
United States Patent (19)
Aharon et al.

54

75

73)

21

22

(51)
52
58)

56)

METHOD FOR MEASURING
ARCHITECTURAL TEST COVERAGE FOR
DESGN WERFCATION AND BUILDING
CONFORMAL TEST

Inventors: Aharon Aharon, Doar Na Misgav,
Israel; Laurent Fournier, South
Burlington, Vt.; Alon Gluska, Kiriat
Yam, Israel; Yossi Lichtenstein,
Ramat-Gan, Israel; Yossi Malka, Haifa,
Israel

Assignee: International Business Machines
Corporation, Armonk, N.Y.

Appl. No.: 457,903
Filed: Jun. 1, 1995

Int. Cl. G06F 11/00; G06G 7/48
U.S. C. 395/183.09: 364/489; 364/578
Field of Search 371/16.1, 22.1

371/22.3, 22.4, 23, 24, 25.1, 26, 28, 29.1;
364/488. 489,578. 570, 83.04. 400, 480:

395/183.01, 183.04, 183.06, 183.08, 183.09

References Cited

U.S. PATENT DOCUMENTS

4.597,080 6/1986 Thatte et al. 371/2.5.1
4,81345 3/1989 Johnson .
4,862,399 8/1989 Freeman 37 1/27
4.937,765 6/1990 Shupe et al. . 371/2.5.1
4.965,743 10/1990 Main et al. 364/53

TEST

ARCHITECURE
CONFORMANCE

(AC)

IDENTIFY
NON-COWERED

TASKS

COVERAGE
CRERA

DEN ASK
DEY COVERED BY
COWERED TES CASE

USOO5724504A

11 Patent Number: 5,724.504
45) Date of Patent: Mar. 3, 1998

5,263.149 11/1993 Winlow 395/500
5,353.243 10/1994 Read et al.. ... 364,528
5,526,277 671996 Dangelo 364/489
5.537,580 7/1996 Giomi 395/500
5,541,849 7, 1996 Rostoker 364/489
5,541,861 7/1996 Komoda 364,578
5,544,067 8/1996 Rostoker 364,489
5,546,562 8/1996 Patel .. 395/500
5,548,539 8/1996 Vlach 364,578
5,553.002 9/1996 Dangelo 364,489
5,555,201 9/1996 Dangelo ... 364489
5,557,531 9/1996 Rostoker ... 364/489
5,559,715 9/1996 Misheloff 364/488
5,604.895 2/1997 Raimi 395/500

Primary Examiner-Albert Decady
Attorney; Agent, or Firmi-Whitham, Curtis, Whitham &
McGinn; Howard J. Walter

57 ABSTRACT

A technique that applies the task coverage exercised within
a behavioral model of the design to the design itself, while
simulating one or more test sequences. Since the behavior
model is an accurate and complete program representation
of the architectural specification of the hardware design, the
test case coverage of the architecture is implied by the
measurement of how well the behavioral model code has
been exercised. The completeness of the coverage is deter
mined by the test coverage criteria selected, including, for
example, statement coverage. branch coverage, or path
coverage. The more detailed the criteria, the greater the
number of tests.

8 Claims, 3 Drawing Sheets

21

23

U.S. Patent Mar. 3, 1998 Sheet 1 of 3 5,724,504

U.S. Patent Mar. 3, 1998 Sheet 2 of 3 5,724,504

21
TEST

COVERAGE
CRITERA

23

TASK
COVERED BY
TEST CASE

IDENTIFY
TASK

COVERED

ARCHITECTURE
CONFORMANCE

(AC)

IDENTIFY
NON-COWERED

ASKS

FG.2

U.S. Patent Mar. 3, 1998 Sheet 3 of 3 5,724.504

2 TEST
COVERAGE
CRTERA

TASK
COVERED BY
TEST CASE

IDENTIFY
TASK

COWERED

IDENTIFY
TEST
CASE

ARCHITECTURE
CONFORMANCE

(AC)

IDENTIFY
NON-COWERED

TASKS

FIG.3

5,724.504
1

METHOD FOR MEASURING
ARCHITECTURAL TEST COVERAGE FOR
DESGN WERFICATION AND BUILDING

CONFORMAL TEST

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention generally relates to hardware
design verification, and, more particularly, to a technique
that applies the task coverage exercised within a behavioral
model of the design to the design itself, while simulating test
sequences.

2. Description of the Related Art
The goal of hardware design verification is to ensure

equivalence of the design and its architectural specification.
This goal can be achieved either by formal proof or exhaus
tive simulation. However, state of the art formal techniques
and the complexity of designs renders the formal approach
incomplete for large industrial applications. Moreover,
exhaustive simulation is impractical as the test space is very
large.

In practice, design verification is carried out by simulating
a small subset of selected test programs. These are run
through the design simulation model, and the results are
compared with the output predicted by the architecture
simulation model,

One of the problems associated with this design verifica
tion process is the lack of appropriate measurable criteria for
the quality of the test sets. Coarse measurements are used,
but are of relatively little effect for the following reasons: (1)
The number of tests, the number of simulation cycles, or
similar quantities do not measure quality. As the full space
of tests is quite large, only small fractions of possible tests
(or cycles) can be simulated; (2) Test coverage on the
implementation (e.g. the VHDL design files) does not guar
antee compliance with the architecture. In particular, omis
sions of functions required in the architecture cannot be
detected; and (3) Statistical quality control gives only a
coarse estimate of the verification process. Moreover, sta
tistical quality control does not supply detailed data on the
parts of the architecture and design that need better testing.
The problem is compounded by the fact that modern

hardware designs, such as microprocessors, have complex
architectures. Typically, the processors include hundreds of
instructions, several dozen resources, and complex func
tional units. A typical architecture description may be sev
eral hundred pages in length.

Architecture verification plans are written in an effort to
measure quality. These documents list the different functions
of the architecture (and design) and the way to test them. The
progress of the verification process is then measured or
tracked relative to these documents by marking the entries
after a test is completed.
There are problems, however, with the verification plans

themselves. First, they are informal and are not directly
connected to either the architecture or the design. Second,
the verification plans are prone to human error, mainly
omissions, leading to incomplete verification.
Unfortunately, the verification plans also do not provide any
means to detect the omissions.

Consequently, the design verification process may lack
adequate quality control. One solution is to use a large
number of tests to try and gain confidence in the quality of
the design. The result is that design verification costs could
be as much as one to two thirds of the price of developing

10

S

20

30

35

45

50

55

65

2
the new hardware. For example, the verification of a RISC
System/6000 processor required fifteen billion simulation
cycles. The verification was conducted for more than a year
using large design and simulation teams and employing
hundreds of computers.

Another solution is to use a carefully selected set of tests
that are believed to be sufficient. While the computational
resources needed in such a case are small, the quality of the
verification is strongly dependent on the expertise of the test
Writers.

Both types of functional verification are expensive.
Extensive testing in accordance with the first solution
requires expensive computational resources, although less
human expertise and resources are needed. Small, carefully
selected tests in accordance with the second solution are
relatively inexpensive to simulate, but require expensive
expert human resources.

In light of the foregoing, there exists a need for a method
to evaluate the quality of hardware design verification from
an architectural point of view. There also exists a need for
quality functional verification methods that employ modest
computational and human resources.

SUMMARY OF THE INVENTION

The present invention is directed to a procedure for
measuring architectural test coverage for design verification
which substantially obviates one or more of the problems
due to the limitations and disadvantages of the related art.

This invention makes use of software analysis techniques
that apply the task coverage exercised within a behavioral
model of the design to the design itself, while simulating one
or more test sequences. Since the behavior model is an
accurate and complete program representation of the archi
tectural specification of the microprocessor, the test case
coverage of the architecture is implied by the measurement
of how well the software model code has been exercised.
The completeness of the coverage is determined by the

software analysis criteria selected (i.e., each conditional path
of branch/select statements, dependent variable changes
with each independent variable change, etc.) and this will
determine the number of test cases required to provide full
coverage. The more detailed the criteria, the greater the
number of tests. This invention extends the use of software
analysis techniques on the Behavioral Model Code to mea
sure the coverage of the test cases with respect to the
architectural definition for the hardware.
To achieve these and other advantages and in accordance

with the purpose of the invention, as embodied and broadly
described, the invention provides for a method of measuring
architectural test coverage for hardware design verification,
having a behavioral simulator model representing the
architecture, the method comprising the steps of: (1) pro
viding test coverage criteria; (2) generating multiple tasks to
be measured; (3) executing one of a set of test cases on the
behavioral simulator model to determine which of the mul
tiple tasks are covered by the test case and which of the
multiple tasks are not covered by the test case; (4) repeating
the executing step for the multiple tasks not covered by the
test case until all test cases in the set are executed; and (5)
identifying all tasks of the behavioral circuit model that were
covered by the test cases.

In another aspect, the invention further includes the step
of identifying all test cases that cover any of the multiple
tasks to produce a test set.
The proposed solution is confined to the architectural

aspects of the design verification process. In fact, the solu

5,724.504
3

tion is independent of the actual realization of the
architecture, that is, only the design's behavior is accessible
(it is considered a "black box"). The design verification
process must also include methods that focus on the design
details, that is, the so-called "white-box" testing of the
design. In particular, aspects that are not specified in the
architecture model. for example, pipeline performance,
should be verified. Behaviors that are important because of
their specific implementation should be tested separately.
The proposed solution is confined to hardware designs

where software behavioral simulators and large numbers of
tests are available. Hardware designs that are verified with
out a software behavioral simulator as a reference model are
not suitable for the suggested methods. In cases where only
a small number of tests are available, the usefulness of the
disclosed methods is limited. Small, in this context, typically
means hundreds or thousands.
While the detailed description refers to design verification

for processors, the disclosed methods are applicable to any
hardware design other than a processor that is verified with
a behavioral simulator.

It is to be understood that both the foregoing general
description and the following detailed description are exem
plary and explanatory and are intended to provide further
explanation of the invention as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, aspects and advantages
will be better understood from the following detailed
description of a preferred embodiment of the invention with
reference to the drawings, in which:

FIG. 1 illustrates a computer system that implements the
process of the present invention;

FIG. 2 provides a flow chart of one method of the present
invention; and

FIG. 3 provides a flow chart of a second method of the
present invention.

DETALED DESCRIPTION OF A PREFERRED
EMBODIMENT OF THE INVENTION

The methods of the present invention, measuring archi
tectural test coverage for hardware design verification, oper
ate on a computer system such as that shown in FIG. 1.
While FIG. 1 illustrates a personal computer embodiment, it
is understood that the computer system can also be a
workstation, minicomputer, or mainframe type of computer.
The computer typically includes a system unit 100 which
contains a processor or CPU 102 and memory 104. The
design verification program 106 operates on the processor
and is resident in memory 104. The system will typically
have a display device 108 such as a color or monochrome
CRT, a keyboard 110, a pointing device 112 such as a mouse
or trackball, a fixed disk drive 114, and optionally, a network
connection 116 to a LAN or other network.
A discussion of the various components of the method

will now be described.

Behavioral Simulators
The basic rationale of the disclosed methods is that a

behavioral simulator can be viewed as a formal, correct. and
complete representation of the architecture. The reason is
that in some verification processes the behavioral simulator
is heavily used, debugged and tested early in the verification
phase. The reason for such heavy reliance on simulators is
that they are built to allow development of a software

10

15

20

25

35

45

55

65

4
product to be run on the hardware, prior to completion of the
design and the fabrication of the hardware itself. For
example, operating systems are normally developed using
behavioral simulators prior to the fabrication of the proces
sors. Thus, the behavioral simulator becomes the de facto
architecture specification as seen by the future users of the
hardware.

Behavioral simulators are also used during the design
verification to produce expected results for test cases. In this
way, behavioral simulators are used as the architecture
definition for verification purposes.

Behavioral simulators are relatively simple and concise.
High level programming languages allow compact repre
sentation of the architecture. Typically, the size of a behav
ioral simulator, in terms of lines of code, is approximately
one-tenth of a corresponding design. This allows relatively
cost-efficient coverage evaluation.

Software Coverage Criteria
Assuming that a behavioral simulator is a representation

of an architecture, the quality of the test sets may then be
evaluated against the behavioral simulator. The present
inventive procedure utilizes standard software coverage
criteria for several reasons. One is that behavioral simulators
are normally written in procedural programming languages.
for example, C or C-H. Also, tools for test coverage evalu
ation of programming languages are available. Moreover,
there is a large amount of experience and research in
evaluating the quality of software testing coverage criteria.
For example, high coverage of the path criterion, discussed
further below, is known to provide good testing of the code.
A key distinction, however, is that the above tools and

experience consider the behavioral simulator code as an
implementation. In the present invention, the behavior simu
lator code is a specification of the architecture rather than its
implementation.

Test coverage is the primary concept behind systematic
software testing. Testing can be described as a process in
which a large input domain is partitioned into classes such
that testing a single representative of a class is deemed
adequate. The aim of any systematic testing technique is to
partition the input domain in a formal, algorithmic, and
possibly automatic manner. This is in contrast to less sys
tematic testing practices in which the input partitioning is
done heuristically, usually in an ad-hoc manner, and manu
ally. The lack of formal specifications for most software
projects forces these input partitions to be defined in terms
of programs.

Test coverage, therefore, provides a way to induce a
partitioning of the input domain from the program. The most
basic software test coverage criteria is control flow
coverage, in particular, statement coverage, branch
coverage, and path coverage.

Statement coverage requires that each statement of the
program under test be executed at least once. Similarly,
branch coverage requires that tests exercise each branch in
the program. For example, an IF(CONDITION) must be
tested twice; once when the CONDITION is TRUE and
again when the CONDITION is FALSE. For structured
programs, a test suite that is adequate for branch coverage
also satisfies statement coverage.

These statement and branch criteria have become the
common minimal requirement for program testing. More
sophisticated methods have been implemented in test cov
erage evaluators. Examples include evaluating the number
of executions for each statement (rather than just Zeroone

5,724.504
5

marks per statement), and requiring that a branch be taken
as a result of its multi-condition subterms.

Path coverage, still a control flow criterion, is much more
comprehensive than branch coverage. It requires that each
control path induced by the program be exercised. Program 5
paths are induced by branches and loops and their numbers
tend to grow exponentially with the size of the program.
Achieving path coverage has been shown to be impractical
for actual programs.
A second family of software coverage criteria is data flow

coverage. For example, the definition/use criterion requires
that each control path from a variable definition to the usage
of this definition be exercised at least once. The number of
data flow criteria has been shown to grow linearly with the
size of the program. Data flow criteria have not yet been
included in commercial test evaluation systems.
The third family of criteria stems from hardware produc

tion testing and is called mutation coverage. A mutation is a
syntactical alteration of the program under test such as the
replacement of a plus sign with a minus sign in an arithmetic
expression. When a test that is fed to both the original and
mutated programs produces different results, the mutation is
considered covered by the test.

Large sets of mutations representing common faults intro
duced by programmers have been defined for some pro
gramming languages (e.g., Fortran and C). Applying all
possible single-mutations to a small program results in
thousands of mutations.

Coverage Tasks
When a specific coverage criteria is considered for a

specific program, the result is a set of Coverage Tasks that
should be evaluated. Consider, for example, the following
illustrative program;

L1: if P1 then S1
L2: else S2
L3: if P2 then S3
La: else S4

where L1-LA are statement labels, P1 and P2 are inputs, and
S1-S4 are actions the program does. When the coverage
criterion "statement coverage" is required for this program.
four coverage tasks are to be evaluated:

coverage task-1: L1 is executed by a test
coverage task-1: L2 is executed by a test
coverage task-1: L3 is executed by a test
coverage task-1: LA is executed by a test
A test set that covers these four coverage tasks may be:
test-1: P1=true P2=true
test-2: P1=false P2=false
In this example each test covers two coverage tasks.

Test-1 covers coverage tasks 1 and 3 and test-2 covers tasks
2 and 4. Other test sets may provide full statement coverage
for the example program, that is, cover all coverage tasks,
but all of them must include at least two tests.

Consider the situation when the program has not been
tested at all. Here, the coverage is empty and all four
coverage tasks are non-covered. When test-1 is executed it
contributes to the coverage-tasks 1 and 3 are removed from
the list of non-covered tasks and only tasks 2 and 4 are
considered non-covered. When test-2 is executed, it also
contributes to the coverage-tasks 2 and 4 are removed from
the list of non-covered tasks and this list becomes empty.

If a third test is executed at this stage (e.g. P1=true
P2=false), it does not contribute to the coverage because it

O

15

25

35

45

55

65

6
does not remove any non-covered tasks. Note that in this
example there are no more non-covered tasks to be removed.
so any subsequent test would not contribute to the coverage.
It may also be the case that non-covered tasks still remain.
but a test does not remove any of them.
When the coverage criterion "path coverage" is required

for the above illustrative program, four coverage tasks are to
be evaluated:

coverage task-1: L1 and L3 are executed by the same test
coverage task-1: L1 and LA are executed by the same test
coverage task-1: L2 and L3 are executed by the same test
coverage task-1: L2 and La are executed by the same test
A test set that covers these four coverage tasks may be:
test-1: P1=true P2=true
test-2: P1=true P2=false
test-3: P1=false P2strue
test-4: P1=false P2=false
Four tests are needed for the path criterion, that is, to

cover the last coverage tasks. Each of the tests covers only
one coverage task. For example, test-2 covers task-2. No
Smaller test-set can cover all paths in the example program.
For the two inputs defined (P1 and P2) the above test is
exhaustive since it exercises all the combinations of inputs.
Note that the path criterion is more demanding than the
statement criterion.
As an illustration, consider for example a very simple

architecture containing two types of instructions:
op1 flag11 flag12 input1 output1
op2 flag21 flag22 input2 output2

where the flags are boolean, and the inputs and outputs are
of the same (unspecified) type. A design (i.e., an implemen
tation or realization of the architecture) conforms if all
sequences of instruction instances produce correct results.
Results are considered correct if the (unspecified) machine
state produced by the design is the same as the one predicted
by a behavioral simulator.
To keep the following example simple, it is assumed that

the instructions have no side effects (i.e., an instruction
changes only its output) and that the outputs are dependent
only on the flag values. Thus each of the actions (S1, S2, S3.
S4, R1, R2) is a non-conditional manipulation of the input
and it produces the output. The strings L0. L1, L2. M1, M2.
M3, M4. No. N1, and N2 are statement labels:

MAIN (test)
while (test is not empty)
L0: read from test (op, flag1, flag2, input, output)
Ll: if (op = op1) call function.1 (flag1, flag2, input, output)
L2: if (op = op2) call function2 (flag1, flag2, input, output)
end while
end MAIN
FUNCTION1 (flag1, flag2, input, output)
M1: if (flag1) do S1
M2; else do S2
M3: if (flag2) do S3
M4: else do S4
end FUNCTION1
FUNCTION2 (flag, flag2, input, output)
NO:
N1: if (flag1) do R1
N2: if (flag2) do R2
end FUNCTION2

The following are examples of requirements from a
verification plan and their interpretation as coverage criteria
of different parts of the behavioral simulator:

Test each of the instructions at least once. This can be
interpreted as statement coverage on MAIN. that is, cover
ing the following statements: L0, L1, L2.

5,724.504
7

Test that sequences of two instructions are correct. This
can be interpreted as path (of length 3) coverage on MAIN.
that is, cover the following paths: LO, L1, L2; L0. L2. L1;
L0, L1, L1; and L0, L2. L2

Test all the values of op1 flags. This can be interpreted as
statement coverage on FUNCTION1, that is, covering the
following statements: M1, M2, M3, M4.

Test all the combinations of op1 flags. This can be
interpreted as path coverage on FUNCTION1, that is, cov
ering the following paths: M1M3, M1M4, M2M3. M2M4.

Test all the values of op1 and op2 flags. This can be
interpreted as statement coverage on FUNCTION1, that is,
covering the following statements: M1, M2, M3, M4, N1,
N2.

Test all combinations of op1 flags and separately of op2
flags. This can be interpreted as path coverage on FUNC
TION1 and FUNCTION2, that is, covering the following
paths: M1M3, M1 M4, M2M3, M2M4. No, NON1, NON2,
NO N1 N2.

Test all combinations of op1 flags and op2 flags. This can
be interpreted as path coverage on FUNCTION1 and on
FUNCTION2 when seen as a single graph, that is, covering
the following paths:
M1M3 NO)
M1M3 NO N1
M1 M3 NO N2
M1M3 NO N1 N2
M1 M4 NO
M1 M4. NON
M1 M4. NO N2
M1 M4. NON N2
Test sequences of two instructions with all combinations

of op flags and op2 flags. This can be interpreted as path
coverage on MAIN, FUNCTION1, and FUNCTION2 when
seen as a single graph, that is, covering the following paths:
L0 L1 M1 M3 L2 NO

LO L1 M1 M3 L2 NO N2

LO L2 NO L1 M1M3
L0 L2 NO N1 L1 M1M3

LO L2 NO N1, N2 L1 M1M3
To conclude, this example demonstrates how standard

verification tasks are mapped to coverage requirements on
different parts of the behavioral simulator.

Architecture Conformance (AC) and Architecture
Conformance Test-Set (ACT)

The process of the present invention measures the quality
of the verification from an architectural standpoint by evalu
ating test cases with respect to software coverage criteria on
the behavioral simulator. Given sets of test cases, it also
builds architecture conformance test-sets according to the
disclosed measures. These procedures give well-defined
architecture conformance measures and build relatively
small test sets. It allows good quality functional verification
with modest computational and human resources.
The first method of the invention (FIG. 2) measures the

Architecture Conformance (AC), which is a detailed report
containing the covered and non-covered tasks. The input set
of tests (T), including multiple individual tests (t), is evalu
ated with respect to an architecture represented by a behav
ioral simulator (BS) and a set of software test coverage
criteria (C). The output is an Architecture Conformance
(AC) measure.

10

15

20

25

35

45

50

55

65

8
The following is a free style flow of the method:

1. Coverage: =empty
2. Non-Covered Tasks: =produced from BS and C
3. Choose t in T; T =Tt
4. Execute t on BS
5. New-Coverage:=Non-Covered-Tasks which are covered

during step (3)
6. Coverage: =Coverage--New-Coverage
7. Non-Covered-Tasks: =Non-Covered-Task-New

Coverage
8. If Non-Covered-Tasks and T are not empty go-to step (3)
9. (else) AC=(Coverage, Non-Covered-Tasks)
10. Terminate
The free style flow is generally depicted in FIG. 2. The

tasks 22 are generated from the test coverage criteria 21 and
the behavioral simulator. A test case (t) from test set 23 is
then executed on the tasks 22. In decision block 24, any
tasks that are covered by the test case (t) are identified 25 and
become part of the Architecture Conformance (AC) report
28. Additional test cases (t) are executed on the remaining
non-covered tasks in block 22, with tests contributing to the
coverage being identified 25 with each test sequence. until
all test cases in the test set 23 have been executed 26. After
all the test cases are executed, the non-covered tasks remain
ing in block 22 are identified 27. and become part of the
Architecture Conformance (AC) report 28. In the
alternative, all of the tasks 22 may be covered before all of
the test cases (t) are executed. In that case, there will be no
non-covered tasks in the AC.

In the second method of the present invention (FIG. 3), an
Architecture Conformance Test-Set (ACT) is produced.
Using a set of test cases (T), a behavioral simulator (BS),
and a set of software test coverage criteria (C) as inputs, an
ACT is produced as follows:

1. Each test (t) of the test set is given as input (i.e. a
stimuli) to the behavioral simulator.

2. While the behavioral simulator is executing a test,
coverage is recorded. The coverage tasks, resulting from the
behavioral simulator code and the coverage criteria, are
evaluated with respect to this test.

3. A test that contributes to the coverage is included in the
ACT. Such a test is one that covers a task previously
non-covered. Tests that do not contribute to the coverage are
not included in the ACT.
As an illustration, the following is free style control flow

of the method:
. ACT: =empty
Non-Covered-Tasks: = produced from BS and C

. Chooset in T; T =T-t
Execute t on BS
New-Coverage: =Non-Covered-Tasks which are covered
during step (3)

. If New-Coverage is not empty ACT: =ACT+t
. Non-Covered-Tasks: =Non-Covered-Task-New
Coverage

8. If Non-Covered-Tasks and T are not empty go-to step (3)
9. (else) Terminate
The free style flow is generally depicted in FIG. 3. The

method is essentially the same as that discussed with regard
to FIG. 2, with like reference numbers referring to the same
functions. The difference is that after a covered task is
identified in block 25, the test case (t) covering the task is
also identified 31. All of the test cases (t) that contribute to
coverage are then grouped together to form an Architecture
Conformance Test-Set (ACT) 32 for future use.
The above methods are useful whenlarge numbers of tests

are used in the verification process. The second method

g

5,724.504
9

building an ACT-is essentially a way to prefer high
coverage tests over low-coverage ones and it is not needed
when the number of tests is small. The first method
measuring AC-is useful even if the number of tests is not
large.
The Architecture Conformance Test-Set obtained by the

second method has the following characteristics:
1. It is a set of tests which guarantee a well-defined level

of testing of the design under verification.
2. The method is independent of the specific design

architecture, design, and test format. Thus, the same archi
tecture conformance test-set can be applied to designs
implemented in various ways, languages, and environments.
Any design verification process that uses a behavioral simu
lator will be able to use the method.

3. By using basic software criteria, the size of the test sets
can be kept relatively small. For example, for a PowerPC
processor (PowerPC is a trademark of IBM Corporation)
evaluated using branch coverage, the ACT contains a few
thousand tests.

4. Smaller ACTs that are built with basic coverage criteria
are ideal for regression sets. These are tested frequently to
ensure that small changes to the design have not changed its
architectural behavior.

5. ACTs can be defined for different levels of quality and
size. Using basic coverage criteria gives small sets; using
more rigorous coverage criteria increases the set size and
enhances quality. In general, the complexity of the coverage
criteria controls the size and quality of the resulting ACTs,

6. ACTs are uniform with respect to the architecture; there
is no biasing towards particular functions of the architecture.
ACTs are dependent only on the behavioral simulator and
coverage criteria; when the behavioral simulator covers the
architecture uniformly, so will the resulting ACTs.

7. ACTs are best suited for single instruction testing
during processor verification. However, selecting different
coverage criteria can also test sequences of instructions. By
requiring high complexity coverage criteria (e.g., the path
criterion described above) on parts of the simulator that
control the execution of the instructions, coverage of
sequences may be achieved.

8. The method of the present invention leaves the imple
mentor freedom to use any type of tests. For example, many
simple tests can achieve similar coverage as a smaller
number of more complex tests. However, the observability
of test results may be the reason to choose simpler tests.

9. The resulting ACT depends on the order the tests are
chosen (step 3 in the method control flow). Order
independent ACTs can be obtained by an expensive varia
tion of the disclosed method.
The disclosed methods thus provide a formal and auto

matic process for achieving coverage and quality from an
architectural standpoint, as opposed to the informal and
manual processes of the prior art. In addition, human errors
(or omissions) inherent in the manual process are elimi
nated.
The invention analytically measures the test set coverage

against the behavioral model which represents the architec
tural specification in program format. This reduces the
number of tests required and focuses the expert human
resources on the areas lacking coverage. It ensures high
quality in the verification process while providing a cost
effective solution.
While the invention has been described in terms of the

embodiments described above, those skilled in the art will
recognize that the invention can be practiced with modifi
cation within the spirit and scope of the appended claims.

5

10

15

20

25

30

35

45

50

55

65

10
Having thus described my invention, what we claim as

new and desire to secure by Letters Patent is as follows:
1. A computer-implemented method of generating test

vectors for hardware design verification, having a behavioral
simulator model representing an architecture corresponding
to the hardware design, the method comprising the steps of:

generating said behavioral simulator model, said model
comprising a plurality of conditional branch statements
and logical function statements conditional thereon;

generating a set of test input cases corresponding to said
behavioral simulator model;

receiving and storing a test coverage criteria, said test
coverage criteria establishing a criteria which an execu
tion of a sub-plurality of said conditional branch state
ments and of said function statements must meet to
constitute an execution of said behavioral simulator
model;

generating a plurality of logical coverage tasks, each of
said logical coverage tasks having an executable sub
plurality of said conditional branch statements and said
logical function statements, and each of said plurality
of tasks being in accordance with said received test
coverage criteria;

for each test input case in said set of test input cases,
selecting the test input case and executing the selected
test input case on the behavioral simulator model;

determining which of said plurality of logical coverage
tasks are executed by each test input case executed on
the behavioral simulator model; and

identifying all of the logical coverage tasks of the behav
ioral simulator model that were not executed by the test
input cases, based on a repeating of said determining
step for each test input case.

2. A method as in claim 1 wherein the test coverage
criteria is one or more of statement coverage, branch
coverage, and path coverage.

3. A method as in claim 1, wherein the test coverage
criteria is data flow coverage.

4. A method as in claim 1, wherein the test coverage
criteria is mutation coverage.

5. A method according to claim 1, further including the
steps of:

identifying all test input cases that cause execution cover
any of the plurality of logical coverage tasks; and

generating a reduced set of test input cases based on the
test input cases identified by said identifying step,

6. A programmable computer operable for performing a
method of measuring architectural test coverage for hard
ware design verification, wherein a behavioral simulator
model represents an architecture corresponding to the hard
ware design, comprising:

means for generating said behavioral simulator model.
said model comprising a plurality of conditional branch
statements and logical function statements conditional
thereon;

means for generating a set of test input cases correspond
ing to said behavioral simulator model;

means for receiving and storing a test coverage criteria,
said test coverage criteria establishing a criteria which
an execution of a sub-plurality of said conditional
branch statements and of said function statements must
meet to constitute an execution of said behavioral
simulator model;

means for generating a plurality of logical tasks, each of
said logical tasks having an executable sub-plurality of

5,724.504
11

said conditional branch statements and said logical
function statements, and each of said plurality of tasks
being in accordance with said received test coverage
criteria

means for selecting each test input case in said set of test
input cases and executing said selected test input case
on the behavioral simulator model;

means for determining which of said plurality of logical
coverage tasks are executed by each test input case
executed on the behavioral simulator model; and

means for identifying all of said input test cases that cause
execution of any of the plurality of tasks based on an
output of said means for determining; and

means for producing a reduced test set consisting of all of
the test input cases that cause execution of any of the
plurality of tasks, based on an output of said means for
identifying.

7. A computer-implemented method of generating test
vectors for hardware design verification, having a behavioral
simulator model representing an architecture corresponding
to the hardware design, comprising the steps of:

generating said behavioral simulator model. said model
comprising a plurality of conditional branch statements
and logical function statements conditional thereon;

generating a set of test input cases corresponding to said
behavioral simulator model;

receiving and storing a test coverage criteria, said test
coverage criteria establishing a criteria which an execu
tion of a sub-plurality of said conditional branch state
ments and of said function statements must meet to
constitute an execution of said behavioral simulator
model;

1O

15

20

25

30

12
generating a plurality of logical coverage tasks, each of

said logical coverage tasks having an executable sub
plurality of said conditional branch statements and said
logical function statements, and each of said plurality
of tasks being in accordance with said received test
coverage criteria;

initializing all of said logical coverage tasks to a condition
of having not been executed; and

repeating the steps of
(1) selecting a test input case and executing the selected

test input case on the behavioral simulator model,
and

(2) determining whether any of said plurality of logical
coverage tasks are executed by the selected test input
case for a first time subsequent to said initializing
step and, if any are so executed for a first time,
determining which of the test input cases are so
executed,

until all of said plurality of logical coverage tasks are
executed or all of said test input cases are selected and
executed, whichever occurs first.

8. A method according to claim 7, further comprising the
step of

identifying all of said plurality of test input cases which
cause any of said plurality of logical coverage tasks to
be executed for a first time, based on said determining
step.

