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Abstract

The aim of this work is to provide an informative evaluation tool to assist clinicians
diagnose focal liver lesions (FLLs) in Contrast-Enhanced Ultrasound (CEUS). A method-
ology to track and characterise a single FLL is presented. We propose a histogram-based
motion segmentation approach, in combination with Lowe’s SIFT keypoints, to track
the locations of the FLL’s enhancement region and the healthy liver throughout a CEUS
video sequence, whilst intensity appearance is dramatically changed due to the effect of
contrast agents. Then, Generalised Procrustes Analysis estimates the FLL’s mean shape
in order to characterise it as benign, or malignant. Finally, the precision of the automat-
ically segmented areas of the FLL and the parenchyma are quantitatively analysed, to
evaluate the level of confidence of our algorithm’s decision on the characterisation of the
FLLs included in our clinical data.

1 Introduction

Hepatic disease has a continuously increasing impact on mortality rates during the last 40
years rising by almost 385% over that period [CancerResearchUK, 2011] and is currently
the fifth largest cause of death in the UK [British.Liver.Trust, 2011]. The group of hepatic
disease is described by a number of medical conditions affecting the liver, e.g. hepatitis,
cirrhosis, hepatocellular carcinoma (HCC), etc. These conditions can be either relatively
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harmless conditions (benignities), or progressively worsening diseases that potentially result
in death (malignancies). HCC is a distinctive example of a malignant focal liver lesion (FLL)
and is the fifth most common type of cancer [Llovet et al., 2003]. Focal liver lesions are solid
or liquid-containing nodules, “foreign” to the liver’s anatomy. Extreme interest attracts the
ability to distinguish early any case of premature (small) malignant FLLs from benign FLLs,
as they can be healed without performing any surgical operation. This would result to an
improvement on patients’ care and eventually patients’ survival prospects.

Visualisation of candidate FLLs has been attempted by employing different diagnostic
imaging techniques throughout the years. Ultrasonography (US) has limited sensitivity in
the detection of very small masses [Harvey and Albrecht, 2001] and provides vague results
due to low image resolution and low signal-to-noise ratio when compared to Computed To-
mography (CT) [Jamis-Dow et al., 1996] and Magnetic Resonance Imaging (MRI) [Itai et al.,
1985]. CT and MRI have been used to clarify the US findings [Lencioni et al., 2007] and con-
firm a lesion’s existence, as clearer images are obtained through these techniques. However,
the cost of either a CT, or an MRI examination is a major disadvantage [Sirli et al., 2010].
Other disadvantages might include the inconveniently cumbersome size of the equipment
used, as well as the exposure to emitted electromagnetic radiation, in the case of CT. Re-
cently, Contrast-Enhanced Ultrasound (CEUS) has gained acceptance in the detection and
characterisation of very small FLLs [Wilson and Burns, 2010]. Both diagnostic performance
and confidence of CEUS in the characterisation of FLLs are found to be improved in com-
parison with baseline conventional US [Quaia et al., 2004]. In addition, given a significant
improvement in sensitivity and specificity, CEUS is also supported as the reliable replace-
ment of CT and MRI in the characterisation of HCC [Bruix et al., 2005], as well as of any
metastatic liver diseases [Dietrich et al., 2006].

There is a rising need to use CEUS and create an associated software tool for clinicians
and radiologists, primarily for two reasons. Firstly, CEUS is effective in terms of diagnostic
accuracy that exceeds 95% for the evaluation of malignant FLLs, according to studies by
radiologists [Strobel et al., 2009]. In addition, CEUS equipment is relatively inexpensive and
portable when compared to other techniques (e.g. CT, MRI) [Sirli et al., 2010].

The introduction of contrast-enhancing agents into the human body during a CEUS ex-
amination results in changes of appearance of the FLL and the surrounding areas (Section
2). Specifically, their apparent 2D size, shape and intensity dramatically change over the
few minutes of the procedure (see Fig. 1). As a consequence, the tracking and the charac-
terisation of an FLL poses a very challenging task. Moreover, the potential instability of the
clinician’s hand that holds the transducer, as well as the patient’s irregular breathing and
the motion of the inner human organs, are external factors that affect the location of the FLL
within the image. Furthermore, acoustic shadows, US absorption and low signal-to-noise
ratio inevitably degrade the quality of the acquired data.

This paper describes a methodology to track an FLL and the rest of the healthy liver
(parenchyma) over the time of a CEUS examination and how such information may assist
a clinician’s diagnosis. More specifically, we propose a histogram-based segmentation tech-
nique to track the extend of an FLL’s enhancement region in subsequent frames, which al-
lows differentiation between the intensity values of the lesion and the parenchyma. When
the contrast between the FLL and the parenchyma is low, histogram-based segmentation
is not feasible and the point-based registration technique of Lowe’s scale-invariant feature
transform (SIFT) [Lowe, 2004] is used to detect, localise and describe salient points in sub-
sequent frames. Then, by establishing correspondences between the frames, the lesion is
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Figure 1: Focal liver lesion (FLL) tracking during the arterial phase video sequence, where
the appearance of the liver and the lesion changes significantly. The third image (frame 120)
is the frame where the FLL mask is initialised.

tracked over time, overcoming the dramatic appearance changes during a CEUS examina-
tion (Fig. 1). The lesion’s silhouette descriptors, derived by tracking, are combined with
the statistical analysis method of Generalised Procrustes Analysis (GPA) [Gower, 1975] to
model the lesion’s shape. Finally, size and shape information are used to localise the lesion
during the last phase of the examination and characterise it, after taking into consideration
pre-defined vascular signatures (VSs) [Rognin et al., 2009].

2 Contrast Enhanced Ultrasonography

CEUS is based on the intravenous injection of microbubble contrast agents, whose mecha-
nism of action allows a confident diagnosis to be performed. Contrast agents, first intro-
duced in the late nineties, offer a display enhancement in graylevel intensity, by maximising
the contrast between an FLL and parenchyma. Agents oscillate or disrupt when exposed to
a low or high-intensity ultrasound field respectively, allowing for an excellent depiction of
the FLL vascularity and perfusion [Wilson and Burns, 2010]. Although a reliable diagnosis
can be performed within ten minutes [Claudon et al., 2008], which is the maximum total
duration of a CEUS examination [Albrecht et al., 2004], few radiologists have been trained
to perform this modality and interpret its visual cues for diagnosis of FLLs.

A CEUS examination comprises three phases, whose durations vary, mainly depend-
ing on the physiopathology of the patient’s liver and heart. After the intravenous injection
of the contrast medium, the change of graylevel intensity with respect to the time elapsed
represents the vitality of an FLL, by screening the inflow and outflow of the medium itself
through the blood. The three phases of the examination are named considering the fact that
the liver is supplied with blood initially from the hepatic artery and then from the portal
vein. The first phase of CEUS, (arterial or enrichment phase) is characterised by the en-
richment (increment in brightness) of the liver area due to the contrast agents. During the
second phase (portal venous phase) the concentration and flow of contrast agents are sta-
bilised, therefore there is no relative change in brightness. Finally, the third phase (late,
acidic or parenchymatic phase) is characterised by the outflow of the agents from the lesion
and the parenchyma (decrement in brightness).

There are two main VSs of FLLs; the hyper-enhancement and the hypo-enhancement.
VSs describe the way that an FLL dynamically behaves in comparison to the parenchyma.
During the first phase, the hyper-enhanced FLLs are enriched prior to the parenchyma, while
in the hypo-enhanced category the parenchyma is enriched first. Lesions whose VS is hyper-
enhancement throughout the three phases, are called unipolar hyper-enhanced. In contrast,
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ID VASCULAR SIGNATURE (VS) SIGNAL PHASE 1 PHASE 3 TYPICALLY FOUND IN
A Unipolar hyper-enhanced

(hyper-enhancement)
Lesion
brighter than
Parenchyma

Lesion
brighter than
Parenchyma

Benign FLLs
(e.g. Adenoma, Ab-
scess, Haemangioma, Focal
Nodular Hyperplasia)

B Unipolar hypo-enhanced
(hypo-enhancement)

Lesion
darker than
Parenchyma

Lesion
darker than
Parenchyma

Benign FLLs
(e.g. Fibrous tumour,
Regenerating or dysplastic
nodules, Simple cysts)

C Bipolar hyper-enhanced
(hyper-enhancement
followed by
hypo-enhancement)

Lesion
brighter than
Parenchyma

Lesion
darker than
Parenchyma

Malignant FLLs
(e.g.Hepatocellular Car-
cinoma, Metastasis,
Cholangiocarcinoma)

D Bipolar hypo-enhanced
(hypo-enhancement
followed by
hyper-enhancement)

Lesion
darker than
Parenchyma

Lesion
brighter than
Parenchyma

Benign FLLs

Table 1: Vascular signatures of FLLs relative to the parenchyma. [Adapted from [Rognin
et al., 2009]]

bipolar hyper-enhanced are those where the contrast agents flow out of the lesions prior to
the parenchyma during the third phase. If the VS of an FLL is hyper-enhanced, it is mainly
in the third phase where its type (benign or malignant) is identified [Goertz et al., 2010],
whereas if the VS is hypo-enhanced, it is in the first phase that the lesion’s type is identified
as benign [Rognin et al., 2009]. Therefore, the differentiation of a benign from a malignant
lesion can be achieved by considering the alterations of the brightness intensity between
the regions of the lesion and the parenchyma. Different VSs are linked to different medical
conditions. Therefore, assigning an FLL to one of the four categories in Table 1 is of particular
medical importance and assists the radiologist make a reliable diagnosis of an FLL of typical
behaviour.

3 Previous studies

[Wilson and Burns, 2006] proposed a diagnostic process to radiologists to effectively charac-
terise an FLL of typical behaviour, while using the CEUS modality. More specifically they
described how characterisation (benign or malignant) may be based on observations of the
FLL’s average intensity enhancement in relation to the parenchyma’s, during the third phase.
Then, further distinction of the FLLs is allowed based on observations during the first phase
enhancement patterns.

[Noble, 2010] discussed the trend of convergence of tissue characterisation and image
segmentation in B-mode US for distinguishing between healthy and diseased tissues. Sim-
ilarly, in our work, we propose an image segmentation method for characterising tissues in
CEUS.

[Huang-Wei et al., 2006] have analysed video sequences of the arterial phase with an ap-
proximate duration of 7-12 seconds using the QontraXt software (AMID, Italy). Information
was obtained after the application of a background subtraction technique [Piccardi, 2004],
and then a colour mapping is used for improving visualisation. However, background sub-
traction may work only if the transducer is considered static and the patient’s breathing is
neglected. Also, the intensity values of the background (parenchyma) change continuously,
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which further constrains the applicability of background subtraction. Last but not least,
only Focal Nodular Hyperplasia lesions were analysed, which are unipolar hyper-enhanced
lesions.

[Shiraishi et al., 2008] developed a computer-aided diagnostic scheme for the classifi-
cation of three very specific types of FLLs with hyper-enhanced VS (i.e. Metastasis, Hae-
mangioma and Hepatocellular Carcinoma). A cascade of six independent Artificial Neural
Networks was proposed for the classification of the FLLs, based on manually segmented
lesion regions in all frames of the acquired data.

Our approach attempts to track the FLL region through a CEUS video sequence to allow
processing of cases despite transducer motion or patient’s irregular breathing patterns. All
recordings used in the proposed method are obtained without any standard criteria being
instructed to the radiologist beforehand. Manual input from the user is only needed to ini-
tialise our tracking algorithm in phase 1. In addition to our previous work [Bakas et al.,
2011], the proposed method is able to characterise FLLs of both hypo- and hyper-enhanced
VS. Furthermore, the parenchyma region is also tracked, in order to provide more concise
intensity information and result in a more accurate characterisation.

4 Methodology

The proposed method deals with FLLs of all different VSs and attempts to differentiate be-
nign from malignant cases. Firstly, the video sequence of the arterial phase is processed,
obtaining silhouettes of the FLL and the parenchyma for each frame of the sequence. A
histogram-based motion segmentation technique is introduced, in combination with SIFT
[Lowe, 2004], to track these silhouettes over the frames of the sequence. Subsequently, GPA
[Gower, 1975] is employed to estimate the shapes of the lesion and parenchyma. The exhaus-
tive search method of sliding window is then used to localise the lesion in a static image of
the late phase. For every frame, the difference of the spatial average intensities of the lesion
and the parenchyma determine the values of the signal of the lesion’s VS. Identifying the
type of the VS (Table 1) assists the characterisation of the lesion as benign or malignant.

The video sequence of the arterial phase is processed, to obtain the area and shape de-
scriptors of the lesion and the parenchyma. Initially, the conical area viewed by CEUS is
selected and, after removing any artefacts, is set as the mask of our workspace (US mask).
These artefacts refer to regions whose brightness intensity has been enhanced prior to the
examination, by the radiologist adjusting the controls of the US scanner, and therefore are
of no interest. The FLL and the parenchyma masks are initialised on a single frame (t0),
ideally the one with the maximum contrast between lesion and parenchyma (Fig. 1). The
initialisation process is performed manually by the radiologist, as prior medical knowledge
is considered advantageous in correctly spotting a tumour, based on the perceived local in-
tensity and shape information. Then, a Gaussian filter is applied to the region of the US mask
to reduce the speckle noise in the image, e.g. large intensity variance within neighbouring
pixels.

The FLL and the parenchyma masks are tracked backwards and forwards in time from
frame t0 (Fig. 1). Firstly, a histogram-based segmentation is applied in subsequent frames,
as described hereby. The intensity values of the FLL in frame t are represented by histogram
HF,t. Then intensity values in next frame I(t+1) are weighted according to HF,t to highlight
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Figure 2: Diagram showing the procedure followed during Phase 1.

the FLL region in frame t + 1.

p′x,y,(t+1) = HF,t(px,y,(t+1)) (1)

Note that histogram HF,t and intensity values p′x,y,(t+1), px,y,(t+1) are normalised between
[0, 1]. According to equation 1, parenchyma pixels are expected to be of intensity zero, while
FLL pixels will have values proportional to the frequency of their intensities in the HF,t his-
togram. As a consequence, a simple threshold Zt+1 specified as the average intensity of all
N pixels within the US mask (Equation 2) is in most cases sufficient to segment the FLL from
the parenchyma.

Zt+1 =
∑N

i=1 p′i,(t+1)

N
(2)

The changes of the intensity histograms of the lesion and the parenchyma are consid-
ered to be insignificant over consecutive frames. The thresholded image is cleaned using
morphological opening with a disk-shaped structuring element, in order to remove very
small regions, protrusions from objects and thin connections between objects, all of which
are likely to be artefacts due to noise. Subsequently, the resulting image is segmented us-
ing the connected components algorithm. If this segmentation result is consistent with the
FLL region of frame t, then it is set as the FLL region in frame t + 1. The consistency of the
segmentation result is verified by the following two conditions [Bakas et al., 2011]:

a Relative size difference:
|SF,t−SF,(t+1)|

SF,t
< Ds, where SF,t is the size of the FLL at frame t,

b Displacement of centre of gravity:
√
(Cx,t − Cx,t+1)2 + (Cy,t − Cy,t+1)2 < Dd, where Cx,t

and Cy,t are the x and y coordinates of the FLL’s centre of gravity at frame t.

However, the resulting FLL region in frame t + 1 may not be consistent with frame t, be-
cause of low contrast between the FLL and the parenchyma, and/or the movement of the
transducer. In such cases, SIFT is used to capture the changes in the location of the FLL’s cen-
tre of gravity, by localising matching sets of salient points Qt and Qt+1 in two consecutive
frames. Qt is a 2× Kt matrix, comprising Kt 2D salient points qκ,t at time t, where κ ∈ [1, Kt].
Specifically, each qκ,t is assigned a statistical descriptor (V(qκ,t)) of 128 dimensions, in order
to characterise it. Then the best correspondences of the detected keypoints between the two
frames are found by minimising the nearest neighbour distance ratio (NNDR) between the
descriptors of the two frames (V(qκ,t), V(qκ,t+1)) and selecting the nearest point in the de-
scriptor space. Specifically, for every point qκ,t, another point qλ,t+1, where λ ∈ [1, Kt+1], is
found that fulfills the following equation:
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Figure 3: Diagram showing the procedure followed during Phase 3.

(qκ,t, qλ,t+1) = argmin
qκ,t∈Qt

qλ,t+1∈Qt+1

[arccos(VT(qκ,t) •V(qλ,t+1))] (3)

Similarly, we find a second point qλ′,t+1, where λ′ ∈ [1, Kt+1], such that:

(qκ,t, qλ′,t+1) = argmin
qκ,t∈Qt

qλ′ ,t+1∈Qt+1,λ′ 6=λ

[arccos(VT(qκ,t) •V(qλ′,t+1))] (4)

We accept that there is a correspondence between points qκ,t and qλ,t+1 in the two frames t
and t + 1, if:

arccos(VT(qκ,t) •V(qλ,t+1))

arccos(VT(qκ,t) •V(qλ′,t+1))
< Z (5)

where Z ∈ [0, 1] is a threshold value. If a point qλ,t+1 is the best match for more than one
point qκ,t, then these correspondences of qλ,t+1 are rejected. Consequently, we only keep
reliable correspondences.

After finding these correspondences between the two frames, the shape and size of the
FLL region in frame t + 1 are considered to be the same as in frame t and its Cx,y,t is trans-
lated by the average displacement of the SIFT keypoints, allowing localisation of the FLL.
When the contrast between the FLL and the parenchyma is low, the histogram-based motion
segmentation becomes unreliable (Fig. 1 - frame 280), while SIFT performs satisfactorily, as
its keypoints are invariant to illumination changes [Lowe, 2004]. The parenchyma mask is
translated by the same average displacement in each frame throughout the whole sequence
and without considering any changes to its initialised shape. When tracking backwards in
time, all (t + 1) notations in the above equations should be substituted by (t− 1).

The silhouettes of the lesion are obtained after applying the above steps to all frames of
the arterial phase video sequence. The contours of the derived silhouettes are extracted and
sampled to a set of marked points, i.e. a set of suitable “landmarks”, in order to reduce the
computational complexity, whilst representing satisfactorily the shape of the lesion. A fixed
number of points is selected for all contours, to allow the application of the GPA. The mean
shape of the FLL during the arterial phase is obtained by GPA, which optimally aligns the
set of all contours in a single reference orientation. Such a shape may be more representative
than the shape defined manually by the operator in a single frame t0 as it takes into account
evidence from multiple frames.

The mean shape (as estimated by GPA) is then used to localise the FLL in the static image
of the late phase and assist the differentiation between benign or malignant case. Firstly,
the liver area is manually specified on the image (Fig. 3) and its intersection with the US
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Ds 10% 20% 30% 40%
Dd 5px 10px 15px 5px 10px 15px 5px 10px 15px 5px 10px 15px

No Smoothing Application
OLF 70.0 69.5 69.6 65.9 65.9 65.9 62.5 61.5 62.2 61.7 61.7 61.5
OLP 91.7

Gaussian 5× 5 filter (σ = 5.0)
OLF 75.9 75.9 75.0 75.5 75.5 74.6 74.3 73.9 73.9 73.7 73.7 73.7
OLP 91.6

Optimized Bayesian Non-Local Means Filter [Coupe’ et al., 2009]
OLF 68.3 67.4 64.6 64.5 59.6 57.0 63.5 63.2 63.2 54.8 54.2 53.4
OLP 92.0

Table 2: Quantitative analysis of the automatically segmented regions with respect to their
ground truth, after application of different smoothing techniques and different values of the
consistency thresholds (Dd, Ds).

mask defines the ROI. The ROI is filtered with a Gaussian kernel and then Otsu’s method
[Otsu, 1979] is used to automatically select a threshold and binarise the ROI into foreground
and background. Subsequently, the morphological operations of opening and closing are
applied to the foreground and background areas respectively. The ROI is segmented using
the connected components algorithm and small areas are removed. The FLL area is finally
localised by maximising the intersection between the segmented areas (Fig. 3) and the mean
shape, as estimated by GPA in the arterial phase, allowing translation and rotation of the
latter through an exhaustive search (e.g. sliding window) (Fig. 3). Finally, the translation
difference between Cx,y,t0 and Cx,y,tψ is calculated and applied to the parenchyma mask from
frame t0, in order to estimate its location in the late phase.

The differentiation between benign and malignant lesions is based on the signal of the
lesion’s VS (F(t)), calculated as:

F(t) =
∑Mt

i=1 pxi ,yi ,t

Mt
−

∑Lt
j=1 pxj,yj,t

Lt
(6)

where Mt, Lt are the pixels within the FLL and parenchyma regions, respectively, for every
frame t.

5 Experiments & Results

The equipment used for data acquisition included a Siemens ACUSON Sequoia C512 sys-
tem, in combination with low-frequency 6C2 convex Transducer (2-6 MHz) capturing im-
ages at 25 frames-per-second. The second-generation contrast medium used was sulphur
hexafluoride gas (SonoVue from Bracco Diagnostics). Acquisition parameters are unknown,
as they were set by the radiologist separately for each patient. The captured data were ex-
ported as videos and images with resolution 768 x 576 pixels, with no compression applied.

The visual cues used are real clinical data of seventeen patients under similar physical
conditions. Each case is described by a short video sequence of the arterial phase of 84-419
frames and one static image of the late phase, where the only assumption made was that
only one lesion exists within the liver of each patient, with diameter between 3 and 6 cm.
The “gold standard” is the clinician’s decision on the characterisation of each lesion’s type,
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Figure 4: Quantitative analysis of the different Gaussian kernels’ standard deviation (σ) ap-
plied for smoothing.

which has been based on pathology. Motion artefacts, acoustic shadows and US absorption
inevitably degraded the quality of our imagery. Moreover, transducer movement and the
patient’s irregular breathing patterns also affected the quality of the recordings (“wiggly”
recording). Specifically, in 7/17 cases (41%), the FLL was not continuously observed during
the whole video sequence, because of either out-of-plane lesion movement or its dispersion
in depth.

Results are quantitatively analysed by comparing the manually annotated ground truth
(GT) of the FLL (GFt ) and the parenchyma (GPt ) with the automatically segmented areas of
the FLL (AFt ) and the parenchyma (APt ) throughout the sequence. The spatial overlap metric

for the FLL regions (OF) is computed by the formula OF = 1
T

T
∑

t=1
oFt , where oFt =

|GFt∩AFt |
|AFt |

and T is the number of processed frames. This (oFt ) obtains information only from pixels
px,y,t ∈ GFt ∩ AFt and penalises only pixels misclassified as FLL. Similarly, the spatial overlap

metric for the parenchyma regions (OP) is computed as OP = 1
T

T
∑

t=1
oPt , where oPt =

|GPt∩APt |
|APt |

.

This allows the operator to initialise a region (APt0
), smaller than GPt , for tracking at frame

t0, as correct intensity information will still be captured within GPt , considering the spatial
uniformity of the enrichment of GPt .

It is widely accepted that images acquired by the US modality are inherently very noisy
including a lot of speckle noise [Coupe’ et al., 2009]. Hence, it is difficult to interpret US
images and successfully detect features, as neither edges are strongly defined, nor do areas
that should be homogeneous appear so. On the other side, since speckle noise is associated
with the tissue’s response to US, its presence may actually assist the tissue tracking, due
to the apparent texture that it causes. Table 2 presents the results of different smoothing
options (no smoothing, Bayesian non-local means-based speckle filter [Coupe’ et al., 2009],
Gaussian filter) for a variety of parameters. The filter of [Coupe’ et al., 2009] leads to results
even worse than those obtained by omitting any smoothing, as SIFT fails to find any local
features to track after the removal of the speckle noise in that case. The Gaussian filter that is
adopted in our methodology not only smoothes out any Gaussian noise, but also preserves
the eventually useful speckle noise and leads to higher tracking accuracy.

Subsequently, we tried Gaussian kernels of size 5-by-5 pixels, with different standard
deviations (σ ∈ [1, 3, 5, 7, 9]). Results of the application of these filters to our clinical data,
depict the kernel with standard deviation σ = 5.0 as the one giving the maximum overall
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Figure 5: Comparative results of the different approaches applied during phase 1.

Case studies 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 %
Gold Standard M B M M M B M M B M M B B B B B B

SIFT M B B B B B M M B B M B B B B B M 70.6
HBS+GPA M M B B M B M M B M M B - - - - B 58.8
HBS+SIFT+GPA (Our method) M B M M M B M M B M M M M B B B M 82.4

Table 3: Results on the characterised type of FLL, according to the different methods ap-
plied. The last column (%) refers to the successful characterisation percentage. (B::Benign,
M::Malignant)

overlap percentage (83.8%) (Fig. 4). Fine tuning of the standard deviation may marginally
improve the results.

The effect of the consistency thresholds (Dd and Ds) is also shown in Table 2. The com-
bination of Dd = 5 pixels and Ds = 10% seems to optimise the tracking performance, inde-
pendently of the smoothing method applied. However, relatively small variations appear in
the performance of OF and OP for different values of the consistency thresholds.

The full version of the proposed methodology, as described in Section 4, obtained results
for average spatial overlaps, OF and OP, equal to 75.9% and 91.6% respectively. The pro-
posed method characterised successfully 14/17 cases (success rate 82.4%) when compared
to the gold standard, as shown in Table 3. To highlight the importance of the different key
elements of our method (Histogram-based motion segmentation, SIFT, GPA), we compare it
with two simplified versions.

The first simplified version uses the histogram-based segmentation method for tracking
the FLL during the 1st phase and then GPA for estimating the FLL’s mean shape. This ver-
sion adapts to changes of the FLL’s shape, as segmentation is intensity-based. However,
Fig. 5 shows that the intensity-based tracking has worse performance than the SIFT-based
versions, as it struggles in low contrast frames. Similarly, the success rate of the FLL’s charac-
terisation is worse (Table 3) and in some cases impossible (cases 13-16), as the method failed
to capture a reasonable shape for the FLL’s enhancement region.

Tracking in the second simplified version is entirely based on SIFT. As explained in Sec-
tion 4, SIFT estimates the average translation of the FLL’s centre of gravity, without adjust-
ing the FLL’s shape. Therefore, as the initialised shape at frame t0 is fixed over time, GPA
is redundant for estimating the FLL’s mean shape. Fig. 5 shows that this simplified ver-
sion has marginally better tracking accuracy than the proposed methodology. However, the
manually segmented FLL shape may not be so accurate as the one that is estimated by the
histogram-based segmentation and GPA. Such a difference may lead to worse localisation
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(a) (b) (c) (d)

Figure 6: Challenging case study depicting a malignant FLL within a cirrhotic liver. a) FLL
initialisation (frame t0). b) Late phase image. c) Expected FLL localisation. White area
depicts the FLL and gray area the parenchyma. d) The proposed method precisely localising
the FLL.

of the FLL in the late phase and therefore to worse characterisation performance, as seen in
Table 3.

Therefore, the combination of histogram-based segmentation and SIFT manages to accu-
rately track the location, shape and size of the FLL’s enhancement region in the image plane
throughout the video sequence of the first phase, despite the irregular breathing patterns of
the patient and/or the irregular motion of the transducer. In addition, the estimation of the
average FLL’s shape by GPA improves the characterisation of the FLL when the third phase
is considered.

The proposed method has failed in characterising 3/17 examined cases. These comprise
cases 12, 13 and 17 from Table 3. Even though the VS of case 12 was correctly categorised
as bipolar hyper-enhanced, the lesion was wrongly characterised as malignant due to its
behaviour being atypical. Case 13’s VS was categorised as bipolar hyper-enhanced due to
increased non-rigid motion in the arterial phase video sequence related to the motion of the
transducer and/or breathing, resulting in tracking failure. Finally, case 17 was not correctly
characterised due to a very dark video sequence that caused failure of the proposed method.

The most challenging of the case studies examined included a malignant FLL within a
cirrhotic liver (Fig. 6 and Table 3-case study 8). It was expected that the acquisition of the le-
sion’s shape model and size information could be obtained during the arterial phase without
any conflicts. However, this particular case was described as problematic by the radiologists,
since the cirrhosis would make the localisation of the lesion and characterisation of its type
during the late phase difficult. More specifically, as illustrated in Fig. 6(b), during the late
phase both the parenchyma and the lesion appear brighter than the surrounding area. It is
worth noting that even for an experienced specialist radiologist manually interpreting im-
ages of this nature, the task of identifying the lesion’s type correctly, is not trivial in such
cases, due to the same reason. Thus, it was expected that the method would assume almost
all the liver to be one big FLL and the surrounding area to be the parenchyma. However, the
proposed method first uses information of the lesion’s size and shape from the arterial phase
and then localises the lesion precisely in the late phase (Fig. 6(d)). By subsequently perform-
ing a spatial averaging of the brightness intensities of the lesion and the parenchyma, it was
found that the VS of the lesion in this example is bipolar hyper-enhanced and the case was
therefore correctly characterised as malignant.
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6 Conclusions

This paper has introduced a methodology for tracking an FLL and the parenchyma over
time, in order to obtain appropriate information needed to characterise it as either benign
or malignant, based on its VS. Experimental results on real clinical case studies of different
patients under identical physical conditions demonstrate 82.4% success rate on the char-
acterisation of the currently available data, with the level of confidence that the obtained
characterisation is truly representative of each FLL’s type exceeding 83.5% overall (Fig. 5).

There are three key elements used throughout the arterial phase video sequence that are
essential for the success of the proposed method. First a segmentation process, based on his-
togram analysis of the region of the FLL and its consistency conditions [Bakas et al., 2011],
is needed for estimating the changes in the size, shape and position of the lesion’s enhance-
ment region. Then, if these consistency conditions are not satisfied, SIFT is used for tracking
a lesion, giving its silhouette at the same time in the frames where the segmentation process
fails. Last, but not least, GPA is needed for reliable estimation of the lesion’s mean shape.
The combination of these elements provides adequate information to accurately localise the
FLL during the late phase, categorise it to a VS and thus characterise its type as benign or
malignant.

Our methodology requires the manual initialisation of the US area, the FLL and the
parenchyma in a single frame t0 of the arterial phase video sequence, as well as initiali-
sation of the liver area on the late phase image. Automatic localisation of the above areas
would allow a fully automatic method in place of the current semi-automated process with
manual initialisation.

Additionally, in the future, we will investigate the different spatio-temporal patterns of
the FLL enhancement during the arterial phase (e.g. centripetal, centrifugal, circular) [Wil-
son and Burns, 2010] and how to further support the diagnostic process.
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