements
p € P(A) with (p, e) =1 is denoted by P1(A). It is shown in [70] and [92] that P;(A) is
a subsemigroup of (A, -). Note that (A”, O) is also a Lau algebra.

DEFINITION 1.20. Let A be a Lau algebra. Let X be a left-introverted C*-subalgebra of
A’. A topological left-invariant mean on X is an element m € P;(A”) such that

(my,x - p)y=(m,z) (xeX,pecPi(A).

Let X be an introverted C*-subalgebra of A’. Then a topological invariant mean on X is
an element m € P;(A”) such that

(myx - py={(m,p-z)=(m,z) (xe€X,pePi(A).
The algebra A is left-amenable if, for each Banach A-bimodule E such that
a-z=(a,e)x (a€A xzek),

every bounded derivation from A into E’ is inner.
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The following result is [70, Theorem 4.1] and [92, Propsition 3.5].

PROPOSITION 1.21. Let A be a Lau algebra. Then A is left-amenable if and only if A’
has a topological left-invariant mean. m

There is a similar definition of a right-amenable Lau algebra A and a topological right-
invariant mean. Now suppose that M; and My are topological left- and right-invariant
means, respectively. Then M; O Ms is both a topological left- and right-invariant mean
on A’

Let S be a semigroup. Then the semigroup algebra £*(S) has been intensively studied
recently; see [18, 16], for example. Clearly £1(S) is a Lau algebra (where £1(S) = £>°(S),
with the pointwise product). It is shown in [70, Corollary 4.2] that £1(S) is left-amenable
if and only if S is left-amenable as a semigroup. However £1(S) need not be amenable
even when S is abelian. For example, a necessary condition for this is that S? = S: this
follows from [13, Theorem 2.8.63] because £1(S) is not essential whenever S? C S, in the
terminology of the reference. In particular, (¢1(N), ) is not weakly amenable.

For further studies of Lau algebras, see [71, 80, 84, 92].

Summary In Chapter 2, we shall give further background involving topological spaces,
continuous functions, and measures. In particular, we shall define in Definition 2.6 the
class of hyper-Stonean spaces, and we shall characterize these spaces in Theorem 2.9 and
Proposition 2.17.

In Chapter 3, we shall first discuss the second dual algebra of the commutative C*-
algebra Cy(Q)), which is the algebra of all continuous functions that vanish at infinity on
a locally compact space €2. This second dual space has the form C' (ﬁ) for a certain hyper-
Stonean space ﬁ, called the hyper-Stonean envelope of € in Definition 3.2. The second
dual space of M (), the Banach space of all complex-valued, regular Borel measures on
Q, is identified with M (Q). We shall also discuss B®(Q), the C*-algebra of all bounded
Borel functions on €; we shall regard B®(Q) as a C*-subalgebra of C(€).

Let € be a non-empty, locally compact space. In Chapter 4, we shall discuss subspaces
of M(2) which are modules over the algebra Cy(€2). We shall also discuss further the
hyper-Stonean space 57 and explain that we cannot, in general, recover §2 from Q.

A particularly important case for us is that in which € is an uncountable, compact,
and metrizable space (such as Q = I). Indeed, it will be shown in Theorem 4.16 that
there is a unique hyper-Stonean space X which is the hyper-Stonean envelope of each
such space; we shall give a topological characterization of this space X. We shall calculate
the cardinalities of various subsets of X in this case. We shall also discuss the character
space @5 of B®(Q2), and we shall calculate the cardinalities of various subsets of Q which
are defined in terms of the algebra B ().

In Chapter 5, we shall recall the definitions and some basic properties of the measure
algebra M (G) and the group algebra L!(G) of a locally compact group G, and develop the
properties of the hyper-Stonean envelope G of G. We shall also consider some introverted
subspaces of dual spaces; these will include LUC(G) and the spaces AP(G) and WAP(G)
of almost periodic and weakly almost periodic functions on G; we shall discuss the relation
of these spaces to the more mysterious C*-algebras AP(M(G)) and WAP(M(G)). We
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shall also discuss Taylor’s structure semigroup of a locally compact abelian group and the
more abstract notion of the structure semigroup of the Lau algebras that were introduced
in Chapter 1.

We shall continue in Chapter 6 with the proofs of some formulae that will be required
later for products in the Banach algebra (M(G), O). Our proofs will frequently use the
fact that points of G can be identified with certain ultrafilters.

The main theorem of Chapter 7 is Theorem 7.9, which shows that we can recover a
locally compact group G from knowledge of the hyper-Stonean envelope é; this answers
a question raised in [34]. The special case where G is compact was resolved earlier by
Ghahramani and McClure in [35].

Let G be a locally compact group. In Chapter 8, we shall investigate whether or not
(é, 0O) is a semigroup. Indeed, we shall prove in Theorem 8.16 that (é, O) is a semigroup
only in the special case where G is discrete. In the case where G is not discrete, we shall
study in considerable detail the products of two point masses in (M (é’), 0), showing
that this product must be a point mass in certain cases and that there are always two
points in G such that their product is a continuous measure. In many groups G, including
the circle group (T, - ), the space G contains two point masses whose product is neither
discrete nor continuous. As important special groups we shall consider T and the groups
D,.

In the final chapter, Chapter 9, we shall consider the topological centres of L!(G)”
and M(G)” in the case where G is a non-discrete, locally compact group, concentrating
on the case where G is compact. We shall essentially show in Corollary 9.5 that the
spectrum ® of L>°(G) is determining for the left topological centre of L!(G)"; this gives
a strong form of the known result that L'(G) is always strongly Arens irregular. We do
not know which subsets of ® are determining for the left topological centre of L*(G)".

In Chapter 9, we shall also attack the question of whether or not the measure algebra
M(G) is always strongly Arens irregular; this question was raised by Lau in [72] and
Ghahramani and Lau in [34]. Unfortunately we are not able to resolve this point, but
we do give some partial results. [Added in proof: an announcement in May, 2009, by
V. Losert, M. Neufang, J. Pachl, and J. Steprans states that M(G) is strongly Arens
irregular for each locally compact group; see [82].]

Our memoir concludes with a list of problems that we believe to be both open and
interesting.
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2. Locally compact spaces, continuous functions, and measures

Locally compact spaces Let (X, 7) be a topological space. The interior, closure, and
frontier (or boundary) of a subset S of X are denoted by int S, by S or S™, and by 85
or Jx .S, respectively; the family of open neighbourhoods of a point € X is denoted by
N.. The space X with the discrete topology is denoted by X . A subset S of X is meagre
if $ = JS,, where intS,, =0 (n € N). A Hausdorff topological space X is extremely
disconnected if the closure of every open set is itself open; this is equivalent to requiring
that U NV = () for every pair {U, V'} of open sets with U NV = (). A topological space is
second countable if its topology has a countable basis. A locally compact, second countable
topological space is metrizable. The weight, w(X), of X is the minimum cardinal of a
base for the topology. Clearly |X| < 2%(X) whenever X is Hausdorff.

Let (2, 7) be a non-empty, locally compact space. (Our convention is that each locally
compact space is Hausdorff, and that a hypothesised compact space is non-empty.) The
one-point compactification of Q is Qo = QU {0} (and Qoo = Q@ when € is compact).
Further, 3Q is the Stone-Cech compactification of Q and Q* = 5 \ Q is the growth of
[18, 37, 52, 117]. In particular, N* = SN\N. Compact, extremely disconnected topological
spaces are also called Stonean spaces. In particular, each non-empty, open subset of a
Stonean space contains a non-empty, clopen subset.

For example, a compact space X is Stonean if and only if it is a retract of a space
BD for some discrete space D. We shall use Gleason’s theorem [38] (see [3, Theorems
7.4, 7.14], [106, Theorem 25.5.1], or [117, §10.51]) that a compact space X is extremely
disconnected if and only if it is projective, in the sense that it is projective in the category
of compact spaces. We shall also use the following standard fact: for each dense subspace
U of a Stonean space (), each bounded, continuous function on U can be extended to a
continuous function on 2, and so U =  (see [24] and [112, Corollary IT1.1.8]).

For substantial accounts of Stone-Cech and other compactifications of topological
spaces and semigroups, see [52, 117].

A topological space is an F'-space if, for each real-valued, continuous function f on X,
the sets {z € X : f(z) > 0} and {z € X : f(z) < 0} have disjoint closures. Thus every
extremely disconnected space is an F-space. For characterizations of F-spaces, see [13,
Proposition 4.2.18(ii)] and [37, §14.25]. By [37, 14N(5)], every infinite, compact F-space
contains a homeomorphic copy of GN.

For the following basic result, see [52, Theorem 3.58] and [117, Proposition 3.21].

PROPOSITION 2.1. Let D be an infinite, discrete space with |D| = k. Then |3D] = 22".
In particular, |Q] > |N| = |[N*| = 2° for each infinite Stonean space Q). Further, we have
w(fN) =w(N*)=c. n

Let X be a topological space. Then Jx denotes the family of subsets of X which are
both compact and open, so that Jx is a family of subsets of X which is closed under
finite unions and intersections; in the case where (2 is a compact space, Jq is the family
of clopen sets. A compact space Q satisfies CCC, the countable chain condition, if each
pairwise-disjoint family of non-empty, open subsets in Jq is countable.
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We now recall the definition of certain specific compact topological spaces that will
be used later.

Let p € N with p > 2. We recall that Z, = {0,...,p — 1}, taken with the discrete
topology. Let x be an infinite cardinal. Then the Cantor cube of weight k is the product
space Zy (with the product topology). The space Zy is compact, totally disconnected,
and perfect. In particular, we set

Dy, =17,
so that D, is a metrizable space with |D,| = ¢. Every compact, totally disconnected,
perfect, metrizable space is homeomorphic to Ds. For each k£ € N, take m,..., 7% < kK

with 7 < 79 < -+ < 7, and then set F = {71,..., 7}, so that |F| = k. Now take
a=(ay,...,ar) € Z’;, and define

Ura ={(er) €Ly : &,

k3

— o (i €Ny}, (2.1)

so that Up, is a clopen subset of Z7; the sets U are called the basic clopen subsets of

n, and so w(Zy) = K;
also each clopen set is a finite, pairwise-disjoint union of these basic clopen sets. Thus we
have

Zy. These sets form a base of cardinality  for the topology of Z

Z5l =2, [

=w(Zy) =k. (2.2)
Each x € T has a ternary expansion as
_ — en(7)

where e, (z) € Z3+. (We agree to resolve ambiguity by requiring that no expansion is equal
to 2 eventually; since the points with an ambiguous expansion form a countable set, and

we shall be considering continuous measures on I when this expansion is relevant, the
ambiguous points will, in any case, have measure 0.) The space D5 is homeomorphic to
the Cantor subset K of R by the map

(en)—2) % Dy— K. (2.3)

Borel sets The o-algebra generated by a family Sy of subsets of a set S is denoted by
0(Sp); it can be represented as

U{Sa:a<w1},

where S; consists of the complements of the sets in Sy and S, consists of all countable
unions of sets in | J{Sp : § < a} for odd ordinals @ > 1 and of all countable intersections
of sets in this family for even ordinals o > 0. Hence |0(Sp)| < 2/%0l; in the case where
|So| > ¢, we have |o(So)| = |Sol-

Let (X, 7) be a Hausdorff topological space. Then B x is the family of all Borel subsets
of X, so that B x is the o-algebra generated by 7. Certainly Jx C Bx. We record the
following well-known facts about the o-algebra ‘B x.
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Let X5 be a subspace (with the relative topology) of a Hausdorff space X;. Then, by
[11, Lemma 7.2.2], we have

%XZZ{BHXQZBE‘B)Q}.

Let X; and X5 be Hausdorff topological spaces. A map n : X1 — X5 is a Borel map
if
nil(U)E‘Bxl (UeBx,).
Let B; and By be Borel subsets of X7 and X5, respectively. Then a Borel isomorphism
from B; to Bs is a bijection n : By — By such that both n and 77’1 are Borel maps; B;
and By are Borel isomorphic if there exists such a Borel isomorphism. By [11, Lemma
7.2.1], each continuous map 7 : X; — X5 is a Borel map.

PROPOSITION 2.2. (i) Let Q2 be an uncountable, compact, metrizable space. Then, for
each uncountable set B € Bq, we have w(2) =Ny, and || =|B| =¢ .

(ii) Let By and By be Borel subsets of two compact, metrizable spaces with |By| = | Ba|.
Then By and By are Borel isomorphic.

(iii) Let B be an uncountable Borel subset of a compact, metrizable space. Then B
contains ¢ pairwise-disjoint sets, each homeomorphic to Do. In particular, B contains an
uncountable, compact space.

(iv) Let © be an uncountable, compact, metrizable space. Then |Bg| = c.

Proof. (i) and (ii) Each compact, metrizable space is complete [29, Theorem 4.3.28]
and separable [29, Theorem 4.1.18], and so is a Polish space. A metrizable space has
a countable basis (i.e., is second-countable) if and only if it is separable [29, Theorem
4.1.16]. Clauses (i) and (ii) now follow from [11, Theorem 8.3.6].

(iii) By [11, Corollary 8.2.14], B contains a subset that is homeomorphic to the set Da,
and so it suffices to prove the result for the space Ds itself. Clearly there is a continuous
bijection 6 : Dy — Dy X Ds. For each o € Dy, we set F,, = 0~ 1({a} x D3), so that F,
is a compact subset of Dy homeomorphic to Dy. The family {F,, : « € Dy} is pairwise
disjoint, and so has the required properties.

(iv) By (iii), |Bal| > ¢. By (i), w(€2) = Rq. Since each open set is a countable union
of basic open sets, B is the o-algebra generated by the basic open sets, and hence
‘%Q‘ < 2% — ¢. Hence |%Q| =cC m

Clause (ii), above, is a form of the Borel isomorphism theorem. For example, it follows
from (ii) that Do and T are Borel isomorphic.

Continuous functions Let Q be a non-empty, locally compact space. Then C°(Q)
denotes the space of bounded, continuous, complex-valued functions on €, and Cy(Q)
denotes the subspace of all functions in C'*(2) which vanish at infinity, so that C*(Q)
and Cp(f2) are commutative C*—algebras for the pointwise product of functions and the
uniform norm |- |, on €; the latter norm is defined by

[flg =sup{|f(2)| : x €Q} (feC®(Q)
(see [13, 18] for details).
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Of course, C'(Q) is isometrically isomorphic as a C*-algebra to C'(3Q) (see [37]), and
we shall identify these spaces. In particular,

0°(Q) = C(BW) -

We shall often set F = Cy(€2). The space of real-valued functions in F is Eg = Co(Q)g.
We shall use the natural ordering on Eg: for A € Eg, we have

A>0 if ANz)>0 (z€Q);

the positive cone of F is denoted by ET = Cy(2)*. Then (Eg, <) is a Banach lattice in a
standard sense. Further, F itself is a (complex) Banach lattice. We recall that a Banach
lattice such as (Fg, <) is Dedekind complete if every subset which is bounded above has
a supremurn.

For early discussions of the Banach space Cy(2), see [3, 106]; for background on
Banach lattices, with particular reference to the Banach lattice Cy(Q)g, see [60, §3.4] and
[65]. The Banach algebra Cy(€2) is discussed at some length in [13, §4.2].

PROPOSITION 2.3. Let Q) be a compact space.
(i) The space (C(2),|-|q) is separable if and only if Q is metrizable.
(ii) Suppose that ) is metrizable and infinite. Then |C(Q)| = c.

Proof. (i) is [1, Theorem 4.1.3], for example. For (ii), the space Q) is separable, and so
IC(Q)=cM=c. u

In the case where Q) is compact, 1g is the identity of C'(f2); in the general locally
compact case, Cp(€2) has a bounded approximate identity. The idempotents of Cy(£2) are
the characteristic functions of the sets in Jq, and we regard Jq as a subset of Cy(2).

Let Q be a non-empty, locally compact space. The evaluation functional on E = Cy(Q2)
at a point z €  is

Ex: A ANax), E—C,

so that €, € F’'; we also identify e, with the zero linear functional on E. We can regard
Q. as a subset of F'.

We now recall some well-known and standard facts about continuous mappings be-
tween compact spaces and algebras of continuous functions.
Let Q1 and Q9 be two compact spaces. First, let 1 : Q1 — €5 be a continuous map,
and define
n°: A= Aon, C(Q2) — C(). (2.4)

Then 7° is a continuous *-homomorphism with ||7°|| = 1. Further, n° is an injection/a
surjection if and only if 7 is a surjection/an injection, respectively.

Conversely, let 0 : C(Q2) — C(€41) be a *-homomorphism. Then 6 is continuous with
|10]] = 1, and there exists a continuous map 7 : 1 — Qo with § = 1°; indeed, we have
n= 9’ | Ql.

We shall use the standard Banach—Stone theorem; see [1, Theorem 4.1.5] and [12,
Theorem VI.2.1], for example. For clause (ii), below, see also [60, Corollary 3.4.8].
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THEOREM 2.4. Let Q1 and Qs be two compact spaces.

(i) Suppose that T : C(21) — C(2) is an isometric linear isomorphism. Then there
are a homeomorphism 1 : Qa2 — Q1 and 0 € C(Qy) such that [0(y)| =1 (y € Q) and

(TAN)(y) =0(y)(A o n)(y) (y €, A€ C()).

(ii) Suppose that T : C(Q2y) — C(Q2) is an isometric linear isomorphism such that
T(1)=1. Then T is an isomorphism of C*-algebras.

(iii) The commutative C*-algebras C(Q1) and C(Q2) are isomorphic as C*-algebras
if and only if Q1 and Qo are homeomorphic as topological spaces. m

Let Q be a compact space, and let A be a uniformly closed subalgebra of C(€) such
that A contains the constant function 1o and such that, for each x € (Q, there exists
A € A with A(z) # 0. We say that A separates the points of Q if, for each z,y € Q
with  # y, there exists A € A with A(z) # A(y). For 2,y € Q, set x ~4 y or x ~ y if
Az) = My) (A € A), so that ~ 4 is an equivalence relation on €2, and set

Bl ={yeQiy~aa}l (we9).

Then {[z] : € Q} is a partition of Q into closed subsets; we may identify the character
space of A with the compact space 2/ ~ 4 which is the quotient space of Q by the relation
~ 4, and then identify A with C(Q2/ ~4).

Let F be a closed subspace of €2. Then we remark that

[F]:= U{[x] rx e Q}
is closed in Q. For let (z,) be a net in [F] such that z, — z¢ in Q. For each «, there exists
Yo € F with yo ~4 2. By passing to a subnet, we may suppose that (y,) converges to
yo in F. Clearly xg ~4 yo, and so x¢ € [F]. Thus [F] is closed.
There are many statements that are equivalent to the fact that a compact space is
extremely disconnected; we collect some of these in the following theorem.

THEOREM 2.5. Let Q be a compact space. Then the following statements about €1 are
equivalent :

(a) Q is extremely disconnected, and so § is Stonean;

(b) Q is projective in the category of compact spaces;

(c) the Banach lattice C(Q)g is Dedekind complete;

(d) C(Q) is injective in the category of commutative C*-algebras and continuous *-
homomorphisms;

(e) C(2) is injective in the category of Banach spaces and contractive linear maps.

Proof. The equivalence of (a) and (b) is Gleason’s theorem [38], and the equivalence with
(d) is also in [38]. The equivalence of (a) and (c) is given in [13, Proposition 4.2.29] and
[112, Proposition II1.1.7]), and the equivalence of (a), (c), and (e) is given in [1, §4.3].

For a short and attractive direct exposition of all these equivalences, see [43, Theorem
24]. m
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DEFINITION 2.6. Let Q be a compact space. Then 2 is hyper-Stonean if C(£2) is isomet-
rically isomorphic to the dual space of another Banach space.

Thus  is hyper-Stonean if C(2) is a von Neumann algebra [13, Definition 3.2.35]. A
Banach space F such that F' = C(Q) is a predual of C(Q). In this case, the predual of
C(£2) is unique and is denoted by C(€).; this space defines the canonical weak-* topology
a(C(2),C(92),) on C(€2). We shall identify this predual shortly.

By [13, Proposition 4.2.29(ii)], a hyper-Stonean space is Stonean. The seminal work
on hyper-Stonean spaces is the classic paper of Dixmier [24].

For example, C(BN) = £ is isometrically the dual of ¢!, and so BN is a hyper-
Stonean space. Note that the closed subspace N* of SN is not extremely disconnected
[37, Exercise 6W], and so the compact space N* is not Stonean.

Measures Let Q be a non-empty, locally compact space. We shall consider ‘measures’
on €); these are the complex-valued, regular Borel measures defined on the o-algebra Bgq,
and they form the Banach space M(£2) in a standard way, so that

el = [u () (€ M(2)).

The sets of real-valued and positive measures in M(Q) are denoted by M(Q)r and
M ()T, respectively. A measure p in M ()" with ||u|| = 1 is a probability measure; the
collection of probability measures on € is denoted by P(2), so that P(Q) is the state
space of the C*-algebra Cp(Q).

The support of a measure p on (2 is denoted by supp pu.

Let © be a non-empty, locally compact space, and let p,v € M(2). Then we write
p << v if p is absolutely continuous with respect to |v| and p L v if p and v are mutually
singular. We recall that p 1 v if and only if

lw+ vl = llw—vi=llpl+ v (255)
The dual space of E = Cy(R2) is E’, and this space is identified with M (2); the duality
is

(i) = [ A (xe Goled). e M(@)).

Certainly M () is a Banach E-module. The dual module action A - pof A € Eon u € E’
is just the usual product Ay; in particular, when € is compact, 1q - g = p. The space
M(Q)g is again a Banach lattice in an obvious way; it is the dual lattice to (Eg, <).
Again we regard M () as a (complex) Banach lattice.

The subspaces of M (£2) consisting of the discrete and continuous measures are M4(Q2)
and M. (€2), respectively. Let pn € M (). Then the discrete and continuous parts of y are
denoted by pg and p., respectively; we have p = ug + pe with [|p]| = ||pall + ||1el], and
thus we have a decomposition of Banach spaces

E' = M(Q) = My(Q) ® M.(Q) .
We shall identify My(Q) with £1(Q). In the case where Q is an uncountable, compact,
metrizable space, M.(Q) # {0}. (In fact, we have M(Q) = My(Q2) if and only if the
topological space €2 is scattered, in the sense that each non-empty subset A of 2 contains
a point that is isolated in A [77].)
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We have
E"=M(Q)" = C(5Q0) ® M.(Q).

In particular, there is an embedding
jd : EOO(Q) — C(ﬁﬂd) = M(Qd)” . (26)

Particular measures in P(£2) N M4(£2) are the point masses d,, defined for z € Q; we
shall sometimes regard ) as a subset of P(2) by identifying z € Q with J,. In the above
identification of E’ with M (Q), we are identifying e, with §, for each x € Q. It is easy
to see that the extreme points of the unit ball M (£2)[) are those measures of the form
(0, where ¢ € T and z € , and so we can identify © with ex P(2).

Let Q be a non-empty, locally compact space, and let u € M(Q2) and B € Bg. Then

(u|B)(C) =(BNC) (C € Bg),
so that p|B € M(Q); if p € M(Q)" and u(B) # 0, then we set
_ uB

HB = — 5
(B)
so that up € M(Q)[.

We shall require the following well-known lemma.

LEMMA 2.7. Let 2 be a locally compact space, let QQ be a countable, dense subset of 2, and
let p € M.(Q)T. Then Q contains a dense Gs-subset D such that Q C D and (D) = 0.

Proof. Set Q = {x, : n € N}. Since u is continuous, it follows that, for each k,n € N,
there is an open neighbourhood Uy, of x,, such that u(Uy ) < 1/2"k. Set

Up=|J{Ukn:neN} (keN).

Then each Uy, is an open subset of Q with p(Uy) < 1/k. The set D := Uy is a Gs-subset
of ; it is dense because it contains {z, : n € N}, and clearly u(D) =0. =

The following concept originates in [24]; see also [3] and [112, Definition II1.1.10], for
example.

DEFINITION 2.8. Let 2 be a non-empty, locally compact space. A measure p € M(Q)
is normal if p is order-continuous, in the sense that (f,, u) — 0 for each decreasing net
(fo € A) in (C(Q)r, <) such that the infimum (in C(Q)r) of the family {f, : o € A}
is 0.

The set of normal measures on € is denoted by N(£2); it is easy to see that a measure
w € M(Q) is normal if and only if || is normal [3, Lemma 8.3] and that N () is a closed
linear subspace of M () [3, Theorem 8.8]. In the case where  is Stonean, the support
of a normal measure is a clopen subspace of 2 [3, Theorem 8.6].

We now record the following theorem, taken from [3, Theorem 8.19], [24], and [112,
Definition II1.1.14 and Theorem III.1.18]; it shows that several different definitions of
‘hyper-Stonean’ in the literature are equivalent.
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THEOREM 2.9. Let 2 be a Stonean space. Then the following are equivalent:
(a) Q is hyper-Stonean;
(b) for each A € C(Q)T with X\ # 0, there exists p € N(Q)T with (X, u) # 0;
(¢) the union of the supports of the normal measures is dense in Q;

(d) there is a locally compact space T' and a positive measure v on T such that C(2)
is C*-isomorphic to L= (T,v). m

It is clear from the above that a clopen subspace of a hyper-Stonean space is hyper-
Stonean.
We now characterize normal measures on 2.

DEFINITION 2.10. Let 2 be a non-empty, locally compact space. Then Kq denotes the
family of compact subsets K of  for which int K = {).

The next result was essentially proved by Dixmier in the seminal paper [24, Proposi-
tion 1, §2]. The equivalence of (a) and (b) is [112, Proposition I11.1.11].

THEOREM 2.11. Let Q be a Stonean space, and let p € M(Q)*. Then the following
conditions on p are equivalent :

(a) p is a normal measure on ) ;
(b) u(K)=0 (K € Kq) .

In the case where ) is hyper-Stonean, the conditions are also equivalent to:
)pelC(Q).m

Thus the unique predual C(Q), of C'(£2) is N (). It follows that a measure ;1 € Mg(2)
is order-continuous on Cgr(€) if and only if it is weak-* continuous.

Note that our theorem implies that the restriction of a measure in N(Q)* to a Borel
subset of Q also belongs to N(2)7.

In fact, a more general result is well-known. Indeed, by [60, Definition 7.1.11], a state
@ on a von Neumann algebra R is normal if it is order-continuous, in the sense that
p(aq) — p(a) for each monotone increasing net (ao) in R with least upper bound a; by
[60, Theorem 7.1.12], a state on R is normal if and only if it is weak-operator continuous
on Rpyj (and several other equivalences are given in this reference); by [60, Theorem 7.4.2],
the weak-* topology on Ry coincides with the weak-operator topology on Ryy), and the
predual R, of R is just the space of normal states. Thus clauses (a) and (b) in the above
theorem are equivalent in a wider context.

DEFINITION 2.12. Let F be a family of positive measures on a non-empty, locally compact
space €. Then F is singular if any two distinct measures in F are mutually singular.

The collection of such singular families on {2 is ordered by inclusion. It is clear from
Zorn’s lemma that the collection has a maximal member that contains any specific sin-
gular family; this is a mazimal singular family. We may suppose that such a maximal
singular family contains all the measures that are point masses and that all other mem-
bers are continuous measures, so that, in the case where (2 is discrete, a maximal singular
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family consists just of the point masses. We shall also refer to a mazimal singular family
of continuous measures in an obvious sense.

We shall see in Proposition 4.10, below, that any two such maximal singular families
of continuous measures have the same cardinality.

PROPOSITION 2.13. Let Q be an uncountable, compact, metrizable space. Then
|[M(Q)| =c.

Further, there is a mazimal singular family of measures in M (Q)" that consists of exactly
¢ point masses and ¢ continuous measures.

Proof. By Proposition 2.2(i), the topology of {2 has a countable basis, say B; we may
suppose that this basis is closed under finite unions. Each open set in 2 is a countable,
increasing union of members of B, and so each p € M(Q) is determined by its values on
B. Hence |M ()] < c.

Let {F, : a € D3} be a family of pairwise-disjoint subsets of 2, with each set F,
homeomorphic to Ds; such a family is constructed in Proposition 2.2(iii). For each «,
there is a continuous measure p, with supp p, = F,. Let Fy be the family consisting of
all the point masses and all the measures p,,, so that Fy is a singular family of measures,
and let F be a maximal singular family containing Fy. By Proposition 2.2(i), |Q] = ¢, and
so F contains exactly ¢ point masses. Since F contains each measure pu,, F contains at
least ¢ continuous measures, and so | M (€2)| > ¢. Since |M ()| < ¢, the family F contains
at most ¢ continuous measures. m

Again let Q be a non-empty, locally compact space, and let u be a fixed continuous
positive measure on  (so that it is not necessarily the case that p € M(Q) because we
allow the possibility that () = 00). Then M,.(2, ) and M4 (€, 1) denote the subspaces
of M(£2) consisting of measures which are absolutely continuous and singular (and non-
discrete) with respect to u, respectively, and we have an ¢!-Banach space decomposition

M(Q) = £1(9) & Moo(2, 1) & M (9, 1)

In the case where the measure p is o-finite or is the left Haar measure on a locally com-
pact group, we may identify M,.(Q, u) with L'(, ) via the Radon-Nikodym theorem,
and so, in the case where p is continuous, we have

M(Q) = () & L' (1) & M(2 1) (2.8)

Let 4 € M(Q). Then, in the above cases, the dual of the Banach space L'(Q, u) is
the space L>° (), ). This space is a commutative, unital C*-algebra with respect to the
pointwise operations, and thus its character space is a compact space.

DEFINITION 2.14. Let €2 be a non-empty, locally compact space, and let p be a positive
measure on ). Then the character space of L>°(, 1) is denoted by ®,,.

Thus L (€2, pt) is isometrically *-isomorphic to C'(®,); the map that implements this
isomorphism is the Gel’fand transform

gp, : LOO(Qa /.L) - C((p/i) .
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The space ®,, is hyper-Stonean. Clearly, the second dual L' (€2, 1) of L'(€2, ) is the dual
space C(®,) = M(®,).
Let F = {v; : ¢ € I} be a maximal singular family of positive measures on Q. In the

case where v; € M (), we may suppose that ||v;|| = 1 for each ¢ € I; the character space
of L>®(,v;) is denoted by ®;. Clearly, each measure v € M () can be written in the

form
v = Z fiyia
iel
where f; € L'(Q,v;) (i € I) and |v|| = >, || filly, and so

M(Q) = (L' (Qv) i€ T}
1

Thus
M(Q) = EPIL> Qi) i eI} = P{C(@) i€ T}. (2.9)

Boolean algebras We recall some basic facts about Boolean algebras. For background,
see [33].

Let B be a Boolean algebra. Then B is complete if every non-empty subset S of B
has a supremum, denoted by \/ S, and an infimum, denoted by A S. For example, the
family of all clopen subsets of a topological space X is a Boolean algebra with respect
to the Boolean operations U and N; this Boolean algebra is complete if and only if X is
extremely disconnected.

Let B be a Boolean algebra. An wultrafilter p on B is a subset of B which is maximal
with respect to the property that by A---Ab, # 0 whenever by, ...,b, € p. The family of
ultrafilters on B is the Stone space of B, denoted by S(B); a topology on S(B) is defined
by taking the sets

{peS(B):bep}
for b € B as a basis of the open sets of S(B). In this way S(B) is a totally disconnected
compact space; it is extremely disconnected if and only if B is complete as a Boolean
algebra, and in this case it is a Stonean space. Conversely, let €2 be a totally disconnected
compact space. Then (2 is the Stone space of the Boolean algebra Jq.

Let Q be a non-empty, locally compact space, and let u be a positive measure on ).
Then N, is the family of sets B € B with u(B) = 0, and we define

%H = %Q/‘ﬁﬂ;

clearly, B, is a complete Boolean algebra, and so its Stone space S(%B,) is extremely
disconnected

Let B € Bq. Then x p (or, more precisely, the equivalence class [y 5]) is an idempotent
in L>°(Q, 1), and so G,(xp) is an idempotent in C(®,,); we set

Kpn®, ={pec®,:G.(xn)(p) =1}, (2.10)
so that
{KBQ(I)M:BE‘BQ}ZJ@H.
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In particular, suppose that B € Bq and p(B) = 0. Then KN ®, = 0.
Clearly, S(%8,) is homeomorphic to the space ®,. Indeed, first let p be an ultrafilter
in %B,,. Then

(J{KsN®,:Bep}

is a singleton in ®,, and so we can regard p as a point of ®,. Conversely, each element
¢ € ®, defines the ultrafilter in B which is the equivalence class corresponding to the
family

{BeBa:e(xn) =1}.

This family is directed by reverse inclusion, and so defines a net; we write ‘limp_,,’ for
convergence along this net. Thus we see that the corresponding net

{MBZLL(SIBH@}

in L>°(€2, )1y converges weak-* to d, in M (®,,); this net is called the canonical net that
converges to d,. Specifically, for each A € L*°(, 1), we have

1

lim (A, = lim ——— [ Adp=G,.(A . 2.11

Jim (O us) = Jim = [ A=, (0(¢) @.11)

It is clear that, for each z € Qo such that u(U) > 0 for each U € N, there exists

¢ € @, such that N, C ¢. In particular, for each = € supp p, there exists ¢ € ®, with

N C . It is also clear that, for each ¢ € ®,,, there exists a unique point z € supp pU{co}
with M, C ¢. Thus we can define a map

=, O, 0, (2.12)

and so |®,| > [supp p|. We see from the definition of the topology on the Stone space
®,, that 7, is continuous.

PROPOSITION 2.15. Let 2 be a non-empty, locally compact space, and let v be a positive
measure on Q such that supp p = Q and |B,| = k for an infinite cardinal k.

(i) Each non-empty, clopen subset of ®,, has the form KgN®,, for some B € B \N,,
and the family

{KpnN®,:BeBo\N,}
is a base for the topology of ®,,.
(ii) w(®y) =k and |Q| < |P,| =27,
(iii) @, satisfies CCC.
(iv) @, has no isolated points if and only if p is continuous.
Proof. (i) and (ii) These are clear from our earlier remarks.

(ili) Let {U; : i € I} be a pairwise-disjoint family of non-empty, open subsets of ®,.
For each ¢ € I, choose a non-empty set K; C U;. Then there exists B; € B \ M, with
Kp,N®, = K;. The family {B; : i € I} C B, is pairwise disjoint, and pu(B;) > 0 (i € I).
Thus I is countable.
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(iv) Suppose that p is not continuous, so that there exists € Q with p({z}) > 0.
Then ¢ := {B € Bg : € B} is an ultrafilter in S(B,), and clearly ¢ is an isolated
point of ®,,.

Suppose that ¢ is an isolated point of ®,. Then there exists B € B with pu(B) > 0
such that {¢p € ®, : B € ¢} = {p}. Since p is regular, we may suppose that B is
compact. Thus there is a unique point # € B such that (U N B) = u(B) (U € N).
Clearly p({z}) = p(B) > 0, and so p is not continuous. m

EXAMPLE 2.16. Take p > 2, and let Q = Zj be the Cantor cube of weight x described
above, where k is an infinite cardinal. Let m, be the measure that gives the value 1/p
to each point of Z,, and let m be the corresponding product measure on Zj. Then
m € M.(Q)F, ||m| = 1, and supp m = Q.

By equation (2.2), |2 = 2 and w(Q2) = |Jq| = &, and so |B,,| > k.

Now suppose that x > ¢. Since |Jq| > ¢, we have |0(Jq)| = k. Let B € Bgq. The space
Q) is totally disconnected and m is regular, and so, for each € > 0, there exists C. € Jq
such that m(B A C:) < e. It follows that there exists C € o(Jq) with m(BAC) = 0,
and hence m(B) = m(C). Thus |B,,| < k, and so |B,,| = .

By Proposition 2.15(ii), w(®,,) = & and so |®,,| = 2. (That |®,,| < 2" also follows
because each character on L (2, u) is determined by its values on the characteristic
functions of Borel sets of 2.) =

The following result characterizes the sets ®, of Definition 2.14.

PROPOSITION 2.17. Let X be a hyper-Stonean space. Then the following conditions on
X are equivalent :

(a) X satisfies CCC;
(b) X is homeomorphic to a space ®,, for some positive measure p on a non-empty,
locally compact space;

(c) there exists p € N(X) with ||| = 1 and supp p = X such that X is homeomorphic
to ®,,.
Proof. Trivially (¢) = (b); we have shown that (b) = (a).

(a) = (c) We have remarked that each normal measure on X has clopen support.

Take N to be a family of normal measures in P(X) such that N is maximal subject
to the condition that the supports of the measures in the family are pairwise disjoint;
certainly such a maximal family exists. By hypothesis, N is countable, and so can be
enumerated as (p,). Define pn = >"°° | 41,,/2". Then p is a normal measure with ||u|| = 1
and supp p = X.

We shall show that ®, is homeomorphic to X. To see this, let § be the canonical map
from B x onto B, so that 0 is a Boolean epimorphism. We claim that

013x :Ix — B,
is an isomorphism of Boolean algebras. Clearly 6 | Jx is a Boolean monomorphism.

Now take B € Bx. Then there is a sequence (K,,) of compact subsets of B such that
w(B) = u(U), where U = |J{K,, : n € N}, an open set in X. We have U € Jx. For
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each n € N, we have u(K,) = p(int K,,), and so we may suppose that K, = int K, and
thus that K,, € Jx. Further, U \ U € Kx, and so u(U \ U) = 0 by Theorem 2.11. Thus
w(U) = p(B). This shows that | Jx is a surjection onto B,,.

We have shown that Jx and B, are isomorphic Boolean algebras, and so their respec-
tive Stone spaces are homeomorphic; these Stone spaces are X and ®,,, respectively. m

Let Q be a non-empty, locally compact space, and let p be a positive measure on Q.
Then the pair (B, 1) is termed a measure algebra by Halmos in [45, p. 167]; however,
we shall call it a measure Boolean algebra to avoid possible confusion with a later usage
of the term ‘measure algebra’. The special case in which €2 = I and g is the Lebesgue
measure on [ is called the measure Boolean algebra of the unit interval; the corresponding
space @, is called the hyper-Stonean space of the unit interval in [32, ATH].

DEFINITION 2.18. The hyper-Stonean space of the unit interval is denoted by H.

Thus H is the character space of the C*-algebra L *°(I, m).

Let € and Q; be two non-empty, locally compact spaces, and let p; and po be
positive measures on Q; and o, respectively. An isomorphism between the measure
Boolean algebras (B,,,, 11) and (B,,, #2) is a map n : B,, — B, which is a Boolean
algebra isomorphism and is such that ps(n(B)) = u1(B) for each B € Bg,; the two
measure Boolean algebras (%B,,,,u1) and (B, p2) are isomorphic if there is such an
isomorphism between them. In this latter case, the spaces L'(Q1, 1) and L*(Q, o) are
isomorphic as Banach lattices.

A measure ring (B, 1) is separable in the sense of [45, p. 168] if the space (Bq, p) is
a separable metric space for the metric p, defined by setting

p(B,C) =u(BAC) = [lxp —xcl, (B,C € Baq).

This is the case if and only if the Banach space (L*(€, u), || - ||,) is separable. The measure
Boolean algebra of a compact, metrizable space €2 is separable because w(2) = Ny.

We shall require a famous isomorphism theorem; a proof involving just measures is
given in [45, 8§41, Theorem C], and a proof involving von Neumann algebras is given in
[112, Theorem III.1.22].

THEOREM 2.19. Let Q be a non-empty, locally compact space, and let p € M.(Q)T be
such that ||u|| = 1 and such that the Banach space (L*(Q, w), || - ||,) is separable. Then the
measure Boolean algebra (B, (1) is isomorphic to the measure Boolean algebra of the unit
interval, and the two Banach spaces L*(Q, p) and L*(I,m) are isometrically isomorphic
as Banach lattices.

In particular, in the case where Q) is uncountable, locally compact, and second count-
able, there exists a measure p € M.(Q)" such that the spaces LY(Q, p) and L*(I,m) are
isometrically isomorphic as Banach lattices. m

COROLLARY 2.20. Let €1 and 9 be two locally compact and second countable spaces,
and suppose that py € M.(Q1)T and ps € M(Q2)F, with p1, ps # 0. Then the compact
spaces ®,,, and ®,, are homeomorphic. m



32 H. G. Dales, A. T.-M. Lau, and D. Strauss

COROLLARY 2.21. Let § be an uncountable, compact, metrizable space. Let u € M.(Q)*
with p # 0. Then |®,| = 2° and w(®,) = ¢. In particular,

|H| =2° and w(H)=c.
Proof. By Proposition 2.2(iv), |Bq| = ¢, and so |B,| < ¢. By Proposition 2.15(ii), we
have |®,] < 2° and w(®,) <.

Since ®,, is Stonean and infinite, it contains a copy of AN, and so w(®,) > w(AN) = ¢
by Proposition 2.1. Thus |®,| = 2 and w(®,) = ¢.

We give a direct proof of the fact that |®,| > 2°. By Corollary 2.20, it suffices to
suppose that = I and that u is Lebesgue measure on I. For n € N, set F,, = [tan+1, tan],
where (¢,,) is a sequence in I such that ¢, \, 0. For each S C N, set Bg = |J{F,, : n € S},
and, for each p € N*, set

Co=({Kps:S€ep}.
Then C), is a non-empty, closed subset of ®,, and C, N C; = () whenever p and ¢ are
distinct points of N*. By Proposition 2.1, [N*| = 2¢, and so it follows that |®,| > 2°. =

Thus, with GCH, we have |H| = Ry and w(H) = 8.
COROLLARY 2.22. The space H is a topological space X with the following properties:
(i) X is a hyper-Stonean space;
(ii) X has no isolated points;
(iii) X satisfies CCC;
(iv) the space (C(X)py,0(C(X), N(X))) is metrizable.
Conwersely, each topological space X satisfying (i)—(iv) is homeomorphic to H.

Further, | X| = 2¢ and w(X) = ¢ for each such space X.

Proof. We have seen that H satisfies clauses (i)—(iii). The space H satisfies (iv) because
the Banach space F := (L*(I,m), || -||,) is separable (where m is Lebesgue measure on I),
and so (F};,0(F", F)) is metrizable by Proposition 1.1(i); here, ' = L**(I, m) = C(H).
Conversely, suppose that X is a topological space satisfying clauses (i)—(iv). By Prop-
osition 2.17, X is homeomorphic to a space ®, for some p € N(X) with |u|| = 1
and supp ¢ = X. By (ii) and Proposition 2.15, u is a continuous measure. By (iv) and
Proposition 1.1(i), (L*(Q,u), | -|l,) is separable, and so, by Theorem 2.19, L'(Q, ) is
isomorphic as a Banach lattice to L'(I,m). Thus C(X) and C(H) are isomorphic as
Banach lattices, and hence as C*-algebras, whence X and H are homeomorphic. =

We note that clause (iv) of the above characterization of H is necessary: there is a
compact space Q and p € M.(2)T such that X = &, is a hyper-Stonean space with
no isolated points, such that X satisfies CCC, and such that |X| = 2¢ and w(X) = «,
but such that (iv) fails. Indeed, set Q = Z§, the Cantor cube of weight ¢, let m be the
corresponding product measure described above, and set X = ®,,,. Since m is continuous,
®,,, has no isolated points and ®,,, satisfies CCC. As in Example 2.16, we have

w(Py) =|Bm|=c¢ and |P,,| =2
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However, for each 7 < ¢, set B, = {¢ € Q : e, = 1}, so that B, € Jq. Clearly we
have m(B;, A B;,) = 1/2 whenever 71,72 < ¢ with 71 # 72, and so the measure Boolean
algebra (B,,,m) is not separable; equivalently, the space (C(X)p;,0(C(X), N(X))) is
not metrizable.

We can give a condition that is apparently weaker than clause (iv) of the above
corollary, but is actually equivalent to it.

PROPOSITION 2.23. Let X be a topological space that satisfies clauses (i)—(iii), above.
Then X satisfies (iv) if and only if each subspace of C(X);y which is discrete in the
weak-* topology is countable.

Proof. Suppose that X satisfies (iv). Then certainly each weak-* discrete subset of
C(X)p is countable.

For the converse, suppose that each weak-* discrete subset of C'(X ) is countable.

By Proposition 2.17, there are a compact space 2 and a positive measure p € M(Q)*
such that X = ®,. Assume towards a contradiction that there is an uncountable family
(Ba) in Bo \ N, and § > 0 such that p(B,, Bg) > § whenever o # 3. The characteristic
function of By is xq-

We claim that, for each a, it is not the case that x, is in the || -||;-closed convex
hull of {xs3 : B # a}. Indeed, let n € N and t1,...t, € [ with Y. ¢; = 1, and set
A=>" tixs, where 8; # « (i € N,,). We have

n n
Xa = A=Y tilXa —X8,) = D _ ti(Xa\8, = XB\a) »
i=1 i=1
and so

n n
Ixa = Aly = D ti(k(Ba \ Bs,) + (B, \ Ba)) = Y _ tillxa — xa:ll; > 6,
i=1 i=1
where || - ||, is the norm in L'(, ). The claim follows.
Now regard the family (x.) as a subspace of L*°(, u) = C(®,,). For each «, there is a
linear functional M on L*°(£2, i) such that M is continuous with respect to the seminorm
|-, on L>=(£, ) and such that

(Xa» M) <inf{(xs, M) : 5 # a}.
The linear functional A — (A, ) is order-continuous on C(®,)r, and so M is order-
continuous on C(®,,)r. Thus M is a normal measure on ®,; by Theorem 2.11, M is weak-x
continuous on C(®,,), and so X, does not belong to the weak-* closure of {xg : 8 # a}.
It follows that (x.) is an uncountable weak-x discrete subset of C'(X ). This is a
contradiction, and so the measure Boolean algebra (B, 1) is separable. Thus X satisfies
(iv). m
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3. Specific second dual algebras

In this chapter, we shall begin our study of the second duals of the Banach algebras Co ()
and M () for a locally compact space Q2. We shall also introduce B®(2) the C*-algebra
of bounded Borel functions on €.

Second duals of algebras of continuous functions Let 2 be a non-empty, locally
compact space, and again set E = Cy(f2). Since E is a commutative C*-algebra, E is
Arens regular, and E” is also a commutative C*-algebra, with just one Arens product,
which we denote by juxtaposition. Thus

MNA-py=(Apu-A) AeE peE, AcE"

and
<A AQ; >:<A17A2 : > (Al,AQGEH ,LLGE/).

Since E has a bounded approximate identity, £” (with this Arens product) has an iden-
tity, and so E” is isometrically isomorphic to C'(£2) for a certain compact space Q. As in
[112, T11.2.3], C(Q?) is the enveloping von Neumann algebra of E.

DEFINITION 3.1. Let  be a non-empty, locally compact space. Then the character space
of the commutative C*-algebra Cy(€2)” is denoted by

The general proof that a C*-algebra is Arens regular and that its second dual is also
a C*-algebra involves a considerable theory 0f~ C*-algebras; we note tEat a direct proof
that Co(€2)” is isometrically isomorphic to C(2) for a compact space {2 is given in [105,
§4].

We regard Cp(Q2) as a closed subalgebra of C(€2) via the map kg; when  is not
compact, we identify C'(2,) with the closed subalgebra

{zZ1+X:2€C, A€ Co()}

of C(9). Clearly (E")g is a Banach lattice and kg : Fg — (E)g is isotonic.
The topology on the space Q is called o, so that o is the weak-* topology o(E"', E")
restricted to Q. Since E” is certainly a dual space, (Q,0) is hyper-Stonean.

DEFINITION 3.2. Let 2 be a non-empty, locally compact space. Then the corresponding
space ) is the hyper-Stonean envelope of (2.

The term ‘hyper-Stonean cover’ is used for our ‘hyper-Stonean envelope’ in [125],
where some references to earlier works are given. In [125], there is a characterization of
Q in terms of certain ‘Kelley ideals’.

Let ¢ € Q. Then €, € E", and ¢, Co(R) is a character on E or 0, say 7(,) = €x(y)
for a point 7(p) € Qs. The map

T (Q,O’) = (Qoo, 7)
is a continuous surjection.
We remark that a cover of a compact space (Q is a pair (X, f), where X is a compact

space and f : X — Q is a continuous surjection. Thus (Q, ) is a cover of 2. The cover
(X, f) is said to be essential [43, Definition 2.10] if, for each compact space Y and each
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continuous function h : ¥ — X with f(h(Y)) = Q, necessarily h(Y) = X, and the
cover (X, f) is projective if it is essential and X is a projective (equivalently, extremely
disconnected) space. As in [43, Theorem 2.16], we see that each closed subset X of Q
that is minimal with respect to the property that m(X) = Q is a projective cover of Q;
such a cover is unique up to a homeomorphism that commutes with the covering map .
In this case, C(X) is the so-called injective envelope of C(f2).

DEFINITION 3.3. Let 2 be a non-empty, locally compact space, and let x € Qo,. Then

Qoy =7 '({z})
is the fibre of  at x.

Each fibre €y, is a closed subspace of ((NZ, o), and clearly we have

Q = U{Q{x} X e Qoo}.
We shall see in Example 3.16, below, that a fibre {2¢,, is not necessarily open.
Let A € E” and p € E'. Then we claim that

supp (A - ) C supp p. (3.1)
Indeed, let A € Cp(£2) with supp A C Q \ supp u. Then clearly Ay = 0, and so we have
(A A - p) = (A, Ap) = 0. Thus the claim follows.
There is a natural embedding ¢ of € into 2. Indeed, let = € 2. Then

el tA— (A e,), E"—C,

is a character on E" extending e,; the second dual !/ is given by a point of ﬁ, say by ¢(x).
Clearly ¢ : Q — Qis an injection and 7 o ¢ is the identity on Q. The map =1 : 4(Q) — Q
is continuous, and so 7 C o | Q. We now identify z with ¢(x), and regard Q as a subset
(but not a topological subspace) of Q. For z € Q, we identify e, with d, € M(fQ). For
a subset U of Q, we denote by U the closure of U in (€, 0), and we set U* = U \ U. In
particular, € is the closure of Q in (Q, o).
Let x € Q. Then the map
Ay ip—p({z}), MEQ)—C,

belongs to M(Q)' = E” = C(Q). For y € Q, we have

‘SZ(AI) = <AI’ €y> = <Aa:a 6y>7
and so A|Q = xy,). This shows that (2,0) is a discrete space. We shall see below that
Q is open in the hyper-Stonean envelope (Q, o).

Let z € Q. In the case where z is isolated in 2, set Y = Q\{z}. Then E = Co(Y)®Cd,,
and so B = C(Y) ® Cd,. Clearly 7(Y) =Y, and so Q. = {z}.

PROPOSITION 3.4. Let ) be a non-empty, locally compact space. Then kg (Co(S2)) consists
of the functions A € C(Q,0) such that A |,y is constant for each x € Qo and such
that A|Qaey = 0.

Proof. Take A € E = Cy(f2). For each x € Qu, we see that xkp(A) | Q) takes the
constant value A(x) and that kg()\) |2y = 0.



36 H. G. Dales, A. T.-M. Lau, and D. Strauss

Now suppose that A € C(ﬁ) and that A is constant on each set {2¢,y. We claim that
A=A 1Q e C(Q,7). For let (z,) be a net in £ with limit xy € Q with respect to the
topology 7. Since (ﬁ,a) is compact, we may suppose by passing to a subnet that there
exists o € Q such that z, — ¢o in (Q,0). Since 7 : (Q,06) — (€,7) is continuous,
ZTo — m(po) in (Q,7), and so 7(pg) = xo. Thus A(zs) = A(za) — Alpo) = AMzo). Tt
follows that A € C(€2). By the same argument, A € Cy(€2) in the case where A |Q(,y = 0.
Clearly kg(A) = A, and so the result follows. m

COROLLARY 3.5. Let Q be a non-empty, locally compact space. Then 7=1(Q) is a dense,
open subspace of ). m

We shall see in Example 3.16, below, that, in general, there is no continuous projection
of C(Q) onto C(1).

The following result is a slightly more general version of [56, Lemma 2.3]. We say that
an element A € L>®(Q) is continuous at x € € if the equivalence class of A contains a
function which is continuous at x.

PRrROPOSITION 3.6. Let Q be a non-empty, locally compact space, and take p to be a
positive measure on Q. Suppose that there exists V € N, such that p(U) > 0 for each
non-empty, open subset U of Q with U C V. Let A € L>(Q, i), and suppose that G, ()
is constant on ®, N Q. Then A is continuous at x.

Proof. We note that the set ®, N {2,y is not empty because it contains each weak-*
accumulation point of the net {up : B € N }.

We may suppose that A is real-valued. Assume towards a contradiction that A is not
continuous at x. Then there exist o, 8 € R with o < § such that, setting

A={z eV :\Nz)<a}, B={zeV:\z)>p3},

we have AN B = () and both A and B meet each neighbourhood of z in a non-empty,
open set; by hypothesis, each such intersection has strictly positive py-measure, and so
{A}UN, and {B} UN, are contained in ultrafilters ¢, € ®, NQ,y, respectively, with
¢ # . We have G,(A\)(¢) < a and G, (N\)(¢) > 3, a contradiction of the fact that G, (\)
is constant on ®, N Q..

Thus A is continuous at z. =

Second duals of spaces of measures Let (2 be a non-empty, locally compact space,
and again set E = Cy(£2). The dual space of E” = C(Q0) is E"' = M (). We denote by
Kk = kg the canonical mapping of E’ into E”, and sometimes identify p € M () with

k(p) € M(Q). Thus we have
(A, p) = /ﬁAdu (A e C(Q), pe MEQ)). (3.2)

There is a continuous projection 7 : E”” — E’ which is the dual of the injection
kg : E — E”, and which is defined by

A, (M) = (kp(\),M) (A€ E,M e E"),
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and so we also have a map
T =k M(Q) — M(Q). (3.3)
The map 7| Q: Q — Q coincides with the previously-defined map 7. Further,
M(Q)=M(Q)® E°,
where
—{MGM( ):M|kg(E) =0} =ker 7.

For a compact subset K of (2, we write K < A whenever A € Cp(Q2) with A(Q2) C I
and A\|K = 1. In the case where M € M(Q)" and K is a compact subset of , we have

7(M)(K) = inf{ [ Adrw) K < /\}

:inf{/ﬁmE(A)dM:K<)\}

= inf {/~ AdM : 77 HK) < A} = M(r 1K),
Q
and so N
7(M)(B) = M(7~1(B)) (M€ M(Q), B € Bgq). (3.4)
It follows that E° is the~ weak-* closed linear span of measures of the form 6, — d,,, where
©, 1 are two points of (2 in the same fibre. It also follows that
IM[| = M(Q) = 7(M)(Q) = [[=(M)| (M e MQ)T). (3.5)
We shall use the following theorem.
THEOREM 3.7. Let Q1 and Q5 be two compact spaces, and suppose that there is a Banach
lattice isomorphism T : M(Qq1) — M(Qs). Then the dual map
T': C(Q2) — C()
is a Banach lattice isomorphism and a unital x-isomorphism, and §~21 and S~22 are homeo-
morphic.

Proof. Certainly T” : C(Qs) — C(€;) is a Banach lattice isomorphism such that 7" maps
the identity function on 5 to the identity function on ;. By Theorem 2.4(ii), 7" is a
unital *-isomorphism. The map T" |Qs : Q3 — € is a homeomorphism. m

Let © be a non-empty, locally compact space. Then of course the predual C’((NZ)* of
C(Q) is k(M(9)), and so we may extend Theorem 2.11 to obtain the following charac-
terization of k(M (Q)).

THEOREM 3.8. Let ) be a be a non-empty, locally compact space, and let M € M(ﬁ)*‘
Then the following conditions on M are equivalent :

(a) M € x(M(9));
b) M is weak-x continuous as a linear functional on C’( );

(
(¢) M is a normal measure;
(

d) M(K) =0 (K € Kg)-
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Bounded Borel functions We now define a further important C*-algebra.

DEFINITION 3.9. Let Q be a non-empty, locally compact space. Then B°(£2) denotes the
space of bounded Borel functions on ).

Clearly (B®(9),|-|q) is a unital C*-subalgebra of (£°°(Q), | - |,) with C'*(Q) C B(Q).
It is also clear that the space
lin{xg: B € Bq}

is a |- |,-dense linear subspace of B(Q).

Indeed, B%(Q) is a well-known Banach algebra. This algebra is closely related to the
algebra of Baire functions, which can be defined by a transfinite recursion through the
Baire classes. The Baire functions of order 0 are the functions in C'*(€2). Given a definition
of the Baire class of order 3 for each 8 < «, the class of order « is the space of bounded
functions on  which are pointwise limits of sequences of functions in the union of the
earlier classes; the construction terminates at v = wy. The Baire functions on 2 are the
members of this final class. Each Baire class is itself a Banach algebra which is a closed
subalgebra of B?(€2). In the case where the space € is (locally compact and) second
countable, the algebra of Baire functions is equal to B®(Q) [50, (11.46)]; in particular,
this is true for 2 = R with the usual topology.

DEFINITION 3.10. The character space of the unital C*-algebra (B°(f2),|-|5) is denoted
by @b.

PROPOSITION 3.11. Let 2 be an infinite, compact metrizable space. Then ‘Bb(Q)‘ =c
and |®p| = 2°.
Proof. By Proposition 2.3(ii), |C'(£2)| = ¢. Thus each Baire class of order less than w;
has cardinality ¢, and so the algebra of Baire functions on €2 has cardinality c. Since the
latter algebra is equal to B®(£2), we have |B®(Q)| = .

We have |®,| < |B?(Q)'| = 2°. Let D be a countable subset of . Then £°°(D) is
a closed C*-subalgebra of B?(2) and the character space of £°°(D) is 3D, which, by
Proposition 2.1, has cardinality 2¢. Thus |®,| > 2°. Hence |®p| = 2°. =

DEFINITION 3.12. Let  be a non-empty, locally compact space. For A € B*(Q), define
kg(\) on E' = M(Q) by

(5B (), 1) = / Np o (pe M(Q). (3.6)

We see immediately that kp(A) € M(Q) = C(€) and that we have kg(\)|Q = A for
A€ BY(Q).
Let A € BY(Q) and p € M (). Then kg(A) - p is the measure Au.
Now take A1, A2 € B%(Q) and p € M(Q). Then
(kE(M)EE(A2), 1) = (kE(M), kE(A2) - 1) = (kE(A1), A2p)

:/)\1>\2d,u: <K,E()\1>\2), :u’>7
Q
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and so kg(AA2) = kp(AM)ke(A2). It follows from Corollary 3.5 that kg(lg) = 1g, and
so the map
kp: B'(Q) — C(Q)

is a unital, isometric *-isomorphism identifying B®(Q) as a closed, self-adjoint subalgebra
of C (ﬁ) containing the identity function, and it extends the previously-defined map k.

The algebra kp(Bb(Q)) is a uniformly closed C*-subalgebra of C(Q). In the case
where there is a non-Borel set in Q, it cannot be that kg (B%(Q)) separates the points
of Q. For, if this were so, we would have kg(B?(Q)) = C(Q) by the Stone-Weierstrass
theorem. However B®(Q)g is not a complete lattice (the family of characteristic functions
of finite subsets of a non-Borel subset of (2, ordered by inclusion, is an increasing net in
B*%() that does not have a supremum), but C(Q)R is a complete lattice.

The character space ®; is the compact space (NZ/ ~ , where

o~ if ke(A\)(p) = k(N (@) (AeB*(9Q).
Since lin{xp : B € Bq} is dense in BY(Q), it follows that
e~ ifandonlyif kge(xp)(p)=re(xs)W) (BE€Bq).

DEFINITION 3.13. Let 2 be a non-empty, locally compact space, and take ¢, ¥ € Q. Then
@ and ¥ are Borel equivalent if ¢ ~ 1.

The equivalence class under the relation ~ that contains ¢ is denoted by [p]. Clearly
we have [p] C Q. for ¢ € Q, where = 7(¢). Since C(®,)g is not a complete lattice,
®,, is not a Stonean space. We shall make further remarks about the equivalence classes
[¢] and the space @, in Chapter 4, below.

For cach B € Bgq, the function kg (xp) is an idempotent in C(Q), and so kp(xp) is
the characteristic function of a clopen subset, say Kpg, of Q.

DEFINITION 3.14. Let 2 be a non-empty, locally compact space, and let B € B¢. Then
Kp={p€Q:rp(xn)lp)=1}.
Thus
ke(xe) = XKky; (B € Bq). (3.7)
Clearly kg(xB)|Q = xB, and so Kg NQ = B, whence B C Kp. Let B,C € Bq. Then

XBnc =XB - Xc¢ and XBuc = XB+XC —XB * XC
and so
KpNKec=Kpnec and KpUKec = Kpyc-

In particular, if BN C = (), then BN C = 0. Suppose that B € B and that = € Q.
Then (kgp(xB),d:) is 1 or 0 according as € B or ¢ B. Thus the map B — Kp is an
injection. We shall use the following immediate proposition later.

PROPOSITION 3.15. Let Q2 be a non-empty, locally compact space, and let v, € Q. Then
@ ~ Y if and only if
Y e Kp = ¢ c Kp

for each B € Bg. =
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Note that the family {Kp : B € B} is not a base for the topology of €.

Let B € Bg and p € M(Q). Then k(p) € M(Q), and

r()(Kp) = (Xkp, £(1) = (X8> 1) = n(B) . (3-8)
Let {B, : n € N} be a family in Bgq, and set B = |J,,cyy Bn, 5o that B € Bq. The

following example shows that, in general, it is not true that Kp = (J,,cyy KB, -

ExAMPLE 3.16. In the special case where 2 = S is a discrete space, we have E = co(5)
and Q = (S, the Stone-Cech compactification of S, and hence E” = C(3S). Further,
B%(S) =1¢>(S)=FE".
The above map m takes S* to the point oo of {0o. The fibre S;} is not open in 35S.
Let S = N. Then we see that, for each n € N, we have Ky,; = {n} and Ky = N,

whereas (J,,cy Kn} = N. Note that, by Phillips’ Lemma [1, §2.5], there is no continuous
projection of C'(BN) = £°° onto ¢y. =

PROPOSITION 3.17. Let Q be a non-empty, locally compact space, and let {B,, : n € N}
be a family in Bq. Set B =, cp Bn- Then

Kp\|J{Kp, :n €N} €Kq, (3.9)
and so Kp = |J{Kp, : n € N}.

Proof. Set K = Kp\ U,y KB, -

Each set Kp, is clopen, and so K is a closed subset of Q. Hence K is compact in Q.

To show that int K = (), we may suppose that B, C B,+1 (n € N). For each
pw € M(Q)T, we have u(B,) — wu(B) by the monotone convergence theorem, and so, by
(3.8), k(1) (K,) — k(1) (Kp) as n — . )

Assume towards a contradiction that int K # ). Since the space € is extremely dis-
connected, there is a non-empty, clopen subset W of Qwith W C K ; we have xyw € E”.
It follows that W € K\ Kp, (n € N), and so, for each u € M(Q)", we have

0 < K(p)(W) < w(p)(Kp\ Kp,) = £(1)(Kp) — w(p)(Kp,) — 0

as n — o0o. Thus

Oxews 1) = (xws &) = k()(W) =0.

This holds for each y € M(Q)", and hence for each u € M(Q2), and so yw = 0 in
E" =C(Q). Hence W = {), and this is the required contradiction. m

Let x € Q. What is the set K,)7 It is easy to see that
{1‘} C K{z} C Q{w}.
We claim that K. NQ = {x}. For this, we may suppose that z is not isolated in €2, for
otherwise the claim follows trivially. Now take ¢ € Q\ {z}. There is a net (z, : € A) in
Q with 24 — @ in (€, 0). The set {a € A : 7, = 2} cannot be cofinal in the directed set A
(or otherwise ¢ = x), and so we may suppose that (z,) C Q\{x}. Since kg (x{}) € Cc(Q)
and Kg(X{z})(7a) = 0 for each a, we have kg (x{+})(¢) = 0. Thus ¢ € K,y. This shows
that K,y NQ = {z}, as claimed. We shall see later that K,y = {z}.
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PROPOSITION 3.18. Let Q2 be a non-empty, locally compact space. Then
7(Kp) =B  and Kp D7 '(int B)
for each B € B.
Proof. Clearly B C n(Kp), and so B’ C W(KB)
For the converse, suppose that € ©\ B . Then there exists A € Co(Q)r with

)
A B =1and A(z) = 0. We have xp < A in Eg, and so kg(xp) < kg(A) in (E")r. The
function kg (A) takes the constant value 0 on the fibre Q,), and so Kp Ny, = (). Thus

T

r & n(Kpg). This shows that 7(Kg) = B .

Set U = int B, and take € U. Then there exists A € Cy(2)g such that A(z) = 1 and
A < xy in Eg, and so kg(A) < kg(xv) in (E”)r. The function k() takes the constant
value 1 on the fibre .}, and so K D ;). =

A bounded linear operator Let 2; and €5 be two compact spaces, and let  : Q1 — Q9
be a continuous map. Then we have defined a continuous *-homomorphism

0=n°:C(Q2) — C().
We now have the dual map
0 M(Q) — M(Q2);

the map €’ is a homomorphism of Banach lattices, and it is an isometric isomorphism
whenever 7 is a homeomorphism. More generally, let £2; and €5 be two non-empty, locally
compact spaces, and let 1 : ; — Q9 be a continuous map. Then (cf. equation (2.4)) the
continuous *-homomorphism

A= Aon, Co(Q) — CPQ), (3.10)

may not have its range contained in Cp(£21). However, suppose that n:€Q; — Qg is a
Borel map, so that A o € B%(Qy), and, for each u € M(Q1), set

v(\) :/Q Aon)du (A€ Cy()).

It is clear that v is a bounded linear functional on Cy(€22), and so we may regard v as a
measure on {lo; we set

T(p)=v (pe M),
so that 7 : M (Q1) — M(Q2) is a bounded linear operator with ||7]] = 1 such that

| rante / (M omdn (Ae Co(S), e M(S)). (3.11)
Q2
It follows that

7(u)(B) = p(n~'(B)) (B€Ba,, peM)). (3.12)
In particular, 7(0,) = d,(z) (z € Q1), so that 77 | Q1 = n.

Suppose that pi1, o € M ()" with pq << po. Then 7 (p1),7 (u2) € M(Q2)*, and it
is clear from equation (3.12) that we have 7j (1) << 77 (u2). It follows that

(L (Qu, ) © LY (Q2,77 (1) - (3.13)

We shall make further remarks about the maps 77 and 7’ in the next chapter.
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Conversely, suppose that T : M (1) — M(€2) is an isometric Banach lattice iso-
morphism. Then T'|ex P(£2;) is a bijection from Q; to Qs, and so || = |Qa].

PRrROPOSITION 3.19. Let Q1 and Qo be two non-empty, locally compact spaces, and let
n: Q1 — Qs be a Borel map. Suppose that 1 is an injection. Then

7l = lell (v € M)
In particular, 77 : M (1) — M(§2) is an injection.
Proof. Take p € M () with [|u|| =1, say p = p1 — o +1(us — pa), where pj € M ()"
for j =1,2,3,4. Set v; =7 (uj) € M(Q2)" for j =1,2,3,4, and set
v=m(p) =v1 —va+i(vs —v4).
Take ¢ > 0. For j = 1,2, 3,4, there exist Borel sets B; in 5 such that v;(B) > 0 for each
Borel subset B of B; and

4
> vi(By) > vl —e.
j=1

Set C; = n~1(B;), a Borel set in Qy, so that u;(C;) = v;(B;).
Since 7 is an injection, the sets C1, Cs, C5, Cy are pairwise disjoint, and so

4 4
il = > i (Cy) = wi(By) > |Ivll —e.
j=1 j=1
This holds for each & > 0, and so ||u|| = ||v||. =

COROLLARY 3.20. Let Q1 and Q5 be two uncountable, compact, metrizable spaces. Then
the spaces M (1) and M (S2) are isometrically isomorphic as Banach spaces and lattices.

Proof. By Proposition 2.2(ii), there is a map n : €1 — {3 which is a Borel isomor-
phism. As above, we define 7j : M (Q;) — M(Q2). By Proposition 3.19, 77 is an isometric
isomorphism of Banach spaces. Clearly 77 preserves the lattice operations. m

However 77 is not necessarily a surjection even when 7 is a continuous surjection: for
a counter-example, let 7 = I; and Q5 = I, and take n to be the identity map. We shall
give an example for which 7 is a surjection in Proposition 5.2(i). In the case where € is
compact and 7 is a surjection, 7 is obviously a surjection.
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4. The topological structure of Q

Submodules of M(Q) and clopen subspaces of Q Let Q be a non-empty, locally
compact space, and again set E = Cy(€2). We are identifying M () as the dual module
E' of E.

Let X be a Banach E-submodule of M(f), and let jx : X — M(Q) denote the
injection. By Proposition 1.17, X° is a weak-x closed ideal in C’(ﬁ), and so the hull of
X° is a closed subset, say L, of Q. The ideal X° has a bounded approximate identity, say
(Aw), in X["” ; since C(ﬁ)[l] is weak-* compact and X° is weak-x closed, (A,) has a limit,
say A, in X[} Certainly A(p) =1 (¢ € L), and so A = . This shows that L is a clopen
subset of Q. Set Qy = Q \ L, so that Qx is also a clopen subset of Q. Clearly we can
identify X’ with the commutative C*-algebra C (S~2 x), and 80 Qx is the character space
of X'. In this way, j% is just the restriction map from C’( ) to C(QX)' in particular,
4% (1) is the characteristic function of Qx-.

Conversely, let L be a clopen subset of (2, so that xp € C (ﬁ), and define

Xp={xz - p:p€M)}.
Then X, is a || - [|-closed E-submodule of M(Q), and clearly Qx, = L. We have estab-
lished the following result; it is essentially a special case of [112, Theorem II1.2.7]. The

collections of || - |-closed submodules of M (€2) and of clopen subsets of §2 are both ordered
by inclusion.

PROPOSITION 4.1. Let  be a non-empty, locally compact space. Then the above corres-
pondence is an isotonic bijection between the collections of || - ||-closed submodules of M (£2)
and of clopen subsets of the hyper-Stonean envelope Q.

Further, for each Banach submodule X of M (), there is a unique Banach submodule
Y of M(S) such that M(2) =X DY . m

COROLLARY 4.2. Let Q) be a non-empty, locally compact space, and let ¢ € Q. Then Y s
an isolated point of Q if and only if ¢ € Q.

Proof. Let z € Q. Then X = CJ, is a one-dimensional submodule of M (), and so Qx
is a singleton. Since ¢, € X', we have QX = {z}, and so z is an isolated point in Q.

Conversely, suppose that ¢ is an isolated point in Q and let X be the submodule
of M() corresponding to the clopen subset {¢} of €. Then the space X' = C({¢})
is one-dimensional, and so X is one-dimensional. Let u € X \ {0}. Assume towards a
contradiction that supp p contains two distinct points = and y, and take A € C(Q) with
A(z) =1 and A(y) = 0. Then A\ € X, but A ¢ Cp, a contradiction. Thus supp p = {z}
for some x € €2, and hence p =49, and p =z. m

Recovery of 2 from Q Let Q be a non-empty, locally compact space. Corollary 4.2
shows that we can recover the set €2 from the hyper-Stonean envelope ﬁ‘ indeed, 2 was
identified with the set of isolated points of Q. Thus, if ; and Qg are locally compact
spaces such that € and Q, are homeomorphic, then necessarily we have [Q] = |Qs].
However, we shall now show that we cannot recover the topology 7 on a compact space
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Q from its hyper-Stonean envelope; indeed, we cannot even recover C(f2) as a Banach
space, even when we restrict ourselves to countable, compact spaces.

For example, set 2 = N. Then Q is the space 0N, and so Q is homeomorphic to GN.

Now let (£2,7) be any countable, locally compact space, and take € (2. Since ()
is an isolated point in Q we may say that §, € C(12); further d, - §, = 0 whenever
2,y € Q with 2 # y, and 8, - 6, = 6, whenever z € Q. Set L =lin {4, : 2 € Q} C C(Q).
Then the product of two elements of L is determined independently of the topology 7.
We claim that L is weak-* dense in C' (()) Indeed, assume towards a contradiction that
L is not weak-* dense in C (()) Then there exists a non-zero, weak-* continuous element
i € M() such that | L = 0. By Proposition 1.1(ii), it follows that x € M(f). But
M(Q) = £Y(Q) because Q is countable, and (d,, u) = 0 (x € Q), whence u = 0, the
required contradiction. Hence L is weak-* dense in C' (ﬁ), and so the structure of C' (§~2)
is determined as a Banach algebra independently of the topology 7. We have established
the following result.

THEOREM 4.3. Let (2, 7) be a countable, locally compact space. Then Q is homeomorphic
to BN with its usual topology. m

It is certainly not the case that any two countable, compact spaces are homeomorphic.
For example, consider the compact spaces w+1, 2 - w+1, and w* 4+ 1, where w is the first
infinite ordinal, and the spaces are taken with the order topology; these three spaces are
countable and compact, but no two of them are mutually homeomorphic. In particular,
there are three distinct topologies on each infinite, countable set rendering it a compact
space. (In fact, there are at least Ry such topologies.) The two Banach spaces C(w+1) and
C(2 - w+1) are linearly homeomorphic, but the Banach spaces C(w+1) and C(w*+1) are
not linearly homeomorphic. For these remarks on Banach spaces, see [106, Notes 2.5.14],
for example.

Partitions of  Let 2 be a non-empty, locally compact space.
We denote by
ja: Ma(Q) — M(Q) and je: Mc(Q) — M(Q)

the natural injections. Clearly My(Q2) and M.(92) are both closed E-submodules of M (),
and jg and j. are E-module homomorphisms. We recall that M;(2) is o(E’, E)-dense in
M (). Thus, by Propositions 1.17 and 4.1, C(f2) is the direct sum of two closed ideals,

JA(C(Q) = Mg(Q) = €°(Q) and  jL(C(Q)) = M(%)'.

The character spaces of these two ideals are denoted by Qd and QC, respectlvely, so that
{Q4,9.} is partition of Q into clopen sets. We have Q C €. Take A € C(Q 1) with
A€ = 0. Then A[Mq(2) = 0, and so p(A) =0 (¢ € Qg). Thus € is dense in Qg4, and
hence Q = €. Clearly Qq can be identified with (€4, the Stone-Cech compactification
of 2 with the discrete topology. We now say that

{ﬁa ﬁc} = {ﬁde Qc}

is a partition of Q into clopen sets.
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Let A € B(Q) and p € M(Q). Tt is clear that

(kE(N)[Qa, ) = (kp(X), pa),  (kE(N)[Qe; 1) = (kB(A), pe) -
Thus r5(A) | Q4 = ja(A); we caution that kg(\) = ja(A) for each A € Bb(Q) only if Q is
discrete.

In particular, for each = € Q, we have kp(X(z}) = FE(X{z}) | Qq, and so Ky c Q.
Hence we can now see that Ky,) = {x}: this again shows that the set {z} is open in
((NI,U) for each x € ), and so 2 is open in Q. In particular, kg(d,) = d., and so the
equivalence class [z] is just the singleton {z}.

Let u be a continuous positive measure on ) such that y is either o-finite or the left
Haar measure on a locally compact group. Then, as in (2.8),
M(Q) = £1(Q) @1 LN(Q, 1) &1 My(Q, 1) -

Each of the three spaces My(S2, 1), Mac(2, 1), and M(92, ) is a closed, complemented
E-submodule of M(2), and so is an introverted space; we obtain a further partition of £
into three corresponding clopen subsets. In this case, we have

M(Q) = £(Q) &1 L=(Q, 1) B1 M, (2 1)’
The character space of the C*-algebra L>° (2, 1) has already been called ®,,; the character
spaces of M(Q, u)" is denoted by ®

s,u» and so we have a partition

{ﬂde q)/u (I)s,;t}
of Q) into clopen subsets; thus
C(ﬁ) = O(ﬁgd) Do C((I)/L) Doo O((I)s,u) .

Let  be a non-empty, locally compact space, and let u be a positive measure on ).
We recall that the map 7, : ®, — supp U {oo} was defined in equation (2.12).

PROPOSITION 4.4. Let Q be a non-empty, locally compact space, and let u be a positive
measure on ). Then:

(1) 7| Py =my;

(ii) supp p C w(®,) C (supp p) U {oco}.
Proof. (i) Take ¢ € @, and set m(p) = & € Q. For each U € N, there is an element
A€ Co(Q)” and V € N, with A(y) =1 (y € V) and 0 < X < xy. It follows that

1
Plre(w)) = pre (V) = GuN(P) = fim —os [ A
g B—¢ u(B) Jp

by (2.11). In the above limit, we may suppose that B C V, and so ¢(kg(xv)) > 1 = e, ().
This shows that U € ¢, and hence we have N, C ¢. By the definition of z, we have
Tu(p) = x, and so 7, (p) = 7(p).

(ii) We know that w(®,,) C (supp p) U {oo}.

Now set U = Q \ supp p; we may suppose that U # (). By Proposition 3.18, we have
Ky D 7= 1(U). Also p(U) = 0, and so Ky N ®, = 0. Thus 7~ (U) N ®, = 0, and so
7(®,) NU = (0. This shows that supp p C 7(®,). =
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Again let y be a positive measure on 2. Take A € C() = M), and set
Ay = ALY p) € L®(Q,p).
Then, following our identifications, we have
Gu(Ap) = Al Dy, . (4.1)

It follows that the notation Kp N ®, for B € Bq is consistent with that used earlier in
(2.10).

We identify L'(Q, n)” with M(®,,). It follows from Theorem 3.8 that the canonical
image of L'(Q, n) in M(®,,) is given by

LY(Qp) ={MeM@®,): M(K)=0 (K €Ks,)}. (4.2)

Let p,v € M(Q)". Then it is clear that ®, C @, if and only if p << v, that
®,N®, =0 if and only if 4 L v, that ®,,4, = ¢, U®P,, and that ®,,, = ¢, NP,. These
remarks are also contained in [40, §4]. Let () be a sequence of measures in M(Q)",
and set = > "7, /2" Then p € M()T, and

u= U{Cbun :n € N}. (4.3)

As in Definition 3.9, we have an embedding rp : B?(Q) — C(Q). Let p be a positive
measure on ). Then we have a restriction map

P C(Q) — C(Py).
On the other hand, there is a quotient map
Au - Bb(Q) — L=, ),

formed by identifying A\ € B®(Q2) with its equivalence class in L>(£, u1). (In fact, every
equivalence class in L (2, 1) contains a representative in the second Baire class; see [65,
(4.1.3)].) We have

@) P = [ Pdu=(ks0). ) (€ LN ).
Hence, by (4.1), we have
Gu(g:(N) = pu(re(N) (A€ B*(Q)),

whence G, o q, = p, o Kg; this show that the diagram

B*(Q) c(Q)

Lk
Lo(Q, p) o O(®,,)

is commutative, and that kg (B°(Q))|®, = C(®,).

DEFINITION 4.5. Let 2 be a non-empty, locally compact space. Then
U = J{®u:ne M@Q)T}.
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Clearly a point ¢ € Ug belongs to ®,, if and only if p(\) = 0 for each A € Bb(Q) such

that
/ [A] dp=0.
Q

In the case where ) is discrete, the corresponding set Ug is the set of ultrafilters on 2
that contain a countable set; for example, Uy = ON.

PROPOSITION 4.6. Let Q2 be a non-empty, locally compact space. Then Uq is a dense,
open subset of Q and BUq = Q. Further, the space kp(B%(Q)) separates the points of
Uq.

Proof. Clearly Ug is an open subset of Q.

To show that Ug is dense in €, let A € C(€2) be such that A|Uq = 0. Then, for each
pw € M(2)T, we see that A|®,, regarded as a linear functional on L'(€2, p1), is zero, and
so A = 0. This implies that Ug is dense in Q. Thus BUq = Q

Now take ¢, € Uq with ¢ # 9. Since ®,,1, = ¢, U®, (p,v € M(Q)"), we may
suppose that there exists p € M(Q)" such that ¢,¢p € ®,. Further, since the map
pu © kg : BY(Q) — C(®,) is an epimorphism, rx(Bb(2)) separates ¢ and 1. =

COROLLARY 4.7. Let Q be a non-empty, locally compact space, let x € Q, and let N € N.
Then each 1 € m=Y(N) is in the weak-x closure of the set

{pc :pe M()*, CeB,, CCN}.

Proof. Let 1) € Q. By Proposition 4.6, it suffices to suppose that ¢» € 7= 1(N) N Ug,
and hence that ¢ € ®, for some p € M(2)*. Thus the result now follows from equation
(2.11).

Suppose that {2 is not scattered. Then it is not true that the family { KpNUgq : B € B}
forms a base for the topology of Ug. For take pn € M (Q)" such that ®,NQ = 0. It cannot
be that ®, contains a set of the form Kp N Uq because KpNUa N = KpNQ = B for
any non-empty B € B.

Let F = {v; : i € I} be a maximal singular faNmily of positive measures on {2, as
in Chapter 2. The corresponding clopen subsets of (2 are then called ®;. It follows from
(2.9) that

C(Q) =M Q) = @P{C(®;):iel}.

PROPOSITION 4.8. Let Q be a non-empty, locally compact space, and let F = {v; : i € I'}
be a maximal singular family of positive measures on Q). Then the family {®;:i¢€ I} s
pairwise disjoint, and Ur :=J{Q; : i € I} is a dense, open subset on with BUF = Q.

Proof. This is essentially the same as the proof of Proposition 4.6. m

In the case where (Q is discrete, so that F is the collection of point masses, we have
Ur =Q C 9.
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PROPOSITION 4.9. Let © be a non-empty, locally compact space.

(i) Let ¢ € Q. Then v € Uq if and only if ¢ has a basis of clopen neighbourhoods such
that each set in the basis satisfies CCC on clopen sets.

(ii) Let L be clopen subset of Q that satisfies CCC on clopen sets. Then there is a
measure p € M(Q)" such that L = ®,,.

Proof. Let F = {v; : i € I} be a maximal singular family of measures in M (Q)*, and let
®, be as above for i € I; we may suppose that ||| =1 (i € I).

(i) Suppose that ¢ € ®,, where p € M(Q)". Then ¢ has a neighbourhood basis
of clopen sets, and each set in this basis satisfies CCC on clopen sets by Proposition
2.15(iii).

Suppose that ¢ € Uq, and let V' be a clopen neighbourhood of ¢. By equation (4.3),
the set {i € I : VN ®; # (0} is not countable, and so V' does not satisfy CCC on clopen
subsets.

(ii) Clearly {®; N L : i € I} is a pairwise-disjoint family of clopen subsets, and so, by
hypothesis, there is a countable subset J of I such that ®; N L # 0 if and only if i € J.
Set

V=|J{®:nL:ieJ} and F=V.
Then V is open in L, and F' is a clopen subset of L because L is a Stonean space. The
set L\ F is a clopen subset of € such that (L\ F)N®; =0 (i € I). By Proposition 4.8,
U{®; : i € I} is dense in Q, and so L\ F = (. By (4.3), there exists u € M(Q)* such
that L = ®,,. m

PRrROPOSITION 4.10. Let Q be a non-empty, locally compact space, and let F. and G. be
two mazimal singular families of positive, continuous measures on Q. Then |Fe| = |G|
Proof. Suppose that F. = {u; : i € I} and G. = {v; : j € J}, where u;,v; € M.(Q)*.
We claim that |I| = |J|.

We may suppose that I and J are infinite.

Assume towards a contradiction that |I| < |J|. For each i € I, consider the set

Hi={jeJ:®, N®, #0}.

By Proposition 2.15(iii), ®,, satisfies CCC, and so it follows that |H;| < Ro. Also we
have |J{H; : i € I} = J because F. is a maximal family. Thus |J| < 8y - |I| = |I], a
contradiction.

We conclude that |I| = |J|. m

A homomorphism Let 2; and €25 be two non-empty, locally compact spaces, and then
take n : 1 — s to be a continuous map; we have defined in equation (3.11) the bounded
linear operator 77" : M (1) — M(£2) by the formula

| xdn) = [ (omdu (Ne o), e M), (1.4)
Qo (951

We now have bounded linear operators

7' C(Q) — C(Qy) and 7" : M(Qy) — M(Q).
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In the case where Q; and €5 are compact spaces, we have 7’ = 6", where # = 1°, and so
7' C(ﬁg) — C’(ﬁl) is a continuous *-homomorphism. It does not seem to be immediate
that 77’ is a homomorphism in the general case; we shall now prove this. We are grateful
to Colin Graham for an active discussion on this result.

Equation (4.4) holds for A € Cy(€2); we first note that it also holds for A € B®(Qy).
Note that A o € B?(Q;), regarded as a subset of C(Q1), whenever A € B?(€,), and so
(Ao m,pu) and (A o n) - u are defined.

Let u € M(£;), and set v = 7(u). Consider A € B®(s). There is a sequence (\) in
Co(Q22) such that [Ax|g, <[Ag, (k€ N) and such that A\, — A (p.p. v) on Q. Thus

Ak o nlg, <[Ag, (kEN)

and A\ o — X on (p.p. u) on Q. (If the first convergence fails on the set B, where
v(B) = 0, then the second convergence holds off the set 71 (B), and u(n~*(B)) = 0 by
(3.12).) Equation (4.4) holds whenever A is replaced by Ag; it follows from the dominated
convergence theorem that (4.4) holds for our A € B®(Qy).

THEOREM 4.11. Let 0y and Qo be two non-empty, locally compact spaces, and consider
a continuous map n : Q1 — Qa. Then the map 7' : C(Q2) — C(Q1) is a continuous
x-homomorphism. Further, 7' (C(®5(,))) C C(®,) for each € M(Q1)7".

Proof. Take pn € M(€). Clearly
@' N, )= A7 (w) =Aomn p) (neME), A€ Co())
by the above remark, and so /() = A o n € C(Q;) for all A € Cy().
Let A € B¥(Q) and p € M (). We first claim that
nm'A) - p)=n(Aomn) - =X 9. (4.5)
Indeed, for all A; € Cy(€22), we have
Cu (@ om) i) = [ Guom(ondi= [ (udondn

Qo Qo
= (MA T () = A, A -7 (),
giving (4.5).
We recall that we write A, for A | L*(€s,r) when A € C(€), so that A, is regarded
as an element of B%(Qy); we shall write Ay, for (Aq),, ete.
Now take € M(€4)", and set v = (). Let Ay, Ay € C(£). Then we have

(' (M1A2), p) = (MiAa, v) = ((A1A2)y, v) = (A1 Ay, v)
= (A1, Aoy - v) = (A1, N7 (M) - 1))
by (4.5). Also, we have
@' (AT (A2), ) = (' (A1), 7' (A2) - p) = (A1, (7' (A2) - )
Since L'(Qy, 1) is an introverted subspace of M (), we know that 7/ (Az) - u € L*(Q, p);
it now follows from (3.13) that 7 (' (A2) - p) belongs to L!(Qg,v), and so

(A, (7' (A2) - ) = (A1, T (A2) - ).
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Since 71/(A1)77'(A2) =7/ (A2)7' (A1), we obtain

@' (A7 (A2), ) = (A1, T (A2) - 1))
Thus (77'(A1A2), ) = (7' (A1)’ (A2), u). The above equality holds for all p € M (),
and so we conclude that

7'(A1A2) =7/ (A7’ (A2) (A1, Az € C(Q2)),

and hence that 77’ is a homomorphism; clearly it is *-homomorphism.
It is clear from equation (3.13) that 77(C(®5(,))) C C(®,) for each p € M(Q1)*. m

COROLLARY 4.12. Let Q1 and Q9 be two non- empty, locally compact spaces, and let
n: 0 — Qo be a continuous map. Then 7 (Ql) C Qg and the map

7=7"1Q:Q — Q, (4.6)

is a continuous map with ' = (1)° such that 1 extends n and such that 7(®,) C Py,
for each p € M(21)"
Further:

(i) the map 7 is injective whenever K Q1 — Qs is injective, and in this case we have
77(M(Q)) C M7 () and 7" (Mo(Q1)) © Me(i ()

(ii) the map 1 is surjective whenever 7 : M (4 ) — M(Q2) is surjective, and in this
case (") (Mo(€2)) € Mo(7(€4)) and 1(®,) = Py for each pe M(Q)"

Proof. 1t is immediate from the theorem that 7 : Q1 — Qo has the specified proper-
ties. Further, we see that the map 7 is injective/surjective if and only if 77" is inject-
ive/surjective if and only if 7 is injective/surjective.
(i) By Proposition 3.19, 7 is injective whenever 7 is injective, and this implies that 7
is injective, and hence 7 is injective.
(ii) Since 7j : M (1) — M(Q3) is surjective, the C*-homomorphism
n': C(Qs) — C(h)

is injective, and so we may regard C(Qg) as a closed C*-subalgebra of C(Ql) Thus points
of Qg correspond to closed subsets of Q1, and so each such point is the image of a point
in Ql n

The space &, Let 2 be an infinite, locally compact space.

The character space ®;, of B?(£2) is the Stone space of the Boolean algebra B, and
so is totally disconnected. In fact B¢ is o-complete, and so @, is basically disconnected,
in the sense that every cozero set in ®;, has an open closure [37, Exercise 1H]. It follows
from Proposition 2.1 that |®,] > 2°.

Let B(£2) be the quotient of B?(2) by the closed linear subspace consisting of the
functions which are zero outside a meagre subspace of Q. Then B() is a commutative C*-
algebra, and so has the form C(T) for a certain Stonean space T', formed by identifying
points of the character space of B®(Q); since B(f2) is a complete Boolean algebra, T
is extremely disconnected [112, Theorem III.1.25]. We remark that B() is called the
Dizmier algebra of . It is proved in [24] that every Stonean space arises as the character
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space of such an algebra; in the case where 2 is compact, the character space of B(f2) is
homeomorphic to the projective cover of 2, and so B(f2) is (isometrically isomorphic to)
the injective envelope of C(€2).

Since B®(2) is a C*-subalgebra of £°°(£)), we can identify ®; as a quotient of 58.
For ¢ € Q, let [¢] be the closed subset of Q defined above. The following obvious remark
will be strengthened later.

PRrROPOSITION 4.13. Let Q be a non-empty, locally compact space, and let ¢ € Q. Then
[p] N BQy is a non-empty, closed subset of BQq, and these sets partition 3Qy. Indeed, for
© =z € Q, we have [x] = {x}, and for p & Q, the set [p] N BQy is a non-empty, closed
subset of Q5 = By \ Q. u

It follows that €2 is dense in ®;. By Proposition 4.6, the sets [¢] and [¢] are disjoint
whenever ¢, € Ug with ¢ # 1. Thus we have described a continuous surjection

n:ee PN BQ, Q— By; (4.7)

the map n|Ug is an injection of Ug onto a dense subset of ®@y.
The restriction map 1| 8Qq : 524 — Py, is also a continuous surjection.

PROPOSITION 4.14. Let Q be a non-empty, locally compact space.

(i) There is a C*-monomorphism kg : £>°(2) — C(Q) that extends the above embed-
ding kg : BY(Q) — C(Q). Further, kp(\) | Qa = ja(A) (A € BY(Q)).

(i) There is a retraction from Q onto Q4.

Proof. (i) Since € is Stonean, it follows from Theorem 2.5 that C(Q) is injective in the
category of commutative C*-algebras and continuous *-homomorphisms, and so there is
a C"-homomorphism

0:0°(Q) — C(Q)

that extends kg : B(Q) — C(Q).

Let I = ker 0, a closed ideal in C(894). There is a closed subspace F' of 5Q4 such
that I = {\ € C(8Qq) : A | F = 0}. It cannot be that there exists x € Q\ F', for otherwise
0(6;) = kE(d;) = 0, which is not the case. Thus Q C F, and so F' = Q4 and I = {0},
showing that 6 is a monomorphism.

(i) The map ' : © — €y is a continuous map. Let = € 2, and set y = ¢/ (z) € 5Qq.
Then

ey(0z) = (€2 © 0)(62) = (62 © KE)(d2) =1,
and so y = x. Thus ¢’ is the identity map on 2, and hence is the identity map on (3.
This shows that ¢’ : Q — (€, is a retraction. m

We note that the map kg : £°°(Q) — C(Q) is not a unique extension of the map
kg BY(Q) — C(), although kg (A) | Qg is uniquely specified for each A € £°°(9).

The image 15 (£°(Q)) is a closed subalgebra of C(€2), and so it separates at least as
many pairs of points of € as B?(€) does. For example, 15 (£°°(£2)) separates all pairs of
points in the space 3. We wonder whether, given two points ¢, € ﬁ, there is such an

embedding kg such that kg (£>°(Q)) separates ¢ and ¢?
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Metrizable spaces We now consider an uncountable, compact, metrizable space €2, and
summarize our results in this setting.

Note that each uncountable, second countable, locally compact space (such as R) has
a one-point compactification that is metrizable, and so the results of this section apply
to such spaces, with very slight changes of wording.

PROPOSITION 4.15. Let Q1 and Qs be two uncountable, compact, metrizable spaces. The
the Banach spaces M (1) and M (s) are isometrically isomorphic.

Proof. This follows easily from Proposition 2.2, which states that 2y and 5 are Borel
isomorphic. =

Let € be an uncountable, compact, metrizable space. Then there is a maximal singular
family F. = {p; : @ € I} of continuous measures in M.(2)* such that |F.| = ¢; such a
family is exhibited in Proposition 2.13. Then Q) contains the following clopen subsets: (54
and the sets ®; for i € I, and all these sets are pairwise disjoint. It follows from Proposition
2.15(iii) that the sets ®; all satisfy CCC on clopen subsets, and from Proposition 4.8 that
BU = Q, where U = QU |J{®; : i € I} is a dense, open subset of €.

THEOREM 4.16. Let Q be an uncountable, compact, metrizable space. Then the hyper-
Stonean envelope X = Q has the following properties:

(i) X is a hyper-Stonean space;

(ii) the set S of isolated points of X has cardinality ¢, the closure Y of S in X is a
clopen subspace of X, and Y is homeomorphic to 35 ;

(iil) X \'Y contains a pairwise-disjoint family F of ¢ clopen subspaces, each homeo-
morphic to H ;

(iv) the union Uz of the sets of F is dense in X \'Y and is such that BUr = X \Y.

Further, any two spaces X1 and Xo satisfying the clauses (1)—(iv) are mutually homeo-
morphic.

Proof. We have shown that X = € satisfies clauses (i)-(iv).

Let X; and X5 be two spaces satisfying clauses (i)—(iv). The sets of isolated points of
X1 and X5 are S; and Ss, respectively. Since |S1| = |Sa|, there is a bijection from S; to
So, and this extends to a homeomorphism from 357 to 352, and so the respective closures
Y1 and Y5 of S7 and S; in X7 and X5 are clopen subsets of X7 and X5, respectively, such
that Y7 and Y5 are homeomorphic.

Let the families specified in (iii) corresponding to X; and X5 be F; and Fa, respect-
ively, listed as (H1,» : 7 < ¢) and (Ha,; : 7 < ¢). For each 7 < ¢, there is a homeomorphism
from H;, onto H>,, and hence there is a homeomorphism from Uz, onto Ug,. Since
BUzx, = X;\Y; for i = 1,2, this homeomorphism extends to a homeomorphism of X7 \ Y7
onto Xo\ Y. m

Thus there is a unique space X that is the hyper-Stonean envelope of all uncount-
able, compact, metrizable spaces. We shall obtain some further properties of this space
involving the calculations of some cardinalities.



Second duals of measure algebras 53

THEOREM 4.17. Let Q be an uncountable, compact, metrizable space, and set X = Q.
Then:

(i) |C(X)| = 2° and |X| = 2%;

(ii) |Uq| = 2° and w(Uq) = ¢;

(iii) ’ﬁc \ UQ’ = 2%

Proof. (i) Certainly, we have | X| > |58q4|. By Proposition 2.2(i), we have || = ¢, and so
|3Q4| = 22" by Proposition 2.1. By Proposition 2.13, |M(Q)| = ¢, and so, by Proposition
1.1(iii), we have |C(X)| < 2¢ and |X| < |C(X)'| < 22", Finally, |C(X)| > [£°(Qy)| = 2°.
We obtain (i) by combining the above inequalities.

(ii) For each p € M.(Q)" such that p # 0, we have |®,] = 2° and w(®,) = ¢
by Corollary 2.21. For each p € My(Q)", we also have |®,| < |AN| = 2¢ and hence
w(®,) < w(BN) = c. For general u € M(2)*, we have &, = ®, U®P,,, and so |§,| < 2°
and w(®,) < w(pN) < c. By Proposition 2.13, we have |M(2)| = ¢, and so it follows that
|Uq| = 2 and w(®,) =c.

(iii) Consider a maximal singular family F, of continuous measures, as in Proposition
4.8, so that {®; : i € I} is pairwise disjoint family, now of cardinality c.

Let A be the algebra of all functions on Uy := [J{€2; : i € I} that are constant on each
set @;. Each function inNA has a continuous extension to §2., and so we may regard Aasa
closed subalgebra of C'(€2..). The character space ® 4 of A is a quotient of .. However it is
clear that we can identify ®4 with I. By Proposition 2.1, |3I| = 2%, and so ‘ﬁc > 22",

Since | X| = 22°, we have ‘ﬁc

= 22" Since |Uq| = 2, we have ’KNZC \ UQ’ =922 u

Thus, with GCH, we have |X| = X3, but |Ug| = Na.

We know that the set Ug = (J{®, : p € M(Q)"} is a proper subset of Q. However,
for each p € M(Q)™, set

(@] == UH‘P] tp €Dy}

By an earlier remark on p. 23, [®,] is a closed subset of Q. It seemed possible that it
would be the case that the subset (J{[®,] : p € M(Q)*} would be equal to the whole of
Q. However Theorems 4.19 and 4.24, below, show that this is far from the case whenever
Q) is an uncountable, compact, metrizable space.

We shall also need the following definitions from [52, Definitions 3.13 and 3.60].

Let D be a set, and let k be an infinite cardinal. Then a k-uniform ultrafilter on D
is an ultrafilter & on D such that each set in U has cardinality at least x. Let A be a
family of subsets of D. Then A has the k-uniform finite intersection property if each
finite subfamily of .4 has an intersection of cardinality at least k. Theorem 3.62 of [52] is
the following.

THEOREM 4.18. Let D be an infinite set of cardinality x, and let A be a family of at most
k subsets of D such that A has the k-uniform finite intersection property. Then there are
at least 22" k-uniform ultrafilters on D that contain A. w
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THEOREM 4.19. Let Q) be an uncountable, compact, metrizable space. Then
189\ [Ua]| = 2°".

Proof. First, choose a countable, dense subset of €2, say
Q ={qgmn : m e N}.

Consider the family of Gs-subsets B of € such that B D @; each such B is a Borel
set. It follows from the Baire category theorem that B is uncountable, and so |B| = ¢ by
Proposition 2.2(i). The family F of all such sets B is a filter of Borel subsets of {2 and
also | F| = ¢, and so, by Theorem 4.18, there are 22° c-uniform ultrafilters & on © with
F C U. We identify these ultrafilters with points ¢ of 3.

Let 9 be such an ultrafilter. We claim that, for each u € M ()™, there exists B € Bq
with B € ¢ and such that u(B) = 0.

First, suppose that p € My(Q)T, and set

C=suppp and B=Q\C.

Since C' is countable and v is a c-uniform ultrafilter, it is not true that C € ¢. Thus B
is a Borel set, B € 9, and u(B) = 0.

Second, suppose that y € M.(Q2)*. By Lemma 2.7, there is a Gs-subset B of Q
containing @, and so again B € F C ¢ with u(B) = 0.

Now let € M(Q)T. There exist u1 € My(Q)" and o € Mo(Q)T with p = pq + po.
Take subsets Bj, By € Bg such that By, By € ¢ and p1(B1) = pua(Bs2) = 0, and set
B = B; N By, so that B € B with B € ¢ and u(B) = 0.

For each ¢ € ®,,, we have kg(xB)(¢) = 0, whereas kg(xgB)(¢)) = 1 because B € .
This shows that ¢ ¢ [®,,].

Thus |6Q4 \ [Ug]| = 2% =

We now seek to make some calculations of the cardinality of the sets [¢] for ¢ € Q.
We shall first associate with each such ¢ a certain filter of Borel sets.

DEFINITION 4.20. Let € be a non-empty, locally compact space, and take ¢ € Q. Then
g¢={B€%QZ<pEKB}.

Clearly G, is a subset of Bq that is closed under finite intersections. In the case where
1 is compact and metrizable, |G,| < c.

Recall from Proposition 2.2(i) that, for each B € Bgq, either B is countable or |B| = ¢.

We begin with a preliminary lemma and corollary.

Let 2 be an uncountable, compact, metrizable space. As above, we take

Fe={mi € M. (Q)T i eI}

to be a maximal singular family of continuous measures in M.(Q)", so that, by Prop-
osition 2.13, |F.| = ¢. For each B € Bq, we set

Jp={iel:Kpnd; #0}.
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LEMMA 4.21. Let  be an uncountable, compact, metrizable space, and let B € Bq with
B uncountable. Then:

(i) |Jg| =rc.

(ii) KN (Q\ Uq) # 0.
Proof. (i) By Proposition 2.2(iii), the set B contains an uncountable, compact subset,
say C. We claim that the family

{Ni | C:ie JB}

is a maximal singular family of continuous measures in M.(C)T. Indeed, all pairs of
distinct elements of this family are mutually singular. Suppose that v € M.(C)™" is such
that v L (u; | C) for each i € Jg. Then v L pu; for each ¢ € I, and so v = 0. This gives
the claim.

By Proposition 4.10, |Jg| = ¢.

(ii) Assume towards a contradiction that Kg N Q. C Ug. Then

Kp C | J{®u:pne M()T}.
Since K p is compact, since each ®,, is open, and since {®,, : p € M ()"} is closed under

finite unions, there exists u € M,.(Q)* such that Kp C ®,,. By (i), {i € [ : ®,N®; # 0} is
uncountable. But this contradicts the fact that @, satisfies CCC. Thus KpNQ, ¢ Uq. =

COROLLARY 4.22. Let Q be an uncountable, compact, metrizable space, and take
e QU (BU\Ug).
Then there exists i € ﬁc \ Uq such that i ~ .
Proof. Since ¢ € ﬁc U (B8Qq\ Ug), each B € G, is uncountable. The set K N (ﬁc \ Uq)

is closed in the compact space . N Ug, and so, by Lemma 4.21, this set is not empty.
Thus

(VKB (Q\Ua): BeEG,}#0;
choose 9 in the set on the left. Then ¢ € S~26 \ Uq and 9 € Kp whenever ¢ € Kp, and so
Y~pom

THEOREM 4.23. Let Q be an uncountable, compact, metrizable space, and let ¢ € Q.
(i) Suppose that there exists B € G, such that B is countable. Then [p] = {¢}, and
so |le]] = 1.
(ii) Suppose that each B € G, is uncountable. Then
|[e] N 8| = 27"
(iii) Suppose that ¢ € Q.. Then

e 8| = 22"

Proof. (i) Suppose that ¢ € [¢]. Since xp € B®(Q2) and ¢ € K,, = 3D C (34, necess-
arily ¢ € BD. Since £°°(B) C B®(Q) and the functions in £°°(B) separate the points of
BB, it follows that ¥ = .
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(ii) We first note that |G,| < ¢ and that each member of G, has cardinality ¢. Since G,
is closed under finite intersections, it is clear that |G,| has the c-uniform finite intersection
property. By Theorem 4.18, we have

(v € 82 v DG} =27
However, for each 9 D G, and each B € G, we have ¢ € Kp, and so ¢ ~ ¢. It follows
that |[p] N BQy| = 22°.
(iii) First, we consider the case where ¢ € Q. \ Uq. Again consider the above family
Fe, so that {®; : i € I'} is a pairwise-disjoint family, of cardinality ¢ of subsets of §2.
For each B € G, define Jp as above. By Lemma 4.21(i), |Jp| = ¢. Certainly
{Jp: B eG,} <[Bal=c
by Proposition 2.2(iv). Thus, by Theorem 4.18, there are 22° ultrafilters & on I each

containing {Jp : B € G, }.
For each such ultrafilter ¢ and each B € G, define

caB) - {W}

veu \icU
and

CU)=({CWU,B): B€G,}.

Since each set | J;c;; Kp N ®; is a non-empty, closed subset of the compact space ﬁc, it
follows that C'(U) # 0 for each such U. Suppose that Uy and Uy are distinct ultrafilters
on I containing {Jp : B € G,} and that By, Bs € G,. Then C (U, B1) N C(Us, Bs) = 0,
and so C(Uy) N C(Us) = (. Thus there are 22° sets of the form C(U) and the family of
these sets is pairwise disjoint.

Let U be an ultrafilter on I containing {Jp : B € G,}, and let ¢ € C(U). For each
B e G,, we have v € C(U,B) C Kp, and so ¢ ~ .

We have shown that ‘[gp] N QC‘ = 22" for this element .

Second, we consider the case where ¢ € (NZC N Uq. By Corollary 4.22; there exists
¥ € Q. \ Ug such that ¢ ~ . Thus, we have

6] 6| = |l n | = 2%,

as required. =

THEOREM 4.24. Let Q be an uncountable, compact, metrizable space. Then

Wall = |[Ua) 16| = [0\ [al| = 22

Proof. Take ¢ € Q. N Uq. By Theorem 4.23(ii), |[¢]| = 22°. Since [¢] C [Uq], we have
[Uq]| = 2%". Similarly, the fact that ’[UQ] N Qc’ = 22" follows from Theorem 4.23(iii).

By Theorem 4.19, there exists ¢ € $Qq \ [Ug]. By Corollary 4.22, there exists an
element ¢ € Q. \ Ug such that ¢ ~ ¢. Since ¢ ¢ [Ug], we have [¢)] N"Uq = (). By Theorem

4.20, |[4]| = 22°. Thus ’?z \ [UQ]] =922 g
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Thus, with GCH, we have ‘ﬁ‘ — |[Ua]| = R, but |Ug| = Re.

Of course, it is not the case that any two uncountable, compact, metrizable spaces 24
and 2 are homeomorphic. However, by Milutin’s theorem [1, Theorem 4.4.8] C(€4) and
C(€2) are isomorphic as Banach spaces. Thus it seems possible that C(€;) and C(Qs)
are isomorphic as Banach spaces whenever the hyper-Stonean envelope of each of 1 and
Qs is the above space X. However, this is not the case, as the following example shows.

EXAMPLE 4.25. There is a compact, uncountable, non-metrizable space 2 such that the
hyper-Stonean envelope Q is homeomorphic to L

Let Q@ =1 x {0,1} as a set, and identify I with the subset I x {0} of Q. Let Q be
ordered lexicographically, and then assign the interval topology to 2, so that a base of
open sets for the topology on (2 is formed by sets of the form

U= ((avi)v (b’.])) s

where a,b € T and 4,j € {0,1} and where either a < b or a = b, ¢ = 0, and j = 1; the
relative topology from € on I coincides with the Sorgenfrey topology [29, Example 1.2.2],
which is generated by intervals of the form (a,b]. The space 2 is compact, but it is not
metrizable because the Sorgenfrey topology on I is not metrizable.

Clearly I and Q have the same cardinality, so the spaces My(I) and My(Q2) of discrete
measures can be identified. Hence the topological spaces 81z and (524 are homeomorphic.

We claim that it is also true that the spaces M. (I) and M.(2) of continuous measures
can be identified. To see this, first consider an open interval U in 2 of the above form,
and set V = (a,b) x {0,1} C Q (with V = @ when a > b). We note that V' D U and that
[V\U| < 2, so that the symmetric difference UAV is always finite. Now consider the
family F of subsets E of Q which have the property that FA(B x {0, 1}) is countable for
some Borel subset B of 1. The family F is a o-algebra, and F contains all open intervals
in Q. It is easy to see that each open subset of ) is a countable union of open intervals,

and so F contains all open sets in €. Hence F contains all Borel subsets of 2, so that, in
fact, F = Bgq. Let u € M.(Q), and define T € M.(I) by

(Tu)(B) = u(B x{0,1}) (B € By),
so that T : M.(Q2) — M.(I) is a linear isometry. For each v € M.(I), define
w(E) =v(B) (E€Bo),

where B € By is such that EA(B x {0,1}) is countable. Then u(E) is well-defined,
€ M.(Q), and Ty = v. Thus T is a surjection. It follows that the spaces ®,,, which is
a clopen subspace of Q and ®7,, which is a clopen subspace of H are homeomorphlc

A maximal singular family of positive measures on 2 consists of ¢ discrete measures
and ¢ continuous measures, and so it follows from our basic construction that Q and T
are homeomorphic.

It cannot be that C(Q) is linearly homeomorphic to C(I), or else C(£2) would be
separable and 2 would be metrizable by a remark on page 22. =

The above example gives rise to an interesting phenomena, which we now describe.
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EXAMPLE 4.26. Our Example 4.25 leads to examples of two compact, uncountable spaces,
Q and 25, with € metrizable and 25 non-metrizable, such that the two Banach spaces
defined to be F; := C(£21) and Es := C(2) have the property that F{ and E) are
isometrically isomorphic, but are such that F; is separable, but Es is non-separable.

Indeed, we take 1 to be the closed unit interval T and 25 to be the space constructed
in Example 4.25. Then C(2;)" and C(€2)’ are each isometrically isomorphic to N(ﬁ) For
a non-empty, compact space Y, the Banach space C(Y") is separable if and only if the
space Y is metrizable. Thus C(€2;) is separable, but C'(£23) is not separable.

A stronger example is given in [99, Proposition 5.5]: there is a non-separable compact
space K such that C(K)' is isometrically isomorphic to C'(I)’. m

C(X) as a bidual space Let X be a hyper-Stonean space. It is natural to ask when X is
the hyper-Stonean envelope of some compact space 2. Our conjecture is the following.

Suppose that C(X) is isometrically the second dual space of a Banach space. Then
there is a locally compact space 2 such that X = €.

We note that it does not follow from the fact that F' is a Banach space such that
F"” = C(X) for a compact space X that F' has the form Cy(Q) for some locally compact
space (). For example, it is shown in [4] that there is a Banach space F' such that F’
is isometrically linearly isomorphic to £1, so that F” = C(SN), but such that F is not
isomorphic to any complemented subspace of a space of the form C(K); the space F is
not isomorphic to any Banach lattice. However this does not give a counter-example to
our conjecture. For further study of preduals of £1(Z), see [23].

The following result proves a special case of this conjecture.

PRrROPOSITION 4.27. Let X be a hyper-Stonean space. Suppose that there is a Banach
lattice F such that F" is isometrically isomorphic to C(X) as a Banach lattice. Then
there is a compact space €2 such that X = Q.

Proof. The dual of F' is the Banach lattice N(X) of normal measures on X, and this is an
L-space. By [106, Theorem 27.1.1], F is an M-space. By a theorem of Kakutani ([61], [106,
§13.3]), an M-space is equal to Cy(£2) as a Banach lattice for some locally compact space
Q. Since F" is Banach lattice isomorphic to C'(X), there is an isometric isomorphism

from C(Q2) onto C'(X). By the Banach—Stone theorem 2.4(i), X is homeomorphic to 2. m

A further special case of the conjecture, that in which C'(X) is isometrically the second
dual space of a separable Banach space, has been resolved by Lacey in a striking manner:
indeed, the two cases that we are considering are the only two cases.

First, let X be an infinite compact space for which C(X) is isometrically the second
dual space of a Banach space. Then the space N(X) of normal measures on X is itself
the dual of a Banach space, say N(X) = F’. Since N(X) has the form L!(u) for a
measure f, this says that ‘F' is a Li-predual space’, in the terminology of [67, §22]. We
denote by ex X the set of extreme point of the closed unit ball N(X);. It is easy to see
that points of ex X are exactly point masses at the isolated points of X, and so we can
identify ex X with this set of isolated points. It follows from the Krein—-Milman theorem
that ex X is infinite. (In the case where C(X) = Cy(€2)” for a locally compact space (2,
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we can, by Corollary 4.2, identify €2 as a set with the isolated points of X, and hence
with ex N(X)[l])

ExaMpPLE 4.28. The compact space X := f\ Bl; has no isolated points, and so X is a
hyper-Stonean space such that C'(X) is not the second dual of any Banach space. m

The following theorem is an immediate consequence of a theorem of Lacey [67,
§22, Theorem 5]; it was first proved in [66], and a slightly stronger theorem of Hess
is proved by a shorter proof in [46]. We are indebted to Frederick Dashiell and Thomas
Schlumprecht for a discussion of the literature on this question.

THEOREM 4.29. Let X be an infinite compact space for which C(X) is isometrically the
second dual space of a separable Banach space. Then ex X is infinite. Further, there are
only two possibilities for the space X (up to homeomorphism):

(i) either ex X is countable, X = AN, and C(X) = cjj;
(i) or ex X is uncountable, X =1, and C(X) = C(I)". m

The analogous question in the isomorphic (not isometric) theory of Banach spaces
was resolved in a similar way by Stegall [110]; for related work, see [44].

An historical remark Let ) be a compact space. Then in fact the hyper-Stonean
envelope Q was already constructed in the PhD thesis of the third author, written more
than 50 years ago [89] (see also [90, 91])! Let L be an Archimedean vector lattice, and
choose a family (e;) in Lt that is maximal with respect to the property that e; Ae; =0
whenever i # j. For each 4, there is a space U; of ‘ultrafilters’ such that

{xEL:|x\:\/{|x\/\nei:n6N}}

can be represented by a space of continuous functions on U; with values in
{00} URU {00},

each function taking values in R save on a nowhere dense subset of U;. The space U; is
Stonean for each ¢ if and only if L is complete. Form the disjoint union U of the sets U;,
giving U the topology such that each U; is clopen in U, and set X = gU. Then there is
a representation of L as a space of functions on X. In the special case where L = M (),
we obtain a representation of this form, with X = Q such that a measure u € M(Q)g
is represented by a continuous function g : X — {—oo} UR U {oo}. Further, for each
A€ B%(Q) and p € M(2), we have

/ N = rp(N) - fi.
Q

Essentially the same representation of C(€2) = M ()’ as ours is given by Gordon in
40, §6] and by Wong in [123], extending a theorem of Sreider [109]. We now recover these
results from our remarks above.

Let 2 be a non-empty, locally compact space, and form the hyper-Stonean envelope Q.
We adopt the above notation involving F; further, we write G; for the Gel’fand transform
G,, for cach i € I. We take A € C(€) = M (). For each i € I, we set A; = A|L (2, 1),
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so that, by (4.1), we have G;(A;) = A|®;. The family (A; : ¢ € I), which represents A, is
a generalized function in the sense of [123].

We now consider the famous memoir [114] of J. L. Taylor. In [114, §2.4], the compact
spaces (2 and ®,, (for 4 € M()") are termed the ‘standard domains’ of the L-spaces

M(Q) and L*(2, u). The canonical embedding x : M(Q) — M(Q) is the ‘standard
representation’ of M(Q); for each u € M(Q)", the map

fHH(f)‘CI);M Ll(Qvﬂ)HM(q)u)v

is the ‘standard representation’ of L'($, u).

The second dual space of Cy(Q2) has been widely studied. For example, see [106, §27.2].
An early paper of Kaplan is [63], which mainly studies Egr = Co(Q)gr, (E')r, and (E")r
as Banach lattices. The study is continued in [64] and further papers of Kaplan; for a
comprehensive account of this work, see [65].

Now here are some remarks of Gordon from [40, §5]. Our space Ug is the space that
is called Y in [40, §5]. The family of all subsets of Ug of the form ®, forms a basis of
open sets for a topology, called the §-topology in [40]; clearly this topology agrees with
the relative topology from ((~2, o) on each ®,,. A subset K of Ug has the form ®,, for some
pw € M(Q)™T if and only if K is open and compact in the d-topology of Ug.
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5. Locally compact groups

Topological semigroups Before beginning this chapter, we wish to recall quickly some
basic facts about topological semigroups that we shall use.
Let S be a semigroup, with the product of two elements denoted by juxtaposition.
For t € S, we set
Li:s—ts, Ry:s—st, S—5.

For subsets A and B of S, set AB = {st:s € A, t € B}. A non-empty subset I of S is a
left ideal in S if ST C I and a right ideal if IS C I; I is an ideal if it is both a left and
a right ideal in S. A minimum ideal in S is an ideal which is minimum in the family of
all ideals in S when this family is ordered by inclusion. A minimum ideal of S is unique
if it exists; it is denoted by K(.S), and is often called the kernel of S.

A semigroup S which is also a topological space is a right topological semigroup if the
map R; is continuous on S for each t € S, a semi-topological semigroup (respectively, a
topological semigroup) if the product map

(s,t) —st, SxS—S9,

is separately continuous (respectively, continuous). A group G is a topological group if it
is a topological semigroup and the map

s—s 1, §S—8,

is continuous. In the case where S is (locally) compact as a topological space, we say
that S is a (locally) compact, right topological semigroup or a (locally) compact topo-
logical semigroup, or a (locally) compact group, respectively. For an extensive account of
topological semigroups, see [52]; see also [5] and [18, Definition 3.24].

For example, let T be a semigroup. Then, for each s € T', the map L has an extension
to a continuous map L : T — BT. For each u € T, define sou = Ls(u). Next, the
map R, : s — sou, T — [T, has an extension to a continuous map R, : ST — BT for
u € BT. Define

wov = R,(u) (u,vepPT).

Then S = (8T, O) is a compact, right topological semigroup.

There is a major structure theorem for compact, right topological semigroups (and
for more general semigroups); see [18, Theorem 3.25] and [52]. We state the (small) part
of this theorem that we shall use.

THEOREM 5.1. Let S be a compact, right topological semigroup. Then the minimum ideal
K(S) exists. Further, the families of minimal left ideals and of minimal right ideals of S
form partitions of K(S); in particular, LN K(S) # 0 for each left ideal L of S. m

The measure algebra of a locally compact group Our next step is to take G to
be a locally compact group, with left Haar measure denoted by m or m¢g. We apply the
theory of earlier chapters, with G replacing 2. The topology on G is again denoted by
7 ; the identity of G is e or eg, and we again set E = Cy(G).
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For example, we have introduced the Cantor cube Zj of weight x; here p > 2 and
k is an infinite cardinal. The space Zj is a totally disconnected, perfect compact space.
The set Zj, is a finite group with respect to addition modulo p, and Zj is a group with
respect to the coordinatewise operations, denoted by +. Clearly (Z'g,—i—) is a compact
group. In Example 2.16, we described a measure m on Z7; this is easily seen to be the
Haar measure on Zj.

We now define the group algebra (L!(G), ) and the measure algebra M = (M (G), *)
of a locally compact group G; for details, see [48], [49], and [13, §3.3]. Indeed, for measures
w,v € M(G), we set

@ )(B) = [ W(Bs)vls) (B Bo),

so that p * v € M(G); the measure p * v is also defined as an element of Cy(G)’ by the
formula

O\, pxv) = /G/G)\(st) du(s)dv(t) (A€ Co(Q)).

Then (M(G), %, || -||) is a Banach algebra, called the measure algebra of G. This algebra
has an identity J..; the algebra is commutative if and only if G is abelian.

Let u,v € M(G)*. Then p x v € M(G)", and ||u * v|| = ||u] ||¥]-

For f,g € L*(Q), identified with the measures f dm and gdm, respectively, we have

(f * g)(t /f (s~ ') dm(s) (te@).

The measure algebra (M (G), ) is always semisimple [13, Theorem 3.3.36]. The sub-
spaces M.(G) and L'(G), identified with M,.(G), are closed ideals in M (G) and £1(G)
is a closed subalgebra of M(G), so that

M(G) = 1(G) x Mc(G) = 1(G) & L (G) & M,(G).

In the case where G is compact, mg € M(G)™T; in this case, we normalize m¢ so that
ma(G) = 1.

The group algebra L!(G) will often be denoted just by A; by Wendel’s theorem, the
multiplier algebra of A is the measure algebra M = (M(G), x) [13, Theorem 3.3.40],
and we regard A as a closed ideal in M. The point masses in M have the form é4 for
s € G. The Banach algebra A has a bounded approximate identity, for example, the net
{xv/m(U) : uw € U}, where U is the family of compact neighbourhoods of e¢, directed
by reverse inclusion is a bounded approximate identity.

For a function f on G, we set f(s) = f(s~!) (s € G). The module operations in the
space L=(G) = LY(G)' = A’ are given by

where A is the modular function of G.
Let H be a closed subgroup of GG, so that H is also a locally compact group, with left
Haar measure my. We regard my as a measure on GG by setting

my(B)=mg(BNH) (BeBg).
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Let G be a locally compact group. The map
p— u(G) =, 1), M(G)—C,

is a character on M(G), called the augmentation character. (This may be the only char-
acter on M(G).) In the case where G is compact, we clearly have mg € M(G)' and

pxmg=mg*x p="{u Hmg (ne M(Q)). (5.1)
In particular, mg * mg = mq. Further, each v € M(G) such that
pkv=v e = Yo (e M(G))

is a left-invariant measure on G, and so has the form (m¢ for some ¢ € C (using the
argument in [13, Proposition 3.3.53]).

Let G be a locally compact group, and let N be a closed, normal subgroup of G. Then
H := G/N is a locally compact group for the quotient topology, and the quotient map
1 : G — H is a continuous, open map which is a group epimorphism; see [48, §5] and
[95, §3.1]. The induced map

n:M(G) — M(H)

was defined in equation (3.12), and 7 = 7" |G : G — H was defined in equation (4.6).

Here we write ®¢ and @y for the character spaces of L>®°(G,m¢g) and L>®°(H,my),
respectively.

PROPOSITION 5.2. (i) Let G and H be locally compact groups, and let n: G — H be a
continuous, open epimorphism. Then the induced map 7j : (M (G), x) — (M(H), x) is a
continuous epimorphism.

(ii) Let G and H be compact groups, and letn : G — H be a continuous epimorphism.
Then

i(me) =mp, (G)=H, and 7j(Pc)=y.
Proof. (i) Let N = n~'(eg), the kernel of 7. By [48, (5.27)], we have H = G/N as a
locally compact group. It follows from equation (3.11) that the map 7 is exactly the map
described in [95, (8.2.12)]. Thus the result is [95, Proposition 8.2.8].
(ii) By (5.1) and (i),
bz * N(ma) =7M(ma) * 0o =n(meg) (z € H),

and so 7j(mg) = my. By Corollary 4.12(ii), 77(G) = H and hence 7j(®,,.) = Pr(me)-
Thus 77(®Pg) = Py =

We state the following closely-related result; it is immediate from Proposition 3.19. A
similar result is given as [55, Proposition 2.1(i)], where it is stated for abelian groups. For
a general theory of the embeddings of group algebras, culminating in Cohen’s idempotent
theorem, see [101, Chapter 4].

PROPOSITION 5.3. Let G and H be locally compact groups, and let n: G — H be a Borel
monomorphism. Then the induced map 7 : (M(G), x) — (M(H), x) is an isometric
injection. m
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The hyper-Stonean envelope of G Let GG be alocally compact group. Then the hyper-
Stonean envelope of the space G is denoted by G. As before, the canonical projection is
7 : G — Go, the dual space of M(G) is Co(G)” = C(G), and the second dual space is
M(G) = M(G)". Here M(G)' is a commutative C*-algebra, and its identity, the constant
function 1, when regarded as a functional on M (G), is just the augmentation character.
Thus M (G) is a Lau algebra in the sense of Chapter 1. We have noted that the dual space
L*(G) of the group algebra L!(G) is a C*-algebra, and again the constant function 1,
when regarded as a functional on L*(G) is just the augmentation character restricted to
LY(G), and so L'(G) is also a Lau algebra. Here O and < are the Arens products from
page 8.

DEFINITION 5.4. Let G be a locally compact group. Then (M(G),0) and (M(G), <)
are the unital Banach algebras formed by identifying M (G) with the Banach algebras
(M(G)”,0) and (M(G)",<).

The space E = Cy(G) is a || - ||-closed subspace of M (G)" = C(G). For u € M(G) and
A € Co(G), we have

(e = [ At auts). o N0 = [ Mst)duls) (¢ ).

G
and so Cy(G) is a submodule of M(G)'. Thus M(G) is a dual Banach algebra [102,
Exercise 4.4.1], and hence

M(G) = M(G)" = M(G) x E°, (5.2)
where we are identifying M (G) with x(M(G)). In particular, the map
7=y (M(G), ) — (M(G), ) (5.3)

is a continuous epimorphism, as in [56, Theorem 3.3].

Take M,N € M(G)". Then MON € M(G)*, and

IMON[| = MBN)(G) =a(MBN)(G) = (7(M) * 7(N))(G)
= m(M)(G)r(N)(G) = M(G)N(G) = [[M|[[|N]|
by (3.5). In particular, let ¢, v € G. Then 8,06, € M(G)*t, and [|0, 08, = 1.

PROPOSITION 5.5. Let G be a locally compact group. Then the following conditions on

M € M(G) are equivalent:

(a) M is invertible in (M(G),0) with |M|| = M| = 1;

(b) there exists s € G and ¢ € T such that M = ;.
Proof. This is [34, Theorem 3.5]. m

Let B be a Borel subset of G. Then we have defined the subset K of G in Chapter
1. It is clear that that

0sOXKp = XK, ., (s€G).
For example, let G be a discrete group. Then M(G) = £1(G) and G is identified with

BG. For a general locally compact group G, we have 3G = G and (G4, O) is a compact,
right topological semigroup which is a subsemigroup of (M (8G), 0).
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Let G be a compact group. Then it follows immediately from (5.1) by taking weak-x
limits that
MOmg =megOM= (M, l)mg (Me M(G)). (5.4)

PROPOSITION 5.6. Let G be a compact group. Suppose that N € M(G) satisfies the
equations

MON=NOM=(M, )N (M e M(G)) (5.5)

and
NON=N. (5.6)
Then N =mg or N=0.
Proof. Since N satisfies (5.5), necessarily
mgON=NOmg =N.

By (5.4), we have NOm¢g = (N, 1)mg, and so N = (mg, where ( = (N, 1). By (5.6),
(?=(,and so ( =0 or ¢ = 1, giving the result. =

We now apply the theory of Chapters 3 and 4, with G for Q and m as left Haar
measure on G.

PROPOSITION 5.7. Let G be a locally compact group, let X be a Banach Cy(G)-submodule
of M(G), and denote the character space of the commutative C*-algebra X' by ®x. Then
P x is a clopen subset of G.
Suppose further that X is a subalgebra (respectively, ideal) of the Banach algebra
(M(G), x). Then
(X", 0) = (M(®x), D)
is a closed subalgebra (respectively, ideal) of (M(G), O).

Proof. Since X is a Banach E-submodule of M (G), it follows from Proposition 1.17 that
(X', 0) is a commutative C*-algebra. By Proposition 4.1, ®x is a clopen subset of G
and we can identify X’ with C(®x). Hence we can identify X" as a Banach space with
M(®x).

If X is a subalgebra or ideal of (M(G), %), the Banach algebra (X", O) is a closed
subalgebra or ideal, respectively, of (M (é), O) =

DEFINITION 5.8. Let G be a locally compact group. Then @, éc, and éd are the character
spaces of L®(G), M.(G)’, and £°°(G), respectively.
Thus ®, G, and G4 = G are clopen subsets of G.
COROLLARY 5.9. Let G be a locally compact group. Then
(L=(GY, D) = (M(®),0) and (M(G)",0)=(M(G,),0)
are closed ideals and (0°°(G)',0) = (M(G), O) is a closed subalgebra of (M(G), 0). m

We note that, in the special case where G is compact, A is an ideal in (M(®), O)
[118] and hence in (M(G), O) [35, Lemma 4].
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Introverted subspaces Let G be a locally compact group. Since L'(G) and M(G)
are Lau algebras, we have definitions of introverted C*-subalgebras X of L>°(G) and of
M(G)', and also of topologically invariant means on X. For example, a closed subspace
X of L®(G) is an introverted C*-subalgebra if X is a C*-subalgebra of L*>°(G) and X
is an introverted L!(G)-submodule of L>°(G). A topologically invariant mean on X is an
element m € L (G)’ such that |m| = (1,m) =1 and
(mo X ) = (my e N) = (m, ) (A€ X, p e P(LY(G)).

The following result is given in [71, Corollary 4.3]; it also uses Johnson’s famous
theorem [59], [13, Theorem 5.6.42] on the amenability of L(G).
THEOREM 5.10. Let G be a locally compact group. Then the following are equivalent:

(a) G is amenable;

(b) L*
(c) LY(G) is left-amenable;
(d) M(G) is left-amenable. m

We also record the following theorem of Dales, Ghahramani, and Helemskii [17].

(G) is amenable;

THEOREM 5.11. Let G be a locally compact group. Then M(G) is amenable if and only
if G is discrete and amenable. u

In the present case, an introverted C*-subalgebra X of L*°(G) or of M(G)’ is com-
mutative. The character space of such a commutative C*-algebra X is denoted by ®x;
it is formed by identifying points of ®, the character space of L*°(G). As in Chapter 1,
(X', O) is a Banach algebra,; it is identified with (M (®x), O). The quotient map

Rx : A= A|Co(G), (X',0)— (M(G),*),

is a continuous epimorphism.
In the case where X C C°(G), define Ou € X' for u € M(G) by

O = [ A)auts) (veX).
Then 6 : (M(G), x) — (M(®x), O) is an isometric embedding and
M(®x) = 0(M(G)) x Co(G);
we regard M(G) as a closed subalgebra of M(®x). We also regard ®x as a compact
subset of M (®x), and so we see that (Px, O) is a compact, right topological semigroup
[52, Theorem 21.43]. Thus we have quotient maps
g (M(G),0) = (M(®x),0) and qg:G — ®x; (5.7)

both of the maps q¢ : G — ®x and g : ® — ®x are continuous epimorphisms. There is
a natural embedding of G in ®x, and so we can regard G as a dense, open subspace of
PDx.

For a discussion of the above objects, see [5, §4.4], [18, Chapter 5], [52, Chapter 21],
and [75].
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The space LUC(G) Let G be a locally compact group. Then LUC(G) denotes the closed
subspace of C'*(G) consisting of the left uniformly continuous functions on G: these are
the functions A € C'*(G) such that the map

t—X-t, G—CYGQ),
is continuous, where (X - t)(s) = A(ts) (s,t € G). We set
Z =LUC(G),
so that 1 € Z C C'*(G). The canonical embedding k5 : Z — C(G) identifies Z as a unital

C*-subalgebra of C(G).
Let A € L*°(G). Then A is in the equivalence class of a function in LUC(G) if and
only if the map

t—A-t, G- L>®(G),

is continuous, and so the space Z is a left-introverted C*-subalgebra of L>*(G) = C(®);
for these results, see [123, Lemma 6.2] and [15, Proposition 7.15]. Since the map A +— A | @
from kg(Z) onto kg(Z) | ® is an injection, the space Z is clearly also a left-introverted
C*-subalgebra of M (G)' = C(G). We note that Z is also a left-introverted C*-subalgebra
of £>°(G) = L(G4), and the two respective products on Z coincide [15, Proposition 7.20].
The character space ®z of Z is formed by identifying points of G that are not sepa-
rated by kg(Z). (For € G, the equivalence classes in G are just the fibres G(,y.) The
space @ is denoted by 7, (G) = LUC(G) in [52, Example 21.5.6] and by G*¢ in [5].
We shall use the following theorem; it is [52, Exercise 21.5.3].

THEOREM 5.12. Let G be a locally compact group, and let A and B be subsets of G such
that ANUB =0 for some U € Nei,. Then ANB=01in®z. u

The spaces AP(G) and WAP(G) Let G be a locally compact group. For A € L>°(G),
set
LON) ={\N-6,:t€ G}, RO\ ={d A:teG},

so that LO(X) and RO(A) are the left-orbit and right-orbit of A, respectively. Then A is
almost periodic if the set LO(X) (equivalently, RO())) is relatively compact in the || - |-
topology on L°°(G) and weakly almost periodic if the set LO(X) (equivalently, RO()\))
is relatively compact in the weak topology on L °°(G); the spaces of almost periodic and
weakly almost periodic functions on G are denoted by AP(G) and W AP(G), respectively.
For the equivalence of the ‘left’ and ‘right’ versions of these definitions, see [5, pp. 130,
139].

The spaces AP(G) and WAP(G) are introverted C*-subalgebras of L>°(G). Further,
by [5, p. 138], Co(G) C AP(G) if and only if G is compact.

Recall that AP(A) and WAP(A) for a Banach algebra A were defined in Definition
1.11. We have

AP(G) = AP(L'(G)) and WAP(G)=WAP(LY(Q)).

The first proof of this is due to Wong, in the sense that it is an immediate consequence of
[122, Lemma 6.3]; see also [69, Corollary 4.2(b)] and [28, 115]. It also follows from [122,
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Lemma 6.3] that WAP(G) C LUC(G), and so
AP(G) C WAP(G) C LUC(G) c C*(G) c L>=(G)
and Cy(G) C WAP(G).
It follows from Proposition 1.14 that AP(M(G)) and WAP(M(G)) are introverted
subspaces of M(G)’, and hence of L*°(G). However it was not clear that AP(M(G))

and WAP(M(G)) are C*-algebras; in fact, this has been proved recently by Daws in a
striking paper [21]. For further related work, see [22] and [103].

THEOREM 5.13. Let G be a locally compact abelian group. Then both AP(M(G)) and
WAP(M(Q)) are introverted C*-subalgebras of M(G) . m

We also have the following result, which is surely well-known.

THEOREM 5.14. Let G be a locally compact group. Then:

(i) WAP(G) c WAP(M(G));

(ii) AP(G) C AP(M(Q));

(iil) the space W AP(QG) is an introverted C*-subalgebra of M (G)'.

Proof. Set M = M(G) and o = o(M', M").

(i) Let A\g € WAP(G), so that \g € C*(G) € M’'. The set RO(\g) is relatively
compact in o(C(®), M(®)), and hence in 0. Let K be the o-closed convex hull of RO(Ao).
By the Krein—Smulian theorem [13, Theorem A.3.29], K is compact in (C(G), o).

Let p be the product topology on C%. Then (K, p) is Hausdorff and (K, o) is compact.
But p < ¢, and so p and o agree on K.

Let € M(G);y). We regard 1 as an element of C'*(G)’, and then take a norm-
preserving extension of u to be an element of the Banach space £°°(G) = C(8Gq4). The
unit ball £(G)p) is weak-+ dense in C(8Gq)p), and so there is a net (uq) in Mg(G)p
such that (i, A) — {fia, A) for each A € C'*(G). Hence

(o = A (&) = (pas A - 00) = (s A - 60) = (- A)(E) (L€ G).
This shows that p, - A — g - Ain (K, p), and hence in (K, o). Since RO(X) C K and
(K, o) is compact, it follows that {y - A: p € M(G)py} € K. This implies that K(A), as
defined in equation (1.4), is compact in (M’', o), showing that A\g € WAP(M(G)).
(ii) This is similar.
(iii) The argument in (i) shows that u - A € WAP(G) whenever A € WAP(G) and
w € M(G), and so WAP(Q) is a Banach left M (G)-submodule of the dual module M (G)'".

Similarly, WAP(G) is a Banach right M (G)-submodule of M(G)’, and clearly WAP(G)
is a Banach M (G)-sub-bimodule of M(G)’. By (i), we have

WAP(G) c WAP(M(G)),

and so, by Proposition 1.14(ii), WAP(G) is introverted in M (G)’. Certainly WAP(G) is
a C*-subalgebra of M(G)" with Cy(G) C WAP(G), and so WAP(G) is an introverted
C*-subalgebra of M(G)'. m



Second duals of measure algebras 69

PROPOSITION~5.15. Let G be a locally compact group, and take X € £°(G). Then we
have kg(\) | Gg € WAP(M(Q)) if and only if A € WAP(Gy).
Proof. For A € £°°(G), set TA = rg(A) | Qq (so that TA is uniquely defined in C(G)).
Let A € £°(G). For p,v € M(QG), we have
(v, - TA) = (u* v, ja(N) = (1t * V)a, Ja(N) = (pa * va, Ja(N)) = (va, pa - A),
where the last two dualities are £1—¢°°-dualities. Thus K (T'A) in C(G) is equal to K (\)
in £°°(@), and so these two sets are weakly compact in the appropriate space if and only
if the other has the same property.

The result follows. m

Since WAP(M(G)) contains WAP(Gy), which includes Cy(G4) as a subspace, we
see that WAP(G) = WAP(M(Q)) if and only if G is discrete. It seems that the spaces
AP(M(G)) and WAP(M(G)) are not well understood in the case where G is not discrete.

Let G be a locally compact group. It is interesting to ask when WAP(M(G)) has a
topological invariant mean; we have the following partial result.

PROPOSITION 5.16. Let G be a locally compact group. Suppose that G is discrete or
amenable. Then WAP(M(G)) has a topological invariant mean.

Proof. This is immediate in the case where G is discrete.

Now suppose that G is amenable. Then, by Proposition 5.10, M (G) is a left-amenable
Banach algebra, and so, by Proposition 1.21, M (G)’ has a topological left-invariant mean.
Similarly, M (G)" has a topological right-invariant mean, and hence a M (G)’ has a topo-
logical invariant mean. The restriction of this mean to WAP(M(G)) is a topological
invariant mean on WAP(M(G)). =

The structure semigroup of G The structure semigroup of a locally compact abelian
group G was introduced by J. L. Taylor in [113] and discussed in some detail by Taylor
in [114, Chapters 3, 4]; the work is also described in the text [42, §5.1] of Graham and
McGehee. This structure semigroup has been used by Brown [6] and by Chow and White
[9]; an important early paper of Hewitt and Kakutani is [47].

We shall present what appears to be a somewhat more direct and abstract approach
to the definition and the results. The definition is also applicable to non-abelian groups,
but the semigroup may be trivial in the non-abelian case.

DEFINITION 5.17. Let G be a locally compact group. The character space of the Banach
algebra M(G) is ®prq) = P

Let A € ®);. Then A is an element of M(G) = C(G) with |Alz =1, and so @y is a
subset of C’(é)[l]; in particular, ®j; inherits a product from C’(é)m. A key fact is that
@,/ is closed under complex conjugation and this product, so that ®j; is a x-semigroup.
This follows from results in [109]; an explicit, simple proof is given in [94]; a result that
applies when the group G is replaced by an arbitrary locally compact abelian semigroup
with separately continuous product is given in [9] and [96, Theorem (4.1)].
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The constant function 1 on é, regarded as a continuous linear functional on M(G),
is exactly the augmentation character on M(G), and so we may say that 1 € ®;.

Suppose that the locally compact group G is abelian. Then the set of elements A
of C(é)m with the property that |[A(p)| = 1 (¢ € G) is just the canonical image of
r:= CA}', the dual group of G [114, Corollary p. 36]. Let o, 9 € G with @ # 1. There
exists M € Cg(@) with M(¢) = 0 and M(¢) = 1, and then exp(iM) € I' and also
exp(iM) () # exp(iM)(¢). Thus I' separates the points of G. By the Stone-Weierstrass

theorem, lin I is |- | 5-dense in C(G).

DEFINITION 5.18. Let G be a locally compact group. Then X¢ is the |-|z-closure of
lin @y in C(G).

Thus X is a unital C*-subalgebra of C(G).
Let p € M(G) and v € ®ps. Then

(b)) =v(prv) =~v(pnv) (veMG)),
and so p - v = y(u)y. It follows that X¢ is an M (G)-submodule of M(G)'. In fact, each
element of lin ®,; has finite-dimensional range as an operator on M (G)’, and so
Xa C AP(G) Cc AP(M(G)) c WAP(M(G)) € M(G) = C(G).
In the case where the group G is compact, we have
AP(G) =WAP(G) = C(G);
see [101].

PROPOSITION 5.19. Let G be a locally compact group. Then Xq is an introverted subspace
of M(G)', and (X(,, O) = (X¢, <) is a Banach algebra.

Proof. This follows immediately from Proposition 1.14(ii). m

The following definition was first given by Taylor; see [113, 114].

DEFINITION 5.20. Let G be a non-discrete, locally compact group. Then the character
space of X¢ is denoted by S(G) and called the structure semigroup of M(G).

Suppose that G is a (discrete) abelian group. Then S(G) is the Bohr compactification
of G; the space (S(G), O) is a compact group.

The justification for the term ‘semigroup’ will come in Proposition 5.21, below. Set
X = X¢. We see that S(G) C X[’l]; as usual, S(G) is given the relative o(X’, X)-topology.
The quotient map B

e+ (M(G), D) — (X', 0)

is a continuous homomorphism that induces a continuous homeomorphism of G onto
S(G). The space S(G) inherits the multiplication O from (X[/1]v 0).

The following result is a theorem of Rennison [96, Theorem (5.2)]; we shall obtain it
in a more general context in the next section.

PROPOSITION 5.21. Let G be a locally compact abelian group. Then (S(G),0) is a com-
pact, abelian topological semigroup. m
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In [96, Theorem (5.4)], the semi-characters on S(G) are identified with the Gel’fand
transforms of elements of ®/(¢), and in [96, Theorem (6.5)] it is shown that the semigroup
(S(G),O) is exactly the structure semigroup of M (G) which was defined by Taylor [114]
in a more complicated manner. In [83, Theorem 5.2], McKilligan and White consider the
situation where M (G) is replaced by a general ‘L-algebra’ 2 ; 2’ is again a commutative
C*-algebra, and X¢ is replaced by a general introverted subspace X of 21 such that
1€ X Cc WAP(2); they give a necessary and sufficient condition for the character space
of X to be a subsemigroup of X [’1] with respect to the relative Arens product O.

For further study of the structure semigroup, see [114], [42, §5.1], and §4, Chapitre
IV, of the substantial text [53].

The structure semigroup for Lau algebras The notion of a Lau algebra was recalled
in Chapter 1.

Let A be a commutative Lau algebra, with character space ® 4, so that ® 4 C A’, where
(A’, -) is a C*-algebra (not necessarily commutative); the identity of A’ is e. Recall from
equation (1.5) the definitions of L,a, R,a € A fora € A and pe A'.

Further suppose that T is a subset of A’ such that T is a subsemigroup of (4’, - ), and
let T have the relative o(A’, A)-topology from A’. Then T is a semi-topological semigroup
because the product in A’ is separately o(A’, A)-continuous. For each a € A, define

a:pr—pa), T—C,
and set
B(T)={a:a€ A}.

Then B(T) is a subalgebra of C'*(T). Clearly the map a +— @, A — B(T), is a homo-
morphism, and it is an injection if and only if lin T" is o(A’, A)-dense in A’.
Now let A € A" and f € B(T). Define
L)) = Fflp - ) (o eT),
so that

Ltpa(w) = <aa @ - ¢> = (Etpf)(z/)) (e T)7
and hence l//;@ = {, f whenever f = a. We now suppose throughout that lin 7" is o(A’, A)-
dense in A’, so that, for each f € B(T), there is a unique a € A with f = a. In the case
where A has an identity u, we have Lou = u (¢ € T). Define
Ae(f)(@) = (Loa, A) = (a, ¢ - A) = (Raa, p) (p€T),
so that A(f) € C¥(T). Indeed, Aof = Rya € B(T).
Let a,b€ A and ¢, € T, so that ¢ - p € T C &4 U{0}. Then
<R90(ab)7 ¢> = <abv @ - d)> = <CL, 2 ¢><ba 2 11[})
= <R<pa7 1/1><R<,0b7 ¢> = <(Rlpa’)(R§0b)7 1/}>7
and so
R,(ab) = (Rya)(R,b) € A. (5.8)
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PROPOSITION 5.22. Let A be a commutative Lau algebra, and let T be a subsemigroup of
®4 U {0} such thate € T andlin T is o(A’, A)-dense in A’. Let A € A’. Then Ly is an
automorphism on A = B(T) if and only if A € @4 U{0}.

Proof. Suppose that A € @4 U {0}. We have noted that Ly is a bounded linear operator
on A. Let a,b € A. For each ¢ € T, we have
(La(ab), ) = (Ry(ab), A) by (1.5)
— ((Rya)(Ryb), 3) by (5.8)
= (Rya, \)(Ryb, A) because A € &4 U {0}
= (Lxa, ©)(Lb, @)
= ((Lxa)(Lab), ¢) because p € @4 U{0}.
Thus Ly(ab) = (Lxa)(Lxb), and so Ly is an automorphism on A.
Conversely, suppose that Ly is an automorphism on A. We have
(ab, ) = (Lx(ab), €) = (Lra, €){Lxb, e) = {(a, A\){b, \),
andso A € 24 U{0}. m
A subsemigroup of (A’, -) is a x-semigroup if it is closed under the involution on A’.
PROPOSITION 5.23. Let A be a commutative Lau algebra. Then the following are equiv-
alent:

(a) A is semisimple and ®4 U {0} is a *-semigroup with respect to the product and
wnvolution on A’;

(b) there is a x-subsemigroup T of A" with e € T C ®4 U {0} such that lin T is
o(A’, A)-dense in A’.
Proof. (a) = (b) Set T = ®4 U{0}. Clearly e € T and T is a x-subsemigroup T of A’.
Assume towards a contradiction that there exists A € A’ with A not in the o(4’, A)-
closure of lin T'. Then there exists a € A such that (a, A) =1 and (a, ) =0 (¢ € ®4),
so that @ = 0. Since A is semisimple, a = 0, a contradiction. Thus lin T is o(A’, A)-dense
in A’.

(b) = (a) Suppose that a € A with @ = 0. Since T' C &4 U {0} and lin T is o(A’, A)-
dense in A’, it follows that (a, A\) =0 (A € A’), and so a = 0. Thus A is semisimple.

Let p,1 € ®4 U {0}. For each a,b € A, we have

(ab, ¢ - ) = (Ly(ab), ¥) = ((Lya)(Lyb), 1) by Proposition 5.22
= <Ltpa7 ¢><wa7 ¢> = <CL, @ - w><b7 2 1/f>,
and so ¢, 9 € 4 U {0}. It follows that ® 4 U {0} is a semigroup in A’; clearly ® 4 U {0}

is a *-semigroup. m

An example given in [74, Corollary 3.8] exhibits a commutative, semisimple Lau al-
gebra such that ® 4 U {0} is a #-semigroup, but ® 4 itself is not a semigroup.

DEFINITION 5.24. Let A be a commutative Lau algebra such that (A’, -) is commutative.
Then X 4 is the || - [|-closure of lin ®4 in A’.
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Thus X 4 is a commutative, unital C*-subalgebra of A’. As before, X 4 is an introverted
subspace of A’, and so (X/y,0) is a Banach algebra for the product O inherited from
(A’, O). Also as before, we have X4 C AP(A) C WAP(A).

In general, AP(A) and WAP(A) need not be subalgebras of the C*-algebra A’. For
example, let K be a hypergroup with a left Haar measure (see [57, 100]). Then the
hypergroup algebra A = L'(K) is a Lau algebra. Since A has a bounded approximate
identity [57, 100], it follows from Proposition 1.2 that A- A’ - A = A - A’ is a closed linear
subspace of A’, and hence WAP(A) ¢ A - A’ C C*(K) [107, Lemma 2]. Let AP(K)
and WAP(K) denote the spaces of elements A € C*(K) such that {{,\ : z € K} is
relatively compact in the norm and weak topologies, respectively, of C'*(K). Then, by
[108, Remark 2.4(i)], we have AP(K) = AP(A) and WAP(K) = WAP(A). However
there is an example in [68] of a hypergroup K such that AP(K) is not a subalgebra of
C*(K), and in [121] there is an example of a hypergroup K such that neither AP(K) nor
WAP(K) is an algebra. Thus it follows that, in general, neither AP(A) nor WAP(A) is
a subalgebra of A’.

As we have remarked, Daws [21] has proved that AP(M(G)) and WAP(M(G)) are
C*-algebras when G is a locally compact group. It remains an interesting open question
whether AP(A) and WAP(A) are necessarily C*-subalgebras of A’ when A’ is a Hopf-
von Neumann algebra, not necessarily commutative. This problem has been studied by
Chou when A is the Fourier algebra A(G) of a locally compact group [8]; see also [103].

DEFINITION 5.25. Let A be a commutative Lau algebra such that (A’ -) is commutative.
Then the character space of X4 is denoted by S(A); it is the structure semigroup of A.

Thus the definition of S(A) generalizes that of S(G) in the case where G is a locally
compact abelian group, in which case A = M(G) is a commutative Lau algebra and
A’ = C(QG) is a commutative von Neumann algebra.

THEOREM 5.26. Let A be a commutative Lau algebra such that (A', ) is commutative.
Suppose that there is a x-subsemigroup T of A’ withe € T C ® 4 U {0} such that lin T is
o(A’, A)-dense in A’. Then (S(A),D) is a compact, abelian topological semigroup.

Proof. The space S(A) is compact because X 4 is a unital, commutative C*-algebra.
By (1.2), M - o = (M, p)p M e A", v € ®4). Thus
(sot, o) =(s,t- ) =(s,0){t, ¥) (s,t€5(A), p€Pa).
Let ¢,1 € ®ps. Then ¢ - 1p € &4 U {0} by Proposition 5.23, and so
<8Dt7 L2 ¢> = <S,(p : w><t, (2 ¢> = <8,<p><8,’(/J><t7(p><t7’(/J> = <SDt,(p><SDt,’g/J> :

Thus sot € S(A) because lin @4 is dense in X 4,and so (S(G),0) is a semigroup.
That (S(A),O) is a compact, topological semigroup follows from Proposition 1.15. m

COROLLARY 5.27. Let G be a locally compact abelian group. Then (S(G),0) is a compact,
abelian topological semigroup.

Proof. Let A = M(G) and T = T, the dual group of G. Then A and T satisfy the
conditions in the above theorem. m
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Submodules of M (G)"” Let G be a locally compact group. A closed subspace F of M(G)
is translation-invariant if

s-AN-teF (s,teG,AeF).
Again set E = Cy(G) and A = LY(G,mg). Let
D =(¢'(G)
denote the subspace of M consisting of the discrete measures, so that D is a closed
subalgebra of M, and let My = M, (G) denote the space of (non-discrete) singular mea-
sures on G, so that M, is a closed linear subspace of M. It was first shown by Hewitt
and Zuckerman [51] that, for every non-discrete, locally compact abelian group, there

is a probability measure u € M,(G) such that u x p € LY(G), and so M,(G) is not a
subalgebra of (M (G), *). As in (2.8), we have

M=A®D®M, =D x M,

as a direct £'-sum of Banach spaces; each of A, D, M, and M, is a translation-invariant
E-submodule of M. It follows that

M// — A// @ D// @ M// — D// X M//

S c
where each of A”, D" and M is a translation-invariant E-submodule of M”. Further,
A" and M! are closed ideals in (M”,0) and D" is a closed subalgebra (M”,0). We

note that the weak-* topologies on the spaces A”, D" and M/ are just the appropriate
relative weak-* topology from M’ . The canonical embedding is now

K=ty M— M =M@QG).
Set A =A@ D. Then 2 is a closed subalgebra of (M,*) and
A=Dx A=0Y(G)x L' (G) and A" =D"x A".

For details of the remarks concerning the Banach algebra M(G), see [13, §3.3] and
[48, (19.20) and (19.26))].

As we have stated, L'(G,mg) is a closed ideal of M(G). Now take p € M(Q)T. In
general, L' (G, ;1) is not a subalgebra of M (G), but there may be singular measures yu for
which this is true; for example, this is the case if 4 = my is the left Haar measure on a
closed, non-open subgroup H of G.

Recall that the character space of L>®°(G) = L>®(G,mqg) = A’ is denoted just by ®.
Of course, @ is a clopen subset of G, and m(®) = G. Thus we may suppose that the
family {Q; : i € I} of subsets of G described in Proposition 4.8 contains the singletons
{z} for x € G and the compact space ®. The space P is the topic of the paper [81], where
it is called the spectrum of L*°(G). For x € G, we set

Dy =Gy N®={ped:n(p)=u}.
Let p € M(G)* and = € G, and set v = §, * . Then it is clear that
D, =0, x P :={0; %0y :p €Dy}

PROPOSITION 5.28. Let G be a locally compact group, and suppose that u € My (G)T.
Then @, N (0 * ®,) =0 for almost all z € (G, mg).



Second duals of measure algebras 75

Proof. By [42, Corollary 8.3.3], {x € G : §, »u L p} is a Borel set, say B, such that
ma(B) = 0. (The result in [42] is stated for abelian groups, but the proof of this result
applies also to general, non-abelian groups.) Thus, for © € G \ B, we have d, * u L p,
and so @, N (6, x D) =0. =

In the case where G is compact, infinite, and metrizable, the space ® is homeomorphic
to H, the hyper-Stonean space of the unit interval.

We have noted in Corollary 5.9 that (M (®),0) is a closed ideal in (M (G),0). In
particular, for each ¢ € ®, we have the map

L,:Mw—6,0M, M(G)— M(®). (5.9)

The compact spaces corresponding to A, D, M, and M are denoted by ®, &p = Gy,
®,, and G, respectively. (In fact they are the character spaces of the C*-algebras A’,
D' =1°°(G), M., and M’, respectively.) We have shown that

{(I)’ 6Gd, (I)s}
is a partition of G into clopen subsets and that G = 5Gyq. It follows from our remarks

that
M(G)" = M(G) = M(®) ®1 M(BGq) &1 M(Py)

as a Banach space, that M (®) is a closed ideal in (M(G),0), and that M(3G4) and 21"
are closed subalgebras in (M(G),0).

PROPOSITION 5.29. Let G be a locally compact group. Then A = £1(G)x L1 (G) is strongly
Arens irregular.

Proof. This follows from [18, Proposition 2.25]. =
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6. Formulae for products

In this chapter, we shall establish some formulae for products in the algebra (M(G), O0)
that we shall require. Our method is based on the use of ultrafilters.

Let G be a locally compact group. We shall use the following notation. First, take
a positive measure p € M(G)* and B € B with u(B) # 0. We recall that we are
setting up = (p | B)/u(B). Fix L € B¢. Then we now make the following definition of
a function A\, p:

Mn(0) = MBI 1) e 6. (6.1)
Thus
AuB(t) = /BXLt—l(S) dpp(s) (te€@). (6.2)

Then A, p is a function on G that belongs to B®(G).
We also recall that Ug = J{®, : p € M(G)*}, as in Definition 4.5.

PROPOSITION 6.1. Let G be a locally compact group.
(i) Let p,v € M(G). Then

(e ux ) = [ Mst)duts) dvle) - (r € BY(G)). (6.3)
GJaG
(ii) Let p, ¢ € G with p € ®, and p € D, where p,v € M(G)*. Then
(s (N), 8,500) = Jim_lim / / st) dyus (s) dvo (£) (6.4)

for each A € B*(G).

(iii) Let ¢ € ®,, where p € M(G)*, and let L € B¢. Suppose that 1 € G has the
form ¢ =lim,, s,, where (sy) is a net in G. Then

(XK., 0p00y) = éim lim(up * ds,)(L). (6.5)
—p «

(iv) For each ¢ € Ug, each v € M(G)", each L € B¢, and each B € Bg with
v(B) > 0, we have
(vpody)(Kr) = (kE(A,B); 0p) - (6.6)

Proof. (i) Let A € B®(2). By (3.6), we have
(e, ) = [ Aduw).
By a standard theorem [48, Theorem (19.10)]

/Adu*y // (st) dp(s) du(t) ;

this theorem applies because A € L'(G, |u| x |v|). The result follows.
(i) For each A € C(G), we have
(A, 5,560 = Jim T (&, g + pc)
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by (1.1). In particular,
(kE(N), 0,064) = lim lim (kp(\), up * pc) (A€ BY(@)).
B—ep C—y

The result now follows from (i).

(iii) Tt follows from (i) that

(kE(\), 0,064) = lim lim | A(ss,)dug(s) (A€ BY(Q)).

B—yp « B

Apply this with A = x, € BY(@), so that k()\) = xx, in C(G). We also have

[ xntssa)ann(e) = [ Xy 6 dun(s) = Aun(sa)
by (6.1), and so (6.5) follows.
(iv) Take p € M(G)* and C € B with u(C) > 0. Then we have

(vp * pe)(L) = /G /G X (5t)x5(5)xc (1) dvp (s) duc (1)
- /G Mos(Oxe(t) duo(t) = (kpOnp), e

By Corollary 4.7, we can take the limits lim ¢_., to see that equation (6.6) holds. m

The following result extends a theorem of Isik, Pym, and Ulger [5~6, Theorem 3.2] (with
a different proof); see also Corollary 6.4. We recall that = : (M(G), O) — (M(G), *),
defined in (3.3) is a continuous epimorphism; cf. (5.3).

PROPOSITION 6.2. Let G be a locally compact group. Then:
(i) gpmﬂ:cpé@CC:' andwow:goeq)céforeachapeé andweé{e};
(ii) in the case where the group G is compact,
MoN=MOn#(N), NOM=xaN)OM (Me M(@®),Nec M(G)).

Proof. (i) First, we fix ¢ € é{e} and a set B € B¢ such that 0 < m(B) < oo, where
m=mgqg.
For each € > 0 and each A € B with m(A) < oo, there exists N € N, such that

m(At™1\ A) < Em(B) (teN).
For each p € M(G)* and C € B with u(C) > 0, we have

//XA st)dmp(s) duc(t) //XAt 1(s)dmp(s) duc(t)
S/BXA( s)dmp(s / wduc()

Thus, in the case where C' C N, it follows from equation (6.3) that

(xa, mp * pc) < (xa, mp) +e¢. (6.7)
By Corollary 4.7, we can take the limits lim ¢, to see that

(kp(xa),mpody) < (kp(xa),mp)+¢.
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This holds for each € > 0, and so

(kp(xa),mpody) < (kp(xa), ms).
However, this inequality also holds if A be replaced by G'\ A, and so

(kp(xa),mpody) = (kp(xa), mB).
It follows that
(kp(\),mpody) = (kg(\),mp) (A€ B*(Q)).

Since mp € M(®) and kp(Bb(G))|® = C(®), we have mp oy, = mp. Finally, we take
the limits limp_,, to see that oy = € & C G.

Similarly, 6, ¢ 6, = d,,.

(ii) We return to the above formula mpody, = mp, which holds for each ¢ € é{e}
and B € B¢ with m(B) > 0.

Now suppose that ¢ € G. Since G is compact, there exists s € G with w(¢)) = s. Then

Yos e G{ey, and so mp o dy, os~! = mp, whence

mpoY =mp * s=mp x 7(Y).

This formula extends to give mp o N = mp o7 (N) for each N which is a linear combina-
tion of point masses in M (G), and then, by taking weak-* limits, for each N € M (G).
We now take limits limp_,, to establish that paN = pon(N) for each ¢ € ® and

N € M(G), and then take linear combinations of point masses in ® and further weak-x
limits to see that

MoN=MOx(N) (Me M(®),Ne MG)):;

this last step is valid because the map Ry is weak-* continuous on (M (G), O).

Similarly, NOM = n(N) OM (M € M(®),N € M(G)). u

It follows in particular that ¢ oy = ¢ (p,9 € ®yey), and so (Py.y,0) is a left-zero
semigroup, as in [56, Theorem 3.2].

COROLLARY 6.3. Let G be a locally compact group, let M € M(®), and let ¢ € C:’{e}.
Then Mody =6y c M=M. =

The above result in the case where ) € ®.) says that the element 4y is a mized
identity for M (®) = L*(G)" in the sense of [13, Definition 2.6.21].

COROLLARY 6.4. Let G be a locally compact group, and let ¢ € G. Then the following
are equivalent:

(a) p € é{e} ;
(b) Ypop=1 (Y€ ®);
(¢) Yoo =1 for some g € Pyey.

Proof. That (a)=-(b) is part of Corollary 6.3, and (b)=-(c) is trivial. Suppose that (c)
holds. Then, by (5.3), (o) * 7(¢) = w(w) in M(G). But w(¢g) = de, and so 7w(p) = de,
giving (a). m
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The following result, which characterizes M (®) as a subset of M (G), will be important
later.

THEOREM 6.5. Let G be a locally compact group, and suppose that M € M (G). Then the
following conditions on M are equivalent:

(a) M € M(®);

(b) Mod, =M for all p € Gyoy;

c) there exists ¢ € ®ro1 such that Mod, = M.
{e} ®

Proof. That (a)=-(b) is part of Corollary 6.3, and the proof of (b)=-(c) is trivial. Since
M(®) is an ideal in (M(G), O), we have (¢)=(a). m

DEFINITION 6.6. Let G be a locally compact group. For an element p € M(G)™, set
A, ={A € Bg: p(0A) =0}.

LEMMA 6.7. Let G be a locally compact group, let p € M(G)*, let A€ 2, and lete > 0.
(i) There exists N € N, with u(At=*\ A) < e and u(t A\ A) < ¢ for eacht € N.

(i) Let B € B with u(B) > 0 and v € M(G)*T\{0}. Then there exists N € N, such
that

|(Xa; B * ve) = (xa, pB)| <€ (6.8)
and

[(xa, ve * pB) — (xa, uB)| <€ (6.9)
whenever C € Bg with C C N and v(C) > 0.
Proof. (i) Since pu(0A) = 0, there is an open set U with 0A C U and p(U) < e. Set
V =UUint A, so that V is an open set in G. We have V D 0AUint A = A, and so there
is a symmetric set N € N, such that (AN UNA) C V. In this case

(ANUNA)NACVNACV\itACU,

and so u((AN UNA)\ A) < e. The result follows.

(ii) Essentially as in the proof of equation (6.7), but using the estimate on p from
clause (i), we see that (xa, up * vo) < (x4, up) + € whenever C' € B¢ with C C N
and v(C) > 0. Again this leads to equation (6.8). Similarly, we see that equation (6.9)
holds. m

LEMMA 6.8. Let G be a locally compact group, let p € M(G)*, and let A € A,,. Then
<XKA’ 680 D6¢> = <XKA? 6¢ O(SLP> = <XKA7 6LP> (6'10)
for each ¢ € ®,, and P € é{e}.

Proof. We consider equations (6.8) and (6.9), and first take the limit lim ¢, and then
the limit limp_., to see that

|<XKA76QDD51/J>_<XKA7690>|<€ and |<XKA751/)<>5<P>_<XKAa5LP>|<8'

However these two inequalities hold for each € > 0, and so the result follows. m
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THEOREM 6.9. Let G be a locally compact group, and let A € Bg.
(i) Let M € M (K4 \ Kpa) and ¢ € Gr.y. Then

(XKa» MOdy) = (XKa, M). (6.11)
(i) Let M € M(Gyey) with (M, 1) = 1, and let p € G oy \ Koa. Then
(XKar Mo dy) = (XK, Op) - (6.12)

Proof. (i) First take M = d,,, where ¢ € K4 \ Koa.

Let (pq) be a net in Ug with lim, ¢, = ¢. Since ¢ ¢ Kga, we may suppose that
va ¢ Koa, and hence that 0A ¢ ¢, and G\ 0A € ¢,, for each a. Fix «, and choose
pa € M(Q)T such that ¢, € ®,,; we may suppose that p,(0A) = 0 because ¢, € @, ,
where v, = o | (G \ 0A), and we can replace o by Ve, if necessary.

For each «, we apply Lemma 6.8, with ¢ replaced by ¢, to see that

<XKA7 5§0a o 61b> = <XKA7 6(pa> .
By taking limits in «, it follows that

<XKA7 6«,0 o 51b> = <XKA7 6<,0> .
Thus the result holds in this special case.
Now, by taking linear combinations of point masses of the form J, and then weak-*
limits, we see that equation (6.11) holds for each M € M (K4 \ Kga).
(ii) For each v € é{e} and each p € M(G)' such that A € 2, it follows from
equation (6.9) and Corollary 4.7 that

[(XKa» Oy © 1iB) — (XKa> 1B)| S €.
This inequality holds for each € > 0, and so

(XKa> Op © pB) = (XK a5 1B) -
Since M € M(é{e}) and (M, 1) = 1, we see that M is the weak-* limit of linear

combinations of measures of the form »_; a;dy, such that each 1; € é{e} and ), aj = 1.
It follows that

(XKas M o ) =Hm Y " aj(xk,. Oy, © 1) = (XK4» 1B) -
J
Now let (¢4) be a net in Ug with lim, ¢, = ¢. Since ¢ ¢ Ky, we may suppose that
G\ OA € ¢, for each a. Fix «, and choose p, € M ()T such that ¢, € D, ; we may
suppose that jio(0A) = 0. Thus J,, is in the closure of the set {uc : A€ 2A,, C € B,},
and so equation (6.12) follows. m

Let ¢, € G. We recall that ¢ ~ ¢ if kp(A)(@) = kg(X) (1) for each X € BY(Q2)). We
now slightly extend this notation.

DEFINITION 6.10. Let G be a locally compact group, and take elements M,N € M(G).
Then
M~N if (kp(\), M) = (kp()\),N) (A€ B*Q)).

We say that M and N are Borel equivalent if M ~ N.



Second duals of measure algebras 81

THEOREM 6.11. Let G be a locally compact group, and let @, € G be such that p~ .

Then Mo ~ Mot and p oM ~p oM for each M € M(G).

Proof. First suppose that ¢,1 € Ug. For each v € M(G)T, each L € B¢, and each
B € B4, we have

(v dy)(KL) = (ke(M,B), 0p) and (v 0dy)(KL) = (ke(A,B), dy)
by equation (6.6). By taking suitable limits, we see that these equations also hold when-

ever p, ¥ € G.
Since ¢ ~ 1, we see that (kg(A,.B), 0p) = (kE(A,B), 0y), and so

(vBod,)(KL) = (vpody)(KL).
Again by taking limits over a canonical net, we see that
(09 28,)(K1) = (506,) (K1) (0€G).

Finally, taking linear combinations of the point masses dp and further weak-* limits, we
see that

(Mod,)(Kr) = (Mody)(KL) (Me M(G)).
Thus
<"€E(XL)7 M> = </€E(XL)7 N> .
The above equation holds for each L € By, and this is sufficient to imply that
Mop ~Maovp. N
Similarly ¢ o M ~ ¢ oM for each M € M(G). =

In Example 8.20, below, we shall see that there exist ¢, 9 € G with @~ and € G
such that o £ Y ob.
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7. The recovery of GG from G

Introduction Let G and H be locally compact groups, and consider the compact spaces
G and H and the Banach spaces M(CNT') and M(ﬁ) Then we have seen in Chapter 3
that we cannot recover the locally compact spaces G and H from the information that
we are given. Indeed, by Theorem 4.3, the space Q is homeomorphic to SN whenever
(Q,7) is a countable, locally compact space, and, by Theorem 4.16, there is a unique (up
to homeomorphism) hyper-Stonean envelope for all uncountable, compact, metrizable
spaces.

We now ask whether the fact that Banach algebras (M(G), 0) and (M (H),O) are the
‘same’ entails that G ~ H, in the sense that there is a homeomorphic group isomorphism
from G onto H.

We first note that we must interpret the word ‘same’ in the previous paragraph
to mean that there is an isometric isomorphism from (M(G),0) onto (M (H),O). For
let G be the dihedral group of order eight and let H be the quaternion group. Then
(M(G),0) = (£1(G), *) is isomorphic to (M (H),0) = ((1(H), ), but it is not true that
G ~ H [88, §1.9.1].

The character spaces of the C*-algebras L>°(G) and L*°(H) are denoted by ®¢ and
® g, respectively, in this chapter.

History We recall some brief history of these questions. Let G and H be locally compact
groups. The first result is Wendel’s theorem ([119], [88, §1.9.13]), which we state explicitly.

THEOREM 7.1. Let G and H be locally compact groups. Then there is an isometric iso-
morphism from LY(G) onto L'(H) if and only if G ~ H. m

In fact, by a theorem of Kalton and Wood [62], we have G ~ H whenever there is an
isomorphism from L'(G) onto L'(H) with norm less than /2.

It was proved by Johnson [58] that G ~ H if and only if there is an isometric isomor-
phism from M(G) onto M (H); see also Rigelof [98].

It was further proved in [76] that G ~ H whenever there is an isometric isomorphism
0 from (LUC(G)', O) onto (LUC(H)', O); in this case, § maps M(G) onto M (H) and
LY(G) onto L'(H) [36]. We state a related result from [36, Theorem 3.1(c)] that we shall
require. (Earlier partial results are listed in [36].)

THEOREM 7.2. Let G and H be locally compact groups, and let
0:(LY(G)",0)— (L'(H)", D)
be an isometric isomorphism. Then 6 maps L' (G) onto L'(H), and so G ~ H. m

The question whether G ~ H when there is an isometric isomorphism from (M (é)7 )
onto (M(H), O) was specifically raised by Ghahramani and Lau in [34, Problem 2,
p. 184]. Our aim in the present chapter is to resolve this question affirmatively. We think
that some of the results obtained en route to this are of independent interest.

The result in the case where G and H are both abelian and have non-measurable car-
dinal was given by Neufang in [87, Corollary 3.7]. [Added in proof: By [82], the condition
on cardinality is not required.]
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An isomorphism We shall first note that the groups G and H are isomorphic when
(M (@), 0) and (M(H), D) are isometrically isomorphic as Banach algebras; the dif-
ficulty is to show that this isomorphism from G to H is also a homeomorphism. The
following result is [34, Corollary 3.6]

PROPOSITION 7.3. Let G and H be locally compact groups, and let
6:(M(G), D) — (M(H), 0)

be an isometric isomorphism. Then, for each ¢ € é, there exists 0(p) € H and ¢, €T
such that 0(6,) = Cu00(y). Further, for each s € G, we have 0(s) € H, and 0 : G — H is
an isomorphism.

Proof. For each ¢ € é, the element d,, is an extreme point of M (é)m, and so, since 6

is isometric, 0(d,) is an extreme point of M (H)p;. Hence 0(d,) has the form (,dq(,,) for
some () € H and ¢, € T. We thus obtain a map

0:p—0(p), G—H;

since 6 is a bijection, we see that this new map is also a bijection.

Take s € G. Then 8, has inverse d,—1 in (M(G), O), and so 6(J,) has inverse 8(8,-1)
in (M(H), O); further, ||8(6)|| = ||6(6,-1)|] = 1. By Proposition 5.5, 8(8s) € H. It
follows that #(G) = H and hence that 6 : G — H is an isomorphism (as is the map
s—C, G—T). n

The case of compact groups The following partial answer to our question was first
proved by Ghahramani and McClure in [35]; our proof is similar to, but perhaps a little
shorter than, their proof.

THEOREM 7.4. Let G gnd H be compact groups. Suppose that there is an isometric
isomorphism from (M(G), O) onto (M(H), O). Then G ~ H.

Proof. The normalized Haar measures on G and H are mg and mp, respectively.

First, let 6 : (M(G), O0) — (M(H), O) be an isomorphism, and set

N = 0(mg) € M(H).

It follows from equation (5.4) that N satisfies equations (5.5) and (5.6) (with respect to
the group H), and so, by Proposition 5.6, N = my or N = 0. Since 6 is an injection,
N # 0. We conclude that 6(m¢) = mpy. We now identify elements of LY(G) and L'(H)
with the corresponding elements in M (G) and M (H), respectively, so that we can say
that 9(1@) =1g.

It follows from equation (2.5) that a linear isometry 6 from M(G) to M(H) has the

property that (M) L 6(Ms) in M (H) whenever My L My in M(G).

Now let 6 : (M(G), O) — (M(H), O) be an isometric isomorphism. Take B € B,
and set C = G\ B. Then 1¢ = x5+ xc¢, with xp L x¢, and so 1z = 0(x5)+0(xc), with
0(x5) L 8(xc). Hence () and 6(xc), as elements of M(H), must be the restrictions
of K(mu) = 1y = Xe, to two disjoint Borel subsets of H. Thus 6(xp) and 6(xc) are

positive, normal measures on H, and so we may regard them as elements of M (H). We
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now see that 6(yp) and 6(x¢) are the restrictions of 1y to two disjoint Borel subsets of
H. In particular, 6(xg) € L'(H).

It follows that 6(f) € LY(H) for each f € LY(G).

Since 6 : (M(G), O) — (M(H), O) is an isometric isomorphism, it follows that the
map 0 : (LY(G), x) — (L'(H), ) is an isometric isomorphism. By Wendel’s theorem,
Theorem 7.1, G~ H. =

We can easily extend Theorem 7.4 slightly at this stage at the cost of borrowing a
result of Neufang from our Chapter 8.

PROPOSITION 7.5. Let G be a compact group, and let H be a locally compact group
with non—measurablefardinal. Supposithat there is an isometric isomorphism from the
Banach algebra (M(G), O) onto (M(H), O). Then G ~ H.

Proof. We shall obtain a contradiction from the assumption that H is non-compact; by
Theorem 7.4, this is sufficient for the result.

We have mg € M(G) € M(G); set M = 6(mng) € M(H), so that UMH = 1. We see
that MON = NOM (N € M(H)), and so, by Proposition 1.7, M € StZ)(M(I:T)). Since
H is non-compact with non-measurable cardinal, it follows from a theorem of Neufang
which is our Theorem 9.6 that M € M(H), say M = p.

Take t € H. By Proposition 7.3, there exist s € G and ¢ € T with (0(d5) = J;. Since
mg * 0s = mg, we have

pox 8 = Cp. (7.1)

Let K be a compact subset of H. Since H is not compact, there is a sequence ()
in H such that the sets Kt, for n € N are pairwise disjoint. In follows from (7.1) that
|| (Kt) = |p| (K ) for each k£ € N, and so

(K Zm\ () = |l (UKt b € Na}) < Jul () = llul - (neN).

Thus |u| (K) = O. Thls holds for each compact subset K of H, and so |u| = 0, a contra-
diction of the fact that ||u| = 1.
Thus H is compact, as required. m

Suppose that G and H are locally compact, abelian groups with non-measurable
cardinal, and that there is an isometric isomorphism from (M(G), O) onto (M (H), O).
Then it also follows from Neufang’s theorem, as remarked in [34], that G ~ H. [Added
in proof: By [82], the condition on cardinality in Proposition 7.5 and this remark is not
required.]

The general case We now turn to the general case, in which it may be that neither G
nor H is compact.

Let H be alocally compact group. Recall from Chapter 5 that Z = LUC(H) is the left-
introverted C*-subalgebra of M(H)" = C(H) consisting of the left uniformly continuous
functions on H, so that (Z’, O) is a Banach algebra and (®z, O) is a compact, right
topological semigroup containing H as a dense open subspace. As in (5.7), we have a
continuous surjection g : H— &y
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Let G and H be locally compact groups, and let 6 : (M(é), 0) — (M(I;T)7 )
be an isometric isomorphism. We adopt the n~otation of Proposition 7.3, and again set
Z = LUC(H). Take ¢ € Goyy- Then 0(¢) € H and qu (0(p)) € ®z; we define

u=qu(0(¢)).
Let M € M(®¢). Then it follows from Theorem 6.5 that Mo d, = M, and so
qu(0(M))ou = qu(0(M)) (M€ M(®g)). (7.2)
The following result is crucial for our proof.

LEMMA 7.6. We have u = ey, and 0(p) € I;T{eH},

Proof. This result is trivial if H is compact, and so we may suppose that H is not
compact.

We shall first consider the special case in which ¢ € ®g; our immediate aim is to
prove that v € H in this case.

We assume towards a contradiction that u € & \ H. Let x be the smallest cardinal
such that u is in the closure in ® 7 of the union of x compact subsets of H (so that k > w),
and choose a sequence (K, : @ < k) of compact subsets of H such that

uEU{Ka:oz</£}.
We also choose a symmetric, compact neighbourhood U of e.

Clearly there is a strictly increasing sequence (C,, : a < k) of symmetric subsets of
H such that the following properties hold:

(i) U CCyand K, C Cy, (< K);

(ii) the set C, is compact when o < w, and C,, is the union of at most || compact
subsets of H when w < a < k;

(iii) C2 C Coy1 (< K);

(iv) Co 2 UH{Cs: B <a} (a<k).

It follows from (ii) and the fact that x is the smallest cardinal with certain properties
that u ¢ C,, for any a < k.

We now set Hy = |J{Ca : a < s}. Since each C, is symmetric and C,Cs C C(avg)+1,
we see that Hy is a subgroup of H. The closure of Hy in &5 is denoted by Hg, so that
u € Hy and Hy is a subsemigroup of (@7, O). It follows that Hj is itself a compact,
right topological semigroup. (In fact, we can identify H, with the character space of
LUC(H,).)

By Corollary 5.9, M(®¢) is a closed ideal in (M (G), O), and so (M (®¢)) is a closed
ideal in (M (H), O). We define

J = qH(Q(M((pg))) Ccdy.

We claim that J N Hy is an ideal in the semigroup (Ho, O). First note that u € J
because ¢ € ®¢, and so JNH # (). Now, take x € JNHg and y € Ho, say © = qg (6(M))
for some M € M (®¢) and y = gu(¢) for some ¢ € H. By Proposition 7.3, there exists
¢ € G and ¢ € T such that ¢ = ¢(p). But now

roy = qu(0(M))oqu((gp)) = qu(CO(M) odg,y) € J,
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and also xoy € Hy, and so xoy € JN Hy. Similarly, yox € JN Hy, and so J N Hy is
an ideal in Hy, as claimed.

Since (Hy, O) is a compact, right topological semigroup, it follows from Theorem 5.1
that Hy has a minimum ideal, K(Hg). Clearly we have K(Hg) C J N Hg. It now follows
from (7.2) that

rou=z (x€ K(Ho) CJ). (7.3)

For each s € Hy, define

f(s) =min{fa < r:se€Cy}.

Suppose that s,¢ € Hy are such that f(s) < f(¢). Then f(st) € {f(t), f(t) + 1}
whenever f(t) is a limit ordinal or 0 and that f(st) € {f(¢t) — 1, f(¢), f(t) + 1} otherwise.

Each ordinal « has the form o = A(«) + n(«), where A(«) is a limit ordinal or 0, and
n(a) € N.

For k € Zg, we define

Dy ={s€ Hy:n(f(s)) =k (mod8)},
so that {D1,..., Dg} is a partition of Hy and Dy U---U Dg = Hy. For each k € Zg and
each a < k, the set Dy \ C, is infinite by (iv), above. Thus, for each k € Zg, the family

{m:a</§}

of closed subsets of the compact space H has the finite intersection property, and so we
may choose

we e ({Di\Ca) i a < r}.
For k € Zg, we further define
Fy={st€ Hy:t€ Dy, s € Hy with f(s) < f(t)}.
Then, for each k € Zg, we have
Fp, CD_1UDrUDyy1 and UFy, C Do UDg_1UDgUDgi1UDyggo,

where the subscripts are calculated in Zg. It follows that FyNUF; = () whenever k = £+4,
and so, by Theorem 5.12, we have

FrNEF;=0 whenever (=k+4 in Zg. (7.4)
For each z € Hy and k € Zg, we can write

roy, = lim lim {st:s € Ho,t € D\ Cp5)} -

5—T t—yYg
Since f(t) > f(s) for t € H \ Cy(s) and since Ry, is continuous on Hy, it follows that
FO Oy, C F}C .

By Theorem 5.1, the left ideal Hy Oy of Hy has a non-empty intersection with the
minimum ideal K (H) of Hy, and so there exists an element x, € Fi N K (Hy).
There exists ko € Zg such that u € Dy, . For each z € K(H,), we can write

rou=lim lim{st:s € Hy, t € D\ Cy5)} ;

s—T t—u
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this holds because u & C,, for any a < k. It follows that
r=zou€Fy, (z€K(Hp)), (7.5)

where we are using (7.3).

We take £y = ko +4 (in Zs), so that @y, € Fe, N K (Ho). But x4, € Fy, by (7.5). This
is a contradiction of (7.4).

We conclude that v € H in the special case in which ¢ € ®¢.

Now consider the more general case in which ¢ € é{ec}. We choose ¢ € (®¢){es1
so that Y o¢ = 9 in G. Set v = qu(0(v)) € ®z. By the special case that we have just
proved, v € H. But vou = v in (®z, O), and so, acting on the left with v =1, we see that
u = e, as required. It follows that 0(p) € fI{eH}. "

Let G and H be locally compact groups, as in the theorem, but now suppose further
that H is o-compact and non-compact. Then the above proof can be considerably simpli-
fied. Indeed, in this case, the sequence (C), : n < w) is any strictly increasing sequence of
compact subspaces of H such that U C Cy and Un<w C,, = H, and we can take Hy = H.

Thus the argument used in the above proof shows the following; it would be interesting
to know if the result is still true when H is not necessarily o-compact.

PROPOSITION 7.7. Let H be a locally compact group which is o-compact and non-compact.
Then, for eachu € ®z\ H, there is a left ideal L of (7, O) such that (Pz Ou)NL =0. =

We obtain the following consequence of the above lemma.

PROPOSITION 7.8. Let G and H be locally compact groups, and let
0:(M(G),0)— (M(H), D)
be an isometric isomorphism. Then 6 induces a bijection 0 : é{ec} — fI{EH} and an
isometric isomorphism 0 : (M (®g), O) — (M (®y), O).
Proof. 1t is clear from Lemma 7.6 that 6 : é{eG} — ﬁ{eH} is a bijection.

Take M € M(®¢), and set N = §(M) € M(H). Choose an element ¢ € (PH){eny
Then there exists ¢ € C:'{GG} such that 6(¢)) = . By Theorem 6.5, (a)=(b), Mody, =M
in (M(G), O), and so we see that No d,=Nin (M(H), O). By Theorem 6.5, (c)=(a),
we have N € M(®p). Thus (M (Pg)) C M(Py). We conclude that 0 is an isometric
isomorphism from (M (®¢), O) onto (M (®g), O). =

THEOREM 7.9. Let G and H belocally compact groups, and suppose that there is an
isometric isomorphism from (M(G), O) onto (M(H), O). Then G ~ H.

Proof. By Proposition 7.8, there is an isometric isomorphism from (M (®g), O) onto
(M(®y), O). By Theorem 7.2, G ~ H. m
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8. The compact space G

Introduction Let G be a locally compact group. We now enquire whether or not (é a)
is a semigroup. Specifically, we take p, 1 € G so that d,0d, is a measure on G we say
that povy € G if d, 0 dy is a point mass in G in the contrary case, we say that oo ¢ G.

DEFINITION 8.1. Let G be a locally compact group. Then a subset S of Gisa semigroup
if powy € S whenever p, 9 € S.

In particular, we shall consider whether or not G itselfis a semigroup. More generally,
let S and T be subsets of G. We shall consider, first, whether or not o € G for each
w € S and ¢ € T, and, second, if so, the subset of G to which w o1 belongs. Indeed, we
shall say that

SaTcuU

if oo is point mass in U for each ¢ € S and ¢ € T.

For example, recall that, in the case where the group G is discrete, so that G= BG, it
is certainly the case that (8G, O) is a semigroup; indeed, it is a compact, right topological
semigroup. This semigroup has been extensively discussed [18, 52]. Thus, for a general
locally compact group G, the subset G = $Gy of (é, 0O) is always a semigroup. Also,
the following result follows easily from Proposition 6.2(ii); recall that ® is the character
space of L*(Q).

PROPOSITION 8.2. Let G be a compact group. Then P0G C ®, and, in particular,
(®, O) is a semigroup. m

Indeed, we have noted in Corollary 6.3 that (®y.y, O) is a left-zero semigroup.

The above proposition does not extend to all locally compact groups G. Indeed, it is
shown in [81, Corollary 4.4] that (®, O) is a semigroup if and only if G is either compact
or discrete; we state this result in the following form.

PRrROPOSITION 8.3. Let G be a non-discrete, locally compact group that is not compact.
Then (G, O) is not a semigroup. m

One of our aims is to prove that (é, O) is not a semigroup for each non-discrete,
locally compact group. The above proposition shows that it would be sufficient to restrict
considerations to infinite, compact groups G. However we shall prove the result for general
non-discrete, locally compact groups without appealing to Proposition 8.3; one reason for
this is that we shall find different elements ¢, € G such that pop ¢ G from those that
arise in Proposition 8.3.

Here is another obvious remark. As before, we set E = Cy(G).

PROPOSITION 8.4. Let G be a locally compact group. Then

GOGCG and GOGCG.
Proof. Let s € G. First take A\ € E. Then we recall that A - s € E is defined by the
equation (A - s)(t) = A(st) (t € G). For A1, Ay € E, we have A\jAg - s = (A1 - s)(A2 - 9),
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and so
(MA2, s * @) = (A1, s * p)( A2, s x ) (9 €G).
Now take A1, Ag € C(é) Taking weak-* limits, we see that
(MAs, s % @) = (A1, s % @) (Ao, s x ) (p€G),
and so AjAs - s = (A1 - 8)(Ag - 8). Thus
(Arhe, s - @) = (Mhs - 5, 90) = (A1 - 5, 9){A2 - 5, 0) (A1, A2 €C(G) 0 €,
and so s - @ € G. Similarly, ¢ - s € G. We have shown that GO GcGand GOG CG.
Since multiplication on the right is continuous on (M(G), O), it also follows that
GOGCG. w
However multiplication on the left is not continuous on (M (G), O), and so we cannot
say that G OG C G. Indeed, this is not true in general, as we shall see below.
In fact, since D', A’, and M/ are translation-invariant subspaces of the space M’, we
see that GOG C G, that GO® C @, and that GO ®, C ..
PROPOSITION 8.5. Let G be a compact group, and let
A=1YG) x L}G).
Then (A”,0) = (M(BG,U®),0), and (BG4UP, O) is a subsemigroup of (M (SG4UP),O).
Proof. Set S = fG4U®P. By the standard result, (G4, O) is a semigroup, and so we have

0G4, 006G, C BGy; by Proposition 8.2, 0.5 C ®; by Proposition 8.4, fG; 00 C d.
Thus SOSCS. =

Relation between groups As a preliminary to our main investigations, we consider
the relation between the statements that (@7 0) and (H, O) are semigroups when G and
H are related groups.

Let G and H be locally compact groups, and let n : G — H be a continuous map
that is also a group homomorphism; as in Chapter 2, we can define a continuous linear
operator 77 : M(G) — M(H) with [|7]| = 1 and 7(ds) = 0,(s) (s € G). Let p,v € M(G).
For each A € Cy(H), we have

<xﬁW*u»=ﬂ;LuonwaMdew

=//AWWNWM$®W

= [ [ M) i) dn) ) = 070 = 70
It follows that 77(u * v) = 7j(u) * 7(v), and so the map 77 : (M(G), x) — (M(H), ) is a
continuous homomorphism. Hence
n":(M(G),0) — (M(H),0)

is a continuous homomorphism with ||7”|| = 1. Further, as in equation (4.6) of Corollary
4.12, we can define a continuous map n: G — H.
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PROPOSITION 8.6. Let G and H be locally compact groups, and let n : G — H be a
continuous homomorphism.

(i) Suppose that 1 is an injection and that (G,D) is not a semigroup. Then (H, O)
18 not a semigroup.

(i) Suppose that n is an open surjection and that (H, O) is not a semigroup. Then
(G, 0) is not a semigroup.

Proof. (i) By Corollary 4.12(i), 7 : G — H is an injection.
There exist ¢, € G such that 8,00y € M(G)\ G. We have 7j(),7(¢) € H, and
Oii(p) O Gi(y) = 1" (0, 00y) € M(H).
Further, ||, 0dy,|| = 1, and so 7”(d, 0 dy) # 0 because 77 is an injection.

Assume towards a contradiction that 7”(¢ov) € H. Then 7”(pov) € 7j(G), for
otherwise 17 (po ) =0, and so poy € G because 7] is an injection, a contradiction.

Thus it follows that 7" (¢ o) & H, and so (f[, O) is not a semigroup.

(ii) Since 7 is an open surjection, Proposition 5.2(i) shows that 77 : M(G) — M (H)
is a surjection. By Corollary 4.12(ii), the map 7 : G- Hisa surjection. It follows that
there exist ¢, € G such that N(e)on(y) ¢ H.

Assume towards a contradiction that ¢ 01 € G. Then neoy) =n(p)on) € H, a
contradiction. This shows that (é, 0O) is not a semigroup. m

Specific compact groups We shall now show that the inclusion GOG C G often
fails; we shall establish a strong form of this result in the special cases where G is the
circle group T or a compact, totally disconnected group, and then generalize the result
to arbitrary locally compact groups.

We shall first introduce some preliminary notation.

We shall identify T with R/Z, and use numbers  in the interval [0, 1) to represent the
point exp(27if) in T. Haar measure myp on T gives the measure m on [0, 1). The fibre in
T above the identity element of the group T is ﬁf{o}. As before, D), is the compact group
Z;fﬂ. We regard Dy as a closed subset of D, for each p > 2; however note that Dy is not
a subgroup of D, whenever p > 3. We also regard Dy as a subset of T, as follows.

DEFINITION 8.7. For € = (¢;) € Da, define

and set L = ((D3).

Thus L is the set of numbers whose ternary expansion contains only 0’s and 1’s; it is a
Cantor set with {0,1/2} ¢ L € [0,1/2] C T. The map ¢ : Dy — L is a homeomorphism.
Let p € M(I) be defined by

w(B)=mp,(BNL) (Be€MB), (8.1)

where now mp, is Haar measure on Ds, identified with L, so that p is a fixed, positive
singular measure on I with supp p = L.
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For X € B, r € N, and j € {0,1}, set
mi(X)={z e X :e.(x) =j}.
Then we note that (7, o(X) —37")NL =0, so that u(mo(X)—3"") =0, and then that
p(mr1(X) —37") = p(m1(X)) because the map = — x — 37" applied to 7, 1(X) just

corresponds to a translation in Ds.
Let X,Y € B and r € N. Then we have

(X-3"AY -3")=(XAY)-3"",
and so
(X —37)A(Y = 37) = plma (X AY) = 377) = p(mpa (X AY)).
It follows that
(X =37 A(Y =37) < u(X AY). (8.2)
We shall also consider the groups of p-adic integers, where p is a prime (and p > 2);
this group is described in [48, §10]. Following [48], we denote the group by A,, and regard

an element of A, as a sequence in Z;‘U; for r € ZT, the element (4, , : n € Z*) is denoted
by u,. We note that A, is monothetic, with generator u;.

THEOREM 8.8. Let G be either the circle group T or (R,+) or the compact group D, or
the group A, of p-adic integers, where p is a prime. Then there exist u € My(G)" and
Y € G} such that:

(i) wov &G for each p € @, ;
(ii) [(Mody)(Pyu)| < 1/2 for each M€ M(®,)p;.

Proof. (i) We give the proof first in the case where G =T or G = R.

We have defined p € M(I)™ in (8.1), and we can regard u as an element of M (G)*.

For r € N, the element 37" € L. Now take x = }_72 ¢;/3/ € L. For each r > 2, we
have z + 37" € L if and only if ¢, = 0.

Fix € > 0. Then we claim that, for each B € By, with p(B) > 0, there exists r. € N
such that

W(BO(L=37)~ u(B)| <en(B) (r>r2). (8.3)

To see this, first suppose that B C L is a basic clopen subset of the form Ugq, as in
equation (2.1), above. Then

BO(L—?)_T):{EGUF,Q:ET:O}v

and so, for each r > max F', we have
p(BO(L—37) = gy = 2u(B),
giving (8.3) in this case. Since each clopen subset of L is a finite union of pairwise-disjoint,
basic clopen sets, our claim holds for each non-empty, clopen set B € B .
For an arbitrary B € B, with u(B) > 0, there is an open and closed subset V of L
such that u(BAV) < eu(B). It follows from (8.2) that

p((B=3"")A(V =37")) <eu(B),
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and so our claim holds for this set B. This establishes the general claim.
It follows from (8.3) that

. CWBO(L-3T) 1
Mim (g 9g-r)(L) = lim == 7, 2
for each B € B¢ with p(B) > 0.
Now take ¢ € ®, and ) € G} to be any accumulation point of the set {37 : r € N}.
By equation (6.5) in Proposition 6.1(iii), we have (xx,, d,00y) = 1/2, and so d, 0y, is
not a point mass, whence o ¢ G.

The case where G is either D, or A, for some p > 3 is essentially the same: we embed
Dy in A, as before, and note that sum of two elements of Dy in A, is just the same as
their sum in D,.

Suppose that G = Dy, and again set L = ((D2) C I and take p to be Haar measure
on Do, as in equation(8.1), with u transferred to L. For each n € N, set

A, ={(er) € L+ ugpy1: €2, =0} and s, = uay + Uopnt1,
and set A = |J{4, : n € N}. Then we see that
LN(A—sy,)={(e;)€L:ea, =1} (n€eN).
For each clopen subset B of L, we have

W(B (A~ 5.) = sp(B)

for each sufficiently large n € N. Now let ¢ € ®,, and take v to be any accumulation
point of the set {s, : n € N}. It follows essentially as before that (xx,, 0, 0dy) = 1/2,
and so d, 0 dy is not a point mass.

The final case in which G = As is essentially the same.

(ii) Clearly ®, C Kp,, and so

1
0= (0,004)(Pu) <5 (P €Pyu).

Since M (@)} is the weak-* closure of the convex hull of the measures ., for ¢ € @,
we have [(Mody)(®,))| < 1/2 for each M € M(®,,)[1), as required. =

COROLLARY 8.9. Let G =T. Then ®,0G ¢ C~¥, and (é, 0) is not a semigroup. m

We shall now show that ®,0¢ ¢ G and that ¢, 00, ¢ é; we shall first work with
the key group T. We again require some preliminary notation. We recall that we are
writing Z,, for the set {0,1,2,...,n — 1}.

We fix a sequence (r,,) in N such that 4 < r,, < 7,41 (n € N) and

o0

> 1. (8.4)

T'n
n=1
Next we define a new sequence (d, : n € Z") by requiring that dy = 1 and that
dp = rpdyp—1 (n € N). Each z € [0,1) has a expression in the form

[ee]
en(z)
=3 h () € Z, N),
T 2.7, , where e,(x) €Z,, (neN)
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where we note that

e}
-1
Z Tnd =1
n=1 n
(The expression for x is unique provided that we exclude the case where e, (z) =1, — 1

eventually; this ambiguity involves only countably many points of [0, 1).)
Let z,y € [0,1) and n € N. Then we see that

en(T+y) = en(®) +eny)
provided that e, (x) +&,(y) < r, — 1, for, in this case, there is no ‘carrying of decimals’.
We now define three subsets Lo, L1, Lo of [0,1).
The set Lo consists of those elements = € [0,1) such that

en(z) € {0,1} (neN).
Thus Ly is a Borel subset of [0,1) with m(Lg) = 0. We can identify Ly as a topological
space with a dense subset of Dy, and we again denote by u the positive measure on [0, 1)
that corresponds to the Haar measure on Ds, as in equation (8.1), so that u(Lg) = 1 and

w is singular with respect to m. We fix ¢ to be any element of ®,,, so that ¢ € ;.
The set L; consists of those elements x € [0, 1) such that

en(2) €{2,r =1} (n€N).
Thus L; is a compact subset of [0,1) with

and so m(Ly) > 0 by equation (8.4).

The set Ly consists of those elements = € [0,1) such that

en(x) €{2,7 — 2,7, — 1} (n€N)

and e, (z) = 1 for exactly one value of n € N, say for n = n,. Thus Ly C Ly C Ly and
Lo is a countable union of Borel subsets of [0,1), and hence is a Borel subset of T. We
observe that mv(Lg NU) > 0 for each neighbourhood U of 0 in [0,1), and so there is a
point ¢ € & N Tygy such that Ly belongs to the ultrafilter .

The key step in our construction is contained in the following lemma, which uses the
above notation.

LEMMA 8.10. We have (§,00,)(Kr,) =1/2.
Proof. We first consider a basic clopen subset B of Lg of the form
B={x€Ly:ei(x)=u; (i€Ng)},
where k € N and uy,...,ur € Zo. We then choose a Borel subset C of Ly such that, for
each t € C, we have €;(t) =0 (i € Ny) .
We first fix t € C, and consider p((L1 —¢)NB). Indeed, take z € Ly, and set a;; = &;(x)

and 3; = g;(¢) for i € N. We claim that z—t € B if and only if the following two conditions
hold:

(1) a; = u; (i € Ng); (2) o — B; € {0,1} (i € N).
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To see this, first suppose that (1) and (2) hold, and set

yzzai;@"

i=1 v

Then y € B because §; =0 (i € Ni), and = y + ¢ because
ai:(ai—ﬁi)+ﬂi<ri—1 (ZEN)
Thus z — t € B. Conversely, suppose that y := 2 —t € B. Then (1) holds. Since t € Ly,
we have §; +¢;(y) <r;—1 (i € N), and so o; = §; + &;(y) (i € N), and this implies that
a; — B; € {0,1} (: € N), giving (2). This establishes the claim.
Next set n = ny, so that n > k and 3, = 1. Suppose that x —¢ € B. Then «,, € {1,2}
by (2). But we know that «,, # 2 because x € Ly, and so «,, = 1. For each i € N with
i > k and with ¢ # n, we can choose x € L; with g;(x) = §;, and we can also choose

y € Ly with ¢;(y) = 1+ 8;; we can make these choices independently of any of the other
coordinates of x or y, respectively. Thus we see that

(L1 —t)N B ={z € B:ey(z) =0}.
This implies that
u((Li 1) B) = su(B) (t€C). (8.5)

Since each clopen subset is the union of a finite, pairwise-disjoint family of basic open
sets, equation (8.5) easily extends to arbitrary clopen subsets B of Ly.

Essentially as before, we see that, given € > 0, there is a neighbourhood U of 0 in
[0,1) such that

;mmwmmimm}wmm (tec)

for each C € v such that C C Lo NU.
Recall that

(15 % me) () =~z | (L =) ) dm(r)

whenever B, C are Borel sets with p(B), m(C) > 0. Thus

‘(.UB * mc)(L1) — ;‘ <e

for each C € v such that C C Lo NU.
We again take limits along the ultrafilters, first letting C' — 1, and then letting
B — ¢, to see that (0, 06y)(Kr,) =1/2, as required. m

We now give an analogous result for compact, totally disconnected groups.

We first describe a class of sequential pro-finite groups; our groups are certain pro-
jective limits of finite groups. Indeed, each such group has the following form. For each
n € N, let G,, be a finite group of cardinality |G|, with identity denoted by e,. Sup-
pose that there are group homomorphisms 8, , : G, — G4, defined whenever m,n € N
and m < n, such that 6, ,, is the identity on G,, for each m € N, and such that
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Opn © Oy m = 0pm whenever m < n < p. Then the group G is the projective limit of this
system. Thus, as a group,

)
G = {(xn) e [[Gn:bnm(zn) =2m (m< n)} ,
n=1

and G has the relative product topology from [] 7 ; G,,. These groups are examples of
pro-finite groups; general pro-finite groups replace the set N by more general directed sets.
These groups are discussed in [88, §12.3] and [120]. A pro-finite group G is sequential if
and only if e is a countable intersection of open, normal subgroups [120, Proposition
4.1.3]. Let G be a compact, totally disconnected group. Then it follows from [48, §8] that
G has a quotient that is a sequential pro-finite group.

Let G be an infinite, sequential pro-finite group, with the above representation. The
Haar measure on G is denoted by m. We set

K, =ker 6, ,-1 (n>2),
By relabelling the groups, we may suppose that
(Gusa] > 227 (Gl (nEN),

so that |K,| > 22"~V (n > 2).

We begin by defining a continuous homomorphism from the group D into G. Indeed,
we shall first define by induction on n € N an element ((¢) in the group G,, for each
€ = (e1,...,6n) € Zy with €1 = 0. In the case where n = 1 and ¢ is the singleton 0, we
set ((e) = e1 € G1. Now suppose that n > 2, and assume that ((¢) = a. has been defined
in G,, for each ¢ € Z§* whenever m < n. For each ¢ € ZJ~!, choose distinct elements
a0 and a."1 in G,, such that

Brn1(a20) = O s (a-1) = .
Further, in the case where e = (0,...,0) € Z3, we insist that a.~¢ = e,; this is compatible

with the previous instruction. This completes the inductive definition. Next, for € € Do,
we define () to be the unique sequence a. in G such that

(@) [n=((en) (neN).
It is clear that ¢ : Dy — G is a well-defined, continuous embedding.

The set L is defined to be the image ¢(Ds) of Dy in G, so that Lg is a compact subset
of G. The measure on Lg that corresponds to Haar measure on Dy is again denoted by
i, so that u(Lg) =1 and p is singular with respect to m. We fix ¢ to be any element of
®,, so that ¢ € ®,.

For each n € N, we define

A, ={a.:e €Z}, &1 =0},
B,={a.:e€Zy, e1 =€, =0},
so that B,, C A, C Lo, and then, for n > 2, choose ¢, € K, \ A,1A,; the latter is

possible because |A,| = 2"~! and |K,| > 22"~V for each n > 2. We note in particular
that ¢, # e,.
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We next define
Ly ={(zn) € G: 2y & Bucn (n>2)}.

Clearly L; is a Borel subset of G.
Further, for each m > 2, we define

Loy ={x=(2,) €G: 2 =cn}.
We observe that, for each (x,) € Lo, and each r € N with r # m, necessarily z, # ¢,;
this holds because 0., () = €, (r <m) and 0,,,(¢;) = em # ¢ (r > m). Thus m is
the unique element n € N such that z, = ¢,, say m = n,.
Finally, we define
Lg:LﬂL%nwneNL

so that Lo is a Borel subset of G. We observe that m(LyNU) > 0 for each neighbourhood
U of 0 in G, and so there is a point ¢ € @,y such that Lz belongs to the ultrafilter 1.
The following lemma is essentially the same as Lemma 8.10.

LEMMA 8.11. We have (d,00,)(Kr,) =1/2.

Proof. Let B be a basic clopen subset of Lq consisting of the elements (z,) € Lo such
that z; = u; (i € Ng) for some k € N and uq,...,u; € Zs, and let C' be the subset of Ly
consisting of the elements (x,,) € Ly with z; = e; (i € Ng).

Fix t = (t,) € C, and let € L. We claim that 2t~ € B if and only if the following
two conditions hold: (1) #; = u; (i € Ny); (2) @ic; ' € A;\ B; (i € N). This is a slight
variation of the earlier argument.

Thus we see that

Lit7'NnB={(b,) € B:b,, & By},

which implies that
1
wIat™'NB) = Su(B) (teC);
again this equation easily extends to arbitrary clopen subsets B of L.
The remainder of the proof is as before. m

We have established the following theorem.

THEOREM 8.12. Let G be T or a sequential pro-finite group. Then there exist i € Mg(G)™
and ¥ € ® such that ooy € G for each p € ®,,. m

An inspection of the above proofs shows that the only property of the measure m that
was used is that m(Ly NU) > 0 for each neighbourhood U of 0 in [0, 1); there are many
singular measures v € M,(G)™ such that v(Ls NU) > 0 for each such neighbourhood U.
Thus we also obtain the following theorem.

THEOREM 8.13. Let G be T or a sequential pro-finite group. Then there exist i € Mg(G)™
and ¥ € @, such that oo & G for each p € ©,,. =

We shall discuss below a version of the above results for more general groups.
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The following table summarizes the inclusions that we have established at least for
the compact groups specified in the above theorems. Let R, S, and T be subsets of é,
with R in the left-hand column and S in the top row. The conclusion ‘C 7" implies that,
for each ¢ € R and ¢ € 5, it follows that poy € G and, further, that ¢ ot € T The
conclusion ‘¢ G implies that there exist ¢ € R and i € S such that ooy & G.

O BGy (0] P,

BGyq || CBGy | CP | C Dy

P co cod| Cco
D, ¢G |¢G| ¢@G

General groups Let C be the class of all non-discrete, locally compact groups G such
that (C~7'7 O) is not a semigroup. Our aim is to show that C is the class of all non-discrete,
locally compact groups. (We recall that it is already known for all non-discrete, locally
compact groups which are not compact that (é , 0) is not a semigroup, but we shall not
use this result.)

We first reduce to the case of non-discrete, locally compact abelian groups. The follow-
ing result may be well known; we are indebted to George Willis for some of the references
in the proof.

THEOREM 8.14. Every non-discrete, locally compact group has a closed subgroup which
is a non-discrete, locally compact abelian subgroup.

Proof. Let G be a non-discrete, locally compact group, and let the component of the
identity of G be Gy.

Suppose first that Go = {eg}, the identity of G. By [48, Theorems (7.3) and (7.7)],
G is totally disconnected and contains an infinite, compact subgroup. By a very deep
theorem of Zelmanov [126], each infinite compact group contains an infinite (and hence
non-discrete), compact abelian subgroup.

Next suppose that G # {eg}. Then Gy has a compact normal subgroup, say K, such
that Go/K is a Lie group [85, §4.6].

If K is infinite, then again K contains an infinite, compact abelian subgroup.

If K is finite, then Gy itself is a Lie group, and so G contains a 1-parameter subgroup
(isomorphic to R or T) [85, §4.2].

Thus in each case G contains a closed subgroup which is a non-discrete, locally com-
pact abelian subgroup. =

We now call in aid a structure theorem for non-discrete, locally compact abelian
groups; the theorem is implied by [42, Theorem 6.8.4], which is called a ‘standard theo-
rem’. For a prime number p, the group A,, is the group of p-adic integers, as is explained
on [42, page 191], and D, = (Z,)* in the notation of [42].
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THEOREM 8.15. Let B be the class of all locally compact abelian groups G such that:
(i) R, T € B;
(ii) Ap, D, € B for all prime numbers p;

(iil) G € B whenever G is a locally compact abelian group such that G contains as a
subgroup a member of B;

(iv) G € B whenever G is a locally compact abelian group such that G has a quotient
that is a member of B.

Then B contains all non-discrete, locally compact abelian groups. m
Thus we can conclude with the following theorem.

THEOREM 8.16. Let G be a non-discrete, locally compact group. Then (CN?, 0) is not a
semigroup.

Proof. By Theorem 8.14 and Proposition 8.6, it suffices to prove that (é, O) is not a
semigroup for each non-discrete, locally compact abelian group G.

Let B be the class of all non-discrete, locally compact abelian groups G such that
(é, O) is not a semigroup. Then we see that the class B satisfies all the clauses of
Theorem 8.15; indeed we have shown in Theorem 8.8 that B satisfies clauses (i) and (ii),
and in Proposition 8.6 that B satisfies clauses (iii) and (iv) of Theorem 8.15. Thus B is
the class of all non-discrete, locally compact abelian groups.

This completes the proof of the theorem. m

A similar extension of Theorem 8.12 can be given.

THEOREM 8.17. Let G be a compact group. Suppose that there is a continuous epi-
morphism from G onto either T or a sequential pro-finite group. Then there exist p € G

and ¢y € ® such thatgpmd)gzé.

Proof. Let H be either T or a sequential pro-finite group. Then, by Theorem 8.12, there
exist elements ¢; € H and 91 € &y such that 10, ¢ H. By Proposition 5.2(ii),
7(G) = H, and 7j(Pg) = Pp, and so there exist elements ¢ € G and 1) € @ such that

1(¢) = 1 and 7(¢)) = 1. Since 77(d, 0 0y) = by, 0y, , we have pot) € G.

In particular, the above theorem applies to each group of the form G x H, where G
is an infinite, compact, totally disconnected group, and to each non-trivial, connected,
solvable group.

Further calculations on products Within the proof of Theorem 8.8, we showed that
there are a measure p € M (T)" and elements ¢ € T such that, for each ¢ € ®,,, the
measure 0, 0 0y € M (T) satisfies (xx, , d,0dy) = 1/2, and hence is not a point mass. We
now gain further information about measures similar to d,, o d,. (We restrict attention to
the group T; similar remarks apply to other groups.)

In the next theorem, p and ¢ are fixed as above; the measure p € M,(T)" was defined

in equation (8.1).
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THEOREM 8.18. For each ¢ € ®,, there is a non-zero, continuous measure M € M, (T)*
such that

1
d,00y = §5¢+M.
In particular, the measure 6,00y is neither continuous nor discrete.

Proof. This proof comes in two parts, which together establish the theorem, and in fact
give slightly more information. The space L was specified in Definition 8.7.

(1) We shall show first that the restriction of d, o dy to the set Ky, is d,/2.
Recall from equation (2.1) that the basic clopen subsets of L have the form
Uro={(en) € L:cn, =a; (i €Ny)}

for fixed F' = {ni,...,n;} and a = (ay,...,a) € Z5, and that each clopen set is a finite
union of pairwise-disjoint, basic, clopen subsets of L.

We first make the following claim. Let U and V' be clopen subsets of L with U C V.
Then there exists rg € N such that

WU AV =37) = () (> o). (8.6)

First suppose that U and V are basic clopen subsets, say U = Ug g and V = Up,q,
where FF C G, a € ZIQFl, CRS Z‘fl, and | F = a, so that it is indeed true that U C V.
Take r > max G, and define v on G U {r} by requiring that v | G = 8 and ~, = 0. Then
UN(V —=37") =Uguiry,y- Thus

1 |Gl]+1 1
WD =57 = iUaun) = (3) = (0, (5.7)
For the general case, take clopen sets U,V C L with U C V. Then there exist a finite sub-
set F' of N and elements o', ..., a™, 8, ...,3" in Z‘QFl such that al,...,a™ are distinct

and A, ..., 3" are distinct and

U= 0 U(F,a') and V = O U(F,3)

i=1 j=1
(and each union is composed of pairwise-disjoint sets). By equation (8.7), there exists
ro € N such that rg > max F' and

) 1
w(Uyi NUgi N (Ugj —-37") = §M(Uai mUﬁj) (r>rgi €Ny, jeN,),

where we are writing U,: for U(F,a'), etc. Now
VAWV =3")=JUsN(Us —37") (r>ro)
j=1

because Ug: N (Ug; —37") = () whenever r > 7 and 4,5 € N,, with 7 # j, and so
1
wUNVN(V-3T)= iu(Uﬁ V) (r>rmro).
Since U NV = U, our first claim (8.6) holds.
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Our second claim is the following. Let B,C € B, with B C C and p(B) > 0. Then,
for each ¢ > 0, there exists . € N such that

W(BN(C—37)) - %M(B) <eu(B) (r>1.). (8.8)

To see that this holds, first take clopen subsets U and V in L such that
WBAU) < %EM(B) and u(CAV) < %s,u(B) .
Set W =UnNV. Then
uw(BAW) <eu(B)
because BAW C (BAU)U (C\V) C (BAU)U (CAV), and so
[W(W) — u(B)| < en(B). (8.9)

It follows from our first claim that there exists r. € N such that

POV AV =37 = 2uW) (> 1), (5.10)
Now fix 7 > r.. As in the proof of Theorem 8.8, we have

15u(B) (r>re). (8.11)

p(C=3T)AV =37") <3

It follows from (8.9) and (8.10) that

2

and then from (8.11) it follows that our second claim, (8.8), holds.

Now suppose that C' € . For each B € ¢ such that B C C and u(B) > 0 and for
each £ > 0, we have seen that there exists . € N such that

1 wBNC-3"T") 1
6‘ -7 — < | = —_ = .
= d3-00) - 5 = MR e wom)

We take limits as a subnet of the point masses d3—~ converge to dy, and then take limits
limp_.,; by (6.5), we have

]u(B AV -3 §u<B>| <lewmy e,

1

(Xiter 8,04) = 5.

Thus (0,06, )(K¢) = 1/2. We already know that (d, 00, )(Kr) =1/2, and so
(0, 004)(Kp\c) =0 (C€y).
Thus the restriction of é, 04, to the set K is d,/2, and so part (1) is proved.

(2) We shall show now that the restriction of d, 0 d, to the set T\ K, = Kp\ is a
continuous measure (it is positive and has mass 1/2).

First, recall that each = € I has a ternary expansion of the form z = >"7 | &, (z)/3",
where ¢, () € Z . For each n € N, set

Cp={zel:e,(z) =2, e.(x) € {0,1} (r e N\ {n})},
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so that each C,, is a closed subset of I with C,, N L = @ and the sets C,, are pairwise
disjoint, and then set
oo
c=JCn,
n=1

so that C € By and CN L = 0.
We first claim that supp (6, 06y) C Kruc. Indeed, suppose that x € T\ (L UC).
Then it is easily checked that « — 37" € T\ L for each r € N, and so
(4 * 05 )(LUC) =0
for each B € B, with pu(B) > 0. Thus
(6,006,)(T\ Krue) = limlim (g * 63-)(LUC) =0,
—p Tr—0o0

giving the claim.
For each A € B, we have

(0p,004)(Ka) = (XK4, 0p00y) im lim pup((ANC,)—37").

=1
B—¢ n—00
Fix k € N, and enumerate the set Z5 as {a!,.. .,azk}. For each 7 € Ny« and each
n € N, define
Ain={2€Cp:emin=0a,, (meNg)},

so that A;, is a closed subset of C,, and {A1 ..., Ak, } is a partition of C,,. Now, for
each i € Nyi, define

oo

A; = U Ain,
n=1

so that each A; € B¢ and {41,..., Ay} is a partition of C. We shall show that
1 .
(3, 00)(Ka) = gy (i € Now); (.12)

from this we see that each singleton in Kr\; has mass at most 1/2% with respect to the
measure d, 0 dy. Since this is true for each £ € N, it will follow that (6, 0dy) | K\f is a
continuous measure, as required.

Fix i € Nyx. We first observe that, for every basic open subset U of L, there exists
ro € N such that

wUN(A;NC)—3"T)) U) (r>ro).

1
= WM(
This statement extends to all clopen subsets U of L because each such set is the union
of a pairwise-disjoint family of basic open sets. Now take ¢ > 0. For each B € B with
1(B) > 0, there is a clopen subset U of L with u(BAU) < eu(B), and then, as before,
WU N ((AiNC)=377) —u(BN(ANC,)—3"))| <en(B)
for each r € N. Thus

(1—2) < pp((A; N C) —377) < 271“(1 te) (r>r).

2k+1
By taking limits in the usual way, we see that (8.12) follows.

This completes the proof. m
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In comparison, we note that, for each ¢ € T and v € T, the measure 0,00y = 0y 0,
is a point mass, and so ¢ ¢ 1 € T; this is a consequence of Proposition 8.4.

COROLLARY 8.19. Let pu be as above. Then §, ¢ 3;2)(M(ﬁ‘)) for each p € ©,,. m
A stronger result than the above will be proved in Theorem 9.8.

EXAMPLE 8.20. We give an example to show that there is a compact group G and
elements ¢, 1,0 € G with ¢ ~ 1, but such that

pob Lo,

this contrasts with Theorem 6.11.

We take G = T. As in Theorem 8.18, there exist ¢ € &, 6§ € "E‘, and L € B
such that (6,0d¢)(Ky) = 1/2. By Proposition 4.13, there exists 1) € T4 such that
¥ ~ . Now 106 € T, and so 0y 0dg is point mass. Thus (6, 06d9)(K ) € {0,1}. Hence
0y 069 # 0,000. m

We shall now show that the product of two point masses in M (T) might be a contin-
uous measure on T.

Let G be a locally compact group. For n € N and M € M(CN}’)7 we write MP™ for
the n'™ power of M in the algebra (M (G),0). For ¢ in the semigroup (G,0), the n
power of ¢ in the semigroup is ¢)=", so that J,/" is the point mass at 1»”". The set
{17 "™ : n € N} of points in G has an accumulation point, say &, and then O¢ is a weak-*
accumulation point of the set {J,/" : n € N} in M(é)[l].

We let L, u, ¢, and 9 have the same meaning as above.

THEOREM 8.21. Let p € My(T)* be as specified. Then there is an element € € T such

that, for each ¢ € ®,,, the measure d, 0 ¢ belongs to M.(T)".

Proof. The element ¢ € T is taken to be any accumulation point of the set {t)=™ : n € N},
which was specified above.

Let ¢ € ®,,. The proof that d, 0 d¢ is a continuous measure on T is similar to that of
Theorem 8.18; it comes in three parts.

(1) We shall show first that the restriction of d, o d¢ to the set K, is 0.
We claim the following. Let B,C € B, with B C C and u(B) > 0. Then, for each
€ > 0, there exists r. € N such that

PBO(C— (37 +37 4 +37))) —

1
D) <eu) 819
whenever 7, > -+- > ry > 11 > r.. This is proved by a slight variation of the proof of the
corresponding claim in Theorem 8.18.

Let B € ¢ with B C L and u(B) > 0, and take € > 0. For each n € N, we have seen
that there exists r. € N such that

1
’(MB * Og—ry * Og—ry * =+ % O3—r )(L) — —

on <e
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whenever 7, > -+- > ro > 11 > r.. We take limits successively over r,,...,r; as subnets
of the point masses d3- converge to d, to see that

1
(pBody)”™) (KL—W>’ <e,

using equation (3.8). We next take limits over a subnet of (¢)°") to see that

(XK., pB0de) = (uode)(KL) <¢.

Finally, we take limits limp_.,, to see that (0, 0d¢)(K) < €. Since this holds for each
e > 0, we have (d,00¢)(Kr) = 0, as required.

(2) There is a Borel subset C' of T such that (d,06dy) | Km\(zucy = 0.

Let F denote the family of non-empty, finite subsets of the set {r, : n € N} that was
specified above. For each F € F, we take mp to be the maximum of F in N, we set

mF:Z{?)_":rEF}ET,
and we define
Crp={zeT:e(x)=2 ifandonlyif re F} CT,
so that Cp is a closed subset of T and the sets C'r are pairwise disjoint. Now set
X={zp:FeF} and C:U{C’F:Fef}.
Since F is countable, C' € Brt. Further, for each t € T and x € X such that t —x € L,

we see easily that e.(t — z) = ,(t) for each r € N\ F, and so t € LU C. Tt follows that,
for each B € By with u(B) > 0 and each x € X, we have

(1 * 62)(T\ (LUC)) = 0.
Thus (6, 06¢) | K1\ (Luc) = 0, establishing (2).
(3) The restriction of d, 0y to K¢ is continuous.

We fix k € N. Let B be a non-empty, clopen subset of L. Then there exists m > 2
such that B is specified by the first m coordinates in the ternary expansion of a point of

T.
Let o € ZE. For each F € F, define
Asr={t € Cr:emptm(t) = am (m e Ng)},
so that A, r is a closed subset of Cr and {Ayp : o € Z’g} is a partition of Cp. Next
define
Ao = J{Aar: F € F},
so that each A, € B1 and {A, : a € Z&} is a partition of C into 3 subsets.

Now suppose that G € F and that G is such that minG > r,, > m. Let F' € F. For
each t € Cp, the point t—x ¢ can only be in L if F C G. This shows that LN(Cr—2z¢g) =
whenever ' € F with F ¢ G. Now suppose that F' C G, so that

rp > min F > minG > r,,

where n € N is such that mp = r,,. Thus n > m. The set

(77 437 BT = > K
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belongs to 12", and so we may suppose that 7,1 — r, > k. This implies that

Gni{rn+1,r,+2,...,7n+k} =0, (8.14)
and so, for each o € Z, we have

LN((AaNCp) —zg) C Aa,r-
In addition, for each t € Cr, the element t—x¢ is in L only if we have e,.(t) =1 (r € G\F),
and then e, (t—zg) =1 (r€ F)and e, (t —zg) =0 (r € G\ F). It follows that, for each
t € Ao N CFp, the element ¢t — z¢ is in L only if €,(¢) takes specified values on G and on
the set {r, + 1,7, +2,...,7, + k}; now (8.14) implies that
(BN ((Ax NCr) —zg) < 27%271914(B).
Since the number of subsets F of G is 2/€! it follows that
W(B O (Ag — 56)) = p(B 1 ((Aa N C) — 26) <27 u(B).

We have shown that, for each k£ € N, for each non-empty, clopen set B € B, for each
r € X, and each a € Z%, we have (up x 0,)(As) < 2%. As in the proof of Theorem 8.18,
we now see that, for each k € N, for each B € Bt with u(B) > 0, each € > 0, and each
a € 7%, there exists m € N such that

(g * 62)(A) <27F 4 ¢

whenever z = zg for some G € F for which minG > m. As in part (1), we can take
limits as © — £ through a suitable net, and then take the limit limp_., to see that, for
each A of the from A,, we have

(6,00¢)(Ka) <27% 46

for each k € N and each ¢ > 0. Since {4, : a € Z&} is a partition of C, it follows that
each point in C' has measure at most 2% +¢. This is true for each k € N and € > 0, and
so each point in C' has measure 0. Thus (d, 0d¢) | K¢ is a continuous measure.

It follows from (1), (2), and (3) that d, 0 ¢ is a continuous measure on T. m

We now obtain information about groups other than T. The same proof implies that
any locally compact group G which contains a copy of T as a subgroup or which can be
mapped onto T by a continuous, open epimorphism has the property that G contains two
point masses whose box product is a continuous measure on G.

The arguments given above also apply to the groups R, A,, and D,, for each prime p;
with the aid of the details given in Proposition 8.6, we can prove the following theorem
by essentially the arguments used to establish Theorem 8.16.

THEOREM 8.22. Let G be a non-discrete, locally compact group. Then there exist p,£ € G
such that 6,0 d¢ is a continuous measure on G. =

We do not know whether or not the product of two point masses can be a finite sum
of point masses, without being a point mass.

We conclude this chapter with a weaker result than Theorem 8.16; however in this
case the proof is considerably shorter.
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It may be that there is a topology 7 on G such that 7¢ < 7 < d, such that 7 # 7¢ and
T # d, where d is the discrete topology, and such that (G, 7) is a locally compact group.
In this case, we denote the character space of the commutative C*-algebra L>°(G, 1) by
(7). Such a phenomenon does not happen when G = T, for example; see [97]. However,
in the case where G = G; X G2, where G; and G2 are compact, infinite groups, the
topology formed by taking the product of the given topology on G; and the discrete
topology on G has the specified properties. This question is related to that of the ‘spine’
of the algebra M(G); see [54, 55].

PROPOSITION 8.23. Let (G, 7g) be a locally compact group, and suppose that T is a top-
ology on G such that 7 D 7q and (G, 7) is a locally compact group. Then:

(i) LY (G, T) embeds isometrically in M(G) as a closed subalgebra;

(ii) there is a continuous Co(G)-module epimorphism

P:M(G)— LYG, 1)

which is the identity on L*(G,T);

(iii) the map P" : (M(G), O) — (M (7)), O) is a continuous E"-module epimor-
phism which is the identity on M (2(T)).
Proof. (i) This is immediate from Proposition 3.19.

(ii) Let m, denote left Haar measure on (G,7). We denote by C the family of 7-
compact subsets K of G such that m,(K) > 0. For K € C, set

Vie ={n e M(G) : |u| (K) = 0} .
Next, set
M, = (Vi : K €C}.

Let K € C and t € G. Then the set Kt~! is T-compact and
m,(Kt™) = m, (K)A(t™) >0,

where A is the modular function on G, and so Kt~* € C. Similarly, t 1K € C.

We claim that Me ; is a closed ideal in M (G). Indeed, take p € M¢ - and v € M(G);
we shall show that p x v,v x € Mc . Clearly we may suppose that y,v > 0. Then, for
each K € C, we have

(= () = [ plKE ) dv() =0
G
because u(Kt~') =0, and so u * v € M ,. Similarly, v * p € Mc ;.

Let u € M(G). By the Lebesgue decomposition theorem, there exist u, € L*(G,T)
and ps € M(G) with ps L m, such that p = p, + ps. Clearly ps € Me -, and so we have
M(G) = LYG,7) x Mc,.; this implies that (ii) holds.

(iii) This follows from (ii) and Proposition 1.4(iii). m

The following result is a special case of Theorem 8.16.
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THEOREM 8.24. Let (G,7q) be a locally compact group, and suppose that T is a non-
discrete topology on G such that 7 2 7¢ and (G,7) is a locally compact group. Then
(G, O) is not a semigroup.

Proof. The topological space (G,7) is neither compact nor discrete, and so, by [81],
(®(7), O) is not a semigroup. It follows from Proposition 8.23 that (G, O) is not a
semigroup. m

COROLLARY 8.25. Let G1 and G2 be infinite, compact groups, and set G = G1 X Gs.
Then (G, O) is not a semigroup. m
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9. Topological centres

In this chapter we shall seek to determine the topological centres of the Banach algebras
(LY(G)", 0) and (M(G)"”, O), and also which subsets of the spaces L*(G)" and M (G)"
are determining for the left topological centres, where G is a locally compact group.

The character space of L>*°(G) Let G be a locally compact group, and again set
A = L'(G). We have denoted by ® the character space of L>°(G). It was first proved by
Young in [124] that A is not Arens regular, the case where G is abelian having been settled
by Civin and Yood in [10]; see also [115, 116] and [13, Theorems 2.9.39, 3.3.28]. It was
proved by Isik, Pym, and Ulger in [56] that, in the case where G is compact, (®, O) is a
semigroup and that A is strongly Arens irregular. It also follows from [56, Theorem 3.4]
that each element of the semigroup (®, O) is right cancellable. The main result was
eventually established when Lau and Losert proved in [73] that A is strongly Arens
irregular for each locally compact group G. Finally Neufang [86] gave a shorter proof of
a stronger (see below) version of the result.

We shall now prove that certain subsets of A” are determining for the left topological
centre of A”; after giving the statement of our result in Corollary 9.5, we shall compare
our result with earlier theorems.

We shall use the following proposition.

The character space @ of the C*-algebra Z = LUC(G) was described in Chapter 5;
as before, we regard G as a subset of ®;. Recall that we have a continuous surjection
qc :  — ®y. For a subset T of G, we temporarily denote by T* the growth of T in ® 4,
so that T* =T\ G C ®5.

PROPOSITION 9.1. Let G be a locally compact, non-compact group, and set Z = LUC(QG).
Take U € N,. Then there exist an infinite cardinal k, a sequence (to : @ < k) in G such
that the family

{Uty : a < K}
of subsets of G is pairwise disjoint, and elements a,b € T* (where T = {t, : @ < k}) with
the following property: each M € M(®z) such that Ly |T : T — M(®yz) is continuous at
both a and b belongs to M (G).

Proof. This is a result that is shown within the proof of [18, Theorem 12.22] (but is not
stated explicitly there). m

We fix the objects constructed in the above proposition.
Since the family {Ut, : a < k} is pairwise disjoint, we can identify T with 3T. For
each a < K, choose ¢, € ® such that ¢g(¢a) = T(Ya) = ta, and define
pita— o, T—.
Then p has a continuous extension p : T — ®; we set K = p(T) C ®. Clearly, (¢q|K)op
is the identity map on T. Now we choose elements ¢,, ¢, € K such that ¢g(¢,) = a and
qc(pp) = b.

PROPOSITION 9.2. Let G be a locally compact, non-compact group, and let M € M (®P) be
such that Ly : ® — M(®) is continuous at the two points ¢, and vp. Then m(M) € M(G).
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Proof. Let (s;) be a net in T such that s; — a in ®z. Then we have p(s;) — ¢, in
®, and so Mop(s;) = Moy, in M(®) because the map Ly is continuous at a. Hence
m(M)os; — m(M)oa in ®z. This shows that Ly is continuous at a. Similarly, L
is continuous at b. It follows from Proposition 9.1 that 7(M) € M(G). u

PROPOSITION 9.3. Let G be a locally compact group. Let v € M(G) be such that
A-veC(G)
for each A € L®(G). Then v € L*(G).
Proof. This is a slight modification of [49, Theorem (35.13)], which gives the result in
the case where G is compact. =
We continue to set A = L1(G), A” = M(®), and Z = LUC(Q).
THEOREM 9.4. Let G be a locally compact group. Let M € M(®) be such that
Mod, =Mod, (p€ Pra),
and, in the case where G is not compact, Mod, = Mo d, for ¢ € {@a,pp}. Then
M e LY(G).

Proof. In the case where G is not compact, we have 7(M) € M(G) by Proposition 9.2.
In the case where G is compact, we have Z = C(G), and 7(M) € Z' = M(G).
Take A € A’ = L*°(G). For each g € A, we have

(M) - A,g) = (A g x (M) = (A - g, 7(M)) = (A - g, M)
because A - g € Z. However (A - g, M) = (M - A, g) by definition, and so 7(M) - A =M - A
in A’.
Let ¢ € ®¢.y. Since J, is a mixed identity for M (®), we have Mo d, =, o M = M.
Since Mo d, = Mo d,, we have M o d, = M. Thus, for each A\ € A’, we have
(A - (M), 6p) = (X - M, ) = (X, Mody,) = (A, M).

This shows that the function A - 7(M) is constant on the fibre ®.}. By Proposition 3.6,
A - (M) is continuous at e. Similarly, A - 7(M) is continuous at each point of G. By
Proposition 9.3, 7(M) € L*(G), say 7(M) = f € L*(G). It follows that M - A = f - ),
and so

(A M) = (N, 8,0M) = (M - X, 0,) = (f - A, dp) = (A, f).
This holds for each A € A, and so M = f € L}(G). =

COROLLARY 9.5. (i) Let G be a compact group. Then ®y.y is determining for the left
topological centre of L*(G)".

(ii) Let G be a locally compact, non-compact group. Then there exist pq,p € ® such
that
ey U{@a; oo}

is determining for the left topological centre of L*(G)". m
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We now compare our result to some earlier theorems.

First suppose that G is compact. Then the proof in [56] that, in this case, L}(G) is
strongly Arens irregular actually shows that the family of right identities in (M (®),0)
is determining for the left topological centre of L'(G)”. In fact, by Corollary 6.3, the
element J, is a right identity in the algebra (M(®),0) for each ¢ € @), and so our
result is slightly stronger.

Second, suppose that G is a locally compact, non-compact group. Then a set which is
determining for the left topological centre of L!(G)” is specified in [86, Theorem 1.1]: one
can choose any subset S of ® such that ¢g(S) = ®z. Such a set S is neither smaller nor
larger than our set ®.y U {@a, ¢p}. A further paper of Filali and Salmi [31] establishes
in an attractive way that L!(G) is strongly Arens irregular, and unifies this result with
several related results.

After the above was written, we received (in May, 2009) the very impressive paper [7]
of Budak, Isik, and Pym that proves a much stronger result in the non-compact case in
their Theorem 1.2(iii), namely that, for a locally compact, non-compact group G, there
are just two points @,, ¢p € ® with the property that {¢qa, ¢} is determining for the left
topological centre of (L'(G)”, O). This result does not apply to compact groups, such
as T.

Let G be a compact group (such as T). Could it be that a smaller set than @} is
sufficient to determine the topological centre of L!(G)? In fact, at least in the case where
G has a basis of ¢ open sets, there are at most ¢ clopen subsets of the fibre .. Choose
a point in the fibre for each such set, thus obtaining a dense subset of the fibre. The
continuity argument in Proposition 3.6 still works by using just these points, so we only
need ¢ points in the fibre for the above result, whereas the fibre has cardinality at least
2¢. The main question is: Is there always a finite or countable set S of points in Py
such that S is determining for the left topological centre of L'(G)? We are not able to
decide this.

The topological centre of the measure algebra We now turn to the topological
centre question for M(G).

The question whether or not M(G) is strongly Arens irregular was raised by Lau
in [72, Problem 11, page 89] and Ghahramani and Lau in [34, Problem 1, page 184].
The question was solved in the case where (G is non-compact and with non-measurable
cardinal by Neufang in [87, Theorem 3.5]. In fact the following theorem is proved (but
not explicitly stated in our form) in [87, Theorem 3.5].
THEOREM 9.6. (Neufang) Let G be a locally compact, non-compact group with non-
measurable cardinal. Suppose that M € M(C~7') is such that Mod, = M ¢ d, for each
¢ € BGq. Then M € M(G). In particular, M(G) is strongly Arens irreqular. m

Thus we can concentrate on the case where G is a compact group; our investigations
have focused to no avail on the special case in which G is the unit circle T. We shall
obtain a partial result.

We shall require the following preliminary result.
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PROPOSITION 9.7. Let G be a compact, infinite, metrizable group. Then there exist an
element € M(G)T and four sets Ay, Az, Az, Ay in A, with u(ANN) > 0 for each
N e N, and A € {Ay, Ay, A3, Ay}, such that

({Ea, \ Koa, 15 =1,2,3,4} D Gy \ {e}, (9.1)
and such that
KAIQKASZKAZﬂKA4={e}. (9.2)

Proof. Choose u € M.(G)* with the property that u(N) > 0 for each N € N, (for
example, Haar measure m has this property).
The metric on G is denoted by d; for each » € RT, we set

S,={seG:d(s,e)=r} and B,={seG:d(s,e)<r},
so that S, and B, are the sphere and open ball, respectively, in G of radius r around e.

Since {r € RT : u(S,) > 0} is a countable set, there is a sequence (r,) in RT with
rn N\, 0 such that p(S,,) =0 and pu(B,, . ) < u(B,,) for each n € N. We note that

U{ST% :neN}N LJ{SWTH1 :n €N} ={e}. (9.3)

For n € N, set U, = B, \ B,,.,, so that each U, belongs to 2, and p(U,) > 0, and
then set

A=ty €2} (= 1.2.3.9).

so that each A; belongs to 2, and is such that p(A; NN) > 0 for each N € N.. It follows
from (9.3) that ({0A4; : j =1,2,3,4} = {e}, and so we have

U @hoa)=Ju\ [ 04;=B.\{e},

j=1,2,3,4 neN j=1,2,3,4

which gives (9.1). Clearly A; N Az = Ay N Ay = {e}, and this gives (9.2). m

THEOREM 9.8. Let G be a compact, infinite, metrizable group. Then there exist four
points 1,0, W3,y € é{e} with the property that the only measures M € M(é{e})Jr
such that

Muody, =Mody, (j=1,2,3,4) (9.4)

have the form M = (4§, for some ¢ € C.

Proof. We shall actually suppose further that M ¢ M(é{e})Jr is such that M({e}) =0,
and shall show that M = 0; this is sufficient for the result.

Let p € M(G)™, and take the four sets Ay, As, As, A4 to be as specified in Proposition
9.7. For j = 1,2,3,4, we have u(A; N N) > 0 for each N € N, and so there exists
¥j € Grey NP, such that A; € v;.

By equation (9.1), it suffices to prove that we have M(K 4 \ Kpa) = 0 for each set
A€ {Ay, Ag, Az, Ay}; we fix such a set A, and replace the measure M by the restriction
M| (Ka \ Kga)- By (9.2), there exists B € {A1, Aa, A3, Ay} with K4 N Kp = (); the
element of {11, , 13,14} corresponding to B is 1.

To obtain a contradiction, we may suppose that we have M(K 4) # 0, and hence that
(M, 1) > 0; by replacing M by M/(M, 1), we may suppose that (M, 1) = 1. It follows
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from equation (6.11) in Theorem 6.9 that

(XKa, Mo 5TZJ> = (XK, M) = M(K4).
Since ¢ € CNY'{E} \ K4 and (M, 1) = 1, it follows from equation (6.12) that

<XKA? M06¢> = <XKA? 5¢>a

and so (Xx,, Mo dy) =0 because ¢ & K 4.
Since M o dy, = Moy, we have M(K4) =0. =

We note that, in the special case where the group G is totally disconnected, two points
11,19 suffice for the above argument to apply.

We now consider the case where G' might not be metrizable.

THEOREM 9.9. Let G be a compact, infinite group. Then the only measure M € M(é{e})Jr
such that Mo dy = Mo 6y for each i) € é{e} has the form M = (6. for some ¢ € C.

Proof. For each U € N, there is a closed, normal subgroup N of G such that N C U and
H := G/N is a compact, infinite, metrizable group [48, Theorem (8.7)]. The quotient map
is n: G — H, and there is an induced continuous homomorphism 7 : M(G) — M(H).
We have 7(M) o dy, = (M) o4y, for each ¢ € I;T{e}, and so, by Theorem 9.8, 7(M) € Cé,,, .
It follows that supp M C U.

However this holds for each U € N,, and so supp M = {eg}, as required. =

Clearly the above results are unsatisfactory, in that they leave open the question that
motivated our work.

In fact, the question of the strong Arens irregularity of M (G) has been resolved by
V. Losert, M. Neufang, J. Pachl, and J. Steprans with their exciting proof [82] of the
following result.

THEOREM 9.10. Let G be a locally compact group. Then M(G) is strongly Arens irregu-
lar. m
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10. Open problems

We list here some problems that we believe are open.

1.

Let X be a compact space such that C'(X) is isometrically isomorphic to the sec-
ond dual space of a Banach space. Is it necessarily true that there is a locally
compact space 2 such that X = Q? Which hyper-Stonean spaces X are such that
C(X) = F” for some Banach space F'? For some partial results, see Proposition
4.27 and Theorem 4.29.

Let A be a commutative Lau algebra such that A’ is a commutative von Neumann
algebra. We have
X4 CAP(A) C WAP(A) C A'.

When are AP(A) and WAP(A) C*-subalgebras of A’? When does X4 = AP(A)?
In particular, let G be a locally compact group, so that

X¢ C AP(G) C AP(M(G)) € WAP(M(G)) ¢ M(G) = C(G).
Now AP(M(QG)) and WAP(M(G)) are C*-subalgebras of the space M(G) [21].
When is it true that AP(G) = AP(M(G))? Does this imply that G is discrete? It
is shown in [103] that the method of Daws in [21] does not extend directly to all
such cases.
Let G be a locally compact group. Do WAP(M(G)) or AP(M(G)) always have a
topological invariant mean. If so, is it unique?

. Suppose that G and H are locally compact groups and that (WAP(M(G))’,0) and

(WAP(M(H))',0) are isometrically isomorphic. Are G and H then isomorphic?
Let G be a locally compact group. Can we find two points ¢ and 9 in G such that

d, 00y is not a point mass, but such that it is a finite sum of point masses in M (G)?

Let G be a compact group. We have shown in Corollary 9.5(i) that @,y is deter-
mining for the left topological centre of (L'(G)”, O). Is there a finite or countable
subset V' of ®;.) such that V is so determining?

Let G be a compact group. Is G determining for the left topological centre of
M(G)"? If so, is there a ‘small’ subset of G that is so determining?

Let G be a locally compact, non-compact group. Is there a ‘small’ subset of G that
is determining for the left topological centre of M(G)"?
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