
              

City, University of London Institutional Repository

Citation: Buckney, D. (2017). Clearance management in twin screw compressors. 
(Unpublished Doctoral thesis, City, University of London) 

This is the accepted version of the paper. 

This version of the publication may differ from the final published 
version. 

Permanent repository link:  http://openaccess.city.ac.uk/18235/

Link to published version: 

Copyright and reuse: City Research Online aims to make research 
outputs of City, University of London available to a wider audience. 
Copyright and Moral Rights remain with the author(s) and/or copyright 
holders. URLs from City Research Online may be freely distributed and 
linked to.

City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


 
 

  

 

 

 

 

CLEARANCE MANAGEMENT IN  
TWIN SCREW COMPRESSORS 

 

DAVID MALCOLM BUCKNEY 
 

 

Thesis submitted for the degree of Doctor of Philosophy 

in Mechanical Engineering 

 

City, University of London 

School of Mathematics, Computer Science and Engineering 

August 2017



 

ii 
 

  



 

iii 
 

Table of Contents 

 
Table of Contents .......................................................................................................................... iii 

List of Figures ................................................................................................................................. ix 

List of Tables.................................................................................................................................. xv 

Acknowledgements ................................................................................................................... xvii 

Declaration ................................................................................................................................. xviii 

Abstract .......................................................................................................................................... xix 

Notation ........................................................................................................................................... xx 

Chapter 1 Introduction........................................................................................................... 1 

1.1 Motivation ....................................................................................................................... 1 

1.2 The Twin Screw Compressor................................................................................... 2 

1.2.1 Basic Principles .................................................................................................... 2 

1.2.2 Ports and Internal Compression .................................................................... 3 

1.2.3 Capacity Control ................................................................................................... 4 

1.2.4 Oil Injection and Compressor Arrangement ............................................. 5 

1.3 Design and Optimisation ........................................................................................... 6 

1.3.1 Industrial Applications ...................................................................................... 6 

1.3.2 Optimisation .......................................................................................................... 8 

1.3.3 General Design ...................................................................................................... 9 

1.3.4 Rotor Profile Design ......................................................................................... 10 

1.3.5 Clearance Design ............................................................................................... 12 

1.3.6 Design Software ................................................................................................. 13 

1.4 Preliminary Studies ................................................................................................... 13 

1.4.1 Performance Sensitivity to Clearance ....................................................... 13 



 

iv 
 

1.4.2 Clearance Influences and Behaviour ......................................................... 14 

1.5 Concluding Remarks ................................................................................................ 18 

1.6 Thesis Overview ......................................................................................................... 19 

Chapter 2 Background Theory and Literature Review ........................................... 21 

2.1 Introduction ................................................................................................................. 21 

2.2 Rotor Design ................................................................................................................ 21 

2.2.1 Profile Generation............................................................................................. 21 

2.2.2 Clearance Design ............................................................................................... 25 

2.3 Geometric Characteristics ...................................................................................... 28 

2.3.1 Identification of Geometric Characteristics ............................................ 28 

2.3.2 Calculation of Geometric Characteristics ................................................ 33 

2.4 Review of Twin Screw Compressor Models .................................................... 34 

2.4.1 Chamber Models................................................................................................ 34 

2.4.2 Alternative Models ........................................................................................... 39 

2.4.3 Thermal Analysis .............................................................................................. 40 

2.5 Concluding Remarks ................................................................................................ 43 

Chapter 3 Research Objectives, Methods and Expected Contribution .............. 45 

3.1 Statement of Research ............................................................................................. 45 

3.2 Objectives ..................................................................................................................... 46 

3.3 Methodology ................................................................................................................ 46 

3.4 Expected Contribution ............................................................................................. 48 

3.4.1 Boundary Map .................................................................................................... 48 

3.4.2 Model Integrating Operational Clearance Modification .................... 48 

Chapter 4 Boundary Map for Rotor and Casing Surfaces ....................................... 49 

4.1 Introduction ................................................................................................................. 49 

4.2 Definition of Boundary Surfaces .......................................................................... 50 

4.2.1 Coordinate System Conventions ................................................................. 50 



 

v 
 

4.2.2 Casing Surfaces ................................................................................................... 54 

4.2.3 Rotor Surfaces .................................................................................................... 55 

4.3 Definition of Cycle Conventions ........................................................................... 58 

4.4 Mapping of the Casing Surfaces ............................................................................ 62 

4.5 Mapping of the Rotor Surfaces .............................................................................. 66 

4.6 Definition of Rotor Surface Boundary Map ...................................................... 68 

4.6.1 Example: Zero Blow-Hole Profile ................................................................ 73 

4.6.2 Example: Symmetric Profile .......................................................................... 80 

4.6.3 Example: Asymmetric Profile ....................................................................... 86 

4.6.4 Example: N – Profile ......................................................................................... 90 

4.7 Local Cycle Exposure over Full Rotors .............................................................. 92 

4.8 Mapping Pressure and Temperature on Surfaces ......................................... 99 

4.8.1 Temperature Distribution .............................................................................. 99 

4.8.2 Pressure Distributions ................................................................................. 101 

4.9 Concluding Remarks .............................................................................................. 102 

Chapter 5 Operational Clearance Distortions .......................................................... 103 

5.1 Introduction .............................................................................................................. 103 

5.2 Approximating Temperature Distributions .................................................. 104 

5.2.1 Casing Temperature ...................................................................................... 104 

5.2.2 Rotor Temperature ........................................................................................ 105 

5.3 Thermal Distortion of Interlobe Gap ............................................................... 111 

5.3.1 Interlobe Sealing Line ................................................................................... 111 

5.3.2 Local Rotor Distortion .................................................................................. 112 

5.3.3 Local Casing Distortion ................................................................................ 113 

5.3.4 Relative Gap Distortion ................................................................................ 114 

5.4 Thermal Distortion of Radial Gap ..................................................................... 118 

5.4.1 Radial Sealing Lines ....................................................................................... 118 



 

vi 
 

5.4.2 Local Distortions ............................................................................................. 119 

5.5 Modelling with Operational Clearance Corrections ................................... 121 

5.5.1 Integration with Geometry Calculation Program ............................... 121 

5.5.2 Integration with Chamber Model ............................................................. 123 

5.6 Concluding Remarks .............................................................................................. 126 

Chapter 6 Case Studies ...................................................................................................... 127 

6.1 Introduction ............................................................................................................... 127 

6.2 Model Sensitivity to Rotor Parameters ........................................................... 129 

6.2.1 Overview ............................................................................................................ 129 

6.2.2 DRUM127 Compressor ................................................................................. 129 

6.2.3 Mapped Boundary Conditions ................................................................... 131 

6.2.4 Sensitivity to Lobe Combination ............................................................... 133 

6.2.5 Sensitivity to Wrap Angle ............................................................................ 135 

6.2.6 Sensitivity to Volume Index ........................................................................ 137 

6.2.7 Discussion .......................................................................................................... 140 

6.3 Model Sensitivity to Clearance Modifications .............................................. 141 

6.3.1 Overview ............................................................................................................ 141 

6.3.2 DRUM127 Compressor ................................................................................. 141 

6.3.3 DRUM127 Test Measurement .................................................................... 141 

6.3.4 DRUM127 Clearance Sensitivity ............................................................... 143 

6.3.5 DRUM127 Performance Sensitivity ......................................................... 145 

6.3.6 Discussion .......................................................................................................... 146 

6.4 Investigating Interlobe Clearance Distortion ............................................... 147 

6.4.1 Overview ............................................................................................................ 147 

6.4.2 WCVTA510 Compressor .............................................................................. 148 

6.4.3 WCVTA510 Test Measurement ................................................................. 150 

6.4.4 WCVTA510 Thermal Analysis .................................................................... 151 



 

vii 
 

6.4.5 WCVTA510 Clearance Presentation........................................................ 152 

6.4.6 WCVTA510 Clearance Distortion Results ............................................. 155 

6.4.7 WCVTA510 Performance Results ............................................................ 156 

6.4.8 WCVTA510 Teardown Results .................................................................. 157 

6.4.9 Discussion ......................................................................................................... 158 

6.5 Investigating Radial Clearance Distortion ..................................................... 159 

6.5.1 Overview ............................................................................................................ 159 

6.5.2 HS204 Compressor ........................................................................................ 159 

6.5.3 HS204 Test Measurement ........................................................................... 161 

6.5.4 HS204 Performance Results with Jacket Cooling .............................. 165 

6.5.5 HS204 Performance Results Without Jacket Cooling ....................... 173 

6.5.6 HS204 Radial Gap Distortion Results ..................................................... 176 

6.5.7 Discussion ......................................................................................................... 179 

6.6 Concluding Remarks .............................................................................................. 183 

Chapter 7 Conclusions and Future Work ................................................................... 184 

7.1 Conclusions ................................................................................................................ 184 

7.2 Future Work .............................................................................................................. 186 

References ................................................................................................................................... 188 

Appendix A Geometry Calculations ............................................................................. 195 

A.1 Basic Geometry and Terminology .................................................................... 195 

A.2 Meshing Conditions for Conjugate Profile ..................................................... 199 

A.3 Calculating Geometry Characteristics ............................................................. 203 

A.3.1 Chamber Area and Volume ......................................................................... 203 

A.3.2 Suction Port Areas .......................................................................................... 205 

A.3.3 Blow Hole Area ................................................................................................ 206 

A.3.4 Sealing Lines ..................................................................................................... 207 

Appendix B Compressor Modelling ............................................................................. 210 



 

viii 
 

B.1 Chamber Model Details ......................................................................................... 210 

B.1.1 Model Discharge Temperature .................................................................. 210 

B.1.2 Adiabatic Fanno Flow .................................................................................... 211 

B.2 Thermal Analysis Simplifying Assumptions ................................................. 212 

B.2.1 Rotor Thermal Distortion ............................................................................ 212 

B.2.2 Datum for Relative Clearance Distortion ............................................... 212 

Appendix C Definition of Performance Characteristics ....................................... 217 

C.1 Compressor Boundaries ....................................................................................... 217 

C.2 Mass Flow ................................................................................................................... 218 

C.3 Volumetric Efficiency ............................................................................................. 218 

C.4 Adiabatic Efficiency ................................................................................................ 219 

 



 

ix 
 

List of Figures 
Figure 1-1: Compressor operation.......................................................................................... 2 

Figure 1-2: Meshing rotors highlighting single compression chamber .................... 4 

Figure 1-3: Oil free compressor ............................................................................................... 5 

Figure 1-4: Howden WRV range (courtesy of Howden Compressors Ltd.) ............ 7 

Figure 1-5: Comparison of rotors with different basic geometry parameters ...... 9 

Figure 1-6: SRM standard rotor geometry. Equal diameters; 4/6 lobes; L/D = 

1.65; wrap angle = 300°. ........................................................................................................... 10 

Figure 1-7: Rotor profile on transverse view ................................................................... 11 

Figure 1-8: Rotor clearance gaps ........................................................................................... 12 

Figure 1-9: Rotor retrofit test results with different clearances............................... 14 

Figure 1-10: Location of proximity probe .......................................................................... 15 

Figure 1-11: Measured relationship between operating temperature and 

clearance reduction .................................................................................................................... 16 

Figure 1-12: How rotor thermal growth and casing thermal growth affect 

clearances ....................................................................................................................................... 17 

Figure 2-1: Transverse profiles showing terminology ................................................. 22 

Figure 2-2- Photo comparing symmetric and N-rotor profile rotors ...................... 23 

Figure 2-3: ‘N’ rotor rack generation ................................................................................... 24 

Figure 2-4- Clearance distribution on a rack projection .............................................. 27 

Figure 2-5: Defining discrete leakage paths ...................................................................... 30 

Figure 2-6: Leakage flow from chamber volume ............................................................ 31 

Figure 2-7: Volume and area curves .................................................................................... 34 

Figure 3-1: GEOM program integration with SCORPATH ............................................ 47 

Figure 4-1: Compressor and rotor co-ordinate systems .............................................. 51 

Figure 4-2: Parameters for surface definition .................................................................. 52 

Figure 4-3: Exploded view of casing surfaces .................................................................. 54 

Figure 4-4: Transverse profiles defined at LP plane ...................................................... 56 

Figure 4-5: Full main rotor surface....................................................................................... 56 

Figure 4-6: Rotor surface arrays ............................................................................................ 57 

Figure 4-7: Rotor home position ........................................................................................... 59 

Figure 4-8: Rotor segments ..................................................................................................... 59 



 

x 
 

Figure 4-9: Moving rotors to the start of the compression cycle ............................. 61 

Figure 4-10: Single chamber projected onto casing surfaces .................................... 63 

Figure 4-11: Cycle angle mapped onto casing bore surfaces ..................................... 66 

Figure 4-12: Position of rotor chambers in the transverse plane ............................ 67 

Figure 4-13: Notation used on boundary map ................................................................ 70 

Figure 4-14: Local transverse rotor offset angle, λ, at given axial position, γ. .... 71 

Figure 4-15: Zero blow-hole rotor profile ......................................................................... 73 

Figure 4-16: Zero BH rotor boundary map for main rotor ......................................... 74 

Figure 4-17: Zero BH rotor boundary map for gate rotor ........................................... 75 

Figure 4-18: Zero BH rotor boundary points (λ = 0) ..................................................... 76 

Figure 4-19: Zero BH rotor boundary points on main rotor surface (λ = 0) ........ 77 

Figure 4-20: Zero BH rotor boundary points on gate rotor surface (λ = 0) ......... 77 

Figure 4-21: Zero BH rotor boundary points (λ = -φc1) ............................................... 78 

Figure 4-22: Zero BH rotor boundary points on main rotor surface (λ = -φc1) .. 79 

Figure 4-23 Zero BH rotor boundary points on gate rotor surface (λ = -φc1) ..... 79 

Figure 4-24: Symmetric (circular) rotor profile ............................................................. 80 

Figure 4-25: Symmetric rotor boundary points (λ = -φC1) ......................................... 81 

Figure 4-26: Symmetric rotor boundary points (-φC1 < λ < 0)................................... 81 

Figure 4-27: Symmetric rotor boundary points (λ = 0) ............................................... 82 

Figure 4-28: Symmetric rotor boundary points on main rotor ................................ 83 

Figure 4-29: Symmetric rotor boundary map for main rotor with new 

boundaries ..................................................................................................................................... 83 

Figure 4-30: Symmetric rotor boundary points on gate rotor .................................. 84 

Figure 4-31: Symmetric boundary map for gate rotor with new boundaries ..... 84 

Figure 4-32: Asymmetric rotor profile (hybrid of zero BH and symmetric) ....... 86 

Figure 4-33: Asymmetric rotor boundary map for main rotor ................................. 87 

Figure 4-34: Asymmetric rotor boundary map for gate rotor................................... 87 

Figure 4-35: Asymmetric rotor boundary map for gate rotor with adjusted 

radial SL .......................................................................................................................................... 89 

Figure 4-36: N-profile rotors .................................................................................................. 90 

Figure 4-37: N-profile boundary map for main rotor ................................................... 91 

Figure 4-38: N-profile boundary map for gate rotor..................................................... 91 

Figure 4-39: Full rotor surfaces (3D domain) .................................................................. 93 



 

xi 
 

Figure 4-40: Main rotor chamber offsets ........................................................................... 95 

Figure 4-41: Gate rotor chamber offsets ............................................................................ 96 

Figure 4-42: Full rotor surfaces with surface contour plot of local cycle angle .. 98 

Figure 4-43: Thermodynamic results from chamber model ...................................... 99 

Figure 4-44: Instantaneous gas temperature at rotor surface................................ 100 

Figure 4-45: Time averaged gas temperature at rotor surface .............................. 101 

Figure 5-1: Average fluid temperature at casing surfaces ........................................ 104 

Figure 5-2: Average fluid temperature at casing surfaces in 3D ............................ 105 

Figure 5-3: Instantaneous boundary temperature at rotor surfaces ................... 106 

Figure 5-4: Instantaneous temperature at main rotor surface at different cycle 

angles............................................................................................................................................. 107 

Figure 5-5: Time-averaged boundary temperature at rotor surfaces ................. 108 

Figure 5-6: Time averaged boundary temperature on main rotor ....................... 109 

Figure 5-7: Planar averaged boundary temperature on rotor surfaces .............. 110 

Figure 5-8: Planar averaged temperature distribution on rotors ......................... 110 

Figure 5-9: Side projection of interlobe sealing line ................................................... 111 

Figure 5-10: Transverse planes at suction and discharge of casing ..................... 113 

Figure 5-11: Transverse analysis of interlobe gap ...................................................... 114 

Figure 5-12: Pressure angle intersecting with pitch point ....................................... 115 

Figure 5-13: Angles on transverse section ..................................................................... 116 

Figure 5-14: Radial sealing points on main and gate rotors .................................... 118 

Figure 5-15: Radial sealing lines ......................................................................................... 119 

Figure 5-16: Flow chart for performance calculation with operational clearances

.......................................................................................................................................................... 123 

Figure 6-1: DRUM127 air compressor ............................................................................. 129 

Figure 6-2: Rotor boundary temperatures ..................................................................... 131 

Figure 6-3: Averaged boundary temperatures used for thermal analysis ......... 131 

Figure 6-4: Rotor temperature distribution .................................................................. 132 

Figure 6-5: Comparison of rotor models with different lobe combinations ..... 133 

Figure 6-6: Rotor temperature distributions with different lobe combinations

.......................................................................................................................................................... 134 

Figure 6-7: Comparison of rotor models with different wrap angles .................. 135 

Figure 6-8: Rotor temperature distributions with different wrap angles .......... 136 



 

xii 
 

Figure 6-9: Modelled temperature during cycle with different volume index . 137 

Figure 6-10: Comparison of rotor models with different volume index ............. 137 

Figure 6-11: Rotor temperature distributions with different volume index ..... 139 

Figure 6-12: Comparison of casing temperatures with different volume index

 .......................................................................................................................................................... 139 

Figure 6-13: DRUM127 schematic ..................................................................................... 142 

Figure 6-14: Interlobe clearance distribution corrected for thermal 

deformations ............................................................................................................................... 143 

Figure 6-15: Variation of leakage areas throughout compression cycle ............. 145 

Figure 6-16: Compressor performance from test and model .................................. 146 

Figure 6-17: WCVTA510 compressor ............................................................................... 148 

Figure 6-18: WRV range compressor vertical section ................................................ 148 

Figure 6-19: WRVTA compressor on test stand ............................................................ 150 

Figure 6-20: Instantaneous and averaged fluid boundary temperature. Line AB 

highlights the interlobe sealing line for a single compression chamber. ............ 151 

Figure 6-21: Transverse cross section of rotors showing interlobe clearance 

distribution of rotor surfaces ............................................................................................... 153 

Figure 6-22: Comparison of example interlobe clearance distributions along 

rack projection of rotors ........................................................................................................ 154 

Figure 6-23: Original design clearance variations ....................................................... 155 

Figure 6-24: Revised design clearance variations ....................................................... 156 

Figure 6-25: Evidence of rotor rooting on main rotor of WCVTA510 .................. 157 

Figure 6-26: Horizontal section of HS204 compressor .............................................. 159 

Figure 6-27: Rotor profiles and design data ................................................................... 160 

Figure 6-28: Interlobe clearance design data ................................................................ 161 

Figure 6-29: HS204 on test stand ....................................................................................... 162 

Figure 6-30: HS204 instrumentation schematic ........................................................... 162 

Figure 6-31: Position of radial proximity probes in the test compressor........... 164 

Figure 6-32: Proximity probe location ............................................................................. 164 

Figure 6-33: HS204 volumetric efficiency with unmodified model clearances 167 

Figure 6-34: HS204 discharge temperature with unmodified model clearances

 .......................................................................................................................................................... 167 



 

xiii 
 

Figure 6-35: HS204 volumetric efficiency with modelled rotor thermal 

distortion ..................................................................................................................................... 169 

Figure 6-36: HS204 discharge temperature with modelled rotor thermal 

distortion ..................................................................................................................................... 169 

Figure 6-37: HS204 volumetric efficiency with modelled rotor and casing 

thermal distortion .................................................................................................................... 171 

Figure 6-38: HS204 discharge temperature with rotor and casing thermal 

distortion ..................................................................................................................................... 171 

Figure 6-39: HS204 volumetric efficiency at 6000rpm with and without jacket 

cooling ........................................................................................................................................... 174 

Figure 6-40: HS204 discharge temperature at 6000rpm with and without jacket 

cooling ........................................................................................................................................... 174 

Figure 6-41: Measured and modelled radial gap on MAIN rotor bore ................ 177 

Figure 6-42: Measured and modelled radial gap on GATE rotor bore................. 177 

Figure 6-43: Local temperatures at MAIN rotor bore radial gap ........................... 178 

Figure 6-44: Local temperatures at GATE rotor bore radial gap ........................... 178 

Figure 6-45: Example of overall casing displacement due to thermal loading 

(courtesy of Howden Compressors Limited.) with approximate rotor body and 

proximity probe location superimposed ......................................................................... 182 

Figure A-1: Basic rotor dimensions ................................................................................... 195 

Figure A-2: Helix angle calculation .................................................................................... 196 

Figure A-3: Angles to casing cusp ....................................................................................... 198 

Figure A-4: Meshing condition ............................................................................................ 200 

Figure A-5: Solving for meshing angle .............................................................................. 201 

Figure A-6: Interlobe sealing line and normal projection......................................... 202 

Figure A-7: Cross sectional area calculation using trapezoidal rule..................... 203 

Figure A-8: Area integration limits for volume ............................................................. 204 

Figure A-9: Designated port names ................................................................................... 205 

Figure A-10: Blow-hole leakage area ................................................................................ 206 

Figure A-11: Interlobe sealing line .................................................................................... 207 

Figure A-12: Interlobe leakage area curves ................................................................... 208 

Figure B-1: Chamber model setup ..................................................................................... 210 

Figure B-2: Uniform 2D thermal distortion .................................................................... 212 



 

xiv 
 

Figure B-3: 2D rotor and casing distortion ..................................................................... 213 

Figure B-4: DRUM127 casing temperature exposure ................................................. 214 

Figure B-5: DRUM127 axial casing temperature variation ....................................... 215 

Figure C-1: Compressor boundaries for performance evaluation ......................... 217 

Figure C-2: Comparison of model indicated PV curve and polytropic curve ..... 221 

 

  



 

xv 
 

List of Tables 
Table 1-1: Commonly grouped constraints ......................................................................... 8 

Table 4-1: Compressor orientation ...................................................................................... 50 

Table 4-2: Casing surface parameters ................................................................................. 55 

Table 4-3: Local cycle angle corrections on main rotor ............................................... 95 

Table 4-4: Local cycle angle corrections on gate rotor ................................................. 97 

Table 6-1: Air ideal gas properties..................................................................................... 128 

Table 6-2: Basic compressor details ................................................................................. 129 

Table 6-3: Air duty ................................................................................................................... 130 

Table 6-4: Model parameters for thermal analysis ..................................................... 130 

Table 6-5: Temperatures at specific locations .............................................................. 132 

Table 6-6: Temperatures with different lobe combinations ................................... 134 

Table 6-7: Temperatures with different wrap angles ................................................ 136 

Table 6-8: Temperatures with different volume index ............................................. 139 

Table 6-9: DRUM127 instrumentation ............................................................................. 142 

Table 6-10: Modelled clearance adjustments ................................................................ 143 

Table 6-11: Basic compressor details ............................................................................... 149 

Table 6-12: Air test for contract duty ............................................................................... 149 

Table 6-13: Air test for high temperature ....................................................................... 149 

Table 6-14: WRVTA510 instrumentation ....................................................................... 150 

Table 6-15: Average fluid boundary temperature across outlet plane ............... 151 

Table 6-16: Key Clearance Locations ................................................................................ 154 

Table 6-17: Performance penalty with revised interlobe clearance .................... 156 

Table 6-18: Basic compressor details ............................................................................... 160 

Table 6-19: Air test duty ........................................................................................................ 161 

Table 6-20: HS204 instrumentation ................................................................................. 163 

Table 6-21: HS204 additional hardware ......................................................................... 163 

Table 6-22: HS204 performance test results ................................................................. 166 

Table 6-23: HS204 interpolated performance test results....................................... 166 

Table 6-24: HS204 model performance results with unmodified clearances .. 168 

Table 6-25: HS204 model performance results with rotor thermal distortion 170 



 

xvi 
 

Table 6-26: HS204 model performance results with rotor and casing thermal 

distortion ...................................................................................................................................... 172 

Table 6-27: HS204 performance test results at 6000rpm with and without 

jacket cooling .............................................................................................................................. 173 

Table 6-28: HS204 interpolated performance test results at 6000rpm with and 

without jacket cooling ............................................................................................................. 173 

Table 6-29: HS204 ‘MODEL R’ performance results at 6000rpm with rotor 

thermal expansion .................................................................................................................... 175 

Table 6-30: HS204 ‘MODEL RC’ performance results at 6000rpm with rotor and 

casing thermal expansion ...................................................................................................... 176 

 

  



 

xvii 
 

Acknowledgements 
This work was made possible through collaboration between my employer - 
Howden Compressors in Glasgow, and the Centre for Positive Displacement 
Compressor Technology at City, University of London; where I enrolled as an 
external student in 2010. Thanks must go to the management team in Howden 
for the continuing support of this work in light of ongoing business pressures. 
Thank you to Prof. Ahmed Kovacevic, Jim Fairbairn and Graeme Cook, among 
others, for having the vision to initiate this work. I am indebted to many other 
colleagues who have been supportive of this work over the years. Dr. Manoj 
Heiyantuduwa and Dr. Maria Wilson have provided valuable advice about their 
own postgraduate study experience and are great examples to me of how PhD 
graduates can play a valuable leading role in a commercial research 
environment.  

Regularly visiting and working with the staff and students of the Compressor 
Centre has been a fantastic opportunity - thank you to City, University of 
London and all those involved in making my role as an external student 
possible. It’s been a privilege to share in the vast knowledge and experience of 
the Compressor Centre. My first supervisor – Prof. Ahmed Kovacevic - has been 
instrumental in this work and has always generously dedicated time and energy 
to helping me. I’m grateful to have received both the patient encouragement I 
needed and the less patient encouragement when required. My meetings with 
my second supervisor – Prof. Nikola Stosic – were less frequent but always 
inspiring and have had a significant influence on the direction of this work. 
Thanks must also go to Professor Ian Smith for kindly proof reading and 
suggesting improvements.  

Finally, thank you to my family who have helped get me to this point, 
particularly my wife Kirsteen who has supported me throughout my studies 
while we also embarked on other adventures together including finding a home, 
planning a wedding, and most recently, bringing up our daughter, Erin. 

 

David Buckney 

Glasgow, August 2017  



 

xviii 
 

Declaration 
I confirm that this work is my own except where indicated by reference in the 
text. 

I agree for this work to be submitted to the Institutional Repository of City, 
University of London for use in accordance with the Thesis Deposit Agreement. 

 

 

David Buckney 

Glasgow, August 2017  



 

xix 
 

Abstract 
Although the performance of twin screw compressors is heavily dependent on 
the rotor clearances within them, chamber models, used as design aids, allow 
for the specification of their magnitude and distribution but do not account for 
how these may vary during operation, as a result of internal temperature 
changes caused by the compression process. 

A validated procedure has therefore been developed to enable a chamber model 
to predict compressor performance, while including the effects of rotor and 
casing distortion resulting from dependant thermal effects. This has been 
achieved by the use of surface boundary mapping to calculate the rotor and 
casing temperature exposure within the compression chamber resulting from 
initial performance estimates. These detailed temperature distributions are 
processed analytically using appropriate assumptions that allow calculation of 
component temperatures and thermal growth. 

A program for calculation of leakage area curves has been adapted to support 
locally calculated variations in clearances. These updated area curves can then 
be fed back into the chamber model in an iterative procedure to simulate 
performance with thermally distorted clearances. 

The inclusion of thermal clearance corrections generally improved the accuracy 
of the chamber model when predictions from it were compared with test results 
over a wide range of operating pressures and temperatures.  

Furthermore, this work was found to be applicable in the evaluation of the 
interlobe clearance distribution between the rotors. Predicting clearance 
distortions and likely areas of rotor to rotor contact at a particular operating 
duty allows clearances to be optimised for the correct balance between 
performance and reliability; the results thus obtained were supported by 
findings from available test and tear down results. 
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ε  [-]  normalized surface parameter along curve s 

θ  [°]  cycle angle measured at main rotor 

θl  [°]  minimum cycle angle for a given point on casing 

θt  [°]  maximum cycle angle for a given point on casing 

θM  [°]  meshing angle 

θlocal  [°]  local cycle angle on rotor surface 

λ  [°]  local transverse profile rotation  
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μC  [°C-1]  coefficient of thermal expansion for casing 

μR  [°C-1]  coefficient of thermal expansion for rotors 

φ  [°]  polar co-ordinate 

φc  [°]  angle to casing cusp (intersection of casing bores)  

φoff  [°]  main rotor lobe offset angle 

φs  [°]  offset angle to start of cycle 

φw  [°]  rotor wrap angle at length, L 

φgate  [°]  gate tip angle at home position 

ψ  [°]  transverse rotor surface normal measured on 

rotor co-ordinate system 

ψH  [°]  local helix angle 

ψPA  [°]  pressure angle - transverse rotor surface normal 

measured on global co-ordinate system 

ω  [rad s-1] rotational speed 

 

Additional Subscripts 

1   main rotor / co-ordinate system fixed to casing at main 

rotor / inlet 

2   gate rotor / co-ordinate system fixed to casing at gate 

rotor / outlet 

01, 02   co-ordinate systems fixed to rotors 

T, x, y   transverse, x, y components 

in, out   inflow, outflow 

l, t   leading, trailing 

a, b, c   misc. labels 

 

Acronyms 

1D   1-dimensional 
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2D   2-dimensional 

3D   3-dimensional 

BH   blow hole 

CAD   computer aided design 

CFD   computational fluid dynamics 

CMM   co-ordinate measurement machine 

FEA   finite element analysis  

HP   high pressure 

LP   low pressure 

OD   outer diameter 

SCORPATH  screw compressor optimal rotor 

profiling and thermodynamics 

SL   sealing line  

SRM   Svenska Rotor Maskiner 

SYM   symmetric profile 
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Chapter 1                                           
Introduction 
 

1.1 MOTIVATION 

Twin screw compressors are widely used in the refrigeration and gas 

processing industries. They have increased in popularity over the decades and 

have replaced reciprocating compressors in many applications (Ohama, Kurioka 

et al. 2006). As a consequence of their widespread use, achieving modest gains 

in performance can result in a significant reduction in global energy 

consumption. One possible way to increase performance is to match the screw 

compressor to the application, i.e. the properties of the working fluid and the 

operating duty, by using uniquely optimised rotors as suggested by Singh et al. 

(Singh, Onuschak 1984) and demonstrated by Stosic et al. (Stosic, Smith et al. 

2003). This has not traditionally been attempted by screw compressor 

manufacturers due to the specialised nature of designing the rotor profile 

geometry and the expense and lead time associated with modifying or 

procuring tooling to manufacture bespoke rotors. With the current availability 

of modern flexible profile generation tools (Stosic, Hanjalic 1997) and advanced 

manufacturing techniques (Holmes 2008), tailoring rotor designs for specific 

applications is more feasible. However there are still considerable challenges 

that need to be addressed in order to achieve this. 

This work contributes to practical rotor optimisation for industrial applications 

within the constraints of a commercial manufacturing environment where there 

is a need to rationalise and limit the number of design variants engineered and 

manufactured. To make optimisation of rotor profile viable, the procedure must 

be reliable, fast and easy enough to implement for small batches of rotors. It 

was found from a review of relevant literature and experience gained, while 

working in industry, that existing rotor design and modelling tools are still 
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reliant on empirical observations, particularly in the prediction of absolute 

performance results and the specification and analysis of reliable clearances.  

Improving clearance analysis and design will allow an optimum balance 

between performance and reliability to be achieved with minimum adaptation 

of rotor tooling and manufacturing programs. While much work has been 

published on the general design and optimisation of rotor profiles and twin 

screw compressor configuration, more fundamental research in the area of 

clearance analysis would be a useful contribution that would make the practical 

application of rotor optimisation more achievable. 

1.2 THE TWIN SCREW COMPRESSOR 

1.2.1 BASIC PRINCIPLES 

The twin screw compressor, though complex in design, essentially comprises of 

only two principle moving parts. These are the two helical screw rotors which 

are usually designed with integrated shafts for drive, bearings and seals. All 

moving parts are in balanced rotating motion allowing high operational speeds 

and power density. 

 

 

Figure 1-1: Compressor operation 

Figure 1-1 shows a representation of the rotors in mesh at various stages of the 

compression cycle. These rotors are enclosed within a closely fitting casing, 

resulting in the cavities that become the working chambers of the compressor. 

As the rotors turn these cavities translate axially and change in volume due to 

the helical form of the rotors. At the suction end new cavities are formed which 

increase in volume. At the discharge end these cavities decrease in volume and 
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eventually disappear. The rotor on the right, with 4 lobes in this example, will 

be referred to as the ‘main’ rotor and the rotor on the left, with 6 lobes, as the 

‘gate’ rotor.  

It is vital that clearances are maintained where close interaction between the 

rotors and casing exists. As these clearances define part of the boundary for a 

given chamber they are also referred to as the sealing lines. The clearances 

along these sealing lines introduce leakage paths which need to be controlled 

for efficient operation. The area of the leakage path depends on the length of the 

sealing line and on the size of the clearance gap. Minimising the effect of leakage 

paths is one of the main aims when designing twin screw compressors 

(Fleming, Tang 1995). 

1.2.2 PORTS AND INTERNAL COMPRESSION 

A twin screw compressor does not require valve actuation for its operation 

because the working chambers move past stationary ports, periodically 

exposing each chamber to suction and discharge. In Figure 1-2 the axial and 

radial parts of the discharge port are shown in blue and green respectively. The 

chamber highlighted red has reached its smallest volume before it will be 

exposed to the discharge ports. This represents the volume, V2, at the end of 

compression. The suction port, situated on the opposite side from that shown, 

will have closed when the maximum chamber volume is achieved to give the 

volume, V1.  
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Figure 1-2: Meshing rotors highlighting single compression chamber 

The volume index, or ‘Vi’, is the ratio of the inlet and outlet chamber volumes: 

V1/V2. The compressor should be designed to match the internal and external 

pressure increase so the target volume index is dependent on the compression 

ratio and gas properties. Systems have been introduced that allow the size of 

the ports to be altered, allowing a variable volume index. Ideally the port shapes 

should be as large as possible to minimise flow velocity and consequent losses. 

Depending on the casing design, the suction and discharge ports may only 

consist of an axial or a radial opening.  

1.2.3 CAPACITY CONTROL 

In principle the capacity control of a rotary positive displacement compressor 

can be very straightforward as the speed of the drive is proportional to the 

volume delivered. However, due to the prevalence of fixed speed motors, 

compressors commonly use slide valves (O'Neill 1977, SRM 1966) or poppet 

valves which allow recirculation from the chamber back to suction, prior to 

compression. As a consequence of the internal leakage being virtually 

unchanged, higher temperatures will occur within the compressor at reduced 

capacity, making this an important operating condition for the analysis of 

clearances and reliability. 

  

Radial Port

Axial Port Auxilliary Port
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1.2.4 OIL INJECTION AND COMPRESSOR ARRANGEMENT 

 

Figure 1-3: Oil free compressor 

Twin screw compressors can be ‘oil injected’ or ‘oil free’ (O'Neill 1966). Figure 

1-3 shows a sectional view of an oil free compressor highlighting some of the 

main components in different colours. The radial and axial bearings are 

highlighted in red; the seals are highlighted in yellow; and the timing gears are 

highlighted in green. With oil injected compressors the gate rotor is typically 

driven directly from the main rotor along a contact band on the rotors, 

eliminating the need for expensive timing gears. Another advantage of oil 

injected machines is that oil can drain directly into the compression chamber 

from the bearings eliminating the need for internal mechanical seals. Oil 

injected twin-screw compressors are capable of achieving higher compression 

ratios due to the presence of liquid in the clearance gaps and cooling of the 

compression gas by the liquid. However the viscous losses associated with oil 

injection limit the operational speed and therefore the capacity compared to an 

oil free compressor. Oil injected machines are dominant in refrigeration and air 

compression whereas oil free machines are common in gas processing 

applications in which contamination of the gas stream is not acceptable. 

Oil injected compressors will typically operate at discharge temperatures less 

than 100°C while oil free compressors may operate with discharge 
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temperatures in excess of 200°C. So the clearance requirements are quite 

different for these machines. In addition to oil free compressors having larger 

overall clearances, extra measures are sometimes used such as tapering the 

rotors to introduce larger clearances at the hot outlet end, or introducing liquid 

cooling passages in the casings and/or rotor bodies. As oil injected compressors 

feature direct drive via rotor to rotor contact the rotor to rotor clearances must 

be designed in such a way that contact only occurs at a specific area where the 

relative sliding motion between the rotor surfaces is small (Stosic, Smith et al. 

2005). 

1.3 DESIGN AND OPTIMISATION 

1.3.1 INDUSTRIAL APPLICATIONS 

Screw compressors have been adopted for a wide range of industrial 

applications including: 

 Refrigeration / Air-conditioning industries (cold stores, freezing) 

 Extractive industries (mining, oil and gas) 

 Process industries (chemical, petroleum refining, refrigeration, cement) 

 Power generation (steam recovery and compression system, gas booster 

for gas turbine) 

 Manufacturing industries (pneumatic applications) 

These applications cover a wide range of operating duties in terms of: capacity; 

suction pressure and temperature; and pressure ratio. Typical process gases 

handled (Howden Compressors Ltd. 2008) include: Carbon dioxide; Helium; 

Hydrogen; Ammonia; Butane; Chlorine; Coke oven gas; Sour hydrocarbons; 

Ethane; Propane; Town gas; Natural gas; Steam; and Refrigerants. Different 

operating fluids can result in significantly different discharge temperatures and 

internal leakages depending on their specific heat ratio and molecular weight. 
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Figure 1-4: Howden WRV range (courtesy of Howden Compressors Ltd.) 

In order to meet the demand of different markets, a number of compressor 

ranges have been developed over the years (O'Neill 1977). Figure 1-4 shows the 

Howden WRV range of oil injected compressors which are popular in the 

petrochemical and refrigeration industries. Generally, standard parts are used 

as far as possible for each size; which includes standard rotor designs. Some 

rotor options are available, for example in the Howden ‘HS’ oil-free range, the 

standard temperature limitations can be extended by introducing rotor cooling 

and rotor tapering. In this range, rotor cut-back is an option used to adjust the 

displacement capacity of the rotors for a given speed. Similarly on the ‘WRV’ 

range, some rotors with the same diameter but different lengths use the same 

rotor tooling, effectively resulting in a cut-back or extension of the same rotor 

design. These measures help to limit the need for more tooling and parts. 

Using a standard rotor profile for a range of compressors is a far cry from early 

predictions (Singh, Onuschak 1984) and more recent examples in the literature 

of rotor profile optimisation (Stosic, Smith et al. 2003). This work initially set 

out to apply well documented rotor profile optimisation methods to small 

batches of industrial compressors in a commercially viable way. Research based 

on this remit identified some practical and design challenges without clear 

solutions, namely, precisely how to design optimum clearances that safely 

accommodate duty dependent distortions during operation and how to capture 

the impact of clearance distortions during modelling. Tackling these challenges 
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led to a research niche that focuses specifically on clearance design and 

evaluation rather than overall optimisation; this is explained in more detail in 

the following sections. 

1.3.2 OPTIMISATION 

A thorough overview of screw compressor optimisation was presented by 

Stosic (Stosic, Smith et al. 2003). This describes target functions; identification 

of suitable optimisation parameters and constraints; and application of a 

method to find local minima. Using a number of case studies, Stosic shows that 

different rotor designs are optimal for different applications, this depends on 

whether they are oil-injected or oil-free and on the working fluid and operating 

conditions. Other optimisation methods have also been demonstrated to be 

successful (Stosic 2005, Wu, Fong 2009, Hauser, Brummer et al. 2008). The 

advent of accurate thread grinding (Holmes 2008) brings flexibility, as changes 

can more readily be made to the form of the tool, making the possibility of 

optimising smaller batches of rotors more realistic and economical. 

The design and optimisation of twin screw compressors can be broken down 

into three areas, namely: ‘General Design’, ‘Profile Design’ and ‘Clearance 

Design’. The group of design variables that fall within each of these areas are 

often constrained together such that different levels of optimisation can be 

broadly described as shown in Table 1-1. These different areas will be 

elaborated on in the following sections.  

Table 1-1: Commonly grouped constraints 

Variable Group Optimisation Level 

General Design Constrained Constrained 

3 Profile Design Constrained 

2 

Clearance Design 1 
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1.3.3 GENERAL DESIGN 

‘General Design’ relates to the basic geometric proportions of a twin screw 

compressor; whether it is oil injected or oil free; and other features such as the 

type of bearings. Basic geometric parameters include the rotor diameter (D) for 

a given rotor centre distance; the rotor lobe gear ratio (z1/z2); the wrap angle 

describing the helix of the main rotor (φw); and the ratio of rotor length over 

diameter (L/D).  

  

a) 3/5 lobe combination, 
L/D = 1.65, 

wrap angle = 200° 

b) 5/7 lobe combination, 
L/D = 1.10, 

wrap angle = 300° 

Figure 1-5: Comparison of rotors with different basic geometry parameters 

A small lobe number combination, such as on the 3/5 lobe rotors shown in 

Figure 1-5a, results in a compressor well suited to high flow applications. This 

type of rotor geometry is often seen in applications such as engine 

superchargers where the inlet air is ‘boosted’ to increase mass flow with only a 

modest pressure increase.  

The 5/7 lobe rotors shown in Figure 1-5b result in more working chambers but 

the compressor will have a smaller net capacity for a given rotor diameter. This 

larger number of lobes is well suited to higher pressure applications as the 

differential pressure between working chambers will be smaller. The rotors in 

Figure 1-5b also feature a smaller L/D ratio which when combined with the 

larger root diameter for the 5/7 lobe combination, results in very rigid rotors 

that can accommodate large bearings for high pressure operation. 
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Increasing the wrap angle of the rotors increases the ports areas and decreases 

the rate of filling and discharge due to a slightly longer cycle time.  These factors 

both help reduce dynamic losses. However, the slower cycle time that reduces 

the flow rate in the ports also has the negative consequence of increasing the 

time over which leakage can occur.  

 

Figure 1-6: SRM standard rotor geometry. Equal diameters; 4/6 lobes; L/D = 1.65; 

wrap angle = 300°. 

The need to optimise the general rotor arrangement is most applicable when 

designing a new range of compressors. When retrofitting rotors or designing 

rotors for a range of standard machines with finite casing geometry variations, 

it is common for the general rotor arrangement to be mostly constrained. 

Figure 1-6 shows the commonly used general rotor parameters used in the 

most popular compressor ranges in Howden Compressors. This design was 

based on experimental work and reports produced by SRM (SRM 1952) and 

provides good performance over a wide range of duties. 

1.3.4 ROTOR PROFILE DESIGN 

‘Rotor Profile Design’ relates to the geometry of the actual rotor lobes; referred 

to as the ‘rotor profile’. This profile is usually defined on the transverse cross 

section for a single rotor lobe. An example profile is given in Figure 1-7. 
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Figure 1-7: Rotor profile on transverse view 

In order to maintain sealing, the rotor pair must be conjugate, resulting in 

continuous ‘line contact’ between the rotor surfaces (Litvin, Fuentes 2004). To 

meet this condition, the relative velocity between two rotor surfaces at the 

moment of ‘contact’ must be tangential to the rotor surfaces. Applying the 

conjugate condition it is possible to calculate any of the transverse segments 

from one of the others. The transverse rack segment is calculated as a rotor 

with an infinite number of lobes, or infinite rolling ‘pitch’ radius. This is useful 

as it is common for the main and gate rotor pair.  

The rotor profile is defined using a rotor generation procedure that is usually 

patented; if publically disclosed. Rotor generation procedures commonly 

describe the profile on either the rotor or rack using various explicit curves 

with known derivatives that allow analytical calculation of the profile 

conjugates. Each rotor generation procedure has its own unique set of 

parameters that define the component curves of the profile. Modern generation 

procedures such as ‘N’ profile generation (Stosic, Hanjalic 1997, Stosic 2001), 

used in this research, provide a high degree of flexibility to the profile design 

while generating robust, reliable profiles. Rotor generation procedures will be 

discussed in more detail in the next chapter. 
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1.3.5 CLEARANCE DESIGN 

‘Clearance Design’ does not, typically, come under the umbrella of rotor 

optimisation in the literature but if altering rotor designs for significantly 

different operating duties then this is a critical part of the design process that 

cannot be overlooked. The location and type of each clearance gap is 

highlighted in Figure 1-8. These are the rotor to rotor ‘interlobe’ gap, the rotor 

to casing ‘radial’ gap, and the rotor to casing ‘axial’ gap. The optimisation of 

clearance gaps involves finding an acceptable balance between performance 

and reliability for a given operating duty.  

 

Figure 1-8: Rotor clearance gaps 

A considerable challenge in this process is that it is difficult to determine what 

the actual clearances are. Clearances specified on paper will not reflect the 

clearances achieved once all component parts of the compressor are machined 

and assembled. Furthermore, clearances measured after assembly will not 

reflect the operational clearances which are subject to complex pressure and 

temperature distributions. These issues and others related to clearance design 

will be discussed in the following chapter. Later in this chapter the section 

‘Preliminary Studies’ will introduce in more detail how clearances impact on the 

performance. 

Rotor to rotor – interlobe gap

Rotor to casing – radial gap

Rotor to casing – axial gap
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1.3.6 DESIGN SOFTWARE 

Specialised software called SCORPATH, developed at City University, was used 

during this research. This software allows the user to generate new rotor 

profiles with full control over all of the rotor design parameters previously 

discussed. Critically, the software includes a simulation model allowing the 

performance of the newly designed rotor to be evaluated. This simulation 

model is detailed in the book: ‘Screw Compressors, Mathematical Modelling and 

Performance Calculation’ (Stosic, Smith et al. 2005) and will be discussed in 

more detail in the next chapter. 

1.4 PRELIMINARY STUDIES 

1.4.1 PERFORMANCE SENSITIVITY TO CLEARANCE 

Reviewing clearance designs of previously tested compressors is a valuable 

input to designing new clearances. Mechanical testing is a requirement for all 

new compressors to ensure reliability therefore there is a growing bank of 

empirical data. Testing is unfortunately an expensive and time consuming 

process and, in an industrial manufacturing environment, reliability is 

prioritised; – often the intended operating duty might be well below the 

maximum design limit and may lead to non-optimal clearances.  
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Figure 1-9: Rotor retrofit test results with different clearances 

Figure 1-9 shows results from a Howden HS408165, oil free compressor. The 

compressor was retrofitted with newly designed N profile rotors (N_T1); these 

results are shown in red. Unfortunately, this rotor pair encountered serious 

rotor contact issues and testing was stopped. After conservatively relaxing the 

clearances, a second rotor pair was manufactured and tested (N_T2) with 

results shown in green. This performed well in terms of reliability however the 

flow was impaired as shown.  

1.4.2 CLEARANCE INFLUENCES AND BEHAVIOUR 

Due to the clearance sensitivities that relate to manufacturing and assembly 

tolerance there is always likely to be some degree of error between a simulation 

model based on ideal design clearances and actual test results. Stosic et al. 

(STOSIC, SMITH et al. 2003) highlighted the relative importance of the 

compressor housing and bearings on the interlobe clearances and presents a 

mathematical analysis to quantify potential clearance reductions.  Assembled 

clearance deviations can be assessed with thorough examination of all 

compressor components as shown in other work by Sauls et al. (Sauls 1996). 
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However, not all clearance sensitivities are unique to a particular compressor 

build - it is possible to broadly distinguish clearance sensitivities as follows: 

Duty INDEPENDENT clearance sensitivities: 

• Manufacturing tolerance 

• Assembly tolerance 

• Bearing clearances 

 
Duty DEPENDENT clearance sensitivities 

• Pressure distortions 

• Thermal distortions 

 
Some operational clearance distortions can be considered to be dependent on 

the operating duty and should in theory behave in a systematic and repeatable 

manner for a given compressor design.  

 

Figure 1-10: Location of proximity probe 

This is supported by test results where the radial gap between the rotor and the 

casing was directly measured using a proximity probe at the location shown in 

Figure 1-10. These test results are later utilised in the last case study in chapter 
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6 where more detail will be provided. Figure 1-11 shows the measured radial 

gap plotted against the ‘temperature increase’ across the compressor; i.e. the 

difference between the discharge temperature and the suction temperature 

where in this case the suction temperature is the same as ambient. Different 

temperatures were achieved by testing the compressor over a range of 

compression ratios. The nominal gap size in this case is 0.150mm. The radial 

clearance can be seen to reduce at higher temperatures. This is only a limited 

sample of data but it does show a fairly linear relationship between gap 

distortion and operating temperature.  

 

Figure 1-11: Measured relationship between operating temperature and 

clearance reduction 

Thermal distortions have been analysed in detail in the literature by Sauls et al. 

(Sauls, Powell et al. 2007) and by Kovacevic et al. (Kovacevic, Stosic et al. 

2002a) who showed that this is the dominant cause of operational deflections 

for oil free compressors. Assuming a simplified 2D cross-section with uniform 

rotor and casing temperatures, it is easy to visualise how clearances are 

affected. The left hand side of Figure 1-12 represents the effect of rotor thermal 

growth assuming no change in the casing geometry, including the rotor centre 

distance, A. With uniform heating of the rotors, the measured gap ‘GapR’ will 
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decrease in a very predictable manner. The change in the rotor overlap from H 

to H’ represents the reduction in the horizontal, transverse component of the 

interlobe clearance.  

A

d
G

a
p

R

H

H’

 

A

d
G

a
p

R

A’

 

Figure 1-12: How rotor thermal growth and casing thermal growth affect 

clearances 

The right hand side of Figure 1-12  shows the scenario of the casing thermal 

expansion without any deformations of the rotors. In this case the bearing 

centres will move apart, due to thermal expansion of the casing that houses the 

bearings. Due to this increase in centre distance from A to A’ the interlobe 

clearance gap will increase. Additionally, the casing thermal growth will 

increase the measured radial gap ‘GapR’. 

In short, heating of the rotors acts to decrease clearances and heating of the 

casing acts to increase clearances. With a uniform temperature increase over 

the entire compressor where the rotors and casing are at the same temperature, 

the change in clearance gaps would be negligible since all dimensions would 

scale uniformly.  

With this simplified model of clearance behaviour it is easy to imagine how 

operational clearance adjustments could potentially be integrated into a 

performance simulation model. The considerable difficulty lies in obtaining 

realistic rotor and casing temperature distributions and distortions. 
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1.5 CONCLUDING REMARKS 

Full optimisation of twin screw compressors for specific applications would 

ideally involve a multivariable optimisation of every parameter that affects 

performance, however, there needs to be some rationalisation of the number of 

design variables. Modification of clearances requires minimum alteration to 

manufacturing setup and tools so in a commercial manufacturing environment 

this aspect of profile design and optimisation has the most potential to provide 

significant benefits for the smallest cost.  

In most commonly used compressor simulation models (Hanjalic, Stosic 1997, 

Fleming, Tang et al. 1998b, Fujiwara, Kasuya et al. 1984, Sangfors 1984), 

operating clearances are treated as an input parameter that must be assigned 

by the design engineer. The effect of clearance distortions at elevated 

temperature is shown in Figure 1-11. Changing clearances has a considerable 

effect on compressor performance as observed in the results of Figure 1-9 and 

as reported in the work of Fleming et al. (Fleming, Tang 1995). It follows that if 

operational clearance deviations can realistically be represented in a 

compressor simulation model, then the model will predict performance more 

realistically over a wider range of operating conditions, without the need to 

revise the clearance input parameters manually. Such a model would also be 

invaluable in addressing the necessity to calculate optimal duty specific 

clearances accurately.  

Further research that contributes towards the goal of designing rotor 

clearances for optimum balance between performance and reliability is 

required and would be a valuable contribution to the field of twin screw 

compressors. The sensitivity of the clearances to the operating duty and the 

consequent effect on performance and reliability is a critical factor in any rotor 

optimisation and is something that is not well addressed in available chamber 

models. An important question that this research aims to address is how far 

commonly used chamber models can reasonably be extended to predict and 

correct for duty dependant thermal effects. 
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1.6 THESIS OVERVIEW 

Chapter 1: Introduction  

This chapter covers the motivation behind this research, introduces the reader 

to some twin screw compressor basics and to the concept of optimising the 

compressor rotors for specific applications. In summary this chapter discusses 

the importance of clearance analysis and design to the rotor optimisation 

process and highlights this as an area that would benefit from additional 

research.  

Chapter 2: Background Theory and Literature Review  

This chapter draws on literature to set out details of twin screw compressor 

rotor geometry generation and analysis that are important foundations of this 

research. Some of the established geometry calculations used will be described 

here or referred to in appendices. This chapter continues to discuss established 

compressor models that will be used. Limitations in applying these current 

tools to clearance analysis are discussed. 

Chapter 3: Research Objectives, Methods and Expected Contribution  

Within this chapter the research goals are set out along with specific details of 

the expected contribution. 

Chapter 4: Boundary Map for Rotor and Casing Surfaces  

This chapter describes work to map the fluid properties from a chamber model 

to the rotor and casing geometry. 

Chapter 5: Operational Clearance Distortions 

Building on Chapter 4, it is described how approximated rotor and casing 

temperature distributions can be used to calculate possible operational 

clearance distortions. Variations in the local clearances are fed into the 

geometry calculation procedure in order to recalculate leakage areas used by 

the chamber model. In this way it is possible to calculate the effect of 

operational clearances on performance iteratively. 
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Chapter 6: Case Studies  

This chapter presents case studies in which the methods outlined in Chapters 4 

and 5 can be applied to the design and analysis of clearances for oil free and oil 

injected compressors. 

Chapter 7: Conclusions and Future Work  

Finally, this chapter will conclude this thesis and identify any future work. 
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Chapter 2                                           
Background Theory and 
Literature Review 
 

2.1 INTRODUCTION 

This chapter draws on available literature to: describe the work that the current 

research is based on, introducing relevant theory as necessary; and clarify 

exactly where new contributions are required. The generation of rotor profiles 

is a necessary starting point for this research so this will be discussed first.  This 

is followed by a review of how the clearances are designed. Once the rotor 

geometry has been generated the task of fully evaluating the geometry 

characteristics of the assembled rotor and casing is considerable.  So this is also 

covered. Modelling of twin screw compressors is then reviewed; considering 

both performance prediction and thermal analysis methods. 

2.2 ROTOR DESIGN  

2.2.1 PROFILE GENERATION 

Figure 2-1 introduces some basic terminology used to describe rotor profiles. 

The direction of rotation shown by the arrows is for compressor operation. 

Assuming compressor operation the leading and trailing flanks of each 

protruding lobe can be identified. The leading main flank meshes with the 

trailing gate flank and vice versa so this terminology is not always ideal. The 

flanks can also be referred to as the round flank or the straight flank as labelled. 

The tangent circles projected on the main and gate rotors represent the pitch 

circles; where rolling contact would occur. 
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Figure 2-1: Transverse profiles showing terminology 

The development of rotor profile generation procedures for screw compressors 

has been well documented (Stosic, Smith et al. 2005, Stosic, Smith et al. 2010). 

The following is a summary of some of the key developments. Figure 2-2 shows 

the end on view of two types of rotors which are significantly different in terms 

of lobe width and shape. The rotors in the top part of Figure 2-2 are a 

symmetric ‘circular’ profile which was used in the first manufactured screw 

compressors; note that the profile lobes are symmetrical and both the leading 

and trailing flanks of the main rotor are circular in shape. The rotors in the 

lower part of Figure 2-2 have a modern asymmetric rotor profile and have 

distinguishable round and straight flanks.  
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Figure 2-2- Photo comparing symmetric and N-rotor profile rotors 

This asymmetry is one of the most important developments in screw 

compressors and was first introduced by SRM in the ‘A’ Profile (Schibbye 1979). 

In order to create the straight flanks, curves were generated by an undercutting 

action so that single points on the main and gate rotors trace the curves on the 

opposite rotors. It is this undercutting that allows the degree of asymmetry 

required for the straight flank on the gate lobe to curve forward in the direction 

of rotation and meet the tip of the main rotor closer to the cusp of the casing, 

considerably reducing the blowhole area whilst ensuring continuous ‘contact’ 

between the rotors. The blowhole will be explained in more detail in the 

following sections. Since the symmetric ‘circular’ and asymmetric ‘A’ profile, 

many new designs have been patented by SRM and others; they all now use 

asymmetric profiles.  

The enveloping theory used to calculate conjugate rotors is explained by Stosic 

et al. (Stosic 1998). Calculating the conjugate section of the generated profile 

directly from the generating profile is most common. However, different 
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approaches have been proposed including the ‘transverse rack generation 

method’, the ‘normal rack generation method’ (Wu 1995), and ‘meshing line 

generation’ (Zaytsev, Infante Ferreira 2005). An early version of the transverse 

rack generation method described by Rinder (Rinder 1987) highlighted the 

advantages of rack generation. The use of straight lines on the transverse rack 

in the pitch line area results in involute curves on the rotors with constant 

pressure angle and excellent force transmission. The limitation of Rinder’s rack 

was that the range of lines and circles used to define the rack resulted in a large 

blow hole area.  

Stosic’s N-profile improved the rack definition of the straight flank, and thus 

reduced the blowhole area. This was achieved by generating the straight 

portion of the rack from two small radii defined on the main and gate rotors 

(Stosic 2001), similar to the SRM ‘D’ profile (Astberg 1984). The use of small 

fillet radii rather than singular points is beneficial when designing a practical 

profile that requires carefully controlled clearances.  The N-profile rotors in 

Figure 2-3 show a meshing rotor pair on the right and on the left the transverse 

rack from which they were generated. The letters identify the extents of the 

individual curve segments used to define the profile.  

 

Figure 2-3: ‘N’ rotor rack generation 
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There are other interesting rack generation methods that have been proposed 

such as using a number of discrete points connected using a spline (Sundt 

1997) rather than the traditionally used set of explicit curves. Furthermore, it is 

possible to derive meshing profiles using the Boolean operations built into 

modern CAD packages (Stosic, Mujic et al. 2008) without the need to calculate 

the meshing conditions. These types of approach are likely to gain more favour 

among profile designers, due to the freedom they bring, providing numerical 

errors are within acceptable limits. 

It is important to understand that using the same profile generation method 

will not always result in the same profile shape; this is because modern 

methods allow several profile design parameters to be altered. For example, the 

rotor segment BC defined in Figure 2-3 is defined by the N profile generation 

procedure to be a straight line that results in involute curves on both rotors 

however the angle of this line is a parameter that can be readily adjusted for a 

specific N profile. 

The patented ‘N’ profile procedure (Stosic 2001, Stosic, Hanjalic 1997) draws 

together the strengths of previous profiles: such as the asymmetry of the A and 

D profiles; and the involute curves at the pitch circle used in the Rinder rack; 

while bringing new benefits, due to the novel rack generation method which 

provides far more flexibility in the form of the remaining curves. This 

generation method is accessible to rotor design engineers as part of a 

commercially available design suite (Mujic, Kovacevic et al. 2010) and was used 

for all new rotors designed during this research. 

2.2.2 CLEARANCE DESIGN 

Modern manufacturing methods allow rotor profiles to be machined to a 

tolerance of 5 microns (Kovacevic, Stosic et al. 2002a) but consideration must 

be given to manufacturing and assembly errors of all other compressor 

elements (Stosic, Smith et al. 2003) and particularly to the operating 

deformations which are generally larger than the manufacturing tolerances 

(Sauls, Powell et al. 2007). As well as defining the size of the clearance gap it 

must be specified how the clearances are to be applied between the 
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components. The radial and axial clearances that occur between the rotors and 

the casing are fairly straightforward to implement; for example by designing the 

rotors to a slightly smaller diameter than the casing bore diameter. The 

interlobe clearance is introduced by removing material from one or both of the 

generated profiles. Fleming (Tang, Fleming 1994) investigated suitable 

practises to introduce interlobe clearances with tooling offsets however 

modern rotor design tools such as for the ‘N’ profile generation allow a high 

degree of control over the clearance distribution when designing the profiles. 

Clearance distributions usually vary around the profile and can be significantly 

different in local areas. Figure 2-4 shows a transverse rack view with clearances 

mapped onto it.  Clearances are represented by magnified vectors 

perpendicular to the rotor rack curve. The point numbers, e.g. ‘#01’, on this 

figure represent inspection points where the designed clearances may have 

different values. The number that follows is the normal clearance gap 

(measured perpendicular to the surface) in microns, e.g. ‘+90’. In this figure the 

clearances are smaller on the round flank, on the left hand side, because this is 

the side where contact normally occurs. The larger clearances on the straight 

flank, on the right hand side, allow for rotor ‘backlash’ which is a necessary 

design feature of any practical gear system.  
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 Figure 2-4- Clearance distribution on a rack projection 

In one sense the clearances in oil injected machines are easier to manage than 

in oil free machines, because the temperatures are usually kept within much 

lower limits. However the lack of timing gears and the direct rotor to rotor 

drive adds more complexity to clearance analysis. Rotor contact is necessary for 

one rotor to drive the other; the objective is to control precisely where contact 

is to occur. Best practice for direct drive clearance design ensures only rolling 

contact at the pitch radius of each rotor as presented by Stosic et al (Stosic, 

Smith et al. 2005). Deviations from nominal design clearances, whether due to 

manufacturing and assembly variations or due to operational distortions, can 

result in a shift in the relative rotation between the main and gate rotors (Sauls, 

Powell et al. 2007): this further distorts the interlobe clearance distribution and 

must be considered in clearance evaluation for direct drive, oil injected 

compressors. 

The discontinuities at each side, on the top and at the bottom of the clearance 

distribution in Figure 2-4, are introduced by ‘tip seals’, or ‘wear strips’ located 

at the outer diameter of each rotor. These narrow bands of protruding metal are 

a compromise that slightly increases the total interlobe leakage area but they 
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allow the radial clearance gap to be kept to a minimum without compromising 

reliability. It was claimed in Fleming et al (Fleming, You et al. 1994) that, if 

correctly designed, sealing strips can even reduce the viscous drag between the 

rotors and casing in oil injected compressors. 

On the topic of clearance management, Stosic (Stosic, Smith et al. 2005) 

describes a sensible approach wherein the designed clearance distribution 

during operation should be such that rotor contact is not possible in any 

location that would lead to damage. Therefore the design clearance distribution 

is the target operating clearance distribution with additional allowance built in 

for thermal expansion. The optimal clearance design is therefore dependent on 

the operating temperature. More specifically it is dependent on the thermal 

distribution and distortion of the compressor components which are 

considerably more difficult to predict. Designing clearance allowance for 

operational distortions requires the temperature distribution within the 

compressor to be calculated. Examples of using numerical methods to calculate 

temperature distribution on the rotors and casing and thus the change in 

clearances have been given by Kovacevic et al (Kovacevic, Stosic et al. 2002a) 

and by Sauls et al (Sauls, Powell et al. 2006b). The former uses Computational 

Continuum Mechanics to allow the solution of both the solid and fluid domains 

on a 3D numerical mesh of the actual compressor geometry while the latter 

uses temperature results from a chamber model that are mapped to a 3D finite 

element grid. Both approaches showed good correlation when compared with 

experimental data. 

2.3 GEOMETRIC CHARACTERISTICS 

2.3.1 IDENTIFICATION OF GEOMETRIC CHARACTERISTICS 

Compressor models used for the calculation of screw compressor 

thermodynamic and fluid flow processes, from non-dimensional 

thermodynamic chamber models (Singh, Onuschak 1984, Hanjalic, Stosic 1997, 

Seshaiah, Ghosh et al. 2007, Stosic, Hanjalic et al. 1986, Fujiwara, Kasuya et al. 

1984, Sauls 1996) to three-dimensional computational fluid dynamics (CFD) 
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procedures (Kovacevic, Stosic et al. 2006, Kovacevic, Stosic et al. 2002b), 

require accurate representation of the rotor geometry. With 3D modelling 

methods, that represent the full fluid domain, the effect of the geometry on the 

thermodynamic result is inherent however when working with non-

dimensional models, identification and quantification of geometric parameters 

such as the chamber volume, port areas and leakage areas is needed. Such 

parameters vary throughout the cycle and it is necessary to know the 

instantaneous value and gradient of each one. 

As the helical rotors rotate within the compressor casing the actual volume of 

trapped gas within any one of the compressor chambers is continuously 

changing in shape, size and position. Each compression chamber is comprised 

of one main rotor and one gate rotor flute. These are the individual channels 

threading their way around the rotors. As the compression volume moves 

through the compressor it interacts with fixed ports (refer back to Figure 1-2) 

in the casing, resulting in port areas that continually vary and exist for only a 

certain portion of the cycle. Due to the necessity for clearances, leakage paths 

also exist at the sealing boundaries.  Again these are continuously changing in 

shape, size and position throughout the compression cycle. Calculating these 

geometric characteristics of the twin screw machine, that are relevant to its 

performance, can become very complex depending on the level of realism and 

accuracy required.  
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Figure 2-5: Defining discrete leakage paths 

Accurate presentation of screw compressor geometry was given in the 

comprehensive screw compressor textbook by Sakun (Sakun 1960) and the 

screw compressor handbook by Amosov (Amosov 1977), both published in 

Russian. Rinder (Rinder 1979) presented a similar work in German. SRM, who 

were the first to license twin screw compressor technology have published 

numerous reports detailing how to analyse twin screw compressor geometry 

(SRM 1954, SRM 1953) however this material is still only available to licensees. 

Singh and Onuschak (Singh, Onuschak 1984) provide an overview of the main 

screw compressor geometric characteristics. Further work was published by 

Singh et al describing in more detail the methods used to calculate the 

geometric parameters (Singh 1990, Singh, Bowman 1990). Fleming and Tang 

(Fleming, Tang 1995) presented a model which described 6 distinct leakage 

paths – the interlobe gap; the radial gap; the discharge face axial gap; the 

suction face axial gap; the high pressure (HP) blowhole; and the low pressure 

(LP) blowhole; these discrete leakage paths are illustrated in Figure 2-5. Other 

geometric factors that can be considered include injection ports and part load 

re-circulation passages.  Detailed breakdown of the flow areas can vary but the 

principle of describing volumes and areas as a function of the cycle is the same. 

Hauser et al (Hauser, Brummer 2010) demonstrated a procedure whereby 
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abstracted geometric parameters could be directly used for efficient 

optimisation of profile thermodynamic performance. 

Of the leakage paths shown in Figure 2-5, the radial gap and interlobe gap are 

directly related to the design clearances. The discharge end face gap - also called 

the axial gap, is an assembly feature while the blow-hole area is an inherent 

feature of the rotor profile geometry. Not all leakages paths are present for the 

entire duration of a compression cycle and the size and shape of the leakage 

path will vary. Defining each of the leakage areas as a function of the cycle angle 

sufficiently captures the most important leakage characteristics in a very 

efficient manner. This efficiency comes at the cost of losing details such as how 

the area evolves along the path of the leakage flow. When describing leakage 

areas with non-dimensional area curves the simple objective is to calculate the 

minimum instantaneous area along each flow path as accurately as possible. 

 

Figure 2-6: Leakage flow from chamber volume 

The radial leakage path for outflow can be visualised as the flow along the 

curved arrows shown in Figure 2-6. For a given rotor position the length of this 

sealing line is easily calculated as it follows two helical paths that terminate at 

Interlobe Leakage 

Radial Leakage Blow-hole Leakage 
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the casing cusp where the main and the gate rotors meet, or at one of the axial 

end faces. If the radial clearance gap is constant, then the leakage area is the 

product of the sealing line length and the clearance gap. This simple 

representation of the clearance gap is common and has shown to be sufficiently 

accurate for many models in predicting the general performance metrics of 

compressors. 

Adding a little more sophistication by allowing the local clearance gap to be 

varied along the length of the sealing line opens up the potential for 

investigation such as by Wu (Hsiao, Wu et al. 2012) who assessed how different 

clearance distributions along the interlobe sealing line affected performance. 

This approach also allows for investigation of how local clearances are affected 

by relative movements of the rotors and casing, for example, due to the relative 

rotation of the rotors. This was discussed by Stosic (Stosic, Smith et al. 2005) 

who highlighted that when contact occurs on the trailing flank of the main rotor 

(straight side) the net leakage area is reduced due to a longer sealing line on 

this side of the rotor profile. In these examples of non-uniform clearance 

analysis, the interlobe gap varies around the rotor profile but was considered 

constant along the length of the rotor and throughout the cycle. Additional 

sophistication is needed if the effect of tapered rotors or thermal distortions in 

local rotor hotspots is to be investigated.  

  



 Chapter 2: Literature Review 

33 
 

2.3.2 CALCULATION OF GEOMETRIC CHARACTERISTICS 

A screw compressor geometry calculation program name ‘GEOM’, developed at 

City University, was made available during this research. This featured accurate 

calculation of the actual port area, as described by Mujic (Mujic 2009). This 

program allows the detailed calculation of geometric characteristics and 

provided a basis for the novel work described in Chapters 4 and 5; therefore it 

is worth providing a brief overview. 

The objective of ‘GEOM’ is to produce all necessary geometric characteristics 

required for the assessment and thermodynamic simulation of any given pair of 

twin-screw rotors for a positive displacement compressor or expander. The 

requirements are defined: 

 to accurately calculate the required geometric characteristics of a screw 
compressor independently, prior to thermodynamic calculations 

 to represent them as a function of the main rotor angle, θ 

 to give the output of all the rotor geometric parameters in a single 
matrix 

 to accept rotor co-ordinates, of any type and from any source, for 
calculation, allowing flexibility and independent rotor comparisons 

 to support the use of arbitrary ports  

 to support non-uniform clearance distributions along sealing lines and 
to allow local clearance modifications to be applied 

 

The last point that is underlined was introduced during the course of this 

research to allow specific analyses of the clearances. An example of some of the 

typical results obtained is shown in Figure 2-7.  
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Figure 2-7: Volume and area curves 

The port areas are shown in Figure 2-7a while the smaller leakage path areas 

are shown in Figure 2-7b, from which it can be seen that different leakage paths 

exist during different phases of the compressor cycle and for a particular 

working chamber there can potentially be two of each type of leakage path: one 

for in-flow from the previous chamber or from discharge; and one for out-flow 

to the next chamber or to suction. Details on the calculation of the volume curve 

and selected areas are included in Appendix A. 

2.4 REVIEW OF TWIN SCREW COMPRESSOR MODELS 

2.4.1 CHAMBER MODELS 

Screw compressors are positive displacement machines which when modelled 

at a basic level can be represented by the compression cycle of a single control 

volume which is analogous to a piston cylinder arrangement. Calculated 

geometric characteristics and discrete leakage paths described as functions of 

the cycle can be utilised in a thermodynamic simulation to predict the expected 

performance of the new rotors without the need to fully represent the complex 

3D geometry. By the 1980’s there were a number of examples in literature of 

relatively mature computer programs to calculate screw compressor 

performance using such non-dimensional models (Singh, Onuschak 1984, 

a. port areas b. leakage areas
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Hanjalic, Stosic 1997, Seshaiah, Ghosh et al. 2007, Stosic, Hanjalic et al. 1986, 

Fujiwara, Kasuya et al. 1984, Sauls 1996). 

Sangfors (Sangfors 1984) published the principles of differential modelling of 

the screw compressor thermodynamic process. Stosic et al. (Stosic, Hanjalic et 

al. 1986) published a comprehensive application of such a differential model, 

previously widely used in the modelling of internal combustion engines and 

reciprocating compressors, to calculate screw compressor performance. 

Fujiwara et al (Fujiwara, Kasuya et al. 1984) presented a model where the 

volume curve was obtained using the principle of virtual work. Singh et al. 

(Singh, Bowman 1990, Singh, Onuschak 1984, Singh 1990) presented papers 

dealing with screw compressor geometry which was then utilised in a 

performance prediction model. Fleming and Tang introduced a model 

particularly suited to refrigeration applications (Fleming, Tang et al. 1998b, 

Tang 1995, Tang, Fleming 1992). The ability to estimate the performance of 

screw compressors quickly and accurately, as confirmed by many other 

authors, for example in Fujiwara and Osada (Fujiwara, Osada 1995) has 

revolutionised the field of the screw compressor design and optimisation and 

has been identified as a 'success story of the twentieth century', as stated by 

Fleming et al.(Fleming, Tang et al. 1998a, Fleming, Tang et al. 1998b).  

By applying initial conditions at the compressor inlet, including pressure, 

temperature, and the resulting thermodynamic properties for a given working 

fluid, differential equations of conservation of energy and continuity are solved 

to describe the compression process. The changing volume of the compression 

chamber is factored into the energy conservation and the mass balance allows 

for mass inflow and outflow to simulate flow through the port and leakage 

paths. The thermodynamic properties throughout the compressor cycle can 

then be calculated, as a function of time, or shaft angle.  

The model used in this research is that described by Hanjalic and Stosic 

(Hanjalic, Stosic 1997). Here the compression process is described as a classic 

open thermodynamic system using the non-steady flow energy equation with 

internal energy as the derived function from which all other properties such as 
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instantaneous pressure are found. The main thermodynamic assumptions of 

this model are: 

 The fluid flow in the model is assumed to be quasi 1D i.e. only 1D flow 

through ports and leakage paths is considered while the chamber in non-

dimensional 

 This assumes that kinetic energy changes of the working fluid within the 

working chamber are negligible compared to internal energy changes 

 Gas or gas-liquid inflow to and outflow from the compressor ports is 

assumed to be isentropic 

 Leakage flow of the fluid through the clearances is assumed to be 

adiabatic. 

Thus the non-steady flow energy equation can be written as: 

 
  

  

  
                        

  

  
 (1) 

Each term in equation (1) describes the rate of energy change within the 

working chamber. On the right hand side the enthalpy of suction, discharge, 

leakage to and leakage from the chamber are all described with a mass flow 

balance (other fluids such as oil are included in this total enthalpy). The final 

terms are the rate of heat transfer and the compression work. Once the 

compressor has reached a steady operating temperature, the heat transfer, Q, 

describing the heat flux between the working fluid and the compressor and 

surroundings, is relatively small compared to the overall compression power 

and can therefore be neglected in terms of its effect of the thermodynamic 

process (Stosic, 2015). Therefore, in this work, Q has been set to zero so that the 

compressor surfaces are adiabatic. Note that this does not mean the 

compression cycle is adiabatic as heat is transported via leakage paths and to 

cooling liquid, if present, which have a far more significant impact on the 

thermodynamic process.  

Each mass flow is calculated using orifice or nozzle flow theory and continuity. 

The areas used are those calculated from the rotor geometry which varies as a 

function of the compressor angle, θ. Similarly, the last term ωp dV/dθ which 
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describes the rate of compression work done on the system is dependent on 

how the volume varies as a function of the compressor angle. From this, all 

other properties are calculated (Stosic, Smith et al. 2005). 

In the current model, the flow through the ports is assumed to be isentropic, 

corrected using an orifice flow coefficient. In other models the flow through the 

leakage paths is also often calculated as isentropic (Fujiwara, Mori et al. 1974, 

Sauls 1996, Seshaiah, Ghosh et al. 2007), if applicable, by using the critical 

pressure ratio for choked flow. Sachs (Sachs 2002) has confirmed 

experimentally that supersonic leakage flow can occur. These models neglect 

the effect of friction resulting in the need for correction factors. Bell (Bell, Groll 

et al. 2012) presents a numerical leakage model that uses a Fanning friction 

factor.  Results from this model are compared against an isentropic nozzle flow, 

highlighting the large difference. In the currently used leakage model (Stosic, 

Smith et al. 2005) the leaking gas velocity is derived from the momentum 

equation, which accounts for the fluid-wall friction. The mass flow is found by 

integrating along a gap from the high pressure to the low pressure side so that 

the flow can be defined as adiabatic Fanno flow. This flow has been described in 

detail elsewhere (Stosic, Smith et al. 2005); a brief description has been 

included in B.1.2 Adiabatic Fanno Flow. 

It has been demonstrated in a number of models that, for the purposes of 

performance calculation, simplified approximations of the leakage gap are 

adequate. In the adopted model the leakage areas between the sealing lines, i.e. 

through the interlobe, radial and axial gaps (GI, GR, and GA), are assumed to be 

directly proportional to the length of the sealing line. This takes the clearance 

gap to be a constant, uniform value, denoted G*. This is shown in equation (2) 

which calculates the leakage area AI through the interlobe gap: 

      
     (2) 

What value this average gap size should take is unclear. Assuming nominal 

values for all manufacturing and assembly tolerances it is possible to calculate 

what is sometimes described as the ‘cold clearance’, which is what the gap 

would be when the compressor is at ambient temperature and stationary. It is 



 Chapter 2: Literature Review 

38 
 

known that the operational clearances can vary significantly when the 

compressor is running (Sauls, Powell et al. 2007). Fleming dealt with this by 

using empirically derived flow coefficients to correct the flows predicted using 

the cold clearances (Fleming, Tang et al. 1998b); this approach is less suitable 

for a model which must be accurate over a wide range of operation duties and 

working fluids. If the temperature distribution of the rotors and casing is 

known, operational clearances can be predicted by considering thermal 

expansion. In a series of papers (Sauls, Powell et al. 2006a, Weathers, Sauls et al. 

2006, Powell, Weathers et al. 2006) Sauls et al accurately predicted the rotor 

and casing temperature distribution of an oil injected compressor by applying 

boundary conditions from a chamber model to a finite element model. This 

analysis deals with duty dependent clearance sensitivities and provided 

excellent insight into the rotor and casing temperature distributions which can 

be fed back into a chamber model. However, it would be difficult to run such a 

detailed simulation for numerous rotors, requiring geometry updates; and for 

different applications, requiring re-calculation of boundary conditions.  

Sauls et al have reported on a model which can make thermodynamic 

predictions based on 3D sealing geometry (Sauls, Powell ); in this they tested 

the assumption that using an average clearance gap will provide accurate 

results. When comparing results using an average interlobe clearance against 

the actual interlobe clearance distribution for a number of scenarios, the results 

showed little difference in the net performance characteristics such as flow and 

power. However, if the primary interest is in clearance design and reliability it 

will be useful to fully represent this clearance distribution. The first step 

towards a full 3D clearance analysis is to calculate the leakage area by 

integrating the local gap value as shown in equation (3); in the case when the 

local gap can vary along the length of the sealing line.  Hence it has been 

described as a function GI(lI): 

 
                (3) 

This describes the approach taken by Hsiao et al (Hsiao, Wu et al. 2012) to show 

how certain non-uniform clearance distributions can indeed have an effect on 
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compressor performance. However, this approach only really describes the 

change in the sealing line along the sealing line path with the assumption that 

the clearance distribution around the rotor profile is the same along the length 

of the rotor profile. To allow variation in the clearance distribution along the 

length of the rotors, either for rotor taper or for thermal distortion, that 

increase towards the hot end of the rotor, the local gap also depends on the 

cycle angle, θ, which describes where the sealing line is situated along the 

length of the rotors. It is not detailed by Sauls et al precisely how the local 

clearance gap is handled but this can generally be described in equation (4). 

There is a need for detailed procedures to be developed in this work in order to 

define unique local clearance gap values at any location in the compressor, at 

any rotor position.  

 
                  (4) 

Other developments in chamber models in the literature include analysing 

assembly data acquired for each component using a co-ordinate measurement 

machine (CMM) and feeding this into the model (Sauls 1996); this deals with 

duty independent clearance sensitivities. Another novel model determines flow 

coefficients as variable functions by using findings of CFD analysis (Sauls 2011). 

The philosophy here is different from that of using empirical flow coefficients 

from test results in that the emphasis is on developing a deeper understanding 

of the compressor behaviour so that there is less reliance on empirical 

coefficients. This approach is important so that a design tool can be used 

reliably over a wide range of conditions with minimum ‘calibration’. Such a 

powerful yet flexible model is a necessity for optimising a rotor profile for 

specific applications and significant contributions can still be made, particularly 

in the analyses of duty dependent clearance sensitivities. 

2.4.2 ALTERNATIVE MODELS 

Singh and Schwartz (Singh 1990) proposed that for highly 3D problems such as 

the calculation of the blowhole area, full 3D surface representation would be 

more appropriate for calculation of leakage areas. Standard 3D CAD modelling 

packages can be used, but developing a robust procedure for extracting the 



 Chapter 2: Literature Review 

40 
 

minimum cross sectional area on a plane perpendicular to the actual flow 

direction is a challenge. Computational fluid dynamics has been used to 

describe the full 3D flow field of a twin screw compressor by Kovacevic et al 

(Kovacevic, Stosic et al. 2003) giving insight into the internal behaviour of the 

compression volume. It can be argued that the actual flow through a highly 3D 

blow-hole can only be accurately modelled by using a 3D representation of the 

flow domain. However, the high level of expertise, computing power, and run 

time can make the use of CFD prohibitive in some instances.   

To find a compromise between the accuracy of the expensive multidimensional 

calculations and fast, but less detailed chamber models, which is adequate for 

evaluation and general performance prediction and optimisation, a hybrid 

model was proposed by Mujic et al. (Mujic 2009) which used chamber models 

for analysis of flow within the rotor domains and a 3D approach at the 

compressor ports.  

2.4.3 THERMAL ANALYSIS 

The prediction of thermal distribution and distortion is beyond the scope of 

typical chamber models used for performance prediction and requires 

additional calculation procedures. With the application of reasonable 

assumptions the temperature distribution of the rotors can be approximated 

analytically based on the temperature of the operating fluid at the compressor 

inlet and outlet (SRM 1950). This procedure essentially performs a lumped 

analysis for each 2D cross section of the rotor based on an empirically observed 

axial temperature distribution.  

If the assumptions are to be minimised, the complexity of the analysis can 

quickly increase. Generally some assumptions are required to prevent the 

analysis becoming prohibitively complex, this complexity is clear when 

considering the physical processes involved: Heat is generated due to 

compression; and kinetic losses in bearings, seals and oil. The convective heat 

transfer coefficient can vary locally on surfaces due to the complex flow and 

changing fluid properties within the compressor. The problem is compounded 
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by the interdependence between the compression process and component 

temperature and geometry.  

Kovacevic et al (Kovacevic, Stosic et al. 2002a) developed a 3D numerical 

method to calculate  flow and deformation by using a numerical grid for both 

the solid and fluid domains. This work showed how the ‘operational clearances’ 

for a given compressor and compression application are influenced by 

movement due to pressure and, more significantly in oil free machines, by 

thermal distortions. This work suggested a more or less uniform temperature 

across the transverse section of each rotor however because this work focused 

on analysis of the rotor bodies it is not apparent what impact heat conduction 

along the shafts, to or from the bearings, would have on the thermal 

distribution.  

A commonly used approach to facilitate analysis is to de-couple the calculation 

of the thermodynamic boundary conditions from thermal analysis of the solids. 

The thermodynamics are calculated independently then used as an input for the 

thermal analysis. Hsieh et al (Hsieh, Shih et al. 2011) use the thermodynamic 

boundary conditions from a lumped parameter, chamber model. These 

boundary conditions were used with a finite element model of the rotors to 

calculate the temperature distribution in oil injected screws. This work 

discusses the numerous boundary conditions that the full rotor shafts are 

exposed to; including the bearing surfaces. The main challenge in this work was 

in establishing empirical constants to calibrate the unknown heat transfer 

coefficients. This is achieved by adjusting multiple coefficients to try and match 

temperatures at 3 points on each rotor, which were measured on test. The 

reported results state that there is a heat flux from the discharge end bearings, 

along the rotor bodies and outwards toward the compression fluid. For this to 

be the case the implication is that the main rotor outlet bearing temperature is 

greater than the bulk temperature of the working fluid. It is not clear from this 

work how the boundary conditions from the chamber model are applied to 

rotor surfaces though it is implied that the discharge end of the rotor is exposed 

to higher gas temperatures. Interestingly, the temperature variation from the 
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hot to the cold end of the rotors is actually said to be due to the larger heat flux 

from the discharge bearing, rather than the gas temperature distribution. 

The last two examples resulted in quite different rotor temperature 

distributions over the transverse cross section of the rotors, demonstrating how 

sensitive these kinds of analysis are to any difference in the way boundary 

conditions are defined. In the thermal analysis done by Sauls et al, referred to 

previously (Sauls, Powell et al. 2006b, Sauls, Powell et al. 2006c), using a 

chamber model and FEA,  the first of these papers goes into detail about how 

surface boundary conditions are extracted from the chamber model results and 

mapped onto the surface of the compressor casing and rotors. The significance 

of the interlobe sealing line boundary is discussed although the way in which 

the full chamber boundary is analysed, is not disclosed. These results show the 

round, or high pressure, side of the main rotor to be hotter than the opposite 

flank with the explanation that it is exposed to a high pressure chamber for 

longer. This result conflicts with Hsieh whose results, discussed previously, 

show the rotor to be slightly cooler on the round side.   

Analyses from closely related fields are interesting to compare. Nilolov et al 

(Nikolov, Brummer 2012) uses an iterative coupling of a thermodynamic 

chamber model and FEA thermal simulations. This highlights the 

interdependence between the thermal distortion, leakage gap size and the 

thermodynamic performance for a twin screw expander. Gao et al (Gao, Yang et 

al. 2011) performs a temperature and thermodynamic analysis for a twin screw 

multi-phase pump in which temperature and pressure transducers are 

embedded into the rotor bodies. The results from this experiment supports the 

assumption that the temperature at a point on the rotor surface can be 

considered to be steady state at it rotates due to the high rotation speed and 

good thermal conductivity of the rotors. The presented temperature 

distribution on the rotors shows the surface temperature to increase from inlet 

to outlet due to the gas temperature increase as would be expected. In the core 

of the rotor the temperature gradient along the length of the rotors is smaller 

due to conduction. As a result the transverse cross-section of the rotors at the 

discharge end of the rotors is hotter outside and cooler inside; at the inlet end 
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the opposite is true. This paper also considers deformation due to the pressure 

distribution but notes that this is negligible compared to the temperature 

deformation. Kovacevic et al apply a solid-fluid interaction analysis to a novel 

screw compressor-expander (Kovacevic, Stosic et al. 2006a). This analysis is 

built on in (Kovacevic, Stosic et al. 2006b) which estimates clearance gap 

distortions using the gas discharge temperature by mapping numerical and 

experimental results. Both Kovacevic and Gao discuss the need to consider the 

rotor and casing material properties and how this influences gap distortion 

during operation.  

2.5 CONCLUDING REMARKS 

Some relevant background has been given on profile generation and the way in 

which clearances are applied to the rotors. The concept of abstracting the 

compressors geometric characteristics for the purposes of modelling and 

clearance analysis is a balance between efficient modelling and accurately 

capturing enough detail for the type of investigation required. To investigate 

the behaviour of clearances in detail, the conventional clearance approximation 

that assumes uniform gaps is not suitable. Additional sophistication is needed if 

the effect of thermal distortions in local rotor hotspots is to be investigated.  

The need to understand the thermal distribution in the compressor is vital to 

understanding operational clearance distortions. However, the thermal analysis 

procedures that should provide the most detail and realism are not necessarily 

the most appropriate for a robust clearance design and optimisation procedure. 

This review has identified some variations in rotor temperature distribution 

results from different analyses; this doesn’t necessarily mean that one analysis 

is wrong but it highlights how these sophisticated tools are still highly subject to 

the boundary conditions assumed, whether correctly or incorrectly.  

Chamber models are well established tools that have been shown to be accurate 

for general performance prediction, with this in mind it can sometimes be 

counter-productive to introduce additional complexity since the model 

efficiency may be reduced without an overall improvement in accuracy due to 
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other inherent assumptions such as the way in which leakage flow is calculated. 

However in certain specific analyses, adapting existing chamber models can 

provide valuable new insights with minimum decrease in model efficiency. For 

example, when Mujic (Mujic 2009) replaced approximated sine curves with port 

area curves derived from actual rotor and casing geometry, he enabled the 

investigation of pressure pulsations due to subtly different port area curves. 

An objective of this research was to introduce new modifications that allow 

compressor analyses, focusing on the estimation of operational deformations in 

clearance gaps and quantifying how performance and reliability is affected. It 

has already been shown that the thermodynamic results from a chamber model 

can provide valuable and detailed boundary conditions for FEA thermal analysis 

(Sauls, Powell et al. 2006b), thus giving very detailed results, albeit with 

accuracy still heavily dependent on the assumptions used. On the other hand it 

has been shown that simple empirical adjustments to clearances, as a function 

of the discharge temperature, can improve the correlation between a chamber 

model and test results (Buckney, Kovacevic et al. 2011, Kovacevic, Stosic et al. 

2006). There is significant scope to process and utilise the detailed 

thermodynamic results from a chamber model in a simplified analytical analysis 

using appropriate assumptions. With minimum additional complexity an 

adapted chamber model and geometry calculation tool could efficiently provide 

useful results for the design and optimisation of rotor clearances for specific 

applications. This effect of duty dependent thermal clearance sensitivities is not 

directly fed back into any of the existing chamber models reviewed. 
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Chapter 3                                           
Research Objectives, Methods 
and Expected Contribution 
 

3.1 STATEMENT OF RESEARCH 

Efficient estimation of the size of operational clearances is a critical 

requirement for reliable calculation of a twin screw compressor performance 

and reliability; these are necessary inputs for design and optimisation of screw 

compressors for specific applications. 

The aim of this research is to develop and validate procedures which will enable 

analysis, design and optimisation of the operational clearances in industrial twin 

screw compressors in order to improve their performance and reliability. 

Thermodynamic results obtained from chamber models are readily available 

but underutilised. Such results could be efficiently processed and, with the 

application of suitable assumptions, used for the analysis of distortions of 

compressor elements due to thermal loading. The distortions of the compressor 

elements, i.e. rotors and casing, cause clearances to change from ‘cold’ to 

‘operational’ clearances. The operational clearances can be effectively estimated 

using proposed mapping of two dimensional computational surfaces of rotors 

and casing and then these can be utilised in a chamber model to predict the 

performance of screw machines with operational clearances more accurately. 

This approach sacrifices some of the accuracy and realism of the 3D simulations 

of the solid and fluid domains in order to maintain the efficiency and speed of 

calculation with chamber models.  

A key output of this research will be validated tools and procedures that can be 

readily applied to the design and optimisation of twin screw compressors for 

specific applications. 



 Chapter 3: Research Objectives, Methods and Expected Contribution 

46 
 

3.2 OBJECTIVES 

Develop a boundary mapping procedure to fully describe exposure of 

compression chambers to rotor and casing surfaces, thus allowing 

temperatures and pressures calculated by thermodynamic model to be mapped. 

Develop a procedure to estimate change in radial and interlobe clearances due 

to thermal loading on the rotors and casing. 

Integrate boundary mapping and clearance calculation procedures with a 

thermodynamic model to calculate operational clearances and allow calculation 

of performance with updated clearances. 

Validate the developed procedure for different oil free and oil injected 

compressors by the use of experimental results. 

Study the geometric characteristics of oil free and oil injected rotor profiles. 

3.3 METHODOLOGY 

Generation of Rotor Profiles: 

 For the purposes of this research rotor profiles will be generated using 

existing methods such as those used for the N-Profile 

 

Calculation of Geometric Characteristics: 

 A geometry calculation program (GEOM) will be further developed based 

on previous work at City University. The input to this program will be 

the x and y co-ordinates of the rotor profiles, thus allowing profile input 

data from other sources 

 All rotor geometry including swept areas and volumes will be calculated 

as a function of the compressor cycle angle 

 Particular detail will be given to accurately representing leakage paths 

individually and incorporating functions to vary the leakage areas as a 

result of operational effects 

 Support calculation of areas affected by complex clearance distributions 
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Calculate Performance: 

 The geometry calculation program will provide the input to the chamber 

model that will calculate the performance of the compressor. The basic 

integration of the new program is shown in Figure 3-1 

 Verify performance predictions with available test data 

 Investigate how operational clearances vary at operational temperatures 

and pressures and quantify the impact this has on predicted 

performance 

 The clearance areas and thermodynamics will be solved iteratively to 

include operational effects where possible. This should improve the 

accuracy of performance prediction and form a basis for optimum 

clearance design for specific applications 

 Study geometry characteristics of rotor profile using a new program suite 

 Validate predicted results and compressor reliability with test results 

 Utilise test results to refine models / procedures  

 

 
Figure 3-1: GEOM program integration with SCORPATH 
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3.4 EXPECTED CONTRIBUTION 

3.4.1 BOUNDARY MAP 

The procedure of mapping properties to the surface of the rotors will utilise a 

novel ‘Rotor Boundary Map’. The rotor boundary map will facilitate input of the 

distribution of temperatures and pressures on the rotor and casing boundaries 

i.e. it will define instantaneous boundary conditions for screw compressor 

rotors and casing. There will be a unique boundary map for the main and the 

gate rotors; the form of which will depend only on the transverse rotor profiles. 

This presentation of the rotor boundaries will provide a unique way of 

visualising and comparing the key geometrical properties of different profiles 

such as the length of the sealing lines and how the sealing lines are related to 

the formation of the blow hole leakage area. This will be a direct contribution to 

compressor technology, since it will define a procedure which has not been 

used before. 

3.4.2 MODEL INTEGRATING OPERATIONAL CLEARANCE MODIFICATION 

Results from chamber models are currently underutilised and it is possible to 

use the temperature and pressure of the fluid within the chamber, calculated 

throughout the compression cycle, to assess local exposure to rotor and casing 

surfaces. Knowing local fluid boundary temperatures allows approximate 

estimates to be made of metal temperature and distortion during operation by 

using analytical procedures and appropriate assumptions. This allows the 

clearance reliability to be evaluated at an early design stage with minimum 

additional complexity. In addition, iterating the thermodynamic performance 

calculation with modified operational leakage areas is expected to improve the 

model realism. In particular, this newly developed model supports temperature 

management of operational clearances. 
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Chapter 4                                           
Boundary Map for Rotor and 
Casing Surfaces 
 

4.1 INTRODUCTION 

Chamber models simulate compressor performance efficiently by assuming a 

non-dimensional control volume. This control volume varies in size throughout 

the compression cycle as a function of the main rotor angle, or cycle angle. At 

discrete cycle angles the fluid properties within the control volume are 

calculated thus the fluid properties are described throughout the compression 

process. From this data, critical performance characteristics such as indicated 

power are easily derived without the need to represent actual 3D flow domains. 

However, in order to calculate some performance characteristics such as rotor 

torque it is necessary to perform additional analysis of the compressor 

geometry (Stosic, Smith et al. 2005). Taking this analysis further it is possible to 

establish the instantaneous fluid properties at any local point on the rotor or 

casing compression surfaces. This allows for more detailed investigation of the 

inner workings of the compressor. 

The objective of this chapter is to define a method by which instantaneous or 

averaged fluid properties from a non-dimensional chamber model can be 

mapped onto surfaces that represent the rotor and casing geometry. Fluid 

properties from the chamber model are known at a given cycle angle therefore 

the challenge is to establish what portion of the cycle any given point, fixed to 

the surface of the casing or rotor, is exposed to. This will make it possible to 

establish the boundary temperature or pressure at any location on the 

compression surfaces of the rotors and casing.  
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4.2 DEFINITION OF BOUNDARY SURFACES 

4.2.1 COORDINATE SYSTEM CONVENTIONS 

The following work refers to the ‘compressor’ for simplicity, however all 

calculations are equally applicable to expanders with the only differences being 

in the direction of rotation and the inlet and outlet directions. In order to 

generalise the compressor inlet plane, which is the expander outlet, it can also 

be been referred to as the low pressure (LP) plane.   

As twin screw compressors can be installed in various orientations a ‘global’ co-

ordinate system will be fixed to the casing. Before placement of the global co-

ordinate system, the compressor orientation needs to be defined. For twin-

screw compressors the only significant variable that affects the relative position 

of the compressor features is whether the main rotor has a right-hand or a left-

hand helix, the latter type resulting in a compressor that is the mirror image of 

the former. To prevent confusion all geometric analysis will be performed 

assuming a main rotor with a left-hand helix regardless of the actual rotor 

geometry. To clarify the helix convention – the main rotor shown further on in 

Figure 4-5 has a left-hand helix. If necessary the rotor helix can easily be 

corrected at a post-processing stage. Constraining the compressor to have a 

main rotor with left-hand helix and orientating this compressor to be viewed 

from the inlet end with the high pressure (HP) cusp at the top, the following 

convention will always apply: 

Table 4-1: Compressor orientation 

Main rotor helix: LEFT-HAND 

Compressor orientation: HP cusp at top (top out discharge port) 

Main rotor position (viewed from inlet): LEFT 

Main rotor rotation (viewed from inlet): CLOCKWISE 
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Figure 4-1: Compressor and rotor co-ordinate systems 

Any location on the compressor rotors or casing can be described using the 

global Cartesian co-ordinate system S(X,Y,Z) defined in Figure 4-1. This is 

located on the high pressure (HP) plane with the z-axis aligned with the main 

rotor axis. The x-axis is co-incident with the centre line formed between each 

rotor axis on the HP plane. Additional co-ordinate systems have been defined on 

the low pressure (LP) plane: S1(x1,y1,z1) and S2(x2,y2,z2). These co-ordinate 

systems are also fixed to the compressor casing and are simply offset from the 

global origin, S. Any point on these local co-ordinate systems can be related 

back to the global system, S(X,Y,Z), using the equations (5) to (7). ‘L’ is the 

nominal rotor length between the LP and HP plane, and ‘A’ is the nominal rotor 

centre distance between the rotor axes:   

 
               (5) 

           (6) 
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                   (7) 

With the cylindrical form of the rotor bores and the rotational movement of the 

rotors it will be more convenient to define points using a cylindrical co-ordinate 

systems located at the origins S1 and S2. In the standard convention for a polar 

co-ordinate system, (r,θ,z), the angle θ is measured counter-clockwise from the 

x-axis and z is in the direction already defined. To simplify later equations it is 

preferable to define less conventional angle parameters that are aligned with 

the direction of rotation of each respective rotor. In addition, it is easier to use 

an axial length parameter that is aligned from the compressor inlet to outlet.   

 

Figure 4-2: Parameters for surface definition 

Parameters ‘r’, ‘β’ and ‘l’ have been defined on each co-ordinate system S1 and S2 

as shown in Figure 4-2. These parameters effectively describe a non standard 

cylindrical co-ordinate systems where r is the local radius, β is the angle 

(measured in the same direction as the rotor rotates) and l is a measure of the 

axial position from inlet. 

The rotors on twin screw compressors feature a helical twist along the axis 

therefore the position along the axis that has been defined by parameter, l, can 

alternatively be defined by using a new angular parameter, γ; this describes the 
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local wrap angle measured from the inlet (LP) plane. For the case of rotors with 

constant pitch helix the relationship is as shown in equation (8) where φw1 is 

the main rotor wrap angle over the rotor length, L. The parameter γ will always 

be defined using the main rotor wrap angle, whether measured on the main 

rotor side or on the gate rotor side. It is convenient to describe the axial 

position in terms of the wrap angle on the main rotor for later calculations. 

  

 
  

 

   
 (8) 

Equations (9) to (14) describe transformations from the parameters r, β and γ, 

back to the global Cartesian compressor system located at S. The subscripts ‘1’ 

and ‘2’ for the rotor parameters distinguish whether they refer to the main or 

gate rotor sides which are measured relative to the origins S1 or S2 respectively: 

Main rotor side: 

 
              (9) 

                (10) 

        
 

   
  (11) 

Gate rotor side: 

 
                 (12) 

                (13) 

        
 

   
  (14) 

The internal geometry of the compressor will be broken down into a number of 

discrete surfaces which are exposed to various compression chambers. These 

surfaces are: casing inlet plane, casing outlet plane, casing bore and rotor 

section (ridge or flute). Each of these surfaces is repeated for the main rotor and 

gate rotor sides of the compressor resulting in a total of eight surfaces. A 2D 
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computational array can then be defined for each surface in order to efficiently 

describe any point on each respective surface. The transformation between the 

3D spatial domain and the 2D computational domain will be done by utilising 

the co-ordinate systems and parameters that have been defined. These surfaces 

will now be defined in more detail. 

4.2.2 CASING SURFACES 

 

Figure 4-3: Exploded view of casing surfaces 

The static casing will be considered first. The six casing surfaces are labelled in 

Figure 4-3 which shows an exploded view of the inner surfaces of the 

compressor casing. The vertices A, B, C and D are also shown on Figure 4-1 for 

reference. This view is formed by cutting along the line AB on the low pressure 

cusp. To explain Figure 4-3 in reference to Figure 4-1 – imagine lying inside the 

compressor looking upwards with your head towards the HP plane – this is why 

the main rotor bore now shown on the right hand side.  

This figure shows how the parameters r, β and γ align to these ‘unwrapped’ 2D 

surfaces. Table 4-2 summarises how the location on each of the surfaces can be 

defined using only two of the three parameters. 
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Table 4-2: Casing surface parameters 

Surface Description 
Surface 

Label 

Co-ordinates for 

surface array 
Constant 

Main rotor side, inlet plane IP1 (r1,β1) γ = 0 

Main rotor side, bore B1 (β1,γ1) r1 = ro1 

Main rotor side, outlet plane OP1 (r1,β1) γ = φw1 

Gate rotor side, inlet plane IP2 (r2,β2) γ = 0 

Gate rotor side, bore B2 (β2,γ2) r2 = ro2 

Gate rotor side, outlet plane OP2 (α2,β2) γ = φw1 

 

It is worth clarifying that these casing surfaces, described using parameters ‘r’, 

‘β’ and ‘γ’, are representations of idealised casing surfaces that would exist with 

perfect rotor alignment and zero clearances. This would be inappropriate for 

other full 3D analysis using FEA or CFD where the clearances would be derived 

from actual component surface dimensions. The planned analysis will of course 

use local clearance data however the local clearances will be handled as scalar 

values only; this vastly simplifies the problem while still providing insight into 

the 3D clearance distributions. 

4.2.3 ROTOR SURFACES 

Transverse 2D rotor co-ordinates are defined on S01(x01,y01) and S02(x02,y02) for 

the main and gate rotors respectively; as shown in Figure 4-4. These rotor co-

ordinate systems are only partially constrained so that S01 freely rotates about 

the z1-axis of S1 and S02 freely rotates about the z2-axis of S2. 
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Figure 4-4: Transverse profiles defined at LP plane 

The full 3D surface of the rotors (see Figure 4-5) can be derived using the 

transverse rotor co-ordinates that are extruded along a helical path.  

 

Figure 4-5: Full main rotor surface 

An instantaneous point on this rotor surface could be represented globally 

using (X,Y,Z); locally on origin S1 using (x1,y1,z1); or with parameters (r1,β1,l1). 
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The length parameter, l1(γ), a function of γ, is conveniently aligned along the 

rotor axis from the inlet to outlet and is unaffected by rotor rotation so this is a 

suitable parameter to describe the axial position on the rotor surface. The local 

radius, r1, is also a constant for a given point on the surface however the angle, 

β1, is affected by the rotational position of the rotor defined by the cycle angle, 

θ.   

Each rotor lobe is geometrically equivalent and therefore the surface of each 

lobe can be generated from another by indexing the cycle angle, θ, through 

2π/z1, where z1 is always the number of lobes on the main rotor - rotating the 

rotor pair by cycle angle θ = 2π/z1 will index the gate rotor by an angle 

corrected for the gear ratio: (z1/z2)2π/z1, in other words by: 2π/z2  

A 2D computational array has been defined to simply identify a surface location 

on a single main rotor ridge; or in the case of the gate rotor, the corresponding 

flute.  This array can be thought of as the surface produced by straightening out 

the rotor helix and flattening the resulting surface to form a rectangle.  

 

Figure 4-6: Rotor surface arrays 

Main rotor surface, R1 

Gate rotor surface, R2 
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In Figure 4-6 the length of a curve, s1, between points A and B is: 

 
          

      
 

 

 

 (15) 

The parameter, ε, is defined as the relative position along the line, s, of the 

transverse rotor profile curve such that 0 ≤ ε ≤ 1. This is defined separately for 

the main and gate rotor segments as shown in Figure 4-6. This allows the rotor 

surface to be presented two dimensionally and independently of the rotor 

rotation.  

The rotor segments are in this case a main rotor ridge (or lobe) and a gate rotor 

flute (or interlobe) section. It is later assumed that the limits of ε2 on the gate 

rotor form the boundary between adjacent rotor chambers on that rotor so it is 

important that this point is located approximately central on the gate rotor OD 

or at the tip seal protrusion, if applicable. 

In practise, the parameter ε is numerically approximated by linearly 

interpolating between discrete profile points. As this parameter is primarily 

used for lookup purposes in order to relate the computational array to the 

actual geometry, any approximation errors are not important. In fact, this 

dimension of the rotor surface array could easily be replaced by identifying the 

discrete profile point number, n, as was done when developing a program to 

deploy these procedures. The value of presenting the rotor surface arrays using 

the ε parameter is that the scale along line s is preserved in the surface array 

plots and the generalised procedure can be presented in an efficient manner. 

4.3 DEFINITION OF CYCLE CONVENTIONS 

In order to relate the actual rotor positions to the compression cycle it is 

necessary to define a datum from which rotations can be measured. Figure 4-7 

shows a transverse rotor profile pair in what will be referred to as the ‘home 

position’. The main rotor on the left is rotated so that the tip of one lobe is 

coincident with the centre line formed between the centre points of the main 

and gate rotors. The gate rotor is positioned to be in mesh with the main rotor. 

This datum for rotor rotation is measured on the LP plane; the inlet plane for a 
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compressor. This convention has been adopted from the N-Profile generated 

rotors, example coordinates of which are shown in Figure 4-8. 

Any rotor position can now be defined by the offset angle of the main rotor tip 

from this home position. To relate this 2D rotor position at the LP plane to an 

instant during the compressor cycle it must be explicitly stated whether the 

referenced tip is on the leading or trailing lobe of the control volume. 

 

Figure 4-7: Rotor home position 

The transverse profile co-ordinates for a single main rotor ridge and its 

corresponding gate rotor flute are plotted with respect to their local co-ordinate 

systems in Figure 4-8. 

 

Figure 4-8: Rotor segments 

 

Main

Gate

y01,  y02 

x01,  x02 

undercut area 
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Before defining the rotor position at the start of the compression cycle (when θ 

= 0°) it is necessary to explain a little about the cycle duration and the various 

steps that must be considered in its calculation: 

1. Full rotation of main rotor – this is the obvious minimum travel before 

the cycle would repeat 

2. Transfer from leading main lobe to trailing main lobe – the interlobe area 

which defines the volume is initially created by the leading main lobe but 

will not disappear until the trailing main rotor lobe has advanced to the 

position of the leading lobe, thus adding 360/z1° to the cycle duration. 

3. Wrap angle lag – the wrap angle of the main rotor introduces a lag 

during which the chamber advances axially along the rotors, thus adding 

the main rotor wrap angle, γ1, to the cycle duration. 

4. Undercut area – all asymmetric rotors will have non-zero area on the 

trailing flank of the main rotor when in the home position as shown in 

Figure 4-7. Depending on the rotor profile this requires the rotors to be 

reversed by approximately 30° before this area, and consequently the 

chamber volume, is zero. This adds to the cycle duration. 

5. Idling gate rotor lobe offset – if z2 – z1 is greater than or equal to 2 then 

the area formed within a particular main rotor interlobe area and gate 

rotor interlobe area will not finish with the same gate rotor interlobe. 

The area formed in the gate rotor interlobe will idle for one additional 

lobe pass when z2 – z1 = 2, adding 360/z1° to the total cycle duration. 

The last item listed is often omitted in chamber models.  Since the offset of the 

idling gate interlobe volume would generally by added at the filling stage it is 

not important for the chamber model accuracy. However in order to represent 

the net volume accurately for all chambers, at a given instant, this item is 

important. Likewise, it is necessary for mapping results from a chamber model 

onto the actual rotor geometry where the full duration of all gate rotor lobes 

must be described.  
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Figure 4-9 breaks down how the rotor start position (when θ = 0°) is defined in 

order to preserve the correct cycle duration. Steps A) to D) of Figure 4-9 show 

the transverse rotors at the LP plane: 

 

Figure 4-9: Moving rotors to the start of the compression cycle 

A) The ‘rotor home’ position before any adjustments 

B) This simply clarifies the interlobe area of interest – the tip of the main 

rotor in the home position will be the leading tip 

C) φs1 is defined as the ‘start angle’ through which the rotors must be 

reversed to close the ‘Undercut area’ 

D) φoff is the ‘offset angle’ to correct for ‘Idling gate rotor lobe offset’. Note 

that this rotation is only applied to the main rotor. This angle is 

calculated as: 

 
       

   

  
                                                (16) 
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This rotor offset is not an obvious concept to understand and might be slightly 

better illustrated later in Figure 4-12: Position of rotor chambers in the 

transverse plane. 

The start angle, φs1, has been defined graphically in Figure 4-9. This angle can 

be derived from the sealing line because the rotor position in Figure 4-9C is also 

the maximum rotor reversal before the contact point at the tip of the main rotor 

is broken off.  φs1 equals the meshing angle, θM, at the upper limit of the sealing 

line ySL_MAX. The calculation of the meshing angle and sealing line co-ordinates is 

explained in Appendix A. 

Once both rotors are adjusted for φs1 and the main rotor is adjusted by φoff, if 

applicable, the rotors will be in the start position as shown in Figure 4-9D. With 

reference to this start condition the rotor positions for any cycle angle, θ, can 

now be described. 

With the assumption that the compressor is operating at steady state conditions 

the problem is cyclic in nature and therefore only one chamber has to be 

considered. For a point on the casing the cycle repeats for every passing lobe of 

the compressor rotors – therefore only seeing a limited range of the full cycle 

duration. For a point on the rotors, the cycle repeats for every full rotation of 

the particular rotor on which the point is located – again only being exposed to 

a limited range of the overall cycle. The overall compression cycle is distinct 

from these local exposure cycles because it follows a single control volume as it 

passes through the compressor. 

4.4 MAPPING OF THE CASING SURFACES 

The casing surfaces previously presented in Figure 4-3 have been presented 

again in Figure 4-10 to show the projection of the nearby rotors. At the instant 

shown, any points on any of the surfaces that are within the hatched areas are 

in the same chamber.  
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Figure 4-10: Single chamber projected onto casing surfaces 

The following paragraphs detail how to calculate the cycle limits that are ‘seen’ 

by a fixed point on the static rotor casing. A similar procedure was presented by 

Sauls et al. (Sauls, Powell et al. 2006b) and describes the cycle limits for a static 

point on the casing bore by considering the cycle angle at the moment the 

leading and trailing tip of the rotor pass by.  

Consider the rotors in the start position defined in Figure 4-9D. At this position 

the rotor cycle angle θ = 0. The position of the leading tip on the main rotor can 

be described using the parameter, β, as described in section 4.2.1 to be positive 

in the forward direction of rotation for a compressor. Moving the rotors 

through the angles φs1 and φoff, as defined in Figure 4-9, would result in a 

backward rotation. At the start of the cycle at the leading tip on the main rotor 

(subscript sl1) the parameter β can be calculated as: 

                 (17) 
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At the trailing tip (subscript st1); where z1 is the number lobes, or gear teeth, 

on the main rotor: 

Referring to the rotor ‘home position’ defined in Figure 4-9-A: at the start of the 

cycle at the leading tip on the gate rotor (subscript sl2) the rotor is already 

offset from the rotor centreline by the angle φgate. The only further adjustment 

to the gate rotor rotation corresponds to the reverse rotation of the main rotor 

by the angle φs1 which is adjusted by the gear ratio z1/z2: 

 
                

  

  
  (19) 

On the gate rotor at the trailing tip (subscript st2): 

Consider a fixed point on the main rotor bore, B1, described by the parameters 

β1 and γ. When the leading tip of the main rotor intercepts this point 

corresponds to one rotor position and cycle angle. When the trailing tip of the 

main rotor intercepts the same point this corresponds to a different rotor 

position and thus a different cycle angle. For clarity the corresponding cycle 

angles will be labelled θl and θt respectively.  

The distance that the main rotor must travel through, i.e. the cycle angle, θ, until 

the leading tip of the active chamber meets the point on the casing is the 

difference between β1 and βsl1. When moving away from the inlet plane the 

effect of the wrap angle along the length introduces a lag which is accounted for 

by the parameter γ: 

 

 
           

  

  
 (18) 

 
           

  

  
 (20) 

                       (21) 
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The cycle angle at which the trailing tip of the main rotor passes the same point 

is: 

 

θl and θt represent the limits of the compression cycle that the point on the 

casing (β1,γ) is exposed to.  

The calculation of the cycle limits for a point on the gate bore surface is similar; 

differences are due to the fact that the cycle angle is always referenced from the 

main rotor position.  

 

 

At every location on any of the static casing surfaces the limits of cycle exposure 

defined by θl and θt can be calculated. From these values a single ‘average’ cycle 

angle can be calculated at each location: 

 

 

Figure 4-11 was generated to show the average cycle angle using a surface 

colour contour plot. The colour represents the local average cycle angle 

calculated using the appropriate values of either β1 and γ or β2 and γ. These 

same surface parameters are then fed into equation (8) to (14) in order to 

 
                

  

  
  (22) 

 
                      

  

  
     

(23) 

 
               

  

  
  

(24) 

 
           

       

 
 

(25) 

 
           

       

 
 

(26) 
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calculate the position in the global co-ordinates (X,Y,Z) at each location (these 

co-ordinates are as defined in Figure 4-1).  

 

Figure 4-11: Cycle angle mapped onto casing bore surfaces 

This surface plot has been smoothed and only serves to show visually how 

different parts of the casing are exposed to different parts of the cycle. In 

practice, surfaces B1 and B2 of each rotor bore are discretized using a finite 

number of points defined by β and γ. The explicit calculations are repeated at 

each point or node and the number of points has no bearing on the accuracy at a 

given node.  

4.5 MAPPING OF THE ROTOR SURFACES 

In the same way that the cycle angle has been mapped onto the rotor bore 

surfaces B1 and B2 in the previous section, this will be done for the rotor 

surfaces R1 and R2 (surfaces as defined in Figure 4-6). In the previous case of 

the rotor bore surfaces, the instantaneous boundaries that divided the surfaces 

into different chambers were simply defined by the rotor to casing sealing lines. 

In the case of the rotor surfaces, the chamber boundaries are defined by the 

rotor to casing, radial sealing lines and the rotor to rotor, interlobe sealing line. 

With this added complexity it was found that the previous method (identifying 

the cycle limits) was not suitable, furthermore it is useful to be able to calculate 
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the instantaneous boundary conditions on the rotor surface at any given rotor 

angle. 

Figure 4-12 shows a transverse cross section of the compressor at the inlet 

plane. This shows the rotor to casing and rotor to rotor interactions that result 

in separate compression chambers as highlighted with different colours. The 

key on the right hand side gives the cycle angle that defines each compression 

chamber. For most chamber cross-sections the entire rotor flute (or interlobe 

area) is exposed to the same chamber which is separated from its adjacent 

chambers by the radial rotor to casing sealing points. During rotor to rotor 

‘contact’, typically up to three sealing points will be formed between the rotors. 

When this transverse section is extended to form the full 3D rotors these sealing 

points will all fall on the same 3D sealing line.  

Considering one meshing rotor segment on the main rotor, identified by the 

white lines forming a ‘slice’ of the rotor, it can be seen that the surface of this 

particular rotor segment is simultaneously exposed to four different 

compression chambers labelled: blue, green, red and yellow. A procedure is 

needed to identify the location of the boundaries and the chamber exposure for 

any given rotor angle. 

 

Figure 4-12: Position of rotor chambers in the transverse plane 
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It can be observed from Figure 4-12 that the adjacent blue and red chambers at 

the low pressure cusp are not separated – this is not due to any conventionally 

defined leakage path such as the low pressure blow-hole area and this flow path 

between chambers is in fact just a consequence of the 4/6 lobe combination. If 

the gate rotor instead had 5 lobes then the matching chamber sections 

highlighted in blue would be formed together at suction. This is the rationale 

behind the rotor offset term previously described in equation (16). This 

necessary offset is applied at the low pressure side where both chambers will 

be exposed to the low pressure port anyway.  Hence, the interaction between 

these chambers is not significant. However, neglecting this offset term will 

result in incorrect cycle duration on the gate rotor side and it must be included 

in order to relate the compression cycle to the rotor and casing geometry 

accurately. 

Due to the complexity of the chamber boundaries on the rotor surface, work to 

investigate the cycle exposure led to the development of a rotor surface 

boundary map which will now be discussed in more depth. 

4.6 DEFINITION OF ROTOR SURFACE BOUNDARY MAP 

The following procedure analyses the rotor boundary and chamber interaction 

along the line of a single transverse rotor profile section from ε = 0 to 1.  This 

abstracted procedure can later be used to map boundaries and fluid properties 

along the full rotor surface, R1, then the full rotor body for all lobes.  

For a given rotor profile the radius, r, varies only as a function of the rotor 

surface parameter, ε.  In practise the value of the corresponding radius can be 

saved in an array that can be looked up. 

                 (27) 

                (28) 

The original profile co-ordinates were defined on the systems S01(x01,y01) and 

S02(x02,y02) as shown in Figure 4-6 and Figure 4-8. Each of these points can be 

described using the corresponding polar co-ordinates (r01,φ01) and (r02,φ02) for 
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the main and the gate rotor respectively. As was the case for the local radius, the 

local profile angle is a profile constant that can be described as a function of the 

rotor surface parameter ε. Again, in practice, the value of the corresponding 

local angle can be saved in a look up array. 

             (29) 

             (30) 

Recall that the actual instantaneous geometry of the rotors at any point during 

the cycle can be represented by the parameters r,β,γ, set out in Figure 4-2. The 

angle parameters, β1 and β2, for a point on the main or gate rotors are 

calculated: 

                                 (31) 

 
                           

  

  
  

(32) 

The term λ has been defined below by subtracting the terms for the local profile 

angle from β; this new parameter more generally describes the movement of 

the rotor pair rather than individual points on either rotor: 

                                      (33) 

 
                    

  

  
                 

(34) 

   

These equations will be used to relate the local transverse profile rotation, λ, to 

the cycle angle, θ, for the main and gate rotors respectively; as the cycle angle is 

referenced against the main rotor rotation, λ is also referenced against the main 

rotor. The subscripts define whether λ refers to the main or gate rotor 

boundary map. The only difference between these λ values is due to the main 

rotor offset term, φoff; for rotors with a 5/6 lobe combination it would be the 

case that λ1 = λ2. In the special case of the point located at the tip of the main 

rotor, φ01 = 0 and therefore λ 1 = β1. At the corresponding point at the root of the 

gate rotor, φ02 = 180° and therefore λ2 = β2(z2/z1). Going forward it will be 
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clarified whether the boundary map is for the main rotor or the gate rotor so 

these subscripts can be dropped.  

 

Figure 4-13: Notation used on boundary map 

The parameter λ has been shown in Figure 4-13 – note that it is only referenced 

to the rotation of the main rotor but describes the motion of both rotors. Also 

note the convention where a negative rotation of the rotors from the ‘home 

position’ results in a negative value for λ. The angles to the casing cusp, φc1 and 

φc1, are also defined in this figure, which will be used to define the limit of 

interaction between the rotor and the casing. 

The bottom part of Figure 4-14 shows the rotor surface, R1, on which a single 

transverse section (γ = constant) has been highlighted. The top part of the 

figure shows the ‘Boundary Map’ with the rotor surface parameter, ε1, 

represented on the horizontal axis. The vertical axis represents the local 

transverse rotor offset angle, λ1.  
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Figure 4-14: Local transverse rotor offset angle, λ, at given axial position, γ. 

Because λ is adjusted for the parameter, γ, the Boundary Map is common all 

along the length of rotor, whatever the value of γ.  

This ‘Boundary Map’ will be used to plot the transverse rotor boundary 

interactions. A key advantage of this generalised boundary map is that both 

interlobe and radial boundaries can be plotted. This will allow the analysis of 

different boundary interactions with the aim to fully define distinct 

compression chambers on the rotor surface. 

The boundaries on this map are created by plotting the radial and interlobe 

sealing lines with respect to ε and λ. ε represents the local position on the 

transverse rotor profile while λ defines the relative rotation of the profile.  This 

shows at precisely what rotor position the different boundaries come into play. 

There will be a unique boundary map for the main and the gate rotors. 

The interlobe sealing line boundary is plotted onto the boundary map by setting 

λ to equal the local meshing angle, θM: 

R1 

Boundary Map 

 
λ1 
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(35) 

The meshing angle is calculated at each location along the rotor profile curve 

from ε = 0 to 1. The parameter λ is equal to the interlobe meshing angle, θM, 

with the specific condition that λ = θM = 0 at the tip of the main rotor (as is the 

case when the meshing angle is calculated when the rotors originate in the 

‘home position’). The theory for calculation of the meshing angle is provided in 

Appendix ‘A.2 Meshing Conditions for Conjugate Profile’. 

The rotor to casing boundary will always occur at the same position on the 

profile, i.e. at the tip of the rotor. The limits of this boundary depend on the 

casing geometry.  This will be explained in more detail in the following 

examples. These examples will look at the boundary maps produced for 

different profiles and how these boundary maps relate to sealing points 

identified on transverse rotors for various rotor positions. The examples 

illustrate how the full boundary interactions, which would otherwise need to be 

presented in 3D or on numerous transverse rotor plots, can be captured in a 

single 2D boundary map efficiently. The section that follows on from these 

examples will then pick up on the theory of how to apply the boundary map to 

analysis of a full 3D rotor. 
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4.6.1 EXAMPLE: ZERO BLOW-HOLE PROFILE 

The concept of the boundary map will be discussed by using idealised, 

theoretical profile examples. Figure 4-15 shows a simple profile concept in 

which the root of the main rotor is at the pitch circle – in other words there is a 

zero dedendum on the main rotor and a zero addendum on the gate rotor. The 

flanks of the main rotor lobes are solely generated by a point on the tip of the 

gate rotor to form part of an epicycloid curve; a special type of epitrochoid 

where the generating point lies on the rolling radius (Weisstein ). The gate rotor 

flute is similarly generated by the tip of the main rotor to form another 

epitrochoid curve, this time with the generating point offset from the rolling 

radius. In this profile the sealing line extends to the casing cusp resulting in zero 

blow-hole. 

 

Figure 4-15: Zero blow-hole rotor profile 

Because of its limited number of component curves and the fact the interlobe 

sealing line connects to the radial sealing line it is well suited to analyse the 

interaction of these various sealing lines and how they form distinct 

compression chambers. In Figure 4-16, the interlobe SL (sealing line) and radial 

SL have been plotted onto the main rotor boundary map.  
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Figure 4-16: Zero BH rotor boundary map for main rotor 

The Radial SL occurs at a fixed region on the rotor profile.  In the case of this 

profile the main rotor radial SL is a single point at the tip of the main profile that 

occurs when parameter ε = 0.5; hence the radial SL will fall along a vertical line. 

The radial SL on the main rotor does not come into play until the rotor has 

rotated through the main rotor cusp angle, φc1. Calculation of the cusp angles is 

explained in Appendix A. 

The Interlobe sealing line is calculated at each location along the rotor profile 

curve from ε = 0 to 1. The values of the parameter λ for the interlobe SL cover a 

range equal to 360°/z1. All examples presented in this chapter have 4 lobes on 

the main rotor so the range is 360°/4 or 90°, in this case from -45° to +45° since 

the profile is symmetrical. The scale on the y-axis from -60° to +60° degrees 

allows the important details to be captured for asymmetric rotors. The pattern 

of the SL boundaries will repeat when λ is offset by 360° therefore it is not 

necessary to extend the scale any further as simple corrections can be applied 

for larger values of λ. In this region of interest 4 distinct chambers have been 

created by the interaction of the interlobe SL and radial SL boundaries. These 
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chambers have been identified as chambers C1, C2, C3 and C4 in Figure 4-16. At 

this stage the objective is to clearly identify the boundaries that distinguish 

these chambers and not what each ‘local’ chamber cycle angle is. 

 

Figure 4-17: Zero BH rotor boundary map for gate rotor 

In Figure 4-17 a similar map has been produced for the gate rotor. Recall from 

Figure 4-6, in which the rotor surface arrays are defined, that the limits of 

parameter ε2 correspond to the tip of the gate rotor. Since the gate rotor tip is 

formed by a cylindrical line of constant outer diameter (OD) for this rotor the 

parameter ε has been set to zero at the mid-point of this OD line. 

On the gate rotor the radial SL can occur for any location on the profile that 

comes into ‘contact’ with the casing. The radial SL will come into effect for a 

given value, ε, at a value of λ which can be derived using the interlobe SL: The 

lower and upper parallel lines that bound chamber C3 are the interlobe and 

radial SLs respectively. These lines are offset by a constant related to the gate 

rotor cusp angle, φc2. The interlobe contact occurs along the centre line between 

rotors for a cylindrical curve so that point must then rotate by φc2 to reach the 

cusp. 

-60

-45

-30

-15

0

15

30

45

60

0 1

Lo
ca

l t
ra

n
sv

er
se

 r
o

to
r 

o
ff

se
t,

 λ
(d

eg
)

Rotor surface parameter, ε

Gate Rotor Surface - Chamber Boundaries

Interlobe SL

Radial SL

C1 

C2 

C3 

C4 



 Chapter 4: Boundary Map for Rotor and Casing Surfaces 

76 
 

It is important to remember that the parameter, λ, used on the gate rotor 

boundary map references the offset of the main rotor. As a consequence, this 

offset between the interlobe SL and the radial SL for the gate rotor boundary 

map is actually φc2(z2/z1). 

In Figure 4-18 a section of the profile has been highlighted from points A to B on 

both the main and gate rotors. ‘A’ corresponds to ε = 0 and ‘B’ corresponds to 

ε=1. For this given rotation (λ=0), the boundary points, G, have been 

highlighted. The first subscript identifies the type of boundary which is either 

interlobe - I, or radial – R. The lower case letter in the subscript is a unique 

identifier to distinguish between each point. 

The points identified in Figure 4-18 are then plotted on Figure 4-19 and Figure 

4-20 in order to highlight the line AB which occurs when λ = 0. This illustrates 

how for any given rotation angle, λ, the rotor surface boundary map can be used 

to identify what chamber a given point on the surface is exposed to. For 

example: a point within the region, GIa < ε < GIb, will be exposed to the chamber, 

C1, when λ = 0. 

 

Figure 4-18: Zero BH rotor boundary points (λ = 0) 
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Figure 4-19: Zero BH rotor boundary points on main rotor surface (λ = 0) 

 

Figure 4-20: Zero BH rotor boundary points on gate rotor surface (λ = 0) 
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A second rotor position is presented in Figure 4-21, Figure 4-22 and Figure 

4-23. The profiles have been rotated backwards until the tip of the main rotor 

meets the HP cusp. In these figures line AB has now moved down to the 

appropriate value of λ = -φC1.  

At the tip of the main rotor the interlobe boundary, GIb, has been identified. At 

this point the main rotor and gate rotor also both meet the cusp of the casing 

therefore this point could equally have been identified by the radial boundaries 

since: GIb = GR1 = GR2. This is confirmed on the rotor surface maps that show GIb 

is located at the intersection of the interlobe SL and radial SL for both main and 

gate rotor surfaces. 

Between point GIb and B2 on the gate rotor it can be observed that the rotor 

surface is not exposed to any rotor chambers for this rotor angle. 

 

Figure 4-21: Zero BH rotor boundary points (λ = -φc1) 
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Figure 4-22: Zero BH rotor boundary points on main rotor surface (λ = -φc1) 

 

Figure 4-23 Zero BH rotor boundary points on gate rotor surface (λ = -φc1) 
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4.6.2 EXAMPLE: SYMMETRIC PROFILE 

For various reasons the zero BH profile is not practical for use in twin screw 

compressors. Figure 4-24 shows a representation of the first manufactured 

profile - the SRM symmetric profile. The root of the main rotor is now situated 

on a circle below the pitch circle resulting in a dedendum on the main rotor and 

an addendum on the gate rotor which is a feature that is present to some degree 

on all modern profiles. All curves on the gate rotor are circles with centres 

located on either the axis of the rotor or on the pitch circle. This results in 

similar circular curves on the main rotor. Only the lower portion of the main 

flank is non-circular – this is generated by the point on the gate rotor where the 

small tip radius intersects with the large radius of the flute. 

 

Figure 4-24: Symmetric (circular) rotor profile 

This profile presents a complete contrast to the previous example as the 

interlobe sealing line is very short and does not extend anywhere close to the 

cusps on the casing. This poses some difficulty when distinguishing clear 

chamber boundaries and is therefore a useful case study. The chambers and 

boundaries have been identified on the rotors in Figure 4-25, Figure 4-26 and 

Figure 4-27 which each show a different rotor position. 

 



 Chapter 4: Boundary Map for Rotor and Casing Surfaces 

81 
 

 

 

Figure 4-25: Symmetric rotor boundary points (λ = -φC1) 

 

Figure 4-26: Symmetric rotor boundary points (-φC1 < λ < 0) 
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Figure 4-27: Symmetric rotor boundary points (λ = 0) 

At rotor position λ = -φc1 (as in Figure 4-25), chambers C1 and C2 are separated 

by the boundary point GR1. As the rotor angle λ increases this point disappears 

and a connection is formed between the chambers, known as the BH leakage 

path. This connection does not actually disappear until the boundary point GIb’’ 

is formed when λ = 0 (as in Figure 4-27). At this point the chamber C1 has 

reduced to zero cross-sectional area.  

The points identified in the previous rotor figures have been plotted on the 

newly generated symmetric rotor boundary map for the main rotor in Figure 

4-28. In this map the four chambers are not fully separated. Figure 4-25 shows 

that when λ = -φc1, (the line through GIaGR1 on Figure 4-28 ) the range of the 

rotor surface when ε > GR1 is certainly only exposed to chamber C2. By assessing 

Figure 4-27, when λ = 0, it is reasonable to state that just before this, when λ < 0, 

the range of the rotor surface GIa’’ < ε < GIb’’ will be exposed to chamber C1. 

Between these two values of λ no boundary exists on the surface between 

chambers C1 and C2. In order to map chamber properties to the surface, the 

chamber exposure must be explicitly defined. Therefore in Figure 4-29 new 

boundaries have been defined by linearly interpolating between the known 

points. 
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Figure 4-28: Symmetric rotor boundary points on main rotor 

 

Figure 4-29: Symmetric rotor boundary map for main rotor with new boundaries 
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Figure 4-30: Symmetric rotor boundary points on gate rotor 

 

Figure 4-31: Symmetric boundary map for gate rotor with new boundaries 
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The boundary points have also been plotted on the symmetric rotor boundary 

map for the gate rotor in Figure 4-30. Following a similar procedure as for the 

main rotor, new boundaries have been generated and plotted in Figure 4-31.  

From Figure 4-25 it can be stated that between the points GIa and GR2 the gate 

rotor surface is exposed to C1 so it follows that this is true along this horizontal 

line between these points on Figure 4-30. Similarly from Figure 4-27 it can be 

stated that when ε > G’’Ib this part of the surface is exposed to C2. These facts can 

be stated with some degree of certainty based on this reasoning. 

Between these two states no boundary exists and the surfaces between the 

rotors and casing combine to form a complex 3D flow channel. This area on the 

boundary map has been highlighted by the blue box. A considerable amount of 

time was spent trying to define the most appropriate curve to define this 

boundary on the gate rotor boundary map – the orange curve on Figure 4-30 

actually approximates a transformation of the curve formed by the blow hole 

definition in Appendix ‘A.3.3 Blow Hole Area’. Ultimately, any curve relies on an 

assumed boundary surface in the region of what is a non homogeneous flow in 

terms of pressure and temperature distributions. It was finally decided to avoid 

unnecessary, unjustifiable complexity and to stick to linearly interpolating 

between the two explicit states resulting in the boundaries added to Figure 

4-31.  

These new boundaries can be referred to as the blowhole boundaries. The new 

boundary on the left hand side of the boundary map, where the values of ε are 

smaller, is on the leading flank of the main rotor and forms the LP blowhole. 

Conversely, on the right hand side which is the trailing flank of the main rotor, 

the new boundary forms the more important HP blowhole. 
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4.6.3 EXAMPLE: ASYMMETRIC PROFILE 

 

Figure 4-32: Asymmetric rotor profile (hybrid of zero BH and symmetric) 

By combining the simple features of the zero BH profile and the symmetric 

(circular) profile it is possible to approximate a more typical asymmetric profile 

as shown in Figure 4-32. This example shows how the boundary map 

generation procedure and the rules defined for creating new boundaries can be 

applied to any typical profile. Due to the asymmetry of the profile, the tip of the 

main rotor is now located at a position ε > 0.5, rather than at the mid-point. 
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Figure 4-33: Asymmetric rotor boundary map for main rotor 

 

Figure 4-34: Asymmetric rotor boundary map for gate rotor 
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It can now be observed that with this asymmetric profile the length of the new 

boundary line required to bridge the gap that forms the blow hole leakage path 

is considerably smaller on the HP blowhole on the right hand side, particularly 

on the main rotor boundary map. 

When considering the boundary map generated by the gate rotor in all of these 

examples the most notable difference from the main rotor maps is the greyed 

out area bounded by the radial SL, within which the rotor surface is not exposed 

to any chambers. This is certainly true for a theoretical compressor with zero 

clearances however in practise fluid will exist between the rotor and the casing 

due to the radial clearance gap. Assessing the fluid properties along the length 

of this leakage path is somewhat beyond the capabilities of the thermodynamic 

chamber model currently used. A reasonable compromise for this procedure is 

to define an arbitrary boundary at the mid-point of the arc that lies on the gate 

rotor OD. This approach is certainly appropriate if a tip sealing strip is located 

at this point. This modified boundary map for the gate rotor presented in Figure 

4-35 allows boundary conditions to be mapped onto the full surface of the gate 

rotor. 
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Figure 4-35: Asymmetric rotor boundary map for gate rotor with adjusted radial 

SL 
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4.6.4 EXAMPLE: N – PROFILE 

 

 

Figure 4-36: N-profile rotors 

Figure 4-36 shows a pair of N-profile rotors that are representative of the type 

of profile used in modern screw compressors. This shares many of the basic 

features of the asymmetric profile shown in Figure 4-32 but there is much more 

control over a range of additional design parameters.  For example: the flank 

angles can be adjusted in the vicinity of the pitch circle where involute curves 

ensure good torque transmission when required; the radius of all curves can be 

adjusted; and undercutting generation from one rotor to another uses a small 

radius on the generating profile instead of a single point. 

The corresponding rotor boundary maps for this profile are shown in Figure 

4-37 and Figure 4-38. These profiles will be used in exemplary figures in the 

next section which addresses how the four chambers, C1 to C4, relate to the 

more numerous chambers that actually exist within a twin screw compressor at 

any instant. 

  



 Chapter 4: Boundary Map for Rotor and Casing Surfaces 

91 
 

 

Figure 4-37: N-profile boundary map for main rotor 

 

Figure 4-38: N-profile boundary map for gate rotor 
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4.7 LOCAL CYCLE EXPOSURE OVER FULL ROTORS 

The full 3-dimensional rotor surfaces are plotted in Figure 4-39 at a reference 

compression cycle angle, θ. All rotor sections have been generated from the 

surface arrays R1(ε1,γ1) and R2(ε2,γ2) as shown in Figure 4-6. The parameters r 

and β can be found for a point on the rotor surface at any cycle angle using the 

equations set out previously. The parameters r, β and γ were then transformed 

to the global X,Y,Z co-ordinates and plotted using ‘Gnuplot’ (Williams, Kelley et 

al. 2013). 

In order to build up the full 3D surface, the surface at cycle angle θ is written to 

memory then the cycle angle is advanced by 2π/z1 and the next surface is 

written to memory until all lobes have been generated.  

Due to the way the respective rotor parameters, r, β and γ, have been defined 

for R1 and R2 with respect to a reference cycle angle , θ, the rotors would be 

displayed in mesh once related back to the global Cartesian compressor co-

ordinate system, S0. However, in order to show the detail along the meshing 

line the rotors have been plotted separately and are viewed as if from the other 

rotor.  

The current objective is to set out the procedure by which the instantaneous 

cycle angle for the local compression chamber at any point on the surfaces 

displayed in Figure 4-39 can be retrieved. The required parameter is the ‘local 

cycle angle’, θlocal; this is based on θ which is effectively a ‘reference cycle angle’ 

because it only defines the cycle angle for a single ‘reference compression 

chamber’ that is used to define the rotor position.  
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Figure 4-39: Full rotor surfaces (3D domain) 

The first step to finding the local cycle angle, θlocal, is to identify where the 

surface point lies on the rotor boundary map in order to establish what chamber 

offset is required. This requires the rotor surface parameter ε; and the local 

transverse rotor offset λ. The latter is a function of the axial position parameter, 

γ; and the reference cycle angle, θ, as set out previously and summarised below: 

 

In order to use the rotor chamber boundary map the offset should lie in the 

range:  -180 < λ1 < 180. In the case of the gate rotor: -180(z2/z1) < λ1 < 

180(z2/z1).  To ensure the parameter λ is within this range a correction must 

be applied:  

 

 

                     (36) 

               (37) 



 Chapter 4: Boundary Map for Rotor and Casing Surfaces 

94 
 

 

Where n is an appropriate positive or negative integer. The maximum value of 

this integer is limited by the fact that the reference cycle angle used to define 

the cycle angle in the reference chamber cannot exceed the maximum cycle 

angle for the rotor pair.  

Once known, λ is used along with the rotor surface parameter, ε1 or ε2, for the 

main and gate, to identify the relevant rotor chamber as C1, C2, C3 or C4 by using 

the rotor boundary maps of Figure 4-37 and Figure 4-38 for the main and gate 

rotors respectively. 

Figure 4-40 has been created based on the same boundary map of Figure 4-37 

in order to illustrate how the local cycle angle needs to be adjusted for each of 

the four chambers. Chamber C4 has been set as the reference chamber. By 

assuming that -180 < λ < 180, no adjustment of λ is required and the local cycle 

angle in chamber C4 will equal the reference angle θ. Crossing the radial SL from 

C4 to C3 advances the local cycle angle by 360/z1. Crossing the interlobe SL from 

C4 to C2 advances the local cycle angle by 360. Crossing the radial SL again from 

C2 to C1 results in a total offset of 360 + 360/z1. 

   
            (38) 

 
  
            

  

  
  

(39) 
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Figure 4-40: Main rotor chamber offsets 

If any adjustment is made to λ using equation (38) it is important to include that 

term were calculating the local cycle angle. The general equations for 

calculation of the local cycle angles for each chamber on the main rotor are 

given in Table 4-3.  

Table 4-3: Local cycle angle corrections on main rotor 

Chamber Reference Calculation of local theta angle , θlocal 

C1                
   

  
       

C2                     

C3           
   

  
       

C4                 
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Figure 4-41 shows the chamber offsets for the gate rotor boundary map. The 

boundaries and chambers on this map are the same as those on the main rotor 

boundary map, albeit with different topography, so it may come as a surprise to 

see that the equations describing the chamber offsets are slightly different 

across the interlobe sealing line. The new term highlighted in blue is required to 

account for any rotor lobe offset that occurs if the difference between z2 and z1 

is greater than 1.  

 

 

Figure 4-41: Gate rotor chamber offsets 

Equations (31), (33) and (36) all include the rotor lobe offset angle, φoff, which 

was defined in equation (16). When used in conjunction with the offsets defined 

above, these equations ensure that the cycle angle calculated for surfaces on 

each rotor, when exposed to the same chamber near the end of the cycle, is the 

same. Inevitably this means that the cycle angle will be different for surfaces on 

each rotor, when exposed to a chamber near the start of the cycle; when the 

difference between z2 and z1 is greater than 1. The general equations for 

calculation of the local cycle angles for each chamber on the gate rotor are given 
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in Table 4-4. The other additional terms highlighted in yellow are due to the 

difference between equations (38) and (39). 

Table 4-4: Local cycle angle corrections on gate rotor 

Chamber Reference Calculation of local theta angle , θlocal 

C1               
    

  
   

   

  
       

  

  
  

C2               
    

  
        

  

  
  

C3           
   

  
       

  

  
  

C4                 
  

  
  

 

In one sense it is a fairly trivial task to correct chamber offset across the main 

interlobe and radial boundaries. However only by analysing the rotor boundary 

maps can the subtle complexity of the problem be appreciated. All of the rotor 

profile examples show that along at least some portion of the interlobe SL, the 

chamber C1 is adjacent to C4 due to the discontinuity of the radial SL so the 

offset across this portion of the interlobe SL is 2π + 2π/z1. Referring back to 

Figure 4-12 in which the sealing boundaries are shown as boundary points, the 

adjacent chambers in green and red around meshing lobes of the main rotor are 

equivalent to C1 and C4. 

The rotor surfaces have been re-plotted in Figure 4-42 with the local cycle 

angle, θlocal, represented by the colour contours. Areas that are the same colour 

can be easily identified as individual compression chambers. In order to build 

up the full rotor the procedure was repeated after advancing the reference cycle 

angle θ for each lobe: 

 

 
       

    

  
 

(40) 
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On the gate rotor on the right hand side of Figure 4-42 two white dashed lines 

have been added. These are the newly defined boundaries that were introduced 

in Figure 4-38 to form a boundary across the blow-hole leakage paths – the 

more important HP blowhole is the smaller dashed line on the left. The fact that 

these seem to separate the chambers in a sensible manner provides some 

degree of validation regarding the boundary definition. 

 

Figure 4-42: Full rotor surfaces with surface contour plot of local cycle angle 

In the region of the boundaries some of the tiles used to produce this plot 

suggest a transition region across the boundary however this is an artefact 

introduced by the averaging across nodes that fall in different chambers. All 

computations are done at the nodal positions therefore the calculated values 

will only fall within the specified local cycle angles. 
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4.8 MAPPING PRESSURE AND TEMPERATURE ON SURFACES 

4.8.1 TEMPERATURE DISTRIBUTION 

The homogenous fluid properties within a single compression chamber are 

calculated for a given operating fluid and duty point using the established 

chamber model detailed in Chapter 2. The fluid properties are output with 

respect to the compression cycle angle (in this case normalised to be zero at 

maximum chamber volume) as presented in Figure 4-43. 

 

Figure 4-43: Thermodynamic results from chamber model 

With these results, and knowing the local cycle angle at any particular point on 

the rotor and casing surfaces it is a matter of referencing the appropriate fluid 

properties from the thermodynamic results. 

Figure 4-44 shows the instantaneous, homogeneous gas temperature from the 

chamber model results mapped onto the main and gate rotor surfaces. This 

output will vary depending on the reference cycle angle θ, which controls the 

rotor positions, however once the cycle has gone through 360°/z1 the result 

presented would repeat.  
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Figure 4-44: Instantaneous gas temperature at rotor surface. 

In Figure 4-45 the time-varying fluid properties have been averaged over the 

full rotor cycle (360°) for each location on the rotor surface in order to 

approximate steady state boundary conditions. Averaged boundary conditions 

would greatly simplify any thermal analysis. 
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Figure 4-45: Time averaged gas temperature at rotor surface 

The temperature results mapped onto the rotors are mapped onto the casing 

surfaces in the same way using the calculated local casing cycle exposure. The 

averaging of casing and rotor temperatures is discussed in more detail in the 

next chapter. 

4.8.2 PRESSURE DISTRIBUTIONS 

Pressure distributions are found in exactly the same way as the temperature 

distributions as shown in Figure 4-43 and Figure 4-44. With pressure, the time 

varying forces on the rotor are of interest therefore it is not appropriate to 

average the instantaneous pressure distributions. The pressure results would 

need to be repeated over the range 360°/z1, with appropriate time resolution 

to capture the full time history for the pressure boundary conditions. 

In order for pressure results to be utilised in a useful way it is necessary to 

resolve the net pressure forces on the rotors due to the pressure distribution on 

all rotor surfaces i.e. radial loads, axial loads and torque. Calculation of these 

forces was not included in the scope of this thesis and will be addressed in 

further work.   
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4.9 CONCLUDING REMARKS 

Accurate surface boundary mapping and calculation of chamber exposure is 

critical for any kind of analysis that relates fluid properties within the chamber 

to the actual rotor geometry. This includes determination of thermal boundary 

conditions which will be utilised in the next chapter, and in future work, the 

calculation of net forces of the rotor body due to pressure loading. 

These procedures will allow existing results from a non-dimensional chamber 

model to be utilised in new ways such as estimating local operational clearance 

distortions. In addition it provides a better understanding of the complexities of 

the chamber interaction for various rotor profiles including: interlobe and 

radial sealing line interaction with the blow-hole leakage path; and the degree 

of cycle offset between various adjacent chambers.  

This will be used as the basis for an initial estimate of the actual temperature of 

the rotor metal in the next chapter, without using FEA. This will allow fast, 

efficient estimation of thermal distortions during rotor design for a specific 

operating duty.  

Other future work that has been identified is the use of the pressure and 

temperature results for 3D FEA analyses. Another potential use of this kind of 

result would be to use the instantaneous, homogeneous fluid properties at a 

fixed rotor position as the initial boundary conditions for CFD simulation. 
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Chapter 5                                           
Operational Clearance 
Distortions 
 

5.1 INTRODUCTION 

The boundary conditions calculated in the previous chapter can be used for 

estimation of the surface temperature distribution on the rotors and casing. It is 

then possible to estimate thermal displacements of individual components and 

ultimately how this affects the operational clearances.  

A procedure is presented here to estimate local clearance distortions in a twin 

screw compressor using boundary conditions derived from a chamber model. 

Time varying boundary conditions from the non-dimensional model are 

mapped onto rotor and casing surface arrays. The fluid boundary temperatures 

are time-averaged and then used to estimate the local rotor and casing 

temperatures. Heat transfer assumptions that represent the extreme case for 

component temperature distributions are presented. This approach aims to 

meet the objective to provide a fast, efficient, estimation of thermal distortions 

for any rotor design or operating duty early in the design process. Estimated 

rotor and casing temperatures will be used to analyse how thermal distortions 

will change the compressor clearances, and consequently how this affects the 

compressor performance and reliability. With this procedure, relative local 

change in clearances between rotors and casing can be estimated without the 

need for FEA.  
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5.2 APPROXIMATING TEMPERATURE DISTRIBUTIONS 

5.2.1 CASING TEMPERATURE 

In the previous chapter a procedure was described to find the local fluid 

boundary temperature on the internal surfaces of the casing bores, B1 and B2. 

The local temperatures TB1 and TB2 are time averaged values which are unique 

for every position of the rotor bore surfaces; the position is defined by the 

parameters β and γ so that the local temperature on the main and gate rotor 

bores are defined respectively:  TB1(β1,γ)   and    TB2(β2,γ) 

In Figure 5-1 the average local temperature has been plotted onto the surfaces 

B1 and B2 as a colour contour which shows the temperature distribution with 

respect to the surface parameters β and γ. 

 

Figure 5-1: Average fluid temperature at casing surfaces 

Converting the surface location to be defined on the global co-ordinate system 

for the compressor, this temperature distribution can be plotted in 3D as shown 

in Figure 5-2; which shows more intuitively how these temperatures vary 

around the compressor. This shows the two intersecting cylinders that form the 

compressor casing bores and is a very limited representation of only the 

internal casing geometry. Externally, the casing will have some thickness and 

various other features such as port, ribs, flanges and feet which will all effect the 

actual temperature distribution in the casing body.  
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Figure 5-2: Average fluid temperature at casing surfaces in 3D 

With such a simplified representation of the actual casing geometry there is 

limited scope for thermal analysis. By considering a hypothetical scenario; with 

no conduction across the surface of the casing; and no external heat transfer 

from the casing, the steady state result is that the casing surface temperature of 

the metal will be the same as the fluid boundary temperature. This hypothetical 

case is of interest as it results in the peak local temperatures and temperature 

gradients that are possible.  

As will be discussed later - it is useful to average the temperature over certain 

regions of the casing – namely, over a transverse cross-section of the casing. For 

a given transverse plane on the compressor, when the parameter γ, which 

describes axial position, is fixed, the average temperature over that plane can be 

found by averaging the temperature around both rotor bores: 

 

        
              
         

   

           
   

              
         

   

           
  (41) 

5.2.2 ROTOR TEMPERATURE 

The instantaneous local fluid boundary temperature on the rotor surfaces, R1 

and R2 and defined:   T*R1(ε1,γ,θ)    and    T*R2(ε2,γ,θ)  

Gate rotor bore 

Main rotor bore 

Location of 

discharge port 
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The parameters ε and γ describe the location on the surface, while θ describes 

the cycle angle. An example of the instantaneous boundary temperature 

distribution is plotted on the surfaces R1 and R2 as shown in Figure 5-3 

 

Figure 5-3: Instantaneous boundary temperature at rotor surfaces 

Figure 5-3 shows similar chamber boundaries to those that can be observed in 

the rotor chamber boundary maps of Figure 4-40 and Figure 4-41 in the 

previous chapter (albeit with different orientation). The subtle difference is that 

rotor boundary maps were defined using a parameter λ that meant they were 

independent of the cycle angle. In this case the vertical axis is now represented 

by the axial parameter γ; as the cycle advances, the chambers appear to 

translate as shown in Figure 5-4. 
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Figure 5-4: Instantaneous temperature at main rotor surface at different cycle 

angles 

The local temperature will cycle every time θ is incremented by 360°. This 

means that for even a large slow compressor running at 1500rpm, the 

temperature will cycle every 0.04 seconds. ‘Steady state’ conditions can be 

approximated by taking time averaged values that will now only vary as a 

function of the surface parameters: 

 
           

 

   
    

            
   

 

   
 (42) 

 

 
           

 

   
    

            
   

 

   
(43) 
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Figure 5-5: Time-averaged boundary temperature at rotor surfaces 

Surfaces R1 and R2 have been re-plotted in Figure 5-5 with the colour contour 

representing the time averaged surface boundary temperature. The colour 

contours representing temperature have been plotted on the same scale as used 

in Figure 5-3 which highlights how much lower the peak temperature is after 

averaging. 

In Figure 5-6, the time averaged boundary temperatures have been plotted on 

the 3D main rotor surface. This is an accurate representation of the main body 

of the rotor however it is still a simplification of the actual geometry as the 

details of the rotor shafts that extend from this rotor body are not known. These 

shafts would of course have an effect of the thermal behaviour of the rotors.  
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Figure 5-6: Time averaged boundary temperature on main rotor 

As was the case for the casing representation, there is a limit to the scope for 

thermal analysis that can be done without defining the full 3D rotor bodies 

including all shaft dimensions. To facilitate analysis the following assumption is 

made: there is no heat conduction in the axial direction along the length of the 

rotors. This assumes no heat flux from the hot to the cold end of the rotors and 

no heat flux from the rotor body to the rotor shafts and bearings. Neglecting 

axial conduction results in the peak transverse temperatures and temperature 

gradients along the axis of the rotors. This allows the problem to be reduced to 

a 2D problem for each transverse cross section of the rotors. However, this 

would still require a numerical solution to determine the 2D temperature 

distribution due to surface heat transfer and conduction within the rotor. 

Averaging the boundary temperature over the transverse cross section of each 

respective rotor using equations (44) and (45) yields the rotor ‘planar averaged’ 

temperatures; these are plotted in Figure 5-7: 

 
                      

 

 

   
 (44) 

 

 
                      

 

 

   (45) 
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Figure 5-7: Planar averaged boundary temperature on rotor surfaces 

As this temperature only varies with axial location the axial temperature 

distribution for both rotors can be directly compared on a single plot as in 

Figure 5-8. The reason the discharge end temperature is hotter on the main 

rotor is because it is exposed to the 4 hottest chambers over a full rotation 

(since z1 = 4) while the gate rotor is exposed to these same 4 chambers for only 

4/6 (z1/z2) of a rotation and the remaining time it is exposed to 2 cooler 

chambers. 

 

Figure 5-8: Planar averaged temperature distribution on rotors  
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5.3 THERMAL DISTORTION OF INTERLOBE GAP 

5.3.1 INTERLOBE SEALING LINE 

The objective here is to approximate the relative change in the local interlobe 

sealing line gap, ΔGI, due to thermal distortion of the rotors and casing. This 

local distortion will be unique for each position along the full length of the 

sealing line. In addition to this the position of the sealing line changes so that a 

given point on the sealing line will be formed between rotor surfaces that are 

exposed to different temperatures resulting in different thermal distortions as 

the cycle progresses.  

 

Figure 5-9: Side projection of interlobe sealing line 

Figure 5-9 shows the entire length of the interlobe sealing line from a side 

projection (viewed along the negative X direction of Figure 4-1). The sealing 

line between the rotors exists between the limits of the low pressure (LP) and 

high pressure (HP) cusps. As the rotors turn, this sealing line translates from 

the suction face (LP plane), at the left hand side, to the discharge face (HP 

plane), at the right hand side.  

Over the course of the compression cycle, every location on surfaces R1 and R2 

will be in mesh at some point. During steady state operation, the local interlobe 

GI
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gap, GI, and, just as importantly, the change in the gap, ΔGI, will remain constant 

when defined with respect to a fixed point on each of the rotor surfaces. For this 

reason it is appropriate to define the local interlobe gap with respect to its 

corresponding location on the main rotor surface, R1: GI(ε1,γ). Note that this is 

an equivalent alternative to equation (4) in Chapter 2.4.1, which described the 

local interlobe gap as a function of the position along the interlobe sealing line 

and the cycle angle GI(l1,θ). 

5.3.2 LOCAL ROTOR DISTORTION 

In order to approximate thermal distortion of each rotor a 2D transverse cross 

section of the rotors was considered. By using the planar averaged 

temperatures defined previously, a uniform temperature can be assumed across 

the entire transverse cross section of each rotor. With this assumption uniform 

thermal expansion occurs without any thermal stresses. This neglects shear 

stresses between adjacent transverse sections. Taking the axis centre point as a 

datum, thermal expansion can be calculated for each rotor: 

                      (46) 

                        (47) 

The local radius, r, is known at any location for a given rotor profile and can be 

identified with respect to the surface parameter, ε: r1(ε1) 

μR, is the coefficient of thermal expansion for the rotor material which is 

assumed to be common for the main and gate rotors. 

The ambient temperature, Ta, is the temperature at which the design clearances 

are defined. The planar averaged temperature of the rotor varies as a function 

of the axial surface parameter, γ (see Figure 5-8):    TRP1(γ) 

Therefore, for a given rotor pair running at a steady state duty, the local thermal 

distortion on each rotor can be approximated in such a way that it can be 

described in terms of its position of the rotor surface: Δr1(ε1,γ);  Δr2(ε2,γ). 
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5.3.3 LOCAL CASING DISTORTION 

The bearings that locate the rotors are situated in the casing so the interlobe 

gap can also be affected by casing thermal distortions. In reality the bearings 

will be located on the rotor shafts some distance from the meshing region of the 

rotor bodies. Even if the actual geometry were defined it is not a trivial matter 

to approximate the casing temperature remote from the compression process. 

This would require detailed analysis of a specific case which is not the aim of 

this exercise. For this more general investigation of thermal behaviour, two 

transverse planes were defined as shown in Figure 5-10, one at the suction end 

and the other at the discharge end.  

 

Figure 5-10: Transverse planes at suction and discharge of casing 

Where the centre line of each rotor bore intersects with one of these planes the 

distance, A, has been identified. The averaged temperature on each respective 

plane will be used to estimate ΔA at each end, resulting in non-parallel axes.  

The 2D thermal analysis is similar to what was done for the rotors. A uniform 

casing temperature is estimated on each plane using the casing planar averaged 

A, suction

A, discharge

φW1 

 

γ 
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temperature equation defined previously (41); where these temperatures are 

defined as follows: 

  Suction plane temperature:   TCP1 = TCP(γ = 0)   

Discharge plane temperature: TCP2 = TCP(γ = φw1)   

Assuming that each rotor axis intersects with the appropriate casing bore axis 

at these planes; and that rotor deflection due to rotor bending is negligible; the 

rotor centre distance can be defined at any axial position, γ, by interpolating 

between the end planes: 

 
             

     

   
            

 

   
            (48) 

5.3.4 RELATIVE GAP DISTORTION 

Procedures have now been detailed to find the local distortions: Δr1, Δr2 and ΔA 

for a given cross section of the rotors. This section details how these component 

distortions are used to calculate the resulting relative distortion at the interlobe 

gap. The first step of this analysis will be to determine the transverse 

component of the interlobe gap, GIT.  

 

Figure 5-11: Transverse analysis of interlobe gap 

The dimensions r1, r2, and A have been plotted on Figure 5-11. In order to relate 

these dimensions to the transverse interlobe gap, GIT, the horizontal and vertical 

components have been defined. The relationship between the horizontal 

components is: 

ψPA
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               (49) 

Similarly: 

                   (50) 

For the interlobe gap highlighted in Figure 5-11 the relationship between the 

vertical components is: 

             (51) 

However, the above is only true when |y2| > |y1| AND when y1 and y2 are 

positive. In the magnified gap in Figure 5-11, the body of the gate rotor is 

‘above’ the body of the main rotor; this is related to the surface normal. For 

conjugate rotors, the line of the surface normal at any location, currently in 

mesh, must intersect with the rotor pitch point. This behaviour can be used to 

set out general rules as illustrated in Figure 5-12. An axial projection of an 

arbitrary sealing line is shown in red; this is representative of the sealing line 

path for any profile with an addendum and dedendum. The line of the surface 

normal will always radiate from the pitch point as shown. Where this line 

intersects the meshing point between rotors, the rotor closer to the pitch point 

will be ‘smaller’ in the y direction. This behaviour was used to construct 

equation (52) and (53). 

 

Figure 5-12: Pressure angle intersecting with pitch point 
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             (52) 

 
      

         

           
                (53) 

The change in the transverse interlobe gap can now be calculated as: 

                                      (54) 

The pressure angle, ψPA, is defined in Figure 5-13 and is the angle between the x 

axis and the surface normal line at a meshing point. This angle is measured on 

the global compressor co-ordinate system and is common for both rotors. 

 

Figure 5-13: Angles on transverse section 

               (55) 

θM is the meshing angle that describes the rotation of the main rotor. ψ01 can be 

described as the ‘home pressure angle’ (Holmes 1990); this is the normal to the 

profile curve measured relative to the profile co-ordinate system S01. Details for 

calculation of θM and ψ01 and provided in appendix ‘A.2 Meshing Conditions for 

Conjugate Profile’. 

The minimum gap between the surfaces of the main and gate rotors is the 

distance along a line normal to the rotor surfaces – the normal gap. In the case 

of rotors with no helix angle this gap would be the same as the transverse gap, 

GIT. When a helix angle is introduced the normal gap will be smaller than the 

transverse gap. The degree to which the normal gap is reduced due to the local 
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rotor helix also depends on the local steepness of the rotor flank. Holmes 

(Holmes 1990) provides a derivation of the following equation used to convert 

from a transverse to a normal gap: 

 
       

 

                        
  (56) 

ψH1 is the local helix angle on the main rotor, this increases with an increase in 

the local radius according to the equation below, where h1 is the lead length 

that describes the main rotor helix: 

 
         

   
    
  

   (57) 

αF1 is described by Holmes as the polar flank angle, which is measured from a 

radial line that intersects the meshing point, to the line of pressure. This is 

included in Figure 5-13 and can be defined as below; where φ01 is the local 

profile angle measured from the profile co-ordinate system: 

                  (58) 

Since GI will typically be many orders of magnitude smaller than the profile 

dimensions, the following approximations would result in negligible errors. In 

practical terms this allows the calculations to be performed using only the main 

rotor profile co-ordinates.  

                           (59) 
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5.4 THERMAL DISTORTION OF RADIAL GAP 

5.4.1 RADIAL SEALING LINES 

The radial sealing points between the rotor and casing have been highlighted 

for the main and gate rotors in Figure 5-14. These occur at the maximum rotor 

radii, ro1 and ro2. In the event that the gate rotor features a region where the OD 

has the same max value, the radial sealing point has been set to be on the 

trailing side on the rotor lobe such that this point defines the port opening, 

when timing is most critical. This is as opposed to choosing a point on the 

leading side of the lobe that would control the port closing.  

 

Figure 5-14: Radial sealing points on main and gate rotors 

A single compression chamber will be enclosed by one radial sealing line on the 

leading tip of each rotor and one on the trailing tip of each rotor. For the 

purposes of thermal analysis of the radial gap only one of these sealing lines 

needs to be considered since one is just an offset of the other. Each of these 

sealing lines is made up of one helical curve on the main rotor and another on 

the gate rotor. These sealing lines have been projected onto the casing bore 

surfaces in Figure 5-15.  
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Figure 5-15: Radial sealing lines 

On the main rotor on the right hand side of Figure 5-15, the angular position of 

the radial sealing lines have been identified with β1l and β1t for the leading and 

trailing tip respectively. These angles have been measured at γ = 0, on the inlet 

(LP) plane. Due to the overlap of the rotor bores the surfaces B1 and B2 only 

extend from one cusp to the other therefore the radial sealing line can only exist 

in this region where:   φc1 < β1 < (360 – φc1) 

During steady state operation, the local radial gap, GR, and the change in the gap, 

ΔGR, will remain constant when defined with respect to a fixed point on the 

casing surface. For this reason it is appropriate to identify the local radial gap 

with respect to its corresponding location on the casing surfaces surface, B1 or 

B2 respectively:  GR1(β1,γ)   and    GR2(β2,γ) 

5.4.2 LOCAL DISTORTIONS 

The local rotor distortions calculated previously in equations (46) and (47) are 

used to calculate the thermal distortion at the tip of the main and gate rotors 

using the outer radii ro1 and ro2 respectively: 

                         (60) 

                         (61) 

The outer radius is a constant along the full length of the radial sealing line for 

each rotor. The planar averaged temperature, TRP, will vary with respect to the 
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axial parameter, γ. As previously stated, these equations assume a datum along 

the axis of the rotors for the rotor thermal expansion. 

The intuitive datum for analysing displacements in the full casing due to 

thermal distortion would generally be where the casing is secured to its base. In 

this instance the only distortion of interest is along the lines that radiate from 

the common axis of the rotor and casing bore. For this reason, two datum 

locations have been defined on the casing - one on the main rotor axis and one 

on the gate rotor axis; this assumption is discussed in more detail in ‘Appendix 

B.2.2 Datum for Relative Clearance Distortion’. Axial distortions will have a 

negligible effect on the radial gap therefore these will be neglected. This 

essentially allows the analysis of the radial gap to be treated as a 1D problem. 

The rotor distortion has already been discussed so the remaining unknown is 

the radial distortion on the casing bore, relative to the centre axis of that bore:     

Δrc1(β1,γ)    and    Δrc2(β1,γ)     

As for the rotors, the realistic thermal distortion of the casing simply cannot be 

calculated without taking into account geometrical features and how these 

interact with temperature gradients to cause thermal stresses. If the casing 

temperature was approximately uniform over a transverse cross section of the 

rotors it would be possible to perform a similar analysis as for the rotors since 

there are zero thermal stresses over a section with uniform temperature 

(neglecting stresses transferred from adjacent planar cross sections).  

Unfortunately, referring back to Figure 5-1, it is clear that the high 

temperatures on the casing are highly localised to the region of the discharge 

port. While using a planar average temperature is reasonable for distortions in 

centre distance, A, this kind of averaging is not appropriate for analysis of the 

radial gap. The only option, short of creating a finite element model, is to treat 

each point on the casing in isolation, and deem the rest of the casing to be at the 

same temperature, circumventing the issue of thermal stresses, for the purpose 

of estimating the local distortion at that point. 

                        (62) 
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                        (63) 

Providing casing thermal gradients are not very severe; and that the 

compressor casing has been sensibly designed in such a way that the thermal 

expansion of the bore will not be restricted; the expectation is that an overall 

approximation of casing thermal distortion can be achieved; this will be an 

improvement over completely neglecting casing thermal expansion and in no 

way attempts to provide a fully realistic thermal analysis of the casing. 

The analysis of the local radial gap, normal to the surface of the casing bore, is 

considerably easier to calculate than for the interlobe gap: 

                 (64) 

                    (65) 

5.5 MODELLING WITH OPERATIONAL CLEARANCE 

CORRECTIONS 

5.5.1 INTEGRATION WITH GEOMETRY CALCULATION PROGRAM 

The described calculations were implemented in the program GEOM used for 

the calculation of all geometric parameters. This program outputs only the main 

geometric characteristics required; namely, the chamber volume and all flow 

areas through the ports and leakage paths, and how these vary throughout the 

compression cycle.  

The minimum requirement for calculation of the leakage area through a sealing 

line gap is the instantaneous length of that sealing line and the average gap 

through the sealing line. With non-uniform clearance distributions around the 

surface of the rotor profile it is necessary to integrate the local gap along the 

path of the sealing line: 
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    (66) 

For a designed clearance distribution the local gap, GI, varies along the length of 

the sealing line. Assuming there is no rotor taper or axis offset towards one end 

of the rotors, a point fixed on this sealing line, as shown previously in Figure 

5-9, would have a constant local gap by design such that the gap could be 

described as a function of the position on the rotor surface: GI(ε1). In this 

situation only the limits of integration for the active sealing line are required.  

When considering distortions due to local rotor and casing temperature, the 

position of the sealing line within the compressor must also be calculated since 

the local distortion depends on the surface location:  ΔGI(ε1,γ). The local gap 

corrected for operational distortions is therefore a function that varies with 

respect to:   GI*(ε1,γ).   

In practise, equation (66) is solved numerically by calculating GI* at discrete 

points along the sealing line. For a given point in the cycle, θ, running at a steady 

state operating condition, the corrected leakage area through the interlobe gap, 

AI*, has a constant value. This calculation is repeated over a finite number of 

steps during the compression cycle in order to describe the leakage area curve, 

AI*(θ). 

The procedure is similar when calculating the corrected radial gap so that: 

GR1*(β1,γ)   and   GR2*(β2,γ).  

The leakage area for the radial gap is the sum of the area on the main and gate 

rotors; where ‘s’ is the length along the relevant curve: 

 
  
       

 
  

  

        
 

  

  

    (67) 

Examples of operational clearance distortions and the resulting impact of 

clearance distributions and area curves will be provided for the case studies in 

Chapter 6. 
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5.5.2 INTEGRATION WITH CHAMBER MODEL 

 

Figure 5-16: Flow chart for performance calculation with operational clearances 

The boxes in Figure 5-16 represent the operations that are performed while the 

parallelograms represent the data that is input and output from each program. 

More specifically, this data includes: 

Fluid boundary conditions: 

 Main rotor temperature distribution, TR1(ε1,γ) 

 Gate rotor temperature distribution, TR2(ε2,γ) 

 Casing surfaces temperature distribution, TB1(β1,γ) and TB1(β1,γ) 

Clearance corrections: 

 Local change in interlobe gap, ΔGI(ε1,γ) 
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 Local change in radial gap, ΔGR1(β1,γ) and ΔGR2(β2,γ) 

Compressor input data: 

 Rotor profile co-ordinates 

 Rotor parameters (such as wrap angle and Vi) 

 Clearance parameters including designed clearance distribution 

Geometry output data: 

 Chamber volume curve, V(θ) 

 Flow area curves, A1(θ), A2(θ)… 

Application input data: 

 Fluid properties (ideal gas properties were used) 

 Compression duty, p1, T1, pressure ratio 

 Compressor parameters (such as bearing type / oil injection) 

Performance output data: 

 Fluid properties during compression cycle, p(θ), T(θ)… 

 Net flow / volumetric efficiency 

 Net power / adiabatic efficiency 

The procedures: ‘Calculate geometry characteristics’ and ‘Solve 

thermodynamics’ were introduced in Chapter 2. The procedure to ‘Map 

boundary conditions’ was described in the Chapter 4. The procedure to 

‘Calculate operational deflections’ is as detailed in this chapter. All procedures 

were programmed using FORTRAN. The program to ‘Calculate geometry 

characteristics’ was based on existing routines in a program GEOM developed at 

City University which were modified to support the more complex clearance 

distributions during calculation of the leakage areas.  

‘Geometry characteristics’ are calculated using the appropriate ‘Compressor 

input data’ and ‘Clearance corrections’ (initially set to zero).  These geometry 

characteristics are used along with the ‘Application input data’ to solve the 

thermodynamics, giving the ‘Performance output data’. The performance output 
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data includes the fluid temperature as it varies throughout the compression 

process, T(θ). Once available, the temperature curve is used to estimate ‘Fluid 

boundary conditions’ and ‘Clearance corrections’. If clearance distortions are 

significant these will alter the flow area through the leakage paths within the 

compressor therefore the geometry characteristics and thermodynamics should 

be re-calculated. If the results are significantly different compared to the 

previous solution, then the process should be iterated until the solution 

converges. 
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5.6 CONCLUDING REMARKS 

For the purposes of assessing how thermal distortions affect local clearances 

and performance at a conceptual design stage, significant simplifying 

assumptions must be made. This approach does not attempt to provide 

maximum realism for a particular case but rather provides a general 

approximation of rotor thermal behaviour. An objective in this work to quantify 

local clearance variations is to assess reliability therefore the assumptions that 

have been made aim to represent extreme cases for thermal distortions.  

Ultimately, temperature distribution and thermal distortion need to be 

validated as far as possible which will be the subject of the Chapter 6. The effect 

of the revised clearances on the performance will be quantified and compared 

with experimental results.  
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Chapter 6                                           
Case Studies 
 

6.1 INTRODUCTION 

Procedures for the analysis of the thermal deformation of clearances have been 

described in the Chapters 4 and 5. These have been integrated with a well 

established twin screw compressor modelling procedure, detailed in Chapter 2. 

The resulting model enables investigation of localised clearance distortions and 

quantification of how these changes affect the compressor performance. In this 

chapter, case studies are presented in order to show the capabilities of this 

model and to assess how accurate and applicable the model is when used in the 

practical context of designing screw compressors for industrial applications. 

This research was performed in a commercial engineering environment.  This 

means that there was a good resource of test data available.  However the 

downside is that there is less flexibility in modifying designs, measuring specific 

parameters or in running at extended operating duties. The solution to this 

issue was to utilise test data from various different test cases which each 

allowed a specific detail or application of the model to be assessed. 

The first case covers Model Sensitivity to Rotor Parameters. The objectives of 

this case study were to validate that surface boundary conditions were 

produced as expected, with sensibly bounded chambers that are consistent with 

known compressor behaviour. The results were used to assess how these 

boundary conditions are affected by changes to the rotor geometry to ensure 

the calculation procedures are robust. This initial validation was only 

concerned with the distribution of temperature.    

In section ‘6.3 Model Sensitivity to Clearance Modifications’, the procedures 

detailed in Chapter 5 to predict clearance distortions were employed. The effect 

of modified operational clearances on the simulated thermodynamic 
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performance is presented and compared against available performance tests to 

give a general assessment of the model behaviour and sensitivity. 

Section ‘6.4 Investigating Interlobe Clearance Distortion’ particularly focuses on 

the impact of thermal distortions on the interlobe clearance distribution for an 

oil injected machine with direct rotor to rotor drive. 

‘6.5 Investigating Radial Clearance’ draws on extensive test results obtained 

from an oil free HS204 compressor, over a wide range of temperatures and 

speeds. This case study features the added complexity of the compressor casing 

having a cooling jacket. The results obtained with the HS204 compressor 

include measurement of the radial clearance gap which was used to provide 

some verification of the predicted radial clearance deformation.  

Table 6-1: Air ideal gas properties 

Specific heat ratio, CP/CV 1.4 

Gas Constant, RG (Jkg-1K) 287 

Compressibility factor, Z 1 

 

All tests were performed with atmospheric air. This fluid has been represented 

in all models as an ideal gas with the properties provided in Table 6-1. All test 

results presented in this chapter have flows calculated in accordance with the 

standard ISO 5167-2:2003 (International Organization for Standardization b) 

and have been corrected to a standard suction pressure of 1 Bar absolute using 

the corrections described in ISO 1217:2009 (International Organization for 

Standardization a). The measured flow was also corrected to account for 

deviations in the actual speed achieved on test; within the acceptable deviations 

set out in this standard. 
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6.2 MODEL SENSITIVITY TO ROTOR PARAMETERS 

6.2.1 OVERVIEW 

Assessment of the model sensitivity to rotor parameters was based on an oil 

free machine compressing air. The modelled temperature throughout the 

compression process was mapped onto the rotor and casing surfaces. The 

resulting instantaneous and averaged surface temperature distributions are 

presented. These are compared with the temperature of the compression fluid 

at various locations within the compressor. The compressor model was based 

on the ‘DRUM127’ test compressor but different rotor geometry was generated 

and modelled to evaluate how this changed the temperature distribution when 

running at a similar duty. 

6.2.2 DRUM127 COMPRESSOR 

 

Figure 6-1: DRUM127 air compressor 

Table 6-2: Basic compressor details 

Main rotor diameter, D (mm) 127 

Length over diameter ratio, L/D 1.6 

Main rotor wrap angle, φw1 (deg) 285° 

Lobe combination, z1/z2 3/5 

Profile type N 

Volume index, Vi 1.5 

Oil injection No 
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The DRUM127, shown in Figure 6-1, is a twin screw compressor which features 

timing gears but has no oil or water cooling within the chamber. The analysis 

was based on the following operating conditions and assumed machine 

parameters.  

Table 6-3: Air duty 

Inlet pressure, p1 (Bara) 1 

Outlet pressure, p2 (Bara) 2 - 2.5 

Inlet temperature, T1 (°C) 25 

Speed, N (rpm) 7000 

 

Table 6-4: Model parameters for thermal analysis 

Ambient temperature, Ta (°C) 20 

Rotor thermal expansion coef., μr (°C-1) 1e-5 

Casing thermal expansion coef., μr (°C-1) 1e-5 

Nominal interlobe gap, GI, (μm) 100 

Nominal radial gap, GR, (μm) 100 

Nominal axial gap, GA, (μm) 100 

 

The model was set up with a uniform interlobe clearance distribution – this is a 

reasonable assumption for this kind of oil free, N-profile rotor, which mainly 

features a uniform clearance distribution that only reduces slightly in the pitch 

areas. Thermal expansion coefficients aren’t used at this stage but have been 

included here as this DRUM127 test case is used later to investigate thermal 

distortions. 
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6.2.3 MAPPED BOUNDARY CONDITIONS 

 

 

 

 

a) instantaneous temperature  b) time averaged temperature 

Figure 6-2: Rotor boundary temperatures 

 

 

 

a) planar averaged temperature  b) time averaged temperature 

Figure 6-3: Averaged boundary temperatures used for thermal analysis 

Figure 6-2 and Figure 6-3 show various fluid temperature distributions over the 

rotor and casing surfaces. The planar averaged temperature on the rotors from 

Figure 6-3 a) is used to generate a 2D plot in Figure 6-4, which shows how the 

main rotor is exposed to a higher average temperature than the gate rotor 

towards the outlet end of the rotors. These rotor results are also tabulated in 
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Table 6-5. The averaged rotor temperature exposure is not as extreme as the 

minimum and maximum fluid temperatures. However, on the static casing, the 

time averaged temperature exposure limits are very similar to the minimum 

and maximum fluid temperatures. 

Table 6-5: Temperatures at specific locations 

Temperature (°C) 
Fluid Main Rotor Gate Rotor Casing 

Inlet Outlet Inlet Outlet Inlet Outlet Min Max 
25 161 37 122 35 98 24 160 

 

 

Figure 6-4: Rotor temperature distribution 
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6.2.4 SENSITIVITY TO LOBE COMBINATION 

 

 

 

a) tested 3/5 lobe rotors  b) 3/4 lobe model comparison 

Figure 6-5: Comparison of rotor models with different lobe combinations 

New rotors were generated with a 3/4 lobe combination. The new rotors are 

shown next to the original 3/5 rotor geometry in Figure 6-5. The length to 

diameter ratio and wrap angle on the main rotor is the same for each rotor pair.  

The results, given in Table 6-6 and Figure 6-6 show that reducing the number of 

lobes on the gate rotor from 5 to 4 has increased the average temperature at the 

outlet so that the main and gate rotor outlet temperatures are similar. An 

additional case with 4/5 rotor geometry was run and added to Table 6-6; this 

supports the theory that the larger lobe difference between the 3/5 rotors is 

what causes the temperature difference. 

 

  



 Chapter 6: Case Studies 

134 
 

Table 6-6: Temperatures with different lobe combinations 

  
Temperature (°C) 

Fluid Main Rotor Gate Rotor 
Lobe 

Comb. Inlet Outlet Inlet Outlet Inlet Outlet 
3/5 25 161 37 122 35 98 
3/4 25 156 35 118 36 114 
4/5 25 172 37 130 38 124 

 

 

Figure 6-6: Rotor temperature distributions with different lobe combinations 
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6.2.5 SENSITIVITY TO WRAP ANGLE 

 

 

 

a) model with 255° wrap angle  b) model with 315° wrap angle 

Figure 6-7: Comparison of rotor models with different wrap angles 

Figure 6-7 shows an example of rotors with different wrap angles.  In this case 

the length to diameter ratio and lobe combinations are preserved. It is shown in 

Figure 6-8 and Table 6-7 that, with increased wrap angle, there is a modest 

decrease in the rotor temperature at the inlet and an increase in the rotor 

temperature at the outlet. This is as expected, since if the rotors had a wrap 

angle of zero, as is the case for roots blowers, then the temperature exposure 

would be the same along the full length of the rotors. 
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Table 6-7: Temperatures with different wrap angles 

  
Temperature (°C) 

Fluid Main Rotor Gate Rotor 
Wrap 
Angle Inlet Outlet Inlet Outlet Inlet Outlet 
255 25 159 38 117 37 94 
285 25 161 37 122 35 98 
315 25 163 35 129 34 104 

 

 

Figure 6-8: Rotor temperature distributions with different wrap angles 
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6.2.6 SENSITIVITY TO VOLUME INDEX 

 

Figure 6-9: Modelled temperature during cycle with different volume index 

 

 

 

a) model with Vi = 1.5  b) model with Vi = 2.0 

Figure 6-10: Comparison of rotor models with different volume index 

In this case the rotor geometry in unchanged but the casing has been modified. 

In fact this ‘casing geometry’ modification was simply achieved by changing the 

timing of the port opening in the thermodynamic model, resulting in a different 

temperature curve as shown in Figure 6-9. In Figure 6-10 the chambers 

highlighted with the red ellipse show the instantaneous fluid temperature 

immediately prior to opening of the discharge port. With Vi = 1.5 the 

temperature is less than discharge in this chamber but once open to discharge 

will be exposed to a higher temperature earlier in the cycle. With Vi = 2.0 the 
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temperature is greater than the final discharge temperature because it will 

decrease once expanded to the lower discharge pressure. Both scenarios result 

in higher than ideal temperatures at different points in the cycle however it is 

shown in Table 6-8 and Figure 6-11 that the overall effect on the rotor 

temperature exposure is similar. 

The most notable difference in the surface temperature distribution was on the 

casing bores, as shown in Figure 6-12. The minimum and maximum time 

averaged temperatures are similar.  However, with Vi = 1.5, a larger area of the 

casing bores is exposed to the higher temperatures.  
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Table 6-8: Temperatures with different volume index 

 

Temperature (°C) 
Fluid Main Rotor Gate Rotor 

Volume 
Index Inlet Outlet Inlet Outlet Inlet Outlet 

1.5 25 161 37 122 35 98 
2 25 159 36 122 35 98 

 

 

Figure 6-11: Rotor temperature distributions with different volume index 

 

 

 

 

a) model with Vi = 1.5  b) model with Vi = 2.0 

Figure 6-12: Comparison of casing temperatures with different volume index 
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6.2.7 DISCUSSION 

These results confirm that surface boundary conditions have been mapped as 

expected. Testing with different rotor geometry has confirmed that the 

procedures outlined in Chapter 4 are sufficiently robust and furthermore have 

been correctly implemented.   

This exercise demonstrates how the procedures developed in this work can be 

readily applied to the evaluation of rotor designs at a very early stage in the 

design process. Further case studies, in this thesis, utilise these temperature 

distributions in order to investigate operational clearances due to thermal 

distortions.   
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6.3 MODEL SENSITIVITY TO CLEARANCE MODIFICATIONS 

6.3.1 OVERVIEW 

The estimated thermodynamic performance is compared with experimental 

results. The aim of this exercise was to evaluate the sensitivity of the model 

performance to predicted operational clearance variations. 

6.3.2 DRUM127 COMPRESSOR  

This case is based on the same setup as detailed in 6.2.2 ‘DRUM127 

Compressor’.  

6.3.3 DRUM127 TEST MEASUREMENT 

Air test data was provided by City, University of London, for the range of 

operating duties detailed previously. Due to the lack of compressor cooling and 

the high adiabatic exponent of air, the achievable pressure ratio was restricted 

by the operating temperature; however this is well suited to investigate thermal 

distortions.  

A torque meter was installed on the motor shaft while the digital encoder for 

the speed measurement was mounted on the male rotor shaft. The pressure and 

temperature of the gas were measured at the inlet, the discharge, and upstream 

of the orifice plate. The air flow through the compressor was measured by use 

of an orifice plate installed in the discharge line of the system. The discharge 

line contained a control valve for regulation of the discharge pressure. A 

simplified schematic of the test setup is shown in Figure 6-13 and a list of 

instrumentation used in provided in Table 6-9. 
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Figure 6-13: DRUM127 schematic 

Table 6-9: DRUM127 instrumentation 

Measured 

Parameter 
Instrument Description 

shaft speed Shaft Encoder. (BHG 16.25W.3600-

B2-5) 

360 TTL pulses per revolution. 

shaft torque 
TRP-500 torque meter. ( strain 

gauge transducer) 

max capacity: 500Nm,  Calibration level: 

335Nm Range = 0 - 6000 rpm, Supply 

volt=10v dc 

inlet pressure, 

p1 

PDCR 110/w –pressure transducer Operating range = 3.5bar(abs). Excite 

voltage=10V dc 

inlet temp. , T1 Platinum Resistance Thermometer Range= -750C to 3500C 

outlet pressure, 

p2 

PDCR 922-pressure transducer Operating range =15 bar (abs). Excite 

voltage=10V dc, Output voltage= 100 mV 

outlet temp., T2 Platinum Resistance Thermometer Range= -750C to 3500C 

orifice inlet 

pres., pu 

PDCR 922-pressure transducer Operating range =15 bar (abs). Excite 

voltage=10V dc, Output voltage= 100 mV 

orifice inlet 

temp., Tu 

Platinum Resistance Thermometer Range= -750C to 3500C 

orifice diff. 

pres., Δp 

PDCR 2120- pressure transducer Pressure diff= 0.35 bar, Excitation 

Voltage=10V dc 

 

Data acquisition and logging was done using a National Instrument Compact-

RIO (CRIO-9022) Real-Time with an 8 slots chassis CRIO-9114. Programming 

T1

p1

T2

p2

Air Inlet

Air Outlet
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Throttle 

Valve
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was done using LabVIEW FPGA (Field Programmable Gate Array) which is 

suitable for high frequency data acquisition.  

6.3.4 DRUM127 CLEARANCE SENSITIVITY 

Three different model cases have been described in Table 6-10. Case A uses the 

unmodified design clearances, set up in the model for the radial and interlobe 

leakage paths, in order to provide a benchmark. In Case B the interlobe and 

radial gaps have both been modified for rotor thermal distortion only, while in 

Case C the estimated thermal distortion of the casing has been included. 

Table 6-10: Modelled clearance adjustments 

Clearance Adjustments Case A Case B Case C 

ROTOR thermal distortion No Yes Yes 

CASING thermal distortion No No Yes 

 

In Figure 6-14, the local interlobe clearance gap is plotted against the relative 

position along the interlobe sealing line for a single compression chamber. In 

Figure 6-14 the location of the rotor root and tip is annotated and the local rotor 

radius is plotted on the secondary axis, to provide an indication of the local 

clearance positions. 

 

Figure 6-14: Interlobe clearance distribution corrected for thermal deformations 
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In Case A the local clearance gap has been taken to be constant with a value of 

0.1mm. With the introduction of the rotor thermal expansion in Case B, 

significant clearance reduction will occur with some local areas more affected 

than others. The location of the biggest clearance reduction is at the root of the 

main rotor. This indicates the location where rotor contact is most likely to 

occur. The thermal expansion of the casing in Case C mitigates the rotor 

expansion, as would be expected. However, there is still a slight net decrease in 

the interlobe clearances for this case. 

The results shown in Figure 6-14 are for a specific instant in the compression 

cycle when the interlobe sealing line is fully developed i.e. the full length of the 

sealing line is an active leakage path. The instantaneous interlobe leakage area 

is taken as the area under the relevant curve (corrected for the actual sealing 

line length). As the cycle progresses, the length and position of the sealing lines 

change and the local clearance deformations need to be re-evaluated based on 

the new location. The changing history of two leakage areas is shown in Figure 

6-15, beginning at the start of compression (in this case when θ = 0°).  The 

interlobe leakage area curve is shown on the left graph of Figure 6-15.  This is 

related to the clearance distribution of Figure 6-14. The combined leakage area 

curve for all out-flow radial clearances is shown in the right hand graph. It is 

interesting to note that for Case C, with both rotor and casing expansion 

included, a net increase in the radial gap is predicted in the latter stages of the 

compression cycle due to the local hot spot on the compressor casing. The 

radial leakage area is greater than the interlobe leakage area. Note the different 

scales used on each y-axis. However, the cycle offset and consequently the 

pressure difference across the radial leakage area is significantly smaller than 

across the interlobe gap which determines the relative significance of how these 

flow areas affect the thermodynamic performance. Note that a similar radial in-

flow leakage area would feed some mass flow back into the rotor chamber from 

the previous chamber, though this is not shown. 
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Figure 6-15: Variation of leakage areas throughout compression cycle 

6.3.5 DRUM127 PERFORMANCE SENSITIVITY  

As shown in Figure 6-16, measured tests results of compressor flow and 

discharge temperature have been used as a benchmark to compare model 

predictions. Initial temperature boundary conditions were always calculated, 

based on results from a chamber model with no clearance modifications (as in 

Case A). For case B and C these initial temperatures were used to calculate new 

operational clearances so the thermodynamic model had to be recalculated 

(following the flowchart of Figure 5-16), to include the temperature boundary 

conditions. Further iteration was required until the clearance corrections had 

no significant effect on the recalculated thermodynamic performance. After 3 

iterations, the discharge temperature varied by less than 0.3% compared to the 

previous iteration. This was taken to be satisfactory therefore 3 iterations were 

used in all models where clearance modification was included. 
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Figure 6-16: Compressor performance from test and model 

The results of the model running Case B - with interlobe and radial clearances 

corrected for rotor thermal growth only - show a significant increase in flow 

compared to the results of Case A. Case B also has a smaller drop off in flow with 

increased pressure ratios (flatter gradient) that is closer to the measured 

gradient than Case A. The results of the model running Case C, with interlobe 

and radial clearances corrected for rotor and casing thermal growth, show an 

improvement in the absolute flow values. However there is a deviation from the 

measured gradient. The modelled temperature, shown in the right hand 

diagram in Figure 6-16 is closer to the measured results in terms of absolute 

values and gradient (with respect to pressure ratio) for both cases with 

clearance corrections. For temperature comparison the measured discharge 

temperature (T2 in Figure 6-13) directly downstream from the compressor is 

used; the equivalent model temperature is used as discussed in Appendix B.1.1. 

6.3.6 DISCUSSION 

Results show that the modelled flow is highly sensitive to changes in the 

operational clearances. The largest deviation in predicted performance is 

between Case A – with no clearance modification and Case B – with clearances 

adjusted due to rotor distortion only. These are the two extreme cases for 

clearance values and it’s a reasonable assumption that actual operational 

clearances will be somewhere in between.  
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In the case presented, the model accuracy improved with the introduction of 

local clearance corrections used to calculate leakage areas iteratively. However 

care must be taken when drawing conclusions, based on absolute test values, 

because it is difficult to know, with absolute certainty, that the unmodified 

model clearances are representative of the actual assembled clearances; which 

are subject to a complex array of manufacturing and assembly tolerances.   

The predictions shown in Case C are closest to the test results, in terms of flow 

prediction. However the predicted temperature shown in the results of Case B 

was closer. Put another way, the modelled discharge temperature is slightly 

high for a given flow compared to test results. It is difficult to say if this is the 

result of something inherent to the chamber model used; or if the relative size 

of the various clearances during set-up is not representative of the actual 

assembled clearances; or if the relative adjustment for operational distortions is 

inaccurate. 

6.4 INVESTIGATING INTERLOBE CLEARANCE DISTORTION 

6.4.1 OVERVIEW 

This case focuses on the impact of thermal distortions on the interlobe 

clearance distribution. As before, the predicted operational interlobe clearances 

are presented for different combinations of rotor and casing distortion in order 

to assess how sensitive the calculated clearances are to each.  

This case study is on an oil injected WCVTA510 compressor. In contrast to the 

previous DRUM127 case, this adds further complexity to the clearance analysis 

due to the lack of timing gears and direct rotor to rotor drive. More emphasis is 

put on representing the actual interlobe clearance distribution around the rotor 

profile accurately. The test results are from two different compressors, before 

and after a design revision of the interlobe clearances was made in order to 

address reliability concerns when running at higher than normal temperatures.  
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6.4.2 WCVTA510 COMPRESSOR 

The WCVTA510 is an oil injected compressor which at the time of testing was 

the largest manufactured by Howden Compressors, Figure 6-17 gives a sense of 

the scale and Figure 6-18 shows how the rotors are situated.  

 

Figure 6-17: WCVTA510 compressor 

 

Figure 6-18: WRV range compressor vertical section 
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Table 6-11: Basic compressor details 

Main rotor diameter, D (mm) 517 

Length over diameter ratio, L/D 1.904 

Main rotor wrap angle, φw1 (deg) 330° 

Lobe combination, z1/z2 4/6 

Profile type N 

Volume index, Vi 2.6 (fixed) 

Oil injection Yes 

 

Table 6-12: Air test for contract duty 

Inlet pressure, p1 (Bara) 1 

Outlet pressure, p2 (Bara) 5 

Inlet temperature, T1 (°C) 20 

Outlet temperature, T2 (°C) 90 (targeted) 

Speed, N (rpm) 1400 

 

Table 6-13: Air test for high temperature 

Inlet pressure, p1 (Bara) 1 

Outlet pressure, p2 (Bara) 11 

Inlet temperature, T1 (°C) 20 

Outlet temperature, T2 (°C) 120 (targeted) 

Speed, N (rpm) 750* 

 

*Due to power restrictions on the testing of this large compressor, the speed 

was reduced from the contract speed of 1400rpm to 750rpm during the 

overload testing. It is this overload testing at higher discharge temperature 

which was of interest for clearance analysis. 
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6.4.3 WCVTA510 TEST MEASUREMENT 

Test data was provided from contract testing in Howden Compressors. A typical 

test setup is shown in Figure 6-19. Though not visible in the photo, an orifice 

plate for flow measurement is situated in the inlet ducting. Some details of test 

instrumentation are provided in Table 6-14.  

 

Figure 6-19: WRVTA compressor on test stand 

Table 6-14: WRVTA510 instrumentation 

Manufacturer Description Range 

Budenberg Discharge Pressure 0-400psig 

Budenberg Discharge Pressure 0-100psig 

Kosmos Discharge Temperature 

 
G & W Tachometer 1500rpm 

Elliott Electrical power to motor 0-1200W 
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6.4.4 WCVTA510 THERMAL ANALYSIS 

The overload test condition, with a discharge temperature of 120°C, was 

modelled to determine how the temperature varied throughout the 

compression cycle for this duty.  

As before, the fluid temperature from the compression cycle was mapped onto 

the surfaces of the rotors and the casing bores. The temperature of the fluid 

boundary on the main and gate rotor surfaces is shown in Figure 6-20 . The left 

image shows the instantaneous fluid temperature for a particular rotor 

position. In the right hand image these instantaneous temperatures has been 

averaged over one full rotation and over each transverse plane of the rotors.  

 

Figure 6-20: Instantaneous and averaged fluid boundary temperature. Line AB 

highlights the interlobe sealing line for a single compression chamber. 

Table 6-15: Average fluid boundary temperature across outlet plane 

Component Description Temperature (°C) 

Main rotor 86.8 

Gate rotor 73.2 

Casing 69.4 

 

The peak temperatures occur at the outlet plane of the rotors. Therefore the 

analysis presented in this work was based on the average fluid boundary 

B

A
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temperatures presented in Table 6-15. It is clear that the averaged fluid 

boundary temperatures at critical locations on the compressor are actually 

much lower than the peak fluid discharge temperature of 120°C. Note that while 

the peak temperature that the casing is exposed to is close to the discharge 

temperature the planar average used in this case is the average of the 

temperature all the way around the rotor bores in the discharge plane. 

6.4.5 WCVTA510 CLEARANCE PRESENTATION 

Due to the 3D nature of the interlobe sealing line it is difficult to present 

clearance information clearly. Figure 6-21 shows an example of clearances 

mapped onto each of the rotors as vectors normal to the transverse rotor curve. 

The magnitude of the vectors actually shows the magnitude of clearances 

normal to the 3D rotor surface. This approach is very intuitive and clearly 

shows how clearances relate to difference areas on the rotor profiles. The 

difficulty with this clearance presentation is comparing small differences in 

similar clearance distributions. Magnifying the vectors quickly distorts the 

apparent clearance gap due to the curvature of the profiles. In the previous case, 

of the DRUM127, local clearances were plotted against the ‘relative position on 

the sealing line’ but this makes it difficult to determine where the clearances 

actually occur on the rotors. For this example, where the design clearance is 

non-uniform, a different approach has been taken in order to show local 

clearances more clearly.  
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Figure 6-21: Transverse cross section of rotors showing interlobe clearance 

distribution of rotor surfaces 

The compromise that has been taken is to plot the local clearances on the axis of 

a rack projection along which the rack would translate. Thus, the magnitude of 

the local clearances can be simply graphed and superimposed against the 

somewhat familiar shape of the rack as presented in Figure 6-22. Rather than 

putting numerical values on the horizontal axis, vertical lines have been added 

to identify key points along the length of this sealing line projection, details of 

which are provided in Table 6-16. 

Line AB represents the conjugate rack, common to both rotors. The limits of this 

rack segment, points A and B, are shown in Figure 6-20 where it can be 

observed that these points occur on the boundary between different 

compression chambers. This point is important as the distortions over this 

specific section of the interlobe sealing line are used when calculating the 

interlobe leakage area for that chamber at that moment. 

The original and revised clearance distributions are both presented in Figure 

6-22. In all cases the relative rotation between the rotors has been adjusted in 

order to provide zero clearance at location 3: the pitch radius on the round side 

of the rotors. This is where the driving force is transferred from the main to the 

gate rotor. In the revised clearance design the main difference is that the 

clearance in the main rotor root has been increased and to a lesser extent also 

A

B
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at the main rotor tip. Notice that the clearance on the round, or drive, flank of 

the rotors (between locations 3 and 4) has actually been decreased in the 

revised clearance design – this clearance will not significantly reduce during 

operation because the gap is maintained due to the nearby contact at the pitch 

point (location 3, where the main rotor drives the gate rotor), therefore this 

clearance was deemed to be unnecessarily large. Conversely, on the opposite 

flank (from 4 to B, and from A to 1) the gap is adversely affected by thermal 

distortions at location 3 which are transferred over to the non-drive flank. 

Therefore it was necessary to increase the clearances on the non-drive flank.  

To quantify how these clearance changes impact the leakage area through the 

interlobe gap, the local clearances were integrated over the length of the 3D 

sealing line. The total leakage area is 108.5mm2 for the original design and 

142.7mm2 for the revised design, an increase of 31.5%.  

 

Figure 6-22: Comparison of example interlobe clearance distributions along rack 

projection of rotors 

Table 6-16: Key Clearance Locations 

Location on rack Description 

A Limit of sealing line for single chamber 

1 Pitch radius on straight (undercutting) side of rotors 

2 Root of main rotor / tip of gate rotor 

3 Pitch radius on round (non-undercutting) side of rotors 

4 Tip of main rotor / root of gate rotor 

B Limit of sealing line for single chamber 
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6.4.6 WCVTA510 CLEARANCE DISTORTION RESULTS 

The following results show the predicted operational clearance distributions for 

the original and revised designs respectively. As previously discussed, a similar 

temperature increase, in both the rotors and casing, results in little net change 

in the operational clearances. This case has been presented with the longer 

dashed lines on each figure and the trend is not far off the original clearance. 

A second case has also been presented where the rotors do not move apart due 

to casing thermal expansion. This case is quite possible in the event that sudden 

temperature changes cause the rotors to heat up faster than the casing, or, 

alternatively the outlet end bearings might be situated remotely from the rotor 

outlet plane in a location where the casing temperature is much lower than 

estimated in Table 6-15. Unfortunately the distance between the two dashed 

curves for the different operational scenarios results in a large band of 

uncertainty but it does serve to highlight 1) where rotor contact is most likely to 

occur for a given clearance design, and 2) where clearances can be further 

reduced without compromising reliability.  

 

Figure 6-23: Original design clearance variations 
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Figure 6-24: Revised design clearance variations 

This analysis supports the suitability of the revised clearance design. The 

results show that at the root of the main rotor, contact cannot now occur due to 

thermal distortion alone. The chance of contact at the tip of the main rotor has 

been significantly reduced but the analysis suggests contact is still possible 

there under extreme circumstances. 

The most problematic clearance area is on the non-drive (undercutting) flank of 

the rotors. Since distortions are transferred over from the contacting drive 

flank, these non-drive clearances vary more than in other areas. What the 

figures do not show is that this represents a long part of the sealing line path 

due to the effect of undercutting. So this has a large effect on the overall leakage 

area. This area also experiences faster relative sliding motion between the rotor 

surfaces. So contact in that region should certainly be avoided.  

6.4.7 WCVTA510 PERFORMANCE RESULTS 

The models were also run at the nominal air test duty which is closest to the 

designed operating conditions: with a speed of 1400rpm, a pressure ratio of 5 

and a discharge temperature maintained at approximately 90°C. The modelled 

deviation in the volume flow due to the revised design is compared with the 

deviation measured on test in Table 6-17. 

Table 6-17: Performance penalty with revised interlobe clearance 

 change in volumetric flow 

Modelled -0.5% 

Measured on Test -1.7% 
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The difference between the model result and the test result suggests that the 

model is slightly underestimating the effect of leakages through the interlobe 

gap. Unfortunately as the test results were obtained using two completely 

different compressors the effect of other manufacturing and assembly 

tolerances cannot be ruled out for the test results. 

Importantly, the resulting change in flow on test was small enough for the 

performance of both compressors to still be within normal operating 

tolerances. With the reduced flow there was a similar reduction in shaft power 

so there was very little change in overall efficiency.  

6.4.8 WCVTA510 TEARDOWN RESULTS 

In the absence of direct measurement of the operational interlobe clearances 

tear down of the compressors often provides useful insight. On the compressor 

with the original clearance design, tear down inspection revealed that rotor to 

rotor contact had occurred at the root of the main rotor, resulting in a polished 

surface finish as highlighted in Figure 6-25. In other words the clearance had 

reduced to zero locally. 

 

Figure 6-25: Evidence of rotor rooting on main rotor of WCVTA510 

The type of contact observed and the fact that this standard compressor had not 

presented any problems, while operating within normal temperature limits, 

points to thermal distortion of the rotors being the most likely cause of this 
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rotor contact. This tear down also indicated that some rotor to casing contact 

had occurred as well as some localised interlobe contact around the tip of the 

main rotor.  

The revised clearance design was implemented on a different compressor at a 

later date and though teardown inspection revealed some minor localised rotor 

contact, related to the tip sealing strip, there was no contact over the main part 

of the root.  

6.4.9 DISCUSSION 

Local variations in the interlobe clearance distribution, due to thermal 

distortions, have been approximated. This provides valuable data at an early 

design stage about where and when, in the compression process, clearances are 

not adequate for a given compression application. Integrating this information 

into the rotor design process will allow a more optimised balance between 

reliability and compressor performance.  

For validation purposes, the analysis was repeated for two interlobe clearance 

designs, when operating at an elevated rotor discharge temperature of 120°C in 

an oil injected compressor, with direct rotor drive. While there is a fairly large 

uncertainty on the predicted clearance deviations, the modelled results are in 

agreement with the available experimental findings because they predicted a 

high likelihood of rotor contact at the main rotor root on the original clearance 

design.  
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6.5 INVESTIGATING RADIAL CLEARANCE DISTORTION 

6.5.1 OVERVIEW 

This case study draws on extensive test results obtained from an oil free HS204 

compressor, operating over a wide range of temperatures and speeds. This 

allows a more comprehensive comparison of modelled and measured 

compressor behaviour than provided in the previous case studies.  

In addition to performance results from the tests, these results include real time 

measurement of the radial clearance gap which was used for more direct 

verification of the predicted clearance deformations.  

6.5.2 HS204 COMPRESSOR 

The HS204 is an oil free twin screw compressor which features timing gears at 

the suction end and mechanical seal arrangements on the shafts between the 

bearings and main rotor bodies. Hence there are two seals per rotor. A sectional 

arrangement of this compressor is shown in Figure 6-26. The rotors used in 

these tests were newly designed with an N rotor profile as shown in detail in 

Figure 6-27. 

 

Figure 6-26: Horizontal section of HS204 compressor 
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Figure 6-27: Rotor profiles and design data 

All of the basic compressor parameters are given in Table 6-18 and more details 

of the interlobe clearance distribution are shown in Figure 6-28. The radial 

clearance gap for this compressor is nominally 0.150mm – this was the initial 

value used in the models. 

Table 6-18: Basic compressor details 

Main rotor diameter, D (mm) 204 

Length over diameter ratio, L/D 1.65 

Main rotor wrap angle, φw1 (deg) 300° 

Lobe combination, z1/z2 4/6 

Profile type N 

Volume index, Vi 1.98 

Oil injection No 

Jacket Cooling Yes 

 

INTERLOBE CLEARANCE DISTRIBUTION:

Point    Normal Clearance [microns]

Min Max

1 143 173

2 139 169

3 106 135

4 105 135

5 105 135 Pitch

6 116 146

7 126 156

8 143 173

9 116 146

10 107 137

11  96 126 Pitch

12  96 126

13 143 173

14 143 173

15 145 174

ROTOR DATA:

MALE ROTOR

NUMBER OF LOBES = 4

HELIX = RIGHT HAND

WRAP ANGLE = 300°

ROTOR LENGTH = 336.600

LEAD = 405.000

HELIX ANGLE AT PCD = 44.795°

LEAD ANGLE AT PCD = 45.204°

FEMALE ROTOR

NUMBER OF LOBES = 6

HELIX = LEFT HAND

WRAP ANGLE = 200°

ROTOR LENGTH = 336.600

LEAD = 607.500

HELIX ANGLE AT PCD = 44.795°

LEAD ANGLE AT PCD = 45.204°

INTERLOBE CLEARANCE DISTRIBUTION:

Point    Normal Clearance [microns]

Min Max

1 143 173

2 139 169

3 106 135

4 105 135

5 105 135 Pitch

6 116 146

7 126 156

8 143 173

9 116 146

10 107 137

11  96 126 Pitch

12  96 126

13 143 173

14 143 173

15 145 174

ROTOR DATA:

MALE ROTOR

NUMBER OF LOBES = 4

HELIX = RIGHT HAND

WRAP ANGLE = 300°

ROTOR LENGTH = 336.600

LEAD = 405.000

HELIX ANGLE AT PCD = 44.795°

LEAD ANGLE AT PCD = 45.204°

FEMALE ROTOR

NUMBER OF LOBES = 6

HELIX = LEFT HAND

WRAP ANGLE = 200°

ROTOR LENGTH = 336.600

LEAD = 607.500

HELIX ANGLE AT PCD = 44.795°

LEAD ANGLE AT PCD = 45.204°
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Figure 6-28: Interlobe clearance design data 

The compressor was tested over a range of speeds and pressures as detailed 

below: 

Table 6-19: Air test duty 

Inlet pressure, p1 (Bara) 1 

Outlet pressure, p2 (Bara) 1.5 – 2.5 

Inlet temperature, T1 (°C) 20 

Speed, N (rpm) 4000 – 7000  

 

6.5.3 HS204 TEST MEASUREMENT 

Extensive test data for this oil free compressor was available from previous 

R&D work at Howden Compressors. The compressor is shown on the test stand 

in Figure 6-19. Real time data monitoring and logging equipment was used to 

continuously record the parameters shown in Figure 6-30; details of the 

instrumentation used are provided in Table 6-20 and Table 6-21. By using the 

continuously monitored results, sufficient dwell time was allowed between 

different operating points to ensure that the measurements had stabilised. 

Furthermore, each stabilised results were averaged over a 10 second period. 

INTERLOBE CLEARANCE DISTRIBUTION:

Point    Normal Clearance [microns]

Min Max

1 143 173

2 139 169

3 106 135

4 105 135

5 105 135 Pitch

6 116 146

7 126 156

8 143 173

9 116 146

10 107 137

11  96 126 Pitch

12  96 126

13 143 173

14 143 173

15 145 174

ROTOR DATA:

MALE ROTOR

NUMBER OF LOBES = 4

HELIX = RIGHT HAND

WRAP ANGLE = 300°

ROTOR LENGTH = 336.600

LEAD = 405.000

HELIX ANGLE AT PCD = 44.795°

LEAD ANGLE AT PCD = 45.204°

FEMALE ROTOR

NUMBER OF LOBES = 6

HELIX = LEFT HAND

WRAP ANGLE = 200°

ROTOR LENGTH = 336.600

LEAD = 607.500

HELIX ANGLE AT PCD = 44.795°

LEAD ANGLE AT PCD = 45.204°
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Figure 6-29: HS204 on test stand 

 

Figure 6-30: HS204 instrumentation schematic 
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Table 6-20: HS204 instrumentation 

Parameters Supplier Part No Description 

pu, p1 
Omni 

Instruments 
Pi610C3-2BarA 

0 to 2 BarA, 2mV/V, pressure 
transducer 

p2 
Omni 

Instruments 
Pi610C3-6BarA 

0 to 6 BarA, 2mV/V, pressure 
transducer 

orifice Δp 
RS 

Components 
455-5071 

Honeywell Comp SCX press sensor, 0-
5psi, differential 

Tu, T1, T2 TC Direct 405-987 
Mineral insulated type thermocouple 

with IP67 standard weatherproof head 
(Type T, 6 mm x 150 mm) 

ΔGapR 
Omni 

Instruments 
PRS02/2.0A01 

Proximity Probe: Straight mount, 5mm 
tip, 2.0 m cable, armoured, female SMC 

connector, 30 mm M6 x 0.75 thread, 0 to 
2.5 mm range. 

speed, torque Torquemeters 
02-2350-00, 

613/M 
ET2350 Torque meter and readout unit 

 

Table 6-21: HS204 additional hardware 

Use Supplier Part No Description 

data aq. National 
Instruments 

779508-06 NI cDAQ-9172 8-slot USB 2.0 Chassis 
for CompactDAQ 

data aq. National 
Instruments 

779014-01 NI 9221 8-channel, +/- 60V, 12-bit 
analogue input module 

data aq. National 
Instruments 

779519-01 NI 9205 32-channel, +/- 10V, 16-bit 
analogue input module 

data aq. National 
Instruments 

780493-01 NI 9213 16-channel, 24-bit, 
thermocouple module 

driver unit Omni 
Instruments 

ECD02/20 Probe Driver: 2.0m cable, 0 to 2.5 mm 
range (8mV/um, API 670) 

 

Proximity probes were used to measure the radial gap, GapR, on both the main 

and gate rotors. The probes situated in the bores of the casing at the bottom, 

30mm from the discharge end face, as shown in Figure 6-31. Note that the 

probes are situated opposite the discharge port which is located on the top of 

the casing. 
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Figure 6-31: Position of radial proximity probes in the test compressor 

 

Figure 6-32: Proximity probe location 

The proximity probe is slightly recessed into the casing bore as shown in Figure 

6-32. The measured gap ‘b’ is therefore slightly bigger than the radial gap ‘a’. 

While the compressor was running the gap obviously varies due to passing of 

the rotor lobe and the objective here was to record the minimum value.  

Eddy current probes

Eddy current probe

a

b

Casing

Rotor lobe
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Due to the nature of this set-up, the static gap could not be measured and 

instead the value of ‘b’ was recorded immediately after start-up to provide a 

reference un-deformed measurement. Once thermally stable at each operating 

point the change in the value of ‘b’ was used to assess gap distortion. 

6.5.4 HS204 PERFORMANCE RESULTS WITH JACKET COOLING 

At each test speed, the discharge pressure was adjusted for each measurement 

point and the compressor was given time to stabilise before measurements 

were taken. Model results were produced for the same range of operating 

points. Table 6-22 shows the measured volumetric efficiency and discharge 

temperature at each test point; with the values corrected for suction pressure 

and speed. The results at new pressure points have been linearly interpolated 

from the actual pressure points in Table 6-23. This has been done in order to 

provide test reference points so that the model error can be calculated at 

specific pressure ratios. In all the graphs presented, the originally tested 

pressure ratios will be used. 

Graphs that compare the model results against the test results are shown in 

Figure 6-33 and Figure 6-34. In this case the model is based on nominal design 

clearances that are unmodified. These model results are denoted ‘MODEL’. The 

relative error of the model across the range of operating points is tabulated in 

Table 6-24.  

Similar results for a model that predicts clearance distortion due to rotor 

thermal expansion only, denoted by ‘MODEL R’, are given in Figure 6-35 and 

Figure 6-36 and Table 6-25. 

The same set of results, produced by a model that predicts clearance distortion 

due to both rotor AND casing thermal expansion, denoted ‘MODEL RC, are 

shown in Figure 6-37 Figure 6-38 and Table 6-26 .   
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Table 6-22: HS204 performance test results 

Speed 
(rpm) 

Pressure 
Ratio Volumetric efficiency T2 (K) 

4000 

1.63 78.3% 349.2 

1.79 77.3% 361.3 

1.97 76.3% 373.2 

2.07 75.8% 379.7 

5000 

1.63 81.8% 354.3 

1.81 80.9% 364.3 

2.00 80.1% 375.5 

2.10 79.5% 381.5 

6000 

1.65 84.2% 355.6 

1.84 83.4% 367.5 

2.01 82.9% 376.9 

2.11 82.5% 381.9 

7000 

1.69 85.7% 363.1 

1.88 85.1% 371.3 

2.06 84.5% 380.6 

2.16 84.3% 386.7 

 

Table 6-23: HS204 interpolated performance test results 

Speed 
(rpm) 

Pressure 
Ratio Volumetric efficiency T2 (K) 

4000 

1.50 79.0% 340.7 

1.75 77.5% 357.9 

2.00 76.1% 375.1 

2.25 74.7% 392.3 

2.50 73.3% 409.5 

5000 

1.50 82.4% 346.7 

1.75 81.2% 361.2 

2.00 80.0% 375.6 

2.25 78.8% 390.1 

2.50 77.6% 404.6 

6000 

1.50 84.7% 347.7 

1.75 83.8% 361.8 

2.00 82.9% 376.0 

2.25 82.0% 390.2 

2.50 81.1% 404.4 

7000 

1.50 86.3% 352.9 

1.75 85.5% 365.4 

2.00 84.7% 377.9 

2.25 84.0% 390.3 

2.50 83.2% 402.8 
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Figure 6-33: HS204 volumetric efficiency with unmodified model clearances 

 

 

Figure 6-34: HS204 discharge temperature with unmodified model clearances 
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Table 6-24: HS204 model performance results with unmodified clearances 

Speed 
(rpm) 

Pressure 
Ratio Volumetric efficiency 

Relative 
Error T2 (K) 

Relative 
Error 

4000 

1.50 76.3% -3.4% 340.6 0.0% 

1.75 69.9% -9.9% 369.5 3.3% 

2.00 65.2% -14.4% 396.4 5.7% 

2.25 62.4% -16.5% 420.6 7.2% 

2.50 60.4% -17.6% 443.1 8.2% 

5000 

1.50 81.1% -1.6% 337.1 -2.8% 

1.75 75.9% -6.6% 362.4 0.4% 

2.00 72.2% -9.8% 385.6 2.6% 

2.25 70.1% -11.1% 406.4 4.2% 

2.50 68.6% -11.6% 425.8 5.2% 

6000 

1.50 84.1% -0.7% 335.3 -3.6% 

1.75 79.8% -4.8% 358.4 -1.0% 

2.00 76.7% -7.5% 379.3 0.9% 

2.25 75.0% -8.5% 398.1 2.0% 

2.50 73.9% -8.9% 415.7 2.8% 

7000 

1.50 86.2% -0.1% 334.2 -5.3% 

1.75 82.5% -3.5% 355.8 -2.6% 

2.00 79.8% -5.8% 375.3 -0.7% 

2.25 78.5% -6.5% 392.8 0.6% 

2.50 77.6% -6.7% 409.3 1.6% 

  
average relative error: -7.8% 

 
1.4% 

  

maximum relative 
error: -17.6% 

 
8.2% 
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Figure 6-35: HS204 volumetric efficiency with modelled rotor thermal distortion 

 

 

Figure 6-36: HS204 discharge temperature with modelled rotor thermal 

distortion 
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Table 6-25: HS204 model performance results with rotor thermal distortion 

Speed 
(rpm) 

Pressure 
Ratio Volumetric efficiency 

Relative 
Error T2 (K) 

Relative 
Error 

4000 

1.50 79.7% 0.9% 337.2 -1.0% 

1.75 75.5% -2.6% 362.3 1.2% 

2.00 73.1% -4.0% 384.5 2.5% 

2.25 72.3% -3.3% 404.1 3.0% 

2.50 71.9% -2.0% 422.0 3.1% 

5000 

1.50 83.5% 1.3% 335.0 -3.4% 

1.75 79.9% -1.6% 357.8 -0.9% 

2.00 77.8% -2.8% 377.9 0.6% 

2.25 77.0% -2.3% 395.9 1.5% 

2.50 76.7% -1.2% 412.5 1.9% 

6000 

1.50 86.0% 1.5% 333.7 -4.0% 

1.75 82.8% -1.2% 355.0 -1.9% 

2.00 81.0% -2.3% 373.9 -0.6% 

2.25 80.3% -2.1% 390.7 0.1% 

2.50 80.0% -1.4% 406.3 0.5% 

7000 

1.50 87.6% 1.5% 333.0 -5.6% 

1.75 85.0% -0.6% 353.2 -3.3% 

2.00 83.3% -1.7% 371.1 -1.8% 

2.25 82.8% -1.4% 387.1 -0.8% 

2.50 82.5% -0.9% 402.2 -0.2% 

  
average relative error: -1.3% 

 
-0.5% 

  

maximum relative 
error: -4.0% 

 
-5.6% 
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Figure 6-37: HS204 volumetric efficiency with modelled rotor and casing thermal 

distortion 

 

 

Figure 6-38: HS204 discharge temperature with rotor and casing thermal 

distortion 
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Table 6-26: HS204 model performance results with rotor and casing thermal 

distortion 

Speed 
(rpm) 

Pressure 
Ratio Volumetric efficiency 

Relative 
Error T2 (K) 

Relative 
Error 

4000 

1.50 75.5% -4.4% 341.6 0.3% 

1.75 68.4% -11.8% 371.8 3.9% 

2.00 62.6% -17.8% 400.8 6.8% 

2.25 58.3% -22.0% 427.3 8.9% 

2.50 55.2% -24.7% 452.2 10.4% 

5000 

1.50 80.7% -2.1% 337.7 -2.6% 

1.75 75.0% -7.7% 363.7 0.7% 

2.00 70.5% -11.9% 387.9 3.3% 

2.25 67.4% -14.5% 409.8 5.0% 

2.50 65.3% -15.9% 430.2 6.3% 

6000 

1.50 83.9% -1.0% 335.6 -3.5% 

1.75 79.2% -5.5% 359.1 -0.7% 

2.00 75.5% -8.9% 380.8 1.3% 

2.25 73.1% -10.9% 400.1 2.5% 

2.50 71.6% -11.7% 418.2 3.4% 

7000 

1.50 86.0% -0.3% 334.4 -5.2% 

1.75 82.0% -4.1% 356.3 -2.5% 

2.00 78.9% -6.9% 376.3 -0.4% 

2.25 77.0% -8.3% 394.1 1.0% 

2.50 75.8% -8.9% 410.8 2.0% 

  
average relative error: -10.0% 

 
2.0% 

  

maximum relative 
error: -24.7% 

 
10.4% 
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6.5.5 HS204 PERFORMANCE RESULTS WITHOUT JACKET COOLING 

Additional tests were performed to investigate the effect of the casing water 

cooling jacket on the compressor performance. This repeat testing did not cover 

all of the original test points and therefore only results at 6000rpm are 

presented. 

In Table 6-27 the test results with and without jacket cooling are summarised 

and as before these have been adjusted, through linear interpolation, to 

produce the results in Table 6-28 at specific pressure ratios. 

Table 6-27: HS204 performance test results at 6000rpm with and without jacket 

cooling 

Test 
Pressure 

Ratio Volumetric efficiency T2 (K) 

jacket cooling 

1.65 84.2% 355.6 

1.84 83.4% 367.5 

2.01 82.9% 376.9 

2.11 82.5% 381.9 

no jacket cooling 

1.57 78.4% 355.6 

1.80 77.5% 365.3 

2.09 76.2% 385.1 

2.60 73.8% 412.1 

 

Table 6-28: HS204 interpolated performance test results at 6000rpm with and 

without jacket cooling 

Test 
Pressure 

Ratio Volumetric efficiency T2 (K) 

jacket cooling 

1.50 84.7% 347.7 

1.75 83.8% 361.8 

2.00 82.9% 376.0 

2.25 82.0% 390.2 

2.50 81.1% 404.4 

no jacket cooling 

1.50 78.8% 350.5 

1.75 77.7% 364.5 

2.00 76.6% 378.5 

2.25 75.4% 392.5 

2.50 74.3% 406.5 
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Figure 6-39: HS204 volumetric efficiency at 6000rpm with and without jacket 

cooling 

 

Figure 6-40: HS204 discharge temperature at 6000rpm with and without jacket 

cooling 
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The results from MODEL R and MODEL RC are given in Figure 6-39 and Figure 

6-40 for testing with and without jacket cooling. MODEL R is more closely 

aligned to the test results with jacket cooling and MODEL RC is more closely 

aligned to the test results without jacket cooling. These results are presented in 

Table 6-29 which compares MODEL R against each test case. Then in Table 

6-30, MODEL RC is compared with the same test cases. 

Table 6-29: HS204 ‘MODEL R’ performance results at 6000rpm with rotor thermal 

expansion 

Test 
reference 

Pressure 
Ratio Volumetric efficiency 

Relative 
Error T2 (K) 

Relative 
Error 

jacket 
cooling 

1.50 86.0% 1.5% 333.7 -4.0% 

1.75 82.8% -1.2% 355.0 -1.9% 

2.00 81.0% -2.3% 373.9 -0.6% 

2.25 80.3% -2.1% 390.7 0.1% 

2.50 80.0% -1.4% 406.3 0.5% 

  
average relative error: -1.1% 

 
-1.2% 

  
maximum relative error: -2.3% 

 
-4.0% 

      Test 
reference 

Pressure 
Ratio Volumetric efficiency 

Relative 
Error T2 (K) 

Relative 
Error 

no jacket 
cooling 

1.50 86.0% 9.2% 333.7 -4.8% 

1.75 82.8% 6.6% 355.0 -2.6% 

2.00 81.0% 5.8% 373.9 -1.2% 

2.25 80.3% 6.4% 390.7 -0.5% 

2.50 80.0% 7.6% 406.3 0.0% 

  
average relative error: 7.1% 

 
-1.8% 

  
maximum relative error: 9.2% 

 
-4.8% 
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Table 6-30: HS204 ‘MODEL RC’ performance results at 6000rpm with rotor and 

casing thermal expansion 

Test 
reference 

Pressure 
Ratio Volumetric efficiency 

Relative 
Error T2 (K) 

Relative 
Error 

jacket 
cooling 

1.50 83.9% -1.0% 335.6 -3.5% 

1.75 79.2% -5.5% 359.1 -0.7% 

2.00 75.5% -8.9% 380.8 1.3% 

2.25 73.1% -10.9% 400.1 2.5% 

2.50 71.6% -11.7% 418.2 3.4% 

  
average relative error: -7.6% 

 
0.6% 

  
maximum relative error: -11.7% 

 
-3.5% 

      Test 
reference 

Pressure 
Ratio Volumetric efficiency 

Relative 
Error T2 (K) 

Relative 
Error 

no jacket 
cooling 

1.50 83.9% 6.5% 335.6 -4.2% 

1.75 79.2% 2.0% 359.1 -1.5% 

2.00 75.5% -1.4% 380.8 0.6% 

2.25 73.1% -3.1% 400.1 1.9% 

2.50 71.6% -3.7% 418.2 2.9% 

  
average relative error: 0.1% 

 
-0.1% 

  
maximum relative error: 6.5% 

 
-4.2% 

 

6.5.6 HS204 RADIAL GAP DISTORTION RESULTS 

The changes in the radial gap at the location of the proximity probe; as 

measured on test, and as predicted by the model, are shown in Figure 6-41 and 

Figure 6-42. For clarity, these have been plotted as the absolute value of the 

local radial gap. Where there is some uncertainty about the absolute clearance 

values, as is the case for the test results, this has been set to a nominal gap size 

of 0.150 mm and then adjusted by the actual measured clearance distortion. It is 

the degree of operational distortion from this nominal gap at a given operating 

temperature that is the focus of interest. 

The corresponding temperatures, used to calculate the modelled distortions, 

are given in Figure 6-43 and Figure 6-44. These give some additional insight 

into the model behaviour. The differences in temperature between the rotor 

and casing, ΔR and ΔRC for each respective model, are related to the gap 

distortion as set out in equations (60) to (65) in Chapter 5. 
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Figure 6-41: Measured and modelled radial gap on MAIN rotor bore 

 

Figure 6-42: Measured and modelled radial gap on GATE rotor bore 
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Figure 6-43: Local temperatures at MAIN rotor bore radial gap 

 

Figure 6-44: Local temperatures at GATE rotor bore radial gap 
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6.5.7 DISCUSSION 

All test results indicate that the volumetric efficiency and temperature vary 

more or less linearly with the pressure ratio and suggest that there is a limiting 

volumetric efficiency that will not be exceeded regardless of how low the 

external pressure ratio is; this is due to the internal compression that occurs 

within the compressor. In contrast, the model results do show some 

nonlinearity, particularly at lower pressure ratios where the rate of change in 

volumetric efficiency is higher. When operating at higher, more realistic 

pressure ratios for the designed volume index, the model shows a more linear 

relationship between volumetric efficiency and pressure ratio. The discrepancy 

at lower pressures merits further investigation and possible refinement to the 

setup of the chamber model used. However it should not impede the current 

investigations significantly. 

Assuming no heat transfer from the gas to the compressor and surroundings 

prior to measurement of the outlet temperature, T2, on test, the adiabatic 

efficiencies were calculated to range from 70.6% (at the lowest speed and 

highest pressure ratio) to 83.2% (at the highest speed and lowest pressure 

ratio). These efficiencies are in the expected range which supports the 

assumption that heat transfer from the gas can be neglected up to the point of 

measurement. The same assumption is made in the compressor model to 

ensure that the temperature comparisons presented are appropriate. More 

discussion on the calculation of T2 is included in appendix ‘B.1.1 Model 

Discharge Temperature’. More detail on the measurement of T2 and how this is 

used to calculate efficiency is provided in appendix ‘C.1 Compressor 

Boundaries’ and ‘C.4 Adiabatic Efficiency’.  

Initial results with the first model that uses unmodified nominal design 

clearances (labelled MODEL), underestimate flow and overestimate the 

discharge temperature. In addition, the range of modelled volumetric efficiency 

and temperature over both speed and pressure ratio is greater than that 

measured on test. 
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The second set of modelled results, with clearances corrected for rotor thermal 

distortion (MODEL R) show a considerably smaller error against the test results 

over the full range of operating points.  

The third set of modelled results, with clearances corrected for rotor and casing 

thermal distortion (MODEL RC) show the largest deviations from the test 

results.  

For the results shown in Figure 6-33 to Figure 6-38, where the test compressor 

casing jacket is water cooled, the most accurate performance predictions were 

achieved using Model R, based on nominal design clearances that are modified 

to estimate rotor thermal distortion only. The fact that this model, which 

resulted in the closest match to the measured flow, shown in Table 6-25, also 

resulted in the closest match to the measured temperature, provides some 

validation of the model assumptions. 

A comparison of the model predicted results at 6000rpm, with additional test 

results, with no jacket cooling and the covers for the cooling jacket removed, is 

given in Figure 6-39 and Figure 6-40. The model predictions that agreed with 

the test results, with no jacket cooling, most closely, was MODEL RC, which 

estimated rotor AND casing thermal distortion. This is an important result that 

further confirms that operational temperature distributions and clearances are 

indeed changing compressor performance and need to be accounted for during 

modelling. 

Figure 6-41 shows good agreement between the measured radial gap on the 

MAIN rotor bore when tested with jacket cooling and the MODEL R results. On 

the GATE rotor bore (Figure 6-42) these results are not as good and the 

measured radial gap is smaller than predicted by MODEL R. Figure 6-43 and 

Figure 6-44 help illustrate how the modelled gaps are calculated - the modelled 

change in radial gap (from the nominal 0.150mm) is proportional to the 

difference between the rotor and casing temperatures for each respective 

model. In MODEL R the casing is constant at 20 deg C and the bigger reduction 

in the main rotor is simply due to that rotor being hotter in the model (based on 

the transverse plane average temperature). The measured clearances have 
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actually reduced more on the GATE rotor bore with jacket cooling; it is not 

possible to say whether this is due to the gate rotor actually being hotter 

because the actual temperature distribution and distortion of the casing are 

unknown. Considering the simple nature of the thermal assumptions used in 

each model, the overall agreement between the jacket cooled radial gap 

measurements and the MODEL R predictions are fairly reasonable. 

For MODEL RC the modelled clearance reduction is less than for MODEL R 

because the local casing expansion mitigates the local rotor expansion to some 

extent. This ties in with the modelled performance results as the bigger radial 

clearances reduce volumetric efficiency. Based on this theory, the hypothesis 

was that the measured radial gap without jacket cooling would be bigger than 

with jacket cooling however the results from the proximity probes on the MAIN 

and GATE rotor bores show the opposite case to be true. This seems to 

contradict the performance results without jacket cooling which suggest a net 

clearance increase had occurred. The logical conclusion is that the measured 

radial clearance reduction is a localised phenomenon. 

The simplified thermal analysis, implemented in the model, is useful for 

capturing net changes in the compressor clearance in order to adjust the 

predicted performance but it is limited in its ability to predict localised thermal 

distortions accurately, particularly as a result of casing thermal distributions 

and distortions. The complexity of this problem is illustrated in Figure 6-45 

which was produced using FEA, in an investigation performed by Howden 

Compressors Ltd (Howden Compressors Ltd. 2013). This was not created 

within the scope of the current research and is only included to illustrate 

possible distortion. The casing temperature distribution was predicted, based 

on boundary temperatures and assumed heat transfer coefficients. The 

distortions due to thermal expansion and resulting stress distributions were 

then calculated. The colour contours show the total magnitude of the 

displacement in any direction, where zero displacement occurs at the 

compressor feet. The suction side of the casing on the right hand side of the 

image has actually moved downward slightly. The approximate locations of the 

rotor body and the proximity probe have been superimposed on to the figure. 
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With the opposing movement of the bearings at each end and the position of the 

constraints at the feet of the compressor, it is easier to understand how it could 

be possible for the local radial gap to be reduced with a hotter casing 

temperature. 

 

Figure 6-45: Example of overall casing displacement due to thermal loading 

(courtesy of Howden Compressors Limited.) with approximate rotor body and 

proximity probe location superimposed 

Effectively, the compressor is hotter on top than it is on the bottom due to the 

location of the high pressure discharge port on top. The temperature difference 

causes the entire compressor to bow downwards at each end so that the 

relative position of the proximity probe is higher, resulting in reduced clearance 

to the rotor. This would be accompanied by a larger than anticipated increase of 

the radial clearance at the top of the compressor and it is likely that the net 

radial leakage area does increase, as predicted. 
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6.6 CONCLUDING REMARKS 

The applied routines for mapping boundary conditions from a chamber model 

onto the compressor rotor and casing surfaces work as expected, with sensibly 

bounded chambers. When used to update operational clearances and 

thermodynamic performance, iteratively, a significant change in the net 

performance was predicted for the DRUM127 compressor. This varied, 

depending on whether just the rotors, or both the rotors and the casing were 

distorted. At a minimum, this provides useful details of any modelled 

uncertainty due to thermal effects. With some additional analyses and 

understanding of the thermal behaviour of a given compressor this can be used 

to improve the accuracy of performance predictions without the need to correct 

operating clearance values manually. 

Measuring the change in performance due to predicted change in operational 

clearances, as was done for the DRUM127 case, is not the ideal way to validate 

the modelled thermal distortions themselves. Ideally, direct measurements of 

the operating interlobe gap should be obtained. The fact is that it is very difficult 

to measure the rotor temperatures directly, let alone the distorted clearance 

gap, and it was not possible to obtain these results during this study. In the 

absence of direct operational measurements, the tear down results for the 

WCVTA510 oil injected case are particularly useful as they show evidence of 

rotor contact that was predicted by the model. Results suggest that the 

developed model is a useful tool in the evaluation and design of interlobe 

clearance distributions for a given operating duty. 

In the case of the HS204 oil free case study, in addition to performance results, a 

direct measurement of the radial gap between the rotors and casing was 

utilised to assess the model. This showed that while an appropriate thermal 

distortion model could improve performance results for a specific operating 

duty and cooling regime, it was not an appropriate tool for detailed thermal 

analysis of localised rotor to casing clearances which are too dependent on the 

full casing geometry and this  is not represented by this model. 
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Chapter 7                                           
Conclusions and Future Work 

7.1 CONCLUSIONS 

This research was carried out while working full time in the R&D department at 

Howden Compressors Ltd; working on various projects but primarily in the 

design of new retrofit rotors for an existing range of compressors. From this it 

soon became clear that, from an industrial viewpoint a major problem in 

optimising performance was to be able to evaluate how internal clearances 

could be minimised, without the risk of failure as a result of distortion due to 

thermal effects during operation.  A detailed literature survey showed very little 

published in this area and clearance design was found to be mostly dependent 

on empirical data and historical experience. It was clear that this was the single 

most critical area of rotor design and manufacture in terms of performance and 

reliability. This is particularly true for Howden whose products serve a wide 

range of applications and operating duties. 

A validated procedure has therefore been developed whereby a chamber model 

has been adapted to predict and correct for duty dependant thermal effects. 

This can readily be applied to the design and optimisation of twin screw 

compressors for specific applications.  

In the case studies reviewed, the inclusion of thermal clearance corrections 

generally improved the accuracy of the model when compared with test results. 

However, it has been shown from the oil free case studies that the most 

applicable type of clearance corrections, i.e. whether only rotor thermal 

distortions or rotor and casing distortions are used, is dependent on the 

compressor configuration such as whether the casing is cooled. This shows that 

while this approach can improve model performance there is not a universal 

setup that works for all compressor types. 

Case studies show that this work is useful and applicable in the design and 

review of interlobe clearance distributions for specific applications; in terms of 
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predicting the likelihood of rotor to rotor contact; and predicting where contact 

is most likely to occur. Mapping thermodynamic results from the chamber 

model on to the rotor geometry has provided useful insight into rotor 

temperature exposure, how this varies between the main and gate rotors, and 

how it’s affected by other rotor parameters. Wrap angle and lobe combination 

are two examples of parameters that have been shown to change rotor 

temperature exposure. Calculated local rotor temperature exposure was used in 

an analytical clearance correction procedure which was shown to predict the 

same interlobe clearance behaviour evident from tear down inspection of an oil 

injected compressor. 

Investigation of localised radial clearances did however highlight the limited 

applicability of these procedures to detailed analysis of rotor to casing 

clearances. Without a cooling jacket, the predicted change in the radial gap due 

to thermal distortion was different to the measured change in the gap. While the 

thermal model used can predict general trends in the overall clearance change, 

as supported by the modelled performance results, it can’t adequately capture 

local distortions on the compressor casing which are dependent on the full 

casing geometry and temperature distribution. 

A useful outcome of developing this mapping procedure was the novel Rotor 

Boundary Map which provides a unique way of visualising and comparing the 

key geometrical properties of different profiles such as the length of the sealing 

lines and how the sealing lines are related to the formation of the blow hole 

leakage area. 
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7.2 FUTURE WORK 

One of the biggest challenges in this work was obtaining results that would 

provide direct, simple, verification of the basic constituent parts of the model. 

For example, as well as measuring the radial gap on test and comparing it with 

the modelled gap, it would ideally be possible to make direct comparisons of the 

modelled and tested rotor and casing temperatures at this location. As 

mentioned, there were limitations to this research in the test data that could be 

obtained. Furthermore, it is a considerable challenge measuring the 

temperature of the rotor while running and direct measurement is sometimes 

not possible as in the case of the interlobe gap. Improving test instrumentation 

for clearance and thermal analysis would be very useful. 

In the absence of more extensive test results it would be useful to compare the 

thermal distortions predicted by this model against FEA results for the same 

case. Similarly it would be useful to compare the performance sensitivity to 

clearances against CFD results for the same case. 

The developed model would be a useful tool in a more general and 

comprehensive rotor optimisation and design framework. This would also 

include rotor profile optimisation. During profile optimisation there is a trade 

off between features such as interlobe sealing line length and blow-hole area. 

Better understanding of how the clearance gap along the interlobe sealing line 

is affected by thermal distortion at a particular operating temperature would be 

a valuable input to this. Some performance indicators of a given profile such as 

specific displacement for a given rotor size can contribute to rotor optimisation 

prior to thermodynamic simulation: similarly there may be potential to evaluate 

different rotor designs by using the Rotor Boundary Map to review the 

interaction between the various sealing lines and the blow-hole.  

In very high pressure applications rotor movement and deflection will become 

more significant and may be worth including in duty dependent operational 

clearance distortions, in the same way that temperature distribution on the 

rotor and casing surfaces has been utilised in this work. It follows that there is 
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clear potential to use pressure distribution for a wide range of purposes 

including rotor optimisation, bearing design, and rotor deflection analysis.  
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Appendix A                                         
Geometry Calculations 

A.1 BASIC GEOMETRY AND TERMINOLOGY 

There are a number of general rotor profile features that are common for all 

twin screw compressor rotors. The rotor pair always comprises of a main and a 

gate rotor. The main rotor has a smaller number of lobes than the gate resulting 

in a gear ratio that reduces the speed of rotation of the gate. Despite having 

fewer teeth the main rotor is often close or equal to the gate rotor in diameter, 

this is because the main rotor has protruding rounded lobes which mesh with 

scalloped recesses in the gate rotor known as flutes. This arrangement results in 

rotors with an interlobe sealing line that extends most of the way between the 

two cusps on the casing thus reducing the leakage area between the rotors and 

the casing. 

 

Figure A-1: Basic rotor dimensions 

Figure A-1: Basic rotor dimensions, shows the cross section of a 4-6 rotor 

combination in the transverse plane (perpendicular to the rotor axis).  
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Figure A-2: Helix angle calculation 

The relationship between the main pitch radius, rw1, and the helix angle at this 

particular radius is described geometrically in Figure A-2 which is a triangle of 

the unwrapped helix where the horizontal line is parallel with the rotor axis. In 

this figure the larger of the similar triangles represents the helix for a full 360°, 

the parameter h is known as the ‘lead length’. The smaller triangle is truncated 

to the actual rotor length, L. The parameter φw1 is the wrap angle and is 

proportional to the rotor length for a given helix angle, ψ. The lead angle, λ, is 

defined as the complement of the helix angle. The wrap angle is typically about 

300° for the main rotor but can vary. The helix angle defined at the pitch point 

is common for the main and gate rotors so that ψw1 = ψw2. The actual rotor 

length is usually defined by the ratio L/D and similarly the main addendum and 

dedendum are sometimes defined as a proportion of the rotor diameter, D, this 

makes for easier scaling of rotors and provides a more intuitive feel for how the 

parameters affect the profile geometry. The following equations are commonly 

used in rotor geometry calculations: 

Pitch circles: 

       
  

      
  ( 1 ) 

 

 φw1(rw1) 

 2π(rw1) 

 ψw1 

λw1 
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  ( 2 ) 

The gate rotor wrap angle is: 

       
  
  
  ( 3 ) 

The L/D is defined for the main rotor therefore the main rotor outer diameter is 

used to find the length: 

             ( 4 ) 

Rotor lead lengths: 

 
     

  

  
  ( 5 ) 

 
     

  

  
  ( 6 ) 

The lead per unit angle (usually degrees) for the main and gate rotors are: 

 
   

  
   

 ( 7 ) 

 
   

  
   

 ( 8 ) 

Rotor helix angle at pitch radius (common for both rotors): 

 
         

     
  

  ( 9 ) 

Lead angle at pitch radius (common for both rotors): 

    
 

 
     ( 10 ) 

The lobe offset angles are useful for adjusting the rotor profiles therefore these 

are defined: 

 
    

  

  
 ( 11 ) 
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 ( 12 ) 

 

 

Figure A-3: Angles to casing cusp 

The position of the casing cusp (neglecting clearances) is calculated using the 

outer radii of each rotor and the rotor centre distance by applying the Cosine 

Rule (see Figure A-3: Angles to casing cusp): 

 

 
       

   
   
          

 

     
  ( 13 ) 

 
       

   
   
          

 

     
  ( 14 ) 

The Cartesian cusp co-ordinates can thus be calculated: 

                  ( 15 ) 

                  ( 16 ) 

These cusp angles define the limiting values for the parameter β that describes 

the angular position on the casing bore surfaces: 

 

r1o

C

r2o

α1cp
α2cp

                   ( 17 ) 
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A.2 MESHING CONDITIONS FOR CONJUGATE PROFILE 

For an effective positive displacement machine the main and gate rotors must 

mesh to form a continuous seal along the full length of the rotors at all times. 

This requires that the gate rotor is conjugate to the main rotor so that the rotors 

mesh with continuous line contact (if zero clearance) between the rotors. This 

conjugate condition can be used to calculate the sealing line co-ordinates.  

Note that when there is interlobe clearance between the rotors and other 

geometrical features such as sealing strips are present the actual rotors are not 

necessarily an exact conjugate pair and calculating the sealing line in this way 

can potentially introduce errors. 

The meshing angle, θm, for a given point, n, is defined as the angle through 

which the main rotor must be rotated so that meshing line contact occurs at 

that point. The follow steps describe how this meshing angle is calculated. 

Pressure angle, ψ01 

The pressure angle defined on the local rotor co-ordinate system is calculated 

as the inverse tan of the main rotor surface normal: 

 
       

     
    
    

  ( 19 ) 

As the gradient of the surface normal does not give the direction of the 

transverse surface vector the angle, ψ01, must be corrected based on the 

quadrant in which the point lies and the known orientation of the main rotor 

co-ordinates. 

Profile angle, φ01 

The local profile angle is the polar angle, φ01, calculated from the Cartesian rotor 

co-ordinates, x01 and y01. 

                   ( 18 ) 
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Meshing angle, θm 

The meshing angle, θm, is defined in Figure A-4 as the angle of rotation of the 

local profile co-ordinate system, x01y01, measured relative to a static co-ordinate 

system, X1Y1. The angles φ01 and ψ01 are defined relative to the local profile 

system, x01y01. For conjugate meshing, the line of pressure (normal to the rotor 

surface) at the meshing point, M, will always intersect the pitch point, P. Thus, 

the meshing angle, θm, can be defined geometrically. This meshing angle is the 

same whether the main rotor profile shown is meshing with a rack or any gate 

rotor defined on this transverse plane. 

 

Figure A-4: Meshing condition 

In Figure A-5, two right angle triangles are defined, the angles identified can be 

related to the common opposite length, a, as given in equation ( 20 ).  
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Figure A-5: Solving for meshing angle 

                                     ( 20 ) 

After rearranging this is an explicit equation that is used to calculate the 

meshing angle at each point. 

 
        

    
  
   

                     ( 21 ) 

Interlobe sealing line co-ordinates 

The x and y sealing line co-ordinates are found by rotating each co-ordinate on 

the main rotor by its respective meshing angle: 

                            ( 22 ) 

                            ( 23 ) 

The axial co-ordinate, z, is directly related to the meshing angle using the unit 

lead, p: 

          ( 24 ) 
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 The sealing line co-ordinates xSL, ySL, zSL can be calculated for a 

number of discrete points around the rotors in order to generate 

the full interlobe sealing line as presented in Figure A-6; the 

interlobe sealing has been superimposed onto the main rotor 

body. 

 

 

Figure A-6: Interlobe sealing line and normal projection 

The interlobe sealing line follows a complex 3D path and it is commonly 

presented using axial or ‘side-on’ 2D projections. Figure A-6 shows that when 

projected onto a ‘normal’ plane (offset from the transverse plane by ψw) the 

‘normal’ rack is generated. When viewing a meshed rotor pair from this 

orientation the entire sealing line, and consequently the clearance gap between 

the rotors, can be viewed by shining a light between the rotors. 
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A.3 CALCULATING GEOMETRY CHARACTERISTICS 

A.3.1 CHAMBER AREA AND VOLUME 

Chamber cross-sectional areas are initially formed between the two rotors and 

then between each rotor and the casing before finally reducing between the 

rotors again. The biggest challenge to develop an area calculation procedure is 

therefore in identifying the correct area boundaries for each rotor position. This 

problem is exacerbated by the fact that the rotors and casing never actually 

come into contact. A numerical approach using a trapezoidal rule has been 

adopted for robust area calculation with all profile types (Mujic 2009). The 

cross section is divided into a number of divisions along the radius for each 

respective rotor as shown in Figure A-7.  

 

Figure A-7: Cross sectional area calculation using trapezoidal rule 

The maximum theoretical chamber volume is achieved when the both the main 

and gate cross sectional areas are fully formed. In this case the volume is the 

sum of the cross sectional area multiplied by the rotor length. In practise, the 

chamber cross section is not always fully formed along the full length of the 

rotor and the maximum volume is therefore reduced. For this reason it is far 

more reliable to determine the volume curve by integrating the area curve 

between limits that are defined by the cycle angle. This is described by equation 

(25) with the limits of integration shown in Figure A-8. This figure includes a 
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representation of the rotors in an attempt to show, in what is hopefully a more 

intuitive way, how the ‘volume’ in the rotor chambers corresponds to the 

‘volume’ under the area curve. 

 
      

  

  
     
    

    

   ( 25 ) 

 

Figure A-8: Area integration limits for volume 
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A.3.2 SUCTION PORT AREAS 

In Figure A-9 the suction port is abbreviated to SP and the discharge to DP. Each 

port comprises of the area on the main rotor and the area on the gate rotor; 

identified by subscripts 1 and 2 respectively. In addition the ports can be 

situated axially or radially or be made of both parts; these identified by 

subscripts ‘a’ and ‘r’. 

 

Figure A-9: Designated port names 

The shape of the suction and discharge ports is defined by the rotor profile 

shape and helix at the rotor tips. The size of the discharge port is defined by the 

rotor position at which the required volume index, V1/V2, has been achieved.  

The ports highlighted in Figure A-9 are the full port windows; the effective port 

areas, for a given compression chamber, depends how the rotors interact with 

these port windows. The areas through the main suction and discharge ports as 
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the rotors interact with the casing are calculated using a similar procedure to 

that used with the chamber cross sectional areas. 

A.3.3 BLOW HOLE AREA 

 

Figure A-10: Blow-hole leakage area 

The blowhole area is formed between the tip of the main, the tip of the gate and 

the cusp of the casing where the rotors meet. For most practical rotor designs 

the main rotor, gate rotor and casing cusp will not coincide at the same point 

resulting in the leakage area highlighted in Figure A-10. The area is solely 

defined by the transverse rotor profiles (highlighted in green) and the rotor 

helix. This leakage area is handled with its own subroutine that calculates the 

area between lines 1-2 and 1-3 in Figure A-10b. 
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A.3.4 SEALING LINES 

  

Figure A-11: Interlobe sealing line 

Figure A-11 shows the interlobe sealing line - the blue line shows where the 

main rotor is in closest proximity to the gate rotor when the rotors are in mesh. 

The part of the line highlighted in red represents the interlobe sealing line for a 

single compression volume therefore it is the leakage area through this segment 

that is of interest. Calculation of the sealing lines co-ordinates was explained 

previously. The length of the sealing line through a discrete number of sealing 

lines points can be numerically approximated: 

 

 

 

In order to calculate the sealing line length for a given compression chamber, it 

is necessary to check that the sealing line is within the limits of the rotor length. 

At the rotor position shown in Figure A-11 the interlobe sealing line highlighted 

in red is fully formed within the limits of the rotor so the leakage area is 

maximum. As point A moves beyond the discharge face on the LHS of the figure 

 
                        

 
                  

 
                  

 
 

 

   

 ( 26 ) 
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the sealing line length and consequently the leakage area will reduce until point 

C reaches the same discharge face and the leakage area has reduced to zero. 

The interlobe area curve shown in blue in Figure A-12 assumes a constant, 

uniform interlobe clearance distribution. By introducing a relative rotation 

between the rotors the clearance distribution was altered and the resulting area 

curve was plotted in green. This serves to demonstrate how changing the 

clearance distribution, whether by design, due to rotation, reduced centres or 

some other manufacturing or assembly variation can change both the 

magnitude and the shape of the interlobe leakage area.  

 

Figure A-12: Interlobe leakage area curves 

It is evident in Figure A-12 that there is a region, when the sealing line is fully 

formed, where the leakage area is constant. This would not be the case if 

clearances vary along the length of the rotors due to non-parallel rotors or 

operational distortions caused by high pressures or temperatures. In order to 

investigate these scenarios the GEOM program was modified to allow the 

clearance distribution to vary along 2 dimensions: around the transverse rotor 

profile; and along the length of the rotors. In other words – the surface of the 

rotor lobe under investigation is divided up using a 2 dimensional grid where 

the local clearance at each node is unique. The same approach was applied for 
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the radial sealing line – the local radial clearance at any position on the casing 

bore can be uniquely defined. 



 Appendix B: Compressor Modelling 

210 
 

Appendix B                                         
Compressor Modelling 

B.1 CHAMBER MODEL DETAILS 

B.1.1 MODEL DISCHARGE TEMPERATURE 

 

Figure B-1: Chamber model setup 

A high level explanation of how the single chamber thermodynamic model 

works is shown in Figure B-1. In practise, each of the paths along which mass, 

and therefore enthalpy, can be transported comprise of various ports and 

leakage paths but these have been grouped to show the overall chamber 

interaction. The enthalpy can transfer to or from other ‘chambers’ which are 

offsets of the single chamber or to or from inlet and outlet boundaries which 

can be thought of as very large chambers with constant pressure and 

temperature. The parameters pin, Tin, and pout are constant input boundary 

properties; Tout is constant but unknown.  

Prior to running the cycle convergence loop, Tout is initially calculated as the 

adiabatic discharge temperature based on the pressure ratio. This initial Tout is 

 

pc, Tc

pc-1, Tc-1

pc+1, Tc+1

pout, Toutpin, Tin

ṁ1h1 ṁ2h2

ṁ3h3

ṁ4h4

Chamber properties

Boundary properties



 Appendix B: Compressor Modelling 

211 
 

used to calculate the initial specific enthalpy at discharge which is in turn used 

to calculate the isentropic flow through the discharge port. Knowing the flow 

rate to the outlet and the specific enthalpies in the chamber or outlet 

(depending on flow direction) at any given time, the total enthalpy change to 

outlet can be integrated over the cycle duration. The average specific enthalpy 

of the gas to outlet is calculated as the total enthalpy to outlet divided by the 

total mass to outlet – this specific enthalpy is then used as the outlet boundary 

enthalpy in the next iteration for flow calculation. For an ideal gas, the average 

temperature, Tout, at the outlet boundary can be calculated as the average 

specific enthalpy divided by the specific heat, Cp. 

In the version of the chamber model used in this research, the outlet 

temperature, T2, was taken to be the value of the temperature in the 

compression chamber, TC, at the end of the compression process. In this single 

chamber model, the instantaneous TC value at the end of compression is similar 

to the averaged boundary temperature, Tout, providing there isn’t significant 

over or under compression.  

B.1.2 ADIABATIC FANNO FLOW 

An available description of the leakage flow calculation is repeated here for 

reference, further detail can be found in (Stosic et al, 2005) and (Stosic, 2015). 

The leakage velocity through the clearances is considered to be adiabatic 

Fanno-flow through an idealised clearance gap of rectangular shape and the 

mass flow of leaking fluid is derived from the continuity equation. The effect of 

fluid-wall friction is accounted for by the momentum equation with friction and 

drag coefficients expressed in terms of the Reynolds and Mach numbers for 

each type of clearance. 

          
    

    
  

         
  

     
 ( 27 ) 

where c is the speed of sound,   = FL/D +    characterises the leakage flow 

resistance, L the clearance length in the leaking flow direction, f the friction 

factor and   the local resistance coefficient. 
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B.2 THERMAL ANALYSIS SIMPLIFYING ASSUMPTIONS 

B.2.1 ROTOR THERMAL DISTORTION 

In isolation, equation (46) in ‘5.3.2 Local Rotor Distortion’ describes 1D thermal 

distortion but when applied to the radius, for which the angular position is 

known, and with the stated assumption of a uniform planar temperature, this 

equation can be used for calculation of 2D thermal distortions.  

 

Figure B-2: Uniform 2D thermal distortion 

With uniform 2D thermal distortion all relative proportions are preserved. 

Providing the direction of the radial distortions, ΔrA and ΔrB, of points, A and B, 

are applied in the correct direction using the appropriate angles, αA and αB 

respectively, then the relative distortion, Δx, between points A and B will be 

accounted for. This has been demonstrated with the use of similar triangles in 

Figure B-2. 

B.2.2 DATUM FOR RELATIVE CLEARANCE DISTORTION 

While the interlobe clearance gap was analysed by investigating the thermal 

distortion of each rotor and centre distance using a 2D approach, as explained 

in ‘5.3 Thermal Distortion of Interlobe Gap’, the analysis of the radial gap was, in 

contrast, reduced to a 1D analysis, as explained in ‘5.4 Thermal Distortion of 

Radial Gap’. The main assumption that allows this simplification is the use of 
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each respective rotor axes, on the main and gate rotor bores respectively, as a 

common datum so that only radial distortions in the rotors and casing are 

considered.  

The validity of this assumption will be assessed in more detail by considering 

transverse cross sections of the rotors and casing with uniform temperatures 

obtained by averaging the surface temperature exposure across that plane. 

Simplified FEA analysis was considered however as shown in the previous 

section, if the 2D expansion of each component is uniform it can simply be 

analysed by considering a representative dimension; in this case the centre 

distance, A. 

 

Figure B-3: 2D rotor and casing distortion 

In Figure 1-1 two casing distortion scenarios have been presented. The outer 

dashed line shows the distorted casing bores where the centres of the bores are 

also marked as dashed lines. In the first scenario the solid circles that represent 

the rotors are positioned in the undistorted centre distance, A. This kind of 

scenario could occur in a compressor where the casing is relatively cooler in the 

vicinity of the bearings than the cross section being analysed, thus resulting in 

rotors that are not concentric to the casing bore. As a consequence of this the 

radial clearance will be non uniform so that near the cusp Gap1 would be 

reduced while Gap2 would be increased. 
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In the second scenario the rotor positions are represented by the circles with 

dashed lines that have been adjusted to the same distorted centre distance as 

the casing at that particular plane. This results in rotors that are concentric to 

the casing bore and in this case with uniform rotor and casing temperatures 

across the plane the radial gap is constant so that Gap1’ = Gap2’. 

Obviously, if the distorted centre distance of the casing is different from the 

centre distance of the rotors this should ideally be accounted for by using a 

single common datum for both rotors and casing and calculating the resulting 

non-uniformity of the radial gap due to the non-concentric rotors. In the current 

procedure which simplifies the calculations by defining a datum on each axis, 

the rotors are assumed to be concentric to the casing. 

 

Figure B-4: DRUM127 casing temperature exposure 

In the current model the distortion of the rotor axis is based on the distortion of 

the casing centre distance, A, at the inlet and outlet end planes, as described in 

‘5.3.3 Local Casing Distortion’. So by definition each rotor will be concentric to 

the casing bore at the inlet and outlet plane. Between these end planes the rotor 

centre distance will vary linearly since the rotor axes are taken to be straight. 

However, the axial variation in the average temperature of each casing cross 

section is not necessarily linear and there is likely to be some deviation between 
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the rotor and casing centre distances. In order to quantify this effect, results 

from the DRUM127 compressor model are used; the casing exposure is shown 

in Figure B-4 where the temperature ranges from 25°C to 160°C. The 

temperature exposure was averaged at each transverse plane in order to 

estimate the average 2D casing temperature at that plane. The variation in the 

casing temperature, which describes distortion of the casing centre distortion, 

is compared against the interpolated temperature, which describes the rotor 

centre distortion, in Figure B-5. Note that the temperature shown in this figure 

is actually the ΔT, which is the different between the absolute temperature and 

the reference ambient temperature which has been taken as 20°C. 

 

Figure B-5: DRUM127 axial casing temperature variation 

The maximum variance between the casing ΔT and the interpolated ΔT is 8.4°C. 

When applied to the centre distance for this compressor, where A = 0.093m, for 

cast iron, this equates to an error of less than 10μm. This results in a 

concentricity error of less than 5μm on each rotor. The nominal radial clearance 

for this compressor is 100 μm therefore the maximum relative error due to 

non-concentricity (along a limited region of the axial length) is +/- 5%. Recall 

from the example presented in Figure B-3 that the non-concentric rotor results 

in opposing changes between Gap1 and Gap2 which further mitigates this error 

in terms of the net radial leakage area used for performance calculation. In 
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conclusion the assumption of using each rotor axis as a datum in justified for 

the current model. 
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Appendix C                                         
Definition of Performance 
Characteristics 

C.1 COMPRESSOR BOUNDARIES 

In order to evaluate the compressor performance the metrics used must be 

clearly defined. The compressor can be considered to be a ‘black box’ that can 

be dropped into any system and described by only its inputs and outputs. The 

inputs will be defined at the inlet flange, the outputs at the outlet flange and the 

work in for a compressor is defined at the drive shaft – this has been shown in 

Figure C-1. 

 

Figure C-1: Compressor boundaries for performance evaluation 

For a full energy balance of the compressor there would be additional inputs 

and outputs to describe heat rejection to surroundings or oil. However, for an 

evaluation of the compressor performance it is usually sufficient to measure the 

useful work done on the gas by considering these described inputs and outputs. 

For a known fluid, all thermodynamic properties can be derived if both 

pressure, p, and the temperature, T, are known.  For example, knowing p1 and 

T1 at the inlet, the density, ρ1, can be derived. Similarly the density at the outlet, 

ρ2, can be calculated using the pressure at temperature at that flange. 
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C.2 MASS FLOW 

The other crucial measurement for performance evaluation is the mass flow, ṁ. 

This is usually measured remotely from the compressor, usually with an orifice 

situated upstream of the compressor on the low pressure ducting. There is an 

assumption here that no leakage occurs to the surroundings between the 

position of flow measurement and the discharge of the compressor. This is a 

reasonable assumption since the only external seal is on the drive shaft which 

under normal operating conditions will leak only a small volume of oil that is 

negligible relative to the gas flow. From mass continuity, the actual volume flow 

at a specific location with a known density can be found. In this work, the 

volume flow is always defined at the inlet using,    , which is calculated: 

     
  
    ( 28 ) 

The shaft power, PSHAFT, is simply calculated as the product of the measured 

speed and torque. This shaft power is often referred to as the ‘total power’ as it 

is the sum of the power supplied to the compression fluid and the power lost to 

all other inefficiencies including mechanical losses incurred in the bearings, 

shaft seals and timing gears, if applicable. The focus of this research was on the 

thermodynamic model of the compression process therefore the shaft power 

was not used for model evaluation because of the uncertainty in the proportion 

of work acting on the gas.  

C.3 VOLUMETRIC EFFICIENCY 

Generally, absolute flow results can be used to compare the modelled 

performance against test measurements, as was done in the DRUM127 case 

study. In the HS204 case study the volumetric efficiency was compared instead 

of absolute flow – this provides essentially the same comparison while giving a 

little more insight into how well the compressor is performing. In this work the 

volumetric efficiency is defined as the ratio of the actual inlet volume flow rate 

to the theoretical volume flow rate for that compressor at the same operating 

speed: 
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  ( 29 ) 

The theoretical volume flow rate is calculated using the volume displacement 

constant; this is expressed as the displaced volume per revolution of the drive 

shaft and is a geometric feature of the compressor. 

C.4 ADIABATIC EFFICIENCY 

Typically, the adiabatic efficiency is described as the ‘total efficiency’ using the 

shaft power: 

        
    

      
  ( 30 ) 

However, as discussed previously the shaft power was not investigated in this 

research - instead the adiabatic efficiency can be described using the indicated 

power from the thermodynamic compression process – this includes the effect 

of any heat transfer during compression but neglects any mechanical losses: 

        
    

    
  ( 31 ) 

This is the most suitable efficiency for evaluation of the thermodynamic 

performance at it captures the influence of all heat transfer, leakages, and under 

or over compression. Indicated power is not normally available from 

compressor test results so a useful way to approximate the adiabatic efficiency 

of the thermodynamic process is to use the actual measurements p1, p2, T1 and 

T2, as defined in Figure C-1. The gas properties at the inlet and outlet of the 

compressor are used to define a polytropic process path. This is an 

approximation of the indicated process path that doesn’t account for effects 

such as over or under compression and as such the efficiency calculated in this 

way can be slightly higher than the value from the indicated power: 

        
     

      
       ( 32 ) 
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Where the specific enthalpy for the adiabatic process is defined: 

        
 

     
              ( 33 ) 

The specific enthalpy for the polytropic process is defined: 

         
 

     
          ( 34 ) 

And the polytropic exponent is calculated using: 

    
 

   
    

  
  
  

    
  
  
 
 

  

( 35 ) 

In practise for an oil free compressor, the measured outlet temperature, T2, is 

higher than the adiabatic outlet temperature, T2_ADI, resulting in a polytropic 

exponent: n > k. This implies that there is heat transfer to the compression gas 

which reduces efficiency. In reality, this heat is primarily supplied due to a net 

enthalpy increase introduced through leakage flows into the control volume. 

Both specific enthalpies changes in equations (33) and (34) are calculated 

assuming a system with constant mass. This is ok for the adiabatic process 

curve as that represents the ideal compression process however the polytropic 

process curve is intended to approximate an open system with net leakage 

losses therefore the specific enthalpy change calculated in equation (34) is not 

representative of the actual process. To compensate for the difference in 

specific enthalpy change caused by the theoretical and the actual delivered 

mass flow the volumetric efficiency was included in equation (32).  

An example case was modelled in order to evaluate the approximate polytropic 

curve, as shown in Figure C-2. The adiabatic efficiency based on the indicated 

PV curve was 71.0% while the efficiency based on the temperatures and 

polytropic path was 72.7%. The indicated curve captures a slight over-

compression hence that efficiency is a little lower. 
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Figure C-2: Comparison of model indicated PV curve and polytropic curve 
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