
              

City, University of London Institutional Repository

Citation: Broom, M. and Cannings, C. (2017). Game theoretical modelling of a 
dynamically evolving network I: general target sequences. Journal of Dynamics and Games, 
4(4), pp. 285-318. doi: 10.3934/jdg.2017016 

This is the accepted version of the paper. 

This version of the publication may differ from the final published 
version. 

Permanent repository link:  http://openaccess.city.ac.uk/17808/

Link to published version: http://dx.doi.org/10.3934/jdg.2017016

Copyright and reuse: City Research Online aims to make research 
outputs of City, University of London available to a wider audience. 
Copyright and Moral Rights remain with the author(s) and/or copyright 
holders. URLs from City Research Online may be freely distributed and 
linked to.

City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

City Research Online

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/96598742?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


GAME THEORETICAL MODELLING OF A DYNAMICALLY EVOLVING

NETWORK I: GENERAL TARGET SEQUENCES

M. Broom1,∗ and C. Cannings2

1Department of Mathematics, City, University of London,
Northampton Square, London EC1V 0HB, UK.

Mark.Broom@city.ac.uk

2School of Mathematics and Statistics, The University of Sheffield,
Hounsfield Road, Sheffield, S3 7RH, UK.

c.cannings@sheffield.ac.uk

*corresponding author

Abstract. Animal (and human) populations contain a finite number of individuals with social

and geographical relationships which evolve over time, at least in part dependent upon the actions
of members of the population. These actions are often not random, but chosen strategically. In

this paper we introduce a game-theoretical model of a population where the individuals have an

optimal level of social engagement, and form or break social relationships strategically to obtain
the correct level. This builds on previous work where individuals tried to optimise their number

of connections by forming or breaking random links; the difference being that here we introduce

a truly game-theoretic version where they can choose which specific links to form/break. This
is more realistic and makes a significant difference to the model, one consequence of which is

that the analysis is much more complicated. We prove some general results and then consider a
single example in depth.

Keywords degree preferences; graphic sequences; Markov process; stationary distribution; Nash
equilibrium.

1. Introduction

1.1. Modelling populations. When modelling biological populations, inevitably many simplifi-
cations are made. Until recently, most evolutionary models (e.g. [19, 20, 21, 30, 31, 25, 26]) have
considered an infinite well-mixed population where all individuals interact. Whilst the assumption
of infinite size can often be reasonable, there are also important differences between finite and
infinite populations, and important work on finite populations includes the classical mathematical
genetic models of [16] and [52], as well as the evolutionary game model of [48].

Real populations are also not homogeneous, containing a population structure, and this has been
incorporated in various ways. Models incorporating such structure include genetic models based
upon a number of sub-populations [53, 27, 33, 10], and more general models of evolution on a
graph originating with [28] and discussed in Section 1.2. Here we consider a model introduced in
[6] in which ”evolution” takes place on the class of graphs with a fixed number of vertices, the set
of edges changing according to choices made by the vertices. Details are given in Section 1.3.
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2 GAMES ON DYNAMICALLY EVOLVING NETWORKS I

1.2. Background Literature. A simple graph G = (V,E) is a set of vertices and a set of un-
ordered pairs E ⊆ V ∗ V with (i, i) /∈ E. Vertices are considered indistinguishable if they have no
special type over and above properties resulting from the graph itself, e.g. degree. When consid-
ering some evolutionary process for graphs where vertices represent individuals and the edges are
links there are several levels of complexity, depending on whether the vertices are distinguishable,
whether the edges are fixed, whether the numbers of vertices and or edges changes. There can be
various dependencies between the vertices and edges.

It is often desired to generate a random sample of members of some class of graphs. For example,
one would like to generate elements of the set of r-regular-graphs on n nodes. Here the vertices
are indistinguishable and the number of vertices fixed. Discussion of this can be found in [4]. In
[3] the graph at some time t grew by the addition of vertices and edges. New vertices were added
one at a time, the one added at time t+ 1 was linked to some ”c” of those at time t, these latter
vertices being chosen with probabilities proportional to the degrees of the vertices at time t. This
gives rise to a power law distribution of degrees, see [5] for rigourous derivations.

A third possibility is that the graph grows by some reproductive process. Graph theory has
introduced a number of products which form a new graph from two earlier ones. For exam-
ple, the Tensor product of graphs G(V,E) and H(W,F ) is the graph M = (V ∗ W,G) where
((v1, w1), (v2, w2)) ∈ G, if, and only if, (v1, v2) ∈ E and (w1, w2) ∈ F . Another approach is that
of [44, 45, 46]. In their model each vertex at time t produces an “offspring”,current edges are
retained and then edges are formed between the vertices at t and those at time t + 1 according
to some rule. This process grows indefinitely, and the authors track various properties such as
chromatic number and diameter through time.

In contrast to the models above, the vertices may possess a type, which may change during time.
In many of these latter models there are two types in the population (resident and mutant),and
the state of the population, the set of mutant individuals, say, evolves according to an evolutionary
dynamics. As per Moran’s [33] model individuals are selected, according to some fitness dependent
on type, and they replace one of their neighbours chosen at random. The most important feature
of such populations is the fixation probability, the probability that a randomly placed mutant will
eventually replace the resident population [2, 9].

We note that for real populations both of these features change, and there has been much research
considering the way in which the interactions of the individuals at the vertices affect not only their
type but also the structure of the network, see for example [47]. The growth and structure of
the graph can be dictated by an evolutionary game, and in particular by the prior interactions of
individuals, as in [36, 37]. Here links are formed or broken at rates which depend upon the types
of the individuals, and the authors consider an evolving population where evolutionary dynamics
happen on a slower timescale than the linking dynamics. Alternatively [43] considered various
dynamic models of network formation assuming reinforcement learning. A model where it is not
past interactions but reputation that influences structure is given by [17], and one where prosperity
influences the structure is given in [12]. A good review of work in this area up to 2010 is given in
[39], while a more recent but less specific review is in [1]. An example of more recent work is [40]
who discussed such co-evolutionary models examining the prisoner’s dilemma and the snowdrift
game, together with the Birth-Death process. As stated in [1], while the details of the above
models vary, a common theme to many is that cooperative behaviour is easier to achieve when
cooperators can group themselves together and exclude defectors effectively.

In this paper, following on from [6], we consider networks of individuals represented, as in evolu-
tionary graph theory, by a simple graph. The population itself will not evolve, i.e. its composition
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does not change since there is no birth or death of individuals, but the connections between in-
dividuals will change according to their preferences and strategic decisions. The emphasis of our
papers is the evolution of the structure itself, and although there may be many types of individuals
(a type being its targeted number of neighbours) our process is thus not co-evolutionary, as the
types do not change. Our process could be considered as a detailed examination of a snapshot in
evolutionary time of a more complicated version of the type of model from [36, 37], and it would
be possible to embed our model into such an evolutionary scenario.

The kind of networks that we consider arise naturally in many contexts including in biology,
economics and sociology, and this is the subject of a lot of recent research interest. Example
networks are companies which trade with each other in economics, individuals who are friends in
sociology or the owners of neighbouring territories or food webs ([15]) in biology. In social animals
there are dominance and mutualist interactions and, for example, primate social structures can be
complex and influence key behaviours such as the level of cooperation ([49, 50]).

Populations can also change in important ways over short periods of time. A population of animals
may contain individuals with different degress of desire to interact with others. This phenomenon
is called “sociability” and has been investigated in various species. Examples of such differences
include (non-human) primates [11], bottlenose dolphins [51], [13] and sheep, where different indi-
viduals differ in how close they want to be to other flock members [42].

In these examples there are temporary links between individuals. The probability of a link existing
between a pair of individuals will in reality often be affected by the relatedness of those individuals,
by their genders, by dominance relationships or by spatial factors. In the bottlenose dolphin case
the links are reciprocal, whereas in others they might be initiated, or broken, by the action of
one individual only. Similarly the absence of a connection may benefit one but not the other
(for example a female and a poor quality male). An important related area of research is that
concerning biological markets and partner choice [34, 35].

In this paper we do not model such complex behaviours, but simply the network of interactions.
Individuals (vertices) in our networks are distinguishable only by the number of links they would
like to form with others. Each individual will want to make changes which improves its number
of links, but since all links involve two individuals, the actions of others can make an individual’s
situation worse. The key difference with previous work [6] is that individuals will not just choose
a random action which improves their situation in the short term, but will strategically choose
which individuals are best to link to/ break from. As we shall see, this makes the situation much
more complex.

1.3. A dynamic network population model. In [6] we considered a population of individuals
represented by the set V = {1, 2, . . . , n} and the simple graph G = (V,X) where X = (xij)i 6=j=1,...n

described the links/edges between pairs of individuals with xij = 1 if there is a link and xij = 0
otherwise. In particular we considered a random process in discrete time on the evolving edge set
Xt = (xij,t)i,j=1,...n, where the subscript t indicates that this is the edge set at time t. Throughout
the paper we shall use the same terminology, but we shall often drop the subscript t when we
describe features of the process that are not time-dependent and this causes no ambiguity. In [7]
we investigated the possible paths and end states of the process. We describe the process below.

At any given time t individual i had a number of edges ei,t to other individuals, and the vector
et = (e1,t, e2,t, . . . , en,t) was referred to as the sequence et.

At each time point an individual was chosen and allowed to add or remove an edge to another
individual. Each vertex had an acceptable range [mi,Mi] of edges to other vertices, where 0 ≤
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mi ≤ Mi ≤ n − 1. In much of the work mi = Mi = ti, with ti denoted as the unique target of i,
and this is the situation in the current paper.

If i was selected with ei < mi (such a vertex is referred to as a Joiner) then it formed a new
edge, connecting to one of the other vertices it was not connected to at random. If ei > Mi (a
Breaker) then it broke one of its edges at random. Otherwise, it neither created nor broke an edge
(a Neutral vertex).

At successive time points, a vertex was chosen at random, with i being selected with probability
pi > 0, and an edge (potentially) changed following the above, yielding a homogeneous Markov
chain.

The transitions at time t depended upon t only through the state, i.e. the process was homogeneous,
and were defined as follows:
1) For any x∗ which differs from x in a single entry, where xij = 0, x∗ij = 1 for some i, j,

P (Xt+1 = x∗|Xt = x) =


pi

1
n−1−ei + pj

1
n−1−ej ei < mi, ej < mj

pi
1

n−1−ei ei < mi, ej ≥ mj

pj
1

n−1−ej ei ≥ mi, ej < mj

0 ei ≥ mi, ej ≥ mj .

2) For any x∗ which differs by x in a single entry, where xij = 1, x∗ij = 0 for some i, j,

P (Xt+1 = x∗|Xt = x) =


pi

1
ei

+ pj
1
ej

ei > Mi, ej > Mj

pi
1
ei

ei > Mi, ej ≤Mj

pj
1
ej

ei ≤Mi, ej > Mj

0 ei ≤Mi, ej ≤Mj .

3) Similarly for any other x∗, differing from x in two or more entries,

P (Xt+1 = x∗|Xt = x) = 0.

The probability of the sequence being unchanged is simply 1 minus the sum of the above proba-
bilities.

2. An Overview

2.1. A brief synopsis of previous papers [6] and [7]. In [7] we studied graph theoretic aspects.
We give a brief outline here in order to inform the current work. We introduced the notions of the
deviation of a graph from a given target and the score of a sequence.

Definition 1 The deviation of individual/vertex i is denoted as εi,t = max[(mi−ei,t), (ei,t−Mi), 0],
and the deviation of the above graph Xt is defined as the sum of the vertex deviations, Υt =∑
i=1,n εi,t.

Definition 2 There is clearly a minimum value of the deviation for any given collection of the
ranges [mi,Mi], and this is termed the score.

If the score is 0 the sequence is called graphic and there is a lot of work on such sequences, see for
example [22],[18],[23],[32],[41].

There will be a set of sequences, and a corresponding set of graphs, which achieve this minimum
value. In [7] these were termed J(min) and K(min) respectively, and it was proved that there
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is always a path of allowable moves enabling the process to reach a member of the minimal set,
K(min). Since the process could never increase the deviation of the graph, once J(min)/K(min)
is reached, that set cannot be left. It was proved that for non-graphic sequences K(min) was
connected, so that the process always converged to a unique closed set of states. Note that this
is not true for graphic sequences, where |J(min)| = 1 but K(min) will often have more than one
element (e.g. for (1, 1, 1, 1) we have |K(min) = 3|), since once the mimimal set is reached there will
be no transitions, so no pair of elements of K(min) are connected. Finally in [7] we demonstrated
how to find the score of any sequence using a modified Havel-Hakami algorithm [18],[23], and how
to find all members of K(min) (and hence J(min)) using the methodology of Ruch-Gutman [41].

In [6] we considered the Markov chain itself. We considered the Markov chain over K(min), since
all states not in this set will be transient following the above. We showed that the process was
reversible and so in detailed balance, which thus yielded a unique stationary distribution over
K(min). We then demonstrated a method to find this stationary distribution.

We considered some specific classes of sequence, in particular arithmetic sequences and all or
nothing sequences, and in particular gave a form for the stationary distribution of the latter for an
arbitrary number of vertices. We revisit the former in the current paper.

2.2. Current and Future Work. The current paper considers detailed aspects of the structure
of K(min). In [7] we proved certain restrictions to exist on the its elements, e.g. that for any such
graph we know that all Joiners (that is vertices have degree less than their target) must be joined.
Here we extend such analysis to consider the possible sequences of Joiners, Breakers (vertices with
degrees greater than their target), and Neutrals (the remaining vertices) through time. Vertices
fall into four classes; those which are always neutral, those which are never Joiners, those never
Breakers, and those which can be either Joiners or Breakers. We specify rules regarding the possible
sequences of class memberships of the vertices as we move through the monotone decreasing of
targets.

We then consider a model, which in contrast to those of [6] and [7] considers the possibility that the
individual at a vertex may choose between the available possibilities according to some aspect of
the future costs at that vertex. We have chosen to consider the case where an individual is capable
of calculating the stationary distribution which will result from various changes. We discuss various
criteria for switching including some where an increase in costs is possible. For systems where the
calculation of the stationary distribution is not reasonable we introduce two threshold models,
basing their decision on a recent sequence of states.

In Section 5 we consider a specific example (target {4,3,2,1,0}) calculating for each of the 64
strategy combinations over the minimal set, the payoff for each possible switch. We consider cases
where a switch can only occur if there is a cost lower than the current one, cases where switches
are possible when the cost is no bigger, and cases where there is a cost incurred in switching. We
identify multiple pure Nash equilibria.

We consider two models which do not require the evaluation of the stationary distribution, rather
being based on estimates from recently visited states, and thresholds for switching. These show
different behaviour to the full model.

A number of questions have been left open here. We have discussed in detail but not resolved the
question of what can occur under non-strict moves, i.e. those which allow individuals not to make
their deviation as small as possible at every opportunity.

In this paper we have thus focused on two main issues; the structure of the minimal set K(min),
which we expect most processes to converge to, and the introduction of strategic movement. The
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latter in particular is complicated and hard to deal with in generality, and so we have restricted
ourselves to considering one example in detail, and demonstrating the important concepts to con-
sider in any more extensive analysis. From this paper we see this complexity, but also that strategic
choices lead to clearly different results than the simply random process from [6].

We shall discuss in a subsequent paper [8] certain classes of targets, especially those with score 1.
These are the closest sequences to graphical sequences, and yield certain simplifications that will
make them more amenabe to analysis. This will also involve the consideration of cases with mixed
Nash equilibria.

3. A strategic model

In the model from Section 1.3 each individual has a target number of links, specified by the vector
t. The graph updates through a two stage process, where a random individual is selected to update
its links, and if it is below (above) its target number of links, it picks a random link to form (break).
There is no strategic element to this process, which evolves as a Markov chain.

However, it may be that it is advantageous to form/break some links rather than others. For
example it would be better to form a link that is less likely to be immediately re-broken, either
because the change made is for mutual benefit or because the individual linked to would be likely
to break another link when given the choice (through its own preference, or if it has many links
that it can break).

3.1. Strategies. The population state is denoted by the edge set X as before. In each state any
individual can be selected to change one of their edges. They have n distinct (pure) choices, to
change their edge to any of the other n− 1 individuals, or to make no change. We shall denote the
probability that individual i chooses to change edge xij , conditional on i being selected to make the
change, by uij , with uii denoting the probability that no change is made. We have the following
pure strategies: individual i chooses to change edge xij is denoted by uij = 1, and i making no
change is denoted by uii = 1. Thus we can write all selected changes in the form of a matrix U,
with U having row sums equal to 1.

The strategy matrix U depends upon the state X, and so the full set of strategies of the population
is denoted by UX (similarly its elements by uij(X)), where the strategy of individual i is represented
by the set of ith rows of this collection of matrices. For any x∗ which differs from x in a single
entry, where xij = 0, x∗ij = 1 or xij = 1, x∗ij = 0 for a given i, j,

(1) P (Xt+1 = x∗|Xt = x) =
uij(X) + uji(X)

n
.

In [6] the only changes made were to reduce the deviation of the individual where possible, and
to not make any change if this was not possible (even if some changes allowed the deviation to
stay the same). We shall call any move which decreases this deviation an improving move, any one
that increases it as a worsening move and a move which does not change the individual’s deviation
is termed a neutral move. In the current paper we assume a unique target t and so every actual
change either increases or decreases the deviation of the selected individual. Thus the only neutral
move is making no change. We shall denote as the strict system the case where an individual must
make an improving move if at least one exists and cannot make a worsening move, i.e. if only
neutral and worsening moves exist, it must make a neutral move.
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Individuals which were rational but could only see the immediate consequences of any changes
would follow the strict system, and it seems logical that real systems would often follows these
rules. One consequence of following the strict system is that the score cannot increase. Thus for
the strict system, uij = 0 whenever xij = 0, ei ≥ ti or xij = 1, ei ≤ ti, as this change would involve
a worsening move. The simple “strategies” used in [6] are consistent with the strict system, for
example If we allow non-strict moves, our analysis can be significantly complicated, as we see later
in Section 3.

3.2. Payoffs. Individuals want to minimise their deviation, and we shall denote their payoff as
the negative of their expected long term deviation. In particular, if a process with individuals
following strategies UX has a unique stationary distribution over X, denoted by π(X), then the
payoff to individual i is

(2) Ri(UX) = −
∑
X

εi(X)π(X),

where εi(X) is the deviation of i in state X.

3.3. Stability and strategy switches. Individuals can try to improve their payoffs by changing
their strategy. We consider two types of strategic changes;
Local changes - individual i changes the ith row of UX for a single state X only;
Global changes - individual i changes the ith row of UX for any number of states simultaneously.
Making such global changes might be advantageous, since any individual change would potentially
affect a number of the probabilities of occupying particular states/ taking particular paths, which
then may alter the best choices elsewhere. This would depend upon a significant ability to calculate,
and so it may be reasonable to assume that it is not possible for individuals to make such global
changes. An individual with limited cognitive powers might, for example, only use strict moves
and local changes.

Only changes by a single individual at a time are allowed. We shall say that an individual i plays
optimally if under all allowable changes UX → Ui

X (including no change) it chooses a strategy
which achieves maxiRi(U

i
X). A strategy set is a Nash equilibrium under local or global changes

if, under all allowable changes by i : UX → Ui
X

(3) Ri(U) ≥ Ri(Ui) i = 1, . . . , n.

In this section we briefly consider the process not restricted to the mimimal set K(min), strict
moves or neither.

3.4. The strict system on the non-minimal set. For non-strict moves, and allowing individ-
uals to play sub-optimally (where optimal play is as described above), clearly the process does
not possess the nice properties from [6] and [7]. The process does not necessarily converge to the
minimum set, or have a unique stationary distribution. If individuals are allowed to remain on
the same deviation when there is an opportunity to improve, then the strategy of all individuals
making no changes in any circumstances will clearly not lead to the minimum set, for example.

Clearly for any non-graphic sequence the target can never be achieved, and so there is always at
least one individual that is not achieving their target. Given that the targets are all between 0 and
n− 1 (inclusive), any Joiner (Breaker) must have at least one available edge to form (break). For
strict moves then the population can never settle in a single state and eventually either a reduction
in score or a continuing sequence of moves on a given score will be reached. In [6] all allowable
improving moves happened with some non-zero probability, some of which reduced the score, so
that the population always eventually reached the minimum set. This is not the case here. The
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following example shows that even with strict (but not necessarily optimal) play the minimal set
may not be reached.

Example 1 Consider the case where vertices A and C have target 1, B and D have target 0.
Suppose currently neither of A and B is linked to either of C and D. When A has no links, the
strict system means that it must form a link when selected. Suppose that it always links to B.
Similarly, assume that C always links to D when its score is 0. B and D will simply break the link
that they have (unless they have more than one which can never occur following the above) and
so the system will simply consist of two pairs A and B, C and D, repeatedly breaking and forming
links, with a score of 2. The minimal set consists of the single graph with the single link A to C,
which will never be reached.

However, we are principally interested in what happens when optimal play is employed by individ-
uals, and so we shall restrict ourselves to finding Nash equilibria of our system. Note that we have
not shown whether it is possible to have Nash equilibria that are not in the minimal set. This is a
difficult open problem; we conjecture that it is possible to have such equilibria, but that it requires
a sufficiently large number of individuals with a sequence of high score.

3.5. The non-strict system. Considering Example 1 above, we shall now show that it is possible
for non-strict moves to be optimal under certain circumstances.

Example 1 Cont. Consider again the case where vertices A and C have target 1, B and D have
target 0. Assume that B,C,D always play strictly (i.e. reduce their deviation when they can, and
do nothing when they are on target) and that B will always split from A as its first choice move, D
will always split from C as its first choice, and C will always link to D as its first choice, similarly
to before. Then if A always links to B as its first choice, we obtain the situation where all fol-
low legal strict moves but the unique minimal graph is never reached and the payoff for each is 1/2.

Suppose that A is faced with the situation where it is connected to B, but C and D are split. What
if it chooses to link to C? This is a non-strict move as it is currently achieving target. However,
if it does this, if C and D are picked next, they will do nothing (we assumed they always behave
strictly, and they are now on target). Either A (assuming it plays as previously described except
in the original case) or B will split A-B, which will lead straight to achieving the target for all (in
an expected time of 2 moves). Thus here is an example where non-strict play is optimal.

Note an alternative in the initial situation would be to wait until B breaks from A and then link to
C as the next opportunity, but this would mean a sub-optimal decision was made at the original
decision; also it would take at least twice as long to reach the minimal graph (A would have to
be picked with mean time 4, and only then would the final target have been achieved if C has not
linked to D in the meantime).

4. The strict system on the mimimal set

In the above we have defined the minimal set K(min) which achieves the score of the sequence,
and hence a minimal mean payoff for individuals in our population, and the strict process, where
individuals try to reduce their own short term deviation as much as possible. It seems reasonable,
that (despite the discussion in Sections 3.4 and 3.5) in many, likely most, circumstances, the
long-term behaviour will reduce to strict moves, restricted to K(min).
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We now consider processes restricted to the strict system acting on K(min). We define the matrix
A = (akl) as the matrix of transtions on the elements of K(min), such that akl is the probability
of moving from the minimum graph state Xk to Xl, i.e.

(4) akl = P (Xt+1 = xl|Xt = xk),

using equation (1). Thus given a choice of strategies UX that lead to K(min) there is a unique
matrix A. We can (and will) consider alternative strategy combinations UX, leading to different
matrices A.

This will, in general, greatly reduce the number of transitions that need to be made. For example,
if n = 5, X has 210 elements, each yielding a potentially different 5 × 5 matrix, giving 25600
transition parameters to consider. In Example 3 K(min) contains 8 elements and so at most 64
potential transitions, only 28 of which are non-zero.

We know from Theorem 5 from [7] that K(min) contains at least one element with no Joiners,
and at least one element with no Breakers. Thus no vertex is always a Breaker, and no vertex
is always a Joiner. K(min) is connected (unless the target sequence is graphic, when all vertices
are neutral), and so no vertex is sometimes a Joiner and sometimes a Breaker but never Neutral.
Thus every vertex is Neutral for some elements of K(min), and we have the following:

For the set K(min) associated with any target sequence, we can divide the individuals (vertices)
into four classes:
a) Those which are sometimes a Joiner and sometimes a Breaker (and also necessarily a Neutral)
for some elements of K(min); these individuals constitute the set SA,
b) those which are Joiners (or Neutrals) for some elements but never Breakers; the set SJ ,
c) those which are Breakers (or Neutrals) for some elements but never Joiners; the set SB ,
d) those which are always Neutral; the set SN .

Clearly, since any graphical sequence has deviation zero, it will only have individuals of type d). For
non-graphical sequences, since K(min) contains elements with Joiners and elements with Breakers,
it must contain either individuals of type a) (and possibly some of type b) and/or c) as well), or
if there are no type a)’s there must be individuals of types b) and c).

Lemma 1. We cannot have individuals of type a) and individuals of type d) for the same sequence.

Proof: Suppose that we have an individual of type d). It is always Neutral, so its set of links do
not change. It cannot be joined to any Breaker, as breaking that link would leave the graph in
K(min), but change the vertex to a Joiner. Similarly it cannot be split from any Joiner, as forming
that link would leave the graph in K(min), but change the vertex to a Breaker. Any vertex of
type a) will be a Joiner at some times and so joined to the original vertex, but a Breaker at other
times, and so split from it. Thus there can be no such vertex. �

Lemma 2. Suppose we have a target t = {t1, t2, . . . , tn} on a set of vertices 1, 2 . . . , n where
SJ = {t1, t2, . . . tu}, SN = {tu+1, . . . , tv}, and SB = {tv+1, . . . , tn}.
(i) We shall now introduce an extra vertex. For any set {wu+1, wu+2, . . . , wv} such that wi ∈ {0, 1},
t
′

= {t1+1, t2+1, . . . , tu+1, tu+1+wu+1, tu+2+wu+2, . . . , tv+wv, tv+1, tv+2, . . . , tn, u+
∑v
i=u+1 wi}

will have precisely the same transition graph as t = {t1, t2, . . . , tn}, in the sense that if two states
are joined in the original graph then the augmented states will be joined in the transition graph of
the augmented target, where the new vertex will be in class d).
(ii) We shall now “remove” vertex u+ 1. For any set {wu+2, wu+3, . . . , wv} such that wi ∈ {0, 1},
t
′′

= {t1 − 1, t2 − 1, . . . , tu − 1, tu+2 − wu+2, tu+3 − wu+3, . . . , tv − wv, tv+1, tv+2, . . . , tn}will have
precisely the same transition matrix as t.
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Proof: (i) Consider a graph with the original target t. Add a new vertex and link it to all elements
in SJ , split it from all elements in SB , and link it to any given element i of SN if and only if
wi = 1. The new vertex will be a Neutral, and every individual will have the same deviation
(and in the same direction) as the original graph. For the given choices of the wi’s, there is a
1-1 correspondence between the set of original graphs and the set of transformed graphs; the only
difference is the presence of the new vertex. But this vertex is split from all vertices that can ever
be Breakers and joined to all that can be Joiners, and so its deviation will never change, i.e. it is
an element of SN .
(ii) Similarly, let us remove an element of SN . As stated in the proof of Lemma 1, this vertex
must be split from all vertices that can be Breakers, i.e. SB , and joined to all elements that can be
Joiners, i.e. SJ . This means that removing this vertex will take one from the links of all elements
of SJ and none from all elements of SB . It will take a link away from an element of SN if there
exists one, and so this will determine the values of wi for i ∈ SN which keeps the deviations the
same (note that an element of SN has the same links to all other elements of SN for all elements
of K(min), so we have the same set of wis for all graphs). Thus again we have a one-to-one
correspondence between the two minimal sets. �

Thus from Lemma 2, if we have individuals of types b), c) and d) then we can effectively add or
remove as many elements of type d) as possible without changing the minimal set at all. This
leads us to the following result.

Theorem 1. Suppose we have a target t = {t1, t2, . . . , tn} where SJ = {t1, . . . , tl}, SB = {tl+1, . . . , tn}
and so SN = φ. Now suppose we have a graph G = {V,E} where V = {vn+1, vn+2, . . . , vn+m},
and the degree of vi ∈ G is di. Then by Lemma 2 the target t

′
= {t1 + m, t2 + m, . . . , tl +

m, tl+1, tl+2, . . . , tn, dn+1 + l, dn+2 + l, . . . , dn+m + l} has precisely the same transition matrix as t.

Thus for any target t
′

of the same type as t i.e. only elements in SJ and SB , there is a set of
targets whose transition graphs are isomorphic to the transition graph of t.

Example 2. If t = {3, 2, 1, 0}, so l = (n − 2) = 2 then for m = 0 we have {3, 2, 1, 0}, for m = 1,
{4, 3, 2, 1, 0}, for m = 2, {5, 4, 2, 2, 1, 0} and {5, 4, 3, 3, 1, 0}, and for m = 3 ,{6, 5, 2, 2, 2, 1, 0},
{6, 5, 3, 3, 2, 1, 0}, {6, 5, 4, 3, 3, 1, 0} and {6, 5, 4, 4, 4, 1, 0}. Note that the Breakers have been moved
to the end of the target to give a non-decreasing sequence. The target {4, 3, 2, 1, 0} is treated in
some detail later.

Theorem 2. Suppose we have a target t = {t1, t2, . . . , tn} on a set of vertices 1, 2 . . . , n where
SJ = {t1, t2, . . . tu} is such that vertex i ∈ SN is in class b), SN = {tu+1, . . . , tv} then ti ∈ SJ is
in class d) and SB = {tv+1, . . . , tn} then ti ∈ SB is in class c). Further for some m, suppose we
have a graph G with graphic sequence{d1, d2, . . . , dm}. Now fix the links between pairs of elements,
one from the original sequence and one from G, so that they satisfy the following: every element
of G is connected to every element of SJ , every element of G is not connected to any element of
SB. Elements of G and SN can be connected or not in any combination, where vertex i in SN has
wi edges into G and vertex i in G has xi edges into SN , so that 0 ≤ wi ≤ m, 0 ≤ xj ≤ v − u and∑v
i=u+1 wi =

∑m
j=1 xj. Then

t
′

= {t1 +m, t2 +m, . . . , tu +m, tu+1 +wu+1, tu+2 +wu+2, . . . , tv +wv, tv+1, tv+2, . . . , tn, d1 +x1 +
u, d2 + x2 + u, . . . , dm + xm + u}
will have precisely the same transition graph as t = {t1, t2, . . . , tn}, with the additional m vertices
from G being in class d).
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Proof: Similarly to part (i) of Lemma 2, all vertices in G are split from all vertices that can ever
be Breakers and joined to all that can be Joiners, and so their deviations will never change, so
they become elements of SN for the new target. All original vertices have the same deviation, so
there is again a 1-1 correspondece between graphs from the original and new sequences, for the
given set of links between the elements of the original sequence and G. But these links can never
change within K(min), and thus we have the same minimal set. �

In Theorem 2 we compare two sequences, where any directed edge (or its absence) in the transition
graph for the original case is present or absent in the new one, and in the new case a wider set
of (non-strict) strategies are available to other states not existing in the first. If an individual
is restricted to moving among the states that existed in the first case, with the links to the new
vertices as described, the new states have not altered the game, so that any strategies that satisfies
any given equilibrium/ stability conditions in the first case would also satisfy them in the second.
Further any move which involves the new individuals will increase the score; thus disallowing all
such moves, there is no difference between the two cases. Thus as long as the population starts in
this irreducible set and only strict moves are allowed, the solutions are equivalent.

In [7] the conjugate vector v = (vi) of t was defined by vi = #{j : tj ≥ i} (where # means “the
number of”). We write fj =

∑
r≤j(tr + 1− vr) and ei = maxj≤i[0, fj ], so that the terms ei are the

non-negative record values of the sequence f = (fi), and then di = ei − ei−1 (with e0 = 0).

Definition 3 The deficit of the sequence t was defined as the summation
∑λ
i di, where

λ = #{i : ti ≥ i} is the Durfee number.

From Definition 3, we can see that there is a close connection between the deficit and the sequence
f = (fj) for j = 1, . . . , λ, which we shall refer to as the deficit profile.

Definition 4 We say that the deficit profile has its peak at µ if fµ > 0, fµ = max1≤j≤λ fj and if
µ < λ then fµ > fµ+1. If there is no such value µ, then we say that the deficit profile has no peak.

Clearly, the deficit is 0 if and only if there is no peak in the profile. Otherwise the deficit takes
value fµ. We show below that the deficit for a target is either equal to the score defined earlier,
and thus to the HH-score obtained using the modified Havel-Hakami algorithm, or to that score
minus 1. The following example makes it clear that all combinations of odd or even deficit and
odd or even score (with the score the deficit or the deficit plus one) are possible. See [7] for a
discussion of some issues regarding odd and even deficits.

Example 3 We can find examples of all four possibilities, with deficit odd or even, and score equal
to the deficit or the deficit plus 1, as follows:
(6,6,3,3,3,0,0) has deficit 4 and score 5;
(6,6,3,2,2,2,0) has deficit 3 and score 3;
(7,6,3,3,3,0,0,0) has deficit 5 and score 6;
(7,6,3,2,2,2,0,0) has deficit 4 and score 4.

Lemma 3. The score is equal to the deficit (the deficit plus 1) if and only if
∑n
i=µ+1 ti + µ2 −∑µ

i=1 min(vi, ti + 1) is even (odd), where µ ≤ λ is the peak as in Definition 4.

Proof: After the first µ targets are removed using the modified HH process, the remaining target
sum is

∑n
i=µ+1 ti+µ2−

∑µ
i=1 min(vi, ti+1), yielding a graphic sequence (alternatively, a sequence

with score 1) amongst the remaining vertices if this sum is even (odd). Thus the score is equal to
the deficit (deficit plus 1) if and only if this sum is even (odd). �
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Theorem 3. Suppose that we have a target t, with conjugate v and Durfee number λ, so that the
peak is at µ < λ where tµ + 1 − vµ > 0, or µ = λ where tλ > tλ+1, then vertices 1, . . . , µ are in
class b).

Proof: Here the deficit is
∑µ
r=1 tr + µ−

∑µ
r=1 vr,

so that the score takes this value or this value plus 1.
Consider a vertex x < µ.
(i) Suppose that x is a breaker (linked to y > tx individuals) in the first µ vertices. Let us remove
this vertex and its links, and consider the remaining graph. We note that the order of the vertices up
to the original µ+1 is unchanged, due to the definition of the peak (tµ > vµ−1 ≥ vµ+1−1 ≥ tµ+1)
if µ < λ; or if µ = λ since then tλ > tλ+1. Thus this will have the new deficit∑µ
r 6=x tr + µ−

∑µ
r=1(vr − 1) + z,

where z is the number of links removed from vertices µ+1, . . . , n. Note we must also add the value
y − tx > 0 to this, which is the penalty for vertex x missing its target. We note that the amount
that the graph misses the target will be equal to this sum or one more. Adding this we obtain∑µ
r 6=x tr + (y − tx) + µ−

∑µ
r=1 vr + µ+ z ≥ Deficit+ 2(y − tx),

since z ≥ y−µ, which is at least 2 greater than the deficit for the original sequence, and so greater
than the score for the original sequence. This is a contradiction, since we see that such a graph
cannot achieve the score. Hence no vertex 1, . . . , µ can be a Breaker, so it cannot be in sets a) or
c).
(ii) To be in set b), a vertex must be a Joiner in some graphs that achieve the score. Firstly we
note that if in any graph achieving the score µ can be a Joiner, it is simple to find a graph where
x < µ can be a Joiner, given that its target is at least as challenging.
Now consider vertex µ that is a Joiner for some graph, where it is connected to all of the other
top µ individuals and z of the others (this will yield a deviation at least as low as any alternative);
note that we need none of these z edges to have target 0. Removing this vertex and its links as
before yields the new deficit∑µ−1
r=1 ((tr − 1) + 1− (vr − 1))

to which we can add tµ − µ+ 1− z which is the penalty for µ missing its target. Thus the deficit
of this graph is∑µ−1
r=1 (tr + 1− vr) + (tµ − µ+ 1)− z

which is the same as the original deficit if and only if vµ = µ+ z, i.e. vµ < tµ + 1.
We note that the number of removed edges is µ − 1 + z. In the original sequence there were µ
vertices with target at least µ (and so at least 1) including vertex µ that we removed, thus we can
certainly find the z non-zero targets we require.
We have shown that through this process we obtain the original deficit, but this might not be the
same as the score.
Applying the modified HH-algorithm, removing a single vertex out of order does not affect the
resulting score obtained. There is always a minimal graph which has any given vertex as a neutral,
and the score will be achieved by linking it to the vertices with the biggest target; doing this is
equivalent to removing the vertex out of order following the modified HH process. Thus the added
term tµ − µ+ 1− z above, which is the difference between the two deficits, can also be seen to be
the difference between the two corresponding scores. Hence we have our result. �

Now consider the sequence s, with conjugate w, defined by si = n− 1− tn+1−i. We shall refer to s
as the dual sequence of t. This corresponds to the target number of breaks (as opposed to links) of
the vertices in reverse order, i.e. in the order of increasing target of links and so decreasing target
of breaks. It is easy to see that the score of s is the same as the score of t, and that for any given
graph for t, considering the graph with the complementary set of links has precisely the reverse
breaker-joiner structure for s. We will also define the reverse peak when counting the number of
target breaks in the reverse direction.
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Corollary to Theorem 3 Suppose that we have a target t, with conjugate v, so that s, with
conjugate w, defines the reverse sequence of breaks. If the reverse peak is at ψ where sψ+1−wψ > 0,
then vertices n+ 1− ψ, . . . , n are in class c).

Theorem 4. Suppose that we have a target t, with conjugate v and Durfee number λ, with the
following properties:
(i) tr + 1− vr < (≥) 0 for r < R1(R1 ≤ r ≤ λ) for some R1 ≤ λ;
(ii) tλ + 1− vλ > 0;

(iii)
∑λ
r=1(tr + 1− vr) > 0;

(iv) vr − tr+1 < (≥) 0 for r > R2(λ+ 1 ≤ r ≤ R2) for some R2 ≥ λ+ 1;
(v) vλ > tλ+1.
Then vertices 1, . . . , λ are in class b) and vertices λ + 1, . . . , n are in class c), and thus there are
no vertices of class a) or d).

Proof: From (i) and (iii) the peak is at the Durfee number λ, and so with the addition of (ii) and
(v) (these imply that tλ > tλ+1) the conditions of Theorem 3 are satisfied, and all vertices 1, . . . , λ
are in class b).
We have that wr = n− vn−r, and so sr + 1−wr = n− 1− tn+1−r + 1−n+ vn−r = vn−r − tn+1−r.
From the above (iv) and (v) are the equivalent to (i) and (ii) in the reverse direction, and then
imply that the reverse peak is at vertex n−λ (counting from the back), and so vertices λ+1, . . . , n
are in class c). �

Example 4. The following examples yield a 3-3 split between class b) and c) from the above:
(5,4,3,2,1,0); (4,4,3,2,1,1); 4,4,3,2,1,0).

Theorem 5. Denoting the Durfee number from the front (back) as λ (ψ = n + 1 − λ∗), either
these vertices are neighbours with λ∗ = λ+ 1 or there is a single gap, with λ∗ = λ+ 2.

Proof: There are two cases to consider:
(i) tλ ≥ λ, tλ+1 < λ ⇒ wn−λ = n − λ , i.e. the Durfee number is λ and the Durfee number from
the back is ψ = n− λ so there is no gap.
(ii) tλ ≥ λ, tλ+1 = λ⇒ wn−λ < n− λ, so the Durfee number from the back is less that n− λ.
tλ+1 = λ ⇒ sn−λ = n − λ − 1 ⇒ wn−λ−1 ≥ n − λ so that the Durfee number “from the back” is
greater than or equal to n− λ− 1, so it must be n− λ− 1. Thus there is a gap of 1. �

Theorem 6. For any target sequence, consider a pair if vertices i and j. Then if ti ≥ tj then
either:
i and j are in the same set;
i ∈ SJ and j ∈ SA;
i ∈ SA and j ∈ SB;
i ∈ SJ and j ∈ SN ;
i ∈ SN and j ∈ SB;
i ∈ SJ and j ∈ SB.

Proof: For any pair of vertices, there are 16 orderings. There are nine orderings above, so we need
to exclude the other seven.

Firstly from Lemma 1, we know we cannot have classes a) and d) for the same sequence, so that
removes two orderings.

Consider such a pair of elements. Suppose that for a graph in K(min) that i is a Breaker and j is
a Neutral. Clearly i has (at least ti − tj + 1) more links than j. Pick a vertex linked to i and not
to j, and link it to i and break it from j. This maintains the total deviation. Repeat the process,
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until i is a Neutral. Clearly then j is a Breaker. Thus for a graph in the mnimal set with order
BN, there is also one with order NB.
By analogous argument if we have ordering NJ, there will be an alternative graph with JN, and if
we have BJ, there will be an alternative graph JB.
This argument leads to the following cases.

Suppose a vertex is in class a). Then it can be B, N or J, so that any vertex with higher target is
sometimes a J, i.e. is in class a) or b).
Thus class c) followed by class a) is not possible.
Similarly any vertex with a lower target is sometimes a B, i.e. is in class a) or c). Thus class a)
followed by class b) is not possible.
Suppose a vertex is in class d). It is thus always N, so from the above cannot have a B above, or
a J below. Thus class c) followed by class d), and class d) followed by class b) is not possible.
Suppose a vertex is in class b). It is sometimes a J, so any vertex higher is also sometimes a J,
and so is not in class c). Thus class c) followed by class b) is not possible. �

Theorem 6 implies restrictions on the possible sequences of set membership as we move through the
target sequences from higher to lower value. Figure 1A shows the sequences which are not ruled out
by Theorem 6. We can start at any vertex and proceed along the arrows. The number of possible
paths of length n is (n+1)2, yielding an upper bound for the number of distinct set sequences. The
actual number of such sequences realised for n = 1− 5 (obtained by computing the possibilities) is
{1, 2, 5, 10, 17}. Certain sequences are easy to exclude, for example we cannot have only b’s and d’s,
or c’s and d’s. For n = 4 we find additionally that sequences bbba, bbaa, bbac, baac, bacc, aacc, accc
do not occur. Finally, we note that the number of ordered targets is 2n−1Cn. Table 1 gives the set
membership of the vertices for the cases n = 3 and n = 4; the results for dual targets (as previously
defined, if target t = (t1, t2, . . . , tn) then its dual is t∗ where t∗i = ((n − 1) − ti)) can be deduced
straightforwardly. The number of states for K(min) is also given.

As stated before, a sequence with a score of 0 is graphic, and yields an end state where all individuals
have payoff of zero. The next simplest case is a score of 1, where at every state of the minimum set
there is a unique individual which has not achieved its target, and so has an incentive to change.
This is one of the situations that we investigate in a subsequent paper. We note here that we have
not considered mixed equilibria in the current paper at all, as this would require consideration of a
new example and significantly lengthen the paper. That such equilibria exist will be demonstrated
in the subsequent paper [8].

5. An illustrative game: the arithmetic case

In [6] we considered the following illustrative example, which is a member of the class of games
that we termed “arithmetic” sequences, where ti = i− 1 i = 1, . . . , n.

Example 5: the target {4, 3, 2, 1, 0}
The score for this target sequence is 2, yielding K(min) with eight elements. These are graphs,
but we write them below in the form of their corresponding sequences, distinguishing between the
two graphs that have the same sequence. We label them G1 to G8 in the following order 43221,
33220, 33211(1), 23210, 43212, 33211(2), 42211 and 32210 the state 33211(1) being the graph
where the vertex with target 4 is joined to the vertex with target 0 (and thus the 3 is joined to the
1) while 33211(2) has the 4 joined to the 1 and the 3 joined to the 0. For the rest of this section,
for simplicity we will simply denote the vertex with target i as ti (we note that the order from
previous sections is thus effectively reversed here).
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Figure 1. 1A: Possible sequences of set membership. 1B: Schematic of the transi-
tion graph for the minimal graphs for target 43210. For each graph, the top symbol
represents the vertex with target 2, which is always a neutral vertex. The vertices
with targets 0,1,3,4 are represented by the symbols in the bottom left, bottom
right, middle right and middle left positions, respectively. Each graph contains a
specific set of links between the symbols, and the corresponding breaker or joiner
status is given by the appropriate symbol. Possible transitions are shown by the
arrows between the graphs.

Note that using Lemma 2, we can see that the target 3210 has the same set of solutions, by re-
moving t2 and its edges from our original sequence. The score is, of course, again 2. If we order
the eight possible minimal graphs 3221, 2220, 2211(1), 1210, 3212, 2211(2), 3111, 2110, then the
solutions are precisely the same as for the 43210 case. The transitions for target 43210 are shown
in Figure 1B.

More generally for the arithmetic case with target sequence
t2m, t2m−1, . . . , tm+1, tm, tm−1, . . . , t2, t1, t0 we have that the subgraph of the m + 1 vertices of
greatest degree is complete, and the subgraph of the m + 1 vertices of lowest degree is empty.
Thus we can replace the original target by two sequences with targets m,m − 1, . . . , 2, 1, 0 and
m − 1,m − 2, . . . 2, 1, 0 respectively, and restrict the acceptable graphs to bipartite graphs with
the two sets corresponding to the m of greatest degree and the m of lowest degree in the original
sequence. The central node, that is the original tm with subsequent target 0 can be ignored. The
score is m.
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Target Sets Min. Number
score of states

2 2 2 d d d 0 1
2 2 1 b b c 1 3
2 2 0 b b c 2 4
2 1 1 d d d 0 1
2 1 0 b d c 1 2
1 1 1 a a a 1 6

3 3 3 3 d d d d 0 1
3 3 3 2 b b b c 1 4
3 3 3 1 b b b c 2 7
3 3 3 0 b b b c 3 8
3 3 2 2 d d d d 0 1
3 3 2 1 b b d c 1 3
3 3 2 0 b b d c 2 4
3 3 1 1 b b c c 2 9
3 3 1 0 b b c c 3 12
3 3 0 0 b b c c 4 16
3 2 2 2 b a a a 1 9
3 2 2 1 d d d d 0 1
3 2 2 0 b d d c 1 2
3 2 1 1 b b c c 1 5
3 2 1 0 b b c c 2 8
3 1 1 1 d d d d 0 1
2 2 2 2 d d d d 0 1
2 2 2 1 a a a a 1 13
2 2 1 1 d d d d 0 1

Table 1. The set membership of vertices for targets with n = 3 and n = 4, and
number of graphs in the minimal set. The omitted sequences are all duals of those
included.

Now at any point in time the system will be in some minimal graph. A vertex is picked at random
with equal probabilities (i.e. 1/5), and that vertex might initiate a switch to another minimal
graph, as per Figure 1B. For example suppose the current minimal graph is G1. Then if vertex
t4,t3 or t2 is picked no change can occur since they are currently at their target value, on the other
hand if vertex t0 is picked it must break its link with t4 and so the minimal graph changes to G2,
while if vertex t1 is picked it has a choice of breaking with t4, and thus the graph becomes G3, or
breaking with t3 when the graph becomes G7. An individual’s strategy thus needs to specify which
of these to choose. We specify the transition probabilities for G1 as 3/5 to remain as 1, 1/5 to
switch to 2 and r1/5 the probability of choosing t4, and s1/5 the probability of choosing t3 where
r1 + s1 = 1.

There are six graphs where there are two different moves which stay within K(min). For Gi we
take probabilities ri and si when a choice is possible, that is when i = 1, 2, 4, 5, 7, 8. We have
chosen the numbering of the minimal graphs so that Gi is obtained from G9−i by reversing the
latter and subtracting element by element from 44444. This imposes a structure on the transition
matrix A, for example it is sometimes block triangular. The transition matrix A under the choice
model is such that
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5 ∗A =



3 1 r1 0 0 0 s1 0
1 3 0 r2 0 0 0 s2
1 0 3 1 0 0 0 0
0 r4 s4 4 0 0 0 0
0 0 0 0 4 s5 r5 0
0 0 0 0 1 3 0 1
s7 0 0 0 r7 0 3 1
0 s8 0 0 0 r8 1 3


.

Note that had we chosen to work with the target 3210 the above matrix would have been modified
by subtracting 1 from each diagonal element, and changing the scaling factor from 5 to 4, this
affecting only the speed of convergence of the system, which would be quicker.

We consider only the case where each ri is either 0 or 1, i.e. pure strategies. Thus we have 64
possible transition matrices over the elements of K(min). In order to code the matrices we take
the following function f from the state number to a power of two (note that there are no choices to
be made in states 3 and 6); f(1) = 1, f(2) = 2, f(4) = 4, f(5) = 8, f(7) = 16 and f(8) = 32. Then
if the matrix A = (ai,j) has si = 1 for i ∈ S ⊆ {1, 2, 4, 5, 7, 8} and si = 0 otherwise, we take index
Σi∈Sf(i) for that matrix. There are symmetries which we can exploit. Thus if we have A = (aij)
for some S and T = {i|(9 − i) ∈ S} this gives matrix B = (bi,j) where bi,j = an−i,n−j and so the
dominant eigenvector of B is the reverse of that of A. Equivalently if the binary expression for
the index of A is (i1i2i3i4i5i6) then (i6i5i4i3i2i1) is that of B. We refer to matrix B as the dual
matrix of A (not to be confused with the previously defined dual sequence), and the index of B as
the dual of that of A. Of course A is the dual of B, as is A’s index the dual of B’s. There are 8
matrices where A = B, those with indices 0, 12, 18, 30, 33, 45, 51 and 63. Further discussion of
the matrices and their eigenvectors is given in the Appendix.

We label the matrices A0, A1, . . . , A63 with connections as above. We suppose that when the current
set of strategies is specified by Ai then the system will have converged to its stationary distribution,
which requires that strategic changes that lead to a change of matrix are infrequent in comparison to
moves between graphs. The eigenvectors of the 64 matrices are given in Table 2 (see the Appendix).
Matrices A0, A4, A8, A12 have two unit eigenvalues, and thus have a two dimensional space for the
dominant eigenvectors. We denote the extreme eigenvectors of A0 by V L0 = (0L, 0, 0, 0, 0) where
0L = (2, 3, 1, 4) (see Table 2) and V R0 = (0, 0, 0, 0, 0R) where 0R = (4, 1, 3, 2). Similarly we have
8L = 0L, 4R = 0R, 8R = 12R = (4, 3, 1, 2) and 4L = 12L = (2, 1, 3, 4), and so V L0 = V L8 , V R0 = V R4 ,
V R8 = V R12 and V L4 = V L12. The matrices with indices 8, 16, 24, 32, 40, 48, 56 have eigenvector V L0 ,
(note this is the set with sums of 0, 8, 16, 32) while indices which are sums of 0, 1, 2, 4 have
eigenvector V R0 , those with 8 plus sums of 0, 1, 2, 4 have eigenvector V R8 , and those with 4 plus
sums of 0, 8, 16, 32 have eigenvector V L4 . The cases where the indices are 18, 30, 33, 45, 51, 63 (where
A = B) have reversed eigenvectors, and when we have A 6= B the eigenvectors are the reverse of
each other. Note that instead of Ai we simply write i in much of what follows.

5.1. Payoffs and strategy switching. Given a stationary distribution π = (π1, π2, . . . , π8), we
calculate the cost ci (which is minus the payoff) for each vertex ti; c2 = 0 since vertex t2 is always
neutral, and otherwise we have

c0 = π1 + π3 + 2π5 + π6 + π7, c1 = π1 + π2, c3 = π7 + π8, c4 = π2 + π3 + 2π4 + π6 + π8.

These costs are shown in Tables 3 and 4 (see the Appendix). Note that, with the exception of
matrices 51, 55, 59 and 63, where all the costs are 0.5, the cost for one of vertices t0 and t4 is
always greater than 0.5, while the cost for vertices t1 and t3 is always less than 0.5. The total cost
is equal to 2, the score.
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We consider the optimal strategies for the vertices. Suppose that the matrix has some current
index from 0 − 63, the system currently has some particular graph from G1 − G8 and a vertex
from t0− t4 is chosen at random. We consider its current payoff vis-a-vis those it would obtain by
making an allowable switch to a different strategy. Suppose t0 is chosen then in graphs G2, G4, G8

the vertex is at its target, while in graphs G1, G3, G6, G7 the vertex has a single link which it must
break. Accordingly no change will occur in the value of M . Vertex t0 only has a choice when
graph G5 occurs, so can switch from s5 = 1 to s5 = 0 or vice versa, i.e. decrease the index of the
current matrix by 8, or increase by 8, and then compare the current cost with that in the new
matrix (at its new stationary distribution). In a similar manner vertex t4 will only have a choice if
the current graph is G4 when it can alter s4 so change state index by 4. For vertex 1 the situation
is somewhat different. There are two graphs where t1 has a choice, G1 and G2, which can cause
changes in the matrix index by 1 or 2 respectively. We may restrict the possible change to a single
one, i.e. 1 or 2 (corresponding to local changes as defined in Section 3.3) or we may permit double
changes in the index (corresponding to global changes). Similarly vertex t3 may change the index
by 16 or 32, or both. Thus for example if in matrix 5, for t0 we can move to matrix 13, for vertex
t1 we can move to indices 4, 7 or if a double move permitted to 6, for vertex t3 to 21, 37 or with
a double move to 53 and for vertex t4 to index 1. The possible choices and outcomes for matrix 5
are shown in Table 5 (see the Appendix).

We need to note that the possible invasions of states whose stationary distribution does not cover
the whole space is restricted in some cases. For example suppose that the current matrix is 5. Then
the possible neighbours (i.e. potential invaders) have indices 4, 7, 1, 13, 21, 37 (the binary neighbours
of 5 under a single change). The first three of these have the same stationary distribution as 5,
the fourth has a different stationary distribution but with the same support, while the final two
have stationary distributions with support the whole set. With a two-dimensional space for the
dominant eigenvector we need to consider both extremes and then deduce the result for the whole
space. For example if the state is 0 and the system is at the extreme 0L then switching to matrix
indices 8, 16 or 32 will not change the stationary distribution. Switching to matrix 1 or 2 will cause
a switch to a stationary distribution over the whole space. A switch to matrix 4 will cause a change
but with the same restricted space, i.e. possibly to 4L. In general for V L there are 3 potential
switches which leave the stationary distribution unchanged, one which changes the distribution
but not the coverage, and two which would change to a distribution over the whole space.

Whether a switch is made depends on the payoff to the vertex involved under the current matrix
and that under the matrix resulting from a switch. We examine four scenarios, comprising either
(1) switch only if the expected payoff increases or (2) switch if the expected payoff does not decrease,
in combination with either (a) do not allow double switches or (b) allow double switches. The case
where only an improvement allows a change might reflect that a cost is involved in the switch,
albeit a small one. We refer to the four possibilities as 1a, 1b, 2a and 2b. We obtain radically
different results, though we concentrate primarily on 1a. Later we consider the case where there
is cost involved in switching.

As an example we suppose the current matrix index is 5. Table 5 gives the payoffs for the various
vertices for matrix 5 and its various neighbours. The payoffs underlined are the ones that need
to be compared, and those flanked with ∗’s are those payoffs which initiate a change under the
various rules.

5.2. Results. The Tables 6-9 give the results of calculations and specify which states are invaded
by which alternatives under the four possible rules 1a, 1b, 2a, 2b. Care needs to be used in inter-
preting the results for matrices with indices 0, 4, 8, 12. In general when we are at matrix 0 the
stationary distribution can be any µ0L+(1−µ)0R where µ ∈ [0, 1]. The distribution 0L is invaded
by 1 or 2, while 0R is not as there is equality of the payoffs so in general for any µ 6= 0 there
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will be invasion by both 1 and 2. A similar argument implies that 3 will invade provided µ 6= 0,
while 16, 32 and 48 will invade provided µ 6= 1. These arguments apply in all four cases, and in a
similar way for the indices 4, 8 and 12. The remaining possible invasions by 4, and 8 are somewhat
different. For case 1a there will be no invasion whereas in case 2a µ0L + (1−µ)0R will be replaced
by µ4L + (1− µ)4R and µ8L + (1− µ)8R, respectively. Exceptional cases where for some state the
eigenvector is at the extreme of its two dimensional space are singular, i.e. only when µ is 0 or 1.
In general we will not reach these odd states and so they can be omitted.

For both 1a and 1b it turns out that none of the 4 extreme matrices associated with indices 0, 4,
8 and 12 can invade any of the matrices outside of that set, and that each is invadable by other
matrices. In each case there are 16 matrices which are absorbing (i.e. are pure Nash equilibria),

(3; 48),(7; 56),(11; 52),(15; 60),(19; 50),(23; 58),(35; 49),45,51,

where those written together are the dual pairs. For 1a there are 18 states which could reach a
PNE in one step, 21 which could reach a PNE in two steps and 9 which require at least three steps.
The corresponding figures for 1b are 29, 15, and 4.

The first two pairs and 51 have no predecessors, i.e. there are no matrices from which our process
will arrive at them. Additionally states 0, (4; 8), 12, (55; 59), 63 have no predecessors. For 1b we
find essentially the same results, the set of eight above cannot invade outside their own set, and
furthermore for the stable matrices the double change never allows an invasion.

For cases 1a and 1b the transition matrix has no asymptotic cycles. The indexing we have intro-
duced would allow for the representation of the matrices on the vertices of a 6-cube, the edges
representing possible transitions. As an example of the possible flows we have illustrated the pos-
sible transitions starting with matrices 4 and 8. None of the transitions when starting from matrix
4/8 involve a switch by 8/4. This allows the flow to be represented on a 5-cube, shown in Figure
2 2A.

In examining the possible changes which can be made for a given vertex we introduced the notion of
a dual matrix. If the index of some matrix M is, in reversed binary notation, (i1i2i3i4i5i6) then we
refer to M∗ with binary index (i6i5i4i3i2i1) as its dual; for example A27 with binary index (110110)
has dual with binary index (011011) so matrix A∗27 = A54, and we write A∗27 = A54. Further if
we have a set of matrices T then we denote by T ∗ the set whose matrices are the duals of those in T .

Now we have seen earlier that in 1a vertex t0 only has a choice to exercise when the current graph
is G5, when a change alters the index by 8. We see from Tables 3 and 4 for which matrices there is
an improving change, and denote this set by T0,5 (a list of the matrices in the set is given below).
For vertex t4 when in graph G4 a change alters the index by 4, with an improving change occurring
for the set T4,4 = T ∗0,5.

For vertices t1 and t3 the situation is somewhat more complex. For t1 there are two graphs where
a choice is available, G1 and G2. If the graph is G1 then vertex t1 will have the option to change
the index by 1, while if G2 then a change by 2 is possible. Thus if t1 is chosen when the graph
is G1 then an improving change of the index by 1 will be made for the set of matrices denoted
by T1,1, 24 matrices in all. There are 16 pure Nash equilibria (PNEs) where obviously no change
would be made, and there are 24 other matrices where no change should be made. If vertex t1 is
chosen in G2 then again there are 24 matrices where an improving change, by index 2, should be
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made to the matrices in set T1,2. Thus for vertex t1 improvement will be made in matrices within
the set T1 = T1,1

⋂
T1,2 irrespective of the graph.

Finally if vertex t3 is chosen when the graph is G7 then an improving change by index 16 should
be made for matrices in the set T3,7 = T ∗1,2, and for vertex t3 in G8 improvements can be made,
changing the index by 32 in matrices T3,8 = T ∗1,1. Changes at t3 should be from matrices from
the set T3 = T ∗1 irrespective of the graph. Note that for some matrices the stationary distribution
has zero probability for some graph. For example matrices 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63
have zero probability for G4 but these occur in pairs with the same payoff so there is not a change
in cases 1a or 1b.

T0,5 = {25, 26, 27, 29, 30, 31}
T4,4 = {22, 30, 38, 46, 54, 62}
T1,1 = {0, 4, 8, 12, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 53, 55, 61, 63}
T1,2 = {0, 4, 8, 12, 16, 17, 20, 21, 24, 25, 28, 29, 32, 33, 36, 39, 40, 41, 44, 47, 54, 55, 62, 63}
T3,7 = {0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 13, 14, 27, 31, 33, 34, 37, 38, 42, 46, 57, 59, 61, 63}
T3,8 = {0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 13, 14, 17, 18, 21, 22, 25, 26, 29, 30, 43, 47, 59, 63}
T1 = {0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 55, 63}
T3 = {0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 13, 14, 59, 63}

The cases 2a and 2b are very different; there are no PNE’s, and both transition matrices over the
64 states are irreducible.

5.3. A switching fee. Suppose that there is a fee associated with switching. Thus if an individual
has current cost x and cost y if it were to make a particular switch, then supposing there is a fee
for switching of z the switch is only made if y+z < x. Thus cases 1a and 1b have z = 0+, while for
2a and 2b have z = 0. Table 10 (see the Appendix) gives the thresholds at which the set of PNEs
increase. It is assumed that if a switch is made the new cost will apply for some large number of
steps before a further switch is made. Thus a fee of z should be regarded as applying per time
step. Figure 2B shows the possible flows, analogously to Figure 2A, when a cost of 0.1 is imposed.

5.4. Towards simpler rules. We have derived the changes which would lead to long term im-
provement in the payoffs if the complex computation of the resulting stationary distribution were
possible. In practice an individual at some vertex might only know its own links which for example
would mean that individual t4 would not be able to differentiate graphs G1, G5 and G7, nor G2, G6

and G8. It might know the links of all the vertices which would allow it to differentiate all the graph
states but again it would not know which matrix state applied. We discuss only the first of these
cases. What information might be available to the individual? We might reasonably assume that it
could keep track of the recent costs incurred, this providing an approximation to the cost incurred
for this matrix. It might be able to keep track of the graphs through which it had most recently
moved which would provide a proxy for the matrix. For example suppose that the system is cur-
rently in G1 and the most recent switches between graphs were G8− > G2− > G4− > G2− > G1,
then under the assumption that during this period there were no changes of the si, we can deduce
that s8 = 1, r2 = 1 and r4 = 1 so that the current matrix has 32 included in its binary index
expression, but neither 4 nor 2, i.e. is one of 32, 33, 40, 41, 48, 49, 56, 57. As we increase the length
of memory we will reduce the number of possible matrices though of course a sequence made up
of, for example, only 1’s and 2’s would give limited information. Suppose then that an individual
keeps track of the most recent changes from the six graphs where two different choices can occur,
for example does G1 switch to G3 or G7, i.e. is s1 equal to 0 or 1, does G2 switch to G4 or G8
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etc. When an observation on the switch of each of graphs G1, G2, G4, G5, G7, G8 has been made
the matrix state can be determined. For example if the observed switches are respectively to
G7, G4, G1, G6, G1, G6 then one can infer that the matrix is 25. In similar manner provided that
over the period during which the information is collected there is no change of matrix, that matrix
can be inferred exactly. If there is a switch of matrix then that might be immediately detected by
an inconsistency in the recorded switches, and the collection of switches could be restarted. On
the other hand it is possible that a switch of matrix might occur without causing an inconsistency,
but since none of the earlier switches between graphs would be invalidated the individual can just
update the appropriate data. In fact the individual just needs to keep track of the system until all
of the six (potential) changes have been recorded.

Having obtained the matrix exactly then the correct switch, if any, would be determined from a
check list for that vertex which might have evolved through time, though would require having a
list of the 64 appropriate switches. Some simplification might be used. For example suppose we
consider vertex t0. Then we see from the 4th columns of Tables 6 and 7 (see the Appendix) that
a switch should be made only for the 6 matrices 25, 26, 27, 29, 30, 31. These indices require 16 and
8, not 32, and at least one of 1 and 2. In a similar way for vertex t4 there are only six matrices
where a switch should be made 22, 30, 38, 46, 54, 62 the analogues of those for vertex t0, and the
matrices require 2 and 4, not 1, and at least one of 16 and 32. The situation for vertices t1 and t3
is inevitably more complex.

5.5. A Threshold Model. We consider now a simple threshold model for decision-making by
the individuals. Although it is unreasonable to expect the individuals to be able to compute the
cost implications of making a specific change to their plays they will have a reasonable knowledge
of their recent costs. Given that changes are likely to be infrequent, taking the average cost over
the last few steps should approximate the true reward fairly well. Suppose then that given this
good estimate any individual with a choice changes if this value is above some threshold. For
simplicity suppose that individuals t0 and t4 use the same threshold h04 while individuals t1 and
t3 use h13, a reasonable simplification since t0 and t4 have the same distribution of costs, as do t1
and t3. Then a matrix will be stable if and only if max(c0, c4) < h04 and max(c1, c3) < h13. For
example suppose we take thresholds h04 = 0.76 and t13 = 0.31, then {25, 33, 38} are the possible
stable matrices reached under this rule. Table 11 (see the Appendix) should be interpreted in the
following way; for given thresholds everything to the left and below that threshold point is stable.
We note that the entries which have no others below or to the left in the table are precisely those
where c0 = c4 and c1 = c3. The other pairs of matrices have reversed costs e.g. c0 for 22 is equal
to c4 for 26. If the thresholds lie below the line joining (1.0, 0.0) and (0.5, 0.5) then none of the
matrices are stable. There is a switch at every matrix, and the system is irreducible.

The above presupposes that the thresholds are set at some point and are never changed. However
this seems an unreasonable assumption. For example suppose that the thresholds were h04 = 0.8
and h13 = 0.2 then the system will ultimately only be fixed at matrix 45. A change of threshold
h04 to something less than 0.8 will make state 45 unstable, so that now all matrices are unstable.

5.6. A second threshold model. Suppose that each vertex can choose its immediate threshold
i.e. h = (h0, h1, h3, h4). Now it is clear that the values h = c where c = (c0, c1, c3, c4) occurs as in
Table 11 correspond to stable sets of matrices. Moreover since c0 + c1 + c3 + c4 = 2 then the h/2’s
corresponding to these critical matrices lie in the 3-simplex. Now consider the space R4 and define
for x ≥ (0, 0, 0, 0) the set S(x+) = {z ∈ R4|zi ≥ xi, i = 1, 4}. Now there are 31 distinct cost sets
all lying on the 3-simplex, we refer to these as critical points. Now for x and y define z = x ∼ y
by zi = max(xi, yi) i = 0, 1, 3, 4. Then we have the set of critical points defined by “if x and y
are critical points then so is x ∼ y.” If S and T are the sets of critical points corresponding to
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Figure 2. The transitions starting from matrices 4 and 8 on the 5-cube. The
indices of the vertices and of the edges have two numbers, corresponding to the
matrix reached from matrix 4 and 8 respectively. For example matrices 22 can be
reached from matrix 4 by 16 then 2 (see Table 6). From 22 one can reach 18, 23
and 54, and 22 can be reached from 6, 20 and 30. The possible transitions from
26 are 18, 23 and 58 and can be reached from 10, 24 and 30. Stable matrices are
highlighted. 2A: cost=0, 2B: cost=0.1.

x and y then S
⋃
T is the set of critical points corresponding to x ∼ y, and the region in which

these matrices are stable is S(x ∼ y)+.

For the cases 2a and 2b the system is much more complex. Tables 8 and 9 (see the Appendix)
gives the possible moves. Note that if in the 1a/1b case, we have from Tables 6 and 7 that i is
not invaded by some neighbour j, and j is not invaded by i, then the appropriate costs must be
equal. Thus in Tables 8 and 9 we will have that i and j can invade each other. There are no stable
matrices (PNEs) and it is easy to see that under 2a (and thus under 2b) the system is connected.

6. Discussion

We consider an ordered set of vertices each with a target number of links, comprising the target
sequence. At any stage a specific vertex will have an excess of links and so be a Breaker (i.e. wishes
to break one of its existing links), a Joiner with a deficit of links (wishes to add a link), or else a
Neutral (satisfied). In [7] we began analysis of the set of graphs whose vertex degrees are minimally
distant from the target sequence. This set, which we termed the minimal set, was characterised in
terms of the Breaker-Joiner structure of its graphs. We introduced a random process describing
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an updating procedure where vertices are sequentially selected to update their links, and when
selected a vertex tried to reduce the difference between its number of links and its target, which
resulted in the system finally settling into this minimal set, and proved that the minimal set was
connected under this process. In [6] we investigated this random process, and found the (unique)
stationary distribution for a particular class of target sequences.

Here we have focused in more detail on the vertices during this process and in particular once
the minimal set has been reached. As the system moves around the minimal set the vertices will
(unless always Neutral) change their state. We addressed questions relating to when a vertex is,
for example, at some time a Breaker, at some time a Joiner and at some time a Neutral; in our
terms belongs to SA. Looking at the set of vertices we considered what combination of vertices
can jointly occur, and what types of target sequences lead to what combinations. The focus was
the proof of general results.

In our previous work there was no strategic element to link updating, as it simply followed a
random process. Here we have introduced strategies where individuals choose which vertices to
link to or break with, and indeed whether to make such a link or break at all. We have seen that
in such circumstances sometimes the minimal set is never reached, and sometimes it is sensible to
make moves which in the short term do not reduce the difference between an individual’s target
and number of links as much as possible.

We have considered our strategic process, assuming that we always do try to minimise the above
difference (denoted as the strict system) and that we reach the minimal set. Here strategies are
chosen to reach the stationary distribution of the Markov updating process, and we see that there
may be many stable distributions. We have considered a particular example target 43210 in detail
to demonstrate the issues.

The analysis of the optimal behaviour for target sequence 43210 involves considerable complexity.
It is not our intention to assert that such calculations are in practice available to the individuals,
since they involve calculating the stationary distributions for the current and potential states,
but that some simpler process might yield essentially equivalent results. We have introduced two
such possible models based on the collection by the individuals of some recent data. We intend
to investigate such possible simpler rules in subsequent work. For both models 1a and 1b we
have multiple pure Nash equilibria (PNEs), sixteen in all. As pointed out earlier we require the
population to settle close to its stationary distribution and to stay there for some time if individuals
are to benefit from their switch, so this suggest such a situation can only arise in a species which
has a reasonable length of life and interaction.

In Section 4.2 we have specified which combination of population graph and individual make possi-
ble a change. For example in graph 5 the system might change if vertex 0 is picked. Computations
then find in which transition matrices a change occurs, in this case 25, 26, 27, 29, 30, 31. Similar
analysis is carried out for each vertex.

Studies of networks in wild populations have a long history. For example [38] investigated the
formation of groups amongst wild chimpanzees,and the manner these were affected by age, gender
and current reproductive. Certain classes, e.g. estrous females avoided each other, while some
classes e.g. anestrous females sought each other’s company. Thus within a group there would
be a preference for certain interactions, and the avoidance of others. If those preferences were
symmetric, that is, two individuals both wish to associate with each other, or to avoid each other,
then the implied set of targets will give a simple graph (i.e. with no deviation).

In contrast to the above models with reciprocity our model has no such symmetry nor such specific
pairwise preference. The individuals have preferences which are intrinsic to themselves and they
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do not differentiate between who they wish to join to, except through the costs implied. In human
groups it appears that some individuals seek many contacts and other seek few. Dunbar [14]
initiated the study of the number of relationships which primates could maintain. In humans it
has been suggested ([14], [24]) that an individual will have around 5 close associates, and around
12 − 15 at a secondary level of attachment, then around 35 in a third layer and perhaps a total
of 150 in all. What seem not to have been investigated is any intrinsic wish for links amongst
humans, though this would seem a priori, and from common experience to be evident. It is this
kind of model which we have developed here. Our particular example is in some ways extreme
in that we have one individual who wishes to link to everyone, and one who wished to avoid all
links. The other problem is that the group size is very small, though the complexity involved is
considerable. In a later paper we intend to look at some larger, less extreme groupings.
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Appendix: the matrices and tables

(A) There are 4 cases where the matrix is block triangular (i.e. either the top-right or bottom-left
4x4 block are all zeroes).

(1) s1 = s2 = 0 then the top-right 4x4 block is all zero, and so there is an eigenvector of 5M
of the form (∗, ∗, ∗, ∗, 0, 0, 0, 0). When r4 = 1 this eigenvector is (2, 3, 1, 4, 0, 0, 0, 0) and this is an
eigenvector of all eight such matrices i.e. for the eight possible values of r5, r7 and r8.
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Thus in the case above we have r1 = r2 = r4 = 1 and we can have S as any subset of S = {5, 7, 8}
so matrices numbered {0, 8, 16, 32, 40, 48, 56} all have the eigenvector (2, 3, 1, 4, 0, 0, 0, 0).

(2) s1 = s2 = 0 and r4 = 0 then there is an eigenvector (2, 1, 3, 4, 0, 0, 0, 0) and so s4 = 1 which has
code 16, and we again have S = {5, 7, 8}, so matrices numbered {4, 12, 20, 28, 36, 44, 52, 60} have
eigenvector (2, 1, 3, 4, 0, 0, 0, 0).

(3) s7 = s8 = 0 then the bottom-left 4x4 block is all zero, and so there is an eigenvector of 5M of
the form (0, 0, 0, 0, ∗, ∗, ∗, ∗). Then we have r7 = r8 = 1 and we can also have r5 = 1 so that we
have S = {1, 2, 4} and so the matrices {0, 1, 2, 3, 4, 5, 6, 7} all have eigenvector (0, 0, 0, 0, 4, 1, 3, 2).

(4) When s5 = 1 we have we have matrices numbered {8, 9, 10, 11, 12, 13, 14, 15} with eigenvector
(0, 0, 0, 0, 4, 3, 1, 2).

Note that the matrices numbered 0, 4,8 and 12 each occur in two of the above cases corresponding
to the fact that the largest eigenvalue has multiplicity 2. These matrices are reducible. This is
easily seen. If we start in state 1 2, 3 or 4 we reach the stationary distribution over the first four
states; if we start in state 5, 6, 7 or 8 we finish with the stationary distribution over the last four
states.

NB. Due to the reversed symmetry mentioned above the eigenvectors occur in forward and reverse
forms i.e. (2, 1, 3, 4, 0, 0, 0, 0) is the reverse of (0, 0, 0, 0, 4, 3, 1, 2), while (2, 3, 1, 4, 0, 0, 0, 0) is the
reverse of (0, 0, 0, 0, 4, 1, 3, 2).

NB We have accounted for 28 of the matrices, numbered 0− 15 or 16 + 4n for n = 0− 11.

(B) There are 8 cases where the matrix is reverse symmetric (i.e. m(i, j) = m(9 − i, 9 − j) ∀i&j,
in which case if u is an eigenvector then so is u∗ which is u with the entries reversed.

Writing r = (r1, r2, r4, r5, r7, r8), then we have any combination with r1 = r8, r2 = r7, r4 = r5

(1) r = (1, 1, 1, 1, 1, 1) is matrix number 0 dealt with above,
(2) r = (0, 1, 1, 1, 1, 0) is matrix number 33 with eigenvector (1, 2, 0, 2, 2, 0, 2, 1) which is unique,
(3) r = (1, 0, 1, 1, 0, 1) is matrix number 18 with eigenvector (4, 3, 2, 2, 2, 2, 3, 4) which is unique,
(4) r = (1, 1, 0, 0, 1, 1) is matrix number 12 dealt with above,
(5) r = (0, 1, 0, 0, 1, 0) is matrix number 45 with eigenvector (1, 1, 1, 2, 2, 1, 1, 1) which is unique,
(6) r = (1, 0, 0, 0, 0, 1) is matrix number 30 with eigenvector (2, 1, 2, 2, 2, 2, 1, 2) which is unique.
(7) r = (0, 0, 0, 0, 0, 0) is matrix number 63 and r = (0, 0, 1, 1, 0, 0) is matrix number 55 both have
eigenvector (1, 1, 0, 0, 0, 0, 1, 1).
This set adds matrices numbered {18, 30, 33, 45, 51, 63}.

(C)Whenever we find an eigenvector with zeroes in some positions other than 3 and/or 6 we can,
by symmetry, find other matrices with the same eigenvector.

(1) in (B) we have matrices 51 and 63 with 0 in position 4 and 5. Thus the entries in row 4 and 5
do not affect the eigenvector. Now 51 has (0, 0, 1, 1, 0, 0) and 63 has (0, 0, 0, 0, 0, 0). The matrices
55 which is (0, 0, 1, 0, 0, 0) and 61 which is (0, 0, 0, 1, 0, 0) have the same eigenvector.

(D) Reversibility. If we have a matrix with r = (u1, u2, u4, u6, u7, u8) with eigenvector v then
the matrix with r∗ = (u8, u7, u6, u4, u2, u1) has eigenvector v∗, the reverse of v. The pairs
(omitting numbers which have already occurred) are (17/34), (19, 23/50, 58), (21/42), (22/26),
(25/38), (27, 31/54, 62), (29/46), (30), 33, (35, 39/49, 57), (37/41), (39/57), (43, 47/53, 61), (45),
(51, 55, 59, 63), where those after the “/” have a reversed eigenvector of the corresponding matrxi
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vector codes of matrices
(2,3,1,4,0,0,0,0) 0 8 16 24 32 40 48 56
(0,0,0,0,4,1,3, 2) 0 1 2 3 4 5 6 7
(0,0,0,0,4,3,1,2) 8 9 10 11 12 13 14 15
(2,1,3,4 ,0,0,0,0) 4 12 20 28 36 44 52 60
(3,3,0,3,1,1,3,2) 17
(4,3,2,2,2,2,3,4) 18
(6,3,0,0,4,4,9,8) 19 23
(6,3,3,6,2,2,6,4) 21
(6,3,6,6,2,2,3,4) 22
(1,1,0,1,1,1,1,1) 25
(4,3,2,2,6,6,3,6) 26
(2,1,0,0,4,4,3,4) 27 31
(2,1,1,2,2,2,2,2) 29
(2,1,2,2,2,2,1,2) 30
(1,2,0,2,2,0,2,1) 33
(2,3,1,1,3,0,3,3) 34
(1,2,0,0,4,0,4,3) 35 39
(1,1,1,2,2,0,2,1) 37
(1,1,1,1,1,0,1,1) 38
(1,2,0,2,2,1,1,1) 41
(4,6,2,2,6,3,3,6) 42
(1,2,0,0,4,2,2,3) 43 47
(1,1,1,2,2,1,1,1) 45
(2,2,2,2,2,1,1,2) 46
(3,4,0,4,0,0,2,1) 49 57
(8,9,4,4,0,0,3,6) 50 58
(1,1,0,0,0,0,1,1) 51 55 59 63
(3,2,2,4,0,0,2,1) 53 61
(4,3,4,4,0,0,1,2) 54 62

Table 2. The stationary distributions over the eight graphs G1 − G8 for the 64
matrices denoted by 0-63.

before the “/”.

(E) Zero Entries. If an eigenvector has a zero in the i’th position (for i = 1, 2, 4, 5, 7, 8) then we can
immediately deduce that there is an identical eigenvector for another matrix since the value of ri
and si for that i do not affect the eigenvector. Of course one can only use this idea when one has
obtained an eigenvector. These cases are (19, 23), (27, 31),(35, 49),(43, 47),(49, 57),(50, 58),(53, 61)
and (54, 62), the first four having a zero for i = 4 and the latter for i = 5. Additionally there is a
set (51, 55, 59, 63) where there is a zero both for i = 4 and i = 5.
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code c4 c3 c1 c0
0L 1.200000 0.000000 0.500000 0.300000
0R 0.30000 0.500000 0.000000 1.200000
1 0.300000 0.500000 0.000000 1.200000
2 0.300000 0.500000 0.000000 1.200000
3 0.300000 0.500000 0.000000 1.200000

4L 1.200000 0.000000 0.300000 0.500000
4R 0.300000 0.500000 0.00000 1.200000
5 0.300000 0.500000 0.000000 1.200000
6 0.300000 0.500000 0.000000 1.200000
7 0.300000 0.500000 0.000000 1.200000

8L 1.200000 0.000000 0.500000 0.300000
8R 0.500000 0.300000 0.000000 1.200000
9 0.500000 0.300000 0.000000 1.200000
10 0.500000 0.300000 0.000000 1.200000
11 0.500000 0.300000 0.000000 1.200000

12L 1.200000 0.000000 0.300000 0.500000
12R 0.500000 0.300000 0.000000 1.200000
13 0.500000 0.300000 0.000000 1.200000
14 0.500000 0.300000 0.000000 1.200000
15 0.500000 0.300000 0.000000 1.200000
16 1.200000 0.000000 0.500000 0.300000
17 0.750000 0.312500 0.375000 0.562500
18 0.681818 0.318182 0.318182 0.681818
19 0.441176 0.500000 0.264706 0.794118
20 1.200000 0.000000 0.300000 0.500000
21 0.750000 0.312500 0.281250 0.656250
22 0.843750 0.218750 0.281250 0.656250
23 0.441176 0.500000 0.264706 0.794118
24 1.200000 0.000000 0.500000 0.300000
25 0.714286 0.285714 0.285714 0.714286
26 0.656250 0.281250 0.218750 0.843750
27 0.500000 0.388889 0.166667 0.944444
28 1.200000 0.000000 0.300000 0.500000
29 0.714286 0.285714 0.214286 0.785714
30 0.785714 0.214286 0.214286 0.785714
31 0.500000 0.388889 0.166667 0.944444

Table 3. The costs for each of the individuals t0 − t4, where the cost for ti is
denoted by ci, when in matrices 0 to 31.
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code c4 c3 c1 c0
32 1.200000 0.000000 0.500000 0.300000
33 0.700000 0.300000 0.300000 0.700000
34 0.562500 0.375000 0.312500 0.750000
35 0.357143 0.500000 0.214286 0.928571
36 1.200000 0.000000 0.300000 0.500000
37 0.700000 0.300000 0.200000 0.800000
38 0.714286 0.285714 0.285714 0.714286
39 0.357143 0.500000 0.214286 0.928571
40 1.200000 0.000000 0.500000 0.300000
41 0.800000 0.200000 0.300000 0.700000
42 0.656250 0.281250 0.312500 0.750000
43 0.500000 0.357143 0.214286 0.928571
44 1.200000 0.000000 0.300000 0.500000
45 0.800000 0.200000 0.200000 0.800000
46 0.785714 0.214286 0.285714 0.714286
47 0.500000 0.357143 0.214286 0.928571
48 1.200000 0.000000 0.500000 0.300000
49 0.928571 0.214286 0.500000 0.357143
50 0.794118 0.264706 0.500000 0.441176
51 0.500000 0.500000 0.500000 0.500000
52 1.200000 0.000000 0.300000 0.500000
53 0.928571 0.214286 0.357143 0.500000
54 0.944444 0.166667 0.388889 0.500000
55 0.500000 0.500000 0.500000 0.500000
56 1.200000 0.000000 0.500000 0.300000
57 0.928571 0.214286 0.500000 0.357143
58 0.794118 0.264706 0.500000 0.441176
59 0.500000 0.500000 0.500000 0.500000
60 1.200000 0.000000 0.300000 0.500000
61 0.928571 0.214286 0.357143 0.500000
62 0.944444 0.166667 0.388889 0.500000
63 0.500000 0.500000 0.500000 0.500000

Table 4. The costs for each of the individuals t0 − t4, where the cost for ti is
denoted by ci, when in matrices 32 to 63.
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index c4 c3 c1 c0
5 .3 .5 0 1.2

4L 1.2 0 .3 .5
4R .3 .5 0 1.2
7 .3 .5 0 1.2
1 .3 .5 0 1.2
13 .5 .3 0 1.2
21 .75 *.3125* .28125 .65625
37 .7 *.3* .2 .8

6 .3 .5 0 1.2
53 .929 *.214* .357 .5

Table 5. The possible moves and outcomes for matrix 5. The first column indi-
cates the possible stationary distribution switched to, and the other columns give
the corresponding costs for each vertex. The underlined cost is that to the vertex
that can make the switch, and so is the important one for deciding whether a
switch can occur. A switch can occur in the three cases highlighted by *s.
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0 1 2 0 0 16 32 3 48
1 1 1 1 1 17 33 1 49
2 2 2 2 2 18 34 2 50
3 3 3 3 3 3 3 3 3
4 5 6 4 4 20 36 7 52
5 5 5 5 5 21 37 5 53
6 6 6 6 6 22 38 6 54
7 7 7 7 7 7 7 7 7
8 9 10 8 8 24 40 11 56
9 9 9 9 9 25 41 9 57
10 10 10 10 10 26 42 10 58
11 11 11 11 11 11 11 11 11
12 13 14 12 12 28 44 15 60
13 13 13 13 13 29 45 13 61
14 14 14 14 14 30 46 14 62
15 15 15 15 15 15 15 15 15
16 17 18 16 16 16 16 19 16
17 17 19 17 17 17 49 18 33
18 19 18 18 18 18 50 18 18
19 19 19 19 19 19 19 19 19
20 21 22 20 20 20 20 23 20
21 21 23 21 21 21 53 21 37
22 23 22 18 22 22 54 22 22
23 23 23 23 23 23 23 23 23
24 25 26 24 24 24 24 27 24
25 25 27 25 17 25 57 26 41
26 27 26 26 18 26 58 26 26
27 27 27 27 19 11 27 27 43
28 29 30 28 28 28 28 31 28
29 29 31 29 21 29 61 29 45
30 31 30 26 22 30 62 30 30
31 31 31 31 23 15 31 31 47

Table 6. The optimal moves from matrices 0 to 31 for cases 1a and 1b (results
are identical for the two cases). The first column indicates the starting matrix,
the next six the moves from the six graphs where changes can be made (listed in
increasing numerical order), and the last two columns possible moves for t4 and
t0 when both changes are allowed. We note that only one change is possible at
each point, and if making no change is optimal, we simply write the starting matrix
index.
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32 33 34 32 32 32 32 35 32
33 33 35 33 33 49 33 33 33
34 35 34 34 34 50 34 33 18
35 35 35 35 35 35 35 35 35
36 37 38 36 36 36 36 39 36
37 37 37 37 37 53 37 37 37
38 39 38 34 38 54 38 37 22
39 39 37 39 39 39 39 39 39
40 41 42 40 40 40 40 43 40
41 41 43 41 41 41 41 41 41
42 43 42 42 42 58 42 41 42
43 43 43 43 43 43 11 43 43
44 45 46 44 44 44 44 47 44
45 45 45 45 45 45 45 45 45
46 47 46 42 46 62 46 45 46
47 47 45 47 47 47 15 47 47
48 48 48 48 48 48 48 48 48
49 49 49 49 49 49 49 49 49
50 50 50 50 50 50 50 50 50
51 51 51 51 51 51 51 51 51
52 52 52 52 52 52 52 52 52
53 52 53 53 53 53 53 53 53
54 54 52 50 54 54 54 53 54
55 54 53 55 55 55 55 52 55
56 56 56 56 56 56 56 56 56
57 57 57 57 57 41 57 57 57
58 58 58 58 58 58 58 58 58
59 59 59 59 59 43 27 59 11
60 60 60 60 60 60 60 60 60
61 60 61 61 61 45 61 61 61
62 62 60 58 62 62 62 61 62
63 62 61 63 63 47 31 60 15

Table 7. The optimal moves from matrices 32 to 63 for cases 1a and 1b (results
are identical for the two cases). The first column indicates the starting matrix,
the next six the moves from the six graphs where changes can be made (listed in
increasing numerical order), and the last two columns possible moves for t4 and
t0 when two changes are allowed.
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0 1 2 4 8 16 32 3 48
1 0 3 5 9 17 33 2 49
2 3 0 6 10 18 34 1 50
3 2 1 7 11 19 35 0 51
4 5 6 0 12 20 36 7 52
5 4 7 1 13 21 37 6 53
6 7 4 2 14 22 38 5 54
7 6 5 3 15 23 39 4 55
8 9 10 12 0 24 40 11 56
9 8 11 13 1 25 41 10 57
10 11 8 14 2 26 42 9 58
11 10 9 15 3 11 11 8 11
12 13 14 8 4 28 44 15 60
13 12 15 9 5 29 45 14 61
14 15 12 10 6 30 46 13 62
15 14 13 11 7 15 15 12 15
16 17 18 20 24 0 48 19 32
17 17 19 21 17 17 49 18 33
18 19 18 18 18 18 50 18 18
19 19 19 23 19 3 51 19 35
20 21 22 16 28 4 52 23 36
21 21 23 17 21 21 53 22 37
22 23 22 18 22 22 54 21 22
23 23 23 19 23 7 55 23 39
24 25 26 28 16 8 56 27 40
25 25 27 29 17 25 57 26 41
26 27 26 26 18 26 58 26 42
27 27 27 31 19 11 27 27 43
28 29 30 24 20 12 60 31 44
29 29 31 25 21 29 61 30 45
30 31 30 26 22 30 62 29 46
31 31 31 27 23 15 31 31 47

Table 8. The optimal moves from matrices 0 to 31 for cases 2a and 2b (results
are identical for the two cases). The first column indicates the starting matrix,
the next six the moves from the six graphs where changes can be made (listed in
increasing numerical order), and the last two columns possible moves for t4 and
t0 when two changes are allowed.
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32 33 34 36 40 48 0 35 16
33 33 35 37 41 49 33 33 33
34 35 34 34 42 50 34 33 18
35 35 35 39 43 51 3 35 19
36 37 38 32 44 52 4 39 20
37 37 37 33 45 53 37 37 37
38 39 38 34 46 54 38 37 22
39 39 37 35 47 55 7 39 23
40 41 42 44 32 56 8 43 24
41 41 43 45 33 41 41 41 41
42 43 42 42 34 58 42 41 26
43 43 43 47 35 43 11 43 43
44 45 46 40 36 60 12 47 28
45 45 45 41 37 45 45 45 45
46 47 46 42 38 62 46 45 30
47 47 45 43 39 47 15 47 47
48 49 50 52 56 32 16 51 0
49 48 51 53 57 49 49 50 49
50 51 48 50 58 50 50 49 50
51 50 49 55 59 35 19 48 3
52 52 52 48 60 36 20 52 4
53 52 53 49 61 53 53 53 53
54 54 52 50 62 54 54 53 54
55 54 53 51 63 39 23 52 7
56 57 58 60 48 40 24 59 8
57 56 59 61 49 41 57 58 57
58 59 56 58 50 58 58 57 58
59 58 57 63 51 43 27 56 11
60 60 60 56 52 44 28 60 12
61 60 61 57 53 45 61 61 61
62 62 60 58 54 62 62 61 62
63 62 61 59 55 47 31 60 15

Table 9. The optimal moves from matrices 32 to 63 for cases 2a and 2b (results
are identical for the two cases). The first column indicates the starting matrix,
the next six the moves from the six graphs where changes can be made (listed in
increasing numerical order), and the last two columns possible moves for t4 and
t0 when two changes are allowed.
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Fee New PNEs
.5 0 4 8 * *
.3 12 * * * *

.28125 6 24 * * *
.2 1 5 32 40 *

.181818 2 16 * * *

.161932 22 26 * * *

.151786 25 38 * * *

.150326 27 31 54 62 *

.142857 55 59 63 * *

.129464 29 30 46 * *

.110294 17 34 * * *
.1 9 13 36 44 *

.098214 21 42 * * *

.085714 14 28 33 37 41

.057143 43 47 53 61 *

.053467 18 * * * *
.01875 10 20 * * *
.014286 39 57 * * *

0 3 7 11 15 *
19 23 35 45 *
48 49 50 51 *
52 56 58 60 *

Table 10. The possible PNEs for model 1a for various costs of changing. For zero
cost the PNEs are those in the bottom row. As the cost increases there are critical
points when additional matrices become PNEs, until at the highest threshold of
0.5, all 63 matrices are PNEs.
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