

City Research Online

City, University of London Institutional Repository

Citation: He, Y-H., Jejjala, V. & Pontiggia, L. (2017). Patterns in Calabi-Yau Distributions. Communications in Mathematical Physics, 354(2), pp. 477-524. doi: 10.1007/s00220-017-2907-9

This is the published version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: http://openaccess.city.ac.uk/18200/

Link to published version: http://dx.doi.org/10.1007/s00220-017-2907-9

Copyright and reuse: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to.

City Research Online:	http://openaccess.city.ac.uk/	publications@city.ac.uk

Patterns in Calabi–Yau Distributions

Yang-Hui He^{1,2,3}, Vishnu Jejjala⁴, Luca Pontiggia⁴

¹ School of Physics, NanKai University, Tianjin 300071, People's Republic of China

² Department of Mathematics, City University, London EC1V 0HB, UK

³ Merton College, University of Oxford, Oxford OX1 4JD, UK. E-mail: hey@maths.ox.ac.uk

⁴ NITheP, School of Physics, and Mandelstam Institute for Theoretical Physics, University of the Witwatersrand, 1 Jan Smuts Avenue, Johannesburg 2050, South Africa. E-mail: vishnu@neo.phys.wits.ac.za; lucatpontiggia@gmail.com

Received: 18 December 2015 / Accepted: 17 April 2017 Published online: 30 May 2017 – © The Author(s) 2017. This article is an open access publication

Abstract: We explore the distribution of topological numbers in Calabi–Yau manifolds, using the Kreuzer–Skarke dataset of hypersurfaces in toric varieties as a testing ground. While the Hodge numbers are well-known to exhibit mirror symmetry, patterns in frequencies of combination thereof exhibit striking new patterns. We find pseudo-Voigt and Planckian distributions with high confidence and exact fit for many substructures. The patterns indicate typicality within the landscape of Calabi–Yau manifolds of various dimension.

Contents

1.	Introduction	478
2.	Calabi–Yau Threefolds	480
	2.1 Analysis of $h^{1,1} - h^{1,2}$	481
	2.1.1 Å pseudo-Voigt fit	483
	2.2 Analysis of $h^{1,1} + h^{1,2}$	488
	2.2.1 A Planckian fit	488
	2.3 The distribution of the Euler number	495
	2.4 Goodness-of-fit	496
	2.5 Implications for physics	501
3.	Calabi–Yau Twofolds: K3 Surfaces	502
4.	Calabi–Yau Fourfolds	502
5.	Conclusions and Outlook	505
A.	Appendix	507
	A.1 Supplementary plots for the $h^{1,1} - h^{1,2}$ distribution	507
	A.1.1 Plots for the odd distribution as counterparts to the even ones	507
	A.1.2 Comparative plots	507
	A.1.3 A first approximation to the data	510
	A.1.4 Table of parameter values and statistics	510

A.2 Supplementary plots for the $h^{1,1} + h^{1,2}$ distribution	511
A.2.1 Plots for the odd distribution as counterparts to the even ones	511
A.2.2 Table of parameter values, coefficient values and statistics	512
A.3 Supplementary plots for the fourfold data	515

1. Introduction

A Calabi–Yau *n*-fold is a Kähler manifold of *n* complex dimensions with a trivial canonical bundle. In superstring theory, it serves as a compactification manifold wherein a ten dimensional theory at high energies reduces to an effective theory in four spacetime dimensions. In particular, global SU(n) holonomy ensures that 2^{1-n} of the original supersymmetry is preserved. Thus, confronted by the vacuum selection problem, Calabi–Yau compactifications present an avenue for Standard Model building, especially in the context of the heterotic string [1–4]. Indeed, the basis of the landscape is to consider flux compactifications on these geometries [5,6].

To facilitate this approach to a low-energy phenomenology derived from string theory, mathematicians and physicists have constructed large datasets of Calabi–Yau threefolds [7,9–22] as well as various refined analyses of properties thereof [28–35]. By far the largest database was constructed in a *tour de force* of algebraic geometry, combinatorics, physics, and computer algorithms by Kreuzer and Skarke based on the theorems of Batyrev and Borisov [9–14,36,37]. In short, these Calabi–Yau *n*-manifolds X_n are realized as a smooth hypersurface embedded in a toric variety A_{n+1} of complex dimension n + 1; the Calabi–Yau condition simply translates to the requirement that the polytope defining A_{n+1} be **reflexive**. We will henceforth consider only such Calabi–Yau manifolds, of which there are a plethora.

Let us briefly recollect what all this means. The (possibly singular) toric variety A_{n+1} is specified by an integer polytope Δ in \mathbb{R}^{n+1} , which is a collection of vertices (dimension 0) each of which is an (n + 1)-vector with integer entries and such that each pair of neighboring vertices defines an edge (dimension 1), each pair of edges defines a face (dimension 2), etc., all the way up to a facet (dimension *n*). Alternatively, Δ can be defined by a set of integer linear inequalities, each of which slices a facet. The polytope is then the convex body in \mathbb{R}^{n+1} enclosed by these facets. We will always include the origin as being contained in Δ . Using the usual dot product \langle , \rangle inherited from \mathbb{R}^{n+1} , the dual polytope is defined by

$$\Delta^{\circ} := \left\{ v \in \mathbb{R}^{n+1} | \langle m, v \rangle \ge -1, \forall m \in \Delta \right\}.$$
(1.1)

The polytope Δ is *reflexive* if all the vertices of Δ° are integer vectors. In this case, we can define the Calabi–Yau hypersurface X_n explicitly as the polynomial equation

$$\sum_{m \in \Delta} c_m \prod_{r=1}^k x_r^{\langle m, v_r \rangle + 1} = 0 , \qquad (1.2)$$

where $v_{r=1,...,k}$ are the vertices of Δ° with k being the number of vertices of Δ° (or equivalently the number of facets of Δ), x_r are the coordinates of A_{n+1} , and c_m are numerical coefficients parameterizing the complex structure of X_n . Indeed, the reflexivity of Δ ensures that the exponents are integral thereby making the hypersurface polynomial as required.

The classification of these Calabi–Yau manifolds thus amounts to that of reflexive polytopes in various dimensions, and the intense computer work of Kreuzer and Skarke was to combinatorially find such polytopes. For n = 1, there are 16 such polytopes in \mathbb{R}^2 , and we have Calabi–Yau onefolds, or elliptic curves. For n = 2, there are 4319 such polytopes in \mathbb{R}^3 , and we have Calabi–Yau twofolds, or K3 surfaces. For n = 3, there are 473, 800, 776 such polytopes (which was a formidable computer task!), and we have the Calabi–Yau threefolds. This sequence

$$\{1, 16, 4319, 473800776, \ldots\}$$
(1.3)

of remarkable growth rate can be found in the Online Encyclopedia of Integer Sequences [38]. The numbers in higher dimension are still not known, nor has there been an asymptotic analysis of their growth. It should be emphasized that generically a reflexive polytope corresponds to a *singular* toric variety even though the hypersurface is chosen (by generic coefficients c_m) to miss the singularities and hence ensuring the smoothness of the Calabi–Yau X_n . For example, of the some half-billion reflexive polytopes in \mathbb{R}^4 , only 136 A_4 are in fact smooth [39]. As we desingularize the toric variety by various star-triangulations of Δ , we are led to potentially *inequivalent* Calabi–Yau manifolds. In principle, the *same* Calabi–Yau geometry can arise from different reflexive polytopes or triangulations of a given reflexive polytope. Whereas K3 is essentially unique, we do not know how many Calabi–Yau threefolds there are. A systematic study to classify the desingularizations, to compute the necessary topological data, and to build an interactive online database [19] is under way. The moral is that there are almost certainly far more than half a billion Calabi–Yau threefolds!

Luckily, the Hodge numbers depend only on the polytope and not on the choice of desingularization. (The intersection numbers, however, do depend on the choice.) For Calabi–Yau threefolds, the pair of Hodge numbers $(h^{1,1}, h^{1,2})$ is a famous quantity. Indeed, the plot in Part (a) of Fig. 1 has become iconic. Here, the sum $h^{1,1} + h^{1,2}$ is plotted against the Euler number $\chi = 2(h^{1,1} - h^{1,2})$, and the left-right symmetry supplies "experimental evidence" for *mirror symmetry*. There is enormous redundancy in this data: of the some half a billion reflexive polytopes, there are only 30, 108 distinct pairs of Hodge numbers and the pair (27, 27) dominates the multiplicity, totaling almost one million. In Part (b) of Fig. 1 we have attempted to visualize the distribution of the

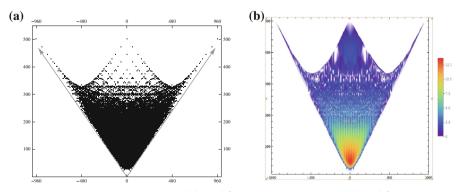


Fig. 1. a The cumulative plot of $\chi = 2(h^{1,1} - h^{1,2})$ on the abscissa versus $h^{1,1} + h^{1,2}$ on the ordinate for Calabi–Yau threefolds as hypersurfaces in toric fourfolds; **b** marking also the natural logarithm of the multiplicity of the Hodge pair with a *color* grading (color figure online)

multiplicity by having a color density plot of the logarithm of the number over each Hodge pair.

Understanding this multiplicity forms the inspiration for the present work. While there have been analyses on the *shape* of the funnel-like plot [28, 33, 35], there has not been much work on its *density*, i.e., the distribution of the multiplicity of Hodge data for the Calabi–Yau manifolds of various dimension. Of course, fundamentally, this is entirely due to the combinatorics of reflexive polytopes and might in principle be analytically determined. However, given the complexity of the problem it is expedient to analyze the available data which have been compiled over the years, observe intriguing patterns, and draw statistical inferences before turning to analytic treatments. This is what we achieve in this work.

The organization of the paper is as follows. We perform a detailed analysis on the structure and behavior of the threefold data in Sect. 2. This is motivated by looking for an exact function describing the relationship of the distribution of the Hodge pairs $(h^{1,1}, h^{1,2})$ with frequency.

In Sect. 2.1, we study the distribution of $(h^{1,1} - h^{1,2}, f)$. We find that this distribution is composed of a family of curves, for which each curve can be described using a modified pseudo-Voigt model. Although an approximation, the model is able to describe the general trend of the data, as well as some additional fine structure within each individual data point. Performing an analysis on the parameter relationships shows that three out of the five parameters can be expressed as a single variable, but we conclude that additional modifications need to be introduced in the model to overcome certain shortfalls.

Subsequently, Sect. 2.2 performs an analysis on the structure of $(h^{1,1} + h^{1,2}, f)$. Similarly, this distribution is composed of a family of curves for which each curve can be described using a Planckian profile. Combining the regression analysis for each curve within the distribution, we construct a single function able to approximately model the entire distribution of $(h^{1,1} + h^{1,2}, f)$ with only two variables. Section 2.3 uses the model developed in Sect. 2.1 to describe the distribution of the Euler number χ .

Section 2.4 is dedicated to the description of model validation in our context, as the usual statistical tests are inadequate. Section 2.5 discusses possible implications to physics by referencing recent advancements in F theory and further investigations of structures within the Kreuzer–Skarke database. In Sects. 3 and 4, we perform primary analyses of Calabi–Yau twofolds (Picard number and multiplicity) and Calabi–Yau fourfolds. Due to the lack of a complete data set, we are unable to provide a thorough analysis of the fourfolds as with threefolds. Finally, the Appendix presents many supplementary plots and figures for the various sections. We conclude with a summary and outlook in Sect. 5.

2. Calabi–Yau Threefolds

As advertised in the Introduction, we will begin with the analysis of threefolds and identify patterns within this rich distribution of Hodge numbers and their frequency as plotted in Fig. 1. It turns out striking patterns do exist, pointing to a definite structure within the threefold data, which consists of the triple $(h^{1,1}, h^{1,2}, f)$, where f is the number of reflexive polytopes in the Kreuzer–Skarke database with the given Hodge pair. Here, $h^{1,1}$ and $h^{1,2}$ respectively count the Kähler and complex structure moduli of the Calabi–Yau obtained from the reflexive polytope. More precisely [8], we have that

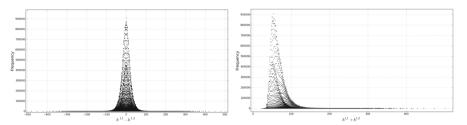


Fig. 2. a Frequency f plotted against $\frac{1}{2}\chi = h^{1,1} - h^{1,2}$; **b** frequency f plotted against the sum of Hodge numbers $h^{1,1} + h^{1,2}$

$$h^{1,1}(X) = \ell(\Delta^*) - \sum_{\operatorname{codim}\theta^*=1} \ell^*(\theta^*) + \sum_{\operatorname{codim}\theta^*=2} \ell^*(\theta^*)\ell^*(\theta) - 5;$$

$$h^{1,2}(X) = \ell(\Delta) - \sum_{\operatorname{codim}\theta=1} \ell^*(\theta) + \sum_{\operatorname{codim}\theta=2} \ell^*(\theta)\ell^*(\theta^*) - 5.$$
(2.1)

In the above, Δ is the defining polytope for the Calabi–Yau threefold X and Δ^* is its dual. Moreover, θ and θ^* are the faces of specified codimension of these polytopes respectively; $\ell()$ is the number of integer points of the polytope while $\ell^*()$ is the number of integer points. Indeed, our analysis of the distribution of Hodge numbers ultimately reduces to counting these integer points.

To facilitate the analysis, we plot $(h^{1,1} - h^{1,2}, f)$ and $(h^{1,1} + h^{1,2}, f)$ as shown in (a) and (b) of Fig. 2, respectively. Recall that the Euler number $\chi = 2(h^{1,1} - h^{1,2})$. We will use the difference $h^{1,1} - h^{1,2}$ rather than the Euler number. In the simplest heterotic constructions, $|h^{1,1} - h^{1,2}|$ corresponds to the index of the Dirac operator and gives the number of generations of particles in the low-energy spectrum [1].

By inspection, these plots already exhibit two patterns. Firstly, in both the $h^{1,1} - h^{1,2}$ and $h^{1,1} + h^{1,2}$ plots, there appears to be an inner distribution contained within the outer distribution. We find that these inner and outer distributions are related to the parity of $h^{1,1} \pm h^{1,2}$. Figure 3 elucidates this point by having the odd and even values in different colors.

Though this parity structure may be a result of the Kreuzer–Skarke algorithm, its consistent appearance means we need to treat the distributions of even and odd distinctly for now.

The second evident structure which can been seen by inspection, is that the outer edge of the distribution of $h^{1,1} - h^{1,2}$ (Fig. 3a) appears to follow a normal like curve, whereas the edge of $h^{1,1} + h^{1,2}$ (Fig. 3b) follows a Planck like curve. It is through the analysis of these distributions that we deduce their characteristic behavior and underlying structure. In the main body of this paper, we outline the results and analysis of only the even distributions for $h^{1,1} - h^{1,2}$ and $h^{1,1} + h^{1,2}$, except where it is important to present both. It turns out that any structure and patterns which are found in the even distributions for $h^{1,1} - h^{1,2}$ and $h^{1,1} + h^{1,2}$ are found identically in the odd distribution (see "Appendix" for various plots).

2.1. Analysis of $h^{1,1} - h^{1,2}$. Before we can present the results, it is important to explain some notation. When working with the distribution of $h^{1,1} - h^{1,2}$, we find that it is composed of many curves, whose individual structure is the same as the "edge" or boundary of the distribution mentioned earlier. As a consequence of this, we refer to

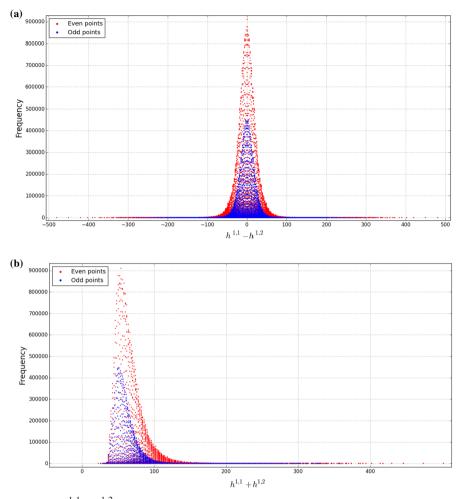


Fig. 3. a The $h^{1,1} - h^{1,2}$ distribution for threefolds, highlighting the two sub-distributions, where *red* and *blue* data points correspond to even and odd values of $h^{1,1} - h^{1,2}$, respectively; **b** the same, but for $h^{1,1} + h^{1,2}$ (color figure online)

 $h^{1,1} - h^{1,2}$ as being composed of a "family of curves." Each curve is then classified by its *r*-value, where $r = h^{1,1} + h^{1,2}$. It is important to be clear that in this analysis, although $h^{1,1} - h^{1,2}$ is just half the Euler number, we are not summing over all the possible values of $h^{1,1} + h^{1,2}$. We are keeping these values distinct: hence, the *r*-curves we obtain. Later on in Sect. 2.3 we sum over all possible values of $h^{1,1} + h^{1,2}$ to get two plots representing the full Euler number distribution.

Consider the example in Fig. 4a. By ordering the data in terms of $h^{1,1} + h^{1,2}$, one can classify data sets within $h^{1,1} - h^{1,2}$ by an *r*-value. Holding *r* fixed, we can plot the frequency *f* versus the difference $h^{1,1} - h^{1,2}$. We call each value of *r* a curve, which we can overlay on the same plot. In this example, we tabulate data for curves identified by r = 28 and r = 29. As a further illustration, we show explicitly the curves of the even distribution within $h^{1,1} - h^{1,2}$ for r = 42, 54, 66 in Fig. 4b. By mirror symmetry, the curve is symmetric about the vertical axis, where $h^{1,1} - h^{1,2} = 0$.

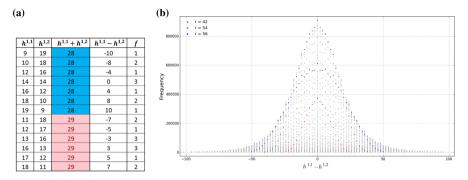


Fig. 4. a Example of repeated values of the sum $h^{1,1} + h^{1,2}$ being 28 and 29; **b** three highlighted curves (r = 42, 54, 66) within the even $h^{1,1} - h^{1,2}$ distribution. The transparent *grey data dots* are all the data plots for the distribution. Refer to Fig. 23 for the corresponding odd plot

We can now perform a regression analysis for each individual curve, in the quest of obtaining a function describing the distribution. In the analysis, we indeed find an approximate function predicting the fine structure of the data. We operate with one caveat: we ignore data points which have a frequency lower than 2000. At large r, the data, whose frequency is below 2000, begins to deviate from our model. The reason for such deviations, comes down to the fact that our model, though remarkably accurate, is still an approximation. We suspect that with further modifications, such deviations can be accounted for and that consequently, it may be possible to find an exact function to map the frequency distribution of $h^{1,1} - h^{1,2}$. Such statements also apply to the distribution of $h^{1,1} + h^{1,2}$.

2.1.1. A pseudo-Voigt fit Due to the normally-distributed, peak-like nature of these curves, we performed a regression analysis using the following models: Gaussian; Cauchy (Lorenztian); Pearson7; Breit–Wigner; Voigt; and pseudo-Voigt. In the "Appendix A.1.2", we perform a side by side comparison. It turns out that both the Voigt model (25e) as well as the pseudo-Voigt model (25f) give excellent fits.

We focus on the **pseudo-Voigt model** as it gives the best fits. This is a linear combination of a Gaussian and Lorentzian (Cauchy) distribution:

$$f(x, A, \mu, \sigma, \alpha) = (1 - \alpha) \frac{A}{\sigma \sqrt{2\pi}} e^{\frac{-(x - \mu)^2}{2\sigma^2}} + \alpha \frac{A}{\pi} \left[\frac{\sigma^2}{(x - \mu)^2 + \sigma^2} \right],$$
(2.2)

with amplitude (*A*), center (μ), Gaussian width (σ), and fractional parameter alpha (α). However, we can modify the above distribution slightly so that the amplitude *A* of the distribution has an oscillating component

$$A(x, A_0, a, b) = A_0 + a\cos(2\pi b \cdot x),$$
(2.3)

where A_0 is the original amplitude of a particular curve described by the pseudo-Voigt distribution, *a* is the amplitude of oscillations, and *b* represents the period. By doing a regression analysis one curve at a time using this modified pseudo-Voigt model, we are almost able to replicate not just the basic structure of each curve, but even the individual behavior of each data point in the entire distribution. (See "Appendix A.1.3" for a comparative plot of the all the regression curves using the standard, unmodified, pseudo-Voigt model.)

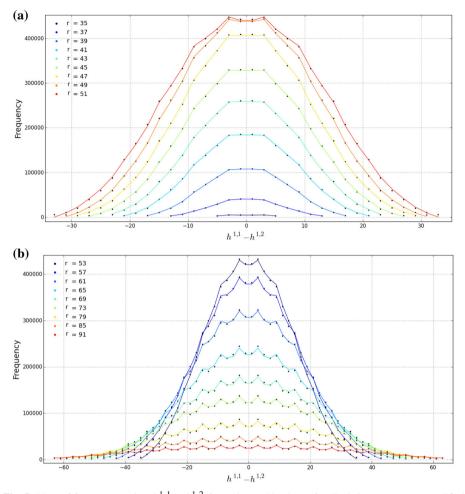


Fig. 5. Plots of frequency against $h^{1,1} - h^{1,2}$ for various odd values of *r*. Each *line* represent a modified pseudo-Voigt profile based on the regression analysis for each curve. See Fig. 28a for a plot of all even curves. **a** Regression lines for all odd *r* valued curves, with $r \in [35, 51]$. **b** regression lines for few select odd *r* values, with r > 51

We plot the frequency against $h^{1,1} - h^{1,2}$ for various values of r (odd and even). Figures 5 and 6 are striking in their accuracy.

As these figures illustrate, each curve follows a pseudo-Voigt profile, however the individual data points seem to "jump" up and down, as if oscillating. It is this behavior of the data points which can be accounted for by the modified pseudo-Voigt model. To do the regression analysis, we used Python *lmfit* with a custom model which is just the modified pseudo-Voigt model. The parameters that were fitted are $(A_0, a, b, \sigma, \alpha)$. Due to mirror symmetry, $\mu = 0$. In "Appendix A.1.4", one can find a table with the value of every parameter for every curve as well as their reduced χ^2 values.

A few comments explicate the regression lines and the behavior of the distributions.

1. When we refer to the model as being an "excellent fit," it is principally a statement made by inspection of the curves and the data. If one inspects the reduced χ^2 values

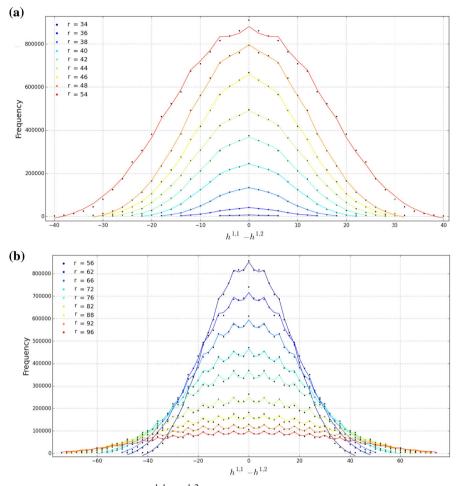


Fig. 6. Plots of frequency against $h^{1,1} - h^{1,2}$ for various even values of *r*. Each *line* represent a modified pseudo-Voigt profile based on the regression analysis for each curve. See Fig. 28b for a plot of all odd curves. **a** Regression lines for few select even *r* values, with $r \le 54$. **b** Regression lines for few select even *r* values, with r > 54

(Fig. 29), the numbers are large, which statistically does not refer to a good fit. This is misleading however. Firstly, we need to consider that the number of parameters used in the model is five. This allows for a larger χ_R^2 value. Secondly, the distribution is based on a discrete set of data. When doing a regression analysis using the modified pseudo-Voigt model, one obtains an equation which describes a continuous curve. Lastly, the frequency values span over several orders of magnitude. The tiniest deviation from a parametric model—in this case, the modified pseudo-Voigt profile—will be detected in cases where there is such a huge sample size. Typically the predicted model gives data points which are in the range of 0.02–3% accuracy from the actual data point. The tail behavior of the model is less accurate however, here the predicted values can be off from between 60 and 80%. For cases with a very poor fit, the last data point (large value of $h^{1,1} - h^{1,2}$) can have an error of up to 300%—this is another example of the model being less accurate at lower frequency. When one is dealing with such

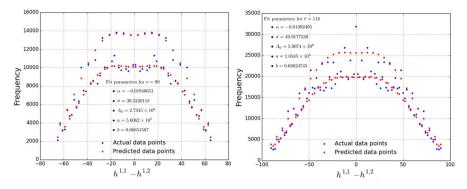


Fig. 7. These two plots serve two purposes. The first is to show how the modeled data should really look by using data points (*red points*) instead of the (perhaps misleading) lines (refer to Comment 1 below). The second purpose is to illustrate that as *r* becomes large (*left plot* has r = 99, *right plot* has r = 118), the actual data points deviate more and more from the modeled data, implying that there is a missing function in the modified pseudo-Voigt model which would allow one to describe the data at much lower frequencies (color figure online)

sample sizes, even a 1% error can give a difference of up to a couple of thousand. This difference summed over all the data points for a particular curve result in a large χ_R^2 value. Due to the discussion in Sect. 2.4 we from now on ignore the χ_R^2 as a test for model validation. Instead we opt for probability plots—which can also be seen in Sect. 2.4.

- 2. One obtains a continuous model to describe the discrete data, in reality, we should not be plotting fitted curves, but rather fitted data points—as can be seen in Fig. 7. It is just illustratively more clear to display the curves. One could in principal work out what the discrete approximation is to our continuous model.
- 3. Although the modified pseudo-Voigt distribution does a good job to model the behavior of the data, one still needs to address the problems experienced with our model at low frequency. A problem which is hidden, by virtue of our cut-off frequency, is that the tail of our models predicts negative values, Fig. 8. There is a possibility that by having different variances σ_g , σ_c for the mixing of the two distributions (Gaussian, Cauchy), one could adjust the tail behavior. Introducing more and more parameters however does not always resolve the problem, as it is possible to over-fit the data. Yes, the model may be more accurate, but one loses physical significance. In a situation like ours, where one does not have any physical backing for choice in models, this line between fitting and over fitting is not so clear.
- 4. The odd distribution's behavior is more regular. In comparison to the even distribution, as one increases in *r* value, the behavior of the individual data points remain somewhat constant relative to the fitted curve. The even distribution becomes more and more irregular as one increases the *r* value. This suggests that there is an added parameter which seems as if it should be function of *r*. By regular and irregular we are referring to how well the data point is described by the model.
- 5. Both distributions become very irregular as the value of r becomes large (r > 100 and r > 120 for odd and even distributions respectively—see Fig. 7). A large r value refers to curves which have a relatively low frequency. Again this suggests that the pseudo-Voigt model needs to some how have some function of r which "distorts" the behavior of the curves as r increases (by the looks of how the real data deviates from the modeled one, it seems that the missing functions is also oscillating in nature).

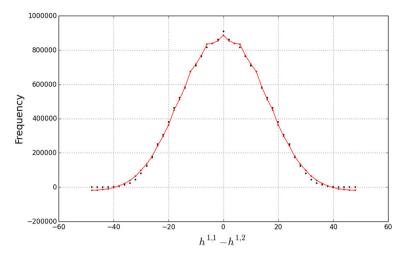


Fig. 8. By considering the entire frequency range, the model is not able to adequately describe the tail behavior. The model goes into the negative frequency range instead of tapering off to 0

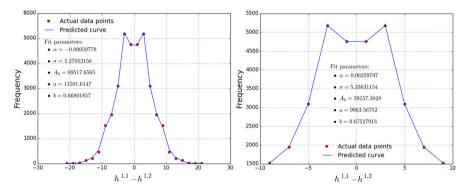


Fig. 9. Left plot shows the modeled line according to the modified pseudo-Voigt distribution with no cutoff frequency. We obtain a good fit to the data. The *right plot* has a cutoff frequency of 460, which is equivalent to a percentage cut off of 9.68% (calculated relative to the peak frequency for that *r*-curve). This curve is exact

There exist, however, certain cases where the model is exact. In other words predicted values are the same as the actual values. This happens when one adjusts the frequency cutoff for each r curve individually. That is to say, we only examine data points with at least f_0 reflexive polytopes with a given value of r and $h^{1,1} - h^{1,2}$. If there are fewer than f_0 cases, the data is ignored.

This trend persists for all values of r, however what becomes apparent is that it's not the percentage cutoff frequency that determines whether or not one gets an exact fit, but rather, the number of data points that remains after the percentage cut of has been effected. Figure 30 gives a table of how many data points remain after an appropriate cut off percentage has been chosen to achieve a perfect fit. From this table we see that for even curves, one almost always requires 7 data points to achieve a perfect fit; for the odd curves, the number of data points is 10. The reason for this constant number throughout all the curves is that the centers of all the distributions for the various curves are all similar. As soon as one includes a larger number of data points we cannot achieve exact

fits, and the model becomes approximate. At very low r values the number of data points remaining after cutoff are not too different to the total number of points. As r increase, the total number of points increase—the fact that we can achieve exact fits becomes less meaningful. The other models—even when including an oscillatory component were unable to give exact fits.

The model is thus much more accurate at low r values, and as r increases the actual data deviates more and more from the fit. This reinforces the statements from the comments that the pseudo-Voigt model can be modified further with some function g(r, x) such that it will greatly improve the accuracy of the fit, and perhaps even become exact.

After the above analysis, we return to our goal of finding a single function describing the distributions. It is clear from the above that the function has to be a function of at least two variable, f = f(x, r). We thus continue the analysis by plotting all the parameters versus r, in search for any relationships. We find that three parameters σ , b and α can be expressed in terms of r, the other parameters, while they show trends, do not give a precise relationship with r. For the even distribution of $h^{1,1} - h^{1,2}$, the r values range from 36 to 110, whereas for the odd distribution (see Fig. 24a, b) the r values range from 37 to 99. By looking at Fig. 10a, it turns out that:

$$\alpha(r) = c_{\alpha}, \quad b(r) = c_b, \quad \sigma(r) = c_{\sigma_1}r + c_{\sigma_2}.$$
 (2.4)

Our model of $h^{1,1} - h^{1,2}$ now looks as follows:

$$f(x, r, A_0, a) = (1 - c_{\alpha}) \frac{A_0(r) + a(r)\cos(2\pi c_b \cdot x)}{\sqrt{2\pi}(c_{\sigma_1}r + c_{\sigma_2})} e^{\frac{-(x)^2}{2(c_{\sigma_1}r + c_{\sigma_2})^2}} + c_{\alpha} \frac{A_0(r) + a(r)\cos(2\pi c_b \cdot x)}{\pi} \left[\frac{(c_{\sigma_1}r + c_{\sigma_2})^2}{x^2 + (c_{\sigma_1}r + c_{\sigma_2})^2} \right], \quad (2.5)$$

where $A_0(r)$ and a(r) are two unknown functions yet to be determined (see Fig. 10b for relationship plots). For replicating the plots as precisely as possible, one would need to keep the parameters, as they are, up to their 17 decimal values, without excluding terms as we have done. If one wants to reproduce the data from the model, one has to use the exact expressions. Making an approximation from an already approximate model leads to large errors.

The first plot in Fig. 10a in particular evinces a sinusoidal fluctuation about the mean. This again indicates the possibility of refining the plots by adding an extra function.

2.2. Analysis of $h^{1,1} + h^{1,2}$. We begin by classifying the curves within the $h^{1,1} + h^{1,2}$ distribution (Fig. 2) in an analogous way to how it was explained before. This time, we order the data by $h^{1,1} - h^{1,2}$ such that a single curve within $h^{1,1} + h^{1,2}$ can be identified by its q-value, where $q = h^{1,1} - h^{1,2}$. Due to mirror symmetry, the curve for q = -a is the same curve as q = a, thus within our two-dimensional plots will only have q > 0. In continuation to the analysis on $h^{1,1} - h^{1,2}$, we use a cutoff frequency of 2000 and only present results from the even distribution within $h^{1,1} + h^{1,2}$, unless stated otherwise. As an example, illustrating the classification of curves within $h^{1,1} + h^{1,2}$, consider the curves q = 0, 18, 30 in Fig. 11.

2.2.1. A Planckian fit Each curve within the $h^{1,1} + h^{1,2}$ distribution behaves the same. Just like in the $h^{1,1} - h^{1,2}$ distribution, we do a regression analysis for each curve within

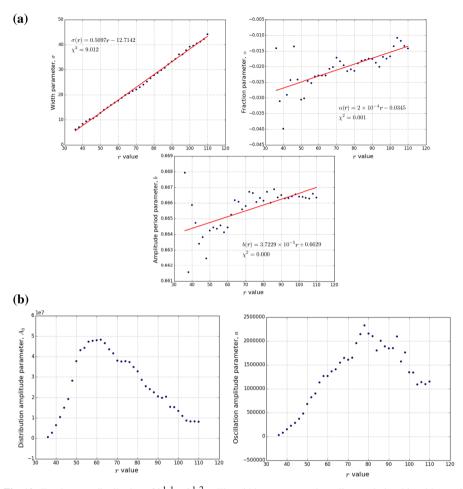


Fig. 10. For the even distribution of $h^{1,1} - h^{1,2}$. **a** The width parameter σ has a linear relationship with *r* such that $\sigma(r) = 0.5097r - 12.7142$. The amplitude period parameter, *b*, also has a linear relationship, however, since *r* is at most order 3 in magnitude, we can regard it as a constant such that $b(r) = 0.6629 \sim 2/3$. The same goes for the fraction parameter, α ; we can regard it as a constant such that $\alpha(r) = -0.0345$. For odd parameter fit statistics see Fig. 24a; **b** plots of A_0 versus *r* (*left*) and *a* versus *r* (*right*). Both exhibit a similar pattern, however it is difficult to discern any nice relationships. For odd parameter plots see Fig. 24b

the distribution independently, in the quest to describe the entire $h^{1,1} + h^{1,2}$ with a single function. The model we chose to describe $h^{1,1} + h^{1,2}$ is the simplest possible Planckian model

$$f(x, A, n, b) = \frac{A}{x^n} \frac{1}{e^{b/(x-22)} - 1}$$
(2.6)

The parameter names in the fit results are the amplitude *A*, the power *n*, and some real constant *b*. The shift in *x*-axis is so that the distribution begins at 0 as the smallest $h^{1,1} + h^{1,2}$ above the cutoff is 22. The choice of a Planckian model in the above form is greatly motivated by the blackbody distribution $f(T, \lambda)$. The *q* curves within $h^{1,1} + h^{1,2}$ appear to behave in a manner analogous to the curves of constant *T* within the blackbody

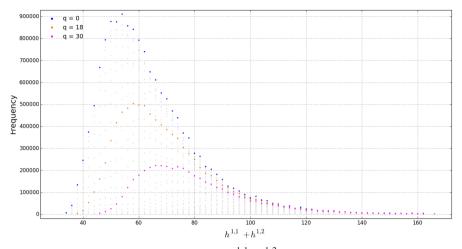


Fig. 11. Three curves (q = 0, 18, 30) within the even $h^{1,1} + h^{1,2}$ distribution. The transparent *grey data dots* are all the data plots for the distribution. Refer to Fig. 31 to see the same example for the classification of odd curves within the odd distribution

distribution. This is an initial trial. Later, we will discover additional structure in the distribution by trying to mimic the blackbody distribution exactly. It turns out that the general behavior of the distribution is modeled very well, cf. Fig. 12a.

Consider the maximum of each of the curves. As indicated in Fig. 12a, we can fit the maxima to a curve as indicated using the data plotted for the given values of q. From the above analysis, the $h^{1,1} + h^{1,2}$ distribution behaves analogously to a blackbody spectrum—except for one small subtlety. It is in this subtlety that the added structure within $h^{1,1} + h^{1,2}$ is observed.

Just as was seen in Fig. 2, $h^{1,1} + h^{1,2}$ appears to split up into two smaller distributions based on the parity of $h^{1,1} + h^{1,2}$. One can then further break up both the even and odd distributions into three further sets. The manner we observed this added fine structure is again motivated by a blackbody spectrum. In a true blackbody distribution, the curves of constant *T* never overlap. However, if you consider the lines of best fit only, when looking at our distribution one sees an overlap of certain curves. For example, observe the following plot of curves which clearly cross in Fig. 12b.

It turns out that this overlapping occurs consistently to the point where one can classify the curves (defined by their q value) into residue classes q_n distinguished by $n \mod 6$. On the left hand side of the $h^{1,1} + h^{1,2}$ axis, the curves are ordered with red (residue class q_2) above yellow (residue class q_4) above blue (residue class q_0), whereas on the right hand side of the axis, the order is reversed. Similar behavior is observed in the odd distribution of $h^{1,1} + h^{1,2}$ with the curves in the residue classes q_1 , q_3 , and q_5 (see Fig. 32b).

The clusters of curves constitute an entire set of mod 6 residue classes. These classes now define a set of curves which belong to very "nice" distributions that behave exactly like a blackbody distribution.¹ Compare, for example, a plot of the all the curves for even distribution of $h^{1,1} + h^{1,2}$, separated into their residue classes, Fig. 13

¹ Of course $h^{1,1} + h^{1,2}$ is not continuous. It is discrete. However, the structure of the best fit curve to the data points appears very similar to that of a continuous blackbody distribution.

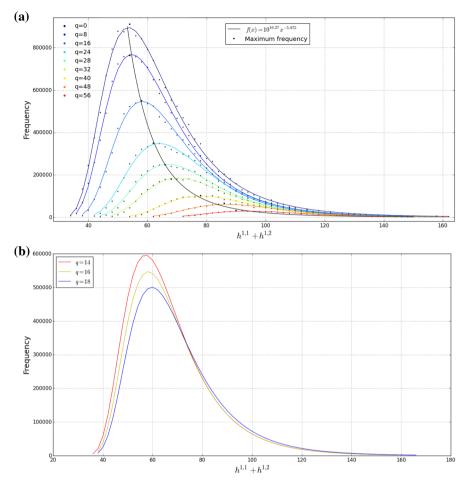


Fig. 12. In the attempt to describe the data analogously to a blackbody distribution (a), we discover some subtle structure (b). a Lines of best fit from a regression analysis for a few select curves. The *black data* points represent the maximum frequency for that particular q-curve. The *Black line* is a line of best fit to describe the points of maximum frequency—this is analogous to a blackbody spectrum. See Fig. 32a for the curves within the odd distribution. b The curves segregate into three classes determined by the value of the even integer modulo 6. A similar pattern occurs in the odd distribution; see Fig. 32b

As a first approximation we have successfully modeled the general trend of the data. There is, however, a fine structure to the individual data points that we would like to model. Introducing an oscillating term in the amplitude, as seen in the analysis of $h^{1,1} - h^{1,2}$, unfortunately did not seem to improve the fits.

Again, it appears that the least number of variables our functions can have is two, f = f(x, q). This function will be slightly different in the values of coefficients, depending on which residue class one is modeling.

Just as for $h^{1,1} - h^{1,2}$, we wish to express the parameters for the $h^{1,1} + h^{1,2}$ model (2.6) in terms of q. We therefore write A = A(q), b = b(q), n = n(q) and seek to find expressions for the coefficients.

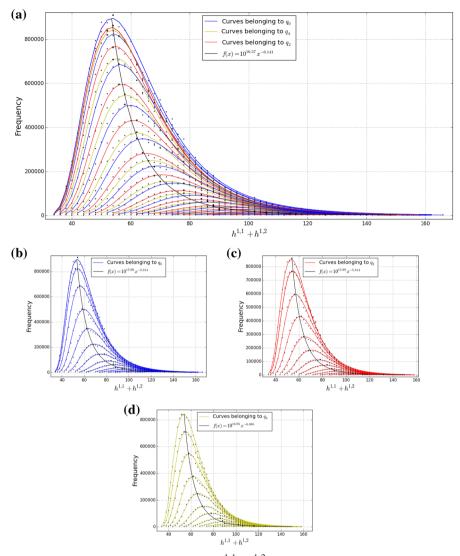


Fig. 13. We illustrate the added structure for even $h^{1,1} + h^{1,2}$ data, by displaying how the regression curves can be divided into residue classes. For the list of odd curves, refer to Fig. 33. **a** All the curves *color* coded according to what residue class their curves q_n belongs to. **b** Family of curves all belonging to q_0 . **c** Family of curves all belonging to q_2 . **d** Family of curves all belonging to q_4 (color figure online)

While the x-axis of $h^{1,1} + h^{1,2}$ has only positive q values—due to the fact the data points will overlap—when plotting them against the parameter values, we also have to consider the negative values of q. We present the various relationships (see Fig. 34 for the plots for the odd distribution of $h^{1,1} + h^{1,2}$ analogous to Fig. 14).

Each distribution has an equation with different parameter values. However, the fact that we can express all the parameters in terms of q means we are able to get a generalized formula to describe the entire $h^{1,1} + h^{1,2}$ distribution—as long as the frequency is above 2000. For succinctness we use the following notation for the coefficients

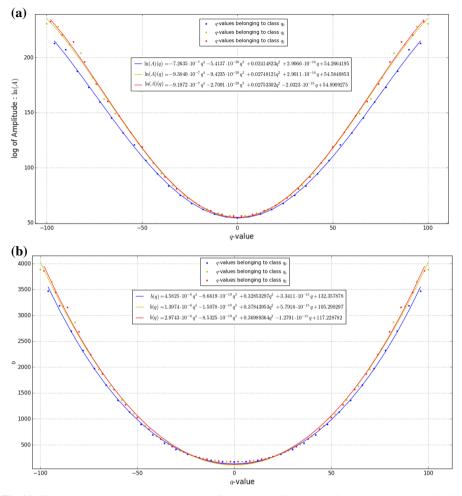


Fig. 14. The parameter plots are *color* coded according to what residue class their q value belong to. **a** Plotting the q-value parameter versus the $\log(A)$ parameter. **b** Plotting the q-value parameter versus the b parameter. **c** Plotting the q-value parameter versus the power n parameter (color figure online)

$$A_{k,i}, n_{k,i}, b_{k,i},$$
 (2.7)

where the subscript k = 0, 1, 2, 3, 4, 5 refers to residue class q_k , and i = 0, 1, 2, 3, 4 refers to the coefficient of the i^{th} power of q. Thus, we have:

$$A_k(q) = \exp(\sum_{i=0}^4 A_{k,i}q^i), \quad n_k(q) = \sum_{i=0}^4 n_{k,i}q^i, \quad b_k(q) = \sum_{i=0}^4 b_{k,i}q^i, \quad (2.8)$$

where the matrix of coefficient values for $A_{k,i}$, $n_{k,i}$ and $b_{k,i}$ can be found in "Appendix A.2.2".² Our function (2.6) now is able to approximately describe the entire $h^{1,1} + h^{1,2}$ distribution:

² Perhaps it is important to state explicitly—due to potential confusion—that the coefficients $A_{k,i}$ refers to the natural logarithm of the amplitude values while A_k is the actual amplitude seen in the model.

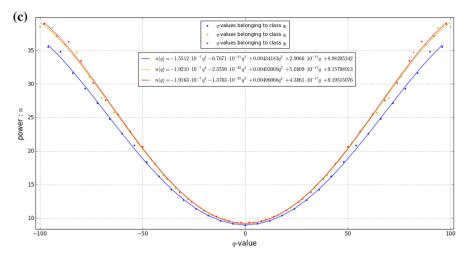


Fig. 14. continued

$$f_k(x,q) = \frac{e^{\sum_{i=0}^4 A_{k,i}q^i}}{x^{\sum_{i=0}^4 n_{k,i}q^i}} \frac{1}{\left(e^{\frac{\sum_{i=0}^4 b_{k,i}q^i}{(x-22)}} - 1\right)},$$
(2.9)

Of course there are certain constraints on the values of q. For a given k, q has to be an integer which falls within the residue class q_k . For even values of k, x = 2m, and for odd k, x = 2m + 1. We have m > 12.

A few comments about the analysis on the $h^{1,1} + h^{1,2}$ distribution are in order.

- 1. The Planckian model used in (2.6) could be modified in some manner such that there is some oscillating behavior in the amplitude. Any kind of oscillatory term we introduce, only has a mild effect on the model's behavior. As the q values exceed 100, the model is not able to describe the data very well.
- 2. Assuming one adds an oscillatory component to the model, the module used in python to do the regression analysis called *lmfit* is sensitive to the initial conditions set by the user. Since the model is a custom model, it is difficult to find the correct initial conditions such that the best fit line oscillates close to every point (as with $h^{1,1} h^{1,2}$).
- 3. It is possible that the model used does not have the features required to describe the oscillatory "up and down" behavior of the data points. The Planckian model was chosen in that the $h^{1,1} + h^{1,2}$ distribution resembled a blackbody distribution.
- 4. In choosing a polynomial model for Fig. 14a–c, we picked the lowest order polynomial that gave the best fit. Choosing the order to be four for all the plots appeared to be convenient. However, it is apparent that the parameter relationship plot in Fig. 14b would be better described by a polynomial of order 6. One could use an order 6 polynomial for all the other relationships plots too, but doing so might not have any physical significance. One can achieve an arbitrarily good fit the larger the order of the polynomial used, but that does not necessarily mean the chosen model is the correct model.

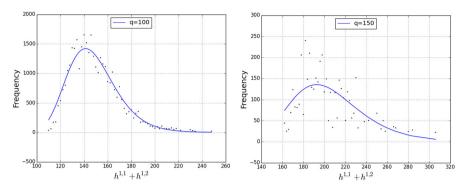


Fig. 15. Left figure is the fitted model(blue line) for a q value of 100 and right has a q value of 150. As the q-value increases, the scattering of the data points within $h^{1,1} + h^{1,2}$ increases to the point where the model works no longer. For an example of how the model begins to break down at large q, see Fig. 35 (color figure online)

2.3. The distribution of the Euler number. The Euler number for Calabi–Yau threefolds is

$$\chi = 2(h^{1,1} - h^{1,2}). \tag{2.10}$$

As mentioned previously, we are summing over all the various *r*-curves to obtained the full-Euler number distribution. A plot of χ versus frequency yields the pseudo-Voigt distribution. In particular, we can model the behavior of the distribution almost perfectly using the modified pseudo-Voigt curve (2.11) and (2.12), which is repeated here for convenience:

$$f(x, A, \sigma, \alpha) = (1 - \alpha) \frac{A}{\sigma\sqrt{2\pi}} e^{\frac{-(x)^2}{2\sigma^2}} + \alpha \frac{A}{\pi} \left[\frac{\sigma^2}{x^2 + \sigma^2}\right],$$
(2.11)

where

$$A(x, A_0, a, b) = A_0 + a\cos(2\pi b \cdot x).$$
(2.12)

The results of the regression analysis for the Euler number distribution is presented in Fig. 16a.

The fitted parameter values for $f(\chi)_E$ corresponding to even values of $h^{1,1} - h^{1,2}$ are:

$$(A_0, \sigma, \alpha, b, a) = (1.9032 \times 10^9, 75.8305889, 0.00718459, 0.58347826, 8.7427 \times 10^7).$$
(2.13)

Likewise, the fitted parameter values for $f(\chi)_0$ corresponding to odd values of $h^{1,1} - h^{1,2}$ are:

$$(A_0, \sigma, \alpha, b, a) = (7.6043 \times 10^8, 64.9735680, 0.00549425, 0.83357720, 3.6881 \times 10^7).$$
(2.14)

Although χ is only even, the two curves originate from the fact that if you take $\chi/2$ you get even and odd values. The two curves arise from the parity of $\chi/2$ and are presented in Fig. 16a.

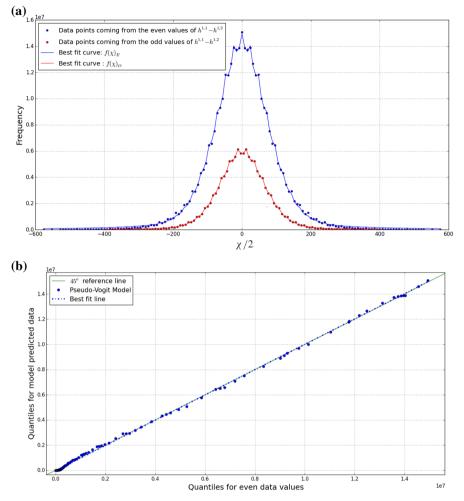


Fig. 16. Various plots illustrating the actual fit of the modified pseudo-Voigt model. We can tell we have a good fit by looking at the probability plots for the quantiles of the standard pseudo-Voigt distribution versus quantiles for the actual data. The R^2 values in (**b**) and (**c**) are given relative to the line y = x. **a** The distribution of Euler numbers fitted to a modified pseudo-Voigt curve. The *blue* curve $f(\chi)_E$ represents even values of $\chi/2$. The *red* curve $f(\chi)_O$ represents odd values. **b** Probability plot for the even values of $\chi/2$. The model fits the data with $R^2 = 0.99944$. **c** Probability plot for the odd values of $\chi/2$. The model fits the data with $R^2 = 0.99965$ (color figure online)

2.4. Goodness-of-fit. A goodness-of-fit test is implemented as a means of testing how well a given model describes some given data. Typically the model validation process consists of only quoting a single statistically generated number like the R^2 , χ^2 or p values. Based on the size of this number, one then makes inferences on how well the chosen model fits the observation. One needs to be careful however of misusing such indicators as an absolute measure for assessing goodness-of-fit.

For a structural equation model (SEM)—in our case, the modified pseudo-Voigt and Planckian models—this assessment is not so straight forward as it would be for a simple regression analysis. To quantify the predictive power of an SEM, a single statistical

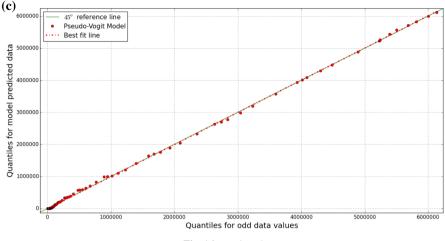


Fig. 16. continued

test does not suffice - in fact, there is no single test. According to [41], the best one can do is assess three different aspects of what it means to have a good fit, these are: overall fit, comparative fits to a test model and model parsimony.³ The only real test available is the chi-squared (χ^2) test, when it comes to overall fit, this χ^2 statistic is the most popular test. The χ^2 test compares observed and predicted correlation matrices with each other, and so, statistical significance is evaluated based on the value of χ^2 . A large χ^2 value signifies a considerable difference between the correlation matrices. A low value indicates there is little statistical difference between matrices. Since the χ^2 test is between actual and predicted matrices only, when looking for overall fit, one searches for non-significant differences between the correlation matrices. Often, rather than presenting the χ^2 or χ^2_R (the chi-squared value relative to the degrees of freedom for the model) value, a p value is given instead. The p value, in a way, informs us whether one should reject a null hypothesis or not. A small *p*-value suggests that the differences in observed versus predicted are too large to be consistent with the null-hypothesised model i.e. assuming the null-hypothesised model, the probability of observing what we did is relatively small, suggesting either an absolutely fluke experimental outcome or an incorrect model null-hypothesis. The p-values can be determined by a p-value calculator by inputting the χ_R^2 value. There is no standard way of choosing a significance level for the *p*-value, but typically p < 0.05 is considered statistically significant.

In general, statistical non-significance given by appropriate values of the χ^2 fit statistics is adequate. However, one must be careful of drawing similar conclusions for structural equation modeling. The fit statistic makes a statement of the correlation matrices only, not about whether or not the correct model is identified. This is largely due to the sensitivity to sample size of the χ^2 test. In our analysis, the sample size (number of reflexive polytopes) is enormous—almost one billion! For large samples (> 200) the χ^2 test will give significant differences for any model used. This sensitivity to a sample size, together with an *effect size* and *alpha value*, is related to what one calls the power of a test - the probability of not incorrectly accepting a null hypothesis that is actually false.

 $^{^3}$ Parsimony refers to the ability of a model to give a certain degree of fit whilst having the least required number of predictor variables.

Without worrying too much about what an effect size and alpha value is; for any alpha value, the greater the sample size, the greater the power of the statistical test. However, increasing the sample size beyond a certain amount, can result in the test having "too much" power.⁴ Perceived effects in very large sample sizes, will always become significant.⁵ Observe how in Figs. 29 and 36 the χ^2_R values for all the different curves is extremely large, naively indicating that we have a horrible fit—which would be an incorrect conclusion.

It is clear from the above discussion that we cannot use the χ^2 or p values in validating our choice in model. What is not so clear, is the additional subtlety in using purely statistical means to asses goodness-of-fit for our data. This subtlety lies at the heart of almost all statistical tests—the construction of a null hypothesis. The term frequency, as used in the statistical sense, refers to the number of outcomes for a certain event. The measurement of this outcome will often have certain known or unknown factors affecting it. These tests check for the probability that the errors found are too significant to be solely due to random variations in the data. For example, assume that statistical tests give non-significant results. If the residuals are small enough to be considered random errors in the measurement of the frequency, we could say that the model is appropriate. If however, the residuals are too large or present additional structure, we could say the model is good, but not quite the correct one as the residual errors are not "random enough". In our case, there is no notion of measured frequency and error in measurement of frequencies. Our frequencies are generated as a result of a combinatoric calculation. Statistical tests assume that the input is from measurement and observations (obeying some null-hypothesis), thus they are inherently constructed with this notion in mind. By inputting our data, the tests are trying to calculate something from a data set which does not obey the very assumption they use in their calculations. We are not exactly clear how much this affects statistical outcomes, but it is important to keep in mind.

How do we validate then, that our chosen models are a good fit, or that our model is the best one at describing the data? We implement graphical methods. The first graphical method is obviously through pure inspection—this is not quite statistically quantifiable. There is a statistically based graphical method to asses goodness-of-fit called probability plots, Q-Q plots or P–P⁶ plots. These plots were initially constructed to test the "normality" of a data set when the sample size is too large to depend on the χ^2 and p values. In principle, a standard probability plot tells you the likelihood that the a sample's distribution of data obeys a normal distribution—hence checking for normality. The answer to the question is not given by a statistical value, but rather by a graphical representation from which one can extract statistical numbers. If the plotted data on this probability plot is a straight line, then we can determine that the sample set is normally distributed.

We can extend this concept further: we can take two different samples, and take a probability plot to determine if two data sets come from populations with a common distribution. Such a probability plot is referred to as a Q–Q (quantile–quantile) plot. Extending this concept one more time—as for our use—we will take the quantiles of our theoretical distribution (the modified pseudo-Voigt and Planckian profiles) as our

⁴ Power is the probability that you do detect deviations from your null-hypothesised model, when the null-hypothesised model is, in fact, incorrect.

⁵ Conversely is also true, for extremely small sample sizes, any effect which should be significant, becomes insignificant.

⁶ A P–P plot is the plot of the cumulative distribution frequency of the one data set against the CDF of the other. P-P plots are not as useful as Q–Q plots, thus are seldom used.

"first sample" and plot them against the quantiles of our data as our "second sample"; this will give us our probability plot. In all the probability plots, it is the quantiles of the respective data sets which are plotted against each other.

Quantiles are basically just a generalization of quartiles. For example, the *k*th percentile of a set of values divides them, such that the number of values which lie below is k%, and the number of values which lie above is (100 - k)%. The 25th percentile is the lower quartile or the $\frac{1}{4}$ quantile. Quantiles are the same as percentiles, but indexed by sample fractions rather than by sample percentages. Suppose that $p \in [0, 1]$, the aim is to find the value that is the fraction p of the way through the ordered data set. As an example, if $p = \frac{1}{2} = 0.5$, we want to know what is the value that sits at p = 0.5 of the way through i.e. half way. The value that sits there (this value may have to be interpolated) will be called the quantile for the fraction p = 0.5. There are many different algorithms for generating the quantiles for a given data set, we use python to generate the quantiles in a manner similar to that discussed above. For an ordered data set, $x_1 \le x_2 \le x_1 \ldots \le x_{n-1} \le x_n$, the most common way of calculating quantiles is to first compute the empirical distribution function:

$$F(x) = \frac{1}{n} \sum_{i=1}^{n} = 1(x_i \le x), \quad x \in \mathcal{R},$$
(2.15)

and then define the quantile function to be the inverse of F(x):

$$F^{-1}(p) = \min\{x \in \mathcal{R} : F(x) \ge p, \ p \in (0, 1)\}.$$
(2.16)

By generating the quantiles of some theoretical model and comparing them to the quantiles of a given data set of equal length, one can determine if the data set belongs to the same distribution as the data set belonging to the theoretical model—i.e., does the data fit the model. If the quantiles are roughly equal the plots will all be more or less on a straight line.

In probability plots:

- 1. The length of data set needs to be equal. For unequal lengths, one must perform an interpolation of data.
- 2. If two identical data sets were compared to one another, the points would lie exactly on a 45 degree line. Thus, for two different data sets, the deviation from this reference line determines the likelihood that the sets belong to similar distributions. To quantify this likelihood, one can calculate the R^2 -value of the data, relative to the y = x reference line.
- 3. Q–Q plots are not only limited to determining similarity in data sets. By analyzing the deviations which occur, one can determine how the scale and location of the data is shifted the data would follow some line y = mx + c, where m, c would be the estimates of these shifts in scale and location. Also, from the distribution of points above or below the reference line, one can infer aspects of the tails and skewness in the data.

Consider the following curves for the $h^{1,1} - h^{1,2}$ distribution with r = 60 in Fig. 17a, b.

For the $h^{1,1} + h^{1,2}$ distribution we just plot the data of q = 2 together with the corresponding probability plot in Fig. 18.

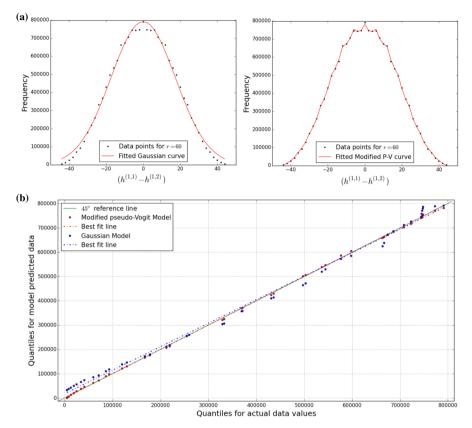


Fig. 17. Using probability plots, we are able to statistically see which model provides the better fit. We employ such graphical methods as standard goodness-of-fit tests such as the χ^2 fail to give meaningful results. **a** Best fit curve for r = 60 based on the *left* Gaussian model, *right* modified pseudo-Voigt model. **b** Probability plot for Fig. 17a. The x-axis represents the quantiles for the actual data, the y-axis represents the theoretically predicted quantiles—dependent on the model chosen (*red* modified pseudo-Voigt model ($R^2 = 0.99974$); *blue* Gaussian model ($R^2 = 0.99334$). The R^2 values are not relative to the best fit lines, but are relative to the 45° reference line y = x. The closer the R^2 value is to 1, the more similar the predicted quantiles are to the actual ones, thus, the better the model describes the data (color figure online)

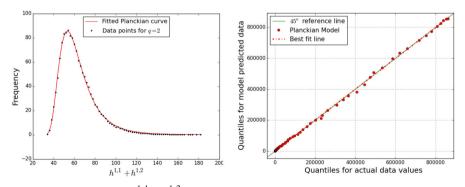


Fig. 18. Left best fit curve of $h^{1,1} - h^{1,2}$ distribution for curve q = 2 based on the Planckian model. Right probability plots of our fitted theoretical Planck model versus the q = 2, $h^{1,1} - h^{1,2}$ distribution

In its current form, the probability plots do not allow us to calculate *p*-values of the various models. This due to the same issue encountered previously. If one however standardizes the data according to the *Z*-standardization:

$$Z = \frac{X - \mu}{\sigma},\tag{2.17}$$

where μ and σ are the mean and standard deviation, it is possible to calculate the *p*-values since the magnitude of each sample gets rescaled. The probability plot of all the models is displayed in the "Appendix", with the relative *p*-values for each model— Fig. 25g, h. What we see is that the modified pseudo-Voigt is statistically the model which provides the best fit.

2.5. Implications for physics. Calabi–Yau threefold compactifications of string theory have been the traditional approach to obtaining interesting phenomenological models. The plethora of geometries and configurations, ranging from heterotic strings on Calabi–Yau threefolds endowed with stable bundles, to D-brane probes on local Calabi–Yau varieties, to F-theory compactification on elliptic fibrations, has over the years justified the landscape and inspired various statistical analyses of the space of vacua.

Of particular interest has been the investigation of further structures in the Kreuzer-Skarke database, including identification of "the tip" where Hodge numbers are small [21,35,46], the top bounding curves where Hodge numbers are large [43], identifying elliptically fibered threefolds [28,29,42,44], finding further fibrations such as K3-fibers [33,45], or a step-by-step construction of all possible smooth Calabi–Yau hypersurfaces from the reflexive polytope data [19], etc. Now, it should be emphasized that each of the some 473 million reflexive polytopes admits, as an ambient toric variety, many⁷ so-called maximal projective crepant partial (MPCP) desingularization, each of which gives rise to a different Calabi-Yau threefold. Therefore, the actually number of Calabi-Yau threefolds from the Kreuzer–Skarke database is many orders of magnitude larger than 10^{10} . While manifolds coming from the same reflexive polytope have different geometrical data such as triple intersection numbers, which in the standard embedding in heterotic compactification correspond to Yukawa couplings, they do share the same Hodge numbers because these, by virtue of (2.1), depend only on the combinatorics of the polytope. We need to wait for significant theoretical and/or computational advances to have the full data of the Hodge pairs in view of the Calabi–Yau manifolds themselves, which might give new statistics. It would be perhaps even more interesting if the statistics remain largely the same, thereby hinting at some universality in the distribution of such topological data.

In the context of the recent works on F-theory, it is an important fact the vast majority of the Kreuzer–Skarke threefolds are elliptic fibrations over some complex surface, and in fact birational to [42,44,45] a Weierstrass model. For example, some 10⁶ alone [42] come from elliptic fibrations over \mathbb{P}^2 . Therefore the Kreuzer–Skarke dataset is directly relevant to F-theory. In the more classical context of heterotic strings, the Hodge numbers dictate the number of (anti-)generations in the standard embedding. In our above plots, the Euler number ± 6 indicate the three generation models. The generic paucity of $\chi = \pm 6$ manifolds led to the industry of non-standard embedding where extra vector bundle and Wilson line information is needed. The advantage of F-theory models is that

⁷ The actual numbers are not yet known, but even up to $h^{1,1} = 7$, we already see from tens to thousands and with the number increasing potentially exponentially as we go up in Hodge number [19].

the compactification data comes only from the Calabi–Yau manifold. In particular, the intersection theory of the cycles and fiber-degeneration structure determine the gauge group, anomaly cancellation, matter content, and Yukawa couplings. Much of this can be extracted from the polytope data.

F-theory compactifications on threefolds, resulting in six dimensional gauge theories have been considered from the point of view of systematically classifying the base complex surfaces [44] and the statistics have been performed therein. Non-toric bases were considered and a number of Calabi–Yau threefolds beyond the Kreuzer–Skarke data were found. It is remarkable that the overall distribution of Hodge numbers remains largely unchanged. Indeed, in unpublished work of Kreuzer–Skarke, where they extended the hypersurface in toric fourfolds to double hypersurfaces in fivefolds, obtaining some 10¹⁰ more manifolds and the shape of Fig. 1 persists. All these point to the Kreuzer–Skarke data being a robust representative in the space of Calabi–Yau threefolds. Our distribution subsequently seems a representative sample, and we speculate that analyses of string vacua, in any context, should be thus weighted. For example, in study of the "typical" number of generations in four dimensional heterotic compatification, or of charged matter in six dimensional F-theory compactification, one should superpose our pseudo-Voigt profile.

3. Calabi-Yau Twofolds: K3 Surfaces

As noted in the Introduction, there are 4319 data points, corresponding to hypersurfaces as Calabi–Yau twofolds, i.e., K3 surfaces, in reflexive three dimensional polytopes. Being algebraic K3 surfaces, there is only one relevant topological invariant, the Hodge number, $h^{1,1} = 19$. However, there is a further refined algebraic quantity for the K3 surface X, the rank of the Neron–Severi lattice $H^2(X; \mathbb{Z}) \cap H^{1,1}(X)$, which is the **Picard Number** $\rho(X)$ and which enumerates the number of divisors on the surface up to algebraic equivalence. The Picard numbers of the 4319 K3 surfaces were computed in [12]. We present the distribution thereof in Fig. 19a.

We only used the standard pseudo-Voigt profile as the modified one did not change the fit significantly. Here are the fit statistics for best fit curve: $(A, \mu, \sigma, \alpha) = (4517.45, 10.76, 2.97, -0.031)$, as shown in Fig. 19.

What is interesting about Fig. 19a is that the "oscillations" of the actual data points above and below the modeled curve is very apparent, yet modifying the pseudo-Voigt profile is unable to give any significant improvement. This leads to two potential conclusions: (a) the pseudo-Voigt profile is not the best profile to use in combination with an oscillatory component; (b) the manner in which the oscillations occur is not so straight forward as introducing simple cosine function. An interesting exercise would be to superimpose a cosine function along the distribution, by rotating it as one traverses the profile. As long as the wavelength, amplitude and angle of rotation are all small enough, the continuously rotated cosine function should remain a function everywhere along the profile.

4. Calabi-Yau Fourfolds

The analysis of the four fold data is performed in the same spirit as the threefold data. We aim to look for patterns in the frequency plots. Due to complex conjugation and Poincaré duality, the only topological invariants of fourfolds that vary are $h^{1,1}$, $h^{1,2}$, $h^{1,3}$, and $h^{2,2}$. Three of these are independent [15]:

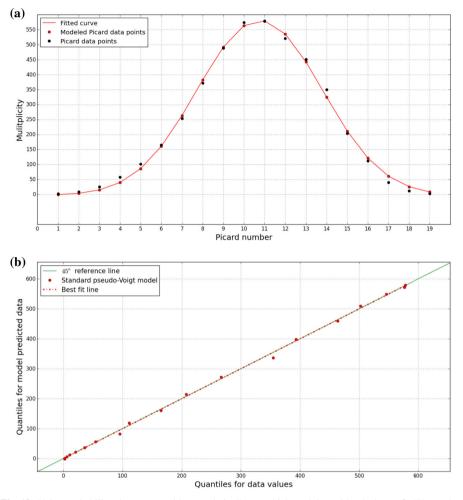


Fig. 19. Using probability plots, we are able to statistically see which model provides the better fit. We employ such graphical methods as standard goodness-of-fit tests, such as the χ^2 test, fail to give meaningful results. **a** For K3 surfaces, the multiplicity is plotted against Picard number with a pseudo-Voigt fit. **b** Probability plot for the multiplicity quantiles versus the fitted standard pseudo-Voigt quantiles. The R^2 value is 0.99908

$$h^{2,2} = 44 + 4h^{1,1} - 2h^{1,2} + 4h^{1,3}.$$
(4.1)

We compiled a database for the frequency of the triplets $(h^{1,1}, h^{1,2}, h^{1,3})$ to then obtain the following data structure

$$(h^{1,1}, h^{1,2}, h^{1,3}, f)$$

Since one expects mirror symmetry within the invariants $(h^{1,1} \pm h^{1,3})$ [40], a plot of $h^{1,1} - h^{1,3}$ against $h^{1,1} + h^{1,3}$ (Fig. 20) should be symmetric about the line $h^{1,1} - h^{1,3} = 0$. Doing a quick analysis of the data yields the following observations: only partial mirror symmetry is found. For 69.77% of data points, the point $(h^{1,1} - h^{1,3}, h^{1,1} + h^{1,3})$ is accompanied by the point $(-h^{1,1} + h^{1,3}, h^{1,1} + h^{1,3})$. Taking frequency into account,

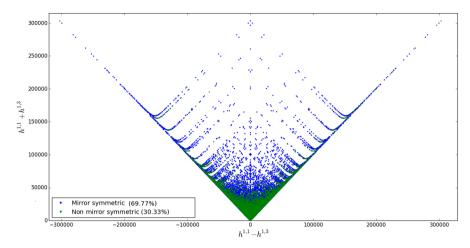


Fig. 20. The *blue points* correspond to manifolds with a mirror symmetric counterpart in the data set (color figure online)

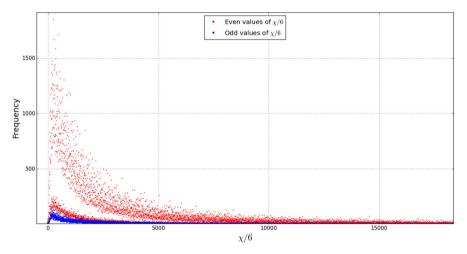


Fig. 21. Frequency of Calabi-Yau fourfolds with a given Euler number

the percentage drops to 27.35%—see Fig. 37 in the "Appendix". This is most likely due to an incomplete data base.

For now, we have performed a primary analysis on the Euler distribution only. The Euler number for fourfolds is [15]:

$$\chi = 6(8 + h^{1,1} - h^{1,2} + h^{1,3}). \tag{4.2}$$

Interestingly enough, the distinction between even and odd distributions persist in the fourfold data base. For illustrative purposes, we show the distribution of $\chi/6$ against frequency.

It is not immediately clear what is the reason for the gap, presumably it could be a cluster of data points which is missing from the data base. Until one obtains the complete fourfold data base of Hodge numbers, one can't say much else. We also preset plots of the individual Hodge numbers $h^{i,j}$ versus frequency.

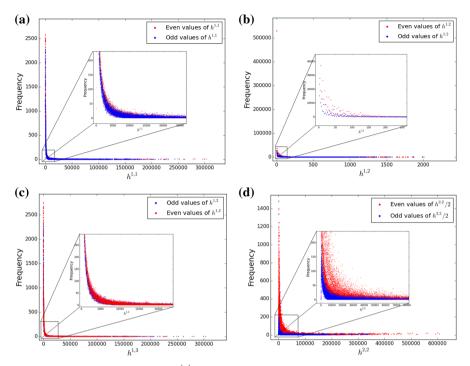


Fig. 22. The frequency for all the hodge $h^{i,j}$ numbers. *Red points* and *blue* are odd and even points respectively for the various Hodge numbers. The data points are very dense close to the origin making it difficult to properly illustrate the mixing of odd and even Hodge numbers. Only $h^{2,2}$ **c** has a clear separation between of an even values. **a** $h^{1,1}$ versus frequency. **b** $h^{1,2}$ versus frequency. **c** $h^{1,3}$ versus frequency. **d** $h^{2,2}$ versus frequency (color figure online)

5. Conclusions and Outlook

By examining the distribution of Hodge numbers of Calabi–Yau manifolds of complex dimension two, three and four, realized as hypersurfaces in toric varieties of one higher dimension as constructed by Kreuzer and Skarke based on the results of Batyrev and Borisov, we have found many hithertofore undiscovered patterns. We summarize our key points as follows.

- For threefolds, there are 30108 distinct pairs of Hodge numbers $(h^{1,1}, h^{1,2})$ from 473800776 reflexive polytopes, the frequency of both the half-Euler number $h^{1,1} h^{1,2}$ and the sum $h^{1,1} + h^{1,2}$ are distributed according to whether the value is odd or even;
 - The half-Euler number $h^{1,1} h^{1,2}$ follows a modified pseudo-Voigt distribution

$$f(x) = (1 - \alpha) \frac{A'}{\sigma\sqrt{2\pi}} e^{\frac{-(x)^2}{2\sigma^2}} + \alpha \frac{A'}{\pi} \left[\frac{\sigma^2}{x^2 + \sigma^2}\right]$$

where the modification is made in the amplitude A of the distribution, such that

$$A' = A_0 + b\cos(2\pi \cdot b).$$

There is fine periodic substructure in terms of curves indexed by an integer r. Our model is accurate for low r-values ($r \in [36, 110]$ and $r \in [37, 99]$); using probability plots as test for goodness of fit, this modified pseudo-Voigt model is indeed the best one out of several standard candidates (cf. Fig. 29 for all the R^2 and p values).

Among A, σ, α, b, a , the parameters σ, b, α have a strong linear relationship with r:

Even r	Odd r
$\sigma(r) = 0.5097r - 12.7142$	0.51379r - 13.2494
$\alpha(r) = 2 \times 10^{-4} r - 0.0345$	$2.25 \times 10^{-4} r - 0.0388,$
$b(r) = 3.7299 \times 10^{-5}r + 0.6629$	$7.9101 \times 10^{-5}r + 0.65956$

For a small subset of curves with a low *r*-value and an appropriate cut-off frequency, it is extraordinary that the model *exactly fits the data*. That is, it appears that the number of data points for each curve required, such that the model will result in a perfect fit is: 7 for even *r*-valued curves and 10 for the odd valued *r*-curves, see Fig. 30.

- The quantity $h^{1,1} + h^{1,2}$ follows a Planckian distribution

$$f(x) = \frac{A}{x^n} \frac{1}{e^{b/(x-22)} - 1}$$

There is a substructure of curves, indexed by an integer q, each Planckian and with some periodic behavior. The curves q_n appear clustered into groups of residue classes distinguished by $n \mod 6$, and the parameters $\log(A)$, n, b all have extremely strong relationships with the q value.

By substituting this relationship into the model, we have a function $f_k(x, q)$ that approximately describes the entire $h^{1,1} + h^{1,2}$ distribution up to a q value of 69, 100:

$$f_k(x,q) = \frac{e^{\sum_{i=0}^4 n_{k,i}q^i}}{x^{\sum_{i=0}^4 n_{k,i}q^i}} \frac{1}{\left(e^{\frac{\sum_{i=0}^4 b_{k,i}q^i}{(x-22)}} - 1\right)},$$
(5.1)

with $k = 0, 1, \dots 5$ and the coefficients given in A.8, A.9, A.10.

- The Euler number $\chi = 2(h^{1,1} - h^{1,2})$ follows the modified pseudo-Voigt distribution composed with a sinusoidal $A + A_0 + a\cos(2\pi b \cdot x)$ which is almost an exact fit, with the coefficients given by $(A_0, \sigma, \alpha, b, a) = (1.9032 \times 10^9, 75.8305889, 0.00718459, 0.58347826, 8.7427 \times 10^7)$, at $R^2 = 0.99944$ for even χ and

 $(1.9032 \times 10^9, 75.8305889, 0.00718459, 0.58347826, 8.7427 \times 10^7)$ at $R^2 = 0.99965$ for odd χ ,

The modified pseudo-Voigt distribution is remarkably accurate in predicting the overall and fine sub-structure of the Euler number distribution.

- For K3 surfaces, we have looked at the distribution of the multiplicity with Picard number. We find that this distribution follows a standard pseudo-Voigt profile. Adding in the sinusoidal modification does not significantly increase the overall fit. The parameters are given by $(a, \mu, \sigma, \alpha) = (4517.45, 10.76, 2.97, -0.031)$ with $R^2 = 0.99908$.
- For Calabi–Yau fourfolds, there is no exact mirror symmetry, due to incompleteness of available data. Nevertheless, by breaking up the data into three groups, we have
 - Mirror symmetric partners with the same frequency: 27.35%

- Mirror symmetric partners without the same frequency: 42.22%
- Non mirror symmetric partners: 30.33%

By plotting the various $h^{i,j}$ versus frequency we see there is no distinction between even and odd data values for $h^{i,j}$, expect for $h^{2,2}/2$. This distinction is carried out further in the Euler number distribution where odd points are clustered on a band with much lower frequencies. The even values of $\chi/6$ appear to be distributed along to separate bands.

It is remarkable how well the pseudo-Voigt distribution, modified with a sinusoidal component, fits the distribution of topological numbers of toric Calabi–Yau manifolds, often giving an exact fit. Of course, what we are studying at heart is the number of integer points inside (cf. (2.1)) reflexive polytopes. This is a highly non-trivial counting problem whose answer will ultimately give full analytic results for our distributions and we suspect that the answer should be some generalized pseudo-Voigt function.

Now, in addition of Calabi–Yau manifolds, stable vector bundles over various such manifolds in a variety of construction beyond Kreuzer–Skarke have also been studied algorithmically over the years in the context of heterotic compactification (cf. e.g., [23–26]). One can see a somewhat pseudo-Voigt profile in these as well, even though there is no underlying polytope and the counting problem is dictated by certain Diophantine system. It would be interesting to see why this shape is universal in such classifications.

Acknowledgements. We are grateful to Cyril Matti for collaboration during the early stages of this project. We thank Mark Dowdeswell for his input with regards to the goodness-of-fits for the various plots. YHH is indebted to the Science and Technology Facilities Council, UK, for grant ST/J00037X/1, the Chinese Ministry of Education, for a Chang-Jiang Chair Professorship at NanKai University, and the city of Tian-Jin for a Qian-Ren Award. YHH is also perpetually indebted to Merton College, Oxford for continuing to provide a quiet corner of Paradise for musing and contemplations. VJ and LP are supported by the South African Research Chairs Initiative of the Department of Science and Technology and the National Research Foundation.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

A. Appendix

Here we include all additional plots to supplement the main body. This includes the relevant plots for the odd distributions—since in the main text we only presented the plots for even distributions—as well as the regression analysis statistics and parameter values for both distributions.

A.1. Supplementary plots for the $h^{1,1} - h^{1,2}$ distribution. All even plot counterparts will be referenced in the figures. The plots appear in the same order as in the main body, with descriptions only if necessary.

A.1.1. Plots for the odd distribution as counterparts to the even ones

A.1.2. Comparative plots Here we present a comparison of various models we used, by plotting them side by side with the relevant fit-statistics. We choose a single even curve, r = 54, and odd curve, r = 51, to illustrate the difference between models.

Gaussian Model

$$f(x, A, \mu, \sigma) = \frac{A}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}$$
 (A.1)

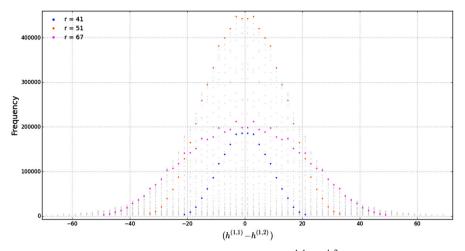


Fig. 23. Three highlighted curves (r = 41, 51, 67) within the odd $h^{1,1} - h^{1,2}$ distribution. The transparent grey data dots is the rest of the distribution. Refer to Fig. 4 for the even plot

Lorentzian Model

$$f(x, A, \mu, \sigma) = \frac{A}{\pi} \left[\frac{\sigma}{(x - \mu)^2 + \sigma^2} \right]$$
(A.2)

Pearson7 Model

$$f(x, A, \mu, \sigma, m) = \frac{A}{\sigma\beta(m - \frac{1}{2}, \frac{1}{2})} \left[1 + \frac{(x - \mu)^2}{\sigma^2} \right]^{-m},$$
 (A.3)

where β is the Beta function.

Breit-Wigner Model

This model is based on the Breit-Wigner function.

$$f(x, A, \mu, \sigma, t) = \frac{A(t\sigma/2 + x - \mu)^2}{(\sigma/2)^2 + (x - \mu)^2}$$
(A.4)

Voigt Model

$$f(x, A, \mu, \sigma, \gamma) = \frac{a \operatorname{Re}[(z)]}{\sigma \sqrt{2\pi}}$$
(A.5)

where

$$z = \frac{x - \mu + i\gamma}{\sigma\sqrt{2}}, \quad w(z) = e^{-z^2} \operatorname{erfc}(-iz)$$
(A.6)

The Voigt model is a convolution of the Gaussian and Lorentzian models.

Pseudo-Voigt Model

$$f(x, A, \mu, \sigma, \alpha) = (1 - \alpha) \frac{A}{\sigma\sqrt{2\pi}} e^{\frac{-(x-\mu)^2}{2\sigma^2}} + \alpha \frac{A}{\pi} \left[\frac{\sigma^2}{(x-\mu)^2} + \sigma^2 \right]$$
(A.7)

We present the standardized and shifted probability plots for the above comparisons:

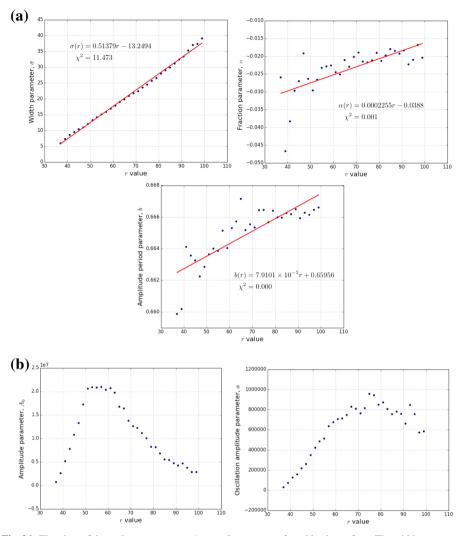


Fig. 24. The plots of the various parameters A, σ , α , b, a versus r for odd values of r. **a** The width parameter σ has a linear relationship with r such that $\sigma(r) = 0.51379r - 13.2494$. The amplitude period parameter, b, also has a linear relationship, however, since r is at most order 3 in magnitude, we can regard it approximately as a constant such that $b(r) = 0.65956 \sim 2/3$. The same goes for the fraction parameter, α , we can regard it as a constant such that $\alpha(r) = -0.0388$. For even parameter fit statistics see Fig. 10. **b** Plots of A_0 versus r (*left*) and a versus r (*right*). Both exhibit a similar pattern, however it is difficult to find any nice relationships. For even parameter plots see Fig. 10

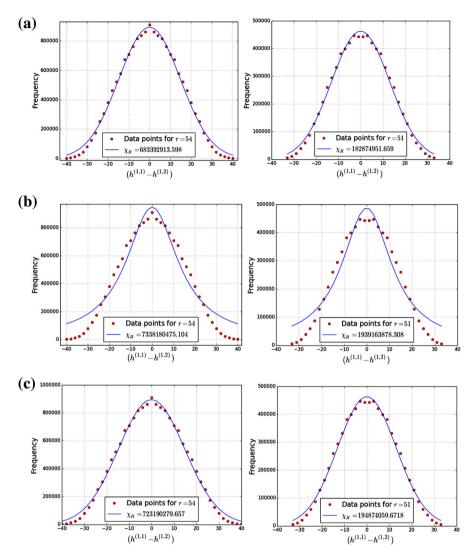


Fig. 25. For all models, the *left* hand graph is for r = 54 and the right is for r = 51. The probability plot presents all the models together. All the above mentioned modeled are included to compare their resemblance with the actual data. The larger the *p* value the better the line y = x fits the data, implying the better the model is at describing the data. **a** Gaussian model. **b** Lorentzian (Cauchy) model. **c** Pearson7 model. **d** Breit–Wigner model. **e** Voigt model. **f** Pseudo-Voigt model. **g** The probability plot for r = 51. **h** The probability plot for r = 54

A.1.3. A first approximation to the data The overall behavior of the data across each curve is modeled extremely well using the pseudo-Voigt model. Here we present a few plots illustrating a first approximation to the data. A second approximation can be made by introducing an oscillating amplitude as described in Sect. 2.1

A.1.4. Table of parameter values and statistics Here we present the parameter values as well as the reduced χ value, χ_R , in a tabular format for all even r curves— $r \in [34, 120]$ —and for all odd r curves— $r \in [35, 99]$.

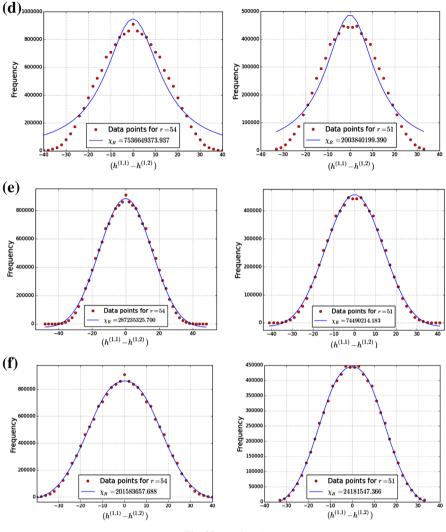
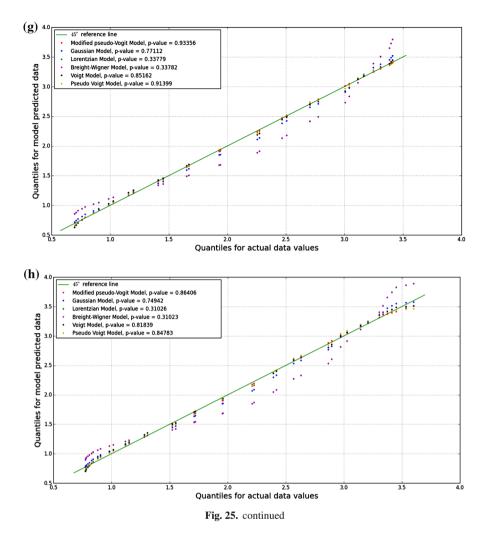


Fig. 25. continued

A.2. Supplementary plots for the $h^{1,1} + h^{1,2}$ distribution.

A.2.1. Plots for the odd distribution as counterparts to the even ones All even plot counterparts will be referenced in the figures. The plots appear in the same order as in the main body, with descriptions only if necessary.



A.2.2. Table of parameter values, coefficient values and statistics Coefficient values for the description of the entire $h^{1,1} + h^{1,2}$ distribution

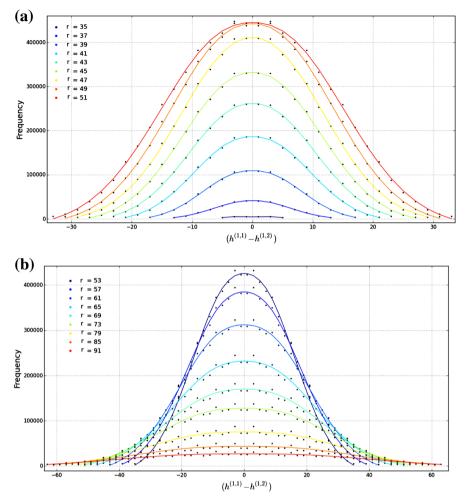


Fig. 26. Best fit curve based on the pseudo-Voigt model for the same sets of curves as seen in Fig. 5. **a** Regression lines for few select even r values, with $r \in [35, 51]$. **b** Regression lines for few select even r values, with r > 51

$$A_{k,i} = \begin{pmatrix} 54.2664195 & 2.9066 \times 10^{-16} & 0.02414823 & -5.4137 \times 10^{-20} & -7.2635 \times 10^{-7} \\ 65.0676835 & -2.0296 \times 10^{-16} & 0.03354614 & 3.7552 \times 10^{-19} & -3.1443 \times 10^{-7} \\ 54.8909275 & -2.0323 \times 10^{-16} & 0.02753302 & -2.7091 \times 10^{-20} & -9.1972 \times 10^{-7} \\ 62.6423777 & 1.2736 \times 10^{-16} & 0.03020535 & -1.1234 \times 10^{-19} & -8.6929 \times 10^{-7} \\ 54.5840853 & 2.9011 \times 10^{-16} & 0.02748121 & -9.4235 \times 10^{-20} & -9.3840 \times 10^{-7} \\ 64.2001359 & -1.3980 \times 10^{-16} & 0.03700128 & 8.3795 \times 10^{-20} & -1.3712 \times 10^{-7} \end{pmatrix}$$

$$(A.8)$$

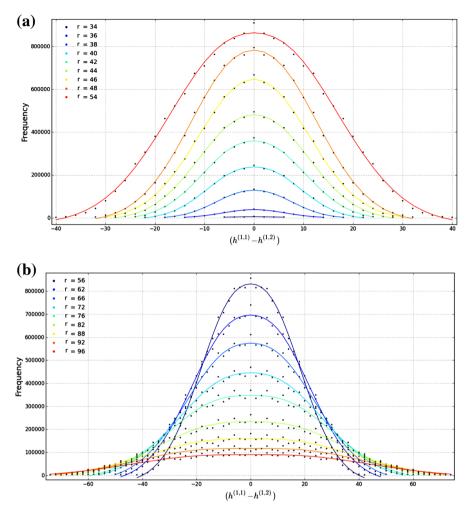


Fig. 27. Best fit curve based on the pseudo-Voigt model for the same sets of curves as seen in Fig. 6. **a** Regression lines for few select even r values, with $r \le 54$. **b** Regression lines for few select even r values, with r > 54

$$b_{k,i} = \begin{pmatrix} 132.357878 & 3.3411 \times 10^{-15} & 0.32753297 & -8.6619 \times 10^{-19} & 4.5825 \times 10^{-6} \\ 184.853063 & -5.7999 \times 10^{-17} & 0.31981034 & 1.0014 \times 10^{-18} & 3.9052 \times 10^{-5} \\ 117.228782 & -1.2791 \times 10^{-15} & 0.36989364 & -8.5325 \times 10^{-20} & 2.9743 \times 10^{-6} \\ 173.033950 & -1.1829 \times 10^{-15} & 0.31584408 & 8.9872 \times 10^{-19} & 2.5454 \times 10^{-5} \\ 105.298297 & 5.7916 \times 10^{-15} & 0.37843953 & -1.5078 \times 10^{-18} & 1.3974 \times 10^{-6} \\ 171.521189 & 1.5811 \times 10^{-15} & 0.36410293 & -2.5726 \times 10^{-19} & 2.5139 \times 10^{-5} \end{pmatrix}$$
(A.9)

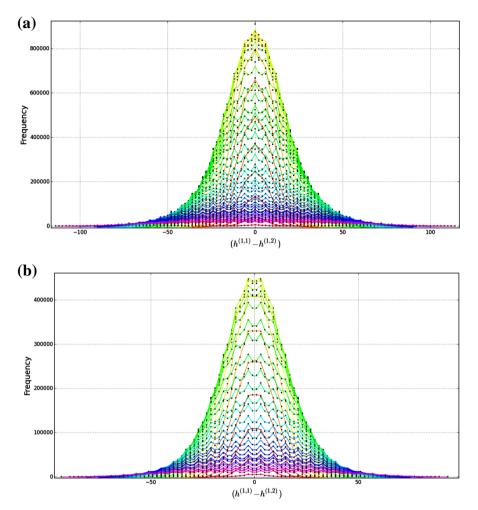


Fig. 28. This is what the entire distribution looks like using our modified pseudo-Voigt model. See Fig. 29 for the fitted coefficients as well as the fits for every curve given by the probability plots. **a** Every fitted even curve from r = 34 until r = 120. **b** Every fitted even odd from r = 35 until r = 99

$$n_{k,i} = \begin{pmatrix} 8.98205242 & 2.9066 \times 10^{-17} & 0.00434183 & -6.7671 \times 10^{-21} & -1.5512 \times 10^{-7} \\ 11.6018246 & 5.1148 \times 10^{-17} & 0.00644305 & 0 & -1.7241 \times 10^{-7} \\ 9.19515076 & 4.3161 \times 10^{-17} & 0.00496066 & -1.3763 \times 10^{-20} & -1.9163 \times 10^{-7} \\ 11.0620173 & -1.1446 \times 10^{-18} & 0.00570064 & 2.8085 \times 10^{-20} & -2.4813 \times 10^{-7} \\ 9.15798913 & 5.0109 \times 10^{-17} & 0.00493009 & -2.3559 \times 10^{-20} & -1.9210 \times 10^{-7} \\ 11.4578629 & -6.0813 \times 10^{-18} & 0.00705818 & 9.2055 \times 10^{-21} & -3.5862 \times 10^{-7} \end{pmatrix}$$
(A.10)

A.3. Supplementary plots for the fourfold data. When looking for mirror symmetry in the fourfold data, we only observed partial mirror symmetry. Below is the full break down of the data set.

r	A ₀	σ	α	b	а	χ^2_R	R^2	р	r	A ₀	σ	α	b	a	χ^2_R	R^2	p
34	74808.00828	5.61029	0.003766498	0.671247693	11882.85554	1913.323108	1	1	35		5.27052174	-0.00059798	0.66801823	11501.6207	2615.83922	0.98471088	0.83735891
36	621112.5048	6.14542	+0.009876003	0.667458363	28438.58633	40004.88553	0.99902292	0.917177648	37	666812.118	5.8927625	-0.01836059	0.66078722	27241.5063	53480.6329	0.99993762	0.97888572
38		7.04214	-0.021320726	0.661106908	70029.4258	775992.3274	0.99989369	0.967870386	39	2416867.36	7.26453848	-0.03399152	0.66024643	67114.7518	1572652.39	0.99986798	0.97276103
40	5997498.444	8.38473	-0.027896601	0.664313042	135241.8977	7016236.151	0.999812973		41		8.55598954			118674.653		0.99969021	
42	10051959.39	9.39476	-0.023578526	0.664331865	214365.7566	11248381.6	0.999606558	0.944633818	43		9.48971721			149610.971			
44	14383706.27	10.1952	-0.019800045	0.663363561	275921.3615	10356248.68	0.999910944				10.3532866			209654.283		0.99987931	
46	18900236.24		-0.011402813	0.663897086	363905.1143	12630489.6	0.999822533	0.958642702		13000374.3				254340.624			
48	26936446.43	11.52	-0.019075394		456942.6269	48618344.01	0.99980274		49		11.9906222			334507.932			
50	35415476.39		-0.02505046		634805.0051	159409130.3	0.999167385	0.888518617	51		13.1819995			402205.527			
52	40513641.09		-0.025150833	0.663741398	770677.2752	156093179.3	0.999322987	0.887202979	53		14.1510506			465061.332			0.93661201
54	42054878.16		-0.020889662	0.664242039	851781.3562	177830377.5	0.998742804	0.864062454			14.9970179			497654.277			
56		15.9308	-0.022451431	0.664639342	1081188.801	91014311.13	0.999616346			20461751.5				618719.277			
58	45777655.84	16.8075	+0.020439012	0.66390829	1216222.825	79515308.6	0.999550544	0.915805654			16.8390468			650103.969			
60	45383436.12	17.6159	-0.019455309	0.664461299	1195317.789	67324781.93	0.99975046		61		17.818317			671348.429			
62	45890243.65		-0.020089061	0.664969685	1299727.161	95590289.64	0.999225833				18.9977095			679837.657			
64	44629202.3	19.8429	-0.020615871	0.665932096	1347466.72	78628169.68	0.998988401	0.871831349		16183229.9				721485.873			
66	41517968.02	20.5755	-0.018305682	0.666138254	1468293.568	54603587.95	0.999239136			15604477.1	20.8972797			789587.968			
68	39712672.75		-0.017963577	0.66544129	1569245.184	40212010.61	0.999379453	0.892005972		13104503.1		-0.01784441				0.99891504	
70	36807367.68		-0.015684425	0.665873362	1557320.642	33793439.97	0.999174607	0.878072158		12181331.7				737223.294			
72	36162771.81		-0.016476545	0.666763067	1581985.228	21554913.66	0.999683961	0.917179602			23.5912589			778331.602			
74			-0.017822108		1872368.976	28640120.59	0.999322336				24.4411893			888710.412			
76			-0.018605896		1980563.649	44636083.29	0.998671434				25.6570194			893712.308			
78			-0.018823052	0.666381088	2189453.136	33663175.17	0.998301995				26.6109387			817061.631			
80		27.8144	-0.019346889	0.665996548	2025935.144	27318925.61	0.998478381	0.808972237			27.9445846	-0.01901739		808353.444			
82	27351655.4	28.6931	-0.017490104		2011512.915	26284425.4	0.99726603			6530766.47				771351.758			
84	24566921.31	29.8261	-0.016927049		1732875.478	23309744.54	0.996555935	0.706834711			29.9134628	-0.01668256		721999.658			
86	22906614.56		-0.016442317	0.666905358	1911979.009	14429329.24 18088956.91	0.997492504			4543976.97	31.1360788			749182.031			
88	21528402.71 19886629.72	32.153 33.3369	-0.016214982 -0.016681365	0.666381087 0.666516895	1804104.196 1783587.312	18088956.91	0.995744097 0.996471494	0.678346825 0.693352255		4543976.97				724406.102 645509.413			
90	19886629.72	33.3369	-0.016681365		1783587.312	1152/968.91 5377588.556	0.996471494	0.769625304		4114525.48 4317572.14				783101.682			
94	18809829.16		-0.017242588	0.666336104	1925176.842	8355841.233	0.998485757	0.561674719		3525255.74		-0.02087123			531215.258		
94	14889894.87	36.1253	-0.018385807		1520828.275	4989263.018	0.987709885	0.711953875		2748721.76				558435.856			
96	14869694.87	37.7735	-0.016184516	0.666516294	1693173.472	4989263.018	0.996861999				39.2526357			558530.974			
100		39.1882	-0.016641154	0.666363484	1333642.914	3437131.53	0.994423193	0.5603671	33	2721320.91	39.2320337	-0.01300372	0.00030073	338330.374	130104.307	0.99011499	0.0092328
100	11130677.16		-0.013892005	0.66646458	1359292.476	4680926.074	0.990953211										
102	9339364.392	40.191	-0.013852003	0.666411434	1159602.308	3377262.44	0.993594806										
106		41.0922	-0.012755565	0.666256708	1185946.732	2646190.089	0.993791084										
108	8380821.944	42.139	-0.013639004	0.666558606	1104233.414	1209490.828	0.996572623	0.62437074									
110	8195376.057	42.139	-0.013639004	0.666306562	1162489.945	922920.416	0.996020933	0.58859257									
112	7991589.586		-0.014513112	0.749095555	-170845.2098	5798070.695	0.996020933										
114	7502725.304	44.9131	-0.016013329	0.666363214	1206184.755	1116881.881	0.993672141	0.622571007									
114	6781922.133	48.3831	-0.015129142	0.000303214	-72768.74536	4292917.226	0.993672141										
118	6003445.42	46.5651	-0.015577227	0.666241038	1072317.828	4292917.228	0.991182119										
120	5081179.349		-0.014286545		907092.9689												
120	30011/9.349	20.3332	-0.01231933	0.000554981	301032.9089	920033.0370	0.303746662	0.2308/138/									

Fig. 29. Left list of best fit coefficients for all even curves $r \in [34, 120]$. Right list of best fit coefficients for all odd curves $r \in [35, 99]$. In both figures, the last two columns represent the R^2 and p values for the probability plot for each curve. The p-values were obtained by first performing a Z-Standardization on the data

		Eve	n		Odd							
		N. Cut at	Number of da			01 C	Number of data points					
r-value	Max F	% Cut off	Total	At cut off	r-value	Max F	% Cut off	Total	At cut off			
28	3	0	7	7	29	3	0	6	6			
30	99	13.13	11	9	31	22	9.09	12	8			
32	768	9.6	23	9	33	553	4.88	20	10			
34	6258	15.1	25	9	35	5180	19.3	22	10			
36	40739	24.35	27	9	37	40607	16.25	24	10			
38	133355	35.99	31	9	39	108236	32.34	28	10			
40	244716	50.26	35	9	41	185481	46.9	30	10			
42	373126	69.68	33	7	43	259859	53.49	34	10			
44	494185	76.89	37	7	45	330009	59.99	36	10			
46	666992	73.76	41	7	47	408797	61.89	38	10			
48	793852	80.74	43	7	49	443162	69.95	40	10			
50	877191	82.42	43	7	51	447109	74.45	42	10			
52	875275	86.6	45	7	53	432081	76.37	46	10			
54	910113	84.6	49	7	55	419456	77.24	46	10			
56	816288	92.86	49	7	57	393842	86.33	48	10			
58	793170	92.54	51	7	59	354495	81.52	52	10			
60	791325	89.72	55	7	61	322535	89.91	54	10			
70	495068	94.53	65	7	71	164257	84.63	64	10			
80	278120	89.89	75	7	81	69757	86.01	76	10			
90	278120	48.5	85	7	91	31675	82.08	82	10			
100	78244	88.18	93	7	99	13812	86.88	90	10			
110	45370	88.16	105	7								
120	22840	87.56	113	9]							

Fig. 30. A list showing the number of data points left after increasing the cut off frequency to achieve a perfect fit. Conversely, one may state is as, the number of data points for each curve required such that the model will result in a perfect fit

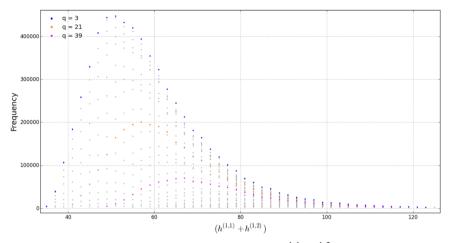


Fig. 31. Three highlighted curves (q = 3, 19, 31) within the odd $h^{1,1} + h^{1,2}$ distribution. The transparent *grey data dots* are all the data plots for the distribution. Refer to Fig. 11 for the even plot

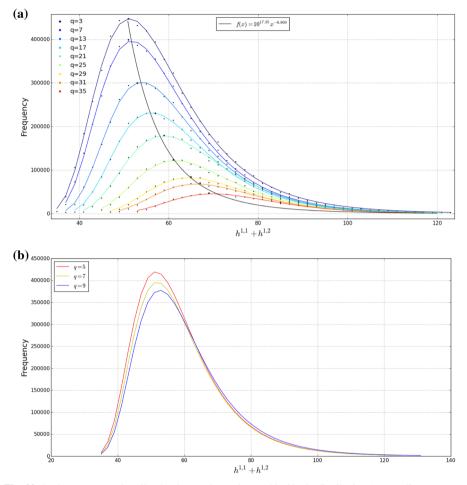


Fig. 32. In the attempt to describe the data analogously to a blackbody distribution (**a**), we discover some subtle structure (**b**). These are the odd counterparts to Fig. 12. **a** Lines of best fit from a regression analysis for a few select curves. The *black data* points represent the maximum frequency for that particular q - curve. The *black line* is a line of best fit to describe the points of maximum frequency—this is analogous to a blackbody spectrum. See Fig. 12a for the curves within the even distribution. **b** The curves segregate into three classes determined by the value of the even integer modulo 6. A similar pattern occurs in the even distribution; see Fig. 12b

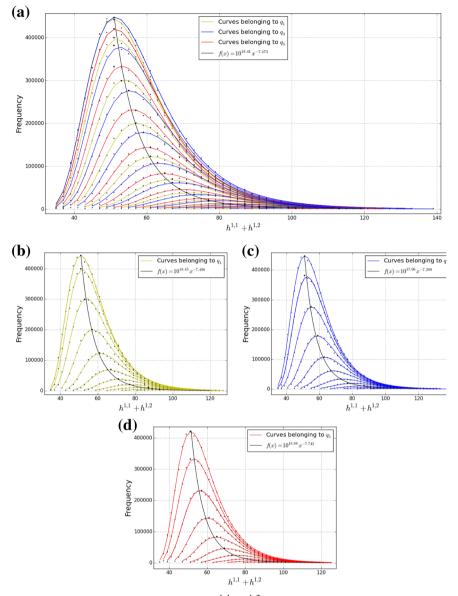


Fig. 33. We illustrate the added structure for odd $h^{1,1} + h^{1,2}$ data, by displaying how the regression curves can be divided into residue classes. For the list of even curves, refer to Fig. 13. **a** All the curves color coded according to what residue class their curves q_n belongs to. **b** Family of curves all belonging to q_1 . **c** Family of curves all belonging to q_3 . **d** Family of curves all belonging to q_5

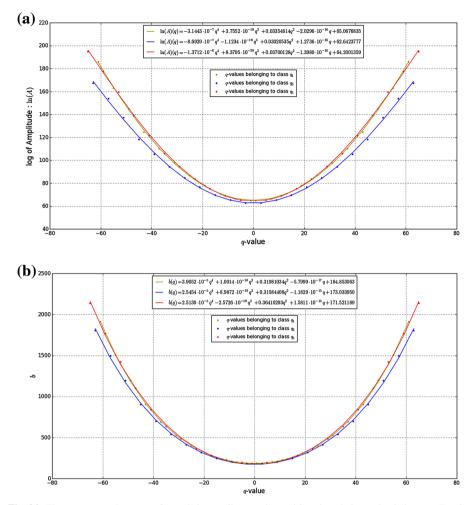


Fig. 34. The parameter plots are *color* coded according to what residue class their q value belong to. For the relationships in the even distribution, see Fig. 14. **a** Plotting the q-value parameter versus the log(A) parameter. **b** Plotting the q-value parameter versus the power n parameter (color figure online)

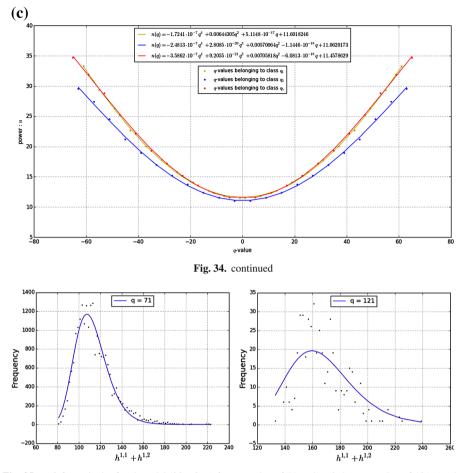


Fig. 35. *Left* figure is the fitted model (*blue line*) for a *q* value of 71 and *right* has a *q* value of 121. As the *q*-value increases, the scattering of the data points within $h^{1,1} + h^{1,2}$ increases to the point where the model works no longer. For an example of how the model begins to break down at large *q*, see Fig. 15

is 9308131 163.22244 4.4402667 11538787.4 0.9994545 0.9995593 4 3.9308132 11.482869 183.5728 62.2667 71.519942 62.3555 66.23555 66.23555 66.23555 66.23555 66.23555 66.23555 66.23555 66.2355 57.24242.3 0.9994529 9.152719 20.43851 65.2355 66.2355 57.24242.4 0.999652 9.152719 20.43851 65.2187 51.9328 0.999652 9.152719 20.43851 65.2187 51.9328 65.2667 75.24242.4 0.999652 9.152719 20.43851 65.2187 51.9328 66.2667 75.9386 86.46438 7485382 74.5998 48.472718 0.999452 9.152719 20.43851 65.2187 51.9328 44.60440 0.999652 11 12.3880 24.0392 24.0392 24.0392 24.0392 24.0392 24.0392 24.0392 24.0392 24.0392 24.039 24.0392 24.039 24.03 24.039 24.039 24.039 24.039 24.039 24.039 24.049	q	n	b	$\ln(A)$	χ^2_R	R ²	p	$\left[q \right]$	n	b	$\ln(A)$	χ^2_R	R^2	p
2 33100737 17.619423 56.2365573 86744223.88 0.9994632 0.9913829 3 11.006489 19.352232 62.616043 7073000 0.9996632 6 3.55714274 17.468966 56.641275 0.99667426 0.99946322 0.99394222 0.99946322 0.9996521 57.51529 79.31231 0.9996521 57.51529 79.31231 75.348314 72.448388.42 0.99944329 0.9935217 9 11.527199 20.498551 66.21677 75.319311 65.61677 59.939621 10 9.7151432 155.738630 65.438677 17.31557661 78.20092 70.62285 4510106.2 0.9995631 11 12.586304 22.436645 0.9132766 0.91327647 17.155778 75.393111 8516578 0.999581 11 11.3557861 22.6310778 0.99937441 0.9995284 0.9912787 70.9356613 77.850065 37.43700 0.9993741 13.1278997 75.049858 30.99472.0 0.9992541 23.1515737 13.33775 0.7491804 0.99937446 0.9912721 </th <th><u> </u></th> <th></th> <th>-</th> <th>· · ·</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>· · ·</th> <th></th> <th></th> <th>•</th>	<u> </u>		-	· · ·							· · ·			•
4 35921321 174.43346 6.418379 766507426 0.9994528 0.9994527 1.531627 194.73374 62.35556 6642755.4 0.9996529 6 9.57442978 186.106521 57.5571627 7812235.5 0.99944227 0.90345178 7 1.729208 202.3355 6.6226267 57.82482.4 0.9996529 10 9.7745477 18.105621 207.33557 57393127 75.83777 0.9994577 1.513126 6.037244 660440.01 0.9996529 11 12.58638 207.12867 57393127 5582775 56139405 0.999577 1.513171 3551578 0.999577 1.513171 3551578 0.999577 1.513171 3551578 0.999577 1.513171 35515748 0.999577 1.513171 35515746 0.999577 1.513171 35515748 0.999579 1.513171 35515740 0.999579 1.513171 35515740 0.9991714 0.991724 1.3599493 31.604077 5549468 5394772 0.9992448 0.9991274 231.5199359 347.40264522														0.9243267 0.9315442
6 15714724 174.68966 55.605124 781300.89 0.9994371 9 15746729 186.105617 55571639 7981235 0.9990421 11.272028 20.4953871 19.1322719 20.495319 55.127467 572842 0.09996371 10 9.79154152 105.73855 58.648384 72485389.44 0.0996371 10.248105 6.0053744 6460440.1 0.9996371 11 12.2385604 20.71267 57.3336112 75.30482 6.0053744 6405421 0.9995703 12 13.226607 274.7068 65.60531 4053641 0.9995703 12 13.076764 26.3386772 59905548 0.9995703 11.3557861 28.00507 7.530865 304472 0.999381 12 13.122807 27.838167 7.430864 3923710.23 0.9982541 21 1.3069783 33.44726 0.9991272 15 13.55047 7.998864 3923700.33 0.9985703 3825451 21.5557474 3999471 292456 2923726 21.555														0.9315442
Image: solution Statestyne: 16:00:021 Statestyne: 10:00:021 S	-													0.9327556
10 9.79154152 195.73855 58.6438354 7.2485389.34 0.99948539 0.91392681 11 12.358534 225.46685 69.057348 4660440.1 0.999503 13 0.2491052 20.310734 0.9995703 15 12.36072 47.47068 69.05073 45.05003 405.65003 405.65003 405.641.0 0.9996528 14 10.4291162 26.3581723 587095548 0.99957466 0.92151757 11 13.55861 20.65003 405.65013 77.550081 31.4447 0.99995412 11 11.018075 27.455030 57.498074 4884280.37 0.9991988 68006012 21 15.699437 15.64097 75.50081 31.4447 0.9999712 21 11.365725 298.819564 76.491806 2937102.23 0.9982710 427244 55.69074 42.692424 23 17.228911 483.6516 4.48822.6 0.9991714 31 13.6816516 54.581954 7.667051 7.06902240 0.8982423 31.779867 25.21112.1264148 </td <td></td> <td>0.9276872</td>														0.9276872
12 3.588096; 200.712867; 57.395112; 75.33612; 75.33612; 75.33612; 75.33612; 75.33612; 75.33612; 75.33612; 75.33612; 75.33612; 75.33612; 75.33612; 75.33612; 75.33612; 75.33612; 75.33612; 75.33611; 0.50526; 75.135111; 0.55626; 0.9995746; 0.9995746; 0.9995746; 0.9995746; 0.9995746; 0.9995746; 0.9995746; 0.9995746; 0.9995746; 0.9995746; 0.9995746; 0.9995746; 0.9995746; 0.9995746; 0.9995746; 0.9995746; 0.999748; 0.9995746; 0.9995746; 0.9994852; 21.1366927; 75.50948; 304477; 0.9994852; 0.9994852; 21.155953] 34.64057; 75.50948; 304473; 0.999246; 21.155953] 45.657810; 10.9994852; 21.155953] 45.657810; 10.9994852; 21.155953] 45.6184; 22.41766; 0.999246; 29.17248; 31.778664; 6.365781; 0.999246; 29.17248; 31.778664; 45.85781; 10.9994852; 25.157874741; 10.994266; 0.9950561; 31.516566; 7.85081; 10.4626; 8.560377; 10.57065; 27.75071														0.9336964
14 10.2491103 220.819009 61.032495 6407713.03 0.9995486 0.92157 17 15.338067 247.47068 69.650053 4053524 0.9994172 16 10.3760463 246.531143 62.092735 58119944.17 0.9995688 0.9163263 17 15.557661 28.099673 0.9994172 20 11.52527 24.851340 C.9928640 4885420.37 0.99951748 0.8991748 0.8997428 21 1.659283 36.40697 75.504981 30.99475.0 0.9994524 21 11.552572 31.330475 67.4918064 32571022 20.9991748 0.8991748 0.8991726 22 15.59593 36.4.06697 75.50498 30.99475.0 0.9992464 21 15.59595 36.4.2067.67 10.00294 35.59764 0.9992464 29 17.228914 48.50714 0.9994576 29.99154.0 8894272 27.1578667 25.80169 9.6.597610 10.902415.7 0.9998576 29.1728967 25.80178 9.4.50741 0.5992460 0.8916243 31 1.728967 25.80178 9.6.507747 0.9986276 31.2.206761 31.2.206761 31														0.9281643
16 10.491492 256.074532 62.368732 5870955485 0.9991786 0.991786 0.911177 18 10.3760463 246.531143 62.0927375 58119944.17 0.99956689 0.91632683 21 11.123672642 246.5531143 62.0927375 58119944.17 0.99951868 0.8906012 21 11.5532872 28881967 67.9886889 42481778.28 0.9991784 0.8912726 21 11.5532872 31.304765 67.9886873 0.8993110 0.8706776 22 11.553287 31.304767 6.9994872 29988272 0.87228524 21 15.00676 41.00209 85.57001 0.9994174 30 12.6894483 406.767631 74.076260 17629976.3 0.8999314 0.88949423 31 10.778966 32.73858 94.12770 9807737 0.9984275 31 14.447555 55.557474 3937400.0 0.99922061 0.8916331 33 16.306018 33 16.33601 33.78858 94.12770 9807737 0.9984274 31 14.441527 52.387648 83.72864 83.78875														0.9234965
18 10.3760.463 246.5314.43 62.0927375 581194.417 0.9995689 0.98632693 19 14.076773 0.560155 77.8500981 3174.437 0.9993681 20 11.1218077 274.958037 65.7459807 4885420.37 0.99919888 0.88001226 21 11.555273 313.307475 67.4918064 3223710.23 0.99982721 0.8725617 21 12.4616.617 75.504985 365.56615 77.8500981 3174.437 0.9994452 22 11.555539 364.72264 85.57414 0.9992446 0.8991256 21 1.555539 364.72264 85.5741 0.9992461 0.8992764 21 1.555539 36.4507.66 0.9992465 0.99927666 0.8916381 31 1.7798067 525.80198 97.650175 16.2968.6 0.9986274 31 15.4166105 668.57248 91.404742 55897426 0.89917261 0.8916381 31 12.7198967 525.80198 97.650175 116.2968.6 0.9986274 31 15.416626 6652.748 91.404742 558974748 0.99917261 0.8916381 31 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.9199323</td></td<>														0.9199323
20 11.1218075 27.4956303 65.79807 48852803 70.99917848 0.89910266 22 11.5532872 298.881967 67.9886289 2481778.28 0.99917848 0.8910276 24 11.663725 31.3.07475 67.4918064 3923710.23 0.5998311 0.8706107 24 11.665725 31.3.07475 67.4918064 3923710.23 0.59983121 0.8706107 24 12.765105 384.515947 47.6674372 2223365617 0.9992446 382352442 31 12.6894483 40.767631 74.0706202 1762987.3 0.99927066 0.88164331 31 12.6894483 40.767631 74.0706202 1762987.3 0.99927061 0.8816331 31 12.6894483 40.767631 74.0706202 1762987.63 0.99927061 0.88163331 33 15.810616 60.8272.14 83.591016 52.805.98 9.1125.75 0.9984455 33 15.410515 65.607.6272.44 9.99917318 18.9393393 68.7232.61 0.5927.448 0.897937 34 14.2413274 52.3870488 3.70107.63<														0.9254928
12 11.55327/2 29.881967 67.9886289 42481782.8 0.9991311 0.870251 24 11.3663725 31.30745 67.4918064 39237109.23 0.9989311 0.8702572 25 15.729403 397.96698 86.578101 1902413.7 0.9994512 26 12.6161621 355.56044 72.6497065 28.982723 0.8722852 27 11.530676 41.00298 84.560741 2064262 0.9992264 29 12.729165 38.45154 47.6674572 22243666.17 0.9992566 0.8916381 34 14.4765555 505.577447 83.9371435 9337609.09 0.99922066 0.8916381 36 13.213724 22.337648 83.372010 88947231 0.8891653 35 19.278011 10.63270127 105.81396 691125.75 0.9984491 37 15.8169165 606.52248 9.404742 556997.245 0.99921301 0.88910501 35 19.278601 632.70127 105.81396 691125.75 0.9984491 42 16.912135 691.261106 9.4223259 9.69972301 0.8896753 </td <td></td> <td>0.9312652</td>														0.9312652
24 11.3663725 33.307475 67.4918064 3923709.23 0.99982732 0.99982732 25 15.2720403 397.56688 85.78101 1902413.7 0.99992464 26 12.7611565 384.581954 74.6674572 2224366.17 0.99924444 0.8932544 21 27 15.200676 411.0209 84.580741 2.064263.2 0.99932464 0.8932544 21 17.2182411 48.65516 94.488721 1.448852.8 0.9991744 31 17.738956 552.8018 97.650175 11626864.6 0.9986273 31 16.93601 553.78358 94.17770 99.980773 0.9984245 0.9991743 31 16.93601 537.8358 94.17770 99.980773 0.9984245 0.99912132 35 15.2780018 97.650175 116.2966.6 0.9982454 36 15.31636 608.652248 93.14047442 5569077.245 0.99924541 0.8991633 31 12.175717 9.9984373 39 18.39393 688.72264 105.348046 0.9990344 42 12.017718 130.7175751 10.728704 130.7175751 10.728704 130.7175751 14.34733 26.6														0.918997
26 12.4166129 355.560944 72.6497065 28790825 0.9982423 0.87228524 28 12.7691656 384.581954 74.6674572 22243686.17 0.9993144 0.88924423 21 17.289715 52.80198 74.488827 1448828.6 0.99991714 30 12.6894483 406.76751 74.7062620 1762987.3 0.9993154 0.8894423 31 16.73607 552.80198 97.66017.3 182.97666 0.9982561 0.8911557 53 16.93606 0.9992561 0.8911517 53 16.93606 632.0212 10.8339369 0.99925081 0.8911557 53 97.6517.3 0.9984497 36 15.8169165 608.6325248 9.1404742 556907.7744 0.99921301 0.88390679 31 19.31381 11.91311 1942938 0.9990131 12.31511 1942938 0.9990131 14.210521 15.4566 3650.7752 90.63277 14.64212 15.7143.8 0.9990131 18.31641641 12.210757 89.76713 19.7383 15.816451 19.44245 0.9990184 14.8100508 12.815691 12.162269 12.51112.511141 19.214114														0.917291
28 12.769165 334.891954. 74.6674572 22243686.17 0.9993154 0.89326445 30 12.6894483. 406.767631 74.7062062 17629876.3 0.9993154 0.891249423 31 17.728967 52.80198 97.650175 1162966.6 0.9998576 31 13.4815554 50.577447 83.3731435 9337600.90 0.99922056 0.99212182 37 10.638001 55.78855 94.12770 0.9988226 36 14.4765555 50.577447 83.3731435 933760.99942056 0.99942056 0.9921182 37 10.42868 94.12770 939.897731 0.9990213 40 16.349038 658.037252 94.494412 5569077.45 0.9991338 0.881540184 42 2.107573 83.97631 121.39181 194299.88 0.9990218 44 16.1012135 69.127110 104.222499 3575959.522 0.99911189 0.84339057 124.64212 151.148.40 0.9990183 45 21.162261 96.21717 106.074662 47 125.1371 110.07267 183.4099 675.13.0984578 0.9990581 46 <td></td> <td>0.9002134</td>														0.9002134
30 12.6894483 406.767631 74.702876.3 0.99932766 0.8994233 31 17.799967 525.80198 97.650175 1162966.6 0.9988245 33 1633601 557.75865 94.127709 98077737 0.9988245 34 14.4765555 505.577447 83.9716135 0.99922061 0.89116317 33 16.39601 657.75865 94.127709 98077737 0.9988497 36 14.2413274 523.837648 83.27010.2 8819447.781 0.99922301 0.88976733 31 18.333939 698.72231 10.834939 698.72321 10.59867 39 10.04235 514349.44 0.9998339 40 16.349038 658.03765 99.757954 0.99912031 0.833939 99.73231 116.349039 698.72331 112.19181 194299.88 0.9998439 41 16.1010213 691.25.71964 0.99912081 0.84339097 47 22.162799 90.33577 124.44212 15174.543 0.9997081 0.991244 12.162296 0.5231411515 1537.05610 1537.755														0.8994929
32 13.881504 45.268749 80.709756 12509144.76 0.9992056 0.8916331 33 14.4765555 505.57747 83.9731435 9337609.9 0.9992056 0.8916127 35 19.278601 632.70127 106.81339 691125.75 0.9984497 34 14.4765555 505.57747 83.9731435 9337609.9 0.9992056 0.60221328 37 10.2425 51.439.44 0.9990738 39 15.8369187 10.04225 51.439.44 0.9990738 39 18.8339968.72236 105.34806 364057.66 0.9990318 42 16.1912135 691.2161106 94.2923259 4679157.964 0.9990389 0.8339069 43 22.637039 901.93577 124.64212 15213.48 0.9990488 44 18.005802 P36.1931 104.122439 384528.484 0.99605247 0.80146662 47 2.5.1371 110.05777 104.64212 15213.48 0.9990488 50 20.6727131 105.37914473 384528.484 0.9961784 0.80146621 47 2.5.1371 110.5079 9.914488 0.9971183 0.804746622 1155.917105 </td <td></td> <td>0.8730177</td>														0.8730177
34 14.4765555 505.577447 83.9731435 9337609.09 0.99925081 0.89116175 36 14.2413274 523.937648 33.9731002 8819477.81 0.99922001 689.78187 110.04235 513.4339 691.125.75 0.9984393 40 16.349038 658.037252 94.4944182 487847.4443 0.99912301 0.8897633 91 18.933393 698.72321 105.3499.44181 194299.88 0.99906349 42 16.1912135 691.261106 94.292329 477915.7964 0.99906349 0.88339057 146.4712 1523.484 0.9990143 48 10.832493 86.994217 106.51792 94.492327 105.1792 94.8239077 146.4712 1523.484 0.9990143 142.16276 90.253125 118.15491 153776.51 0.999704057 48 18.324437 86.994271 10.95514726 0.9966327 0.80731875 101.0797 138.4009 67751.3 0.99984393 52 20.6272191 100.263688 118.64632 2550656 0.997571.35														0.8660956
36 14.241274 523.937648 83.720102 881964.7781 0.99922300 0.88057633 39 15.8169165 608.625248 91.4047442 5569077.245 0.99923201 0.88057633 39 18.33393 698.72236 105.34006 364507.66 0.9983439 40 16.349038 658.07272 94.4944182 467847.443 0.9991338 0.88154016 41 12.105773 89.76313 121.391611 19429.88 0.9990618 42 16.1912135 691.26110 94.293259 467915.7964 0.99913980 0.88396059 43 22.007573 89.76313 121.99161 19429.88 0.99910810 44 18.1005027 74.09813981 0.880746862 47 25.2137 1101.0979 138.94099 67751.3 0.9994051 50 20.677714 110.745086 1156.04622 250085.401 0.99402921 0.75114473 158.34344 6.3946418 0.9974051 51 20.757715 110.743086 120.49214 124.525682 1192.4421 124.525483 3928277.														0.8745987
38 15.8169165 608.825248 91.4077425 5569077.245 0.9992330 0.88967633 40 16.349038 658.037252 94.494412 487874.443 0.9991338 0.88154018 41 16.1912135 691.251106 94.292259 4679157.964 0.98906349 0.88396651 41 22.107573 839.7631 121.39181 194299.88 0.9990818 44 18.1005802 796.219314 104.222499 3575559.522 0.9991189 0.84339079 122.63703 90133577 124.64212 151314.8 0.9990183 45 18.3204437 88.9940271 105.17192 374238.4478 0.99663247 0.80146621 52 20.2757187 117.0790 121.92727 2068004.81 0.99402924 0.75114473 53 28.790335 141.5498 193.3434 39928.712 109.0955425 0.7584744 52 2.82458661 1527.1161.510.379265 129.275778 0.9975542 0.7781154 157 2.3245424 193.1484 59.9926271 0.5834726 159.31452 193.82474 <td></td> <td>0.900835</td>														0.900835
40 16.349038 658.037252 94.4944182 48747.443 0.9991338 0.88154018 41 22.16773 839.76313 121.39181 194299.88 0.9990818 42 16.1912135 691.261106 94.292235 4679157946 0.99910891 0.84339657 124.464212 15214.84 0.99900818 43 22.63703 901.33577 124.464212 15376.55 15376.55 15376.55 15376.55 15376.55 15376.55 15376.55 15376.55 15376.55 15376.55 15376.55 15376.55 15376.55 15376.55 15376.55 15376.55 15376.55 15376.55 15376.55 163.34397 1155.3353.41 15376.55 109705 153.2452682 1192.442 137.1453 92767.708 0.9913448 52 2.05775175 1127.34981 120.49721 121.3838.21 0.9951652 757837484 53 28.70033 142.5488 3992.821 0.9931448 53 28.70033 135.24242 33.91421.5488 3992.821 0.9936516 52 2.3.320741 150.0433 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.843742</td></t<>														0.843742
42 16.1912.135 691.2611.06 94.2923259 4679157.964 0.99904390 0.88398659 44 18.1005802 796.21931.4 104.225499 3575959.582 0.99819991 0.84339807 45 21.162296 902.53125 118.15491 153776.51 0.99974057 45 18.3294437 0.863994271 106.517192 3742836.478 0.99663247 0.80146862 47 25.2137 101.00797 138.4099 653246.618 0.9974057 50 20.6272191 102.63881 118.60463 25.20685.400 0.99422924 0.7814876 53 28.50355 115.09346 63294.618 0.9913448 53 28.20335 1421.5498 199.33483 39282.21 0.9913448 53 28.20335 1421.5498 199.33483 39282.21 0.9936361 55 20.62774875 151.0419 162.4653 7.9946452 0.9936361 55 29.32074 151.0419 162.4653 0.9936351 56 2.675666 1257.21615 130.979251 107.8756776 138.247979 158.43242 40851.655 0.9935876 59 31.85477 126.563791 168.7756														0.8920139
44 18.1005802 796.219314 104.225499 3575959.582 0.98819891 0.8433097 45 18.837612 864.065993 108.413983 3465429.4849 0.99711189 0.80746862 48 18.3294437 86.5942.11 105.11792 3742836.478 0.99653247 0.8046201 52 21.1759554 1091.39760 318.34699 67757.13 0.9985178 54 20.6272191 1026.3688 118.64632 2550085.404 0.99402921 0.75114475 54 22.7571875 1127.43808 120.497547 2068604.81 0.99402921 0.75114475 55 22.6875666 1257.21615 130.798265 120045.569 0.9955482 0.77381147 56 22.6875666 1257.21615 130.798265 120045.569 0.9955536 0.76067776 61 23.23074 151.0.0419 152.84224 0.99315482 0.9355736 0.76067776 62 2.5.313715 155.85041 148.28866 670967.3101 0.99562740 0.7364239 63 2.4.6357215 16.83.37621 144.6682359 69273517 0														0.8941551
46 18.8376152 866.069993 108.413983 3485429.849 0.9971189 0.80746862 48 18.3294437 186.54069993 106.517192 742836.478 0.99663247 0.80148621 49 16.3294437 1105.3588 118.604632 2550085.404 0.9942224 0.7611887 50 20.6272191 1002.5888 118.604632 2550085.404 0.9942224 0.75114473 54 20.7571875 1127.43968 120.422 137.14593 32767.708 0.9915852 54 20.7571875 1127.43968 120.4891 123.734743 33726452 0.9935852 54 20.7571875 1127.43968 120.442 137.14593 377.4562 9393651 56 22.6875666 1257.21615 130.798265 1200445.963 0.775607 53 3.84324 40851.635 0.9936571 52 2.323207 156.342565 130.910755 156.342565 0.99362714 7.7361737318 158.97421 20.99362714 7.73676776 13.857173 158.29445 128.1790.99362714 7.73676776 13.857173 168.24635715 168.368261 <td></td> <td>0.8071796</td>														0.8071796
48 18.3294437 886.994271 105.17192 374283.478 0.99663247 0.80148621 49 26.28397 1195.3354 145.03946 63294.618 0.99793 50 20.2772191 1026.3688 118.60432 2550085.404 0.9942224 0.75114473 53 24.57568 1192.442 137.1453 3276.7708 0.9913448 52 21.575554 1091.7970 12.927527 0.68604.81 0.9954223 0.75114473 53 22.8.790335 142.1548 159.3483 39928.21 0.9936578 54 20.7571875 1127.43508 120.47932 150.049556 0.776507 150.997578 59 31.857.7497 20935782 0.99355723 0.77650776 6 53 3.291403 110.1974 2051.9768 0.9938572 6.76207776 6 33.291403 110.936.7578 6.993883170 1618.4565 0.9911659 6 3.321403 110.9376.185.87455 1618.4565 0.9911659 6 3.482451 1618.4565 0.9916597 6 3.482451 1618.4565 0.9916597 6 3.483431 12.499170 3.28620.007 0.99434220 <	46													0.8710315
50 20.62772191 1026.3688 118.604632 255008.404 0.99492291 0.75118475 52 21.1759554 1091.79709 121.925727 2068604.81 0.99402921 0.75118475 54 20.7571875 1127.43808 120.4975277 2068604.81 0.999518652 0.75814747 55 22.6875666 1257.21615 130.798265 1200445.969 0.99554622 0.77318115 56 22.6875666 1257.21615 130.798265 120045.969 0.9955462 0.7731815 58 32.638021 1359.24221 13.912342 13.912472 135.84324 400851.635 0.9903882 60 22.4580953 1352.48226 130.910755 1267334.281 0.9955536 0.76607776 61 33.291403 1910.9736 185.8455 1618.4565 0.9903882 64 25.324221 163.32141 148.32466 67097.7810 0.99362740 0.7364239 70 27.7560774 1938.97103 161.69022 3293721 0.7800742 0.78345333 0.99055126														0.8479883
52 21.175954 1091,79709 121.927527 2066604.81 0.9940221 0.75114473 54 20.7571875 1127.43808 120.497481 2213288.382 0.99518652 0.7384174 55 20.257666 1257.12615 130.798265 1200445.560 0.77384115 55 29.32074 151.0.0419 162.8653 37196.452 0.99936581 56 2.2675666 1257.12615 130.798265 1200445.560 0.9955462 0.77884784 55 29.32074 151.0.0419 162.8653 37196.552 0.99936576 57 3.2628300 1359.4262.0 130.91755 126734.281 0.99955362 0.7765067 59 31.8271705 185.87452 1618.355 0.9916559 63 2.9515581 1805.3579 167.28047 2001.7018 0.9984542 0.9961755 0.78642333 63 2.9515581 1805.3579 167.28047 20047.013 0.9886505 64 2.524428 160.312461 140.083556 69238.170 0.9961755 0.78642333 77.286477 738.837453 140.88356 0.9201755 0.78642333 727.560774 138.971403	50													0.7268201
54 20.7571875 1127.43808 120.47481 211288.382 0.9951862 0.7584748 56 22.687566 1257.21615 130.798265 1200845.969 0.99554623 0.77318115 57 27.365459 1494.7997 153.48324 40851.635 0.9935716 58 23.6283802 1359.92622 13.017324 1071346.75 0.99605953 0.7765676 57 31.8577 176.57928 177.4976 0.5913.452 0.9910582 62 22.4580751 163.817623 146.824885 647021.379 0.99305716 63 32.91033 1910.9736 185.87455 1618.4565 0.9911685 64 25.324228 1603.12161 146.824885 64721.379 0.99362740 0.7182371 63 29.51581 180.53579 167.28047 2047.013 0.9884544 64 25.324289 1603.12161 157.9921.735 0.7823735 157.84725804 7.78245944 0.9993571 0.78247594 7.495.1455 0.986527 0.5801974 7.6333357 2.984246 2291.1684 171.035076 9.9937518 0.5873776 0.89807807 0.5363038														0.7553077
56 22.6875666 1257.21615 130.798265 120045.966 0.99555462 0.77318115 58 23.6283802 1359.392622 136.31234 1171384.578 0.99605563 0.7765076 60 22.4580053 1352.48226 130.910755 126733.4281 0.9955536 0.76667776 61 25.53137153 1558.90413 146.324466 670967.8101 0.99505786 0.76067776 63 2.9515581 1805.3579 167.28047 24047.013 0.988454 62 25.53137153 1558.90413 146.324668 670967.8101 0.99362740 0.7364229 64 25.324289 1603.12416 146.068359 699328.179 0.99434529 0.7364229 66 24.6357215 1638.37623 144.068359 699238.179 0.99434529 0.7364229 70 27.750747 138.57101 16.69022 32651756 0.58615763 72 2.6900085 1955.18548 158.266559 0.99805827 0.56315763 74 29.43732 172.63049														0.7295352
58 23.6283802 1359.92622 131.2334 1171384.578 0.9906826 0.778506 59 31.8577 776.5728 177.4976 2051.9768 0.9908825 60 22.4580953 1352.48226 130.010755 1267334.281 0.9995536 0.76067776 61 33.291403 1910.9766 185.87455 16184.565 0.99101659 61 33.291403 1910.9766 185.87455 16184.565 0.9901659 61 23.317153 158.90413 146.324866 607967.8101 0.99500786 0.7602774 63 25.317153 145.87455 16184.565 0.9911659 62 25.317153 146.324866 60792.17776 0.9934.6720 0.7602774 63 25.317153 146.823813 144.82485 64712.17779 0.99434252 0.766243335 70 27.745074 138.97103 1516.9022.20 2429.131584 158.26555 0.6865575 0.76233335 70 29.433332 222.222.222.22549 124.84859 0.2037.7676 0.587657 78 28.984246 231.16584 154.306976 0.587657 0	56													0.7339095
60 22.4580953 1352.48226 130.910755 1267334.281 0.9955536 0.76067776 62 25.313715 1558.90413 146.324866 6709778100 0.99502786 0.76027774 64 25.3242829 1603.1214 146.324866 67077740101 0.99362734 0.7182791 66 24.6357215 1583.37623 144.6824866 67077740101 0.99362734 0.7182791 67 24.6357215 1633.37623 144.082359 69932331.79 0.99434751 0.7264239 68 27.1759004 1938.97103 161.69025 422971.033 0.9961755 0.7264339 72 2.696005 1955.18548 158.266559 64280.509 0.99956221 0.7263335 72 2.960054 155.18548 158.266559 0.99055221 0.5301974 76 20.75113 0.7486739 0.99055221 0.5301974 0.9935748 0.5586308 82 3.2755107 171.05076 149357.371 0.98667807 0.5586308 82 3.2755107<	58	23.6283802						59	31.8577	1765.7928	177.4976	20519.768		0.6964478
62 25.3137133 155.88.90413 146.3248658 670967.8101 0.99500786 0.76027754 64 25.3147153 155.88.90413 146.324885 647121.3779 0.99346273 0.78642239 65 24.657125 1638.37623 144.068359 699238.170 0.993436229 0.73642239 66 24.657125 1638.37623 144.068359 699238.170 0.99434529 0.73642239 67 27.755004 1836.1188 157.949175 328620.4071 0.99434529 0.73642333 70 27.755074 1938.97101 161.69022 34251.0330 0.99617755 0.76233335 72 26.960055 1955.18548 158.266559 642806.509 0.98750524 0.587467 74 29.943382 222.22549 174.848859 202372.2104 0.99055632 0.5861076 74 29.943382 223.5593772 19.787352 20551.44666 0.69750424 0.587467 78 28.984246 221.16584 171.036976 349357.371 0.98670870 0.53279776 80 32.2575970 2931.558.2728 180.790451	60	22.4580953	1352.48226	130.910755	1267334.281	0.9955536	0.76067776	61	33.291403	1910.9736	185.87455	16184.565	0.9911659	0.7134993
66 24.6357215 168.37623 144.068359 699238175 0.99424629 0.73644239 68 27.1759004 1836.21188 157.949175 326820.4071 0.99439751 0.72455049 70 27.7560774 1938.97103 161.69022 32671.033 0.99617755 0.76233335 72 25.960075 1955.18548 158.266959 64280.509 0.99905827 0.5801074 74 29.433382 2222.22349 174.894859 9.09055827 0.5615753 74 29.43382 2222.22349 174.894859 9.09055827 0.5631074 76 30.7510953 233.259771 179.797525 206551.4666 0.98970807 0.53279776 80 32.2657309 2971.130509 193.774326 9238552151 0.98870807 0.5383038 82 32.951907 271.130509 193.774326 9238552151 0.98316783 0.5360360 86 32.2223115 2807.7888 196.32844 70.633147 0.69653737 0.48653732 0.48653372														0.6685204
66 24.6357215 168.337623 144.068359 699238179 0.99434629 0.73644239 68 27.1759004 1836.21188 157.949175 25.8620.4071 0.99439751 0.72645049 70 27.7560774 1938.97103 16.169022 342571.303 0.99617755 0.7263335 72 27.560774 1938.97103 16.169022 342571.303 0.9905520 0.5815185 74 29.493382 2222.2249 1.7384.056595 64280.5390 0.9905520 0.58301974 76 30.7510953 2332.98771 179.797525 2003571.4666 0.9905520 0.58301974 78 28.944249 221.1584 171.103676 349357.371 0.98070807 0.53279776 93 252.521 19.302077 125820.2085 0.98870807 0.5383038 82 32.951907 271.130509 193.774326 9238552151 0.9837638 0.57063060 84 30.4719125 2588.5228 105.050514 6.9131476 0.96513710 0.46635329	64	25.3244289	1603.12416	146.824885	647121.3779	0.99362734	0.71823791	65	34.683819	2134.8346	194.79778	7495.1455	0.9866505	0.675547
70 27.7560774 1938.97103 161.69022 342571.3033 0.99611775 0.76233335 72 22.636008 1955.18548 158.266555 64280.509 0.98965827 0.63615763 74 29.9433382 2222.2249 174.884855 0.9905552 0.8301974 76 30.751053 2332.98771 179.977252 209551.4666 0.9905552 0.5801974 78 28.9842496 2291.16584 171.036976 349357.371 0.98067809 0.553279776 80 32.2551907 2711.30509 193.774326 92385.53151 0.9837680 0.55363038 82 32.951907 2711.30509 193.774326 9238552.5151 0.9837680 0.55360308 84 30.471912 2588.5228 180.790451 11555.2120 0.98337680 0.55360308 86 33.2223315 2870.76888 196.32384 67083.31487 0.9831580 0.5580301 90 3.425371 29.565345 541.448199 0.97812326 0.56580301 90 3.	66													
72 26.960085 1955.18548 158.266959 642806.509 98968827 0.65615763 74 29.943382 2222.22549 174.848859 202372.2104 0.99055632 0.65801974 78 30.7510953 232.29771 179.797552 206551.4666 0.89750424 0.587467 78 28.9842496 221.16584 171.036976 349357.371 0.98670670 0.53279776 80 32.265790 273.15323 198.320271 125882.0585 0.9878007 0.535363038 82 32.951907 271.1 30509 193.774326 92385.52151 0.9887067 0.535363038 84 30.4719125 2585.82228 180.790451 161559.2102 0.98337638 0.5503608 66 33.2223315 2870.76888 196.23844 0.08311012 0.9815071 0.53162425 88 30.015223 2905.88625 198.460534 5413.48199 0.78143256 0.55589001 90 3.2427476 2956.596548 192.49148 48845.94672 0.91545439 0.3442344	68	27.1759004	1836.21188	157.949175	326820.4071	0.99439751	0.72455049							
72 26.960085 1955.18548 158.266955 642806.590 0.98965837 0.65615763 74 29.9433382 2222.22549 174.848859 202372.2104 0.99055632 0.63801974 76 30.7510553 2332.9971 179.797525 206551.4666 0.58750424 0.587464 78 28.9842496 2291.16584 170.103676 349357.371 0.98670007 0.53279776 80 32.2657302 259.15523 189.302077 125882.0585 0.9878007 0.535363038 82 32.951907 2711.30509 193.774326 92385.52151 0.9878007 0.55363038 83 3.25223315 2807.08881 196.232012 0.98337638 0.5536308 84 30.4719125 2585.82228 180.790451 161559.2102 0.98337638 0.552603668 84 32.227315 2807.58824 6708.31487 0.98310760 0.39162425 88 33.015223 2905.68625 194.6966537 0.49653373 0.49653373 0.49653373 90	70	27.7560774												
74 29.9433382 2222.22549 174.848859 202372.2104 0.99055632 0.63801974 76 30.751055 232.99771 179.797325 206551.4666 0.98750424 0.587467 78 28.942494 220.15584 171.035974 293957.371 0.98075040 0.587467 78 28.942494 220.15584 171.035976 39357.371 0.98070800 0.55363038 82 32.951907 7211.30509 193.77426 2385.5215 0.98856611 0.51710224 43 30.4719125 258.52228 180.790451 161559.2102 0.98337638 0.5706008 86 33.2023315 2870.76888 196.53344 6708331487 0.96513716 0.39162425 88 33.0152923 295.655648 194.134.98199 0.97813256 0.55630301 90 3.4253478 295.565548 124.33.7688 0.9655377 0.46956336 92 3.22748776 295.565548 192.49448 4884.594672 0.9156439 0.34423447 94 30	72													
76 30.7510953 2332.98771 127.977525 206551.46666 0.98750424 0.587467 78 28.9842496 2291.16584 171.036976 349357.371 0.98607809 0.553279776 08 32.657369 2579.15523 189.320277 125882.0858 0.98870807 0.55363038 82 32.951907 2711.30509 193.774326 92385.52151 0.98870807 0.55363038 84 30.4719125 2588.2228 180.790451 116559.2102 0.98337688 0.5506300 86 33.2223315 2870.76888 196.32384 67083.31487 0.98337688 0.5506300 86 33.2223315 2870.76888 196.32384 67083.31487 0.96310176 0.39162425 88 3.015223 2905.88625 194.5065345 6.9655373 0.46563732 0.4656373 0.4656373 90 32.4257476 2956.596548 192.249148 48845.49672 0.91954939 0.34423447 94 30.5994413 2867.18956 183.016328 60329.22018 0.	74													
80 32.2657369 2579.15523 189.320277 125882.0585 0.98870807 0.55363038 82 32.951907 2711.30509 193.774326 92385.52151 0.98837681 0.55363038 84 30.4719125 2585.22281 180.790451 116155.2120 0.98337681 0.552063060 86 33.222315 2870.76888 196.32344 67083.31487 0.96317681 0.552063061 90 24.52978 2953.68556 194.434.98199 0.97813256 0.565630301 90 32.452978 2955.965548 192.4934348 0.9655377 0.46936396 92 30.5994413 2867.18956 183.016328 0.924292.2018 0.79414806 0.22700301 94 30.5994413 2867.18956 183.063286 1027.74244 0.48637432 0.2130179	76	30.7510953												
82 32.951907 2711.30509 193.774326 92385.52151 0.98586611 0.51710224 84 30.4719125 2585.82228 180.790451 161559.2102 0.98337638 0.52003608 63 32.223315 2870.76888 196.32344 67083.31487 0.9631076 0.39162425 88 33.015223 2905.88625 195.605348 5413.49199 0.97813256 0.55580301 90 32.45278 293.6055346 5413.49199 0.97813256 0.55580301 90 32.45278 293.605346 5124.39198 9.0955373 0.46933396 92 32.748776 2965.956548 192.429148 48845.94672 0.91954939 0.34423447 94 30.5994413 2867.18956 183.016328 60329.22018 0.79416806 0.22700301 94 30.57937576 2945.66088 183.699561 12777.4424 0.84637422 0.2130179	78	28.9842496	2291.16584	171.036976	349357.371	0.98607809	0.53279776							
84 30.4719125 2585.82228 180.790451 161559.2102 0.98337638 0.52603608 86 33.2223315 2870.76588 196.32384 67083.31487 0.96310176 0.39162425 88 33.0152292 2905.886255 193.495666 128633.7698 0.96655373 0.46936396 90 32.452978 2953.68556 193.495666 128633.7698 0.96655373 0.46936396 92 32.7429776 2955.96548 192.49148 48845.94672 0.9191526 0.55680301 94 30.5994413 2867.189566 183.016328 60323.22018 0.79416806 0.22700301 94 30.5934716 2945.66688 183.699965 12777.4424 0.84637422 0.22130179	80	32.2657369	2579.15523	189.320277	125882.0585	0.98870807	0.55363038							
86 33.2223315 2870.76888 196.32384 67083.31487 0.96310176 0.39162425 88 33.015223 2905.88653 195.605346 6413.49199 0.97813256 0.5658030 90 32.452974 293.68565 193.49566 128633.7689 0.97813256 0.5658030 92 32.2748776 2956.596548 192.499148 48845.94672 0.91956439 0.34423447 94 30.5994413 2867.18956 183.016328 0.3292.2018 0.7941806 0.22700301 96 30.537376 2945.66088 183.699661 12777.4424 0.48637432 0.21310179	82	32.951907	2711.30509	193.774326	92385.52151	0.98586611	0.51710224							
88 33.0152923 2905.88625 195.605348 54134.98199 0.97813256 0.56580301 90 32.45278 2953.68556 193.495666 12663.7698 0.96655373 0.46936396 92 32.2748776 2965.96548 192.49148 48845.94672 0.91956493 0.34423447 94 30.5994413 2867.18956 183.016328 6023.22018 0.79416806 0.22700011 96 30.5373576 2945.666088 183.699991 126777.4424 0.84637432 0.22130179	84	30.4719125	2585.82228	180.790451	161559.2102	0.98337638	0.52603608							
88 33.0152923 2905.88625 195.605348 54134.98199 0.97813256 0.56580301 90 32.452978 2953.68556 193.495666 12683.7698 0.96655373 0.46936396 92 32.2748776 2965.96548 192.49148 48845.94672 0.91956493 0.34423447 94 30.5994413 2867.18956 183.016328 6023.22018 0.79416806 0.22700011 96 30.5373576 2945.666088 183.699991 126777.4424 0.84637432 0.2130179	86	33.2223315	2870.76888	196.32384	67083.31487	0.96310176	0.39162425							
92 32.2748776 2965.96548 192.249148 48845.96472 0.91956493 0.34423447 94 30.5994413 2867.18956 183.016328 60329.22018 0.79416806 0.22700301 96 30.5373576 2945.66088 183.699961 126777.4424 0.84637432 0.22130179	88	33.0152923	2905.88625				0.56580301							
94 30.5994413 2867.18956 183.016328 60329.22018 0.79416806 0.22700301 96 30.5373576 2945.66088 183.699961 126777.4424 0.84637432 0.22130179	90	32.452978	2953.68556	193.495666	128633.7698	0.96655373	0.46936396							
96 30.5373576 2945.66088 183.699961 126777.4424 0.84637432 0.22130179	92	32.2748776	2965.96548	192.249148	48845.94672	0.91956493	0.34423447							
	94	30.5994413	2867.18956	183.016328	60329.22018	0.79416806	0.22700301							
	96	30.5373576	2945.66088	183.699961	126777.4424	0.84637432	0.22130179							
98 29./580503 2914.9165 1/9.028421 43017.60215 0.64681657 0.28617484	98	29.7580503	2914.9165	179.028421	43017.60215	0.64681657	0.28617484							
100 28.0712553 2800.34637 169.674959 31972.1718 0.5910797 0.36058935														

Fig. 36. Left: list of best fit coefficients for all even curves $q \in [0, 100]$. Right list of best fit coefficients for all odd curves $q \in [1, 65]$

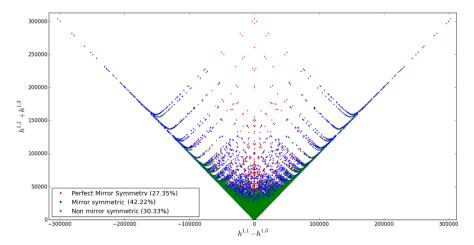


Fig. 37. Mirror symmetry is incomplete in the fourfold data set

References

- 1. Candelas, P., Horowitz, G.T., Strominger, A., Witten, E.: Vacuum configurations for superstrings. Nucl. Phys. B 258, 46 (1985)
- Candelas, P., Dale, A.M., Lutken, C.A., Schimmrigk, R.: Complete intersection Calabi–Yau manifolds. Nucl. Phys. B 298, 493 (1988)
- Candelas, P., Lutken, C.A., Schimmrigk, R.: Complete intersection Calabi–Yau manifolds. 2. Three generation manifolds. Nucl. Phys. B 306, 113 (1988)
- Gagnon, M., Ho-Kim, Q.: An exhaustive list of complete intersection Calabi–Yau manifolds. Mod. Phys. Lett. A 9, 2235 (1994)
- 5. Hitchin, N.: Generalized Calabi-Yau manifolds. Quart. J. Math. 54, 281. arXiv:math.DG/0209099
- 6. Douglas, M.R.: The statistics of string/M theory vacua. JHEP 0305, 046 (2003). arXiv:hep-th/0303194
- 7. Candelas, P., Lynker, M., Schimmrigk, R.: Calabi-Yau manifolds in weighted P(4). Nucl. Phys. B 341, 383 (1990)
- Batyrev, V.: Dual Polyhedra and Mirror Symmetry for Calabi–Yau Hypersurfaces in Toric Varieties. arXiv:alg-geom/9310003
- Batyrev, Victor V., Borisov, Lev A.: On Calabi–Yau complete intersections in toric varieties. In: Andreatta, M., Peternell, T. (eds.) Higher Dimensional Complex Varieties, Proceedings of the International Conference, pp. 39–65. Waller de Gruyter, Trento, Italy, Berlin (1996). arXiv:alg-geom/9412017
- Kreuzer, M., Skarke, H.: On the classification of reflexive polyhedra. Commun. Math. Phys. 185, 495 (1997). arXiv:hep-th/9512204
- Avram, A.C., Kreuzer, M., Mandelberg, M., Skarke, H.: The web of Calabi–Yau hypersurfaces in toric varieties. Nucl. Phys. B 505, 625 (1997). arXiv:hep-th/9703003
- Kreuzer, M., Skarke, H.: Classification of reflexive polyhedra in three-dimensions. Adv. Theor. Math. Phys. 2, 847 (1998). arXiv:hep-th/9805190
- 13. Kreuzer, M., Skarke, H.: Reflexive polyhedra, weights and toric Calabi–Yau fibrations. Rev. Math. Phys. **14**, 343 (2002). arXiv:math/0001106 [math-ag]
- Kreuzer, M., Skarke, H.: Complete classification of reflexive polyhedra in four-dimensions. Adv. Theor. Math. Phys. 4, 1209 (2002). arXiv:hep-th/0002240
- Kreuzer, Maximilian, Skarke, Harald: Calabi–Yau 4-folds and toric fibrations. J. Geom. Phys. 26, 272– 290 (1998). arXiv:hep-th/9701175v1
- Gray, J., Haupt, A., Lukas, A.: Calabi–Yau fourfolds in products of projective space. Proc. Symp. Pure Math. 88, 281 (2014)
- Gray, J., Haupt, A., Lukas, A.: All complete intersection Calabi–Yau four-folds. JHEP 1307, 070 (2013). arXiv:1303.1832 [hep-th]
- Anderson, L.B., Apruzzi, F., Gao, X., Gray, J., Lee, S.J.: A new construction of Calabi–Yau manifolds: generalized CICYs. Nucl. Phys. B 906, 441–496 (2016). arXiv:1507.03235 [hep-th]
- Altman, R., Gray, J., He, Y.H., Jejjala, V., Nelson, B.D.: A Calabi–Yau database: threefolds constructed from the Kreuzer–Skarke list. JHEP 1502, 158 (2015). arXiv:1411.1418 [hep-th]
- Davies, R.: The expanding zoo of Calabi-Yau threefolds. Adv. High Energy Phys. 2011, 901898 (2011). arXiv:1103.3156 [hep-th]
- Candelas, P., Davies, R.: New Calabi-Yau manifolds with small Hodge numbers. Fortsch. Phys. 58, 383 (2010). arXiv:0809.4681 [hep-th]
- 22. He, Y.H.: Calabi–Yau geometries: algorithms, databases, and physics. Int. J. Mod. Phys. A 28, 1330032 (2013). arXiv:1308.0186 [hep-th]
- Anderson, L.B., He, Y.H., Lukas, A.: Heterotic compactification, an algorithmic approach. JHEP 0707, 049 (2007). doi:10.1088/1126-6708/2007/07/049. arXiv:hep-th/0702210 [hep-th]
- Gabella, M., He, Y.H., Lukas, A.: An abundance of heterotic vacua. JHEP 0812, 027 (2008). doi:10.1088/ 1126-6708/2008/12/027. arXiv:0808.2142 [hep-th]
- Gao, P., He, Y.H., Yau, S.T.: Extremal Bundles on CalabiYau Threefolds. Commun. Math. Phys. 336(3), 1167 (2015). doi:10.1007/s00220-014-2271-y. arXiv:1403.1268 [hep-th]
- Anderson, L.B., Gray, J., Lukas, A., Palti, E.: Heterotic line bundle standard models. JHEP 1206, 113 (2012). doi:10.1007/JHEP06(2012)113. arXiv:1202.1757 [hep-th]
- Braun, V., He, Y.H., Ovrut, B.A., Pantev, T.: The exact MSSM spectrum from string theory. JHEP 0605, 043 (2006). doi:10.1088/1126-6708/2006/05/043. arXiv:hep-th/0512177
- Taylor, W.: On the Hodge structure of elliptically fibered Calabi–Yau threefolds. JHEP 1208, 032 (2012). arXiv:1205.0952 [hep-th]
- Taylor, W., Wang, Y.N.: A Monte Carlo exploration of threefold base geometries for 4d F-theory vacua. JHEP 01, 137 (2016). arXiv:1510.04978 [hep-th]
- Gao, X., Shukla, P.: On classifying the divisor involutions in Calabi–Yau threefolds. JHEP 11, 170 (2013). arXiv:1307.1139 [hep-th]
- Blumenhagen, R., Jurke, B., Rahn, T.: Computational tools for cohomology of toric varieties. Adv. High Energy Phys. 2011, 152749 (2011). arXiv:1104.1187 [hep-th]

- Gray, J., He, Y.-H., Jejjala, V., Jurke, B., Nelson, B.D., Simon, J.: Calabi–Yau manifolds with large volume vacua. Phys. Rev. D 86, 101901 (2012). arXiv:1207.5801 [hep-th]
- Candelas, P., Constantin, A., Skarke, H.: An abundance of K3 fibrations from polyhedra with interchangeable parts. Commun. Math. Phys. 324(3), 937–959 (2013). arXiv:1207.4792 [hep-th]
- Braun, V.: On free quotients of complete intersection Calabi–Yau manifolds. JHEP 1104, 005 (2011). arXiv:1003.3235 [hep-th]
- Candelas, P., de la Ossa, X., He, Y.H., Szendroi, B.: Triadophilia: a special corner in the landscape. Adv. Theor. Math. Phys. 12, 429 (2008). arXiv:0706.3134 [hep-th]
- Kreuzer, M., Skarke, H.: PALP: a package for analyzing lattice polytopes with applications to toric geometry. Comput. Phys. Commun. 157, 87 (2004). arXiv:math/0204356 [math-sc]
- 37. Braun, A.P., Knapp, J., Scheidegger, E., Skarke, H., Walliser, N.O.: PALP-a User Manual. arXiv:1205.4147 [math.AG]
- 38. The On-Line Encyclopedia of Integer Sequences. http://oeis.org, Number A090045
- He, Y.H., Lee, S.J., Lukas, A.: Heterotic models from vector bundles on toric Calabi–Yau manifolds. JHEP 1005, 071 (2010). arXiv:0911.0865 [hep-th]
- 40. Lynker, M., Schimmrigk, R., Wisskirchen, A.: Landau–Ginzburg vacua of string, M theory and F theory at c = 12. Nucl. Phys. B **550**, 123 (1999). arXiv:hep-th/9812195
- 41. Stamatis, D.H.: Six Sigma and Beyond: Statistics and Probability, vol. 3, 1st edn. CRC Press (2002)
- Braun, V.: Toric elliptic fibrations and F-theory compactifications. JHEP 1301, 016 (2013). doi:10.1007/ JHEP01(2013)016. arXiv:1110.4883 [hep-th]
- Johnson, S.B., Taylor, W.: Calabi–Yau threefolds with large h^{2,1}. JHEP 1410, 23 (2014). doi:10.1007/ JHEP10(2014)023. arXiv:1406.0514 [hep-th]
- Taylor, W., Wang, Y.N.: Non-toric Bases for Elliptic Calabi–Yau Threefolds and 6D F-Theory Vacua. arXiv:1504.07689 [hep-th]
- Anderson, L.B., Gao, X., Gray, J., Lee, S.J.: Multiple fibrations in Calabi–Yau geometry and string dualities. JHEP 1610, 105 (2016). doi:10.1007/JHEP10(2016)105. arXiv:1608.07555 [hep-th]
- Candelas, P., Constantin, A., Mishra, C.: Calabi–Yau Threefolds With Small Hodge Numbers. arXiv:1602.06303 [hep-th]
- Bianchi, M., Ferrara, S.: Enriques and octonionic magic supergravity models. JHEP 0802, 054 (2008). doi:10.1088/1126-6708/2008/02/054. arXiv:0712.2976 [hep-th]

Communicated by Y. Yin