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In the natural world, the properties of interacting oscillatory systems are not constant, but evolve or fluctu-
ating continuously in time. Thus, the basic frequencies of the interacting oscillators are time varying, which
makes the system analysis complex. For studying their interactions we propose a complementary approach
combining wavelet bispectral analysis and information theory. We show how these methods uncover the
interacting properties and reveal the nature, strength, and direction of coupling. Wavelet bispectral analysis is
generalized as a technique for detecting instantaneous phase-time dependence for the case of two or more
coupled nonlinear oscillators whereas the information theory approach can uncover the directionality of cou-
pling and extract driver-response relationships in complex systems. We generate bivariate time-series numeri-
cally to mimic typical situations that occur in real measured data, apply both methods to the same time-series
and discuss the results. The approach is applicable quite generally to any system of coupled nonlinear
oscillators.
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I. INTRODUCTION

The study of coupled oscillatory systems has become a
very active area of research, either through mathematical
modeling or novel experimental applications in fields such as
physics, chemistry, biology, or economics. Applications in-
clude modeling of networks of coupled oscillators �1,2�, en-
gineering structures such as bridges �3�, the flashing of male
fireflies �4�, the mammalian cardio-respiratory system �5,6�,
neurophysiology �7�, physics of plasmas �8�, fluid dynamics
�9�, laser arrays �10�, and chaos �11�. To understand their
nature fully, we need to identify and characterize the coupled
dynamics. Difficulties arise when extracting this information
from measurements of oscillator coordinates. Mostly, this
problem has been tackled by applying methods of nonlinear
dynamics using techniques originally developed for multi-
variate data analysis. For cases where we can measure the
coordinates of each of a pair of interacting oscillators �bivari-
ate data�, we can obtain information on the phase relation-
ships by using recently developed methods of synchroniza-
tion analysis between periodic, chaotic and/or noisy systems.
From this we can detect interactions �12�, and determine the
strength, direction �13–16�, and nature �17� of the oscilla-
tions.

In natural systems, the properties of interacting oscillatory
systems are not constant, but evolve or fluctuate in time.
Mutual interaction among subsystems, their frequencies and
amplitudes, are all time varying. Frequency and phase cou-
plings can occur temporarily, and the strength of coupling
between a pair of individual oscillators may change with
time. The assumption of stationarity for systems under study
can no longer be presumed, making the system analysis com-
plex. In recent years an enormous amount of effort has been
devoted to the development and for diagnostic applications
of time-series analysis to study the dynamics of the human

cardiovascular system �6� and brain �18,19� and to such pos-
sibilities for diagnostic applications. Studies have included
the strength and nature of interactions among its subsystems
�20�, and the direction of coupling �18�. The systems under
study can be regarded as collections of interacting oscillators
whose basic frequencies are not constant, but rather time
varying. This makes it difficult to extract their interactions.
In this work we combine wavelet bispectral analysis with the
information theoretic approach to tackle the problem.

In our earlier work �17,21� we extended bispectral analy-
sis to wavelets incorporating instantaneous frequency
�phase� couplings among interacting nonlinear oscillators.
The advantage of this method is that it allows an arbitrarily
large number of interacting oscillatory processes to be stud-
ied. It can be applied to both univariate data �a single signal
from the coupled system�, and to multivariate data �a sepa-
rate signal from each oscillator�.

When studying interacting systems it is not only impor-
tant to detect interactions and synchronized states, but also to
identify causal driver-response relationships between the sys-
tems studied. Among several approaches proposed for this
task, that based on information theoretic functionals has en-
joyed an important position in detecting relationships be-
tween complex systems. This is partly due to the nonpara-
metric nature of the functionals, which makes them widely
applicable �22,23�.

In this paper, we combine the two complementary meth-
ods, wavelet bispectrum analysis and information theoretic
approach and tackle the problem of extraction coupling prop-
erties when the interacting oscillators have basic frequencies
which are significantly time-varying. With numerically gen-
erated time series we mimic typical situations that occur in
real measured data �time-varying basic frequencies of the
interacting oscillators, time-varying coupling strength, and
intermittent interactions� and show the results for bivariate
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data with one of the oscillators driving the other one. Appli-
cation to more challenging problems posed e.g., by the car-
diovascular system itself, or by brain waves, will be de-
scribed elsewhere.

In Sec. II, we summarize the complementary methods of
wavelet bispectral analysis and the information theoretic ap-
proach. In Sec. III, we apply the methods to a model of
coupled-oscillator systems. Finally, in Sec. IV, we discuss the
results obtained and draw conclusions.

II. METHODS

Details of time-bispectral analysis and wavelet-bispectral
analysis can be found elsewhere �17,21�, while here we sum-
marize the salient properties of the two approaches.

A. Wavelet bispectrum

Bispectral analysis belongs to a group of techniques based
on high-order statistics �HOS� that may be used to analyze
non-Gaussian signals, to obtain phase information, to sup-
press Gaussian noise of unknown spectral form, and to detect
and characterize signal nonlinearities.

The bispectrum involves third-order statistics. Spectral es-
timation is based on the conventional Fourier type direct
approach through computation of the third-order moments.
For the case of zero-mean signals, third-order moments are
equivalent to third-order cumulants �24�.

The classical bispectrum estimate is obtained as an aver-
age of the estimated third-order moments �cumulants�
M̂3

i �k , l�,

B̂�k,l� =
1

K
�
i=1

K

M̂3
i �k,l� , �1�

where the third-order moment M̂3
i �k , l�, is estimated by tak-

ing a triple product of discrete Fourier transforms at discrete
frequencies k, l, and k+ l,

M̂3
i �k,l� = Xi�k�Xi�l�Xi

��k + l� , �2�

with i=1, . . . ,K segments into which the signal is divided.
The bispectrum B �k , l� is a complex quantity, defined by a
magnitude A= �B�k , l�� and phase �= �B�k , l�. Consequently,
for each �k , l�, its value can be represented as a point in a
complex space, R�B�k , l�� versus I�B�k , l��, thus defining a
vector. Its magnitude �length� is known as the biamplitude.
The phase, which for the bispectrum is called the biphase, is
determined by the angle between the vector and the positive
real axis.

The generalization of the bispectrum based on the Fourier
transform to wavelets can be seen as a generalization of Fou-
rier analysis �25� by adding time resolution, in a more fun-
damental way than is permitted by the short-time Fourier
transform �26�.

Within wavelet transform, the window length is adjusted
to the frequency currently being analyzed. It is a scale-
independent method. The window function is called the
mother wavelet or basic wavelet ��u�. It can be any function
��u� that satisfies the wavelet admissibility condition �25�.

This function introduces a scale s �its width� into the analy-
ses. Commitment to any particular scale is avoided by using
all possible scalings of ��u�. The mother wavelet is also
translated along the signal to achieve time localization. Thus,
a family of generally nonorthogonal basis functions is ob-
tained

��s,t� = �s�−p��u − t

s
� . �3�

The parameter p is the normalization choice and is an
arbitrary non-negative number. As a result of earlier energy
density studies of measured cardiovascular signals, the wave-
let transform with the Morlet mother wavelet was chosen as
being the most suitable �27�. A simplified expression for the
Morlet wavelet in the time domain is

��u� = �−1/4e−j2�f0ue−u2/2. �4�

The corresponding wavelet family consists of Gaussians,
centered at a time t with standard deviation s /	2. In the
frequency domain, we have Gaussians with a central fre-
quency f = f0 /s and a standard deviation of 1

2	2�s
.

The frequency resolution changes with frequency; at low
frequencies �large scales�, the resolution is better than at the
high frequencies �small scales�. Correspondingly, the time
resolution is better at high frequency than it is for low-
frequency components. Thus, for our purpose, the best time-
frequency localization within the limits of the uncertainty
principle can be achieved.

The definitions are completely analogous to the defini-
tions used in bispectral analysis based on Fourier transform
�24,28�. The wavelet bispectrum �WB� BW is given by

BW�s1,s2� = 

T

Wg�s1,��Wg�s2,��Wg
��s,��d� , �5�

where Wg�s , t� is the continuous wavelet transform of a sig-
nal g�t� defined as

Wg�s,t� = 

−�

�

��� � − t

s
�g���d� , �6�

and

1

s1
+

1

s2
=

1

s
. �7�

The WB measures the amount of phase coupling in the
interval T that occurs between wavelet components of scale
lengths s1 and s2 and s of signal g�t�, in such a way that the
frequency sum rule is satisfied Eq. �7�. It is a complex quan-
tity, defined by magnitude A and phase �

BW�s1,s2� = �BW�s1,s2��ej�BW�s1,s2� = Aej�. �8�

The instantaneous biphase is then calculated from Eqs. �5�
and �8�, it is

��s1,s2,t� = �s1
�t� + �s2

�t� − �s�t� . �9�

If two scale components s1 and s2 are scale and phase
coupled, 1 /s=1 /s1+1 /s2, it holds that the biphase is 0 �2��
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radians. For our purposes, the phase coupling is less strict
because dependent scale components can be phase-delayed.
We consider phase coupling to exist if the biphase is constant
�but not necessarily=0 radians� for at least several periods of
the highest scale component.

Simultaneously, we observe the instantaneous biamplitude
from which it is possible to infer the relative strength of the
interaction

A�s1,s2,t� = �BW�s1,s2,t�� . �10�

Similarly, as in the case of the Fourier cross bispectrum,
one can define a wavelet cross bispectrum as

BWcfgg�s1,s2� = 

T

Wf�s1,��Wg�s2,��Wg
��s,��d� . �11�

For ease of interpretation, the WB is plotted in the �f1 , f2�
plane, rather than in the �s1 ,s2� plane. It has the same sym-
metries in the frequency domain as in the case of Fourier
based bispectrum. The nonredundant region is the principal
domain of the WB. Similarly, the principal domain can be
divided into two triangular regions in which the WB has
different properties, the inner triangle �IT� and the outer one.
The IT of our interest is defined in �24�.

The WB is sensitive to time variability of the frequency
components. First, we obtain instantaneous frequencies f1�t�
and f2�t� forming the bifrequency being studied. Definition
of the instantaneous frequencies can be found in �15,21�.
Furthermore we calculate the instantaneous biphase and in-
stantaneous biamplitude for the instantaneous bifrequency
�f1�t� , f2�t��. In this way we can obtain better results for the
biphase and biamplitude time dependance. In what follows
we use the abbreviated expressions biphase and biamplitude
instead of instantaneous biphase and biamplitude, respec-
tively.

B. Information theoretic approach

For nonlinear systems, methods based on information
theory have been shown to be widely applicable, especially
when the estimators of the relevant information theoretic
functionals are nonparametric and thus applicable to any
probability distribution functions �PDFs� usually under some
mild technical assumptions. Details of the information theo-
retic approach can be found elsewhere �14,22,23,31�, while
here we summarize its salient properties.

Most methods available for the inference of the direction-
ality of coupling detection are based on the Granger causality
concept �29�. If the time-series generated by one process
provides us with information on the time-series generated by
another process at some point in the future, the first process
influences the second process. If only two processes are in-
volved, and coupling is detected exclusively in one direction,
it is inferred that the first process has causally influenced the
second process.

Let us consider discrete random variables X and Y with
sets of values � and � respectively, PDFs p�x�, p�y�, and the
joint PDF p�x ,y�. The Shannon entropy H�X� is defined as

H�X� = − �
x��

p�x�log p�x� . �12�

The joint entropy H�X ,Y� of X and Y is

H�X,Y� = − �
x��

�
y��

p�x,y�log p�x,y� �13�

for discrete sets � and �. The conditional entropy H�Y �X� of
Y given X is

H�Y�X� = − �
x��

�
y��

p�x,y�log p�y�x� . �14�

The average amount of common information contained in
the variables X and Y is quantified by the mutual information
I�X ;Y� defined as �14,30�

I�X;Y� = H�X� + H�Y� − H�X,Y� . �15�

The conditional mutual information �CMI� I�X ;Y �Z� of the
variables X, Y, if the variable Z is given, is

I�X;Y�Z� = H�X�Z� + H�Y�Z� − H�X,Y�Z� . �16�

It characterizes the net dependence between X and Y without
the possible influence of another variable Z.

Entropy and mutual information are measured in bits if
the base of the logarithms in their definitions is 2. In this
work the natural logarithm is used and therefore the esti-
mates are given in nats.

Let X and Y denote two stationary ergodic processes with
time-series x�t� and y�t�. The method presented for detecting
coupling directionality uses CMI as an indicator of the pres-
ence of a net information flow between the two systems,
characterized by their respective time series �22�. The net
information flow, I�X ;	�Y �Y�, where 	�Y is an observable
derived from the state of the process Y � steps in the future,
is defined as the mutual information between X, Y, and 	�Y
that is not a result of the action of the history of process Y on
itself excluding I�Y ;	�Y�, and is also not the result of the
common history of the two processes captured by I�X ;Y�. A
statistically significant information flow thus indicates that
information is being transferred from the process X to the
process Y at some later point in time. This can readily be
interpreted as the influence of the process X on the process Y
in the future.

The directionally detection criterion is based on two indi-
ces IXY �how the system X drives the system Y�, and IYX, e.g.,
I�x�t� ;	�y�t� �y�t�� and I�y�t� ;	�x�t� �x�t�� where the notation
I�x�t� ;	�y�t� �y�t�� denotes mutual information between x�t�
and 	�y�t� conditioned on y�t�. The operator 	� represents
either the difference 	�x�t�=x�t+��−x�t�, or simply a time-
advanced series 	�x�t�=x�t+��. The series x�t� and y�t� can
contain the values generated by the respective systems or
values, which have been derived from the original time-
series.

In practical evaluation we do not use CMI for a particular
time lag �, but an average over a range of time lags. In this
way we decrease the variance of the estimate �31� which is
important when assessing the statistical significance of the
estimated CMI values �see below�.
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It has been shown �14� that, using CMI, the coupling di-
rectionality can be inferred from time-series measured from
coupled, but not yet fully synchronized, systems. In the spe-
cial case when the systems generating the time-series x�t�
and y�t� can be modeled by weakly coupled oscillators, then
their interactions can be inferred by analysis of the dynamics
of their instantaneous phases �1�t� and �2�t� �15,16�. We can
simply replace the series x�t� and y�t� with the phases �1�t�
and �2�t� �which are confined within the interval �0,2�� or
�−� ,���, and then consider either the time-advanced phase

	��1,2 = �1,2�t + �� , �17�

or the phase increments

	��1,2 = �1,2�t + �� − �1,2�t� , �18�

and write CMI �31� as I��1�t� ;	��2 ��2�t�� and
I��2�t� ;	��1 ��1�t��.

The phases �1, and �2 can be estimated from the mea-
sured time-series x�t� and y�t�, respectively, by the marked
events method, by application of the discrete Hilbert trans-
form �12�, or by the wavelet transform �27,32�. The Hilbert
transform is used here in applications of the conditional mu-
tual information. Then the statistical significance of the CMI
can be tested using so-called permutation surrogate data �31�.
Using the Hilbert phases of the original data, whole cycles in
the phase representation �i.e., the phase 0–2� “teeth”� are
randomly permuted in the temporal order. The original intra-
cycle dynamics is preserved, but the intercycle dependence,
or dynamics is destroyed. Consequently, possible causal re-
lationships between the original phase series are destroyed in
the surrogate phases. Computing CMI from a set of 30 real-
izations of the permutations surrogate data we obtain a range
of CMI values that can be obtained from particular data with
the same sample distribution of cycles without any depen-
dence. A deviation of the CMI, obtained from our test data,
from the surrogate range means that the CMI values reflect a
causal relationship in the data and not just a numerical and/or
statistical fluctuation �31�.

III. NUMERICAL EXAMPLES

We have generated time-series numerically to mimic typi-
cal situations that occur in real measured data, e.g., cardio-
vascular signals. Namely, the characteristic frequencies of
heart beat or respiration fluctuate in time even in relaxed
healthy subjects. One of the mechanisms of variability is the
well known respiratory sinus arrhythmia, which is in fact
modulation of the cardiac frequency by respiration. In addi-
tion, other mechanisms that regulate blood pressure and flow
in the cardiovascular system, such as neurogenic, myogenic,
and endothelial function also modulate the cardiac frequency
�6,2�. In general, coupled self-sustained oscillatory systems
interact continuously and mutually adjust their rhythms.

We show results for two different examples. In the first,
we concentrate on detecting the phase/frequency couplings,
and their strength, and we indicate the detection of direction
of coupling, whereas in the second example we concentrate
exclusively on detecting the direction of coupling for the
case of a time-varying coupling strength. We demonstrate

that complementary information can be obtained by combin-
ing the two methods. Their individual advantages and disad-
vantages are discussed elsewhere �14,17,20–22,31�.

A. Temporal coupling, time variable basic frequency, and time
variable strength of coupling

With the first example we mimic real couplings that are
generally short-lasting. Furthermore, the strength of the cou-
pling between the oscillators is not constant in time but, var-
ies. Finally we add variability of the basic frequency of one
of the interacting oscillators. To illustrate the capabilities of
the methods for this kind of real world situation, we use a
generic model of two interacting systems whose basic unit is
the Poincaré oscillator

ẋ1 = − x1q1 − 
1y1 + �2�x1 − x2�2 + ��t� ,

ẏ1 = − y1q1 + 
1x1 + �2�y1 − y2�2,

ẋ2 = − x2q2 − 
2y2,

ẏ2 = − y2q2 + 
2x2,

qi = i�	xi
2 + yi

2 − ai� . �19�

The activity of each subsystem is described by the two state
variables, xi and yi, where i=1,2 denotes the subsystem, i,
ai, and 
i are constants and �2 is the coupling amplitude.
The parameters of the model are set to 1=1, a1=0.5, and
2, a2=1. Here ��t� is zero-mean white Gaussian noise
���t��=0, ���t� ,��0��=D��t� and D=0.08 is the noise inten-
sity.

We analyze the variable x1A�t� of the first oscillator, re-
corded as a continuous time-series as shown in Fig. 1�a�.
Similarly we denote by x2A�t� the variable of the second os-
cillator �not shown�. Prior to analysis, the time series was
first normalized between 0 and 1 and its mean value was
subtracted. For the first 400 s an intermittent quadratic cou-
pling was introduced. The coupling strength �2 was gradu-
ally increased from 0 to 0.2 by a step of 0.05 and was
switched off every 50 s. Note that �2=0.2 can be considered
to be a weak coupling. After a further 400 s, the coupling
was removed by setting �2=0. During the last 400 s, the
coupling was increased again to a continuous �2=0.2, Fig.
1�b�. In the latter case the characteristic frequency of the
second oscillator was both modulated and linearly increased
from f2=0.25 Hz to f2=0.35 Hz, as shown in Fig. 2�b�. The
first 15 s of each of the three coupling modes are shown in
Fig. 1�a�, with the corresponding power spectra in Fig. 1�b�.

1. Bispectral analysis

A quadratic nonlinear interaction between linear or
weakly nonlinear oscillatory systems generates higher har-
monic components in addition to their characteristic, basic
frequencies �20,33�. Figure 1�c� illustrates the changes in the
power spectra caused by the coupling. The peaks at f1
=1.0 Hz and f2=0.25 Hz correspond to the first and second
oscillators, respectively. These frequencies are deliberately
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chosen to have an integer ratio 1:4 to ensure frequency cou-
pling. The test signal x1A clearly has richer harmonic struc-
ture in the presence of nonlinear coupling. In addition to the
characteristic frequency of the first oscillator, it contains
components with frequencies 2f1, 2f2, f1+ f2, and f1− f2. As
well as having a particular harmonic structure, the compo-
nents of the signal x1A also have related phases, 2�1, 2�2,
�1+�2, and �1−�2.

The wavelet bispectrum was calculated from the whole
signal as a single entity, after transients caused by the
changes in coupling strength had been removed. First the
WB was estimated, as shown in Figs. 3�a� and 3�b�. Close
inspection shows that all the peaks expected to arise from
bispectral analysis of nonlinear interaction between the two
oscillators f1 and f2 are indeed present. Quadratic coupling

and how to detect it has already been discussed in detail in
�17� and is not a subject of this paper.

Bifrequencies where peaks provide evidence of possible
frequency interactions are then further studied by calculation
of the biphase and biamplitude as functions of time. The
instantaneous frequencies f1�t� and f2�t� �Figs. 2�a� and 2�b��
were both obtained using the marked-events method; alter-
natively they could have been calculated using Hilbert trans-
formation as discussed in detail in �21�. Diagonal elongation
of peaks in the bispectrum demonstrates time-variability of
the corresponding frequency components.

Our primary interest lies in the bifrequency �f1 , f2�. The
time evolution of its biphase and biamplitude are shown in
Figs. 3�c� and 3�d�. The results for nonzero coupling are
remarkably different from those where coupling is absent
�intermittent in the first 400 s and during the whole second
400 s�. The coupling period can be clearly seen from biam-
plitude and biphase time evolution in the first 400 s. The
biphase is constant in the presence of quadratic coupling
�first 400 s� and the biamplitude is above zero. In the first
400 s, each time the coupling strength �2 is gradually in-
creased, a distinguishable increase in the linear biamplitude
value can be noticed.

During the second 400 s there is no coupling as the biam-
plitude is zero �below-average biamplitude value in the inner
triangle �17�� and the biphase is linearly increasing.
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FIG. 1. Simulation results for a pair of quadratically coupled
Poincaré oscillators in the presence of additive Gaussian noise. �a�
The test signal x1A�t� from the first oscillator, after normalization
and subtraction of its mean value. The first oscillator has a charac-
teristic frequency f1=1.0 Hz. That of the second oscillator is f2

=0.25 Hz. The oscillators are unidirectionally and quadratically
coupled with three different coupling strengths �2�t� in each �1�-�3�
400 s time epoch, shown in �b� as a function of time. In epoch �3�
the characteristic frequency of the second oscillator is linearly in-
creased from f2=0.25 Hz to f2=0.35 Hz while being at the same
time modulated with Am sin�2�fmt�, where Am=6.7·10−6 is the
modulation amplitude and fm=0.01 Hz is the modulation fre-
quency, as can be seen in Fig. 2�b�. Each coupling lasts for 400 s.
The sampling frequency fs=10 Hz. Only the first 15 s are shown in
each case. �c� The corresponding power spectra of x1A�t�.

(a)

(b)
0 400 800 1200

0.9

1

f 1
(H

z)

Time (s)

0 400 800 1200
0.25

0.37

f 2
(H

z)

Time (s)

FIG. 2. Instantaneous frequencies of �a� the first oscillator f1 and
�b� the second oscillator f2 in the signal x1A and x2A.
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FIG. 3. �a� The modulus of the wavelet bispectrum �BW� calcu-
lated for K=34 segments, 85% overlapping, with Tm=8 s, Ge

=0.00001, using a fixed Morlet wavelet length of THF=20 s for
calculation of the high frequencies. �b� A contour plot of the �BW�.
For f2�0.9 Hz, the wavelet bispectrum is removed because the
triplet �1 Hz, 1 Hz, 1 Hz� produces a high peak that is not physically
significant. �c� The biphase �1 and �d� the biamplitude A1 for the
bifrequency �1 Hz, 0.25 Hz�-peak 1, calculated using a 0.1 s time
step.
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During the final 400 s when there is a large time-
frequency variation of the second oscillator’s frequency, f2,
which varies within 0.25–0.35 Hz, the biphase is constant
and the biamplitude value is high, as shown in Figs. 3�c� and
3�d�, and the coupling can easily be resolved.

2. Information theoretic approach

For the same signals in Fig. 1�a� the phases �1�t� and
�2�t� were obtained using the discrete Hilbert transform, and
the CMI I��1�t� ;	��2 ��2�t�� and I��2�t� ;	��1 ��1�t�� were
applied with 	��1,2 according to Eq. �17�, unless stated oth-
erwise. In order to infer the direction of coupling, we com-
pare the CMI obtained from original data �black� with the
CMI calculated from the surrogate data �gray�, as shown in
Fig. 4. In Fig. 4�a�, we can see the influence of the second
oscillator, as presented by its time-series x2A, on the evolu-
tion of the first oscillator, presented by time-series x1A. The
opposite influence, i.e., x1A→x2A, is depicted in Fig. 4�b�.

Let us now concentrate on interactions in the three seg-
ments, �1�, �2�, and �3�, with different type of couplings. As
shown in Fig. 4�a�, for segment �3�, the CMI is clearly above
the surrogate range, i.e., the second oscillator influences the
first one. The opposite CMI, as shown in Fig. 4�b�, segment
�3�, is within the surrogates, i.e., there is no influence in the
direction x1A→x2A. Thus in the case of variable basic fre-
quency the causality is inferred correctly. The same holds for
the segment �2�: in both cases the CMI lies within the surro-
gate range, i.e., there is no interaction in any direction, again
in agreement with the reality.

Using phases with 	��1,2 according to Eq. �17� we obtain
misleading results for the first 400 s. In Fig. 4, segment �1�,
we see that CMI does not cross the surrogate ranges. Here in
fact the interaction exists, but we cannot get it from the
phases in this way, probably because they are 1:4 locked.
Using a synchrogram �not shown� we obtain phase synchro-
nization between the two interacting oscillators. This is the
case when phases do not bear information about the causality

and, therefore, the direction of coupling cannot be inferred
�14�.

However, using the phase increment according to Eq. �18�
in CMI I��1�t� ;	��2�t� ��2�t�� and I��2�t� ;	��1�t� ��1�t��,
we have a more sensitive measure. Results for the first 400 s
are shown in Fig. 5. The CMI is clearly above the surrogate
range in the case when the second oscillator influences the
first one, Fig. 5�a�, whereas the opposite CMI is within the
surrogates, Fig. 5�b�. In spite of the presence of phase syn-
chronization and intermittent coupling the causality is in-
ferred correctly.

B. Opposite coupling direction and modulation

To illustrate the essence of the method, we again use a
generic model of two interacting systems whose basic unit is
the Poincaré oscillator

ẋ1 = − x1q1 − �
1 + �mx2�y1 + �2�x1 − x2�2 + ��t� ,

ẏ1 = − y1q1 + �
1 + �my2�x1 + �2�y1 − y2�2,

ẋ2 = − x2q2 − 
2y2 + �1�x2 − x1�2,

ẏ2 = − y2q2 + 
2x2 + �1�y2 − y1�2,

qi = i�	xi
2 + yi

2 − ai� . �20�

The activity of each subsystem is described by the two state
variables, xi and yi, where i=1,2 denotes the subsystem, i,
ai, and 
i are constants, �1,2 is the coupling amplitude and
�m is the strength of parametric frequency modulation. The
parameters of the model are set to 1=1, a1=0.5, and 2,
a2=1, the same as in the case considered in Sec. III A. Here
��t� is zero-mean white Gaussian noise ���t��=0,
���t� ,��0��=D��t� and D=0.08 is the noise intensity.

The time-series is the variable x1B�t� of the first oscillator,
as shown in Fig. 6�a�. Prior to analysis, the signal was first
normalized between 0 and 1 and its mean value was sub-
tracted. In the first 400 s the coupling is unidirectional, the
second oscillator is forcing the first one with the coupling
strength �2=0.2. After a further 400 s, the forcing was re-
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FIG. 4. �a� Conditional mutual information �CMI� as a function
of time lag �black� together with the surrogate ranges given by the
surrogate mean �1.96� �gray� from 30 permutation surrogate real-
izations. �1� denotes intermittent coupling, �2� no coupling and �3�
coupling where the characteristic frequency of the second oscillator,
f2, is linearly increasing and being at the same time modulated. �a�
The CMI influences 2→1 and �b�, the CMI influences 1→2. Lags
are from 1 to 100 and 8 quantized levels are used for CMI
estimation.
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FIG. 5. �a� The CMI as a function of time lag �black� together
with the surrogate ranges given by the surrogate mean �1.96�
�gray� from 30 permutation surrogate realizations. For case �1�, Fig.
4, the CMI is applied here with 	��1,2 according to Eq. �18�.
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moved by setting �2=0 and switching on frequency modu-
lation of the first oscillator f1=1.0 Hz by the second one
f1=0.25 Hz with parametric frequency coupling, �m=0.1.
During the last 400 s, the frequency modulation is removed
by setting �m=0, whereas unidirectional quadratic coupling
is present and the coupling direction is reversed. The first
oscillator is forcing the second one with the coupling
strength �1=0.2, Fig. 6�b�. The first 15 s of each of the three
coupling modes is shown in Figs. 6�a�, with the correspond-
ing power spectra shown in Fig. 6�c�.

Complementary analysis

We start with the bispectral analysis. The whole signal x1B
is again analyzed as a single entity, as in the case of test
signal 1, x1A. Auto-WB is shown in Figs. 7�a� and 7�b�. In-
stantaneous biphase and biamplitude for bifrequency �f1 , f2�
are shown in Figs. 7�c� and 7�d�. From the constant biphase
and above zero biamplitude during the first 400 s we can
conclude that nonlinear coupling is present only during first
400 s.

We then applied CMI to the oscillator phases. Obtained
results are shown in Fig. 8. During the second 400 s �2�, the
second oscillator x2B influences the first oscillator x1B Fig.
8�a�, whereas during the third 400 s �3�, the first oscillator
drives the second one �Fig. 8�b��, as the CMI is outside the
surrogate range.

The information theoretic approach gives us the correct
results for the directionality of interoscillator interactions,
whereas it cannot resolve the nature of the interaction. In the
second 400 s interval �2�, parametric frequency modulation

of the first oscillator by the second one is present. CMI can-
not distinguish between modulation and nonlinear interac-
tion. To gain additional driver-response information we ap-
ply bispectral analysis.
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FIG. 6. Simulation results for a pair of quadratically coupled
Poincaré oscillators in the presence of additive Gaussian noise. �a�
The time-series x1B�t� from the first oscillator, after normalization
and subtraction of its mean value. The first oscillator has a charac-
teristic frequency f1=1.0 Hz. That of the second oscillator is f2

=0.25 Hz. The oscillators are unidirectionally and quadratically
coupled with three different coupling strengths �1 and �2 in each
�1�-�3� 400 s time epoch, both shown on �b� as a function of time,
where the solid line represents �1 and the dotted line �2. In column
�2� the first oscillator is frequency modulated by the second one,
�m=0.1. Each coupling lasts for 400 s. The sampling frequency
fs=10 Hz. Only the first 15 s are shown in each case. �c� The
corresponding power spectra of x1B�t�.
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=0.00001, using a fixed Morlet wavelet length of THF=20 s for
calculation of the high frequencies. �b� A contour plot of the �BW�.
For f2�0.9 Hz, the wavelet bispectrum is removed because the
triplet �1 Hz, 1 Hz, 1 Hz� produces a high peak that is not physically
significant. �c� The biphase �1 and �d� the biamplitude A1 for the
bifrequency �1 Hz, 0.25 Hz�-peak 1, calculated using a 0.1 s time
step.
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FIG. 8. �a� CMI as a function of time lag �black� together with
the surrogate ranges given by the surrogate mean �1.96� �gray�
from 30 permutation surrogate realizations. �1� denotes unidirec-
tional coupling, where the second oscillator drives the first one, �2�
where the first oscillator is frequency-modulated by the second one,
and �3� denotes unidirectional coupling, where the first oscillator
drives the second one. �a� CMI influence 2→1. �b� CMI influence
1→2. Lags are from 1 to 100 and 8 quant levels are used for CMI
estimation. For �3� �a� y axis values are multiplied by 100.
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First we calculate the cross-wavelet bispectrum BWc121,
where the index c stands for cross and the 1, 2 denote state
variables of the first and the second oscillators, i.e., x1B and
x2B, that were used for BWc calculation, shown in Figs. 9�a�
and 9�b�. The x1B signal tells us primarily about the activity
of the first oscillator and x2B about the second one. The phase
of the first oscillator, f1, in the triplet �f1 , f2 , f1+ f2� is thus
directly extracted from the x1B signal. Similarly extracted are
the phase of the second oscillator and the component at the
harmonically related position f1+ f2. Nonlinear coupling is
still present meaning that the second oscillator is driving the
first one. One can also verify the results by calculating
BWc122 �not shown�. If the second oscillator is the driver, the
nonlinear coupling is no longer present as the third compo-
nent in the triplet, f1+ f2. Likewise, it is not present in the
signal x2B, but only in the driven one x1B. WBC121 for the last
400 s shows no interaction as the biamplitude is zero and the
biphase is not constant, as expected, Figs. 9�a� and 9�b�.
Note that for the second 400 s the biamplitude is above zero
and the biphase is constant. Since auto-WB does not show
any interaction during this interval we can conclude that the
second oscillator is modulating the first one during the sec-
ond 400 s. See �17� for further details regarding the detection
of parametric frequency modulation.

Similarly we can proceed to identify the reverse interac-
tion, from the first oscillator to the second one. First we
calculate the auto-WB, BWc222. The biphase and biamplitude
are shown in Figs. 9�c� and 9�d�. Constant biphase and

above-zero biamplitude, in addition to the distinctive posi-
tion of the peaks in WB �17�, demonstrates nonlinear cou-
pling during the last 400 s. This can be verified by further
calculation of BWc212 and BWc211, however it is not necessary
due to symmetric properties of the bispectrum �33�. We can
determine that the first oscillator is driving the second one
during the last 400 s.

IV. SUMMARY AND CONCLUSIONS

In conclusion, wavelet bispectral analysis and information
theory approach were combined to investigate the reliability
of detection of the nature, strength and direction of coupling
of interacting oscillators whose basic frequencies are time-
varying. The Poincaré oscillator was used as a generic
model.

We generated two distinct numerical examples. With the
first, we mimiced typical situations that occur in real mea-
sured data, i.e., temporal coupling, time variable strength of
coupling and time variable basic frequency. It was shown
that by using wavelet bispectral analysis it is possible to
resolve the nature and strength of the coupling, even when
there are considerable time variations of the basic frequency.
Moreover, intermittent nonlinear coupling can be accurately
detected. This can be achieved by calculating the instanta-
neous bifrequency and thus tracing the time variations of the
oscillator’s characteristic frequencies using a mother wavelet
that allows for an optimal time-frequency resolution. It was
shown that by applying the information theory approach and
calculating the CMI a possible asymmetry in the coupling
can be revealed and quantified. We noted that in the case of
the oscillators being synchronized the CMI can lead to incor-
rect inference of causality from experimental bivariate time
series. In this case we can attain information from wavelet
bispectral analysis to use the proper variable �state variable,
phase, phase increment…� for the CMI calculation to obtain
the correct results.

With the second numerically generated example and the
corresponding signal x1B we reversed the coupling direction,
the driver and the driven oscillator, adding frequency modu-
lation to mimic one of the most frequent mechanisms of
interaction extracted from real measured data. The CMI re-
solves the correct coupling direction. For the first 800 s the
second oscillator drove the first one and for the third 400 s it
was vice versa. During the second 400 s frequency modula-
tion was present. We used bispectral analysis to identify it, as
with the CMI we cannot attain the answer regarding the na-
ture of the coupling. Moreover, using cross bispectral esti-
mates it was also possible to identify the directionality of
coupling by determining the phase origin in the triplet. In
this way we could additionally verify the CMI results. We
suggest the use of a complementary approach using wavelet
bispectral analysis and information theory. The former can
resolve the nature and the strength of the coupling, whereas
the latter provides reliable information regarding the cou-
pling direction. CMI estimates do not provide the necessary
time dependance of the driver response. This can be insuffi-
cient when investigating real systems and their coupling dy-
namics. For this purpose we suggest using the complemen-
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FIG. 9. The cross-wavelet bispectrum instantaneous biphase �1

and instantaneous biamplitude A1 for bifrequency �1 Hz, 0.25 Hz�-
peak 1, calculated with K=34 segments, 67% overlapping, Tm
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=40 s for high frequencies calculation using a 0.1 s time step. �a�
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tary wavelet bispectral analysis where time �and frequency�
resolution can be arbitrary set regarding the system dynam-
ics.

The task of revealing coupling dynamics is quite general
for any system of coupled nonlinear oscillators where bivari-
ate data can be obtained. It is a highly relevant problem in
numerous fields of research, e.g., cardiorespiratory interac-
tions, brain oscillations, neuronal systems, electronic sys-
tems, coupled lasers, chemical reactions, to mention only a
few. The proposed complementary analysis therefore pro-
vides a promising general-use tool for studying the nature,
strength and direction of coupling between two �or more�

nonlinear oscillators whose basic frequencies considerably
change in time.
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