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57 ABSTRACT 

A technique that applies the task coverage exercised within 
a behavioral model of the design to the design itself, while 
simulating one or more test sequences. Since the behavior 
model is an accurate and complete program representation 
of the architectural specification of the hardware design, the 
test case coverage of the architecture is implied by the 
measurement of how well the behavioral model code has 
been exercised. The completeness of the coverage is deter 
mined by the test coverage criteria selected, including, for 
example, statement coverage. branch coverage, or path 
coverage. The more detailed the criteria, the greater the 
number of tests. 

8 Claims, 3 Drawing Sheets 
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METHOD FOR MEASURING 
ARCHITECTURAL TEST COVERAGE FOR 
DESGN WERFICATION AND BUILDING 

CONFORMAL TEST 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 

The present invention generally relates to hardware 
design verification, and, more particularly, to a technique 
that applies the task coverage exercised within a behavioral 
model of the design to the design itself, while simulating test 
sequences. 

2. Description of the Related Art 
The goal of hardware design verification is to ensure 

equivalence of the design and its architectural specification. 
This goal can be achieved either by formal proof or exhaus 
tive simulation. However, state of the art formal techniques 
and the complexity of designs renders the formal approach 
incomplete for large industrial applications. Moreover, 
exhaustive simulation is impractical as the test space is very 
large. 

In practice, design verification is carried out by simulating 
a small subset of selected test programs. These are run 
through the design simulation model, and the results are 
compared with the output predicted by the architecture 
simulation model, 

One of the problems associated with this design verifica 
tion process is the lack of appropriate measurable criteria for 
the quality of the test sets. Coarse measurements are used, 
but are of relatively little effect for the following reasons: (1) 
The number of tests, the number of simulation cycles, or 
similar quantities do not measure quality. As the full space 
of tests is quite large, only small fractions of possible tests 
(or cycles) can be simulated; (2) Test coverage on the 
implementation (e.g. the VHDL design files) does not guar 
antee compliance with the architecture. In particular, omis 
sions of functions required in the architecture cannot be 
detected; and (3) Statistical quality control gives only a 
coarse estimate of the verification process. Moreover, sta 
tistical quality control does not supply detailed data on the 
parts of the architecture and design that need better testing. 
The problem is compounded by the fact that modern 

hardware designs, such as microprocessors, have complex 
architectures. Typically, the processors include hundreds of 
instructions, several dozen resources, and complex func 
tional units. A typical architecture description may be sev 
eral hundred pages in length. 

Architecture verification plans are written in an effort to 
measure quality. These documents list the different functions 
of the architecture (and design) and the way to test them. The 
progress of the verification process is then measured or 
tracked relative to these documents by marking the entries 
after a test is completed. 
There are problems, however, with the verification plans 

themselves. First, they are informal and are not directly 
connected to either the architecture or the design. Second, 
the verification plans are prone to human error, mainly 
omissions, leading to incomplete verification. 
Unfortunately, the verification plans also do not provide any 
means to detect the omissions. 

Consequently, the design verification process may lack 
adequate quality control. One solution is to use a large 
number of tests to try and gain confidence in the quality of 
the design. The result is that design verification costs could 
be as much as one to two thirds of the price of developing 
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2 
the new hardware. For example, the verification of a RISC 
System/6000 processor required fifteen billion simulation 
cycles. The verification was conducted for more than a year 
using large design and simulation teams and employing 
hundreds of computers. 

Another solution is to use a carefully selected set of tests 
that are believed to be sufficient. While the computational 
resources needed in such a case are small, the quality of the 
verification is strongly dependent on the expertise of the test 
Writers. 

Both types of functional verification are expensive. 
Extensive testing in accordance with the first solution 
requires expensive computational resources, although less 
human expertise and resources are needed. Small, carefully 
selected tests in accordance with the second solution are 
relatively inexpensive to simulate, but require expensive 
expert human resources. 

In light of the foregoing, there exists a need for a method 
to evaluate the quality of hardware design verification from 
an architectural point of view. There also exists a need for 
quality functional verification methods that employ modest 
computational and human resources. 

SUMMARY OF THE INVENTION 

The present invention is directed to a procedure for 
measuring architectural test coverage for design verification 
which substantially obviates one or more of the problems 
due to the limitations and disadvantages of the related art. 

This invention makes use of software analysis techniques 
that apply the task coverage exercised within a behavioral 
model of the design to the design itself, while simulating one 
or more test sequences. Since the behavior model is an 
accurate and complete program representation of the archi 
tectural specification of the microprocessor, the test case 
coverage of the architecture is implied by the measurement 
of how well the software model code has been exercised. 
The completeness of the coverage is determined by the 

software analysis criteria selected (i.e., each conditional path 
of branch/select statements, dependent variable changes 
with each independent variable change, etc.) and this will 
determine the number of test cases required to provide full 
coverage. The more detailed the criteria, the greater the 
number of tests. This invention extends the use of software 
analysis techniques on the Behavioral Model Code to mea 
sure the coverage of the test cases with respect to the 
architectural definition for the hardware. 
To achieve these and other advantages and in accordance 

with the purpose of the invention, as embodied and broadly 
described, the invention provides for a method of measuring 
architectural test coverage for hardware design verification, 
having a behavioral simulator model representing the 
architecture, the method comprising the steps of: (1) pro 
viding test coverage criteria; (2) generating multiple tasks to 
be measured; (3) executing one of a set of test cases on the 
behavioral simulator model to determine which of the mul 
tiple tasks are covered by the test case and which of the 
multiple tasks are not covered by the test case; (4) repeating 
the executing step for the multiple tasks not covered by the 
test case until all test cases in the set are executed; and (5) 
identifying all tasks of the behavioral circuit model that were 
covered by the test cases. 

In another aspect, the invention further includes the step 
of identifying all test cases that cover any of the multiple 
tasks to produce a test set. 
The proposed solution is confined to the architectural 

aspects of the design verification process. In fact, the solu 



5,724.504 
3 

tion is independent of the actual realization of the 
architecture, that is, only the design's behavior is accessible 
(it is considered a "black box"). The design verification 
process must also include methods that focus on the design 
details, that is, the so-called "white-box" testing of the 
design. In particular, aspects that are not specified in the 
architecture model. for example, pipeline performance, 
should be verified. Behaviors that are important because of 
their specific implementation should be tested separately. 
The proposed solution is confined to hardware designs 

where software behavioral simulators and large numbers of 
tests are available. Hardware designs that are verified with 
out a software behavioral simulator as a reference model are 
not suitable for the suggested methods. In cases where only 
a small number of tests are available, the usefulness of the 
disclosed methods is limited. Small, in this context, typically 
means hundreds or thousands. 
While the detailed description refers to design verification 

for processors, the disclosed methods are applicable to any 
hardware design other than a processor that is verified with 
a behavioral simulator. 

It is to be understood that both the foregoing general 
description and the following detailed description are exem 
plary and explanatory and are intended to provide further 
explanation of the invention as claimed. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The foregoing and other objects, aspects and advantages 
will be better understood from the following detailed 
description of a preferred embodiment of the invention with 
reference to the drawings, in which: 

FIG. 1 illustrates a computer system that implements the 
process of the present invention; 

FIG. 2 provides a flow chart of one method of the present 
invention; and 

FIG. 3 provides a flow chart of a second method of the 
present invention. 

DETALED DESCRIPTION OF A PREFERRED 
EMBODIMENT OF THE INVENTION 

The methods of the present invention, measuring archi 
tectural test coverage for hardware design verification, oper 
ate on a computer system such as that shown in FIG. 1. 
While FIG. 1 illustrates a personal computer embodiment, it 
is understood that the computer system can also be a 
workstation, minicomputer, or mainframe type of computer. 
The computer typically includes a system unit 100 which 
contains a processor or CPU 102 and memory 104. The 
design verification program 106 operates on the processor 
and is resident in memory 104. The system will typically 
have a display device 108 such as a color or monochrome 
CRT, a keyboard 110, a pointing device 112 such as a mouse 
or trackball, a fixed disk drive 114, and optionally, a network 
connection 116 to a LAN or other network. 
A discussion of the various components of the method 

will now be described. 

Behavioral Simulators 
The basic rationale of the disclosed methods is that a 

behavioral simulator can be viewed as a formal, correct. and 
complete representation of the architecture. The reason is 
that in some verification processes the behavioral simulator 
is heavily used, debugged and tested early in the verification 
phase. The reason for such heavy reliance on simulators is 
that they are built to allow development of a software 
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4 
product to be run on the hardware, prior to completion of the 
design and the fabrication of the hardware itself. For 
example, operating systems are normally developed using 
behavioral simulators prior to the fabrication of the proces 
sors. Thus, the behavioral simulator becomes the de facto 
architecture specification as seen by the future users of the 
hardware. 

Behavioral simulators are also used during the design 
verification to produce expected results for test cases. In this 
way, behavioral simulators are used as the architecture 
definition for verification purposes. 

Behavioral simulators are relatively simple and concise. 
High level programming languages allow compact repre 
sentation of the architecture. Typically, the size of a behav 
ioral simulator, in terms of lines of code, is approximately 
one-tenth of a corresponding design. This allows relatively 
cost-efficient coverage evaluation. 

Software Coverage Criteria 
Assuming that a behavioral simulator is a representation 

of an architecture, the quality of the test sets may then be 
evaluated against the behavioral simulator. The present 
inventive procedure utilizes standard software coverage 
criteria for several reasons. One is that behavioral simulators 
are normally written in procedural programming languages. 
for example, C or C-H. Also, tools for test coverage evalu 
ation of programming languages are available. Moreover, 
there is a large amount of experience and research in 
evaluating the quality of software testing coverage criteria. 
For example, high coverage of the path criterion, discussed 
further below, is known to provide good testing of the code. 
A key distinction, however, is that the above tools and 

experience consider the behavioral simulator code as an 
implementation. In the present invention, the behavior simu 
lator code is a specification of the architecture rather than its 
implementation. 

Test coverage is the primary concept behind systematic 
software testing. Testing can be described as a process in 
which a large input domain is partitioned into classes such 
that testing a single representative of a class is deemed 
adequate. The aim of any systematic testing technique is to 
partition the input domain in a formal, algorithmic, and 
possibly automatic manner. This is in contrast to less sys 
tematic testing practices in which the input partitioning is 
done heuristically, usually in an ad-hoc manner, and manu 
ally. The lack of formal specifications for most software 
projects forces these input partitions to be defined in terms 
of programs. 

Test coverage, therefore, provides a way to induce a 
partitioning of the input domain from the program. The most 
basic software test coverage criteria is control flow 
coverage, in particular, statement coverage, branch 
coverage, and path coverage. 

Statement coverage requires that each statement of the 
program under test be executed at least once. Similarly, 
branch coverage requires that tests exercise each branch in 
the program. For example, an IF(CONDITION) must be 
tested twice; once when the CONDITION is TRUE and 
again when the CONDITION is FALSE. For structured 
programs, a test suite that is adequate for branch coverage 
also satisfies statement coverage. 

These statement and branch criteria have become the 
common minimal requirement for program testing. More 
sophisticated methods have been implemented in test cov 
erage evaluators. Examples include evaluating the number 
of executions for each statement (rather than just Zeroone 
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marks per statement), and requiring that a branch be taken 
as a result of its multi-condition subterms. 

Path coverage, still a control flow criterion, is much more 
comprehensive than branch coverage. It requires that each 
control path induced by the program be exercised. Program 5 
paths are induced by branches and loops and their numbers 
tend to grow exponentially with the size of the program. 
Achieving path coverage has been shown to be impractical 
for actual programs. 
A second family of software coverage criteria is data flow 

coverage. For example, the definition/use criterion requires 
that each control path from a variable definition to the usage 
of this definition be exercised at least once. The number of 
data flow criteria has been shown to grow linearly with the 
size of the program. Data flow criteria have not yet been 
included in commercial test evaluation systems. 
The third family of criteria stems from hardware produc 

tion testing and is called mutation coverage. A mutation is a 
syntactical alteration of the program under test such as the 
replacement of a plus sign with a minus sign in an arithmetic 
expression. When a test that is fed to both the original and 
mutated programs produces different results, the mutation is 
considered covered by the test. 

Large sets of mutations representing common faults intro 
duced by programmers have been defined for some pro 
gramming languages (e.g., Fortran and C). Applying all 
possible single-mutations to a small program results in 
thousands of mutations. 

Coverage Tasks 
When a specific coverage criteria is considered for a 

specific program, the result is a set of Coverage Tasks that 
should be evaluated. Consider, for example, the following 
illustrative program; 

L1: if P1 then S1 
L2: else S2 
L3: if P2 then S3 
La: else S4 

where L1-LA are statement labels, P1 and P2 are inputs, and 
S1-S4 are actions the program does. When the coverage 
criterion "statement coverage" is required for this program. 
four coverage tasks are to be evaluated: 

coverage task-1: L1 is executed by a test 
coverage task-1: L2 is executed by a test 
coverage task-1: L3 is executed by a test 
coverage task-1: LA is executed by a test 
A test set that covers these four coverage tasks may be: 
test-1: P1=true P2=true 
test-2: P1=false P2=false 
In this example each test covers two coverage tasks. 

Test-1 covers coverage tasks 1 and 3 and test-2 covers tasks 
2 and 4. Other test sets may provide full statement coverage 
for the example program, that is, cover all coverage tasks, 
but all of them must include at least two tests. 

Consider the situation when the program has not been 
tested at all. Here, the coverage is empty and all four 
coverage tasks are non-covered. When test-1 is executed it 
contributes to the coverage-tasks 1 and 3 are removed from 
the list of non-covered tasks and only tasks 2 and 4 are 
considered non-covered. When test-2 is executed, it also 
contributes to the coverage-tasks 2 and 4 are removed from 
the list of non-covered tasks and this list becomes empty. 

If a third test is executed at this stage (e.g. P1=true 
P2=false), it does not contribute to the coverage because it 
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6 
does not remove any non-covered tasks. Note that in this 
example there are no more non-covered tasks to be removed. 
so any subsequent test would not contribute to the coverage. 
It may also be the case that non-covered tasks still remain. 
but a test does not remove any of them. 
When the coverage criterion "path coverage" is required 

for the above illustrative program, four coverage tasks are to 
be evaluated: 

coverage task-1: L1 and L3 are executed by the same test 
coverage task-1: L1 and LA are executed by the same test 
coverage task-1: L2 and L3 are executed by the same test 
coverage task-1: L2 and La are executed by the same test 
A test set that covers these four coverage tasks may be: 
test-1: P1=true P2=true 
test-2: P1=true P2=false 
test-3: P1=false P2strue 
test-4: P1=false P2=false 
Four tests are needed for the path criterion, that is, to 

cover the last coverage tasks. Each of the tests covers only 
one coverage task. For example, test-2 covers task-2. No 
Smaller test-set can cover all paths in the example program. 
For the two inputs defined (P1 and P2) the above test is 
exhaustive since it exercises all the combinations of inputs. 
Note that the path criterion is more demanding than the 
statement criterion. 
As an illustration, consider for example a very simple 

architecture containing two types of instructions: 
op1 flag11 flag12 input1 output1 
op2 flag21 flag22 input2 output2 

where the flags are boolean, and the inputs and outputs are 
of the same (unspecified) type. A design (i.e., an implemen 
tation or realization of the architecture) conforms if all 
sequences of instruction instances produce correct results. 
Results are considered correct if the (unspecified) machine 
state produced by the design is the same as the one predicted 
by a behavioral simulator. 
To keep the following example simple, it is assumed that 

the instructions have no side effects (i.e., an instruction 
changes only its output) and that the outputs are dependent 
only on the flag values. Thus each of the actions (S1, S2, S3. 
S4, R1, R2) is a non-conditional manipulation of the input 
and it produces the output. The strings L0. L1, L2. M1, M2. 
M3, M4. No. N1, and N2 are statement labels: 

MAIN (test) 
while (test is not empty) 
L0: read from test (op, flag1, flag2, input, output) 
Ll: if (op = op1) call function.1 (flag1, flag2, input, output) 
L2: if (op = op2) call function2 (flag1, flag2, input, output) 
end while 
end MAIN 
FUNCTION1 (flag1, flag2, input, output) 
M1: if (flag1) do S1 
M2; else do S2 
M3: if (flag2) do S3 
M4: else do S4 
end FUNCTION1 
FUNCTION2 (flag, flag2, input, output) 
NO: 
N1: if (flag1) do R1 
N2: if (flag2) do R2 
end FUNCTION2 

The following are examples of requirements from a 
verification plan and their interpretation as coverage criteria 
of different parts of the behavioral simulator: 

Test each of the instructions at least once. This can be 
interpreted as statement coverage on MAIN. that is, cover 
ing the following statements: L0, L1, L2. 
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Test that sequences of two instructions are correct. This 
can be interpreted as path (of length 3) coverage on MAIN. 
that is, cover the following paths: LO, L1, L2; L0. L2. L1; 
L0, L1, L1; and L0, L2. L2 

Test all the values of op1 flags. This can be interpreted as 
statement coverage on FUNCTION1, that is, covering the 
following statements: M1, M2, M3, M4. 

Test all the combinations of op1 flags. This can be 
interpreted as path coverage on FUNCTION1, that is, cov 
ering the following paths: M1M3, M1M4, M2M3. M2M4. 

Test all the values of op1 and op2 flags. This can be 
interpreted as statement coverage on FUNCTION1, that is, 
covering the following statements: M1, M2, M3, M4, N1, 
N2. 

Test all combinations of op1 flags and separately of op2 
flags. This can be interpreted as path coverage on FUNC 
TION1 and FUNCTION2, that is, covering the following 
paths: M1M3, M1 M4, M2M3, M2M4. No, NON1, NON2, 
NO N1 N2. 

Test all combinations of op1 flags and op2 flags. This can 
be interpreted as path coverage on FUNCTION1 and on 
FUNCTION2 when seen as a single graph, that is, covering 
the following paths: 
M1M3 NO) 
M1M3 NO N1 
M1 M3 NO N2 
M1M3 NO N1 N2 
M1 M4 NO 
M1 M4. NON 
M1 M4. NO N2 
M1 M4. NON N2 
Test sequences of two instructions with all combinations 

of op flags and op2 flags. This can be interpreted as path 
coverage on MAIN, FUNCTION1, and FUNCTION2 when 
seen as a single graph, that is, covering the following paths: 
L0 L1 M1 M3 L2 NO 

LO L1 M1 M3 L2 NO N2 

LO L2 NO L1 M1M3 
L0 L2 NO N1 L1 M1M3 

LO L2 NO N1, N2 L1 M1M3 
To conclude, this example demonstrates how standard 

verification tasks are mapped to coverage requirements on 
different parts of the behavioral simulator. 

Architecture Conformance (AC) and Architecture 
Conformance Test-Set (ACT) 

The process of the present invention measures the quality 
of the verification from an architectural standpoint by evalu 
ating test cases with respect to software coverage criteria on 
the behavioral simulator. Given sets of test cases, it also 
builds architecture conformance test-sets according to the 
disclosed measures. These procedures give well-defined 
architecture conformance measures and build relatively 
small test sets. It allows good quality functional verification 
with modest computational and human resources. 
The first method of the invention (FIG. 2) measures the 

Architecture Conformance (AC), which is a detailed report 
containing the covered and non-covered tasks. The input set 
of tests (T), including multiple individual tests (t), is evalu 
ated with respect to an architecture represented by a behav 
ioral simulator (BS) and a set of software test coverage 
criteria (C). The output is an Architecture Conformance 
(AC) measure. 
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8 
The following is a free style flow of the method: 

1. Coverage: =empty 
2. Non-Covered Tasks: =produced from BS and C 
3. Choose t in T; T =Tt 
4. Execute t on BS 
5. New-Coverage:=Non-Covered-Tasks which are covered 

during step (3) 
6. Coverage: =Coverage--New-Coverage 
7. Non-Covered-Tasks: =Non-Covered-Task-New 

Coverage 
8. If Non-Covered-Tasks and T are not empty go-to step (3) 
9. (else) AC=(Coverage, Non-Covered-Tasks) 
10. Terminate 
The free style flow is generally depicted in FIG. 2. The 

tasks 22 are generated from the test coverage criteria 21 and 
the behavioral simulator. A test case (t) from test set 23 is 
then executed on the tasks 22. In decision block 24, any 
tasks that are covered by the test case (t) are identified 25 and 
become part of the Architecture Conformance (AC) report 
28. Additional test cases (t) are executed on the remaining 
non-covered tasks in block 22, with tests contributing to the 
coverage being identified 25 with each test sequence. until 
all test cases in the test set 23 have been executed 26. After 
all the test cases are executed, the non-covered tasks remain 
ing in block 22 are identified 27. and become part of the 
Architecture Conformance (AC) report 28. In the 
alternative, all of the tasks 22 may be covered before all of 
the test cases (t) are executed. In that case, there will be no 
non-covered tasks in the AC. 

In the second method of the present invention (FIG. 3), an 
Architecture Conformance Test-Set (ACT) is produced. 
Using a set of test cases (T), a behavioral simulator (BS), 
and a set of software test coverage criteria (C) as inputs, an 
ACT is produced as follows: 

1. Each test (t) of the test set is given as input (i.e. a 
stimuli) to the behavioral simulator. 

2. While the behavioral simulator is executing a test, 
coverage is recorded. The coverage tasks, resulting from the 
behavioral simulator code and the coverage criteria, are 
evaluated with respect to this test. 

3. A test that contributes to the coverage is included in the 
ACT. Such a test is one that covers a task previously 
non-covered. Tests that do not contribute to the coverage are 
not included in the ACT. 
As an illustration, the following is free style control flow 

of the method: 
. ACT: =empty 
Non-Covered-Tasks: = produced from BS and C 

. Chooset in T; T =T-t 
Execute t on BS 
New-Coverage: =Non-Covered-Tasks which are covered 
during step (3) 

. If New-Coverage is not empty ACT: =ACT+t 
. Non-Covered-Tasks: =Non-Covered-Task-New 
Coverage 

8. If Non-Covered-Tasks and T are not empty go-to step (3) 
9. (else) Terminate 
The free style flow is generally depicted in FIG. 3. The 

method is essentially the same as that discussed with regard 
to FIG. 2, with like reference numbers referring to the same 
functions. The difference is that after a covered task is 
identified in block 25, the test case (t) covering the task is 
also identified 31. All of the test cases (t) that contribute to 
coverage are then grouped together to form an Architecture 
Conformance Test-Set (ACT) 32 for future use. 
The above methods are useful whenlarge numbers of tests 

are used in the verification process. The second method 

g 



5,724.504 
9 

building an ACT-is essentially a way to prefer high 
coverage tests over low-coverage ones and it is not needed 
when the number of tests is small. The first method 
measuring AC-is useful even if the number of tests is not 
large. 
The Architecture Conformance Test-Set obtained by the 

second method has the following characteristics: 
1. It is a set of tests which guarantee a well-defined level 

of testing of the design under verification. 
2. The method is independent of the specific design 

architecture, design, and test format. Thus, the same archi 
tecture conformance test-set can be applied to designs 
implemented in various ways, languages, and environments. 
Any design verification process that uses a behavioral simu 
lator will be able to use the method. 

3. By using basic software criteria, the size of the test sets 
can be kept relatively small. For example, for a PowerPC 
processor (PowerPC is a trademark of IBM Corporation) 
evaluated using branch coverage, the ACT contains a few 
thousand tests. 

4. Smaller ACTs that are built with basic coverage criteria 
are ideal for regression sets. These are tested frequently to 
ensure that small changes to the design have not changed its 
architectural behavior. 

5. ACTs can be defined for different levels of quality and 
size. Using basic coverage criteria gives small sets; using 
more rigorous coverage criteria increases the set size and 
enhances quality. In general, the complexity of the coverage 
criteria controls the size and quality of the resulting ACTs, 

6. ACTs are uniform with respect to the architecture; there 
is no biasing towards particular functions of the architecture. 
ACTs are dependent only on the behavioral simulator and 
coverage criteria; when the behavioral simulator covers the 
architecture uniformly, so will the resulting ACTs. 

7. ACTs are best suited for single instruction testing 
during processor verification. However, selecting different 
coverage criteria can also test sequences of instructions. By 
requiring high complexity coverage criteria (e.g., the path 
criterion described above) on parts of the simulator that 
control the execution of the instructions, coverage of 
sequences may be achieved. 

8. The method of the present invention leaves the imple 
mentor freedom to use any type of tests. For example, many 
simple tests can achieve similar coverage as a smaller 
number of more complex tests. However, the observability 
of test results may be the reason to choose simpler tests. 

9. The resulting ACT depends on the order the tests are 
chosen (step 3 in the method control flow). Order 
independent ACTs can be obtained by an expensive varia 
tion of the disclosed method. 
The disclosed methods thus provide a formal and auto 

matic process for achieving coverage and quality from an 
architectural standpoint, as opposed to the informal and 
manual processes of the prior art. In addition, human errors 
(or omissions) inherent in the manual process are elimi 
nated. 
The invention analytically measures the test set coverage 

against the behavioral model which represents the architec 
tural specification in program format. This reduces the 
number of tests required and focuses the expert human 
resources on the areas lacking coverage. It ensures high 
quality in the verification process while providing a cost 
effective solution. 
While the invention has been described in terms of the 

embodiments described above, those skilled in the art will 
recognize that the invention can be practiced with modifi 
cation within the spirit and scope of the appended claims. 

5 

10 

15 

20 

25 

30 

35 

45 

50 

55 

65 

10 
Having thus described my invention, what we claim as 

new and desire to secure by Letters Patent is as follows: 
1. A computer-implemented method of generating test 

vectors for hardware design verification, having a behavioral 
simulator model representing an architecture corresponding 
to the hardware design, the method comprising the steps of: 

generating said behavioral simulator model, said model 
comprising a plurality of conditional branch statements 
and logical function statements conditional thereon; 

generating a set of test input cases corresponding to said 
behavioral simulator model; 

receiving and storing a test coverage criteria, said test 
coverage criteria establishing a criteria which an execu 
tion of a sub-plurality of said conditional branch state 
ments and of said function statements must meet to 
constitute an execution of said behavioral simulator 
model; 

generating a plurality of logical coverage tasks, each of 
said logical coverage tasks having an executable sub 
plurality of said conditional branch statements and said 
logical function statements, and each of said plurality 
of tasks being in accordance with said received test 
coverage criteria; 

for each test input case in said set of test input cases, 
selecting the test input case and executing the selected 
test input case on the behavioral simulator model; 

determining which of said plurality of logical coverage 
tasks are executed by each test input case executed on 
the behavioral simulator model; and 

identifying all of the logical coverage tasks of the behav 
ioral simulator model that were not executed by the test 
input cases, based on a repeating of said determining 
step for each test input case. 

2. A method as in claim 1 wherein the test coverage 
criteria is one or more of statement coverage, branch 
coverage, and path coverage. 

3. A method as in claim 1, wherein the test coverage 
criteria is data flow coverage. 

4. A method as in claim 1, wherein the test coverage 
criteria is mutation coverage. 

5. A method according to claim 1, further including the 
steps of: 

identifying all test input cases that cause execution cover 
any of the plurality of logical coverage tasks; and 

generating a reduced set of test input cases based on the 
test input cases identified by said identifying step, 

6. A programmable computer operable for performing a 
method of measuring architectural test coverage for hard 
ware design verification, wherein a behavioral simulator 
model represents an architecture corresponding to the hard 
ware design, comprising: 

means for generating said behavioral simulator model. 
said model comprising a plurality of conditional branch 
statements and logical function statements conditional 
thereon; 

means for generating a set of test input cases correspond 
ing to said behavioral simulator model; 

means for receiving and storing a test coverage criteria, 
said test coverage criteria establishing a criteria which 
an execution of a sub-plurality of said conditional 
branch statements and of said function statements must 
meet to constitute an execution of said behavioral 
simulator model; 

means for generating a plurality of logical tasks, each of 
said logical tasks having an executable sub-plurality of 
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said conditional branch statements and said logical 
function statements, and each of said plurality of tasks 
being in accordance with said received test coverage 
criteria 

means for selecting each test input case in said set of test 
input cases and executing said selected test input case 
on the behavioral simulator model; 

means for determining which of said plurality of logical 
coverage tasks are executed by each test input case 
executed on the behavioral simulator model; and 

means for identifying all of said input test cases that cause 
execution of any of the plurality of tasks based on an 
output of said means for determining; and 

means for producing a reduced test set consisting of all of 
the test input cases that cause execution of any of the 
plurality of tasks, based on an output of said means for 
identifying. 

7. A computer-implemented method of generating test 
vectors for hardware design verification, having a behavioral 
simulator model representing an architecture corresponding 
to the hardware design, comprising the steps of: 

generating said behavioral simulator model. said model 
comprising a plurality of conditional branch statements 
and logical function statements conditional thereon; 

generating a set of test input cases corresponding to said 
behavioral simulator model; 

receiving and storing a test coverage criteria, said test 
coverage criteria establishing a criteria which an execu 
tion of a sub-plurality of said conditional branch state 
ments and of said function statements must meet to 
constitute an execution of said behavioral simulator 
model; 
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12 
generating a plurality of logical coverage tasks, each of 

said logical coverage tasks having an executable sub 
plurality of said conditional branch statements and said 
logical function statements, and each of said plurality 
of tasks being in accordance with said received test 
coverage criteria; 

initializing all of said logical coverage tasks to a condition 
of having not been executed; and 

repeating the steps of 
(1) selecting a test input case and executing the selected 

test input case on the behavioral simulator model, 
and 

(2) determining whether any of said plurality of logical 
coverage tasks are executed by the selected test input 
case for a first time subsequent to said initializing 
step and, if any are so executed for a first time, 
determining which of the test input cases are so 
executed, 

until all of said plurality of logical coverage tasks are 
executed or all of said test input cases are selected and 
executed, whichever occurs first. 

8. A method according to claim 7, further comprising the 
step of 

identifying all of said plurality of test input cases which 
cause any of said plurality of logical coverage tasks to 
be executed for a first time, based on said determining 
step. 


