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THE FLOW AND TEMPERATURE FIELDS IN COOLING DEVICES 

WITH EMBEDDED SERPENTINE TUBES 

 

The turbulent flow (Re=5124) and conjugate heat transfer in heat-sink designs of the tube-

on-plate type are numerically investigated. The cooling configurations employ a serpentine 

tube partially (or fully) embedded inside the plate. A two pass and a four pass configuration 

are investigated. A constant heat flux is applied at the bottom surface of the heat-sink plate. 

The SST k-ω model is used for the prediction of the turbulent flow and heat transfer. Two 

pairs of longitudinal vortices as well as secondary flow separation have been found to set in 

at the tube curved section. The combined secondary flow pattern enhances heat transfer at 

the tube sections over a considerable distance downstream of the 180
o
 bends. In the last 

part of the analysis, the overall performance of the two configurations is compared using a 

number of evaluation criteria suitable for heat exchanging devices. The four-pass 

configuration with fully embedded tubing exhibits the best thermal (energetic) and 

exergetic performance. 
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Subscripts 

 

ave     average 

cal caloric 

cond conductive 

conv convective 

cs cross section 

f fluid 

FD value in the fully developed 

flow region 

FE fully embedded 

gen generation 

i inlet, inner 

init initial 

int interface 

max maximum 

o outer 

ove overall 

PE partially embedded 

s solid, section 

tang  tangential 

tot total 

w wall 

1. INTRODUCTION 

 

  In the field of thermal engineering, curved tubes are incorporated in heat exchanging 

devices and cooling configurations, as they offer increased heat transfer area per unit volume 

of the device. In addition, the effect of the centrifugal force on the flow due to the tube 

curvature induces a characteristic secondary flow, which promotes thermal mixing. Thus, the 

incorporation of curved tubes into heat exchanging applications can be regarded as a passive 

heat transfer enhancement technique. The main features of the hydrodynamic and thermal           

_ 



KARATHANASSIS ET AL. 

 4 

behavior of fluid flow inside a number of coiled and horizontal curved-tube configurations 

widely used in industrial processes are summarized in the comprehensive review articles of 

Vashisth et al. [1] and Naphon and Wongwises [2]. Apart from the traditional heat 

exchangers, curved tubes also find application in geothermal heat pumps. Referring to a 

borehole heat pump, Kobayashi et al. [3] numerically investigated the time dependent heat 

transfer in various serpentine tube configurations embedded in a conductive solid.   

Flow in curved tubes has been extensively investigated with the main focus on illustrating 

the effect of the centrifugal force on the flow field development It has been well established 

that the secondary flow is manifested through a pair of counter rotating vortices having their 

axes parallel to the main flow. The prime mechanism responsible for the emergence of the 

vortex pair is the interaction of the centrifugal force and the induced pressure gradient on the 

tube cross section [4,5]. The experimental investigation of Fairbank and So [6] focused on the 

effect of a 180
o
 bend on the flow characteristics upstream and downstream straight tube 

sections. It was demonstrated that the effect of the bend on the axial velocity distribution is 

more significant in the downstream section, where the velocity profiles appeared distorted for 

a distance up to seventeen tube diameters. Sugiyama and Hitomi [7] used a Reynolds stress 

model to predict turbulent flow in a tube with an 180
o
 bend. They presented results regarding 

the flow field and the secondary flow intensity in the curved as well as the straight 

downstream section of the tube.  

The distinct features of the secondary-flow pattern on the tube cross section are strongly 

dependent on a similarity parameter known as the Dean number. Different systems of vortical 

structures may possibly develop depending on the value of the Dean number, as critical 

values exist that lead to dual solutions for the flow field. Dennis and Ng [8] numerically 

investigated the two-dimensional steady laminar flow in a slightly curved tube. Above a 

critical value of De=956, they were able to obtain dual solutions that led to either a single or 

two pairs of symmetrical vortices on cross stream planes. The critical value of the Dean 

number (De =956) for the onset of a four-vortex structure solution was also confirmed by the 

numerical study of Yanase et al. [9]. Besides, it was stated that the four-vortex system could 

possibly appear at lower Dean number values, provided that the secondary flow is not fully 

developed, namely that the secondary flow topology does not remain invariant throughout the 

entire curved tube. Di Piazza and Ciofalo [10] considered the flow in two closed toroidal 

tubes of different curvature using direct numerical simulation. For Reynolds number values 

greater than the designated critical ones for each curvature, two distinct traveling waves were 

detected to emerge in the torus. The first of these affected primarily the Dean vortices, while 
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the second one manifested itself as an array of oblique vortices in the vicinity of the Dean 

vortex region. Cheng and Yuen [11] performed a flow visualization study in a 180
o
 bent tube 

for fully developed laminar flow. Their observations demonstrated that, for Dean numbers 

equal to 200 and 370, two- or four-vortex systems respectively are possible to emerge, 

depending on the perturbation of the main flow.    

Olson and Snyder [12] experimentally proved that the mean axial vorticity in a curved 

tube initially increases to a maximum value and then decreases asymptotically. They also 

observed a four-vortex system for De=510 and they adopted the explanation for the onset of 

the additional vortex pair provided by Rowe [13]. In the experimental investigation 

conducted by Rowe [13], the existence of the additional pair of vortices was attributed to the 

interaction of the vortex filaments in the vicinity of the inner wall leading to an additional 

vortex roll-up, which is consequently pushed toward the outer wall by the secondary flow. 

After reviewing the research that has been conducted regarding the flow in weakly curved 

tubes, Siggers and Waters [14] came to the conclusion that the number of branches of the 

solution that may be inferred from the findings in the open literature is five. An initial branch 

of the solution appears even for creeping flows (De<<1), while solution bifurcations leading 

to dual solutions occur at De=956 and De=2494, respectively. The initial branch is 

manifested through a two-vortex system, while all other branches through four-vortex 

systems. However, it must be noted that the critical Dean number values for flow bifurcation 

reported in theoretical studies are considerably higher than the values for which four vortex 

systems have been actually observed in experiments [11,12]. Besides, according to the 

theoretical study of Yang and Ye [15], a branch of solutions leading to asymmetric 

recirculation pattern does also exist for Dean numbers exceeding a critical value of 12734.   

There is also a number of studies that focus on the heat transfer characteristics for flow 

inside curved tubes. Mori and Nakayama [16,17] theoretically and experimentally 

investigated heat transfer in a toroidal geometry under uniform heat flux conditions both in 

the laminar and the turbulent flow regime. They managed to obtain theoretical predictions 

that correlate the fully developed overall Nusselt number to the Dean and Prandtl numbers. 

Jayanti et al. [18] numerically simulated the flow and heat transfer inside a curved tube of 

constant pitch (helical coil) by applying a spatially varying centrifugal force on the flow 

inside a straight tube. Their results illustrate the basic features of the flow and temperature 

fields under a wide range of heating conditions, both in laminar and turbulent flow.  

Kalb and Seader [19] conducted a theoretical investigation on the fully developed heat 

transfer in curved circular tubes under constant heat flux. Their results revealed that the local 
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Nusselt number at the tube outer wall always obtains larger values than the one at the inner 

wall and the value of their ratio increases with the Dean number. Besides, the numerical 

results of Tarbell and Samuels [20] referring to Dean numbers of up to 453 showed that the 

circumferentially averaged local Nusselt number exhibits oscillations as a function of the 

local Graetz number for moderate Prandtl numbers and under the condition of constant wall 

temperature. Di Liberto and Ciofalo [21] investigated turbulent heat transfer in curved tubes 

using direct numerical simulation. Through their results, it was established that the 

temperature fluctuations and the turbulent heat flux obtained maximum values in the vicinity 

of the outer wall, where secondary flow impingement occurs. In addition, it was illustrated 

that the enhanced heat transfer observed in curved tubes is not related to turbulence, as the 

turbulence levels were in fact reduced in comparison to a straight pipe. 

 Ohadi and Sparrow [22] took advantage of the heat and mass transfer analogy and, 

through the use of the naphthalene sublimation technique, produced experimental values for 

the Sherwood number characterizing turbulent flow downstream of an 180
o
 bent. The most 

interesting finding of the study was that the Sherwood number distribution, for Reynolds 

numbers having values less than 15000, presented an initial undershoot in the straight tube 

section downstream of the bent and subsequently redeveloped to a constant value. The 

authors attributed this heat transfer reduction to flow laminarization occurring at that region. 

Finally, from the second-law-of-thermodynamics point of view, Bahiraei et al. [23] 

analytically investigated laminar forced convection in a helically coiled tube. They obtained 

correlations for predicting the Dean number that leads to minimum entropy generation, as a 

function of the geometrical parameters and heat transfer conditions.  

It can be deducted that the majority of the studies dealing with the problem of flow in 

curved tubes focuses on tubes of constant curvature. On the other hand, the studies 

concerning U-shaped tubes and especially the effect of an 180
o
 bend on the flow and heat 

transfer upstream and downstream of the bend are relatively limited. The scope of the present 

study is, therefore, to analyze the turbulent flow and conjugate heat transfer inside a tube-on-

plate heat-sink design, which incorporates a serpentine tube with 180
o
 bends (U-turns) 

thermally bonded to a conductive substrate. Initially, the flow phenomena emerging inside 

the tubes are identified and thoroughly discussed; then, the effects of the secondary flow and 

the non-uniform heating conditions on heat transfer are investigated. The heat transfer rate in 

the straight-tube sections, which are thermally bonded to the substrate, is quantified through 

distributions of the Nusselt number. The effect of the tubing embedment depth on heat 
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transfer is also studied. At a final stage, the cooling devices are comparatively evaluated in 

terms of hydrodynamic and thermal performance. 

 

2. GEOMETRICAL AND OPERATIONAL PARAMETERS  

 

The cooling device under investigation comprises a copper (kcu=408 W/mK) serpentine 

tube thermally bonded to a rectangular aluminum (kal=237 W/mK) substrate bearing parallel 

grooves. The concept of the design is based on a commercially available “cold plate” cooling 

configurations for thermal management of electronics [24]. The present configuration 

however is intended for application in a linear Concentrating Photovoltaic/Thermal (CPVT) 

system designed by the authors [25], in order to extract the surplus heat from a solar-cell 

module. The overall area of the substrate is 500 x 60 mm
2 

corresponding to the receiver area 

of the CPVT system.  

The serpentine tubing forces the coolant flowing inside to divert its course by 180
o
, in 

order to pass multiple times through the solid substrate. It must be noted that the straight parts 

of the tube are partially embedded in the substrate, whereas the curved bends lay outside of 

the plate area, as depicted in Figure 1.  Two variations of the heat-sink design are addressed 

in the present analysis having two (Figure 1a) and four (Figure 1b) equidistant straight tube 

segments on the substrate respectively. 

The operating conditions for the cooling device are determined by taking into account the 

specifications of the other components comprising the CPVT system and typical 

environmental conditions. For a concentrator-reflector area equal to 1 m
2
 and typical one-sun 

irradiation (1 kW/m
2
), the irradiation on the receiver area results to 33.3 kW/m

2
. 15% of the 

irradiation is directly converted to electricity by the solar-cell module, while the remaining 

(28.3 kW/m
2
) is to be dissipated by the heat sink. Water is selected as cooling fluid with a 

fixed volumetric flow rate equal to 30 ml/s, which is adequate for hot water for domestic use. 

 

3. FORMULATION OF THE NUMERICAL MODEL 

 

3.1 Governing equations 

 

The computational domain consists of two solid and one fluid sub-domains corresponding 

to the substrate, the tubing and the cooling fluid, respectively. The thermophysical properties 
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of the coolant are considered constant and evaluated at 298K. The problem under 

investigation allows the following assumptions to be made: 

(1) steady, turbulent and incompressible fluid flow (Re=5124) 

(2) negligible viscous dissipation and radiative heat transfer 

(3) negligible natural convective heat transfer, since the parameter Gr/Re
2
 takes values 

much smaller than unity.  

Based on these assumptions, the three-dimensional transport equations of mass, 

momentum and energy reduce to the following form:  
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The Reynolds Averaged Navier-Stokes (RANS) equations formulated above contain the 

Reynolds stresses terms jiuu   and the turbulent heat flux Tui
 . The Shear Stress Transport 

(SST) k-ω model introduced by Menter [26] is used for the calculation of these terms. The 

SST model uses appropriate blending functions in order to switch between the k-ω and the k-

ε model formulations depending on the distance from the wall; therefore the k-ω formulation 

is used in the near-wall region in order to avoid the use of any extra damping functions, while 

the k-ε formulation is used in the fluid-core region. The additional equations introduced for 

the turbulent kinetic energy k and the turbulent frequency ω, as well as all the additional 

relations and coefficients used by the model are listed in [27].   

By taking into consideration the actual operating conditions of the cooling device, 

appropriate boundary conditions are imposed on the governing equations. The imposed 

boundary conditions are summarized in Table 1. The momentum and energy equations are 

fully coupled and solved simultaneously on an unstructured hexahedral grid using the 

commercial solver ANSYS CFX (v.13) [27]. The convergence criterion for the RMS (root 

mean square) residuals of mass, momentum and energy is set equal to 10
-6

. False transient 

time stepping is used in order to control convergence and an appropriate time step equal to 

25% of the fluid residence time 
w

Lt   inside the tubing is selected.   
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3.2 Grid independence 

 

The computational domains for both cooling configurations were discretized using 

unstructured grids of hexahedral elements (Figure 2). The grids had a non-uniform 

arrangement along the flow direction, as a fine grid was used along the curved sections of the 

domain (Figure 2a), in order to fully capture the topology of the expected secondary flow. In 

addition, the grid nodes were closely positioned in the fluid cross section adjacent to the solid 

wall (Figure 2b), in order to capture the steep gradients in the boundary layer region. A grid 

independence study was conducted in order to verify that the produced computational results 

remained unaffected from the grid density. For this reason, the four-pass configuration was 

selected and simulations were performed using three grids of increasing density, namely of 

1.2, 2.6 and 4.0 x 10
6
 elements, respectively.   

The coolant pressure drop through the configuration, the substrate maximum temperature 

and the overall Nusselt number were considered as adequate quantities in order to ensure the 

grid independency of the solution. As it is evident from the values of Table 2, the 

computational grid consisting of 2.6 x 10
6
 elements is suitable for the production of the 

numerical results, as a further grid refinement to 4.0 x 10
6
 elements causes all the monitored 

quantities to deviate by less than 1%. Subsequently, the computational domain for the two-

pass configuration was discretized using elements of the same dimensions and topology, as 

those comprising the selected grid for the four-pass configuration, and the final grid consisted 

of 2.210
6
 elements.    

 

3.3 Validation of the numerical model 

 

In order to verify that the formulated numerical model can adequately predict the effect of 

the centrifugal force on a curved-tube flow, numerical results were produced and compared 

against published data regarding flow in curved pipes [5,6]. Patankar et al. [5] predicted the 

turbulent flow in a curved tube having a δ (=R/Rc) ratio equal to 0.025 using the standard k-ε 

turbulence model. The horizontal and vertical fully developed velocity profiles published in 

[6] for Reynolds number equal to 25000 are compared with the respective ones calculated in 

the present study using the SST k-ω model (Figure 3a). As can be seen, the predictions of the 

two models are in good agreement and the velocity overshoots are captured in both planes. 
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 Fairbank and So [6] obtained experimental velocity profiles at the horizontal symmetry plane 

of two U-shaped tubes characterized by different δ ratios equal to 0.08 and 0.30, respectively. 

The Reynolds number was maintained the same in both cases and equal to 400, while the 

Dean number was equal to 110 and 220, respectively. The comparison between the present 

numerical results, which were produced using a computational domain similar to the 

experimental setup described in [6], and the experimental data is shown Figures 3b-e, where 

the velocity profiles at two dimensionless positions s/2a downstream of the bend and equal to 

0.5 and 5.0 are compared. Good agreement is evident with the root mean square deviation not 

exceeding 3%, with the uncertainty in the experimental velocity values being 2.5%. The shift 

of the maximum velocity toward the outer wall is also well captured.  

 

4. RESULTS AND DISCUSSION 

 

4.1 Flow Field 

 

The flow inside the tubing of both configurations is characterized by the same Reynolds 

number equal to 5124. However, the value of the Dean number varies due to the different 

ratio of the tube radius to the bend curvature radius δ, giving the Dean numbers of 2763 and 

3867 for the two-pass and four-pass configurations respectively. Figures 4a-b present non-

dimensional axial velocity profiles at the horizontal symmetry plane of the tube for several 

streamwise positions downstream of the bend. Especially regarding the four-pass 

configuration (Figure 4b), the streamwise positions refer to the straight tube section 

downstream of the first bend encountered by the flow. As can be seen, the velocity profile 

appears distorted downstream of the bend for both configurations; the maximum velocity 

location is shifted toward the outer wall, with the maximum velocity being higher for the 

higher Dean number configuration (four-pass configuration). However, the velocity profiles 

at Z
*
=58.53 and Z

*
=56.53 for the four-pass configuration exhibit off the wall minimum 

velocity and thus a second peak of the velocity value in the vicinity of the inner wall, a 

feature not present in the two-pass configuration. The velocity minimum and thus the second 

velocity peak near the inner wall for the four-pass configuration is due to a strong 

recirculation zone which develops (as the result of the higher Dean number) and draws high-

velocity fluid from the tube core toward the inner wall. In addition, the velocity profiles at 

Z
*
=28.53, a location slightly downstream of the straight-section mid-length, appear almost 
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fully developed and therefore it is obvious that the flow is recovering to a development state 

in the straight section of the tubes. Thus, with regard to the four-pass configuration, the flow 

upstream of each bend develops fully after the previous bend and identical flow phenomena 

repeat themselves in each curved section and downstream of it.  

Figures 4c-d illustrate the developing flow field within the bends of the two-pass (Figure 

4c) and four-pass (Figure 4d) configurations through streamlines. It must be noted that 

streamlines have been drawn only for the upper half of the tube cross-section as the flow field 

is symmetric about the horizontal plane. Two bundles of streamlines, highlighted with 

different colors, have been drawn in order to elucidate the topology of the secondary flow 

that sets in at the curved region. Black lines originating near the central part of the duct 

develop an extensive whirling effect that occupies the entire tube half cross section and is 

associated with the Dean vortices as will be discussed later, whereas in the case of 

streamlines from the outer part of the cross section (red lines) this effect is more localized in 

the vicinity of the inner wall. Regarding the four-pass configuration (Figure 4d), a 

recirculation bubble due to axial flow separation is also visible. The secondary flow pattern 

will be further analyzed in the following paragraphs.  

Figure 5 depicts the distribution of the non-dimensional wall shear stress at the 

intersections of the horizontal symmetry plane with the tube wall as a function of the non-

dimensional “unwound” coordinate S
*
, in the sense that the s coordinate follows the curved 

section of the tube as well as the upstream and downstream straight ones. Consequently, the 

S
*
 coordinate obtains a slightly larger value for the outer wall due to the larger radius of 

curvature of the outer curved section. Regarding the four pass configuration, it must be noted 

that the wall shear stress values are plotted only for the two first passages, as the same 

behavior is expected to be repeated in the following two. Upstream of the bend, after an 

initial adjustment due to the uniform inlet velocity, the shear stress value remains constant 

and identical for the inner and outer walls in both configurations. In the curved section, the 

two walls are differentiated as the shear stress exhibits more rapid changes at the inner wall 

for both configurations (Figures 5a-b). A sign change of the shear stress values sign is 

observed at the distribution of the inner wall in both graphs, a clear indication of flow 

separation. It is interesting to notice that flow separation also occurs at the outer wall of the 

four-pass configuration (Figure 5b); however, it is of negligible magnitude and the shear 

stress regains positive values almost immediately. Indeed, as depicted on the inset of each 

graph a recirculation bubble exists on the horizontal (XZ) plane in the vicinity of the inner 

wall for both configurations. The insets depict contours of the tangential to the wall velocity 
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in a local coordinate system, so that negative values indicate flow recirculation. The 

recirculation bubble is located at the downstream straight section in the two-pass design 

(Figure 5a), whereas a close look at the contours regarding the four-pass design (Figure 5b) 

reveals that, in fact, two connected bubbles exist having their centers at the straight section 

downstream of the curve and in the vicinity of the inner curve apex respectively. Besides, it is 

interesting to notice that the shear stress distributions of the inner and the outer wall in the 

straight section downstream of the bend are not identical, as in the upstream section. 

Although, the inner-wall distribution of the four-pass configuration exhibits a local minimum 

approximately at S
*
=71, the two lines coincide to a common value further downstream.  

Figure 6 illustrates clearly the sequence of the creation of the vortical structures that set 

in in the curved section of the tube through vorticity projection plots at several cross-stream 

planes along the curved as well as the downstream straight tube section. At φ=60
ο
, a pair of 

Dean vortices having their centers shifted toward the inner wall is already evident in both 

configurations (Figures 6a-b). The vortices have opposite vorticity sign with regard to the 

wall vorticity at the respective locations. In fact, the vertical distance between these locations 

of concentrated wall vorticity appears to be smaller in the four-pass configuration.  In 

addition, a second pair of vortices can be clearly seen at φ=90
ο
 for the two-pass configuration 

(Figure 6a) but less developed for the four pass configuration which however is clearly seen 

at φ=120
ο
 (Figure 6b). It seems that the development of the secondary flow pattern is 

affected by the Dean number and the additional vortices emerge further downstream along 

the bend arc as the Dean number increases. This second pair of vortices is initially more 

localized in the vicinity of the Dean vortices, but as the flow travels further downstream in 

the bend (e.g. see plots at φ=150
o
), the vortices become oblique and elongated (kidney shape) 

with their upper part moving toward the tube center. These “middle” vortices interact with 

the Dean vortices and significantly distort their topology in both configurations. The onset of 

the middle vortices due to the localized vorticity created by the mutual approach of the 

symmetrical Dean-vortex filaments that leads to an additional vortex roll-up and the 

subsequent drifting of the vortex-pair toward the tube core observed in the present 

investigation is in agreement with the findings of Rowe [13] who reports that the additional 

pair of vortices emanates at the boundaries of the Dean vortices and is then pushed toward the 

outer wall by the secondary flow. Another region of high vorticity can be detected near the 

inner tube wall in both configurations due to the secondary flow separation. This “inner” 

vortex pair gradually increases in size as φ increases. Additional discussion on the secondary 

flow topology under different flow conditions is provided in paragraph 4.2. The vortex 
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system persists in the downstream straight section, gradually reducing in magnitude and the 

additional pair of vortices decays completely at approximately a distance of eight hydraulic 

diameters downstream of the bend (Z
*
=52.53). Figure 6c depicts the distribution of the 

average of the non-dimensional streamwise vorticity magnitude in the curved section. It can 

be seen that higher values are obtained in the four-pass configuration due to the higher Dean 

number; regarding the two-pass configuration, the peak vorticity value is obtained at φ=90
o
 

and the distribution is approximately symmetrical about the center of curvature. On the 

contrary, the distribution is strongly asymmetrical in the four-pass configuration with a peak 

value at φ=135
o
. 

Figure 7 presents contours of the non-dimensional turbulent kinetic energy k
*
 in the 

curved and the downstream sections of the two configurations. Regarding the curved section, 

the contour lines already appear distorted in the region close to the tube inner part at φ=60
ο
. 

The distortion becomes more intense as the flow travels through the curved section. For the 

two-pass configuration (lower Dean number) turbulence levels increase up to 120
o
 to 150

o
 in 

the bent and then start decreasing, whilst in the  four-pass configuration turbulence keeps 

increasing up to the exit of the bend; the maximum turbulence level attained is approximately 

three times higher compared to that for the two-pass configuration. Turbulence maxima along 

the bend are found near the inner part of the bend and in proximity to the centers of the 

vortices on the cross stream planes. As depicted in Figures 7a-b, the turbulent kinetic energy 

values in the downstream section of both configurations appear significantly reduced in 

comparison to the ones in the respective curved sections. The profiles gradually redevelop to 

a fully developed, symmetrical form (Z
*
=2.53) and the mean turbulent kinetic energy in the 

tube cross-section obtains the expected value equal to that in the upstream section. It is of 

interest also to notice that the location of the maximum k
*
 is at different positions for the two 

configurations; for the two-pass configuration the k
*
 maximum is near the wall, whilst in the 

four-pass configuration the corresponding maximum is near the center of the tube. This can 

be explained by the fact that in the four-pass configuration the locations from which the 

vortices appear to be shed are closer to the central plane and this coupled with the much 

stronger secondary flow due to higher Dean number transports the wall-generated  turbulence 

towards the center plane. A close look at Figure 7b reveals that, in the four-pass 

configuration, the turbulent kinetic energy obtains a minimum value at Z
*
=44.53 and 

subsequently increases again.  Further insight into this distinct behavior can be gained 

through Figure 7c, which presents values of the averaged over the cross section non-

dimensional turbulent kinetic energy as a function of the “unwound” coordinate S
*
. It is clear 
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that the turbulent kinetic energy initially increases rapidly in the curved section of both 

configurations and then drops in the subsequent straight section. The peak value is attained 

within the curved section, at approximately φ=120
o
, in the two-pass configuration and 

slightly downstream of it, approximately half a hydraulic diameter, in the four-pass 

configuration. The distribution subsequently exhibits a steep decreasing trend and minimum 

values are obtained at S
*
=13 for the two-pass and S

*
=17 for the four-pass configuration, 

respectively. This significant reduction of the turbulent kinetic energy in the straight section 

downstream of the bend is indicative of a flow tendency to transition to the laminar regime 

and it is attributed to the fact that the axial velocity profiles at downstream locations with Z
*
 

less than 52.53 tend to obtain a flat form with lower velocity gradients than the fully 

developed profile, e.g. see the axial velocity profile at Z*=52.53 of Figure 4b. This is a 

remaining consequence of the secondary flow which considerably distorts the form of the 

upstream fully turbulent velocity profile. 

 

4.2 Effect of the Reynolds number - parametric analysis 

 

The flow field in the curved tubes is significantly affected by the flow conditions and the 

tube geometry and thus different vortical structures are possible to arise. Yanase et al. [28] 

proposed that, regarding tubes of finite curvature, the effect of the Reynolds number and δ 

should be treated as independent factors, as the appearance of additional vortices could be 

attributed to either the flow convective effect or the centrifugal effect due to curvature. So et 

al. [29] investigated laminar flow in U-shaped tubes of small curvature and identified the 

Reynolds number, the δ ratio and the flow profile at the entrance of the bend as the three 

main factors that determine the characteristics of the emerging secondary flow pattern. It was 

concluded that an additional pair of vortices symmetrical about the horizontal plane always 

emerges in the tube center under the condition that the velocity profile at the entrance of the 

bend is fully developed.   

In order to further elucidate the topology of the vortex system that emerges under 

different flow conditions in the cooling configurations investigated, a parametric analysis has 

been carried out for lower values of the Reynolds number, covering a wide range within the 

laminar flow region (Re=100-1600). The two-pass configuration has been selected for the 

parametric analysis, as it is more favorable in terms of computational cost in comparison to 

the respective four-pass configuration. Figure 8 presents the cross-stream secondary flow 

patterns in the form of vorticity contour plots and normalized vector plots at a sample plane 
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midway along the bend (φ=90
ο
). For Reynolds number equal to 100, only a pair of 

symmetrical Dean vortices can be detected having their centers lying almost at the vertical 

symmetry plane of the tube cross-section. As the Reynolds increases to 200, the vortices 

become skewed and their centers shift toward the tube inner wall, however, still a two-vortex 

solution is evident. On the contrary two distinct pairs of vortices are clearly discernible in the 

Reynolds number range 400-1600, with the second pair of oblique vortices located 

approximately at the tube center. Yanase et al [28] reported that for δ=0.29 as in the present 

case, the onset of the additional pair of vortices is possible at Reynolds number values higher 

than 270. An additional feature that can be observed is the secondary flow separation near the 

inner wall, which gains in coherence as the Reynolds number increases, and is clearly 

manifested at Re=1600 in the form of a pair of localized vortices attached to inner wall and in 

the vicinity of the horizontal symmetry plane. The resulting “three cell topology” is in 

agreement with the findings of So et al. [29] and also with the experimental observations of 

Agrawal et al. [30] and Choi et al. [31]. The distinct vortical structures detected in the 

laminar flow region clearly persist in the turbulent region as well, as revealed by comparing 

Figures 6a-b and 8. 

Figures 9a-b give a perception of the magnitude increase of the vortical structures with 

Re. As depicted in Figure 9a, the location of the maximum average non-dimensional 

vorticity magnitude at the tube cross-section slightly shifts toward the bend middle (φ=90
ο
) as 

the Reynolds number increases. In all cases, the maximum averaged vorticity value has been 

obtained by φ=75
ο
 and a decreasing trend is clearly followed after φ=90

ο
. By comparing 

Figure 9a to Figure 6c, it can be seen that higher values of the non-dimensional vorticity are 

obtained in the laminar flow region, thus the 
w

  ratio decreases as the Reynolds number 

increases. This is an indication that the magnitude of the secondary flow pattern increases at a 

lower rate with Re in the turbulent flow region. Figure 9b shows the maximum vorticity 

magnitude of the Dean and middle vortices at the sample plane at φ=90
o
 as a function of the 

Reynolds number. As illustrated, the relative increase in the magnitude of the Dean vortices 

is smaller as the Reynolds number increases, a trend which confirms the remark made 

regarding the vorticity magnitude in the turbulent flow region. The magnitude of the middle 

vortices, on the other hand, increases in a nearly linear manner with the Reynolds number. 

However, the maximum magnitude attained by the middle vortices (at Re=1600) is 

approximately half the respective one of the Dean vortices. 
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Finally, two further simulations have been conducted in the turbulent flow regime 

(Re=10248 and 20496 leading to De=5527 and 11053 respectively) in order to illustrate the 

flow tendency to re-transition to the laminar regime in the straight tube section adjacent to the 

bend (see Figure 7). Figure 10 presents the distribution of the average turbulent kinetic 

energy with the Reynolds number as parameter. It can be observed that an increase of the 

Reynolds number shifts the undershoot of the turbulent kinetic energy to lower values and, in 

addition, towards axial positions further downstream of the bend. It is evident by comparing 

Figures 7c and 10 that, although the Dean number for the four-pass configuration is lower 

(De=3867), the higher value of δ in comparison to the two-pass configuration has a similar 

effect in the turbulent kinetic energy distribution, as for the case of Re=10248 in Figure 10. 

Thus, it can be concluded that the Reynolds number and δ affect the turbulent kinetic energy 

distribution in an independent manner and thus should be rather treated as distinct parameters 

instead of combining their effect in the Dean number. 

 

4.3 The temperature field 

 

As shown in Figure 11a through contour plots of the non-dimensional temperature, the 

flow reaches full thermal development in the straight tube section upstream of the bend. It is 

interesting to notice that the thermal boundary layer in the lower part of the tube is thicker in 

comparison to the upper one. This is due to the non-uniform heating conditions, as the tube is 

mainly heated through the part of its circumference that is embedded in the substrate, which 

is approximately equal to three quarters of the total. The flow behavior upstream of the bend 

is identical for the two- and four-pass configurations and Figure 11a indicatively contains 

results only for the two-pass configuration.  

The effects of the secondary-flow pattern are significant in the development of the 

temperature field downstream of the bend as intense thermal mixing takes place in both 

configurations (Figures 11b-c). Cold fluid is deflected toward the outer tube wall causing the 

disruption of the boundary layer development in that region. On the contrary, the maximum 

fluid temperature values are detected in the inner tube wall and especially in the vicinity of 

the horizontal symmetry plane, where the thermal boundary layer is also locally thickened. 

This is due to the secondary flow, which, after impinging on the outer wall, is symmetrically 

diverted toward the lower and upper part of the tube circumference, where it draws fluid from 

the boundary layer region and guides it to the symmetry plane of the inner wall. The effect of 

the secondary flow gradually weakens in the straight section and the flow redevelops. As can 



COOLING DEVICES WITH EMBEDDED SERPENTINE TUBES 

 

 17 

be seen from the contour plot at Z
*
=28.53, the fully developed profile is slightly distorted 

toward the outer wall. It must be noted that Figure 11c refers to the second pass of the four-

pass configuration. The temperature distribution in the respective regions of the other 

downstream passages is qualitatively identical. However, the absolute temperature values are 

higher as the fluid is constantly heated throughout the substrate area (Figure 11d).  

It is also of importance to illustrate the temperature distribution in the solid substrate as 

this is indicative of the thermal performance of the cooling device. As shown in Figure 12, 

the temperature field is fully three-dimensional in both configurations due to the effect of 

axial conduction, enabled by the high thermal conductivity of the substrate material. It is 

clearly discernible that the substrate region of high temperatures is shifted in both 

configurations toward the section of the heat-sink close to the tubing outlet, with the 

maximum temperature located at the left vertical wall approximately ten hydraulic diameters 

upstream of the outlet; the maximum wall temperature is higher for the two-pass 

configuration (Figure 12a) due to the smaller area available for heat transfer between the 

substrate and the tubing. Besides, it is evident that the transversal temperature distribution of 

the substrate is primarily influenced by the fluid temperature inside the tubing, which is 

embedded by approximately three quarters of its circumference. Thus, the region of the heat 

sink closer to the inlet passage obtains lower temperatures. In fact, the effect of the fluid 

temperature on the substrate is manifested in a more regular manner in the four-pass 

configuration (Figure 12b). 

 

4.4 Effect of the tube embedment 

 

The relative position of the tube center to the heated surface (Y
*
=0) is a manufacturing 

parameter that can significantly differentiate the temperature field in the heat sink and is 

expected to have a significant effect on its thermal performance. In order to elucidate the 

effect of the tube embedment into the substrate, two additional variations of the cooling 

configuration have been examined, similar to the two-pass and four-pass configurations of 

Figure 1, with the difference that the center of  the tubing cross section is located exactly at 

the middle of the substrate  (Y
*
=0.5).  Figure 13 depicts the vertical non-dimensional 

temperature profiles at two and four characteristic span-wise (X
*
) locations, respectively, 

along the heat sink streamwise mid-length (Z
*
=30.25), in order to illustrate the temperature 

distribution in both the solid and the fluid regions of the heat sink. Heat is distributed through 

conduction in the lower and upper solid parts of the cooling device and through convection in 
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the fluid section inside the tubing. Regarding the fluid region, it can be seen that the 

temperature profiles remain invariant regardless of the tubing position and, regarding the 

four-pass configuration, the fluid is being heated at a higher rate in the two passages 

(X
*
=2.63 and X

*
=0.88) closer to tube inlet, as revealed by the temperature difference 

between consecutive profiles in Figure 13b. 

The discernible linear parts of the profiles clearly show that the substrate temperature also 

increases in the design employing fully embedded (FE) tubes, as the outer vertical side closer 

to the outlet is approached, i.e. the X
*
 coordinate decreases.  Furthermore, it is evident that 

the fully embedded tubing leads to reduced temperature at the lower part of the substrate and 

consequently at the heated bottom side (Y
*
=0) as well, which is an indication of enhanced 

thermal performance. The transversal temperature distribution at the substrate, which is not 

presented for brevity, has a similar form to the designs employing partially embedded tubes 

(see Figure 13). Nonetheless, the absolute temperature values are decreased in the 

configurations employing fully embedded tubes.  

  

4.5 Local Nusselt number distribution 

 

The quantification of the heat transfer rate is limited to the straight sections of the 

serpentine tube, as the curved sections lay outside of the substrate active area. The local 

Nusselt number values presented are based on the averaged -over the tube circumference- 

values of the convective heat transfer coefficient at each streamwise location z: 
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fw 
           (2) 

 

In the above expression,  zq  and wT are the circumferentially averaged heat flux and tube 

wall temperature values, respectively, whereas  zT f  is the local fluid bulk mean (mixing 

cup) temperature defined as: 
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with w  the mean flow velocity inside the tube and Acs the tube cross sectional area. 

Figure 14 presents the local Nusselt number distribution in the straight sections of the 

cooling configurations considered. For the longest portion of the straight sections in both 
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configurations, the Nusselt number exhibits constant, fully developed values. The fully 

developed value is slightly different in each passage, a behavior that should be attributed to 

the non-uniform heating, as the temperature distribution in the substrate is fully three 

dimensional. Furthermore, the designs employing fully embedded tubes attain higher Nusselt 

number values, by as much as 5% in the four-pass configuration. The temperature non-

uniformity is higher in the substrate of the designs with fully embedded tubes and non-

uniform heating conditions have been reported to enhance heat transfer [32].   

Figure 14 also reveals that the Nusselt number distribution in the first passage of both 

configurations exhibits a minimum point right after the thermal entrance region and 

subsequently redevelops to a fully developed value. This behavior is in contrast to the 

monotonically decreasing one typically encountered in tubes subject to a constant wall 

temperature or heat flux and is due to the conjugate effects. The reduced heat transfer in the 

early section is explained by taking into consideration the low substrate temperature in the 

specific region (see also Figure 12), which leads to a decreased temperature gradient. The 

local Nusselt number obtains high values in the tube section immediately downstream of the 

bend and more specifically at the range Z
*
=50-60 in the two-pass (Figure 14a) and Z

*
=45-60 

in the four-pass configuration (Figure 14b), respectively. This heat transfer enhancement (by 

nearly a factor of 1.5) is due to the effect of the secondary flow, which constantly feeds the 

circumferential boundary layer area with colder fluid from the tube core. It is justifiable, that 

the high heat-transfer region has a greater extent in the four-pass configuration due to the 

higher intensity of the recirculation (also see Figure 6). It is also interesting to note that in the 

region Z*=30-50 in Fig. 14a the values for the first and second pass almost overlap and 

exhibit a flat distribution, for both the FE and PE cases, indicative of a thermally fully-

developed region, unaffected from any end or curvature effects. A close look at Figures 14a-

c also reveals that the local Nusselt number distribution exhibits an undershoot in the 

subsequent tube section, where the longitudinal vortices have decayed completely. The 

region in question extends approximately to the streamwise distance Z
*
=40-50 in the two-

pass configuration and Z
*
=35-45 in the four-pass configuration, respectively. A similar 

undershoot has also been observed by Ohadi and Sparrow [22] who attributed it to flow re-

transition to the laminar regime. The findings of the present study support their assumption, 

as can be established by comparing Figures 7c and 14. It is evident that the turbulent kinetic 

energy values are considerably reduced in the region of the Nusselt number undershoot.  
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4.6 Comparative analysis 

 

A number of criteria have been selected in order to elucidate each aspect of the heat-sink 

performance. A suitable measure for the quantification of the thermal performance of a 

cooling device is the thermal resistance. The overall thermal resistance is determined on the 

basis of an equivalent resistance circuit: 
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      (4) 

 

where the three terms on the right hand side of Eq. (4) correspond to the conductive, caloric 

and convective individual resistances. In addition, the temperature non-uniformity at the 

heated surface (Y
*
=0) is estimated through the standard deviation of temperature. 

Hydrodynamic performance can be adequately represented through the required pumping 

power pVPpump    which, for a constant flow rate, is determined by the pressure drop 

values. Besides, an indication of the overall performance of a heat exchanging device is the 

heat transfer to pressure drop ratio [34]. In the present study, this overall performance index 

is calculated in a non-dimensional form as 
f

Nu
PI ove , where oveNu  is the overall mean 

Nusselt number and f is the friction factor calculated through  22 wLpDf i  . 

From the point of view of the second-law of thermodynamics, the cooling devices can be 

evaluated through the concept of the entropy generation rate, which is equivalent to the 

destruction of available work. The entropy generation rate per unit length of a duct having an 

arbitrary cross-section can be calculated using averaged quantities regarding heat transfer and 

fluid friction [35]: 
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where q  is the heat rate per unit length and St  is the mean overall Stanton number. The two 

terms on the right hand side of Eq. (5) correspond to the contribution of heat transfer and 

friction losses, respectively, to the entropy generation rate. The discrete contribution of each 
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term to the total entropy generation rate can be designated through the Bejan 

number
gen

,gen

S

S
Be 






  .  

The comparative results of the considered cooling configurations with regard to the above 

mentioned criteria are summarized in Table 3.The two-pass configuration is superior in terms 

of hydrodynamic performance, as the length of the employed serpentine tube is less than half 

in comparison to the four-pass. Besides, the existence of two additional recirculation regions 

in the four-pass configuration also induces further pressure losses. In addition, the two-pass 

configurations exhibit higher temperature uniformity in the substrate bottom surface. As less 

substrate area is occupied by tubes in comparison to the four-pass designs, the effect of the 

conductive substrate which tends to homogenize the temperature distribution is more 

significant leading thus to greater uniformity. It must also be noted that full embedment of the 

tubing deteriorates temperature uniformity in both configurations. However, the four-pass 

configurations exhibit much smaller values of the thermal resistance, which is a far more 

critical parameter for the heat-sink performance in comparison to temperature non-

uniformity. Especially, the design employing fully embedded tubes achieves the minimum 

value, as it offers the largest area available for heat transfer in comparison to the other 

configurations. The values of the performance index are within 5% for all the considered 

configurations and do not seem appropriate in the specific case for drawing a meaningful 

conclusion 

Regarding the exergetic performance, the four-pass configurations achieve much lower 

values of the entropy generation rate primarily due to the distribution of the same heat rate to 

four, instead of two, straight tube sections (see Eq. 5). The four-pass configuration with fully 

embedded tubes obtains the lowest value of the entropy generation rate, also due to the higher 

value of the overall Nusselt number it achieves. Besides, the values of the Bejan number 

illustrate the fact that the values of the total entropy generation rate are primarily determined 

by the first term on the right hand side of Eq. 5 corresponding to heat transfer. It must be 

noted that the effect of the secondary flow in Eq. 5 is included in the Stanton number and the 

friction factor f regarding the heat-transfer and the friction-loss terms, respectively. 
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5. CONCLUSIONS 

 

The turbulent flow and conjugate heat transfer in two tube-on-plate cooling devices was 

investigated by means of a three dimensional numerical model.  A two-pass and a four-pass 

configuration were investigated with flow conditions characterized by Dean numbers equal to 

2763 and 3867 respectively. It was found that a pair of localized vortices close to the inner 

wall, a pair of Dean vortices and a pair of oblique vortices at the tube center emerge within 

the bends of both configurations and persist in the adjacent downstream, straight-tube 

sections. The same vortex structures were also visible over a wide range of Reynolds 

numbers after extending the investigation into the laminar flow regime (Re=400-1600). In 

addition, a rapid decrease of the turbulent kinetic energy indicating a flow tendency to re-

transition to the laminar flow regime was detected in the straight tube section downstream of 

the bend. Besides, it was established that an increase in the Reynolds number and/or δ have 

an independent effect on the downstream turbulent kinetic energy distribution and tend to 

lower the value of the minimum turbulent kinetic energy point.  

In the substrate area, it was found that the maximum temperature occurs at the side vertical 

wall close to the tube outlet in both configurations. It was furthermore proved that full 

embedment of the tubing into the substrate reduces the substrate temperature. The local 

Nusselt number distributions demonstrated that the heat transfer rate is significantly enhanced 

in the regions subject to the influence of the longitudinal vortices, followed by an undershoot 

in the regions adjacent to them due to reduction in turbulent kinetic energy.  

The comparative evaluation showed that the two-pass configurations were superior in terms 

of hydrodynamic performance and temperature uniformity. On the other hand the four-pass 

configurations obtained much lower values of the thermal resistance and the entropy 

generation rate per unit length. The four-pass configuration with fully embedded tubing 

exhibited the highest exergetic performance, which means that the available work loss due to 

the combined effect of thermal resistance and pressure drop obtains a lower value in 

comparison to the other configurations.   
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Tables 
 

Table 1. Imposed boundary conditions (BC) 

  Hydrodynamic BC Thermal BC 

Inlet  iww  , 0u , 0v   KTT if 298  

Outlet  0avep  0
2

2






z

T f
 

Fluid-wall Interface  0 wvu  - 

Bottom surface  -  228333 m/W''q
y

T
k w

s 



  

Other outer surfaces  - 0





n

T
k w

s  

Interface between 

successive domains 
 - 

intfintw TT  ,

int

f

f

int

w
s

n

T
k

n

T
k









  

   

 
Table 2. Grid independence study 

Grid Coarse Intermediate Fine 

Elements 1.2410
6
 2.6110

6
 4.0610

6
 

Pressure drop [Pa] 1804.75 1835.50 1847.05 

Tmax [Κ] 309.68 309.62 309.60 

Nu [-] 50.12 50.88 51.35 

 

 
Table 3. Comparative results for the different cooling configuration. 

 two-pass (PE) two-pass (FE) four-pass (PE) four-pass (FE) 

Rth [K/W] 0.0232 0.0196  0.0158  0.0140 

ΔP [Pa] 859.56 859.56 1835.48 1835.48 

StDev T [Κ] 0.524 0.678 0.761 0.925 

PI [-] 4490.41 4605.00 4378.32 4614.42 

genS   [W/mK] 0.0808 0.0788 0.0219 0.0209 

Be 0.966 0.965 0.865 0.858 
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Figure Captions 

 
Figure 1. Geometrical layout of the cooling configurations: (a) two-pass, (b) four-pass.  

Figure 2. Computational grid: (a) detail view of the bends area and (b) sectional view.  

Figure 3.  (a) Comparison of the fully developed velocity profiles calculated in the present study 

against those available in Ref. [5] for turbulent flow at Re=25000. (b-e) Comparison of the 

numerically calculated horizontal velocity profiles against the experimental results of Ref. [6] for 

laminar flow at Re=400: (b), (c) s/2R=0.5 and (d), (e) s/2R=5.0.   

Figure 4. Non-dimensional axial velocity profiles at the tube horizontal symmetry plane downstream 

of the bend: (a) two-pass and (b) four-pass configuration. Three dimensional streamlines at the area of 

the bends: (c) two-pass and (d) four-pass configuration. 

Figure 5. Wall shear stress distribution at the wall on the tube horizontal symmetry plane: (a) two-

pass and (b) four-pass configuration. 

Figure 6 Contour plots of the vorticity projection normal to cross-stream planes in the curved and 

straight downstream section: (a) two-pass configuration, (b) four-pass configuration. (c) Cross-

sectional averaged value of the total vorticity magnitude in the tube curved section. 

Figure 7. Contour plots of the turbulent kinetic energy in the tube cross section: (a) two-pass 

configuration, (b) four-pass configuration. (c) Distribution of the average turbulent kinetic energy as a 

function of the unwound coordinate S
*
. ( 50600 .S*  ).  

Figure 8. Secondary-flow patterns at a cross-stream plane (φ=90
ο
) as a function of the Reynolds 

number (two-pass configuration). 

Figure 9. Two-pass configuration: (a) Cross-sectional averaged values of the vorticity magnitude at 

the tube curved section, (b) maximum vorticity magnitude of the distinct vortical structures at a 

sample plane (φ=90
ο
) vs. the Reynolds number. 

Figure 10.  Two-pass configuration: distribution of the average turbulent kinetic energy on cross-

stream planes as a function of the unwound coordinate S
* 
( 50600 .S*  ). 

Figure 11. Temperature contour plots in the fluid region (solid top surface shown at Y
*
=1): (a) 

upstream tube section of the two-pass configuration, (b) downstream tube section of the two-pass 

configuration, (c) downstream tube section of the four-pass configuration (second passage), (d) at the 

passages of the four-pass configuration. 

Figure 12. Temperature contour plots at various heights within the substrate area of the heat sink: (a) 

two-pass and (b) four-pass configuration. 

Figure 13. Vertical temperature profiles at the heat sink streamwise mid-length (Z*=30.25): (a) two-

pass and (b) four-pass configuration. 

Figure 14. Local Nusselt distribution: (a) two-pass configuration, (b) four-pass configuration, first 

and third passage (c) four-pass configuration, second and fourth passage. 
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Figure 1. Geometrical layout of the cooling configurations: (a) two-pass, (b) four-pass. 
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Figure 2. Computational grid: (a) detail view of the bends area and (b) sectional view. 
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Figure 3.  (a) Comparison of the fully developed velocity profiles calculated in the present study 

against those available in Ref. [5] for turbulent flow at Re=25000. (b-e) Comparison of the 

numerically calculated horizontal velocity profiles against the experimental results of Ref. [6] for 

laminar flow at Re=400: (b), (c) s/2R=0.5 and (d), (e) s/2R=5.0.   
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Figure 4. Non-dimensional axial velocity profiles at the tube horizontal symmetry plane downstream 

of the bend: (a) two-pass and (b) four-pass configuration. Three dimensional streamlines at the area of 

the bends: (c) two-pass and (d) four-pass configuration. 
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Figure 5. Wall shear stress distribution at the wall on the tube horizontal symmetry plane: (a) two-

pass and (b) four-pass configuration. 
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Figure 6. Contour plots of the vorticity projection normal to cross-stream planes in the curved and 

straight downstream section: (a) two-pass configuration, (b) four-pass configuration. (c) Cross-

sectional averaged value of the total vorticity magnitude in the tube curved section 
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Figure 7. Contour plots of the turbulent kinetic energy in the tube cross section: (a) two-pass 

configuration, (b) four-pass configuration. (c) Distribution of the average turbulent kinetic energy as a 

function of the unwound coordinate S
*
 ( 50600 .S*  ).  
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Figure 8. Secondary-flow patterns at a cross-stream plane (φ=90

ο
) as a function of the Reynolds 

number (two-pass configuration). 
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Figure 9. Two-pass configuration: (a) Cross-sectional averaged values of the vorticity magnitude at 

the tube curved section for various Reynolds numbers values, (b) maximum vorticity magnitude of the 

distinct vortical structures at a sample plane (φ=90
ο
) vs. the Reynolds number. 
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Figure 10.  Two-pass configuration: distribution of the average turbulent kinetic energy on cross-

stream planes as a function of the unwound coordinate S
* 
( 50600 .S*  ). 
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Figure 11. Temperature contour plots in the fluid region (solid top surface shown at Y

*
=1): (a) 

upstream tube section of the two-pass configuration, (b) downstream tube section of the two-pass 

configuration, (c) downstream tube section of the four-pass configuration (second passage), (d) at the 

passages of the four-pass configuration. 
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Figure 12. Temperature contour plots at various heights within the substrate area of the heat sink: (a) 

two-pass and (b) four-pass configuration. 
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Figure 13. Vertical temperature profiles at the heat sink streamwise mid-length (Z*=30.25): (a) two-

pass and (b) four-pass configuration. 
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Figure 14. Local Nusselt distribution in the substrate area: (a) two-pass configuration, (b) four-pass 

configuration, first and third passage (c) four-pass configuration, second and fourth passage. 

 

 

 

 

 

 

 

 

 


