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S U M M A R Y
Normal mode observations play an important role in studying broad-scale lateral variations
in the Earth. Such studies require the calculation of accurate synthetic spectra in realistic
earth models, and this remains a computationally challenging problem. Here, we describe
a new implementation of the direct solution method for calculating normal mode spectra
in laterally heterogeneous earth models. In this iterative direct solution method, the mode-
coupling equations are solved in the frequency-domain using the preconditioned biconjugate
gradient algorithm, and the time-domain solution is recovered using a numerical inverse Fourier
transform. A number of example calculations are presented to demonstrate the accuracy and
efficiency of the method for performing large ‘full coupling’ calculations as compared to
methods based on matrix diagonalization and the traditional direct solution method.

Key words: Surface waves and free oscillations; Seismic tomography; Computational seis-
mology; Theoretical seismology.

1 I N T RO D U C T I O N

Normal mode spectra provide a valuable data set for studies of
broad-scale lateral variations in the Earth’s deep interior (e.g.
Woodhouse et al. 1986; Giardini et al. 1987; Li et al. 1991; Resovsky
& Ritzwoller 1995, 1998, 1999; He & Tromp 1996; Sharrock &
Woodhouse 1998; Deuss 2008; Irving et al. 2009; Deuss et al. 2010,
2011). In particular, mode spectra are amongst the few geophysi-
cal observables that display a non-negligible sensitivity to lateral
density variations within the Earth (Ishii & Tromp 1999, 2001;
Trampert et al. 2004). It is, however, still unclear whether mode
data can be used to provide robust estimates of lateral density varia-
tions (Romanowicz 2001; Kuo & Romanowicz 2002). Nonetheless,
all normal mode studies involve the comparison of observed mode
spectra with synthetic spectra calculated in a given laterally het-
erogeneous earth model. As a result, the calculation of accurate
synthetic mode spectra in laterally heterogeneous earth models has
long been an important problem in theoretical and computational
seismology.

In recent years much progress has been made in the calculation
of synthetic seismograms in laterally heterogeneous earth models
(e.g. Komatitsch & Tromp 1999, 2002a,b). These advances have
been facilitated through both theoretical developments and the con-
tinuing increase in available computing power. For the most part,
however, the focus of such work has been on modelling relatively
high frequency waveforms of interest to body-wave or surface-wave
seismology, and the methods developed are not applicable to the cal-
culation of synthetic normal mode spectra. For example, the widely
used spectral element method of Komatitsch & Tromp (2002a,b)

does not fully incorporate the effects of self-gravitation. As a result,
this method cannot accurately model very long period waveforms
of interest to normal mode studies. We note that a variation of the
spectral element method has been developed by Chaljub & Valette
(2004) that does fully incorporate self-gravitation. To our knowl-
edge, however, this method has not been applied to the calculation
of mode spectra. More generally, it is not clear that the applica-
tion of such time-domain fully, numerical methods to normal mode
seismology is at present practical due to the great length of the
time-series required (tens to hundreds of hours) and the associated
computational costs.

All practical methods for computing synthetic normal mode spec-
tra are based upon mode coupling theory that has been developed
over many years (e.g. Dahlen 1968, 1969; Woodhouse & Dahlen
1978; Woodhouse 1980, 1983; Woodhouse & Girnius 1982; Park
1986, 1990; Romanowicz 1987; Lognonné & Romanowicz 1990;
Tromp & Dahlen 1990; Lognonné 1991; Hara et al. 1991, 1993;
Um & Dahlen 1992; Deuss & Woodhouse 2004). For a compre-
hensive review of normal mode seismology see Dahlen & Tromp
(1998). Though mode coupling theory is in principle exact, its nu-
merical implementation requires the truncation of the normal mode
expansion into a finite set of spherical earth eigenfunctions. Due to
computational limitations, early applications of the theory had to
employ a number of further approximations, the most common be-
ing the so-called self-coupling and group-coupling approximations
in which coupling between only small subsets of the spherical earth
eigenfunctions is considered.

Recent work by Deuss & Woodhouse (2001, 2004), Irving et al.
(2008) and Irving et al. (2009) has shown that errors associated
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Figure 1. A logarithmic plot (solid line) of the total number of singlet eigen-
functions in PREM (Dziewonski & Anderson 1981) having eigenfrequency
less than the frequency specified on the abscissa. The dashed line is the best
fitting cubic approximation to this curve.

with the self- and group-coupling approximations can be
significant relative to the expected differences between observed
and synthetic spectra. Consequently, the use of such approxima-
tions in tomographic inversions must cast at least some doubt on
the robustness of the earth models obtained. In order to produce
sufficiently accurate synthetic spectra it is instead necessary to per-
form so-called full-coupling calculations in which the interaction
of large numbers of spherical earth eigenfunctions is taken into ac-
count. Such full coupling calculations are likely to be of particular
importance in studies of lateral density variations as the effects of
density on mode spectra are known to be rather subtle.

The usual method for performing full-coupling calculations is
based on diagonalization of the so-called coupling matrix to cal-
culate a subset of the eigenfrequencies and eigenfunctions of the
laterally heterogeneous earth model. Once these eigenfrequencies
and eigenfunctions are known, synthetic spectra can then be calcu-
lated using normal mode summation. This method does, however,
suffer from a number of limitations. Most importantly, the compu-
tation time for matrix diagonalization rises with the third-power of
the dimension of the linear system (Golub & Van Loan 1996). Given
that the number of eigenfunctions having eigenfrequency less than
a given frequency rises with the third-power of this frequency (see
Fig. 1), we see that the computational expense of this method rises
approximately with the ninth power of frequency. Moreover, the ex-
act incorporation of rotation into the calculations requires doubling
the size of the eigenvalue problem, while linear viscoelasticity can
only ever be incorporated in an approximate manner (e.g. Wahr
1981; Deuss & Woodhouse 2001). To circumvent these problems,
Deuss & Woodhouse (2004) introduced an iteration method (IM)
which provides a numerical method for the calculation of the exact
eigenfrequencies and eigenfunctions of a rotating, linear viscoelas-
tic earth model. Moreover, the main computational cost in the IM
is the calculation of matrix–vector products with the coupling ma-
trix, and such calculations can readily be parallelized allowing for
full-coupling calculations to be performed with very large numbers
of coupled modes.

An alternative method for calculating mode spectra is the direct
solution method (DSM) introduced by Hara et al. (1993); see also
Dahlen & Tromp (1998) sections 7.7 and 13.3.2 for further discus-
sion of the method. In this approach, the eigenfunctions and eigen-
frequencies of the laterally heterogeneous earth model are not cal-
culated. Instead, solutions of the inhomogeneous frequency-domain
mode-coupling equations are computed at a range of discrete fre-
quencies to directly produce the synthetic spectra (in detail, such
spectra must be processed using discrete Fourier transforms prior to
comparison with data obtained from finite-length time-series). The
principle advantage of the DSM is that the effects of rotation and
linear viscoelasticity can be included in the calculations in an exact
and simple manner. Furthermore, with the DSM the calculations at
each frequency are independent of one another, and as a result the
method can be parallelized in a trivial manner.

In previous implementations of the DSM the inhomoge-
neous mode coupling equations were solved by performing an
LU-decomposition of the coupling matrix followed by back-
substitution. The numerical cost of LU-decomposition scales with
the third-power of the dimension of the linear system (Golub & Van
Loan 1996), so that this approach becomes computationally imprac-
tical as the number of coupled modes is increased. In this paper, we
describe a new implementation of the DSM that employs an itera-
tive method to solve the inhomogeneous mode coupling equations.
This iterative direct solution method (IDSM) does not require the
LU-decomposition of the whole coupling matrix, but instead only
requires the LU-decomposition of small submatrices and the cal-
culation of matrix–vector products. It is found that computational
expense of the DSM scales approximately with the tenth power of
the maximum frequency, while that of the IDSM scales with the
seventh power of the maximum frequency. As a result, the IDSM
offers substantial computational savings over the DSM for perform-
ing large full-coupling calculations. The efficiency of the IDSM is
also greater than that of methods based on matrix diagonalization
for large coupling calculations, particularly due to the fact that the
IDSM can be readily parallelized.

2 T H E O R E T I C A L B A C KG RO U N D
A N D M E T H O D

2.1 Mode coupling equations

By expanding the displacement vector field in terms of the
eigenfunctions of a spherically symmetric earth model, the
viscoelastodynamic equation in a rotating, laterally heterogeneous,
and slightly aspherical earth model can be expressed as an initial
value problem for the integro-differential equation

P∂
2
t u(t) + W∂t u(t) +

∫ t

0
H(t − t ′)u(t ′) dt ′ = f(t), (2.1)

subject to the initial conditions

u(0) = ∂t u(0) = 0. (2.2)

Here u is a vector containing the expansion coefficients of the
displacement vector, P is the kinetic energy matrix, W is the Coriolis
matrix, H(t) is the viscoelastodynamic matrix and f is a vector
containing the expansion coefficients of the body-force equivalent
of the seismic source. Detailed expressions for these various terms
can be found in Woodhouse & Dahlen (1978), Woodhouse (1980),
Mochizuki (1986) and Dahlen & Tromp (1998).

We note that expressions for the matrices P, W and H(t)
given in the above references have been obtained using first-order
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perturbation theory to incorporate the effects of aspherical bound-
aries (internal and external) into the calculations. It is, however, pos-
sible to account for such geometric asphericity of the earth model
in an essentially exact manner by introducing a mapping from the
spherical reference model into the desired aspherical model (see
Woodhouse (1978) and Takeuchi (2005) for discussions of closely
related problems). Such an approach leads to an equation formally
identical to eq. (2.1) though the resulting expressions for the matri-
ces P, W and H(t) differ from those found in the literature, showing
an explicit dependence on the mapping from the spherical model
into the aspherical model. The numerical implementation of this
theory has yet to be carried out in the context of global seismol-
ogy (Takeuchi (2005) considered a simpler problem in Cartesian
geometry), and it remains to be seen whether substantial errors are
introduced into mode calculations by the use of boundary perturba-
tion theory.

In principle, the above equation should incorporate coupling of all
the eigenfunctions of the spherically symmetric earth model, and so
involve infinite-dimensional vectors and matrices. This formulation
does, however, exclude the possibility of a continuous component
to the normal mode spectrum of the spherically symmetric earth
model due to the presence of a non-neutrally stratified fluid outer
core (e.g. Rogister & Valette 2008). In practice we can, of course,
only deal with finite-dimensional systems of equations, and so we
shall suppose that a finite set of eigenfunctions has been chosen for
use in the coupling calculations.

2.2 Solution of the mode coupling equations

To solve this equation we shall work in the frequency-domain,
using the Fourier-Laplace transform (e.g. Friedlander & Joshi 1998,
chapter 10)

ũ(ω) =
∫ ∞

0
u(t)e−iωt dt, (2.3)

where ω is complex-valued with Im(ω) ≤ 0. For suitably regular
functions the inverse Fourier-Laplace transform is given by

u(t) = 1

2π

∫ ∞−iξ

−∞−iξ
ũ(ω)eiωt dω, (2.4)

where ξ is an arbitrary real number such that all singularities of
ũ(ω) lie above the line Im(ω) = −iξ . The transformed version of
eq. (2.1) can be written

[−ω2P + iωW + H̃(ω)]ũ(ω) = f̃(ω), (2.5)

where we see that in the frequency-domain viscoelastic effects are
manifest through the frequency-dependence of the matrix H̃(ω).
This equation can be written more concisely as

S̃(ω)ũ(ω) = f̃(ω), (2.6)

where we have defined the coupling matrix S̃(ω) as

S̃(ω) = −ω2P + iωW + H̃(ω). (2.7)

If, for a given ω ∈ C, the matrix S̃(ω) is invertible we define

G̃(ω) = S̃(ω)−1, (2.8)

and so can write the solution to eq. (2.6) as

ũ(ω) = G̃(ω)f̃(ω). (2.9)

Values of ω for which S̃(ω) does not have an inverse are eigenfre-
quencies of the mode coupling equations. We neglect the possibility
of gravitation instability of the earth model, in which case it may be

shown that all such eigenfrequencies have Im(ω) ≥ 0 (e.g. Dahlen
& Tromp 1998, chapter 4). Using the inverse Fourier-Laplace trans-
form, we can write the time-domain solution of the inhomogeneous
mode coupling equations as

u(t) = 1

2π

∫ ∞−iξ

−∞−iξ
G̃(ω)f̃(ω)eiωt dω, (2.10)

where ξ is an arbitrary positive number. Making use of the convo-
lution theorem, this solution can alternatively be written

u(t) =
∫ t

0
G(t − t ′)f(t ′) dt ′, (2.11)

where we have defined the time-domain matrix

G(t) = 1

2π

∫ ∞−iξ

−∞−iξ
G̃(ω)eiωt dω, (2.12)

which may be shown to vanish for negative times. Under certain
assumptions it is possible to evaluate the integral in eq. (2.12) to
obtain an expression for G(t) in terms of the eigenvectors of the
mode coupling equations. These eigenvectors are non-trivial solu-
tions u, say, of the homogeneous frequency-domain mode coupling
equations

S̃(ω)u = 0, (2.13)

which only exists when ω is an eigenfrequency of the problem (e.g.
Dahlen & Tromp 1998; Deuss & Woodhouse 2004; Al-Attar 2007).
The eigenvalue problem in eq. (2.13) depends non-linearly on the
eigenvalue parameter ω, and so cannot be solved directly using
matrix diagonalization. If we neglect viscoelastic effects, eq. (2.13)
reduces to a quadratic eigenvalue problem

[−ω2P + iωW + H]u = 0, (2.14)

which can be transformed into an eigenvalue problem linear in
ω by doubling the size of the system (e.g. Deuss & Woodhouse
2001). Alternatively, we can reduce eq. (2.13) to an eigenvalue
problem linear in ω2 by employing the so-called kinetic and coriolis
approximations described by Deuss & Woodhouse (2001). Either
of the above two eigenvalue problems can then be solved using
standard routines for matrix diagonalization. An important feature
of the IM of Deuss & Woodhouse (2004) is that the solution of the
non-linear eigenvalue problem in eq. (2.13) can be obtained directly
in an exact manner.

An alternative approach to solving the mode coupling equations
is the DSM introduced by Hara et al. (1993). In this method, so-
lutions of eq. (2.6) are calculated directly at a discrete range of
frequencies, and eq. (2.10) is evaluated numerically to obtain the
time-domain solution. An attractive feature of the DSM is that rota-
tion and viscoelasticity can be incorporated exactly in a very simple
manner and at no extra computational cost. In the previous imple-
mentations of the DSM, the linear equations in eq. (2.6) were solved
using LU-decomposition of the coupling matrix. The numerical cost
of this method rises with the third power of the dimension of the
linear system (e.g. Golub & Van Loan 1996), so that its applica-
tion rapidly becomes unfeasible as the number of coupled modes is
increased. In order for the DSM to be applied to large coupling cal-
culations, we shall now describe an iterative method for the solution
of the inhomogeneous mode coupling equations.

2.3 Iterative solution of the mode coupling equations

To solve the linear system eq. (2.6) iteratively we make use of the
preconditioned biconjugate gradient algorithm (BCG) (e.g. Saad
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Calculating normal mode spectra 1041

2000). In this method, an initial guess ũ0 for the solution is given,
and this solution is iteratively updated until convergence to the actual
solution is obtained (here and in the following, we have neglected
the dependence of the various terms on ω for notational clarity).
The practical choice of an initial solution u0 is described at the end
of this subsection. The efficiency of this method depends crucially
on the choice of the preconditioner for the linear system. We recall
that a preconditioner for eq. (2.6) is a matrix G̃0, say, which is
an approximate inverse of S̃, i.e. we have G̃0S̃ ≈ 1. In choosing
a suitable preconditioner an important consideration is the trade-
off between the effectiveness of the preconditioner and the effort
required in its construction (e.g. Chen 2005).

To develop an efficient preconditioner for eq. (2.6) it is useful to
consider the structure of the coupling matrix in further detail. It may
be shown that S̃ is partitioned into a number of submatrices, each
of which is associated with the coupling of a pair of multiplets of
the spherical earth model. The diagonal submatrices represent the
effects of self-coupling between multiplets, while the off-diagonal
submatrices represent cross-coupling. Moreover, it may be shown
that

P = 1 + P(1), H = �2 + H(1), (2.15)

where � is a diagonal matrix whose non-zero entries in each of
the self-coupling submatrices are equal to the degenerate eigenfre-
quency of the associated multiplet. We can, therefore, write

S̃ = (�2 − ω21) + S̃(1), (2.16)

where we have defined,

S̃(1) = −ω2P(1) + iωW + H(1). (2.17)

For the frequency-range of interest to seismology, the norm of S̃(1)

can be shown to be small compared to |ω|2. It follows that S̃ is
diagonally dominant except within those self-coupling submatrices
corresponding to multiplets having eigenfrequencies close to ω.
This suggests a preconditioner for eq. (2.6) can be constructed as
follows:

(i) Select a frequency bandwidth �ω, and determine which mul-
tiplets have eigenfrequencies lying in (ω − �ω, ω + �ω). Such
multiplets are grouped into a target block, and remaining multiplets
into a residual block.

(ii) According to the above decomposition, we write

S̃ =
( (

�2
11 − ω2111

) + S̃(1)
11 012

021

(
�2

22 − ω2122

)
)

+
(

011 S̃(1)
12

S̃(1)
21 S̃(1)

22

)
,

(2.18)

where the subscript 11 is used to denote the target block, 22 the
residual block, and 12 and 21 the off-diagonal blocks coupling the
target and residual blocks. Here the matrices 111 and 122 denote,
respectively, the identity-matrices acting on the target and residual
blocks, while 012 and 021 are the zero-matrices of the appropriate
dimensions.

(iii) The preconditioner for the system is then defined as the in-
verse of the first of the above matrices

G̃0 =

⎛
⎜⎝

{(
�2

11 − ω2111

) + S̃(1)
11

}−1
012

021

(
�2

22 − ω2122

)−1

⎞
⎟⎠ . (2.19)

By varying �ω, we can seek a frequency bandwidth which gen-
erates an efficient preconditioner. For small values of �ω, the size
of the target-block will be small, so that construction of the pre-
conditioner is inexpensive. Such a preconditioner may, however, be
a poor approximate inverse of S̃, so that many iterations may be
required for the BCG algorithm to converge. We note that in the
extreme case of �ω = 0 the preconditioner is simply the ‘spheri-
cal earth solution’ of the elastodynamic equations. Conversely, for
larger values of �ω, the preconditioner will be a better approximate
inverse to S̃ and fewer iterations of the BCG will be required. How-
ever, as �ω is increased the construction of the preconditioner may
become prohibitively expensive. Indeed, if �ω is made sufficiently
large, all multiplets will lie in the target-block, and we will simply
be using the traditional DSM.

Each iteration of the BCG requires two multiplications of a vector
by G̃0S̃ and one multiplication of a vector by S̃T G̃T

0 . To perform
these matrix–vector multiplications it is not necessary to explicitly
construct the preconditioning matrix G̃0. To see this, let v = G̃0S̃w
for a given vector w. This relation is equivalent to the linear system
G̃−1

0 v = S̃w, where the matrix G̃−1
0 is, by definition, equal to

G̃−1
0 =

( (
�2

11 − ω2111

) + S̃(1)
11 012

021 �2
22 − ω2122

)
. (2.20)

If we set z = S̃w, and partition v and z as

v =
(

v1

v2

)
, z =

(
z1

z2

)
, (2.21)

then the above linear system is equivalent to the two decoupled
systems{(

�2
11 − ω2111

) + S̃(1)
11

}
v1 = z1, (2.22)

(
�2

22 − ω2122

)
v2 = z2. (2.23)

It follows that we can compute v = G̃0S̃w by forming one
matrix–vector product with S̃ to compute z, and by solving the
above two linear systems for v1 and v2. The linear system for v2 is
diagonal, so that its solution may be found trivially. To solve the sys-
tem for v1 the LU-decomposition of the matrix (�2

11 −ω2111)+ S̃(1)
11

is formed, and the solution is then found using back-substitution. A
similar argument applies to the calculation of matrix–vector prod-
ucts with S̃T G̃T

0 . Importantly, the LU-decomposition of the target-
block portion of the coupling matrix need only be performed once
per frequency.

To proceed practically with the BCG algorithm we must first
construct the initial solution ũ0. To do this we set

ũ0 = G̃0 f̃, (2.24)

where we recall that f̃ is the given force-vector for the problem. We
note that in the case �ω = 0 (so that the target block is empty) this
initial solution corresponds to the solution of the equations in the
spherical reference model. More generally, for �ω = 0 this initial
solution allows some interaction of modes lying within the target
block, and so provides a better approximation to the true solution
of the problem. Having obtained such a starting value ũ0, we then
employ the BCG algorithm to construct a sequence of solution
vectors ũi for i ≥ 1 (see, for example, Saad 2000 for details of the
algorithm). At the ith iteration we define the error associated with
the solution to be

ξ = ‖ S̃ũt − f̃ ‖
‖ f̃ ‖ , (2.25)

C© 2012 The Authors, GJI, 189, 1038–1046
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1042 D. Al-Attar, J. H. Woodhouse and A. Deuss

where ‖·‖ denotes the standard Hermitian norm of a complex-valued
vector, and where we have included the norm ‖ f̃ ‖ of the force-
term in the denominator to non-dimensionalize the expression. The
BCG algorithm is continued until this error ε falls below a cer-
tain tolerance value ε0. We have found the choice ε0 = 1 × 10−5

is sufficient for the resulting spectra obtained using the IDSM to
be indistinguishable from those calculated using the DSM for all
practical purposes.

3 E X A M P L E C A L C U L AT I O N S

In this section, we present a range of calculations to demonstrate
the validity and effectiveness of the IDSM. We use spherical earth
eigenfunctions calculated in PREM of Dziewonski & Anderson
(1981). The laterally heterogeneous earth model used is the
S-velocity model S20RTS of Ritsema et al. (1999) with pertur-
bations to P-wave velocity and density given through the scaling
relations

δvp/vp = 0.5 δvs/vs, δρ/ρ = 0.3 δvs/vs, (3.1)

which are suggested by mineral physics (e.g. Karato 1993). In ad-
dition to the mantle model, we have incorporated the simple crustal
model of Woodhouse & Dziewonski (1984), and include the effects
of rotation and elipticity in all calculations. At present we have
not implemented viscoelastic attenation exactly within the calcula-
tions. Instead, we simply allow the spherical earth eigenfrequencies
to have non-zero imaginary parts calculated using first-order per-
turbation theory. While the exact incorporation of viscoelasticity
may have a non-negligible effect on the calculated spectra, it is not
thought its presence would alter any of our conclusions about the
effectiveness of the IDSM.

3.1 Validation of the iterative method

The accuracy of the IDSM can be most easily verified by compar-
ing its results with those of the traditional DSM. In Fig. 2 such a
comparison is shown for a small portion of synthetic spectra, where
it is seen that the IDSM rapidly converges to the DSM solution in
around three iterations. The rapid convergence of the IDSM seen
in this example is found to be typical of the method when applied
to full-coupling calculations over the frequency range 0–6 mHz.
We note that the upper frequency limit of 6 mHz for these tests
has been dictated by the largest size of the coupling matrix that
can be stored in memory on the processor used for the calculations
(around 13000-by-13000 using single precision complex numbers).
Given a processor with larger memory, it is expected that the IDSM
would be similarly effective for higher frequency full coupling cal-
culations. In particular, by using parallel computing it would be
possible to distribute the coupling matrix between the memories
of a large number of processors, and in this manner consider the
full-coupling of very large numbers of modes.

To further verify the efficacy of the IDSM, we have extensively
benchmarked the method against existing codes for solving the
mode coupling equations using matrix diagonalization. As expected,
it is found that the results of the IDSM agree to numerical precision
with those of matrix-diagonalization so long as rotation is incor-
porated exactly into these latter calculations by doubling the size
of the eigenvalue problem. In Fig. 3 is shown an example of the
errors associated with the kinetic and Coriolis approximations that
are commonly used in the matrix diagonalization method to incor-
porate lateral density variations and rotation without doubling the
size of the eigenvalue problem. Though these errors are relatively
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Figure 2. In the uppermost trace is plotted a portion of synthetic vertical
acceleration amplitude spectra at the station AFI for the 1994 June 9, Bolivia
earthquake that has been calculated using the DSM coupling all modes
having eigenfrequency less than 3 mHz (giving a total of 1883 coupled
singlets). For this calculation a 96 hr time-series was generated to which a
cosine-bell window in the range 5–65 hr was applied prior to determination
of the amplitude spectra. The lower five traces plot the difference between
this reference spectra and the spectra produced using the stated number of
iterations of the IDSM. Note that the ‘difference’ we have plotted is equal
the modulus of the difference between the two complex spectra, and so
reflects misfit in both amplitude and phase. For these calculations the chosen
frequency-bandwidth � f = 1

2π
�ω used in the IDSM was 0.05 mHz. It is

seen from this figure that the IDSM is able to rapidly converge to the exact
solution of the mode coupling equations.
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frequency (mHz)
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Figure 3. In the uppermost trace is plotted a portion of synthetic vertical
acceleration amplitude spectra at the station AFI for the 1994 June 9, Bolivia
earthquake that has been calculated using the IDSM coupling all modes
having eigenfrequency less than 4.3 mHz (giving a total of 5190 coupled
singlets). For this calculation a 96 hr time-series was generated to which a
cosine-bell window in the range 5–65 hr was applied prior to determination
of the amplitude spectra. In the lower trace is plotted the difference between
this reference spectra and the result of performing the same calculation
but now employing the Coriolis and kinetic approximations of Deuss &
Woodhouse (2001).

small, it is obviously preferable to use a method that does not ne-
cessitate such approximations, and an attractive feature of the DSM
and IDSM is that both lateral density variations and rotation can be
taken into account exactly at no extra computational expense.

3.2 Choice of �ω for the target-block

The efficiency of the preconditioner used in the IDSM depends
on the choice of the frequency bandwidth �ω used for the target
block. In Fig. 4 we plot the variation with � f = 1

2π
�ω in (a) total

calculation time, (b) mean number of iterations for convergence,
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Figure 4. Variation in (a) total calculation time, (b) mean number of itera-
tions per frequency, and (c) mean calculation time per iteration , with choice
of the frequency bandwidth parameter � f = 1

2π
�ω. For these calculations

all modes with eigenfrequencies less than 2 mHz are included, and a 96 hr
time-series is generated.

and (c) mean calculation time per iteration. It is seen that as �ω

increases the number of iterations needed for convergence of the
BCG algorithm decreases monotonically; this is because as �ω

increases the preconditioner G̃0 becomes a closer approximation
to S̃−1. However, as �ω is increased more work must be done to
construct the preconditioner, and it is seen that the mean time per
iteration increases correspondingly. In Fig. 4 (a) it is seen that due to
these opposing effects, the total calculation time initially decreases
with increasing �ω, reaches a minimum at around �f ≈ 0.05 mHz,
and then starts to rise again. The precise value of this minimum
depends on the details of the calculation (such as number of modes
coupled, and length of the time-series), though the choice �f ≈
0.05 mHz seems, in general, to work well.

3.3 Comparison of the IDSM and DSM

To demonstrate the advantage of the IDSM over the DSM, it is
useful to investigate how the calculation time required by the two
methods scales with the maximum frequency of the coupled modes.
To do this we computed synthetic spectra using the two methods
coupling all modes having eigenfrequencies less than a given value
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Figure 5. Comparison of the mean calculation time per frequency between
the traditional DSM and the IDSM as the maximum frequency of coupled
modes is increased. Examination of the slopes of these two plots shows that
for the DMS the total calculation timescales roughly like the tenth power of
the maximum frequency, while for the IDSM the scaling is with the seventh
power of the maximum frequency.

f max for f max = 1 through to 4.0 mHz in 0.5 mHz intervals. In each
calculation the length of the time-series produced was 96 hr, and
the number of frequency steps was chosen based on this time to
achieve good spectral resolution. The results of these calculations
are summarized in Fig. 5 where we plot the total calculation time
against the maximum frequency f max on logarithmic axes. From
the gradients of the corresponding plots it is seen that the total
calculation for the DSM scales roughly like tenth power of f max,
while for the IDSM the scaling is with the seventh power of f max.
We note that the calculations for these figures were performed on
a single processor, and that the calculation times for both the DSM
and IDSM can be substantially reduced in practice by performing
the calculations for different frequencies in parallel.

These results can be seen to be consistent with theoretical expec-
tations as follows. For both problems the size of the linear system
scales with f 3

max (see Fig. 1), and the total number of frequencies
at which the mode coupling equations are solved scales like f max.
In the DSM the most expensive computational step is the LU-
decomposition of the coupling matrix which scales with the third
power of the dimension of the linear system, and so we would expect
the total calculation time for the DSM to scale like f 10

max. For the
IDSM the most expensive computational step is the calculation of
matrix–vector products which scale with the second power of the
linear system, and so we would expect the total calculation time for
the IDSM to scale like f 7

max. Because of this difference in scaling be-
tween the two methods, it is clear that for large coupling calculations
the IDSM is significantly more effective than the DSM.

3.4 Effects of truncating the coupling equations

In setting up the mode coupling equations we must select a finite
subset of spherical earth multiplets we wish to consider. This trunca-
tion of the infinite-dimensional mode coupling equations necessar-
ily introduces an error into the calculations. An important question
therefore arises: suppose we wish to calculate synthetic spectra in a
given frequency range (ω1, ω2), then which multiplets must be in-
cluded in the coupling calculations in order for the resulting spectra
to be sufficiently accurate? By ‘sufficiently accurate’ here we mean,
roughly speaking, that the difference between calculated spectra and
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Figure 6. Vertical acceleration amplitude spectra at the station AFI for the
1994 June 9 Bolivia earthquake. The solid line shows the data amplitude
spectra obtained from the observed time-series by deconvolving the instru-
ment response and applying a cosine-bell window in the range 5–65 hr
prior to calculation of the discrete Fourier transform. The amplitude spec-
tra labelled ‘full-coupling’ and ‘self-coupling’ are synthetics for the event
calculated with the IDSM in the laterally heterogeneous model S20RTS
(Ritsema et al. 1999) using scaling relations given in eq. (3.1) for pertur-
bations in P-wave speed and density. For the ‘full-coupling’ calculation the
coupling of all modes having eigenfrequency less than 4.3 mHz is consid-
ered, while for the ‘self-coupling’ calculation only coupling between modes
lying in the same spherical earth multiplet is allowed. It is apparent that for
this portion of spectra the errors associated with the self-coupling approx-
imation are of the same order of magnitude as the difference between the
observed data and calculated synthetics.

the exact spectra are smaller than the expected differences between
synthetic and observed spectra for the real Earth.

In early normal mode studies the choice of which modes to in-
clude in coupling calculations was largely motivated by computa-
tional expediency. In particular, it was usual to employ the self-
coupling approximation in which only coupling between modes
lying in the same spherical earth multiplet is allowed. This approxi-
mation greatly reduced the computational demands of normal mode
calculations, and also led naturally to the introduction of splitting
functions (Giardini et al. 1987) which remain an important tool
for studying the Earth’s interior (Deuss et al. 2011). However, the
self-coupling approximation provides, at best, a rather crude solu-
tion of the mode coupling equations, and recent work by Deuss &
Woodhouse (2001, 2004), Irving et al. (2008), and Irving et al.
(2009) has highlighted the need to move towards full-coupling cal-
culations. The importance of full-coupling calculations is likely par-
ticularly pronounced in studies of lateral density variations within
the Earth as the excepted effects of such density variations on ob-
served spectra are likely quite subtle.

In Fig. 6 we plot a portion of observed amplitude spec-
tra at the station AFI for the June 9 Bolivia earthquake.
Also plotted in this figure are two synthetic spectra cal-
culated in the laterally heterogeneous earth model S20RTS
(Ritsema et al. 1999) using the IDSM. The synthetic spectra labelled
‘full-coupling’ was calculated by allowing coupling between all
modes having eigenfrequencies less than 4.3 mHz, while the spec-
tra labelled ‘self-coupling’ was calculated using the self-coupling
approximation. The upper frequency limit used in the ‘full-
coupling’ calculation was chosen so that no appreciable change
in the plotted spectra occurred when additional higher frequency

2.32 2.34 2.36 2.38 2.4 2.42 2.44 2.46
frequency (mHz)
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pl

itu
de
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full−coupling

no density

Figure 7. As for Fig. 6 except here the amplitude spectra labelled ‘no
density’ is a synthetic for the event calculated using full-coupling of all
modes having eigenfrequency less than 4.3 mHz but for which the density
perturbation in the laterally heterogeneous earth model is set equal to zero.
Comparison with the ‘self-coupling’ spectra of Fig. 6 shows that for this
portion of spectra the errors associated with self-coupling approximation
are larger than the likely effects of lateral density variations in the Earth.

modes were included in the calculation. As a result, the ‘full-
coupling’ spectra can be used as an exact reference spectra against
which the accuracy of other methods can be assessed. For the por-
tion of spectra plotted in Fig. 6, it is seen that the errors associated
with the self-coupling approximation are of the same order of mag-
nitude as the difference between observed spectra and reference
synthetic calculated in a good laterally heterogeneous earth model.
Furthermore, in Fig. 7 we have plotted the same observed spectra
and ‘full-coupling’ synthetic as in Fig. 6, but have now included a
synthetic spectra labelled ‘no density’ that has been calculated in the
same way as the ‘full-coupling’ synthetic except that the laterally
density perturbation in the earth model is set equal to zero. Taking
the difference between the ‘full-coupling’ and ‘no density’ spec-
tra to be indicative of the expected ’order-of-magnitude’ changes
due to lateral density variations, we see from comparison of Figs 6
and 7 that for this portion of spectra the errors associated with the
self-coupling approximation are in fact significantly larger than the
effects of density on the spectra.

Errors associated with the self-coupling approximation over a
wider range of frequencies can be seen in Fig. 8. Here the upper-
most trace labelled ‘full-coupling’ is a synthetic amplitude spectra
at the station AFI for the 1994 Bolivia earthquake calculated using
the IDSM in S20RTS (Ritsema et al. 1999) using the P-velocity and
density scalings described in eq. (3.1). The trace labelled ‘no den-
sity’ shows the difference between this reference spectra and that
calculated in the same manner but with the density perturbation
set equal to zero (note the plotted difference is the modulus of the
difference between the two complex spectra, and so contains infor-
mation about both amplitude and phase). The trace labelled ‘self-
coupling’ plots the difference between the reference ‘full-coupling’
spectra and a synthetic spectra in S20RTS with non-zero density
perturbations but calculated using the self-coupling approximation.
Comparison of the ‘no density’ and ‘self-coupling’ traces shows
that over the whole of the frequency range 04 mHz the errors as-
sociated with the self-coupling approximation are comparable in
magnitude, and in fact generally larger, than the effects of lateral
density variations on the spectra.

An intermediate step between the self-coupling approximation
and full-coupling is the so-called group-coupling approximation in
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Figure 8. In the uppermost trace is plotted a portion of synthetic vertical
acceleration amplitude spectra at the station AFI for the 1994 June 9 Bo-
livia earthquake. This reference ‘full-coupling’ spectra has been calculated
for S20RTS (Ritsema et al. 1999) employing the scaling relations in eq.
(3.1) for P-velocity and density perturbations using the IDSM coupling all
modes having eigenfrequency less than 4.3 mHz. For this calculation a 96
hr time-series was generated to which a cosine-bell window in the range
5–65 hr was applied prior to determination of the amplitude spectra. The
trace labelled ‘no density’ shows the difference between the reference ‘full-
coupling’ spectra and that calculated using the same number of coupled
modes but with the density perturbation in the model set equal to zero.
The remaining five traces show the difference between the reference ‘full-
coupling’ spectra and those calculated in S20RTS including the non-zero
density perturbation but using either the self-coupling or group-coupling
approximations. For group-coupling calculations we allowed coupling be-
tween the stated number of nearest neighbour multiplets (see the main text
for further details).

which coupling between the modes lying in a relative small group of
spherical earth multiplets is considered. In Fig. 8 we also examine
the errors associated with a particular form of group-coupling. To
do this we have ordered all the multiplets used in the ‘full-coupling’
calculation in terms of their eigenfrequencies. We then specified a
‘nearest-neighbour’ coupling width n, and allowed coupling of the
modes lying in each spherical earth multiplet with those lying in the
nearest n neighbouring spherical earth multiplets. We note that if n
> 0 this form of group coupling does allow some indirect coupling
between all modes considered. From Fig. 8 it is seen that even with
n = 50 the errors associated with group-coupling are not negligible
compared to the effects of density. These calculations again high-
light the potential shortcomings of commonly used approximate
methods for performing normal mode calculations, and reiterate
the need for allowing coupling of large numbers of multiplets in
order to calculate very accurate synthetic mode spectra.

The results of the example calculations shown in Figs 6, 7 and
8 constitute prima facie evidence that the self- and group-coupling
approximations may not be sufficiently accurate for studies of lateral
variations in Earth structure, and, in particular, for studies of lat-
eral density variations. The situation is, however, somewhat more
complicated. The applicability of these approximations depends
strongly on the modes being studied, and also on the processing
done to the time-series in order to produce the spectra. As a re-
sult, practical studies employing the self- and group-coupling ap-
proximations carefully select which modes to examine, and apply
appropriate time-windows and filters to the observed data so as to
lessen the influence of coupling with unwanted modes. To rigor-
ously assess the applicability of these approximations to studies of

Earth structure it is, therefore, necessary to consider specific modes
of interest, and to incorporate the effects of any processing done
to the data. Moreover, such an investigation into the resolvability
of a given model parameter cannot simply rely on the comparison
by eye of a few synthetic spectra. Instead, the relevant question to
ask – for definiteness, in the context of splitting function studies
using the self-coupling approximation – is the extent to which the
splitting function obtained agrees with the self-coupling part of the
generalized splitting function determined through the full-coupling
of all modes. If the self-coupling splitting function measurements
are found to be robust in the above sense, then inferences about
Earth structure based upon them will be similarly robust.

4 D I S C U S S I O N

In this paper, we have described a new iterative implementation
of the direct solution method for the calculation of synthetic seis-
mograms in laterally heterogeneous earth models. Numerical tests
show that this method is significantly more efficient than the tradi-
tional DSM for performing large coupling calculations. The IDSM
provides a useful alternative to matrix-diagonalization methods for
performing full coupling calculations, and offers the advantage that
both rotation and viscoelascity can be incorporated exactly at es-
sentially no extra computational expense. At present the number
of coupled modes considered in our calculations is limited by the
memory available on a single processor. The IDSM is, however,
well suited to implementation on parallel computers on which very
large coupling matrices may be distributed between the memories
of the different processors.

As a first application of the method, we have conducted a prelim-
inary investigation of the importance of full-coupling calculations
for studies of lateral density variations within the Earth. We have
shown that the likely effects of lateral density variations on observed
spectra can be of the same order of magnitude as the errors that are
associated with the self- or group-coupling approximations. As a
result, it is not clear whether these approximations are sufficiently
accurate for use in inversions of lateral density variations from nor-
mal mode spectra. This conclusion is, however, rather tentative, and
we feel that this issue bears further and detailed investigation.
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