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A micro finite-element model for soil behaviour

S. NADIMI� and J. FONSECA†

This paper describes a numerical model that virtualises the fabric of a natural sand obtained from
micro computed tomography (μCT) to simulate the mechanical response of the material, termed here a
micro finite-element (μFE) model. The grain-to-grain interactions under loading are modelled in a
framework of combined discrete–finite-element method. The basis of this approach is that using a true
representation of soil fabric and deformable grains will enable a more realistic representation of the
physics of granular behaviour. Each individual grain is represented in a numerical mesh and modelled
as a continuum body allowed to deform according to a prescribed constitutive model with appropriate
friction contact conditions. An important feature of this model is the ability to compute the map of
stress distribution inside the grains. A case study of an intact sand subjected to oedometer compression
is presented to demonstrate the insights that can be gained into the stress transmission mechanisms and
yield initiation within the grains. The displacement field, inertia tensor and active contact number are
used to quantify grain kinematics as the virtual fabric deforms. By coupling contact dynamics with
contact topology, this approach provides a robust numerical tool to infer important grain scale
parameters that link the micro phenomena to the macro response of soil.

KEYWORDS: fabric/structure of soils; numerical modelling; particle-scale behaviour; sands

INTRODUCTION
Since first proposed by Cundall & Strack (1979), the
discrete-element method (DEM) has become a primary
tool to model granular behaviour. For the most part,
three-dimensional (3D) DEM models use spherical particles
and, although this idealisation facilitates contact detection
and force calculation, it also limits the field of application of
the method (Ferellec & McDowell, 2010). As noted by
Cavarretta & O’Sullivan (2012), spherical shapes cannot
capture the variation in effective stiffness caused by particle
rotation and inter-particle sliding observed in real sand. The
effect of particle morphology on the mechanical response of
granular material has been repeatedly emphasised in pre-
vious numerical and experimental studies (Oda & Iwashita,
1999; Lu &McDowell, 2007; Katagiri et al., 2010; Miskin &
Jaeger, 2013; Nguyen et al., 2015). Particle shape alone can
affect dilation and, consequently, the shear resistance of
the material (Matsushima & Chang, 2011; Azéma & Radjai,
2012). Efforts to overcome this limitation include the
use of clusters or agglomerates of spheres/discs (e.g. Lu &
McDowell, 2007; Wang et al., 2007; Matsushima et al., 2009;
Cil & Alshibli, 2014; Katagiri et al, 2014; Yang et al., 2016).
The outcomes from these studies have highlighted the effect
of overall particle shape on the rolling resistance mobilised by
the multiple contact points between two particles. More
advanced DEM studies using micro computed tomography
(μCT) include the use of spherical harmonic-based principal
component analysis (Zhou & Wang, 2017) and of non-
uniform rational basis-splines and level set methods
(Andrade et al., 2012; Kawamoto et al., 2016) to describe
the morphological features of sand.

The rigid body conditions and associated contact laws
underlying traditional DEM approaches constitute also an
important limitation to accurately model granular materials,
as discussed in Zheng et al. (2012). Conventional contact
laws such as Hertz (1882) and Mindlin & Deresiewiez (1953)
used for the most part in DEM studies may be of limited use
for modelling contact interaction of irregular particles
as demonstrated from micro-mechanical tests carried out
at the grain-to-grain contact (Cavarretta et al., 2010; Cole
et al., 2010; Senetakis et al., 2013). These studies have
in particular emphasised the need to include plastic behav-
iour at the contacts. The DEM models used in geotechnics
are still largely limited to elastic behaviour, despite the
progress in developing adhesive and plastic contact laws in
powder technology (Alonso-Marroquin et al., 2005; Luding
& Bauer, 2011; Pasha et al., 2014; Thakur et al., 2014).
The diversity of grain morphologies found in natural sands

leads to complex contact topologies which directly affect the
stress distribution and the deformation within the granular
assembly (e.g. Fonseca et al., 2013a; Druckrey et al., 2016).
Contact topologies were reported to be linked to the primary
fabric of stress-transmitting particles and to the realignment
of the contact normal during loading (Fonseca et al., 2016),
thus playing a key role in the mechanical response of
the material. It is therefore suggested that a more accurate
simulation of granular behaviour should account for particle
shape, particle orientation and the associated contact topo-
logies. This paper makes use of the numerically validated
model (a micro finite-element (μFE) model) to extend it to
the grain morphologies found in natural soil.
The rationale underlying this μFE model is twofold:

(a) discrete modelling of granular systems requires a more
truthful spatial distribution of the constituent grains and
their morphologies, which is now possible to obtain using
μCT, and (b) a more realistic representation of the physics of
the granular behaviour can be obtained using a finite-element
formulation based on deformable bodies. The model pre-
sented here makes use of the geometrical grain scale data
obtained from μCT in the framework of combined discrete–
finite-element method (Munjiza, 2004; Harthong et al.,
2012) to model the individual grains and their interactions
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under loading. The idea consists of virtualising the soil fabric
by meshing the constituent grains and allowing them to
interact and deform according to appropriate constitutive
model and frictional contact conditions. The contact
response results from the deformation of contacting bodies,
which accounts for the specificities of each contact surface.
This discrete–finite-element method approach has the poten-
tial to elucidate the fundamental parameters that control the
micro scale phenomena, thus providing a better link between
the micro and macro scales. Moreover, this modelling
technique can contribute insights into yield initiation
within the grain, thus providing a step change for the
understanding of grain breakage (to be developed in future
work). The present paper focuses, first, on the methodology
used to obtain the numerical fabric, including acquiring and
processing the 3D images and meshing the individual grains.
This is followed by a case study on one-dimensional (1D)
compression of Reigate sand for which the measured micro
scale data are discussed.

THE μFE MODEL
One challenge in modelling physical phenomena of real

soil is obtaining a detailed numerical representation of the
constituent grains to simulate grain interaction. The frame-
work presented here makes use of advanced image processing
and mesh generation techniques to obtain an accurate and
computationally tractable representation of the complex
geometries of real sand grains. This virtual fabric is used to
compute the macroscopic global response under externally
applied load and, most importantly, to investigate the micro
scale phenomena that takes place. The flowchart sum-
marising the procedure used to develop the model is
presented in Fig. 1. The main stages comprise: discretising
the individual grains from the tomographic data, generating
the finite-element mesh and performing the numerical
experiment according to the assigned constitutive behaviour.
The details are provided in the three following sections on
image acquisition and processing, mesh generation and
a case study. The model described here follows an earlier
two-dimensional (2D) version described in Nadimi et al.
(2015). The adaptation to three dimensions is clearly
challenging and required the use of more sophisticated
algorithms, as described herein.

Image acquisition and processing
The internal structure of the soil is obtained from 3D

images acquired using X-ray μCT. The images are maps of
X-ray attenuation based on the composition of the material
represented by the intensity, or colour, of each voxel (or 3D
pixel). The accuracy of this 3D representation depends on the
quality and detail of the images. Image quality is to a great
extent controlled by the size of the focal spot and the detector
pixel size, which determine the number of possible source-
detector paths. The loss of definition in an image occurs
when the radiation is originated over an area rather than a
single point; this is called geometric unsharpness (more
details can be found in Fonseca (2011)). A micro-focus tube
scanner, the ‘nanotom’ (phoenix|x-ray, GE), is used here.
This lab source has a signal-to-noise ratio comparable to
synchrotron sources (Brunke et al., 2008) and produces sharp
images so that the boundaries of the grains can be clearly
identified. The 3D images acquired have avoxel size of 5 μm,
which means that each grain is represented by a large number
of voxels (60 voxels across the diameter for a d50 of
approximately 300 μm) and the overall grain shape can be
well captured.

The discretisation of the individual grains consists of
extracting the solid phase from the image and subsequently
separating the grains touching and categorising the individ-
ual grains. This process has been documented in previous
publications by the authors (Fonseca et al., 2012, 2013b) and
a summary is provided here for completeness. In order to
identify the solid phase, a thresholding technique was
employed, which consists of producing a binary image
where the voxels representing the solid phase are assigned a
value of 1 and the voxels representing the void phase are
assigned the value of 0, based on a chosen threshold value.
The threshold value was obtained by fitting a Gaussian curve
to each of the two peaks of the histogram of intensity values
and determining the minimum point between them. This
threshold value was confirmed using Otsu’s method (Otsu,
1979) employing the algorithm implemented in Image J
(Schindelin et al., 2015). To identify the individual grains
within the solid phase a watershed approach was used.
Watershed segmentation consists of taking the image as a
terrain surface, where the elevations are represented by a
distance map, and identifying the single grains as they were
drainage basins (Beucher & Lantuejoul, 1979). The distance
map was computed by calculating the number of iterations
required to fill every solid region (Atwood et al., 2004). The
watershed algorithm employed here is based on the open-
source software toolkit ITK (Ibanez et al., 2005) and was
applied to the inverse distance map (IDM) or height
function. For each basin, it is possible to define the total
depth D, which is the minimum of the height function, and a
watershed depth De, which is the depth of water it can hold
without flowing to adjacent basins. Two watershed input

Grey-scale 3D image

Image acquisition

Image segmentation

Labelled 3D image 
(grains represented by clusters

of voxels with unique ID)

Granular mechanical behaviour

• stress distribution inside grains
• grain kinematics
• macro-response

Boundary condition assignment
+

Input of constitutive relations

Discrete model
(grains represented by
tetrahedral elements)

Delaunay refined meshing

Fig. 1. Flowchart illustrating the various processes/tools and out-
comes involved in the development of this μFE model
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parameters are used to alleviate over-segmentation, the
threshold (T) and the level (l ) parameters. The threshold
parameter T is used to remove the small catchment basins
with depth less than TDmax, where Dmax is the maximum
depth of all the catchment basins in the IDM. No watershed
lines will be generated on the boundaries of these very small
regions, and, as a result, these regions are attached to
adjacent basins. The level parameter l is used to fill all the
remaining basins by a flood level lDmax. In this way, the
basins of De smaller than lDmax will be filled entirely and
merged into adjacent basins. The parameters used here were
T=0·04 and l=0·2. The output of the watershed segmenta-
tion is an image where each grain is defined as a set of voxels
with a unique intensity value, the grain’s identification (ID).
This ID takes integer values between 1 and the total number
of grains, whereas the voxels’ ID representing the void space
takes a value of 0 throughout.

Mesh generation
The meshing stage is pivotal in this work. Obtaining a

mesh that is a good finite-element representation of the
material is particularly challenging for complex and irregular
shapes such as the ones found in real sand. The numerical
mesh is therefore expected to be able to provide a good
approximation of the object boundaries and, in addition,
must fulfil additional constraints over shape, orientation and
size of the elements.
A simple way of converting voxel data into a mesh is to use

a direct conversion method that transforms each voxel or a
cluster of voxels directly into a mesh. In this case, the squared
elements of the mesh will result in ‘stepped’, non-smooth
boundaries of the objects or grains. Thus, this voxelised mesh
has a number of drawbacks that can affect the simulation
of the object-to-object interaction. An alternative approach
is to use the so-called marching cubes algorithm, first
developed by Lorensen & Cline (1987), to extract a polygonal
mesh from the voxel elements defining an object. This
method computes a local triangulation of constant density
within each voxel, resulting in a mesh of uniform resolution.
The limitation of this method lies in the fact that it does not
allow optimisation of the mesh size according to geometrical
constraints of the object. In other words, a requirement of a
good meshing approach would be to allow the use of small
elements for regions of high detail and large elements, for
example, on flat regions.
The surface mesh extraction technique used here is

a refinement of the constrained Delaunay triangulation
(Shewchuk, 2002). Delaunay refinement algorithms are
powerful because they exploit several favourable charac-
teristics of Delaunay triangulations, such as preserving
boundaries and avoiding ‘skinny’ triangles by maximising
the minimum angle of all the triangles in the triangulation.
This is particularly relevant for the numerical simulation,
as elements with high aspect ratio may lead to slow
convergence of the finite-element solver and, therefore,
avoiding these shapes is critical to reduce the processing
time and consequently improve computational efficiency (see
the Appendix for details). An advanced surface reconstruc-
tion algorithm is employed here that uses the open source
Computational Geometry Algorithms Library (CGAL;
Rineau & Yvinec, 2017).
This technique is implemented using a developed Matlab

(Mathworks, 2015) script to generate the image-based mesh.
The process of mesh generation comprises essentially two
stages. In the first stage, triangular iso-surfaces are extracted
from the 3D segmented image with pre-set values for density
and the smallest angle. The density value controls the size
and number of triangles representing the surface of each

grain and thus, the number of nodes in the numerical
analysis. The second stage consists of ‘filling’ the tetrahedral
elements for the sub-volumes bounded by the iso-surfaces to
obtain the volumetric mesh. Fig. 2 shows an example of the
generated mesh. A fine mesh is used to describe more angular
features of the grains (Fig. 2(a)), whereas large triangles are
used in flat surfaces (Fig. 2(b)). The key advantage of the
technique employed here is to preserve the original boundary
of the grain with no restrictions for complex topologies.

Numerical fundamentals
The numerical formulations for body deformation

and body motion are presented here. In the framework
of combined finite–discrete-element method, grain defor-
mability can be described by a finite-element method
formulation, whereas the motion of the individual grains
and contact detection are presented using DEM principles.
Deformability depends on the straining of the material rather
than on its rigid body motion. If there is no strain, the grain
will undergo rigid body motion only. The motion of the
grains is governed by the internal forces acting on the element
nodes. The nodal forces include the contribution from
contact interaction, internal deformation of a discrete
element and external loads

M
@2x
@t2

þ F int � Fext � Fc ¼ 0 ð1Þ

where x is the nodal displacement vector, Fint is the internal
resisting forces vector, Fext is the applied external loads vector
and Fc is the contact forces vector.
The equations of motion for the body are integrated

through time (t) using an explicit central difference inte-
gration rule

u̇ðiþ1=2Þ ¼ u̇ði�1=2Þ þ Δtðiþ1Þ þ ΔtðiÞ

2
üðiÞ ð2Þ

uðiþ1Þ ¼ uðiÞ þ Δtðiþ1Þu̇ðiþ1=2Þ ð3Þ
where u̇ is velocity, ü is acceleration and i refers to the
increment number.
An advantage of using explicit time integration is the

possibility of utilising the diagonal lumped mass matrix.
Computational efficiency can be improved by using the
inversion of the mass matrix, for which the computation for
the accelerations at the beginning of the increment can be
reduced to a simple operation (Wu, 2006)

üðiÞ ¼ M�1 � ðF ðiÞ � F ðiÞ
I Þ ð4Þ

where M is the diagonal lumped mass matrix, F is the
applied load vector and FI is the internal force vector.
The explicit procedure requires no iterations and no tangent
stiffness matrix.

(a) (b) (c)

Fig. 2. Three examples of meshed grains to illustrate: (a) the finer
mesh used to describe angular features of the grain; (b) the large
elements used in flat regions; (c) the mesh of a concave grain
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In an explicit scheme, the time step must be small
enough to ensure the stability of the integration. Abaqus
automatically adjusts the time increment during the analysis
based on a global estimation method. The advantages of
using a global time increment estimation is the constant
update of the maximum frequency of the algorithm leading
to a better and more stable simulation. The trial stable time
increment is calculated for each element in the mesh as
follows

Δt ¼ 2
ωelement
max

ð5Þ

where ωmax
element is the maximum eigenvalue of the element. A

conservative estimation of the stable time increment is given
by the minimum value taken over all elements.

The summary of the constitutive contact behaviour
for an elastic sphere is provided in Fig. 3 by means of
non-dimensional quantities. These solutions are reproducible
in this numerical framework by considering hard contact
in the normal direction and Coulomb friction in the
tangential direction. The principles of using deformable
spheres to simulate contact interaction for normal, tangen-
tial, rotational and torsional loading, and the numerical
validation of the constitutive contact behaviour against
existent theories (including mesh size dependency) will be
discussed in more detail in a follow-up publication.

A CASE STUDY
A case study is presented to demonstrate the ability of

the proposed μFE approach to model a sample of sand. The
model runs in the Abaqus finite-element package (Dassault
Systèmes, 2014) and is implemented with an explicit
algorithm that uses a dynamic framework. The tetrahedral
mesh generated in Matlab is first imported into the
finite-element solver using a text file readable by Abaqus.
The voxel coordinates in theMatlab matrix are converted into
object coordinates using the resolution value of the μCT
images. This section includes first a brief description of

the governing equations and the numerical model. An
assessment of the energy quantities is then presented,
which enables: (a) assessment of the plausibility of the
simulation to carry out quasi-static analysis and (b) evalu-
ation of the assembly response in terms of plastic and
frictional behaviour. This is followed by an investigation into
the effect of microscopic yield stress, which will help in
understanding grain breakage (to be discussed in future
work). Finally, the measurement of the internal stress
distribution and four-dimensional (4D) kinematics of the
grains are discussed.

The model
An oedometer test on a sample of a natural sand is used.

The input data consist of a high-resolution μCT image of an
intact sample of Reigate sand, a quartzitic formation from
southeast England, part of the Lower Greensand formation
(Fonseca et al., 2012). The particle size distribution is shown
in Fig. 4. The sand has a median grain diameter (d50) of
300 μm and is characterised by very high densities and an
interlocked fabric, which enables the use of block sampling to
collect intact samples (Fig. 5(a)) from an outcrop of this
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material (details in Fonseca (2011)). A minimal cement
content was observed in the samples retrieved. The shapes of
the grains in this geologically old, once deep, buried sand
vary from near-spherical to highly non-spherical with
embayments. The most striking feature of this sand is the
predominance of flat, extended contacts (Fig. 5(b)), in
contrast to the point contacts found in more recent sand
formations or in reconstituted samples of the same sand.
The model consists, in this case, of a small sample

represented by an image of 400� 400� 200 voxels subjected
to 1D compression. Fig. 6 shows a 3D view of the sample
together with the boundary conditions imposed – namely,
fixed lateral boundaries and displacement allowed along
the vertical direction only. This is a sub-volume cropped
from the larger 3D image, which explains the flat boundaries
of the sample. The assembly contains 630 grains and each
grain includes on average 1096 nodes and 3080 tetrahedral
elements. Average values of 100 GPa for Young’s modulus
and 0·15 for Poisson ratio (Holtzman et al., 2009) were used,
corresponding to a bulk modulus of K=47·6 GPa and shear
modulus of G=43·5 GPa. Plastic behaviour is assumed to
initiate at 10 MPa stress using an isotropic hardening model.
Subsequently, the material is allowed to harden to 110 MPa
at 0·05 strain (hardening modulus, Et= 2 GPa), after which it
behaves as perfectly plastic. In other words, if the contact

stress decreases due to grain rearrangement, there is a resi-
dual deformation after the yield point. The yield and
hardening values were obtained from curve fitting of the
normal force plotted against displacement response, from
single grain experiments conducted on silica sand.
To account for grain breakage, a more advanced constitutive
assumption is required (e.g. Nadimi & Fonseca, 2017). The
coefficient of inter-particle friction for the grains was
assumed to be 0·23, the value obtained from experimental
grain-scale measurements on silica grains (Senetakis et al.,
2013). The 1D compression test was carried out under
vertical displacement control, up to a vertical strain of 0·1.
The analysis took 13·5 h (running on a Dell Precision
T7610). For a full-size sample, such as those described in
Kawamoto et al. (2016) and Fonseca et al. (2013c), the
simulation is expected to take approximately 6 days.

Assessing energy quantities
When using an explicit dynamics model for a static

problem, it is necessary to make sure that quasi-static
conditions are maintained during the simulation. The
energy balance for the model, according to the first law of
thermodynamics, can be written as follows

EK þ EU ¼
ðt
0
ĖWFdtþ constant ð6Þ

or
ð
V

1
2
ρv � vdV þ

ð
V
ρUdV ¼

ðt
0
ĖWFdtþ constant ð7Þ

where EK is the kinetic energy, EU is the internal energy and
ĖWF is the external work defined as the rate of work done by
external forces and contact friction forces between the
contact surfaces. In addition, ρ is the density, v is the velocity
field vector and U is the internal energy per unit mass.
The energy quantities used here are the kinetic and

internal energies. Fig. 7 shows the evolution of the kinetic
and internal energies over time for the four simulations
reported in this case study. It can be seen that, while the
internal energy increases, the kinetic energy remains near
zero throughout the whole simulation, which confirms the
quasi-static nature of the process.

The effect of the yield stress
Given the difficulty in measuring microscopic yield stress

and plastic behaviour of sand grains, experimental results
are commonly reported in terms of force–displacement
(as contact area evolves during loading). Although for the
microscopic yield stress avalue of 10 MPa has previously been
assigned, interest also lies in investigating the effect of using
different values on the macroscopic response of the assembly.

(a)

(b)

Fig. 5. Intact Reigate sand: (a) illustration of the block sample;
(b) micrograph of a thin section under cross-polarised light showing
the extended flat contacts between the grains (after Fonseca, 2011)

εy = 0 εx = 0

σz
εz

Fig. 6. Boundary conditions used for the simulation of the oedometer
compression
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To this end, additional yield stresses of 20, 30 and 40 MPa
are also used. In order to better understand the effect of yield
stress and isolate it from the influence of grain shape and
contact topology, the Hertzian response of elastic–plastic
spherical grains was investigated with analogous constitutive
behaviour, as presented in Fig. 8. This plot shows that, for a
given normal force, the grains with lower yield stress exhibit
larger displacement and thus softer response. The macro
response of the assembly, computed based on reaction force
measured at the top platen resulting from the applied
displacement, is presented in terms of the stress–strain
response (Fig. 9) and in terms of force–displacement (Fig. 10).

As expected, it can be seen from Fig. 10 that higher load is
required for higher yield stress. This observation is in
agreement with the trend presented in Fig. 7 in terms of
energy quantities; that is, the internal energy is higher for
higher yield stress. Traditionally used stress–strain curves
cannot, however, represent this difference as shown in Fig. 9.
Frictional and plastic energy dissipation for the different
yield stress is reported in Figs 11 and 12, respectively. It can
be observed that the plastic dissipation (Fig. 12) is one order
of magnitude higher when compared to frictional dissipation
(Fig. 11). This observation is believed to be related to the
micro scale mechanisms that take place during 1D com-
pression and does not apply, for example, to triaxial
compression.

Grain kinematics and stress distribution inside grains
The micro scale response is investigated in terms of grain

kinematics and the mechanisms of stress transmission. In
order to infer grain kinematics it is necessary to compute

the internal displacement field of each individual grain.
The displacement or rearrangement of the grains includes
a combination of rotation and translation. The displacement
field is obtained from the spatial coordinates of the nodes
composing each grain at subsequent time steps during
deformation. Similarly, the stress distribution inside the
grains is obtained from the stress values measured at each
node.
Figure 13 shows a 3D view of the stress distribution in

the whole assembly at three stages of loading, initial
(t=0), intermediate (t=500) and final (t=1000) using the
von Mises criterion. It can be seen that, at the initial stage
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(Fig. 13(a)), the sample is not loaded yet and all grains have a
stress field constant and equal to zero. At the intermediate
stage (Fig. 13(b)), it can be seen that the stress concentration
starts at the grain contacts and propagates through the grain
before being transmitted to another neighbouring grain,
again by way of their contacts. At the final stage (Fig. 13(c)),
the assembly has been heavily loaded and this is translated
in the large internal stress values exhibited by the grains.
These data enable the identification of the stress-transmitting
particles and the investigation of the micro-mechanisms
that lead to the formation of the heterogeneous networks
of force transfer, the so-called ‘force chains’. It is interesting
to note that, despite the high levels of stress measured at
the individual grains at the final loading stage, there are,
however, grains that remain essentially with near-zero stress.
The presence of these apparently unstressed grains sur-
rounded by highly stressed grains is a clear indication of the
heterogeneity of the contact force network that forms in
stressed granular media (e.g. Radjai, 2008; Fonseca et al.,
2016). When using this stress distribution it is important to
note that the Von Mises yield criterion is independent of the
first stress invariant, while the failure condition for soil grains
depends on both the first and second invariant of stress.
Figure 14 shows detailed views of the contact areas, the

internal stress distribution and displacement field for single
grains selected from the assembly, measured at t=1000. Four
grains are displayed, termed ‘grain 1’, ‘grain 2’, ‘grain 3’ and
‘grain 4’. The contact area was obtained by computing the
contact pressure at the surface of each grain (Figs 14(a),

14(d), 14(g) and 14( j)), termed here active contacts. The
condition for a node to be part of an active contact is to have
a contact pressure greater that zero. While these contact areas
are associated with higher stress values, a stress value greater
than zero is not necessarily a contact because of the stress
propagation within the grain, this can be seen in Figs 14(b),
14(e), 14(h) and 14(k)). It can be observed that for ‘grain 1’ a
constant displacement value is exhibited at all points of the
grain (displacement map described by a unique shade in
Fig. 14(c)) which indicates that this grain undergoes pure
translational motion. In contrast, ‘grain 2’, ‘grain 3’ and
‘grain 4’ exhibit both translational motion and rotation. This
is represented by a gradient in the shades representing the
displacement field of each grain, which indicates that
different parts of the grain experience different displacement
values (Figs 14(c), 14(f), 14(i) and 14(l)).
Two parameters are proposed here for the kinematics

analysis: the inertia tensor and the active coordination
number. The inertia tensor of each individual grain is a
measure of the imbalance in the mass distribution within the
grain, which is directly related to grain shape. This tensor is
particularly useful for irregular-shaped grains and can be
used to quantify the grain resistance to rotation (Wang et al.,
2007). The principal moments of inertia (equation (8) in the
Appendix) are the eigenvalues of the inertia tensor and the
corresponding eigenvectors give the direction of the principal
axes. The major eigenvalue is termed I1, the intermediate I2
and the minor I3. The moment of inertia of the grain will
be smaller along the longest axis of the grain, which direction
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Fig. 12. Plastic dissipation measured for the four oedometer test with different yield stresses
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is given by the eigenvector of I3. This means that the grain
is more likely to rotate along this direction. The difference
between the magnitude of the three eigenvalues is an indi-
cator of the deviation of the grain shape from a spherical
shape (I1 = I2 = I3 in the case of a sphere). In Table 1 the
inertia tensors and the associated eigenvalues and eigenvec-
tors are presented for the four grains previously discussed.
In addition, displacement arrows are used to describe the
displacement field in each grain, the magnitude is given by
the arrow’s size and the direction is given by the vector’s
direction.

Although the moment of inertia can be directly related to
rotational kinematics, in the case of grains belonging to a
confined assembly, the resistance to rearrangement is also
controlled by the resistance imposed by contacts transmitting

stress, the active contacts. In order to better understand the
mechanisms that control grain rearrangement within the
assembly, grain displacement is related to the inertia tensor
and to the number of active contacts (NcA). Referring again
to Table 1, it can be seen that the kinematic mechanism tends
to become more complex for grains with a larger number of
active contacts – for example, ‘grain 3’ and ‘grain 4’ when
comparedwith the pure translation observed in ‘grain 1’ with
only one contact.
While in previous figures the authors have presented

measurements taken at the final stage of deformation,
Fig. 15 demonstrates the ability of this model to measure
truly 4D kinematics (the fourth dimension being defor-
mation). Two different grains are presented to show the
evolution of the stress and displacement values measured at

S, Mises
(Avg: 75%)

+0·000 × 100
+0·000 × 100
+0·000 × 100
+0·000 × 100
+0·000 × 100
+0·000 × 100
+0·000 × 100
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S, Mises
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(a)

(b)

(c)

Fig. 13. Granular stress field obtained from the oedometer compression test for the stages: (a) initial (t=0); (b) intermediate (t=500); (c) final
(t=1000)
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a pre-selected point throughout deformation from t=0 to
t=1000. For the grain shown in Fig. 15(a) it can be seen that,
for t values between 400 and 600, while the displacement
increases from 0 to approximately 13 μm the stress values
are seen to remain relatively unchanged. Moreover, while
for t greater than 600 the displacement remains relatively
constant, the stress is seen to undergo a steady increase,
suggesting the formation of a highly stressed and stable
contact. Further insightful observations on the mechanisms
of stress transmission can also be obtained from Fig. 15(b).
In this case, as the stress value remains very low and near

zero for t values up to 800, it is expected that significant
rearrangement occurs during this period. For t greater than
800 the increase in the stress value is accompanied by a
significant drop in the increasing rate of displacement and an
expected reduction in the rearrangement of this grain.

CONCLUSIONS
The numerical framework presented has an interesting

potential to answer long-standing questions on the macro
response of soil triggered at the grain level. A key contribution

CPress

+1·000 × 10–4+5·918 × 102
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+7·500 × 10–5
+6·667 × 10–5
+5·833 × 10–5
+5·000 × 10–5
+4·167 × 10–5
+3·333 × 10–5
+2·500 × 10–5
+1·667 × 10–5
+8·333 × 10–6
+0·000 × 100
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U, Magnitude
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+0·000 × 100

Contact area Stress distribution Displacement field

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

( j) (k) (l)

Fig. 14. (a), (d), (g) and ( j) Detailed views of the contact areas; (b), (e), (h) and (k) the internal stress distribution; and (c), (f), (i) and
(l) displacement field for single grains selected from the assembly, measured at t=1000
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of this method is to enable the stress transmission mechanisms
under various load conditions to be inferred. To the best of the
present authors’ knowledge, the map of internal stresses for
real grain morphologies and extended contact surfaces has not
been captured previously by any model or experimental
analysis. The results presented here demonstrate that hetero-
geneous force transfer networks can be characterised while
accounting for the effect of contact topology, grain mor-
phology and the preferential orientation of the grains. The
displacement field obtained for each individual grain allows an
accurate characterisation of the grain kinematics based on a
truly 4D quantification of fabric evolution throughout defor-
mation. By combining an inertia tensor with the distribution of
the active contact areas it is possible to gain an improved
understanding of grain kinematics under loading. Although
computationally expensive, the model is instrumental for
clarifying the fundamentals of granular media at the grain
scale that need to be considered when modelling their mech-
anical behaviour. Future work will include the refinement of
this simulation technique through direct comparison with
experiments and expansion of the model to include grain

breakage. Finally, the μFE model presented here can offer
significant insight into the micro phenomena triggered by the
rich topologies found in natural soil, which have been
insufficiently represented in traditional numerical simulation
approaches.

APPENDIX
Delaunay refined algorithm

The efficiency and robustness of Delaunay triangulation makes it
the most commonly used unstructured triangulation algorithm (Chen
& Xu, 2004). In order to optimise the triangulation, the Delaunay
approach gives a set of ‘quality’ triangles to use as polygons presenting
the extracted surface (Shewchuk, 2014). The challenge is to find a
triangulation that covers the surface of individual objects, in this case
the grains, while satisfying shapes and size constraints (the angles
should not be too small or too large; similarly, the triangles should not
be very small or very large). For ease of visualisation, a 2D example is
presented here to illustrate the refinement process (Fig. 16). For this
particular case, the input data are a polygonal region with constrain-
ing edges and vertices inside the region. The aim is to generate a

Table 1. Analysis of four selected grains in terms of displacement arrows, inertia tensor and the associate eigenvalues and eigenvectors and
number of active contacts

ID Displacement arrows Inertia tensor Eigenvalues Eigenvectors NcA

1

Y

X

Z

2�964 �3�942 �1�649
� 3�401 �2�130
� � 5�428

2
4

3
5

I1= 7·304 �0�538
0�751
�0�380

2
4

3
5

4

I2= 6·245
�0�511
0�067
0�856

2
4

3
5

I3=�1·754
0�669
0�655
0�348

2
4

3
5

2

Y

X

Z

8�309 �1�038 �5�157
� 5�625 2�457
� � 3�422

2
4

3
5 I1= 12·311 0�778

�0�319
�0�540

2
4

3
5 4

I2= 5·308
�0�412
�0�909
�0�056

2
4

3
5

I3=�0·262
0�472
�0�267
0�839

2
4

3
5

3

Y

X

Z

4�926 1�124 1�526
� 8�213 8�668
� � 8�005

2
4

3
5 I1= 17·067 0�152

0�701
0�696

2
4

3
5 16

I2= 4·653
0�986
�0�147
�0�067

2
4

3
5

I3=�0·576
0�055
0�697
�0�714

2
4

3
5

4

Y
X

Z

4�269 3�648 8�891
� 4�519 1�301
� � 4�803

2
4

3
5 I1= 14·642 0�678

0�329
0�656

2
4

3
5 11

I2= 3·651
0�086
�0�923
0�373

2
4

3
5

I3=�4·701
0�729
�0�196
�0�655

2
4

3
5
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triangulation of the region whose edges and vertices cover all input
edges and vertices. A triangulation of the input is obtained by taking a
subset of triangles. As shown in Fig. 16, the input data are represented
by solid vertices and edges and the output for this meshing problem

is represented by hollow vertices and dashed edges. The quality of
triangles, in terms of size and shape, is commonly controlled by
assessing the smallest and largest internal angles and the aspect ratio.
Here, the threshold approach is used to generate an output such
that its smallest angle is not less than some predefined threshold
(Shewchuk, 2002). A practical way to deal with sharp input features is
to isolate them during the refining process so they do not reduce the
quality of the triangulation. The triangulation output is refined by
adding more points to resolve triangles with very small and/or very
large angles and cover edges that may not covered. In general,
Delaunay algorithms consist of maintaining a constrained Delaunay
triangulation, which is refined by inserting carefully placed vertices
until the mesh meets the constraints on triangle quality and size.

Inertia tensor
The inertia tensor is defined as follows

I ¼
Ixx Ixy Ixz
Ixx Iyy Iyz
Izx Izy Izz

2
64

3
75

¼

Ð ðy2 þ z2Þdm � Ð
xydm � Ð

xzdm

� Ð
xydm

Ð ðx2 þ z2Þdm � Ð
yzdm

� Ð
zxdm � Ð

zydm
Ð ðx2 þ y2Þdm

2
64

3
75

ð8Þ

where the quantities Ixx, Iyy, and Izz are termed moments of inertia
and the quantities Ixy, Ixz, Iyx, Iyz, Izx and Izy are the products of
inertia.
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Fig. 15. Evolution of point stress and displacement values measured at two selected grains throughout deformation from t=0 to t=1000

Fig. 16. Example of a 2D triangulation problem, the input data are
represented by the solid vertices and edges and the obtained
triangulation is given by the hollow vertices and dashed edges
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NOTATION
a radius of contact area
D depth
De watershed depth

Dmax maximum depth of all catchment basins
d50 median grain diameter
E elastic modulus

EK kinetic energy
Et hardening modulus
EU internal energy

ĖWF external work
F applied load vector
Fc contact forces vector

Fext applied external loads vector
FI internal force vector

Fint internal resisting forces vector
Fn normal contact force
Ft tangential contact force
G shear modulus
h overclosure

Ixx moments of inertia around x axis
Ixy, Iyx products of inertia on xy plane
Ixz, Izx products of inertia on xz plane

Iyy moments of inertia around y axis
Iyz, Izy products of inertia on yz plane

Izz moments of inertia around z axis
K bulk modulus
l level parameter

M mass matrix
MT twisting moment
m mass

NcA number of active contacts
p pressure

Qx traction force in x direction
R radius
T threshold parameter
t time
U internal energy per unit mass
u displacement
u̇ velocity
ü acceleration
V volume
v velocity field vector
x nodal displacement vector
β twisting angle
εx Johnson’s creep model
μ friction coefficient
Π virtual work
ρ density
σy yield stress
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