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ABSTRACT 

Inverse problems involve the determination of one or more unknown quantities usually 

appearing in the mathematical formulation of a physical problem. These unknown quantities 

may be boundary heat flux, various source terms, thermal and material properties, boundary 

shape and size. Solving inverse problems requires additional information through in-situ data 

measurements of the field variables of the physical problems. These problems are also ill-

posed because the solution itself is sensitive to random errors in the measured input data. 

Regularisation techniques are usually used in order to deal with the instability of the solution. 

In the past decades, many methods based on the nonlinear least squares model, both 

deterministic (CGM) and stochastic (GA, PSO), have been investigated for numerical inverse 

problems.   

The goal of this thesis is to examine and explore new techniques for numerical inverse 

problems. The background theory of population-based heuristic algorithm known as 

quantum-behaved particle swarm optimisation (QPSO) is re-visited and examined. To 

enhance the global search ability of QPSO for complex multi-modal problems, several 

modifications to QPSO are proposed. These include perturbation operation, Gaussian 

mutation and ring topology model. Several parameter selection methods for these algorithms 

are proposed. Benchmark functions were used to test the performance of the modified 

algorithms. To address the high computational cost of complex engineering optimisation 

problems, two parallel models of the QPSO (master-slave, static subpopulation) were 

developed for different distributed systems. A hybrid method, which makes use of 

deterministic (CGM) and stochastic (QPSO) methods, is proposed to improve the estimated 

solution and the performance of the algorithms for solving the inverse problems. 

Finally, the proposed methods are used to solve typical problems as appeared in many 

research papers. The numerical results demonstrate the feasibility and efficiency of QPSO 

and the global search ability and stability of the modified versions of QPSO. Two novel 

methods of providing initial guess to CGM with approximated data from QPSO are also 

proposed for use in the hybrid method and were applied to estimate heat fluxes and boundary 

shapes. The simultaneous estimation of temperature dependent thermal conductivity and heat 

capacity was addressed by using QPSO with Gaussian mutation. This combination provides a 

stable algorithm even with noisy measurements. Comparison of the performance between 

different methods for solving inverse problems is also presented in this thesis. 
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Chapter  1 INTRODUCTION 
 

This chapter gives the fundamentals of inverse problems. For simplicity and easy explanation, 

heat conduction problems are often used in this thesis for various illustration and discussion. 

Numerical methods used to solve inverse problems are discussed along with the objectives 

and the outline of this thesis.  

 

1.1 Inverse Problems 

Inverse problems arise in many branches of science and mathematics, including 

environmental science, water pollution, medical analysis, etc.  They may be described as 

problems where results, or consequences are known, but not the cause. Solutions of an 

inverse problem involve determining unknown causes based on observations of their effects. 

This is in contrast to the corresponding direct problem, to which solutions involve finding 

effects based on a complete description of their causes. 

The inverse problem has a wide range of applications, such as seismic surveys of 

locating ground water, oil and gas resources; medical tomography of reconstructing the 

internal structure of an organ; non-destructive evaluation of materials; electromagnetic 

remote sensing; determination of the Earth’s interior structure, etc.  

In this thesis, the research focuses on the inverse heat conduction problems (IHCP) 

and contaminant propagation problems, which arise in the modelling and control of many 

processes with heat propagation in thermophysics and flow in continuous media. An 

excellent introductory work of IHCP can be found in [1]. Recently in [2], Taler and Duda 

discussed the theoretical basis, analytical and numerical methods of the IHCP. The IHCP 
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finds wide applications in quenching and many other thermal-related industries, one of which 

is the determination of the surface heat flux histories of reentering heat shields in aerospace 

industry. 

 A direct heat conduction problem is fully defined by the following: the governing 

partial differential equation (elliptic for steady heat conduction or parabolic for unsteady heat 

conduction), the thermal properties of the material (the coefficients in the governing 

equation), the initial conditions and the boundary conditions (Dirichlet, Neumann or Robin 

type), the shape and size of the domain, and the internal heat source distribution. In contrast, 

an IHCP is defined as the estimation of any unavailable information of the above from one or 

more measured temperatures within the heat conducting body. Here ‘estimation’ is used 

because in measuring the temperatures, errors are always present to some extent and they 

affect the accuracy of the calculation. This can happen in a number of practical situations as 

described below.  

For example, it is often difficult or even impossible to use sensors to measure 

temperatures and heat fluxes on certain boundaries such as those of combustion chambers. 

The placement of thermal sensors may also be impossible because of the prohibitively small 

size of the domain, as is the case of a computer chip or in the coolant flow passage of a 

turbine blade. Thus, in many cases, solutions of an ill-posed boundary condition problem, 

where the size and the shape of the domain are known, while thermal boundary conditions are 

unavailable on parts of the boundary and over-specified on the rest of the boundary, are 

required. 

A similar type of problem arises when one requires the unknown heat source in the 

domain. Using sensors in a highly volatile environment, such as in the case of a buried toxic 

waste site, temperature measurements are impossible to obtain. Thus, measurements of both 

temperature and heat flux data on certain part of the boundary may be required in order to 

solve this inverse heat source problem. 

Another class of inverse problems arises when the size and shape of some parts of the 

domain are unknown. In order to determine the unknown boundaries of the domain, 

additional boundary conditions must be provided in the form of independently specified 

Dirichlet and Neumann boundary conditions at the same points of the known boundary. Thus, 

when the thermal boundary conditions are over-specified on a part of the boundary and the 
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remaining boundary is not known, the problem is referred to as an ill-posed inverse shape 

design problem. 

The unsteady (transient) inverse heat conduction problems (UIHCP) represent a 

subclass of ill-posed problems which have been extensively investigated. The UIHCP 

involves an estimation of the initial conditions (temperatures or heat fluxes) or an estimation 

of unsteady boundary conditions utilizing measured interior temperature histories. The major 

concern when attempting to solve the UIHCP computationally has been with the automatic 

filtering of noisy data in the discrete thermocouple measurements. The measurement data 

errors, as well as round-off errors, are amplified by the typical UIHCP algorithms.  

Heat transfer across materials depends on thermo-physical properties such as the 

thermal conductivity and heat capacity per unit volume. These properties have a significant 

influence on the temperature distribution and heat flow rate when the material is heated and 

also in the analysis of thermal instability problems. Direct measurement of the thermal 

properties is always impractical, since they are often temperature dependent. An efficient and 

economical method for estimating the thermal properties is required especially in the material 

design industry.  

The heat transfer coefficient, in thermodynamics, mechanical and chemical 

engineering is used in calculating the heat transfer, typically by convection or phase change 

between a fluid and a solid. The accurate knowledge of the heat transfer coefficient at the 

surface of the plate is important in many engineering applications, including the cooling of 

continuously cast slabs and electronic chips. Many more fields of science and technology, 

such as astronomy, chemistry and medicine require solutions to inverse problems. All the 

above applications require the development of accurate, fast, efficient and stable algorithms 

to solve the relevant inverse problems. 

Environmental contamination is a widespread problem that may affect the use of 

environmental resources such as a groundwater aquifer or a surface water body. Identifying  

contaminant sources in groundwater is important for developing effective remediation  

strategies and finding responsible parties in a contamination incident. Groundwater 

contamination broadly defines any constituent that reduces the quality of groundwater. 

Contamination can be chemical, physical or biological. Chemical contamination can be 

broken down further into soluble components and non-aqueous phase liquid components. 

Soluble components are dissolved in the groundwater and are transported with the 
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groundwater as it moves. Non-aqueous phase liquids are bodies of liquid that are separate 

from the water and are generally not transported with bulk groundwater movement. If the 

initial and boundary conditions, model parameters and contaminant release history are known, 

the advection-dispersion equation can be solved directly using analytical techniques or 

numerical simulations to obtain the distribution of contaminant concentration. This process is 

called a forward advection-dispersion problem which has a unique solution if it is well-posed. 

In contrast, the inverse advection-dispersion problem for groundwater models may involve 

the determination of the unknown time-dependent contaminant release history from the 

knowledge of concentration measurements taken within the medium. 

 

1.2 Methods for Solving Inverse Problems 

The aim of this thesis is to examine fast and reliable numerical approaches of either 

iterative or non-iterative type for various inverse problems arising in heat conduction or 

contaminant flow formulated as optimisation problems. 

Solving inverse problems is complicated due to their ill-posedness. A problem is well-

posed if the solution (1) exists, (2) is unique and (3) is stable. If one of these three conditions 

is not satisfied, the problem is said to be ill-posed. Analysis from the perspective of a partial 

differential equation, an integral equation and a set of linear algebraic equations can be found 

in [1]. In many inverse problems, including those examples in this thesis, the existence and 

the uniqueness of the solution are well-established according to the a priori knowledge of the 

engineering problems. However, solutions to the inverse problems are extremely sensitive to 

measurement errors [1]. In other words, an arbitrarily small perturbation of the measured data 

may produce a large difference in the output solution. Therefore, any algorithm developed for 

inverse problems should satisfy the stability condition. There are a number of procedures that 

have been developed for the solution of ill-posed problems in general. One of these 

procedures is known as the regularisation technique developed by Tikhonov and Arsenin [4] 

and is used to reduce the sensitivity of ill-posed problems to measurement errors. 

 In general, inverse problems can be solved as a parameter estimation problem or as a 

function estimation problem [1]-[5]. If information is available on the functional form of the 

unknown quantity, the inverse problem can be reduced to the estimation of a few unknown 

parameters [5]. On the other hand, if no prior information is available on the functional form 

of the unknowns, the inverse problem becomes a function estimation problem in an infinite 
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dimensional space of functions. In real problem solving, the functional form is usually 

unknown causing difficulties in the actual inverse solution process. This thesis emphasises 

the numerical aspects of function estimation rather than parameter estimation. 

 In [1], Beck et al. gave the classification of methods for solving inverse heat 

conduction problems (IHCPs). One classification relates to the ability of a method to treat 

nonlinear as well as linear IHCPs. This thesis pays particular attention to algorithms that can 

be employed for both linear and nonlinear problems. Some methods are inherently linear such 

as those based on the Laplace transform, which are not considered because the nonlinear case 

is more important for industrial applications; Methods of solving direct heat conduction 

problems include Duhamel’s theorem, finite differences, finite elements, finite volumes and 

boundary elements. The use of Duhamel’s theorem restricts IHCPs to the linear case, whereas 

the other procedures can treat the nonlinear problems; the time domain utilized in IHCPs can 

also be used to classify the methods. Three time domains have been proposed: (1) restricted 

to the current time only, (2) using the current time and a few future time steps, and (3) the 

whole time domain. The use of measurements only at the current time with a single sensor 

allows the calculated temperature to match the corresponding measured temperature in an 

exact manner. Such exact match is intuitively appealing but the algorithms based on it are 

extremely sensitive to measurement errors. In the second method, a few future temperatures 

are used. The associated algorithms are called ‘sequential’. Great improvements are obtained 

compared with exact matching in reduced sensitivity to measurement errors and in the much 

smaller time steps that are possible. The whole domain estimation procedure is also very 

powerful because very small time steps can be taken; The last classification is relative to the 

dimensionality of the IHCP. In the use of Duhamel’s theorem, the physical dimension of the 

problem is not of concern. When finite difference or other methods are employed, the 

dimensionality of the problem depends on the number of space coordinates needed to 

describe the heat-conducting body. 

 Several criteria were proposed to evaluate the methods for solving IHCP in  [6]. 

However these criteria could well be generalised to other types of inverse problems. These 

critera are listed as follows: 

(1) The estimated solution should be accurate if the measured data are of high accuracy. 

(2) The method should be insensitive to measurement errors. 

(3) The method should be stable for small time steps or intervals. 
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(4) Field variable measurements from one or more sensors should be permitted. 

(5) The method should not be restricted to any fixed number of observations. 

(6) Field variable dependent properties should be permitted. 

(7) The method should be easy to program. 

(8) The computer cost should be moderate. 

(9) The method should permit extension to more than one unknown quantities.  

Most of the IHCPs that have been investigated so far are concerned with the estimation of 

boundary heat fluxes. The sequential function specification method proposed by Beck et al. 

in [1] is a computationally efficient method to address the diffusive nature of transient heat 

conduction. Conjugate gradient method (CGM), as a whole domain iterative regularisation 

function estimation method, was used to solve various inverse problems of estimating time-

varying heat flux as well as other unknown quantities [59]-[61].  

Determination of time varying heat source in IHCPs was also addressed in many papers. 

In [90], temperature measurements in the whole domain are required to get the solution of the 

inverse heat source problem, which is usually impractical in engineering. In [91]-[94], GA 

was used to address the inverse parameter and function estimation problems, in which every 

chromosome represents a candidate solution of the unknown quantity in hand. Then during 

the process of evolution, selection, crossover, mutation operators are applied to the 

chromosomes, until the optimum is achieved. The advantages of the stochastic search 

methods are that they do not require the gradient computation and the choice of initial guess.  

Estimation of temperature dependent thermal properties is difficult because of the 

nonlinearity of the inverse problem. Various methods were proposed to address this problem. 

CGM [64]-[68] is the most commonly used method, in which, the temperature-dependent 

properties are treated as function of space and time. In [71], Terrola formulated the inverse 

problem as an optimisation problem and applied the Davidon-Fletcher-Powell method to 

solve the optimisation problem to determine the temperature dependent thermal conductivity. 

Kim et al. [72] formulated the problem to find the solution through the direct integral method, 

which requires the material to be homogeneous. Yeung and Lam [73], Chang and Chang 

[74]-[75] estimated the thermal conductivity by using non-iterative methods, in which the 

governing equation of heat conduction is discretised into a system of linear equations using 

the temperature measurements at the discrete grid points, and then the unknown thermal 
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conductivities can be obtained by solving the system of equations directly. But actually, 

temperature measurements of the whole domain are usually difficult to obtain. In [76], a 

sensitivity equation was used to estimate the parameters in the known functional form of 

thermal conductivity. In [77]-[82], genetic algorithms (GA) were applied to solve the IHCPs, 

but the functional forms of the unknown quantities are all required to be known a priori. In 

[83]-[84], the particle swarm optimisation (PSO) was used to solve the inverse heat transfer 

problems of determining the heat source and unknown variables. However PSO has not been 

applied to estimate the temperature-dependent thermal properties. 

Simultaneous determination of two unknown quantities is even more difficult, e.g. 

temperature dependent thermal conductivity and heat capacity. CGM was used to 

simultaneously estimate temperature dependent thermal conductivity and heat capacity, but 

the most difficult part is the choice of the initial guess of the two unknown quantities [67]. In 

[85]-[86], the direct integration approach was applied to estimate the thermal conductivity 

and heat capacity, which vary linearly with respect to temperature. Unfortunately for many 

other functional forms, the direct integration approach does not work. Flach and Ozisik [87] 

employed the least-squares method to estimate spatially varying thermal conductivity and 

heat capacity. In [88], a hybrid numerical algorithm of Laplace transform technique and the 

control-volume method are proposed to estimate the temperature dependent thermal 

conductivity and heat capacity. Genetic algorithm (GA) was proposed to identify the 

temperature dependent thermal properties [79], [89], in which, the functional form is assumed 

to be known. These problems are essentially parameter estimation problems instead of 

function estimation problems.  

In the inverse problems of identifying boundary shapes, the boundary element method 

(BEM) is used to solve the direct problems, which may require much computational CPU 

time if the number of boundary elements becomes large. In [95], Nachaoui estimated the 

boundary shape using CGM, but the two end points are always difficult to find. Mera et al. 

used GA to solve the boundary detection problem in [96], which requires the information of 

the functional form of the boundary shape. In [97]-[98], the inclusion detection problems are 

investigated by using PSO. 

The heat transfer coefficient at the surface of a plate, where heat lost is due to convection 

to surrounding cooling fluid, was estimated by three versions of CGM in [99]. Chen and Wu 

[100] applied a hybrid scheme of Laplace transform, finite difference and least-squares 
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method in conjunction with a sequential-in-time concept, cubic spline and temperature 

measurements to predict the heat transfer coefficient distribution on a boundary surface. 

Slodicka et al. [101] used the BEM and Tikhonov regularisation to construct the time-

dependent heat transfer coefficient. Chantasiriwan [102] used the sequential function 

specification method with the linear basis function and an assumption of linearly varying 

future boundary heat flux or temperature components to estimate the time-dependent Biot 

number.  

During the last decade, inverse problems of groundwater contaminant transport have 

received wide attention. A concise review of the most relevant work is given in [103]. 

Gorelick et al. [104] used the least-squares and linear programming to determine the location 

and strength of the source pollutant in the field. Their numerical model was tested on two sets 

of hypothetical data representing a steady-state and a transient case. The model assumed 

other transport parameters are previously known. Wagner [105] estimated the transport 

parameters and contaminant source simultaneously. Zou and Parr [106] developed an 

analytical solution to determine the longitudinal and transverse dispersivities. Skaggs and 

Kabala [107]-[109] solved the inverse source problem with Tikhonov regularisation and the 

method of quasi-reversibility. Woodbury and Ulrych [110]-[111] solved the problem using 

minimum relative entropy (MRE) inversion. Snodgrass and Kitanidis [112] used a 

geostatistical approach to solve the same problem. In [113]-[115], some optimisation 

methods, such as CGM, are used to solve various inverse problems, they converge fast but 

strongly depend on initial guess and can’t guarantee the global optimum. The Tikhonov 

regularisation method is more robust in solving the inverse problem with noisy sampling. 

However, it can not be used to reconstruct the non-smooth source history efficiently. The 

MRE method is a gradient-based approach, which is more efficient in dealing with the source 

history with many peaks. On the other hand, it is not effective for problems that contain 

measurement error of unknown magnitude. Furthermore, the gradient computation of the 

objective function is very complicated, and the gradient may not even exist for some 

objective functions. The determination of the Lagrange multiplier is also a key difficulty in 

the MRE method. For these types of problems, heuristic global search approaches such as 

particle swarm optimisation (PSO) are more effective. Bharat et al. first use PSO [116] to 

solve the inverse source problem in groundwater contaminant, but PSO does not seem to 

stabilise the inverse solution.  
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Most of the above methods for inverse problems are based on the nonlinear least-squares 

method [57] which minimises the difference between the experimental measurements and the 

calculated responses of the system. Such inverse problems can be treated as an optimisation 

problem [33]. Despite their similarities, inverse and optimisation problems are conceptually 

different. Inverse problems concern with the identification of unknown quantities appearing 

in the mathematical model of physical problems, by using measurements of the system 

response. On the other hand, optimisation problems generally deal with the minimization or 

maximization of a certain objective function, in order to find the best design variables that 

will result in desired state variables. For example, the solution technique for an inverse 

problem is required to cope with instabilities resulting from the noisy measured input data, 

while for an optimisation problem the input data is given by the desired response of the 

system. In contrast to the inverse problems, the solution uniqueness may not be an important 

issue for optimisation problems. 

This thesis addresses solution methodologies for numerical inverse problems being 

treated as single-objective optimisation problems based on minimisation techniques. Several 

gradient-based and stochastic techniques are re-visited, together with their basic 

implementation steps and algorithm procedures. Two deterministic methods, Steepest 

Descent Method (SDM) and Conjugate Gradient Method (CGM) are presented. In addition, 

the thesis gives some of the most promising stochastic approaches, such as Genetic 

Algorithm (GA) [29]-[31], Particle Swarm Optimisation (PSO) [13] and Quantum-behaved 

Particle Swarm Optimisation (QPSO) [23].  

QPSO, a novel variant of PSO first introduced by Sun in 2004 [23]-[25], makes the 

assumption that all particles have a quantum behaviour instead of the classical Newtonian 

dynamics that is assumed in original PSO. In QPSO system, the wave-function is used to 

describe the state of the particles instead of the position and velocity. By employing the 

Monte Carlo method, the iterative equation of particles position is derived from the quantum 

probability density function. Comparing with the PSO algorithm, it only requires to update 

the position of the particles without velocity and has fewer algorithmic parameters to control. 

When the QPSO was tested on a set of benchmarking functions, it demonstrated superior 

performance as compared to the PSO [23]. Moreover, it does not require gradient information 

of the objective function, but only its values, and it uses only elementary mathematical 

operators. The QPSO method has been tested to be an efficient method for many optimisation 

problems. Compared with the traditional gradient methods which go from one initial 
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approximation in the search domain to another approximation at every iteration, the QPSO 

method requires to search for as many solutions as possible simultaneously and thus has the 

potential to give unbiased estimation. This provides a better avenue of finding the global 

optimum in the search space. In this thesis, the author gives a new insight into the 

background reasoning of the quantum behaviour of particles and the use of delta-well in the 

deviation of the method. 

Deterministic methods are in general computationally faster that stochastic methods, but 

they might converge to local optima instead of the global optima. On the other hand, 

stochastic algorithms are able to converge to global optima, although they are 

computationally slower than the deterministic algorithms. Indeed, the stochastic algorithms 

may require thousands of evaluations of the objective function and, in some complicated 

cases, become non-practical. In order to overcome these difficulties, a hybrid method, which 

takes advantages of the robustness of the stochastic methods (e.g. QPSO) and of the fast 

convergence of the deterministic methods (e.g. CGM), is proposed. Since the particles are 

relatively independent in the searching process and the only shared information is the global 

best position, the QPSO can be parallelized and dispatch parallel processing for the time-

consuming fitness evaluations. In this thesis, two parallel models of QPSO, master-slave 

parallelization (synchronous and asynchronous) and static subpopulation parallelization, are 

considered. 

In QPSO algorithm, like most of the population-based evolutionary algorithms, the loss of 

diversity in the population is also inevitable due to the collectiveness. During the latter search 

period, the particles are investigated to cluster together and its search area is so limited that 

the whole swarm can easily get trapped into a local minimum. In order to help the particles 

avoid premature convergence and increase the diversity of the population, several 

improvements to the QPSO algorithm in different aspects are considered in this thesis. 

 

1.3 Objectives 

The main objectives of this thesis are as follows: 

(1) Examine properties of gradient-based methods. Investigate the advantages and 

disadvantages of CGM.   
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(2) Search for algorithms that do not depend on initial guess, even allow random initial 

approximations.  

(3) Enhance the global search ability of the QPSO method.  

(4) Develop parallel methods for QPSO to address the high computational cost. 

(5) Examine possibilities of a hybrid method combining advantages of different methods. 

(6) Applications to various industrial related problems. 

 

1.4 Outline of the Thesis 

The remaining part of the thesis is organized as follows. In chapter 2, the mathematical 

modelling of the inverse problem and the regularisation techniques are introduced. The 

chapter begins with a brief review of the partial differential equations and the corresponding 

analytical and numerical methods. The typical heat conduction equation is considered as an 

example model to illustrate the methods. The Tikhonov regularisation method is presented to 

deal with the ill-posed problem, e.g. instability, following with three methods for choosing 

the regularisation parameter, in which, L-curve method is used in this thesis.   

In chapter 3, two gradient-based deterministic methods, steepest descent method 

(SDM) and CGM, are reviewed. Only the details of the CGM for solving the inverse problem 

of estimating an unknown heat flux in the example model are given because the method 

reduces to the SDM when the conjugate coefficient is zero. 

In chapter 4, three stochastic algorithms, namely GA, PSO and QPSO are introduced. 

The QPSO shows superiority over GA and PSO in terms of simplicity and global search 

ability.  The reasons behind the use of quantum theory are explored in order to provide a 

better background supporting the concept. Several modified QPSO methods are proposed, 

and the comparison of the proposed algorithms with other methods on benchmark functions 

is also presented. Two parallel models of QPSO are developed to reduce the computational 

time and increase the efficiency of the algorithm. Finally a hybrid method is developed, in 

which QPSO provides CGM with initial guess values.  

Chapter 5 discusses the application in several industrial related inverse problems. The 

methods developed in chapters 3 and 4 were used to solve various inverse problems, 

including estimation of heat flux, heat source, temperature-dependent thermal properties and 
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heat transfer coefficient in heat conduction problems, and identification of contaminant 

source in an advection-dispersion problem. Simultaneous estimation of heat capacity and 

thermal conductivity and two-dimensional problems are also presented in this chapter. 

Finally, chapter 6 gives the conclusions which summarize the main work and 

contributions of this thesis. Suggestions of future work are also given. 
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Chapter  2 MATHEMATICAL PRELIMINARIES 
 

This chapter gives a brief introduction of the partial differential equations, analytical and 

numerical methods for the solution of the direct problems.  A brief description is given of ill-

posed problems, the Tikhonov regularisation technique, and methods of choosing the 

regularisation parameter. For the convenience of illustration, an example of a heat conduction 

problem is used here. 

 

2.1 Partial Differential Equations and Direct Problems 

2.1.1    Partial differential equations 

Partial differential equations (PDEs) are fundamental in the modelling of many natural 

phenomena, such as the propagation of sound or heat, electrostatics, electrodynamics, fluid 

flow and elasticity. Common examples of PDEs include Laplace’s equation 

                                                                      2 0u                                                              (2.1) 

the heat equation  

                                                                   2u
u

t


 


                                                            (2.2) 

and the wave equation 
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In this thesis, the main focus is the heat equation in transient and steady state forms. As the 

name suggests, Equation (2.2) describes the conduction of heat (with the dependent variable 
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u  usually interpreted as temperature), but it is also applied to a range of physical phenomena 

involving diffusion. 

Suppose the above PDE is defined in  , a bounded region in n , where 1,2,3n  , with 

boundary . Since the heat equation is first order in time, an initial condition on the solution 

is required, such as 

                                                                 0( ,0) ( )u x u x ,                                                     (2.4) 

where x . 

There are three common types of boundary conditions on  : 

(i) Dirichlet condition: A fixed u which takes on prescribed values ( , ) ( , )u x t d x t  for 

x  and (0, )t  is required.  

(ii) Neumann condition: A fixed normal derivative of u , ( , ) ( , )
u

x t s x t
n





 for x  and 

(0, )t  is required, where n  is the unit outward normal to  . A simplified version of 

Fourier’s law of heat conduction says that the heat flux vector q  at a point x  at time t  is 

given by 

                                                              ( , ) ( , )
u

q x t K x t
n


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
,                                               (2.5) 

where K  is a positive constant known as the thermal conductivity.  

(iii) Robin condition: A mixture of Dirichlet and Neumann conditions 

( , ) ( , ) ( , )
u

u x t x t f x t
n

  
 

  
for x  and (0, )t  , where   and   are positive 

constants.   

                           

2.1.2 Direct problems 

The problems described in the previous section are non-dimensionlised equations where 

model parameters, such as density, thermal conductivity, heat capacity, etc., are incorporated 

into the dependent variable u  and the independent variable ( , )x t  by using suitable 

dimensionlisations. In mathematical physics, a direct problem is usually a problem of 

modelling some physical fields, processes, or phenomena (electromagnetic, acoustic, heat, 
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etc.). The purpose of solving a direct problem is to predict the measurable data for given 

values of the model parameters. The description of a direct problem includes: 

(i) the equation governing the physical process; 

(ii) the domain in which the process is studied; 

(iii) the initial conditions ( if the process is transient), and  

(iv)  the conditions on the boundary of the domain. 

For example, the direct initial-boundary value problem for a one-dimensional heat conduction 

problem can be described as 
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                                      (2.6) 

with density  , heat capacity C  and thermal conductivity K , initial condition 0u  and 

Neumann boundary condition ( )q t . Like most direct problems of mathematical physics, the 

problem is well-posed, i.e., there exists a unique solution which depends continuously on the 

model data. 

The methods described in the following section refer to the direct problem given by Equation 

(2.6). 

 

2.1.3 Methods of solutions for direct problems 

Direct problems can be solved by using a variety of methods including analytical and 

numerical methods. Analytical methods include the classical methods of separation of 

variables and Laplace transforms. Numerical methods include the finite difference method, 

finite volume method, finite element method and boundary element method. 

(1) Separation of variables 

The method of separation of variables is a powerful approach designed to obtain solutions of 

initial and boundary value problems for some linear PDEs. Assuming it is possible to 
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separate the function of the independent variables into separate functions that each involves 

only one independent variable, the solution to 
2

2

u u

t x

 


 
 takes the form                                                                             

                                                            ( , ) ( ) ( )u x t X x T t ,                                                     (2.7)     

where T  depends only on t  and X  depends only on x . Substituting Equation (2.7) into the 

heat equation  Equation (2.6) leads to  

                                                             
2

2

dT d X
X T

dt dx
 ,                                                        (2.8) 

which can be rearranged to give the following 

                                                               
2

2

1 1dT d X

T dt X dx
 .                                                     (2.9) 

The left-hand side of Equation (2.9) is a function of t  only, and the right hand side of 

Equation (2.9) is a function of x  only. Since Equation (2.9) must be satisfied for all values of 

x  and t , each side of Equation (2.9) must be equal to the same constant value A 
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which leads to two separate ordinary differential equations (ODEs) given by 
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These ODEs are easy to solve with the given initial and boundary conditions. 

(2) Laplace transform  

In mathematics, the Laplace transform is a widely used integral transform. It is a linear 

operator of a function ( )f t  with a real argument t ( 0)t   that transforms it to a function 

( )F s  with a complex argument s  [142] 
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where   is a real number. 

Laplace transform is a powerful tool for transforming PDEs into ODEs and can be used to 

transform initial-value problems for ODE into algebraic equations. 

Consider the intial boundary-value problem in Equation (2.6), the transformations for partial 

derivatives are 
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where ( , ) { ( , )}U x s L u x t . Then Equation (2.6) becomes an ODE in x  as shown below 
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                                            (2.18) 

After the solution ( )U x  of Equation (2.18) is obtained, the solution ( , )u x t  of Equation (2.6) 

can be computed from the inverse Laplace transform Equation (2.14) as 

                                                         1( , ) { ( , )}u x t L U x s .                                                  (2.19) 

(3) Finite difference method 

The finite difference method [34] is one of the earliest numerical methods that may be used to 

determine temperature values at discrete spatial nodes and temporal points.  It is based on the 

approximation of the differential equations by finite difference equations. The resulting set of  

finite difference equations allows solutions to be calculated at the grid points such as those 

depicted in Figure 2.1.  



18 

 

x

t

,i j

, 1i j 

1,i j

, 1i j 

1,i j

i x

j t

x

t

 

Figure 2.1: Finite difference mesh for two independent variable x  and t . 

A finite difference solution procedure basically involves three steps: 

(i) Dividing the physical domain into grids of nodes. 

(ii) Approximating the given differential equation by a finite difference equivalence that 

relates the approximated solutions at the grid points. 

(iii) Solving the set of difference equations subject to the prescribed boundary conditions and 

initial conditions. 

Consider the function ( , )u x t in Equation (2.6), its first-order spatial derivative at the grid 

point ( , )ix t  can be approximated by the forward difference formula 

                                                 1( , ) ( , ) ( , )i i iu x t u x t u x t

x x
 


 

,                                              (2.20) 

backward difference formula 

                                                1( , ) ( , ) ( , )i i iu x t u x t u x t

x x
 


 

,                                               (2.21) 

or central difference formula  

                                                1 1( , ) ( , ) ( , )

2
i i iu x t u x t u x t

x x
  


 

.                                            (2.22) 
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The second derivative of ( , )iu x t  can be approximated by 

                                   
2

1 1
2 2

( , ) ( , ) 2 ( , ) ( , )

( )
i i i iu x t u x t u x t u x t

x x
   


 

.                                       (2.23) 

Using forward difference in temporal derivative and central difference in spatial derivative, a 

finite difference approximation of Equation (2.6) is 

                                        
1

1 1
2

2j j j j j
i i i i iu u u u u

C K
t x




   


 
 ,                                              (2.24) 

where ix i x  , 1,2,...,i n , jt j t  , 1,2,...j  , j
iu  is the discretised form of ( , )i ju x t . 

Letting 
2( )

K t
s

C x





, Equation (2.24) can be rewritten as 

                                               1
1 1(1 2 )j j j j

i i i iu su s u su
     .                                              (2.25) 

This is an explicit formula which can be used to compute ( , )u x t t  from ( , )u x t .The major 

advantage of an explicit finite difference scheme is that it is relatively simple and 

computationally fast. However, the main drawback is that stable solutions are obtained only 

with the condition 

                                                          0 0.5s  .                                                                 (2.26) 

If this condition is not satisfied, the solution becomes unstable and oscillating. 

Unlike the explicit scheme, an implicit finite difference scheme is unconditionally stable and 

the discretisation of Equation (2.6) becomes 

                                                  
1 1 1 1

1 1
2

2j j j j j
i i i i iu u u u u

C K
t x


   

   


 
.                                  (2.27) 

Rearrange the above equation so that unknown terms are kept on the left and known terms are 

kept on the right, one obtains  

                                                       1 1 1
1 1(1 2 )j j j j

i i i isu s u su u  
      .                                   (2.28) 

A linear system of equations needs to be solved. The main advantage [35] of an implicit finite 

difference scheme is that there are no restrictions on the time step. The implicit method is 

second order accurate in space but only first order accurate in time (i.e. 2( , )O t x  ). The 

Crank-Nicolson scheme, which is second-order accurate both in time and in space (i.e. 
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2 2( , )O t x  ), is unconditionally stable. In this scheme, the term 
2

2

u

x




 in Equation (2.6) is 

discretised by the average of the central difference formulae on the thj  and ( 1)thj   time 

steps, i.e.,  

                                 
1 1 1 1

1 1 1 1
2 2

2 2

2

j j j j j j j j
i i i i i i i iu u u u u u u uK

t x x

   
        

     
                          (2.29) 

which may be rewritten as 

                          1 1 1
1 1 1 12(1 ) 2(1 )j j j j j j

i i i i i isu s u su su s u su  
                                           (2.30) 

Note that finite difference methods are efficient and simple to use, especially for rectangular 

computational domains.  

(iv)  Boundary element methods 

The boundary element method (BEM) for the numerical solution of a linear PDE is based on 

an integral formulation. The two-dimensional Laplace equation 

                                                           
2 2

2 2
0

u u

x y

 
 

 
                                                            (2.31) 

is used to illustrate this technique. 



1

2 1

2

3

N
1N 

k
1k 

2k 

x

y

 

Figure 2.2: Boundary elements for a two dimensional domain 



21 

 

The boundary 1 2     in Figure 2.2 is divided into N  elements. A fundamental solution 

of Laplace’s equation in two dimensions is given by 

                                             *

2 2

1 1
ln

2 ( ) ( )
u

x y  

 
 
    

,                                         (2.32) 

which satisfies Laplace’s equation (Equation (2.31)) everywhere in the domain   except at 

the point ( , )   where it has a singularity. Applying Green’s second identity, the boundary 

integral equation can be derived as [40] 

                                              
*

*( , )
u u

u u u d
n n

  


  
     
                                            (2.33) 

 

where                        

0, if ( , )

1
, if ( , ) lies on a smooth part of 

2
1, if ( , )

 

  

 


 




                                    (2.34) 

If everything on the right-hand side is known, we can in principle find the values of ( , )u     

for all points ( , )   inside the domain  . Unfortunately, not all the information required is 

in hand and one has to find approximations to the unknowns on the boundary. If ( , )   lies 

on the  , an approximation to Equation (2.33) can be rewritten as 

                                        
1

1
( , ) ( , ) ( , )

2

N
k

k k k
k

u
u u G F

n
     



    
 ,                                 (2.35) 

 
where ku  is ( , )k ku x y , N  is the number of elements on the boundary,   

                                              *( , ) ( , )
k

k C
F u ds     ,                                                        (2.36) 

                                              
*( , )

( , )
k

k C

u
G ds

n

   


 .                                                    (2.37) 

Equation (2.35) can be written in matrix form as AX b , where column vector X  contains 

the values of unknown temperatures and heat fluxes at the boundary nodes. In other words, 

for each boundary element 1,2,...,m N , one needs to construct 
1 1

N N

mk k mk
k k

A X b
 

  , where 

mkA  and mkb  are defined respectively as   
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( , )       if  given over 

( , )         if  given over  and 

1
( , )    if  given over  and 

2

k m m k

mk k m m k

k m m k

F x y u C

A G x y q C k m

G x y q C k m





 

  


                                (2.38) 

                        

( , )               if  given over 

( , )             if  given over and  

1
( , )   if  given over and  

2

k k m m k

mk k k m m k

k k m m k

q F x y q C

b u G x y u C k m

u G x y u C k m



  
       

                       (2.39) 

where 
u

q
n





. When all the values on the boundary are known, Equation (2.36) can be used 

to obtain values at any interior point in the domain  .  

The advantages of the BEM consist of the fact that only the boundary of the domain 

requires to be discretised, while in finite difference method the whole domain requires 

discretisation. Thus the dimension of the problem using the BEM is reduced by one.One 

disadvantage of the BEM is that it requires large computational time to obtain the numerical 

solution, especially when the number of elements on the boundary is large, since A is a full 

matrix. Another disadvantage of BEM is that the fundamental solutions do not exist for all 

PDEs. 

 

2.2 Inverse and Ill-posed Problems 

In contrast to well-posed problems, an ill-posed problem is a problem that has no solution, 

many solutions, or unstable solutions (i.e. arbitrary small errors in the input data may lead to 

indefinitely large errors in the solutions).  

Inverse problems concern the determination of the model parameters from the 

knowledge of the measured data. Solving inverse problems can also be used to determine the 

location, shape, and structure of intrusions, defects, sources of heat, waves, potential 

difference, pollution, etc. As an example, inverse problems dealing with heat conduction may 

be associated with the estimation of an unknown boundary heat flux by using temperature 

measurements taken below the boundary surface. Therefore, while in the classical direct heat 

conduction problem, the cause (boundary heat flux) is given and the effect (temperature field) 
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is determined, the inverse problem involves the estimation of the cause by utilizing the 

knowledge of the effect. 

Inverse problems are mathematically classified as ill-posed [142]. The existence of a 

solution for an inverse problem may be assumed by physical reasoning. On the other hand, 

the uniqueness of the solution of inverse problems can be mathematically proved only for 

some special cases. Inverse problems are very sensitive to random errors in the measured 

input data. Special techniques are required in order for their solution to satisfy the stability 

condition. Successful solution of an inverse problem generally involves its reformulation as 

an approximate well-posed problem through the use of regularisation techniques, as 

introduced in section 2.3. 

As an example, the inverse problem of Equation (2.6) is to find the unknown 

quantities, including parameters (e.g. K ) and functions (e.g. ( )q t ) from some additional 

information usually obtained as measured data, such as  

                                                    ( , ) ( )mea
i iu x t Y t , 1,2,...,i N ,                                       (2.40)  

where N  is the number of sensors  involved in obtaining the measured data.  

Let v  represent all the unknowns to be determined in the inverse problem with which the 

computed data is equal to the measured data, i.e. 

                                                     ( ; , ) ( )i iu v x t Y t , 1,2,...,i N .                                       (2.41) 

A minimisation technique could be used to minimise the difference between measured 

and computed data, which is defined as the objective function by 

                                                  2

1 0

[ ] ( ; , ) ( , )
ftN

i i
i t

J v u v x t Y x t dt
 

   .                                  (2.42) 

Inverse problems involve either parameter estimation or function estimation. If 

information is available of the functional form of the unknown quantity, the inverse problem 

can be reduced to the estimation of a few unknown parameters. On the other hand, if no prior 

information is available on the functional form of the unknown, the inverse problems need to 

be treated as a function estimation approach in an infinite dimensional space of functions. 
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2.3 Tikhonov Regularisation Technique 

For the convenience of description, the nonlinear function 

                                                                ( )F v y                                                               (2.43) 

is used to represent Equation (2.41), where v X  is the unkown quantity, y Y  are the 

measured data, : ( )F D F X Y   is a nonlinear, weakly closed and continuous operator 

between Hilbert spaces X  and Y . As the notion of a solution of the equation (2.43), a *v -

minimum-norm-solution 0v  ( *v -M.N.S.) is chosen as the solution, i.e. 

                                                                   0( )F v y                                                           (2.44) 

and 

                                              * *
0 ( )

min : ( )
v D F

v v v v F v y


    .                                       (2.45) 

In the following, we always assume the existence of an *v -M.N.S. for exact data y . Note 

that due to the nonlinearity of F , this solution is not required to be unique. The element 

*v X  in Equation (2.45) plays the role of a selection criterion [7]. 

If Equation (2.43) is ill-posed in the sense of lack of continuity of its solution with 

respect to the data, regularisation techniques are required. Tikhonov regularisation has been 

investigated in [7]-[9] to solve nonlinear ill-posed problems in a stable manner. In Tikhonov 

regularisation, a solution of the problem in Equation (2.43) is approximated by a solution of 

the minimization problem 

                                            
 22 *

( )
min ( ) ( )

v D F
F v y L v v 


                                           (2.46) 

where 0   is known as the regularisation parameter, L  is a suitably chosen operator. The 

size of the regularized solution is measured by the norm *( )L v v , while the residual is 

measured by 
2

( )F v y . *v  is an a priori estimate of v  which is set to zero when no a 

priori information is available. y Y   is the available noisy data and there is additional 

information as 

                                                                  
y y                                                           (2.47) 

where   is the measurement error. 
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Convergence results for this method can be found in [7] and [8]. For analogous results 

in the case that is solvable only in the least-squares sense, see [10].  

The regularisation parameter is an important quantity that should be carefully chosen 

for a good regularized output. There is often a trade-off between the regularized output and 

the original sets of data. In order to obtain a balance or minimize the trade-off, the optimal 

selection of the regularisation parameter   becomes important. There are various methods in 

selecting regularisation parameters, e.g. Morozov’s discrepancy principle [36], Generalized 

Cross Validation [12], L-curve [37], [38]. The discrepancy principle requires to know  , 

while the other two do not depend on a prior knowledge of  . 

 

2.3.1 Morozov’s discrepancy principle 

To obtain convergence rates for Tikhonov regularisation, one has to assume a smoothness 

condition * *
0 ( )v v F v    with sufficiently small  . With an a priori parameter choice 

c  , 0c  , a convergence rate  

                                                          
* ( )v v k c

                                                        (2.48) 

can be obtained [7]. An examination of the convergence proof shows that ( )k c  is minimized 

by the optimal parameter choice optc  , 
1

optc   , and  

                                                  

1/2

*
1/2

2

(1 )
v v

L







 


                                                (2.49) 

( L  denotes the Lipschitz-constant for the Frechet derivative). In general, the value of   is 

not available, and so is optc . As a consequence, one can never obtain the optimal constant 

( )k c  for an a priori parameter choice. 

An alternative is a posterior parameter strategy. A well studied method is Morozov’s 

discrepancy principle, where the regularisation parameter   satisfies  

                                                        
( )F v y c

    ,                                                        (2.50)                     

where 1c  . An advantage of Morozov’s principle is that even without knowing  , one 

can always obtain the estimate 
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1/2
*

1/2

(2(1 ) )

(1 )

c
v v

L









 


 .                                           (2.51) 

For 1c  , the optimal error bound Equation (2.49) is obtained. For 1c  , this bound is 

multiplied by (1 ) / 2c . A drawback of the discrepancy principle is that a regularisation 

parameter satisfying Equation (2.50) might not exist for a general operator F . Moreover, 

even if such a parameter exists it requires an additional optimisation process to find it 

numerically. Another disadvantage with the discrepancy principle is that the measurement 

error usually cannot be predicted precisely. Hence the regularisation parameter   cannot be 

estimated accurately.  

 

2.3.2 Generalized cross validation 

Generalized cross validation (GCV) [12] is a popular method for practical problems with 

discrete data and stochastic noise. It originates from the ordinary cross-validation. The 

rationale is to consider all the ‘leave-one-out’ regularized solutions and choose the parameter 

that minimizes the average of the squared prediction errors in using each solution to predict 

the missing data value.  

The main idea of GCV is that a good model could be used to predict new data points. 

It is impractical to go to the field and measure a new data value each time we try a new 

regularisation parameter to verify our solution. Therefore, the experiment is simulated by 

eliminating one value from the data set. A good solution of the reduced data set, should 

predict this data fairly well, even if it was not used when calculating the model. This idea is 

repeated for each datum and therefore, the model obtained in this way is the model which can 

predict most of the data points even if these data points are not used. 

In mathematical language, this is done by introducing the following notation. Let 

( )v k
  minimize 

                                22 2

( )
min ( ) ( ( )) ( )

v D F
F v y F v k y k v

   


    ,                              (2.52) 

where ( )v k
  is the k th component of v  and ( )y k is the k th component of y . Notice that 

Equation (2.52) is the same as Equation (2.46), while with the k th data point missing. We 

want to know how well is the k th data predicted when it’s not used. This can be measured by 
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                                                           2
( ( )) ( )F v k y k

  .                                                  (2.53) 

The Cross Validation function is defined as the sum of the squares of these differences 

between a predicted data and the actual data, for all data points, namely 

                                            2

1

1
( ) ( ( )) ( )

N

k

OCV F v k y k
N


 



  .                                      (2.54) 

For a series of values of the regularisation parameter, ( )OCV   is calculated and the value of 

  that corresponds to the minimum of ( )OCV   is identified as the optimal regularisation 

parameter 

                                                         arg min OCV


 


 .                                                  (2.55) 

But the above definition is not very practical to compute because we need to solve a 

nonlinear system for each different regularisation parameter. A short cut was found in [12]. 

There exists an N N  influence matrix ( )A  , with the property 

                                                      

( (1))

( (2))
( )

( ( ))

F v

F v
A y

F v N














 
 
   
 
  

.                                                   (2.56) 

Therefore, OCV can be rewritten as 

                                        
2

1
2

1

( ( ) ( ))1
( )

(1 )

N
N

kii

k kk

a y i y k
OCV

N a
  







 ,                                   (2.57) 

where kia , , 1,2,...,k i N  is element ( , )k i  of ( )A  . 

In the definition of GCV, we let ( )A   be the influence matrix defined above, then the GCV 

function is defined as 

                                              

2

2

1
( )

( )
1

( ( ))

I A
NGCV

tr I A
N








  
 

.                                              (2.58) 

So the GCV estimate of the regularisation   is 

                                                         arg min GCV


 


 .                                                  (2.59) 
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 Equation (2.58) can be rewritten as 

                                       2

1

1
( ) ( ( )) ( ) ( )

N

k
k

GCV F v k y k w
N


  



  ,                                 (2.60) 

where ( )kw   is given by 

                                                    

2

1 ( )
( )

1
( ( ))

kk
k

a
w

tr I A
N




 
 

  
 
 

.                                             (2.61) 

 

2.3.3 L-curve method 

In recent years, L-curve has gained attention for computing the selection of regularisation 

parameters. It’s a log-log plot of the regularized solution against the squared norm of the 

regularized residual for a range of values of regularisation parameters. The numerica l 

computation and limitation of the L-curve are explained in [38] and [39].  

The L-curve method is a parametric plot of ( ( ), ( ))    , where ( )   and  ( )   

measure the size of regularized solution 
2*v v

   and the corresponding residual 

2
( )F v y

  . The L-curve has a distinct L-shaped corner located exactly where the solution 

x  changes in nature from being dominated by regularisation errors (i.e., by over-smoothing) 

to being dominated by the errors in the right-hand side. Hence the corner of the L-curve 

corresponds to a good balance between minimization of the sizes and the corresponding 

regularisation parameter   being a good one. The idea of using the corner of the L-curve as a 

means for computing a good regularisation parameter was originally proposed in [11], where 

it was also demonstrated that under certain assumptions this criterion is indeed similar to both 

GCV and the discrepancy principle. Experiments confirm that whenever CGV finds a good 

regularisation parameter, the corresponding solution is located at the corner of the L-curve. 

The L-curve method for choosing the regularisation parameter has advantages over GCV: 

computation of the corner is a well-defined numerical problem, and the method is rarely 

‘fooled’ by correlated errors. Even highly correlated errors will make the size of the solution 

grow once the regularisation parameter   becomes too small, thus producing a corner on the 

L-curve.  
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The L-curve for Tikhonov regularisation has two characteristic part [143], namely, a 

‘horizontal’ part where the regularisation parameter is too large and the regularized solution 

v  is dominated by the bias errors and an almost ‘vertical’ part where the regularisation 

parameter is too small and v  is dominated by the noisy errors.  

The idea of the L-curve criterion is to choose a point on this curve that is at the ‘corner’ 

of the vertical piece. The following are two ways of viewing the problem of corner location: 

(i) We could seek the point on the curve closest to the origin. The definition of ‘closest’ 

can vary from method to method. For example, Tikhonov regularisation measures 

distance as 2   . 

(ii) We could choose the point on the L-curve where the curvature is maximal [34]. The 

curvature is a purely geometrical quantity that is independent of transformations of 

the regularisation parameter. 

Here, a convenient expression for the curvature is given by letting * 0x   

                                           
2

( ) v   , 
2

( ) ( )F v y
     ,                                         (2.62)  

and  

                                                  ( ) log   , ( ) log   .                                               (2.63)  

Let   ,   ,    and  denote the first and second derivatives of   and   with respect to  . 

Then the curvature   of the L-curve, as a function of  , is given by 

                                                     3/22 2
2

   

 

  


             

.                                               (2.64) 

Figure 2.3 illustrates the L-curve criterion: (a) shows the L-curve where the corner is clearly 

visible and (b) shows the curvature   of the L-curve as a function of  . The sharp peak in 

the  -curve corresponds to the sharp corner on the L-curve. 
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Figure 2.3: A typical L-curve (a) and a plot (b) of the curvature   versus the regularisation 

parameter 

Experimental comparisons of the L-curve criterion with other methods for computing  , 

most notably the method of GCV developed in [12], [40], are presented in [37]. The 

conclusion from these experiments is that the L-curve criterion for Tikhonov regularisation 

gives a very robust estimation of the regularisation parameter, while the GCV method 
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occasionally fails to do so. On the other hand, when GCV works it usually gives a very good 

estimate of the optimal regularisation parameter, while the L-curve criterion tends to produce 

a regularisation parameter that is slightly over-smooth, i.e., it is slightly too large. 

Further experiments with correlated noise in [37] show that the L-curve criterion in 

this situation is superior to the GCV method which consistently produces severe under-

smoothing. 

 

2.4 Closure 

This chapter provides an overview of various analytical and numerical methods for direct 

problems and a brief introduction to inverse problems. A typical inverse problem example of 

heat conduction is used in the presentation. The solution of direct problems is of importance 

in the solution process of an inverse problem. The finite difference method, which is mostly 

used in the rest of the thesis, is briefly introduced. The nonlinear least-squares method is used 

to model the inverse problems. The concept of ill-posedness is also described. Tikhonov 

regularisation technique is introduced to handle the ill-posedness leading to a stable solution. 

Three regularisation parameter selection methods are described, only the L-curve method will 

be used in the thesis. 
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Chapter  3 DETERMINISTIC METHODS FOR 

INVERSE PROBLEMS 
 

This chapter gives a brief overview of two gradient-based deterministic methods, the namely 

steepest descent method (SDM) and conjugate gradient method (CGM), for the solutions of 

inverse problems. As the SDM is a special form of the CGM with the conjugate coefficient 

equal to zero, only the CGM is described in detail. Throughout this chapter, the heat 

conduction problem described in chapter 2 is used in the numerical illustration. 

 

3.1 Steepest Descent Method 

The SDM is the simplest of the gradient based method. It is basically an optimisation 

algorithm of finding the local minimum of a function. Consider Equation (2.42), in which 

( )J v  is assumed to be differentiable within a given region. The direction in which the 

function value decreases fastest would be the negative gradient of ( )J v . The SDM follows a 

zig-zag like path from an arbitrary starting point 0v  and gradually slides along the gradient, 

until it converges to the actual point of minimum (Figure 3.1).  
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Figure 3.1: Convergence path of the SDM starting with an arbitrary starting point 0v .  

Let kv  denote the kth iterative approximation of the minimisation problem, the iterative 

equation of the SDM can be written as 

                                                 1 ( )k k k kv v J v                                                                 (3.1) 

where 0,1,2,...k   is the iteration number, ( )kJ v  is the gradient at kv , k  is the step size. 

It is obvious that in order to find the point where ( )J v  is a minimum, the directional 

derivative at that point should be zero, i.e. 

                         1 1 1 1( ) ( ) ( ) ( ) 0k k T k k T k
k k

d d
J v J v v J v J v

d d 
        .                        (3.2) 

It is clear that k  should be chosen so that 1( )kJ v   and ( )kJ v  are orthogonal. The 

following iterative step is then taken in the direction of the negative gradient at this current 

position leading to a zig-zag pattern as illustrated in Figure 3.2. This iteration continues until 

the local minimum is determined within a chosen accuracy  .  

Procedure of the steepest descent method: 

Initialize: 0k  , 0 0( )g J v , 0 0d g  ; 

Do while ( kg  ) 

Determine the step size k : 
0

min ( )
k

k k kJ v d





 ; 

Calculate the new point: 1k k k kv v d   ; 

Calculate the gradient: 1 1( )k kg J v  ; 

Set direction of search: 1 1k kd g   ; 
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1k k  ; 

End do 

The method is easy to apply. Each iteration does not involve much computational 

work. It is also very stable and guarantes to locate the minimum point as long as it exists 

[141]. However, the method has significant drawbacks in that it generally has slow 

convergence when used on a badly scaled system, and is dependent on the choice of the 

starting point. 

 

Figure 3.2: SDM approaches the minimum in a zig- zag manner. 

It is suggested that [144] the method should be used when one has certain knowledge of 

where the minimum is. But it is generally considered to be a poor choice for any optimisation 

problem. It may be used in conjunction with other optimizing methods to achieve better 

convergence. 

 

3.2 Conjugate Gradient Method  

As seen in the previous subsection, the reason why the SDM converges slowly is that it has to 

take a right angle turn after each step, and consequently search in the same direction as earlier 

steps (Figure 3.2). The CGM attempts to remove this problem by ‘learning’ from experience 

by selecting the successive direction vectors as a conjugate of the successive gradients 

obtained as the iteration proceeds. Thus, the directions are not specified beforehand, but 

rather are determined sequentially at each step of the iteration. At step k  one evaluates the 
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current negative gradient vector and adds to it a linear combination of the previous direction 

vectors to obtain a new conjugate direction vector along which the approximation moves. 

The iterative equations of the CGM are as given as below 

                                                           1 1k k k kv v d   ,                                                       (3.3) 

                                                        1 ( )k k k kd J v d    ,                                                  (3.4) 

where k  is the conjugate coefficient, the step size k  is determined in the same way as that 

in the SDM. 

There are different versions of conjugate gradient and they are distinguished by the 

way in which the conjugate coefficient k  is determined [99]. For the Fletcher-Reeves 

formula, the constant k  is equal to the ratio of the squared norm of the current gradient to 

the squared norm of the previous gradient 

                                                            
1 1( )

( )

k T k
k

k T k

g g

g g


 

 .                                                       (3.5)                                                

For the Polak-Ribiere formula, the constant k is determined by taking the inner product of 

the previous change in the gradient with the current gradient divided by the squared norm of 

the previous gradient 

                                                     
1 1( ) ( )

( )

k T k k
k

k T k

g g g

g g


  
 .                                                   (3.6)                               

It is difficult to predict which version performs better on a given problem. The storage 

requirements for Polak-Ribiere (four vectors) are slightly larger than for that Fletcher-Reeves 

(three vectors). 

Procedure of the conjugate gradient method: 

 Initialize: 0k  , 0 0( )g J v , 0 0d g  ; 

Do while ( kg  ) 

Determine the step size k : 
0

min ( )
k

k k kf v d





 ; 

Calculate the new point: 1k k k kv v d   ; 

Calculate the gradient: 1 1( )k kg J v  ; 

Calculate the conjugate coefficient: k according to Equation (3.5) or Equation (3.6); 
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Determine the direction of search: 1 1k k k kd g d    ; 

1k k  ; 

End do 

There are three primary advantages of choosing such direction in this method: 

(1) Unless the solution is attained in less than n  steps, the gradient is always nonzero and 

linearly independent of all previous direction vectors.  

(2) The new direction vector may be computed by using a simple formula shown in 

Equation (3.4), which does not increase the computational complexity very much. 

(3) The gradual change of the direction during the iterative process ensures a uniform 

convergence towards the solution. 

 

3.3 Solving Inverse Problems by Conjugate Gradient Method 

The CGM is also known as an iterative regularisation method, which means the regularisation 

procedure is performed during the iterative processes and the regularisation parameter is the 

iteration number. The CGM derives from the perturbation principle which transforms an 

inverse problem to the solution of three problems, namely, the direct, sensitivity and the 

adjoint problem [42]. 

Consider the one-dimensional heat conduction problem (Equations (2.6)) of 

estimating the unknown heat flux ( )q t  by minimizing the objective funtion 

                                          

 

 

2

1 0

2

1 0

[ ( )] ( ; , ) ( , )

            = ( ; ) ( )

f

f

tN

i i
i t

tN

i i
i t

J q t u q x t Y x t dt

u q t Y t dt

 

 

 



 

 
                                       (3.7) 

where ( ; )iu q t  is the computed temperature at the measurement locations ix  at time t  which 

is determined from the solution of the direct problem with given ( )q t . 

 The CGM iterations involve  

                                                             
1k k k kq q d   ,                                                       (3.8) 

                                                      
1 1( )k k k kd J q d    ,                                                 (3.9) 
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where the step size k  , the conjugate coefficient k  and the gradient ( )kJ q  are required. 

These quantities may be determined by using the sensitivity problem and the adjoint problem 

as described below. 

 

3.3.1 Sensitivity problem and search step size 

The object function 1[ ]kJ q   for iteration 1k   is obtained by rewriting Equation (3.7) as 

                                    21

1 0

[ ] ( ; ) ( )
ftN

k k k k
i i

i t

J q u q d t Y t dt

 

    ,                                     (3.10) 

where 1kq   is replaced by the expression given by Equation (3.8). If temperature 

( ; )k k k
iu q d t  is linearized by a Taylor expansion, Equation (3.10) takes the form 

                             21

1 0

[ ] ( ; ) ( ; ) ( )
ftN

k k k k
i i i

i t

J q u q t u d t Y t dt

 

     .                                 (3.11) 

The search step size k  is determined by minimizing Equation (3.11) with respect to k  

                         
1

0
1

( )
2 ( ) ( ; ) ( ; ) ( ) 0

f
k Nt k k

i i i i i ik t
i

J q
u d u q t u d t Y t dt









     

  ,            (3.12) 

                                     10
2

10

[ ( ) ( )] ( ; )

[ ( ; )]

f

f

t N k
i i iik t

t N k
iit

u t Y t u d t dt

u d t dt
 



 







,                                          (3.13) 

where ( ; )k
iu q t  is the solution of the direct problem by using estimate kq  at ix  and time t . 

( ; )k
iu d t  is the sensitivity function, which is taken as the solution of the sensitivity problem. 

The sensitivity problem is obtained from the original direct problem defined by Equation (2.6) 

in the following way: It is assumed that when ( )q t  undergoes a variation ( )q t , u  is 

perturbed by u . By replacing q  by q q  and u  by u u  in the direct problem, then 

subtracting from Equation (2.6), neglecting the second order terms, the sensitivity equation 

can be obtained as below 
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                            (3.14) 

( ; )k
iu d t  can be obtained by letting kq d  . 

 

3.3.2 Adjoint problem and gradient equation 

Either in Equation (3.5) or Equation (3.6), the conjugate coefficient depends on the gradient 

value. To obtain the gradient value, the adjoint problem is constructed in the following way: 

Equation (3.14) is multiplied by the Lagrange multiplier (or adjoint function) ( , )x t  and the 

resulting expression is integrated over the corresponding space and time domain, and added 

to Equation (3.7) to yield the expression as below 

                               

1
2

0 0

1 2

2
0 0

[ ( )] ( ( ; ) ( )) ( )

            + ( , ) ( , )    

f

f

t

i

t x

t

t x

J q t u q t Y t x x dxdt

u u
K x t C x t dxdt

x t



 

 

 

  

  
   

 

 
 .                          (3.15) 

The variation J  is obtained by perturbing q  by q  and u  by u  in Equation (3.15), 

subtracting from the resulting expression the original Equation (3.15) and neglecting the 

second-order terms to find 

                                    

1

0 0

1 2

2
0 0

2( ) ( )

     + ( , ) ( , )

f

f

t

i

t x

t

t x

J u Y u x x dx

u u
K x t C x t

x t



 

 

 

    

   
   

 

 
   .                                 (3.16) 

In which, the second double integral term is reformulated based on the Green’s second 

identity. The boundary conditions of the sensitivity problem given in Equation (3.14) are 

utilized and then J  is allowed to be zero. The vanishing of the integrands containing u  

leads to the following adjoint problem for the determination of ( , )x t :  
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                   (3.17) 

The adjoint problem is different from the standard initial value problems as in the direct and 

sensitivity problems, in that the final time condition at time ft t  is specified instead of the 

customary initial condition at 0t  . However, this problem can be transformed to an initial 

value problem by the transformation of the time variables as ft t   .  

Finally, the following integral term is left as 

                                                 
0

( 0, ) ( )
ft

t

J x t q t dt


    .                                                 (3.18) 

From definition in [41], the functional increment can be presented as 

                                                  
0

[ ( )] ( )
ft

t

J J q t q t dt


    .                                                   (3.19) 

A comparison of Equation (3.18) and (3.19) leads to the following expression for the gradient 

[ ( )]J q t  of functional [ ( )]J q t  

                                                     [ ( )] ( 0, )J q t x t   .                                                     (3.20) 

 

3.3.3 Stopping criterion  

If the problem contains no measurement errors, the traditional check condition is specified as 

                                                               1[ ( )]kJ q t   ,                                                       (3.21) 

where   is a small specified number. However, the observed data may contain measurement 

errors. Therefore, Equation (3.7) is not expected to be equal to zero at the final iteration step. 

Following the experience in [42], the discrepancy principle is used as the stopping criterion: 

                                                             ( ) ( )i iu t Y t   ,                                                      (3.22) 
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where   is the standard deviation of the measurements, which is assumed to be a constant. 

Substituting Equation (3.22) into Equation (3.7), the following expression is obtained for 

stopping criterion   

                                                                 2
fN t  .                                                          (3.23) 

Then the stopping criterion is given by Equation (3.21) with   determined from Equation 

(3.23). 

 

3.3.4 Computational procedure 

The computational procedure for the solution of the inverse problem using CGM may be 

summarized as follows: 

Initialize: 0k  , 0q , 0 0  ; 

Solve the direct problem given by Equation (2.6) for ( , )u x t ; 

Do while (stopping criterion given by Equation (3.21) is not satisfied)  

 Solve the adjoint problem given by Equation (3.17) for ( , )x t ; 

 Compute the gradient J  from Equation (3.20); 

 Compute the conjugate coefficient k  from Equation (3.5) or (3.6); 

Compute the direction of descent kd  from Equation (3.9); 

Set kq d  , and solve the sensitivity problem given by Equation (3.14) for ( , )u x t ; 

Compute the search step size k  from Equation (3.13); 

Compute the new estimation for 1kq   from Equation (3.8); 

Solve the direct problem given by Equation (2.6) for ( , )u x t ; 

1k k  ; 

End do  
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3.3.5 Disadvantages of conjugate gradient method 

The CGM is called an iterative regularisation method because the regularisation procedure is 

performed during the iterative processes. Therefore, the choice of a suitable quadratic norm, 

determination of a proper regularisation order and the determination of an optimal 

regularisation coefficient in the conventional regularisation methods are not needed. 

CGM is computationally efficient with a carefully chosen initial value, otherwise, the 

convergence and the quality of the solution will be degraded. 

Furthermore, it can be noted in section 3.3 that the gradient J  at the final time 

ft t  is always equal to zero since ( , ) 0fx t t   . If the initial guess values 0q  cannot be 

predicted correctly before the inverse calculation, the estimated values of heat flux q  will 

deviate from exact values near the final time conditions. As in [42], we let 

                                              ( ) (0, ) (0, )f f fJ t t t t     ,                                            (3.24) 

where t  denotes the time increment. By replacing the artificial gradient Equation (3.24) to 

the gradient Equation (3.20), the singularity at the final time ft t  can be avoided. 

 

3.4 Closure 

This chapter provides an overview of the two deterministic methods, SDM and CGM. As the 

SDM is a special form of the CGM with conjugate coefficient equal to zero, only the details 

of using the CGM for inverse problems are given. Applications of the method for various 

inverse problems will be shown in chapter 5. The advantage of the gradient-based methods is 

fast convergence, while the inherent difficulties with the gradient-based methods are the 

dependence on the initial guess and the complicated gradient computation. These inherent 

difficulties are addressed in chapter 4. 
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Chapter  4 STOCHASTIC METHODS FOR 

INVERSE PROBLEMS 
 

This chapter gives the description of two classes of popular stochastic methods: the first one 

is based on natural evolution: survival of the fittest, e.g. genetic algorithm (GA); the second 

one is based on the collaboration between individuals in an ecosystem, e.g. particle swarm 

optimisation (PSO) and quantum-behaved particle swarm optimisation (QPSO). Several 

modifications to the QPSO are proposed, including Gaussian mutation, ring topology. Two 

models of parallel QPSO are also given in this chapter, i.e. master-slave parallelisation, static 

subpopulation parallelisation. Finally, the hybrid method combining QPSO and CGM is 

described. 

Usually a fitness function is used in these algorithms to evaluate the fitness of individuals. In 

this chapter the fitness function can be the least-squares function of an inverse problem such 

as the one in Equation (2.42). For simplicity and convenience, ( )f X  is used as the objective 

fitness function to represent ( )J v , which is a minimisation problem, defined in a feasible 

search domain  DX . 

 

4.1 Genetic Algorithms 

GA, originally proposed by Holland [29]-[30], is a search heuristic which mimics the process 

of natural evolution: survival of the fittest. Only a brief overview of the GA is presented here 

and in-depth details may be found in [31]. 

GA generates solutions to an optimisation problem using operations such as selection 

(reproduction), crossover (recombination) and mutation, with each individual or a candidate 
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solution in the population represented by a binary string of 0s and 1s or by other forms of 

encodings. The evolution (or the search process) starts from a population of chromosomes 

generated randomly in the search space and evolves according to rules every generation. In 

each generation, the fitness of every individual is evaluated, and multiple individuals are 

randomly selected from the current population based on their fitness and modified by 

recombination and mutation operation to form a new population, which is then used in the 

next generation of the evolution. Generally, the search process terminates when either a 

maximum number of generations has been produced or a satisfactory fitness level has been 

reached for the population.  

Consider a GA system with M  chromosomes,  1 2( ) ( ), ( ),..., ( )MX k X k X k X k , such that 

each chromosome ( )iX k is in the D -dimensional space ,1 ,2 ,( ) { ( ), ( ),..., ( )}i i i i DX k X k X k X k . 

For the convenience of description, ( )aX k  and ( )bX k are assumed to be two chromosomes in 

the k th generation. In GA, a maximisation problem is used to evaluate the fitness of the 

chromosomes, therefore ( )f X  is used as below 

                                                                max  
X

f X .                                                       (4.1) 

Encoding 

The most important issue in GA is the encoding of chromosomes, which depends on the 

problem itself. The canonical GA makes use of the binary format to represent the genotypes, 

in which a chromosome aX  is treated as a string of bits in 0 or 1, e.g. 

Chromosome aX  101100101100101011100101 

Figure 4.1: Binary encoding. 

In an improved version of GA [32], ordinary real-valued numbers are used to represent the 

population members in whch aX  is a string of real values, e.g. 

Chromosome aX  1.2324 5.3243 0.4556 2.3293 2.4545 

Figure 4.2: Real-valued encoding 
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Selection 

According to Darwin’s evolution theory, the best ones should survive and create new 

offspring. There are many methods to select the best chromosomes, for example, roulette 

wheel selection, Boltzman selection, tournament selection, rank selection, and steady state 

selection.  

The most common selection method is the roulette wheel selection. Here, parents are 

selected according to their fitness and the fittest chromosomes have a greater chance of 

survival than weaker ones. This could be imagined as similar to a roulette wheel in a casino. 

This can be simulated by the algorithm below 

(i) Calculate the sum of all chromosome fitness in the population: 
1

( )
M

i
i

S f X


 . 

(ii) Calculate the normalized fitness value of each chromosome: 
( )i

i

f X
p

S
 . 

(iii) The population is sorted in descending value of the normalized fitness. 

(iv)  Calculate the accumulated normalized fitness values. 

(v) Generate a random number r  from the interval (0,1). The selected chromosome is the 

first one with accumulated normalized fitness value greater than r . This step is 

repeated until there are enough selected chromosomes. 

Crossover 

There are two popular crossover operators which may be applied to the binary-coded 

representations, i.e. the one-point and two-point crossover operators. Two parents (e.g. 

( )aX k , ( )bX k ) are selected for recombination, and segments of their bit strings are 

exchanged between the two parents to form the two offsprings.  

The one-point crossover proceeds by picking a point randomly in the bit string and 

exchanging all the bits after that point. An example shown in Figure 4.3 exchanges all the bits 

in the third columes.  
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Chromosome ( )aX k  1011001011001 01011100101 

Chromosome ( )bX k  1111111000001 10000011111 

 

 

Chromosome ( 1)aX k   1011001011001 10000011111 

Chromosome ( 1)bX k   1111111000001 01011100101 

Figure 4.3: One-point crossover. 

Two-point crossover calls for two points to be selected on the parent strings (e.g. ( )aX k , 

( )bX k ), everything between the two points is swapped between the parent strings, rendering 

two child strings (Figure 4.4).   

Chromosome ( )aX k  101100 1011001 01011100101 

Chromosome ( )bX k  111111 1000001 10000011111 

 

 

Chromosome ( 1)aX k   101100 1000001 01011100101 

Chromosome ( 1)bX k   111111 1011001 10000011111 

Figure 4.4: Two-point crossover. 

All crossover operators from binary encoding can be used for real-valued encoding. Another 

popular crossover operator in real-valued GA is called the arithmetic crossover. The two 

offsprings can be obtained by using the two updates below 

                                              ( 1) ( ) (1 ) ( )a a bX k rX k r X k    ,                                        (4.2)   

                                             ( 1) ( ) (1 ) ( )b b aX k rX k r X k    ,                                         (4.3) 

where r  is a uniform random variable . 
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Mutation 

The aim of the mutation operator is to introduce some diversity into the population, thereby 

extending the effective area of the search space that the algorithm considers. A high mutation 

rate may destabilise the population by disrupting the existing good solutions. Since GAs 

usually rely on their recombination operators, the mutation rate is usually set quite low. For 

the binary encoding, the mutation operator is simply to change the value of each bit (from 

either 0 to 1 or 1 to 0) according to the mutation rate (Figure 4.5). 

Chromosome aX  101100101100101011100101 

 

 

Chromosome aX  101100001101101011000101 

Figure 4.5: Binary mutation. 

For the real-valued encoding, the mutation operator is to add a small number to the selected 

values 

                                                          ( 1) ( )a aX k X k r   .                                                 (4.4)   

The example shown in Figure 4.6 has the third gene of the chromosome being mutated by 
adding a value 0.11. 

Chromosome aX  1.2324 5.3243 0.4556 2.3293 2.4545 

 

 

Chromosome aX  1.2324 5.3243 0.5656 2.3293 2.4545 

Figure 4.6: Real-valued mutation. 
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The framework of GAs is described as below: 

Choose the initial population of individuals; 

Evaluate the fitness of each individual in the population; 

Do while (stopping criterion is not satisfied) 

Select the best-fit individuals for reproduction; 

Breed new individuals through crossover and mutation operations to give birth 

to offsprings; 

Evaluate the individual fitness of new individuals; 

Replace least-fit population with new individuals; 

End do 

 

4.2 Particle Swarm Optimisation 

4.2.1 The original particle swarm optimisation 

Particle swarm optimisation (PSO) is a population based stochastic optimisation technique 

developed by Eberhart and Kennedy in 1995 [13]. The concept of the method was inspired by 

social behaviour of bird flocking or fish schooling. The system maintains a population of 

particles, in which each particle represents a potential solution of an optimisation problem. 

The position of each particle is evaluated as according to an objective fitness function. The 

particles in a local neighbourhood share memories of their best previous positions (the 

position gives the best fitness value). These memories are used to adjust the particles’ own 

velocities and their subsequent positions.  

Consider a PSO system with M  particles  1 2, ,..., MX X X X , where each particle 

is treated as a volume-less body in the D -dimensional space  DX . Let the D-

dimensioanl position vector and velocity vector of particle i  at the time k be denoted as 

,1 ,2 ,( ) ( ( ), ( ), , ( ))i i i i DX k X k X k X k  and ,1 ,2 ,( ) ( ( ), ( ), , ( ))i i i i DV k V k V k V k , ( 1,2,...,i M ). 

Consider the minimization problems 

                                                                min  
X

f X .                                                            (4.5)   

The personal best position associated with particle i ,  1 2( ) ( ( ), ( ),..., ( ))i i i iDP k P k P k P k , is the 

best previous position, which yields the best objective function value. 
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1 2( ) ( ( ), ( ), , ( ))g g g gDP k P k P k P k  is the global best position of all the particles, 

{1,2,..., }g M . The personal best position of particle i , ( )iP k  may be determined as 

                                    

( )         if  ( ( )) ( ( 1))
( )

( 1)     if  ( ( )) ( ( 1))
i i i

i
i i i

X k f X k f P k
P k

P k f X k f P k

 
    

                                 (4.6)    

The global best position of the swarm can be found by solving 

                                                             
1

arg min( ( ( )))ii M
g f P k

 
 .                                             (4.7)     

 From the above definition, the velocity of a particle is updated according to the equation 

                               , , 1 1 , , 2 2 , ,( 1) ( ) ( ( ) ( )) ( ( ) ( ))i j i j i j i j g j i jV k V k c r P k X k c r P k X k      ,                     (4.8)   

where 1,2,...,i M , 1,2,...,j D . 1c  and 2c  are two constants known as acceleration 

coefficient. 1c  influences the maximum step size towards the personal best position, and 2c  

influences the maximum step size towards the global best position. 1r  and 2r  are random 

numbers distributed uniformly in (0,1). From the above equation, the velocity of a particle is 

determined by three factors: (1) the current velocity - a momentum term used to prevent 

excessive oscillations in the search direction; (2) the cognitive component - the distance from 

the current position to the personal best position representing the natural tendency of 

individuals to return to environments where they experienced their best performance; (3) the 

social component - the distance from the current position to the global best position 

representing the tendency of individuals to follow the success of other individuals.  

In general, the value of ,i jV  is restricted in the range [ ]max max-V ,V  in order to reduce 

the probability that the particle might leave the search space. If the search space is defined by 

the bounds [ ]max max-X ,X , then the value of maxV  is set as max maxV = aX , where 0.1 1.0a 

[14]. Then the position of each particle is updated using the new velocity 

                                                    , , ,( 1) ( ) ( 1)i j i j i jX k X k V k    .                                        (4.9)    

The initialisation process of the PSO algorithm is described by 

(1) Initialise each position component ,i jX  with a value drawn from the uniform random 

distribution on the interval max max[ ]-X ,X , for all 1,2,...,i M  and 1,2,...,j D . This 

distributes the initial positions of the particles throughout the search space. 
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(2) Initialize each velocity ,i jV  with a value drawn from the uniform random distribution 

on the interval max max[ ]-V ,V , for all 1,2,...,i M  and 1,2,...,j D .  

(3) Set i iP X , for all 1,2,...,i M . 

The procedure of the original PSO is described in the following pseudo code. 

Algorithm of the Original PSO 

Create and initialize the positions and velocities of the population according to the above 

initialization process. 

Do while ( maxk k ) 

   For each particle 1,2,...,i M : 

          Evaluate the fitness ( ( ))if X k ; 

          If ( ( )) ( ( ))i if X k f P k  then 

                ( ) ( )i iP k X k ; 

          If ( ( )) ( ( ))i gf P k f P k  then  

                ( ) ( )g iP k P k ; 

End for 

For each particle  1,2,...,i M : 

      Update the velocity ( 1)iV k   according to Equation (4.8); 

      Update the position ( 1)iX k   according to Equation (4.9); 

End for  

End do 

There are different versions of modification of the PSO algorithm proposed by various 

researchers to improve the performance of the algorithm. The most important improvements 

are the version with an inertia weight w [15] and the one with a constriction factor  [16]. 

 

4.2.2 Inertia weight particle swarm optimisation 

The inertia weight controls the momentum of the particle by the weighted contribution of the 

previous velocity. Essentially it controls the amount of memory of the previous flying 

direction that would influence the new velocity. The velocity is updated by           
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                 , , 1 1 , , 2 2 , ,( 1) ( ) ( ( ) ( )) ( ( ) ( ))i j i j i j i j g j i jV k wV k c r P k X k c r P k X k      ,                (4.10)    

where w  is extremely important to ensure convergent behaviour [17]-[19]. For 1w , 

velocities increase over time causing divergent behaviour. Particles fail to change direction in 

order to move back towards promising areas. For 0 1w  , particles decelerate until their 

velocities reach zero. Shi and Eberhart [19] investigated the effect of wvalues in the range 

[0,1.4], as well as varying w  over time. Their results indicate that choosing [0.8,1.2]w  

results in faster convergence. Further empirical experiments [20] were performed with an 

inertia weight set to decrease linearly from 0.9 to 0.4 during the course of simulation. This 

choice of the inertia weight allows the PSO to explore a large area at the start with a large 

inertia weight, and to refine the search later by using a smaller inertia weight 

                                                ( ) 0.9 (0.9 0.4)
max

k
w k

k
   ,                                                (4.11)    

where maxk  is the maximal iteration number.      

                               

4.2.3 Constriction particle swarm optimisation 

Clerc [16] indicated that a constriction factor may help ensure convergence. The constriction 

factor model describes a way of choosing the values of w , 1c  and 2c  so that convergence is 

ensured. The modified velocity update equation with constriction factor is given by 

             , , 1 2 , , 2 1 , ,( 1) [ ( ) ( ( ) ( )) ( ( ) ( ))]i j i j i j i j g j i jV k V k c r P k X k c r P k X k      ,                   (4.12) 

where 

                                   
2

2

2 4


  


  
, 1 2c c   , 4  .

                             

         (4.13) 

Let 1 2 2.05c c  . Substituting 1 2 4.1c c     into Equation (4.13) yields 0.7298  . 

Eberhart and Shi [17] compared the performance of a swarm using the inertia weight 

and that using the constriction factor. The results indicate that using the constriction factor 

usually gives a better rate of convergence. Note that the two versions are equivalent when 

1 2 1.4926c c   and 0.7298w  are used in PSO with inertia weight.    
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4.2.4 Standard particle swarm optimisation 

In 2007, Bratton and Kennedy [22] defined a standard for PSO algorithm (SPSO). It 

involves the local topology model (i.e. lbest swarm model) as shown in Figure 4.7a. While 

in the original PSO the global topology model (i.e. gbest swarm model) as shown in Figure 

4.7b is used. In the local ring topology swarm model, each particle only connects to two 

other particles in the swarm. This is in contrast to the gbest model where every particle is 

able to obtain information from the very best particle in the entire swarm population. 

Therefore, every particle has its own local best iLBEST  ( 1,...,i M ) to replace gP  in 

Equation (4.8). The advantage of the lbest model appears to lie in its slower convergence 

rate relative to the gbest model, especially for the complex multimodal problems. Despite 

that, the faster convergence rate of a global best topology would usually result to better 

performance on simple unimodal problems than that of local topology due to the lack of any 

danger of convergence to a local minimum. 

 

(a) ring topology- lbest 
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(b) global topology- gbest 

Figure 4.7: Particle swarm topologies. 

As in [17], a comparison study of the inertia weights and constriction factors in PSO 

demonstrated that the PSO algorithm with constriction is in fact a special case of the 

algorithm with inertia weight in which the values of the parameters may be determined 

analytically. When the constriction factor is used in the standard PSO algorithm the velocity 

update equation becomes 

         , , 1 2 , , 2 1 , ,( 1) [ ( ) ( ( ) ( )) ( ( ) ( ))]i j i j i j i j i j i jV k V k c r P k X k c r LBEST k X k      .              (4.14) 

When the global optimum of the problem being solved is located at or near the centre of the 

feasible region, the population may be initialized within a subspace of the entire feasible 

search space that does not contain the global optimum. This is referred to as region scaling or 

non-uniform swarm initialization. 

The definition of the standard PSO algorithm includes [22] 

(1) a local ring topology as shown in Figure 4.7a; 

(2) the constricted velocity update equation as in Equation (4.14); 

(3) 50 particles; 

(4) non-uniform swarm initialization in a quarter of the feasible search space; 

(5) and boundary conditions wherein a particle is not evaluated when it exits the feasible 

search space. 
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4.3 Quantum-Behaved Particle Swarm Optimisation 

In classical mechanics, the state of a particle is defined by the position vector and velocity 

vector which determine the trajectory of the particle according to Newtonian law of motion. 

The particle moves along a determined trajectory in the case of Newtonian mechanics.  It is 

not the same case in quantum mechanics in which the term ‘trajectory’ is meaningless. This is 

because the position and velocity of a particle cannot be determined simultaneously 

according to the uncertainty principle. Therefore, if particles in a PSO system behave in 

quantum form, the PSO algorithm is bound to work in a different way.  

Trajectory analysis in [26] demonstrates the fact that the convergence of the PSO 

algorithm may be achieved if each particle converges to its local attractor, 

1 2( , , )i i i iDp p p p  with its components defined by  

                                                          1 , 2 ,
,

1 2

( ) ( )
( ) i j g j

i j

P k P k
p k

 
 





,                                   (4.15) 

where iP  is personal best position of particle i , gP  is the global best position of all particles, 

1 1 1c r  , 2 2 2c r  . Equation (4.8) can be simplified as 

                                              , , , ,( 1) ( ) ( ( ) ( ))i j i j i j i jV k V k p k X k    ,                               (4.16) 

where 1 2    . The effect of   on the system is very important since the particle’s 

trajectory is dependent on the value of the control parameter. 

It can be seen that ip  is a stochastic attractor of particle i  that lies in a hyper-

rectangle with iP  and gP  being two ends of its diagonal and moves by following iP  and gP . 

In fact, when the particles are converging to their own local attractors, their personal best 

positions iP , local attractors ip  and the global best positions gP  will all converge to one 

point, leading the PSO algorithm to converge.  

In quantum mechanics, the governing equation is the general time-dependent 

Schrodinger equation 

                                                                   i H
t
 



,                                                   (4.17) 
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where ( , )y t  is the wave function, which is used to describe the state of a particle instead of 

position X  and velocity V  in classical mechanics. 
2

( , )y t
 
measures the chance of finding 

the particle at a certain time and position, which satisfies 

                                                           
2

( , ) 1y t dy



 ,                                                    (4.18) 

H  is a time-independent Hamiltonian operator given by 

                                                       
2

2 ( )
2

H V y
m

                                                         (4.19) 

and  is Planck’s constant, m  is the mass of the particle, and ( )V y  is the potential energy 

distribution.  

The particle moves around and careers toward point ip  with its kinetic energy 

(velocity) declining to zero, like a returning satellite orbiting the earth. From the point view 

of dynamics, to avoid explosion and to guarantee convergence, the particle must be in a 

bound state, moving in an attraction potential field with centre in point ip . In classical 

dynamics, the particle in the original PSO system flies in an attraction potential field 

(gravitational potential) which can be determined using Newton’s law of universal gravitation. 

On the other hand, particles in PSO with quantum behaviour have to move in an attractive 

potential field that can ensure a bound state. In QPSO, the simplest potential well, delta-well, 

is employed to bind the particle 

                                                                   ( ) ( )V y y                                                    (4.20) 

where , ,i j i jy X p  , p  is the attractor,   is a positive number proportional to the depth of 

the potential well, the depth is infinite at the origin and zero elsewhere. Thus, the delta 

potential well is an idealized realization of an infinitely strong attractive potential field that 

works at a single location. 

Assuming the principle of separation of variables, the time-dependent wave-function 

is separated from the spatial dependence [142].  Then ( )y  can be found by solving the 

following time-independent Schrodinger equation 

                                                     
2

2[ ( )]
2

E V y
m

                                                     (4.21) 



55 

 

Such solutions are called stationary states. Sun et al. [23] give the details of solving Equation 

(4.21). The wave-function at iteration 1k   is obtained as 

                                
, ,

,
,,

( 1) ( )1
( ( 1)) exp

( )( )

i j i j

i j
i ji j

X k p k
y k

L kL k


  
   
 
 

.                        (4.22)  

Hence, the probability density function Q is a double exponential distribution as shown below 

                                 

2 , ,

, ,
, ,

( 1) ( )1
( ) ( ) exp 2

( ) ( )
i j i j

i j i j
i j i j

X k p k
Q y y

L k L k


  
   
 
 

,               (4.23)   

where , ( )i jL k  is the characteristic length of the potential well. 

To ‘measure’ the location of the particle, one needs to collapse the wave function of a 

moving particle into the localized space of the measurement. The localization process can be 

easily accomplished through the Monte Carlo procedure as: (1) generate a random variable 

uniformly distributed in the local space 
1

s u
L

 , u  is a random number uniformly distributed 

in (0,1) ; (2) equate the uniform distribution to the true probability distribution (Equation 

(4.23)) to obtain 

                                           
, ,

,

( 1) ( )
exp 2

( )
i j i j

i j

X k p k
u

L k

  
  
 
 

;                                           (4.24)   

(3) solve for the position ,i jX  in terms of the random variable as 

                                                  

,
, ,

( ) 1
( 1) ( ) ln

2
i j

i j i j

L k
X k p k

u
     
 

.                                  (4.25)   

where , ( )i jL k  is evaluated in [23] as 

                                                    , , ,( ) 2 ( ) ( )i j i j i jL k p k X k                                             (4.26)   

with which, the update equation for the position of particles becomes 

                                 
, , , ,

1
( 1) ( ) ( ) ( ) lni j i j i j i jX k p k p k X k

u
       

 
.                                (4.27)   
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Here  , named as the contraction-expansion coefficient, is the only parameter in QPSO to 

control the rate of convergence. The most commonly used control strategy of   is decreasing 

linearly from 1.0 to 0.5. That is 

                                                         ( ) 1.0 0.5
max

k
k

k
   .                                                   (4.28)   

, ( )i jL k  can be also determined from [24] as 

                                                 , ,( ) 2 ( ) ( )i j j i jL k C k X k  ,                                             (4.29)  

where C  is  the mean best position which is defined as the mean value of the personal best 

positions of all particles 

                    1 2
1 1 1

1 1 1
( ) ( ), ( ), ... , ( )

M M M

i i iD
i i i

C k P k P k P k
M M M  

   
 

                             (4.30)  

 Hence, the position of the particle updates according to the equation 

                                  
, , , ,

1
( 1) ( ) ( ) ( ) lni j i j i j i jX k p k C k X k

u
       

 
.                               (4.31)   

Equation (4.31) is known as the quantum-behaved particle swarm optimization (QPSO). 

Some benchmark function tests shown in [24] demonstrated the superiority of Equation (4.31) 

over Equation (4.27). The QPSO procedure can be described in the following pseudo code. 

Algorithm of QPSO 

Initialize the positions of the population (0)X , personal best positions (0)P , 1.0  ; 

Do while ( maxk k ) 

   For each particle 1,2,...,i M  

          Evaluate the fitness ( ( ))if X k ; 

          If ( ( )) ( ( ))i if X k f P k  then  

               ( ) ( )i iP k X k ; 

         If ( ( )) ( ( ))i gf P k f P k  then  

               ( ) ( )g iP k P k ; 
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End for 

Compute the mean best position ( )C k  according to Equation (4.30); 

For each particle  1,2,...,i M  

Compute ( )ip k  according to Equation (4.15);       

Update the position ( 1)iX k   according to Equation (4.31); 

End for  

Update   according to Equation (4.28); 

End do 

The QPSO algorithm is different from the original PSO algorithm. The update equation of 

the former method given by Equation (4.31) ensures particles appear in the entire D -

dimensional search space during each of the iteration. The particles in the latter method can 

only move in a bounded space. Using the global convergence criterion in [14], one can 

conclude that the QPSO is a global convergent algorithm whereas the original PSO is not. 

Moreover, unlike the original PSO method, the QPSO method does not require velocity 

vectors for the particles at all and has fewer parameters to control, making the method easier 

to implement. Experimental results performed on some well-known benchmark functions 

show that the QPSO method has better performance than the original PSO method [23]-[25]. 

 

4.4 Modified Quantum-Behaved Particle Swarm Optimisation 

The performance of an evolutionary algorithm depends on the global search ability, 

convergence rate, solution precision, robustness, etc. In QPSO algorithm, the loss of diversity 

and prematurity is inevitable, as other population-based evolutionary algorithms. The 

particles cluster together gradually in the latter search period. As a result the swarm is likely 

to be trapped into local optima. In order to improve the performance for the complex multi-

modal problems and to avoid the premature convergence problem of QPSO, various 

strategies have been proposed from different aspects. 

 Experiments were performed on a set of benchmark functions to demonstrate the 

efficiency of the modifications before being applied to real applications. Four benchmark 

functions are used to evaluate the performance of the modified methods, both in terms of the 
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optimum solution and the rate of convergence to the optimum solution. These benchmark 

functions were widely used in evaluating performance of evolutionary methods [13]-[28]. All 

the functions are all minimization problems and have the global minimum at the origin or 

very close to the origin, which are given in Table 4.1. Functions 1f  and 2f  are simple 

unimodal problems, 3f  and 4f  are highly complex multimodal problems with several local 

minima. All the particles are randomly initialized in an area equal to one quarter of the 

feasible search domain that is guaranteed not to contain in the optimal solution. 

Table 4.1: Benchmark functions and parameter settings. 

Functions Mathematical Expression Range Initialization 

Sphere 2
1

1

( )
D

i
i

f x x


  ( 100, 100)D  (50, 100)D  

Rosenbrock  2 2 2
2 1

1

( ) 100( ) ( 1)
D

i i i
i

f x x x x


     ( 30, 30)D  (15, 30)D  

Rastrigrin  2
3

1

( ) 10cos(2 ) 10
D

i i
i

f x x x


    ( 5.12,5.12)D  (2.56, 5.12)D  

Griewank 2
4

1 1

1
( ) cos 1

4000

DD
i

i
i i

x
f x x

i 

    
 

   ( 600, 600)D  (300, 600)D  

 

4.4.1 Quantum-behaved particle swarm optimisation with perturbation operator 

The global convergence of QPSO or other random search algorithm means that the algorithm 

will only hit the global optimal solution in an infinite number of iterations. However, when 

the algorithm is applied to real world problems, only a finite number of iterations is allowed 

so that premature convergence is inevitable. There is much room for improvement in QPSO, 

particularly when the algorithm is used to solve the present complex ill-posed problem. So far 

many improved strategies have been proposed to enhance the search ability of the algorithm 

[43]-[45]. In this work, a novel perturbation operation [145] is incorporated into the 

algorithm to enhance the efficiency of QPSO in finding the global optimal solutions on 

complex functional terrains [46]. In this modified version of QPSO, the diversity of the 

swarm can be enhanced by exerting the random perturbation on each particle as  

                                                 1 2( ) ( ) ( )( )per
i i coff iX k X k pert X k r r   ,                             (4.32)   
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where max

max

( )
exp 2.3025851

( 1)coff

k k
pert a

k

 
   

 is a nonlinear perturbation coefficient varying 

from 10a  to a  ( a is a scale parameter which can be adjusted according to the specific 

problems) depicted in Figure 4.8. Here 1r , 2r are uniformly distributed random numbers in 

(0,1) . This diversification strategy indeed can improve the global search ability of the swarm, 

particularly at the later stage of the search process when the diversity is at such a low level 

that further global search may be impossible for the particles leading to premature 

convergence. The procedure of the perturbed QPSO is given in the following pseudo code. 

Algorithm of  QPSO-PER 

Initialize the positions of the population (0)X , personal best positions (0)P , 1.0  ; 

Do while ( maxk k ) 

   For each particle 1,2,...,i M  

            Evaluate the fitness ( ( ))if X k ; 

            If ( ( )) ( ( ))i if X k f P k  then  

                  ( ) ( )i iP k X k ; 

           If ( ( )) ( ( ))i gf P k f P k  then  

                 ( ) ( )g iP k P k ; 

End for 

Compute the mean best position ( )C k  according to Equation (4.30); 

For each particle  1,2,...,i M  

      Compute ( )ip k  according to Equation (4.15); 

      Update the position ( 1)iX k   according to Equation (4.31); 

    Do perturbations to position ( 1)iX k   according to Equation (4.32); 

End for  

Update   according to Equation (4.28); 

End do 
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Figure 4.8: Perturbation coefficient decreasing with generation. 

Simulations were carried out to observe the rate of convergence and the quality of the 

optimum solution of the proposed method introduced in this investigation in comparison with 

the original PSO and QPSO. The neighbourhood of a particle is all the population, which is 

named as global best model. All benchmark functions in Table 4.1 were tested with 

dimensions 10, 20 and 30. For each function, 50 trials were carried out and the average 

optimal value and the standard deviation are presented. Different numbers of maximal 

generations ( maxk ) are used according to the dimensionality of the problem under 

consideration. In this section, all empirical experiments were carried out with a population 

size of 30. 

The mean best values and standard deviation for 50 trials of each algorithm on each of 

the nine benchmark functions are listed in Table 4.2. The numerical results show that the 

modified QPSO with a perturbation operator (QPSO-PER) performed better on all the tested 

functions than the original PSO and QPSO. 
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Table 4.2: Results of the benchmark functions. 

Function Dimension maxk  

Mean Best Value 

(Standard Deviation) 

PSO QPSO QPSO-PER 

1f  

10 1000 
5.42E-23 

(1.99E-22) 

0.00 

(0.00) 

0.00 

(0.00) 

20 2000 
3.90E-19 

(1.30E-18) 

2.49E-42 

(0.00) 

1.40E-45 

(0.00) 

30 3000 
3.43E-15 

(8.94E-15) 

1.67E-34 

(0.00) 

8.41E-45 

(0.00) 

2f  

10 1000 
56.80  

(85.75 ) 

30.55 

(60.17) 

21.86 

(28.02) 

20 2000 
113.03 

(204.15) 

55.41 

(58.03) 

42.10 

(34.63) 

30 3000 
152.36 

(228.74) 

65.93 

(64.45) 

41.75 

(31.07) 

3f  

10 1000 
4.23 

(2.11) 

4.67 

(2.59) 

3.78 

(1.97) 

20 2000 
17.73 

(4.34) 

14.35 

(4.23) 

10.89 

(3.43) 

30 3000 
37.67 

(9.73) 

24.83 

(6.74) 

19.99 

(5.62) 

4f  

10 1000 
9.12E-02 

(3.79E-02) 

4.96E-02 

(4.09E-02) 

3.36E-02 

(3.28E-02) 

20 2000 
2.40E-02 

(1.62E-02) 

1.76E-02 

(1.61E-02) 

1.53E-02 

(2.45E-02) 

30 3000 
1.80E-02 

(1.95E-02) 

9.68E-03 

(1.29E-02) 

4.93E-03 

(8.53E-03) 

 

The convergence history of the original PSO, QPSO and the perturbed QPSO are 

shown in Figure 4.9. All the benchmark functions are considered in 30 dimensions. In Figure 

4.9a-Figure 4.9d, QPSO-PER performs almost the same as or even worse than QPSO in the 
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early stages of the computation. Due to the perturbation applied to the particles, the diversity 

of the population increases, prematurity of the particles can be avoided.  
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(c) 

 

(d) 

Figure 4.9: Convergence history of the original PSO, QPSO and QPSO-PER on benchmark 

functions. 
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4.4.2 Quantum-behaved particle swarm optimisation with ring topology model 

In the original QPSO, the global topology (gbest) model (Figure 4.7a) was used, in which, the 

neighbour of each particle is the entire swarm. Each particle is connected to and able to 

obtain information from every other particle in the swarm. The advantage of the gbest model 

is its fast convergence and it will always result to better performance on simple unimodal 

problems. For more complex multimodal problems, the fast convergence of the gbest model 

leads to prematurity and prevents the particles escaping from local optima.  

In contrast, the local topology model (lbest) (e.g. Figure 4.7b) connects each particle to a 

limited number of particles in its neighbourhood instead of all the particles. The advantage of 

the lbest model is its slower convergence rate relative to the gbest model so that the particle 

would have enough time to search a wide area instead of stopping with a premature 

convergence. A number of different limited communication topologies have been tested. The 

lbest model (ring topology) used here is perhaps the simplest form of the local topology, 

which was also adopted in the standard PSO (SPSO) [22]. In QPSO with lbest model 

(SQPSO for short), every particle i  has its own lbest iLBEST . Hence Equation (4.15) is 

modified as below 

                                               ( ) ( ) (1 ) ( )i i ip k P k LBEST k    .                                       (4.33) 

Simulations were carried out to observe the rate of convergence and the quality of the 

optimal solution of the SQPSO in comparison with the SPSO and the original QPSO. All 

benchmark functions in Table 4.1 were tested with dimension 30D  . For each function, 50 

trials were carried out and the average optimal value and the standard deviation are presented. 

In this paper, all empirical experiments were carried out with a population size of 50, which 

is the same value as that in SPSO. 

For QPSO and SQPSO, two kinds of contraction-expansion coefficient   are adopted. 

QPSO with linearly decreasing  is named as QPSO1 and QPSO with constant 0.75   is 

named as QPSO2. SQPSO with linearly decreasing  is named as SQPSO1 and SQPSO with 

constant 0.75   is named as SQPSO2.  

The mean best values and standard deviation for 50 trials on the four benchmark 

functions are listed in Table 4.3. For the unimodal problem 1f  , QPSO2 performed better than 

others. With finite number of generations, e.g. 3000, QPSO2 was able to converge quickly to 
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the unique minimum at origin. Optimisation of 2f  is a hard task although the function is 

unimodal. It is shown that SQPSO1 beat its competitors in performing this task. For the 

multimodal function 3f , QPSO1 yielded the best results. The difference between the 

performance of the algorithms on these two functions shows to be more significant than that 

on the other functions. 4f  is a multimodal function which is not so difficult to be optimised 

as 3f . The result obtained by SQPSO1 appears to be closer to the optimum, showing that 

SQPSO may be also an efficient tool for optimizing multimodal functions. It could be due to 

the slow convergence speed of SQPSO1 that the particles are able to search widely for the 

whole domain and can efficiently avoid trapping into the local optimum. Comparison of the 

convergences between all the algorithms over the eight benchmark functions is shown in 

Figure 4.10. 

Table 4.3: Results of the benchmark functions using SPSO, QPSO and SQPSO. 

Function 

Mean Best Value 

(Standard Deviation) 

SPSO 
QPSO SQPSO 

~ (1.0 0.5)   0.75   ~ (1.0 0.5)   0.75   

1f  
1.50E-26 

(2.31E-26) 

1.22E-54 

(5.06E-54) 

1.68E-96 

(9.43E-96) 

4.91E-39 

(8.37E-39) 

5.20E-15 

(7.99E-15) 

2f  
65.07 

(42.02) 

41.94 

(28.56) 

30.01 

(33.63) 

27.91 

(13.38) 

37.71 

(24.24) 

3f  
127.70 

(31.54) 

24.59 

(11.63) 

51.89 

(24.60) 

52.36 

(23.78) 

155.05 

(13.45) 

4f  
9.37E-04 

(2.56E-03) 

5.81E-03 

(9.41E-03) 

1.03E-02 

(1.08E-02) 

2.30E-04 

(1.61E-03) 

1.03E-02 

(3.11E-02) 
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(c) 

 

(d) 

Figure 4.10: Convergence history of SPSO, QPSO and SQPSO on benchmark functions. 
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4.4.3 Quantum-behaved particle swarm optimisation with Gaussian mutation 

PSO, QPSO and other population based evolutionary algorithms suffer from a loss of 

diversity in the population during the later stage of the search period. As a result, particles are 

clustered together gradually and the swarm is likely to be trapped into a local optimum. As in 

evolutionary programming, mutation operators may be used to prevent loss of diversity in the 

population and allow a greater region of the search space to be covered. Mutation operators 

introduce new individuals into a population by creating a variation of the current individual. 

The addition of variability into the population prevents stagnation of the search in local 

optima [47]. Works has been done in the investigation of PSO with mutation operators [48]-

[50]. Andrews [51] gave an investigation and full comparison of the different mutation 

operators. Few literatures focused on QPSO with mutation operators.  

Liu [52] used a Cauchy mutation operator to change the value of the mean best position 

or the global best position as  

                                                             mutate( )d dmbest mbest   ,                              (4.34) 

                                                                  , ,mutate( )g d g dP P   ,                                    (4.35) 

where   is the mutation size,   is a random variable of Cauchy distribution, the probability 

density function is   

                                                            
2 2

( )
( )

a
g x

x a



,                                                   (4.36) 

a  is a scale parameter that determines the shape of the distribution, which is controlled by the 

annealing function 

                                                                     0( )ka a CR ,                                                   (4.37) 

where 0 2a  , cooling rate 0.99CR , and k  is the current iteration. From numerical analysis 

and experience,   and 0a  are problem dependent and require careful selection. 

In this modification, the Gaussian distribution as depicted in Figure 4.11 instead of 

Cauchy distribution mutation operator is applied to QPSO. The Gaussian distribution has the 

advantage of having large probability to generate small perturbations to the position, the 

probability density function is 
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2

22

1 ( )
( ) exp

22

x
g x




 
  

 
,                                 (4.38) 

where the variance 2  controls the width of the distribution. Larger 2  has higher 

probability to make large perturbation, and smaller 2  gives higher probability to make 

smaller perturbation. Since the search domain is problem dependent, 2  can be set to relate 

to the dynamic range of the searching domain.  

From Equation (4.31), the position of a particle for the next generation is decided by the 

current position ( )iX k , personal best position iP , global best position gP  and the mean best 

position ( )mbest k . If there is a premature convergence problem, the global best position gP  

is the local optimum. If gP  was changed by mutation operation, the search direction of the 

particles would change. Hence new regions are likely to be searched and a new gP  may be 

found. Applying the mutation operation to the mean best position ( )mbest k  will generate the 

same effect.  

In the following benchmark function tests, each component of the mean best position or 

global best position is mutated according to the mutation probability 1/ D , and   is set to be 

0.1 times the length of the dynamic range of the particle dimension being mutated.  

 

Figure 4.11: Standard distribution shape of Gaussian and Cauchy. 
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As in [51], for each function, the dimension size is set as 20 and the number of particles is 30. 

The maximum number of generations is set as 2000. A total of 50 runs were carried out and 

the mean best values of the optima are presented in Table 4.6, in which, the abbreviations 

GQPSO and CQPSO stand for QPSO with Gaussian Mutation and QPSO with Cauchy 

Mutation respectively. For the convenience of comparison, the scale parameter a  is set to 0.1 

times the range of the particle dimension. 

Table 4.4: Results of the benchmark functions test 

functions 

Mean best value 

QPSO 
GQPSO CQPSO 

mbest gbest mbest gbest 

1f  1.34E-15 6.33E-16 6.49E-16 1.03E-15 1.36E-15 

2f  86.46 64.74 75.06 73.17 78.59 

3f  40.27 34.52 39.54 36.76 36.52 

4f  1.37E-02 7.58E-03 9.74E-03 9.95E-03 9.82E-03 

 

The convergence history of QPSO with different parameter selection methods is 

presented in Figure 4.12, in which, the abbreviations MGQPSO, GGQPSO, MCQPSO and 

GCQPSO stand for QPSO with Gaussian mutation in mbest, QPSO with Gaussian mutation 

in gbest, QPSO with Cauchy mutation in mbest and QPSO with Cauchy mutation in gbest 

respectively. Note that MGQPSO outperforms others in all the benchmark functions. 
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(c)  

 

(d)  

Figure 4.12: Convergence history of QPSO, MGQPSO, GGQPSO, MCQPSO and GCQPSO 

on benchmark functions. 
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4.4.4 Parameter control in quantum-behaved particle swarm optimisation 

The contraction-expansion coefficient  , the only parameter in QPSO, influences the trade-

off between global and local exploration ability of the particles. A larger   facilitates global 

exploration (searching new areas) while a smaller   tends to facilitate local exploitation to 

fine-tune the current search area. Suitable selection of   can provide a balance between 

global and local exploration ability and thus save searching time to find the optimum. 1.7   

must be satisfied to guarantee the convergence [25]. The linearly decreasing expansion-

constriction from 1.0 to 0.5 is commonly used as Equation (4.28), this is because the larger   

at the beginning helps to find good seeds and the later smaller   facilitates fine-tune search. 

A constant value 0.75   is analyzed by Sun in [27] that it has better performance in simple 

unimodal problems. Many adaptive selection methods were proposed in order to enhance the 

performance of QPSO. In [25], an adaptive method on individual level is proposed as 

Equation (4.40), and proved to outperform the linearly decreasing method. 

                                   

0.6,                            0

0.7,                           2 0

( ) 0.6 0.1 ,              1

1.0 0.2 ( 4),     1

1.8,                            8

z

z

z k k z k

k k z k

z




          
       

 

                                  (4.39) 

where ln( )z F  , F  is defined as below 

                                        

( )

( ( ), ( ))
i gbest

i gbest

F F
F

MIN ABS F ABS F


                                                 (4.40) 

where iF  is the fitness of the i th particle, gbestF  is the global best fitness of the swarm. 

However, z  has to be computed according to Equation (4.41) before the value of  is 

obtained, which is time consuming and not easy to use. 

In [28], Dong defined a self-adaptive Inertia weight function for a particle in terms of its 

fitness value, the swarm size and the dimension size as 

                                             

2

1

3 exp
200 8
M R

D

 
        
   

                                                 (4.41) 
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where M  is the swarm size, D  is the dimension size of the solution space and R  denotes the 

fitness rank of the given particle. But the value of   is always smaller than 0.5, which is not 

suitable for QPSO. 

Inspired by Simulated Annealing, the contraction-expansion coefficient   may be 

adjusted according to the annealing function 

                                                              0 *( )kCR  ,                                                       (4.42) 

where CR  is chosen as according to the maximum iteration. 

For the multimodal problems, it’s easy to get trapped into a local optimum because of the 

particles’ premature convergence. So here, a new parameter control method is proposed in 

which   adjusts according to the cosine function as 

                                                         max

0.5cos 0.5
2

k

k


 

  
          

                                    (4.43) 

where k  is the current generation, maxk is the maximum generation. In Figure 4.13, one can 

note that the cosine function decreases slower than the linearly decreasing function and 

annealing function. For the complex multimodal, QPSO with cosine decreasing   may 

perform better in the global exploration. 

 

Figure 4.13: Contraction-Expansion coefficient decreases in different way. 
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As in [20], for each function, three different dimension sizes are tested, which are 10, 20 and 

30. The maximum number of generations is set as 1000, 1500 and 2000 corresponding to the 

dimensions 10, 20 and 30, respectively. Population sizes of 20, 40 and 80 are used with 

different dimensions. A total of 50 runs were carried out and the average optimal value and 

the standard deviation are presented. 

Four kinds of contraction-expansion coefficient   selection methods are tested. In 

the results tables, the abbreviations QPSO-CON, QPSO-LIN, QPSO-COS and QPSO-ANN 

stand for QPSO with constant  , QPSO with linearly decreasing  , QPSO with cosine 

decreasing   and QPSO with annealing decreasing   respectively.  

The mean best values and standard deviation for 50 trials on the four benchmark 

functions are listed in Table 4.5-Table 4.8. For the unimodal function 1f , QPSO-CON 

outperforms others for all the dimension sizes and converges fast to the global optimum. For 

the simple multi-modal function 2f , QPSO-CON performs better in the dimension sizes 20 

and 30 except 10D  . Rastrigin function 3f  is a fairly difficult problem due to its large 

number of local minima, on which, QPSO-COS works better. Because the cosine function 

decreases more slowly than the linearly decreasing function and annealing function, the 

particles have more time to explore the big area before fine-tuning the small area. So the 

QPSO-COS can prevent the particles from being trapped into the local optimum and the 

global search ability is enhanced. For Griewank 4f , QPSO with annealing   QPSO-ANN 

outperforms others, either in terms of the optimum and convergence. Within finite number of 

iterations, e.g. 2000, QPSO-ANN converges faster than QPSO-COS and QPSO-LIN to a 

minimum.  

Comparison of the convergence between all the algorithms over the five benchmark 

functions is shown in Figure 4.14. In Figure 4.14a-Figure 4.14b, QPSO-CON converges 

fastest to a minimum on the unimodal function and simple multimodal function. In Figure 

4.14c, the convergence of QPSO-COS is the slowest, but the superiority appears at the later 

stage of the searching process. QPSO-ANN shows the best performance in Figure 4.14d. 

From Figure 4.14e, one can note that QPSO-COS has the best convergence, which may 

illustrate the ability of QPSO-COS in solving the complex problems. 

 

 



76 

 

Table 4.5: Sphere function. 

M  D  maxk  

MEAN BEST VALUE 

(STANDARD DEVIATION) 

QPSO-CON QPSO-LIN QPSO-COS QPSO-ANN 

20 

10 1000 5.78E-76 

(1.40E-75) 

1.85-40 

(1.29E-39) 

8.44E-36 

(5.90E-35) 

2.24E-42 

(1.30E-41) 

20 1500 8.39E-57 

(3.04E-56) 

6.67E-21 

(4.62E-20) 

4.43E-19 

(2.93E-18) 

9.35E-22 

(2.78E-21) 

30 2000 1.82E-45 

(6.27E-45) 

2.04E-15 

(4.28E-15) 

8.19E-12 

(3.15E-11) 

6.65E-14 

(1.92E-13) 

40 

10 1000 2.66E-87 

(1.15E-86) 

5.30E-73 

(3.64E-72) 

1.94E-59 

(1.36E-58) 

2.13E-76 

(1.47E-75) 

20 1500 2.00E-71 

(9.72E-71) 

1.50E-43 

(6.14E-43) 

1.32E-34 

(3.76E-34) 

5.31E-42 

(3.60E-41) 

30 2000 1.24E-58 

(3.22E-58) 

1.50E-30 

(3.95E-30) 

3.02E-22 

(1.48E-21) 

2.92E-30 

(8.39E-30) 

80 

10 1000 1.39E-97 

(5.81E-97) 

1.02E-100 

(6.96E-100) 

3.86E-79 

(1.34E-78) 

2.28E-109 

(1.59E-108) 

20 1500 1.39E-85 

(4.67E-85) 

2.97E-70 

(1.11E-69) 

6.45E-53 

(3.05E-52) 

9.20E-72 

(5.18E-71) 

30 2000 3.48E-72 

(9.35E-72) 

1.57E-50 

(5.28E-50) 

5.05E-37 

(2.06E-36) 

2.22E-51 

(1.31E-50) 
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Table 4.6: Rosenbrock function. 

M  D  maxk  

MEAN BEST VALUE 

(STANDARD DEVIATION) 

QPSO-CON QPSO-LIN QPSO-COS QPSO-ANN 

20 

10 1000 41.09 

(67.08) 

11.75 

(27.37) 

14.79 

(42.50) 

28.60 

(72.62) 

20 1500 25.30 

(31.36) 

44.70 

(44.34) 

47.59 

(68.83) 

71.03 

(87.45) 

30 2000 64.56 

(53.22) 

72.15 

(79.69) 

85.34 

(86.64) 

69.90 

(74.20) 

40 

10 1000 9.59 

(16.06) 

7.55 

(11.07) 

6.95 

(5.21) 

5.10 

(4.54) 

20 1500 17.06 

(26.66) 

39.67 

(31.26) 

37.16 

(31.75) 

37.99 

(31.50) 

30 2000 28.35 

(30.37) 

47.56 

(37.84) 

48.46 

(31.30) 

53.72 

(37.24) 

80 

10 1000 6.36 

(3.91) 

4.11 

(3.37) 

3.82 

(3.92) 

4.17 

(3.52) 

20 1500 11.56 

(17.16) 

27.65 

(26.76) 

33.02 

(30.05) 

27.83 

(27.54) 

30 2000 31.02 

(33.40) 

41.28 

(27.90) 

34.18 

(23.51) 

41.36 

(28.90) 
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Table 4.7: Rastrigrin function. 

M  D  maxk  

MEAN BEST VALUE 

(STANDARD DEVIATION) 

QPSO-CON QPSO-LIN QPSO-COS QPSO-ANN 

20 

10 1000 23.93 

(13.12) 

5.74 

(3.23) 

4.64 

(3.79) 

5.20 

(2.92) 

20 1500 67.69 

(27.27) 

19.06 

(10.44) 

16.22 

(8.10) 

19.70 

(11.17) 

30 2000 113.38 

(34.69) 

38.77 

(14.36) 

38.52 

(21.25) 

46.10 

(19.48) 

40 

10 1000 11.81 

(9.16) 

3.42 

(2.00) 

3.29 

(2.16) 

3.52 

(1.42) 

20 1500 33.27 

(19.99) 

13.03 

(7.30) 

12.06 

(5.13) 

12.32 

(4.28) 

30 2000 71.00 

(30.14) 

23.49 

(8.81) 

23.07 

(10.85) 

23.31 

(7.97) 

80 

10 1000 6.50 

(4.90) 

2.29 

(1.40) 

2.14 

(1.32) 

2.26 

(1.31) 

20 1500 24.35 

(13.23) 

9.48 

(3.21) 

8.60 

(6.42) 

9.00 

(2.98) 

30 2000 43.18 

(19.42) 

17.44 

(5.86) 

16.83 

(5.82) 

17.85 

(6.42) 
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Table 4.8: Griewank function.  

M  D  maxk  

MEAN BEST VALUE 
(STANDARD DEVIATION) 

QPSO-CON QPSO-LIN QPSO-COS QPSO-ANN 

20 

10 1000 
6.84E-02 

(4.32E-02) 
7.17E-02 
5.22E-02 

9.52E-02 
(8.19E-02) 

5.70E-02 
(4.25E-02) 

20 1500 
2.27E-02 

(1.96E-02) 
2.09E-02 

(2.03E-02) 
2.45E-02 

(3.10E-02) 
2.02E-02 

(1.52E-02) 

30 2000 
1.46E-02 

(1.89E-02) 
1.68E-02 

(2.68E-02) 
1.13E-02 

(1.20E-02) 
9.37E-03 

(1.31E-02) 

40 

10 1000 
5.40E-02 

(2.96E-02) 
6.05E-02 

(4.40E-02) 
8.22E-02 

(8.45E-02) 
4.47E-02 

(2.74E-02) 

20 1500 
1.78E-02 

(1.74E-02) 
2.08E-02 

(1.91E-02) 
1.85E-02 

(2.02E-02) 
1.76E-02 

(1.46E-02) 

30 2000 
1.21E-02 

(1.52E-02) 
1.24E-02 

(1.21E-02) 
1.15E-02 

(1.34E-02) 
1.06E-02 

(1.40E-02) 

80 

10 1000 
5.50E-02 

(3.29E-02) 
4.07E-02 

(3.94E-02) 
6.50E-02 

(4.93E-02) 
3.78E-02 

(2.69E-02) 

20 1500 
1.59E-02 

(1.59E-02) 
1.29E-02 

(1.40E-02) 
1.61E-02 

(1.55E-02) 
1.22E-02 

(1.60E-02) 

30 2000 
1.05E-02 

(1.51E-02) 
9.61E-03 

(1.18E-02) 
8.45E-03 

(1.09E-02) 
7.88E-03 

(1.07E-02) 
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(c) 

 

(d) 

Figure 4.14: Convergence history of different parameter selection methods on benchmark 

functions. 
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The methods proposed to control the parameter in QPSO, have been shown to be 

successful especially on the complex Rastrigin and Griewank functions. Beyond our 

expectations, QPSO-ANN performs better on the Griwank function. Since QPSO-COS 

converges slowly, it maybe need more iterations to achieve the global minimum.  Here, we 

set the number of generation max 5000k   for 30D  with 80 particles to compare the 

performance of different methods on the Griewank function. The results are shown in Table 

4.9 and Figure 4.15, from which one can note that QPSO-COS performs better than other 

methods although it converges slowly. 

Table 4.9: Griewank function with 5000 iterations. 

M  D  maxk  

MEAN BEST VALUE 

(STANDARD DEVIATION) 

QPSO-CON QPSO-LIN QPSO-COS QPSO-ANN 

80 30 5000 
6.75E-03 

(7.37E-03) 

7.28E-03 

(1.15E-02) 

6.03E-03 

(9.37E-03) 

8.46E-03 

(1.25E-02) 

 

 

Figure 4.15: Griewank function with 5000 iterations. 
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4.4.5 Synchronous and asynchronous QPSO 

Following the pseudo code for QPSO, it is possible to update the position ( 1)X k  after all 

the particles are evaluated. This update is known as the synchronous QPSO. The algorithm 

itself involves computation of each particle that is independent from the others. The 

procedure is given in the following pseudo code.  

Algorithm of Synchronous QPSO 

Initialize: algorithmic parameters, positions of the population (0)X , personal best positions 

(0)P ; 

For each iteration max1,2,...,k k   

   For each particle 1,2,...,i M : 

          Evaluate the fitness ( ( ))if X k ; 

          If ( ( )) ( ( ))i if X k f P k  then  

                 ( ) ( )i iP k X k ; 

          If ( ( )) ( ( ))i gf P k f P k  then  

                 ( ) ( )g iP k P k ; 

End for 

Compute the mean best position ( )C k  according to Equation (4.30); 

For each particle  1,2,...,i M : 

      Compute ( )ip k  according to Equation (4.15); 

      Update the position ( 1)iX k   according to Equation (4.31); 

End for  

End for 

On the contrary, the sequential asynchronous QPSO updates the positions based on the latest 

available information of each particle. The algorithm in pseudo code is given below. 
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Algorithm of Asynchronous QPSO 

Initialize: algorithmic parameters, positions of the population (0)X , personal best positions 

(0)P ; 

For each iteration max1,2,...,k k   

   For each particle 1,2,...,i M : 

          Evaluate the fitness ( ( ))if X k ; 

          If ( ( )) ( ( ))i if X k f P k  then  

                ( ) ( )i iP k X k ; 

          If ( ( )) ( ( ))i gf P k f P k  then 

               ( ) ( )g iP k P k ; 

      Compute the mean best position ( )C k  according to Equation (4.30); 

      Compute ( )ip k  according to Equation (4.15); 

                Update the position ( 1)iX k   according to Equation (4.31); 

       End for 

End for 

Note the difference between the two methods is similar to the difference in Jacobi 

(synchronous) and Gauss-Seidel (asynchronous) iterative methods for solving linear systems 

of equations. 

First, in order to test the difference between synchronous and asynchronous methods 

in search ability of finding the global optimum, 20 particles with 2000 maximum iterations 

are used on the benchmark functions with dimensional size 30. The expansion-contraction 

coefficient is set to be decreasing from 1.0 to 0.5. A total of 50 runs were carried out and the 

mean best values and the deviation of the optima are presented in Table 4.10. The 

convergence of sequential synchronous and asynchronous QPSO is presented in Figure 4.16. 

One can note from Table 4.10 and Figure 4.16 that the synchronous QPSO outperforms 

asynchronous QPSO in complex multimodal functions e.g. Rastrigrin, Griewank. While for 

the simple unimodal functions (Sphere and Rosenbrock), asynchronous QPSO works better 



85 

 

than synchronous QPSO. In asynchronous QPSO, the particles update the positions with the 

latest global best position gP , which may lead to fast convergence and quick loss of diversity 

of the population. Therefore, the asynchronous QPSO easily locates the global minimum in 

the unimodal problems. However, several local minima exist in complex multimodal 

problems, lost of diversity will result to prematurity. 

Table 4.10: Results of the benchmark functions tests 

functions 

Mean Best Value 

(Standard Deviation) 

Synchronous Asynchronous 

Sphere 
7.85E-11 

(4.92E-10) 

6.84E-16 

(2.53E-15) 

Rosenbrock 
130.23 

(136.20) 

92.50 

(117.21) 

Rastrigrin 
39.68 

(15.37) 

41.90 

(16.93) 

Griewank 
6.85E-03 

(8.28E-03) 

1.17E-02 

(1.56E-02) 
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(d) 

Figure 4.16: Convergence history of synchronous and asynchronous QPSO on benchmark 
functions. 

Next, the efficieny of the two methods are tested, which is important for real-time 

problems. A new stopping criterion instead of maximum number of iterations is set as a 

predefined value that the search will stop when the global best fitness is less than this value. 

20 particles are used on the benchmark functions with dimensionl size 30. The expansion-

contraction coefficient is set as constant 0.75. The average number of iterations for 50 runs 

needed to achieve the predefined criterion is given in Table 4.11, from which, one can note 

that the asynchronous QPSO achieved the criterion faster than synchronous QPSO.  

Table 4.11: Maximum iterations needed to achieve the predefined criterion. 

Functions Criterion 
Iterations 

Synchronous Asynchronous 

Sphere 1.0E-12 729.06 646 

Rosenbrock 100.0 2227.64 1614 

Rastrigrin 100.0 1368.14 1338 

Griewank 0.1 292.9 264 
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4.5 Parallel Quantum-Behaved Particle Swarm Optimisation  

The high computational cost of complex engineering optimisation problems prevents real-

time computation. This motivated the development of parallel optimisation algorithms. QPSO 

usually involves a large amount of computation with thousands of generations for high 

dimensional or complicated problems. Therefore, investigation and exploitation of parallel 

properties of QPSO algorithm is important in order to produce fast solutions. Like other 

population-based evolutionary algorithms, QPSO algorithm is intrinsically parallel, as global 

best position gbest is the only shared information among the particles and the fitness 

evaluation requires only the particle’s position. The particles have no communication during 

the fitness evaluation. Therefore, the parallel QPSO can be efficiently implemented on 

massively parallel processing architectures (MPP). 

MPP is the coordinated processing of a program by multiple processors that work on 

different parts of the computation in which each processor using its own operating system 

and memory. Typically, MPP processor communicates using some message passing interface 

(MPI). 

 In this thesis, all parallel computational job was executed on the hardware Heracles 

of the University of Greenwich using FORTRAN with MPI. Heracles has one head node and 

six computing nodes. The head node is made up of two Dual Core of 2.4GHz AMD Opteron 

2216, 8Gb Memory, with Intel compiler 10.1 and Sun Grid Engine 6.2. The computing node 

is made up of four Quad Cores of 2.2GHz AMD Opteron 8354, 32Gb Memory, which are 

connected with an Infinitband Memory channel. 

The structure of QPSO is very close to being intrinsically parallel as other evolutionary 

algorithms, since each particle can be considered as an independent agent. A full review 

about the parallel genetic algorithm, which is classified into eight classes, is given in [139]. 

But the QPSO is different from the GA that the shared information named gbest exists among 

all the particles in QPSO. Hence in this work, two classes of parallel QPSO are given 

(1) Master-Slave parallelization (distributed fitness evaluation) 

(a) Synchronous 

(b) Asynchronous 

(2) Subpopulation parallelization 
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The details of each of the classes in terms of the parallel models are briefly discussed in the 

following. 

 

4.5.1 Master slave parallelization 

Compared to the computational time in fitness evaluations, the calculation of the particle’s 

positions is just a small fraction of the entire course. Therefore, the most straightforward 

parallel model is to simply distribute fitness evaluations following a master-slave paradigm 

[53]. The evaluation of each particle’s fitness is easily parallelized since it requires only the 

position of the particle being evaluated (not the whole population) without communication 

during the phase. The master processor holds the queue of particles ready to be sent to the 

slave processors and performs all decision making such as position updates and convergence 

checks. It does not perform any function evaluations. The slave processors repeatedly 

evaluate the fitness function using the particle’s position received from the master. The MPI 

can be used to communicate between the master and slave nodes. Theoretically there should 

be as many slave nodes as the number of particles, however, due to the limitation in the 

system’s availability, more than one particles may be distributed in one processor.  

There are two approaches about the parallel quantum-behaved particle swarm 

optimisation: parallel synchronous QPSO and parallel asynchronous QPSO. In parallel 

synchronous QPSO, the master stops and waits to receive the fitness values of all the particles 

before updating the global best position and proceeding to the next iteration. A synchronous 

approach maintains consistency between sequential and parallel implementations, thereby 

avoiding alteration of the convergence characteristics of the algorithm. Thus, parallel 

synchronous QPSO should obtain exactly the same final solution as sequential synchronous 

QPSO.  
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The block diagram of the synchronous parallel QPSO is as follows: 

Initialize

Update gbest

Update positions

( )f X ( )f X ( )f X    

 

Figure 4.17: Block diagram for parallel synchronous QPSO. 

The tasks performed by the master and slave nodes are as follows:  

Master processor: 

Initialize all parameters, positions of the population (0)X , personal best positions (0)P ; 

Do while ( maxk k )  

   Send the positions of every particle to the available slave processors; 

   Receive the evaluated fitness of every particle from slave processors; 

   For each particle 1,2,...,i M  

          If ( ( )) ( ( ))i if X k f P k  then 

                ( ) ( )i iP k X k ; 

          If ( ( )) ( ( ))i gf P k f P k  then  

                ( ) ( )g iP k P k ; 

   End for 

Compute the mean best position ( )C k  according to Equation (4.30); 



91 

 

For each particle 1,2,...,i M  

     Compute ( )ip k  according to Equation (4.15); 

      Update the position ( 1)iX k   according to Equation (4.31); 

End for  

          Update   according to Equation (4.28) 

End do  

 

Slave processor: 

Receive data from master host; 

Perform fitness evaluation; 

Send the fitness result to master host; 

 

The parallel synchronous master-slave QPSO is easy to implement and a significant 

speedup can be expected if the communication cost does not dominate the computational cost. 

It works better when there is no heterogeneity in either the computing environment or 

evaluation time for the fitness function. However, there is a bottle-neck effect such that the 

whole process has to wait for the slowest processor to finish the fitness evaluation. While 

most applications are run on distributed systems, asynchronous approach is therefore usually 

claimed to be better because it does not introduce idle waiting times, which are likely to 

occur in uneven environments [56]. In asynchronous QPSO, the global best position is 

allowed to be updated immediately after evaluation of each particle’s fitness. Thus, the 

optimisation can proceed to the next generation without waiting for the completion of all 

function evaluations from the current generation. Similar with asynchronous PSO in [56], the 

block diagram of the parallel asynchronous master-slave QPSO is as follows. 
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Initialize

Check convergence
Or 

Update gbest
Or 

Update position

( )f X
( )f X

( )f X
  

( )f X

( )f X

( )f X









 

Figure 4.18: Block diagram for parallel asynchronous QPSO. 

From Figure 4.18, the parallel asynchronous master-slave QPSO does not work 

exactly as a traditional QPSO because the predefined maximal number of iteration can’t be 

used as the stopping criterion of the search. 

In parallel asynchronous QPSO, a first-in-first-out task queue is used to determine the 

order in which particles are sent to the slave processors (Figure 4.19). Whenever a slave 

processor completes a function evaluation, it returns the fitness function value and the 

corresponding particle number r  to the master processor, which places the particle number at 

the end of the task queue, and updates the global best position. Once a particle reaches the 

front of the task queue, the master processor updates its position and sends it to the next 

available slave processor. 
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Figure 4.19: Block diagram for first-in-first-out task queue with M  particles on a N -

processor system. 

 

4.5.2 Static subpopulation parallelization 

The idea of static subpopulation has been used in parallel genetic algorithm [139]. This 

parallelization method requires the division of a population into some number of 

subpopulations, and every subpopulation executes as an independent QPSO. Subpopulations 

communicate to share their own global best particles after a predefined number of iterations. .  

There is a global loop to control the number of communications required for global 

convergence. Therefore, this algorithm is suitable for distributed memory computers and 

heterogeneous networks. This model is flexible in that you can decide the number of 

subpopulations according to your available computers or processors. 

 However, there are some problems with the scalability of this parallel algorithm. The 

number of particles in one subpopulation becomes very small when the the number of 

processors increases. But too small number of particles is not enough to get the global 

solution searching in high dimensional problem space. 

The task performed by each processor node is as the following pseudo code.  
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Initialize all algorithmic parameters 

If  (myid==0) 

Initialize positions of the population (0)X  

 Send /M N  to each processor 

End if  

10  Do while ( maxk k )     

   For each particle 1,2,..., /i M N  

          If ( ( )) ( ( ))i if X k f P k  then 

                ( ) ( )i iP k X k ; 

          If ( ( )) ( ( ))i gf P k f P k  then  

                ( ) ( )g iP k P k ; 

   End for 

Compute the mean best position ( )C k  according to Equation (4.30); 

Compute p  according to Equation (4.15); 

For each particle 1,2,..., /i M N  

      Update the position ( 1)iX k   according to Equation (4.31); 

End for  

End do  

Send gP  and ( )gf P  to 0th processor node 

If  (myid==0) 

 Receive all the gP  and ( )gf P   from other nodes; 

 Send the best  gP  and ( )gf P  to all the other nodes; 

End if  

Go to 10. 

 

4.5.3 Performance metrics 

Several metrics are used to quantify the performance, robustness and parallel efficiency 

of the parallel algorithms. Good parallelization strategies generate a good load balance 

amongst processors and reduce the time of inter-processors communications. In a perfect 
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world, a computational job that is split up among N  processors would complete in 1/ N  

time, leading to an N -fold increase in power. However, any given piece of parallelized work 

to be done will contain parts of the work that must be done sequentially. This part does not 

run any faster on a parallel collection of processors (and might even run more slowly). Only 

the part that can be parallelized runs as much as N -fold faster. 

The speedup of a parallel program is defined to be the ratio of the time that it takes a 

task to run on one processor to the time that it takes on N  processors.  

Let ( )t N  be the time required to complete the task on N  processors. The speedup ( )S N  is 

the ratio 

                                                               
(1)

( )
( )

t
S N

t N
                                                          (4.44) 

which depends on many things, but primarily depends on the ratio of communication to 

computation.  

 Efficiency is a measure of how much of your available processing power is being 

used. The simplest way to think of is as the speedup per processor. This is equivalent to 

defining efficiency as the time to run N tasks on N  processors to the time to run one task on 

one processor 

                                                         
( ) (1)

( )

S N t
E

N Nt N
  .                                                   (4.45) 

The performance evaluations of the parallel models of QPSO will be illustrated in section 5.7. 

 

4.6 The Hybrid Method 

As reported in sections 3.2 and 4.5, CGM is in general computationally fast, but it usually 

converges to a local optimum and depends strongly on the initial approximation used in the 

iterative process. QPSO requires large amount of computational time with hundreds of 

thousands generations, since one fitness function evaluation costs a long time for a complex 

problem. A hybrid method is proposed to integrate QPSO and CGM, which aims to combine 

the capacity of QPSO in avoiding local minima and the fast convergence of the CGM. 



96 

 

Since the CGM is able to converge to a better solution with properly selected smooth initial 

guess values, two methods are proposed to deal with the rough estimation obtained by QPSO, 

which are illustrated by the same example as in section 3.3. 

The first method (HM1) is to use a polynomial equation to approximate the unknown heat 

flux function 

                                  1
0 1 1( ) ... ...n n n i

i n nq t a t a t a t a t a 
       .                                    (4.46) 

The problem now becomes a parameter identification problem with unknown parameters

0 1( , ,..., )na a a , which is represented by a particle 1 2( ) ( ( ), ( ),..., ( ))i i i iDX k X k X k X k . A 

smooth function ( )q t  can be achieved with the approximated parameters obtained by QPSO 

with a predefined number of generations. Then the approximation ( )q t  is used as an initial 

guess 0q  in the CGM. 

Procedure of HM1 for inverse problem of estimating heat flux ( )q t : 

A polynomial equation of n order is used to approximate heat flux; 

QPSO is used to solve this parameter identification problem 0 1( , ,..., )na a a ; 

Result obtained from QPSO is used as initial guess 0q  of CGM; 

CGM is used to solve the function estimation problem with initial guess to achieve the 

optimal estimation of ( )q t . 

In the second method (HM2), QPSO is used directly to estimate the unknown heat flux with 

no prior information on the functional form ( )q t . Then an interpolation operation is done to 

the rough approximation ( )q t , from which a smooth function 0q  is achieved and will be used 

as an initial guess for CGM. 

Procedure of HM2 for inverse problem of estimating heat flux ( )q t : 

QPSO is used to solve the function estimation problem with large time step t to 

achieve a rough approximation ( )q t ; 

An interpolation operation is applied to the rough approximation ( )q t  to achieve a 

smooth function 0q  

CGM is used to solve the function estimation problem with initial guess 0q to achieve 

the optimal estimation of ( )q t . 
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Both hybrid methods will be used to solve the inverse heat conduction problem of 

estimating the time-varying heat flux in section 5.2 and boundary shape in section 5.7. 

 

4.7 Closure 

This chapter provides an overview of three well-known stochastic heuristic algorithms, GA, 

PSO and QPSO. PSO and QPSO are much easier to use and execute than GA, because only 

simple mathematical operators are used instead of the complicated evolution operators in GA. 

As with most of the evolutionary algorithms, the loss of diversity in the population is also 

inevitable in QPSO. In the latter search period, the particles are investigated to cluster 

together gradually and the swarm is likely to get trapped into a local optimum. Therefore, 

several improvements have been proposed to apply to the QPSO, e.g. perturbation operator, 

Gaussian mutation. For the complex multi-modal problems, the QPSO with ring topology 

model with different parameter selection methods have been proposed. Considering the high 

computational cost of complex engineering optimisation problems, two parallel QPSO 

models (e.g. synchronous and asynchronous) have been proposed, and all the parallel 

programs are executed on a Heracles system. Finally, a hybrid method, which makes use of 

CGM and QPSO has been proposed, in which, there are two models of providing the initial 

guess to CGM with values from QPSO. 
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Chapter  5 NUMERICAL EXAMPLES 
 

This chapter concerns several interesting applications related to heat engineering and ground 

water contaminant problems. In particular, external effects consist of applying heat fluxes and 

putting external sources of heat or contaminant to control the result of an engineering system.  

Material properties such as thermal conductivity and heat transfer coefficients were also 

included in the study. This chapter also examines the effect of boundary shape on a typical 

system. Finally, the numerical schemes developed are extended to handle more than one 

property.  

 

5.1 Preliminary Setup 

For the convenience of the numerical tests and illustrations in this chapter, some quantities 

are defined here. t  is the temporal step size and x  is the mesh size. tN  is the total number 

of time steps and xN  is the number of spatial grid points. ft  is the total computational time 

of the simulation process. 

As described in section 2.2, the least squares method (Equation (2.42)) minimising the 

difference between measured and computed data is used to solve many inverse problems. 

These inverse problems are ill-posed because the unavoidable measurement noise and 

numerical computation errors often lead to an unstable solution. Therefore, a regularisation 

technique is adopted to stabilise the solution. Here, the Tikhonov regularisation method 

described in section 2.3 is used, and the objective function becomes 

                                     22 2

1 0

[ ] ( ; , ) ( , )
ftN

i i
i t

J v u v x t Y x t dt Lv
 

    ,                                  (5.1) 
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where N  is the number of sensors,   is the regularisation parameter and v  is the unknown 

quantity involved in inverse problems. The first term on the right hand side of Equation (5.1) 

is the discrepancy term. The second term on the right hand side is the regularisation term. Lv  

is the general form of the regularisation operator which can be written as 

                                                      
2

2

0

( )ft n

n
t

d v t
Lv dt

dt

 
  

 
                                                     (5.2) 

when v  is time-varying, or  

                                                     
2

2

0

( )L n

n
x

d v x
Lv dx

dx

 
  

 
                                                    (5.3) 

when v  is spatial varying. 

The zeroth ( 0n  ) and first order ( 1n  ) regularisation term are commonly used.  

The regularisation stabilises the solution. Minimisation of [ ]J v  in Equation (5.1) is a 

trade-off between the matching the data and stabilizing the solution. The values chosen for   

affect the stability of the solution. The L-curve method described in section 2.3.3 is used to 

find the best value of  , in which, the regularisation term 
2

Lv is plotted on a log-log plot 

against the residual term  2

1 0

( , ) ( , )
ftN

i i
i t

u x t Y x t dt
 

  for many values of the regularisation 

parameter  . The value of the regularisation parameter at the corner of the L-curve is taken 

as the optimal parameter value.  

To evaluate the accuracy of the algorithms used to solve inverse problems in this 

chapter, the average error of the estimated unknown quantitiy errorv  is usually used. For 

example, if v  is time-varying, we use 

                                                         2

1

1 tN

error j j
jt

v v v
N 

  ,                                              (5.4) 

where jv  is the j th  component of the estimated unknown quantity, jv  is the j th  component 

of the exact unknown quantity. A similar expression can be used if v  is space-varying, 

namely  
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                                                          2

1

1 xN

error i i
ix

v v v
N 

                                                 (5.5) 

To examine cases involving random measurement errors, normal distribution 

uncorrelated errors with zero mean and constant standard deviation are assumed. The 

simulated inexact measurement data ( , )iY x t  may be expressed as 

                                    ( , ) ( , ) ( , )i exact i i exact iY x t u x t u x t                                                   (5.6) 

where ( , )exact iu x t  is the solution of the direct problem with exact value v , 1,2,...,i N ,   is 

the noise level, i  is a random number satisfying the standard normal distribution. 

The numerical tests in this chapter were computed on a PC with Pentium (R) 4 CPU 

3.6GHZ and 2.00GB of RAM, running Windows XP. Finally the QPSO algorithm with 

Tikhonov regularisation is given below as a reference. 

Procedure of QPSO with Tikhonov regularisation for the estimation of v  

Give an array of N  preselected regularisation parameters { 1 2 1, ,..., ,N N 
    } and two zero 

arrays with N  elements, Residual  and Norm ; 

For each regularisation parameter j , ( 1,2,...,j N ) 

Step 1. Initialization: 

  particle positions: 1 2(0) { (0), (0),..., (0),..., (0)}i MX X X X X ; 

  personal best positions: 1 2(0) { (0), (0),..., (0),..., (0)}i MP P P P P ; 

  global best position: gP ;  

  Contraction-Expansion coefficient 1.0  , 0k  , stopping criterion  ; 

Step 2. While ( maxk k ) or (  is not reached) 

Compute the mean best position mbest  by Equation (4.30); 

For each particle {1,2,..., }i M  

     Compute the attractor ( )ip k  by Equation (4.15); 

Update the position ( 1)iX k   according to Equation (4.31); 

Evaluate the fitness [ ( 1)]iJ X k   according to Equation (5.1) with j ; 

                   End for 

Decrease   linearly; 
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1k k  ; 

Go to Step 2; 

End while 

gv P ; ( )Residual j =
2

u Y ; 
2

( )Norm j Lv ;  

End for 

Step 3. Plot the corresponding elements of Residual  and Norm  to obtain the optimal 

regularisation parameter opt . Go to Step 1. 

Step 4. Output the optimal estimated v . 

 

5.2 Estimation of Heat Fluxes in Heat Conduction Problems 

During the past decades, many applications have been reported for the estimation of heat 

fluxes and their effects on heat conduction problems, including periodic heating in 

combustion chambers of internal combustion engines [117], solidification glass [118], 

indirect calorimetry for laboratory use [119], and transient boiling curve studies [120]. In [1] , 

Beck et al. used the sequential methods. Recently, the CGM became the most commonly 

used method in solving this problem [59]-[61]. In this section, a stochastic method known as 

QPSO, described in chapter 4 is used to solve the IHCP of estimating the time-varying heat 

flux. In order to remove the dependence on the initial guess of the CGM, the hybrid method 

proposed in section 4.6 is applied as well. 

 

5.2.1 Mathematical description 

One typical engineering problem is the estimation of the thermal history experienced by a 

shuttle or missile re-entering the Earth’s atmosphere from space.The knowledge of the heat 

flux on the re-entering vehicle surface is vital in the design of such equipment. Figure 5.1 and 

Figure 5.2 depict a re-entering body and an enlarged section of its skin. 
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q(t)

Section A

 

Figure 5.1: Re-entering vehicle schematic. 

 

             Temperature sensor

L

known boundary
condition

q(t), heat flux

x1

 

Figure 5.2: Transverse section of the re-entering vehicle. 

At 0x   the surface is heated by a time-varying heat flux ( )q t  and at x L  the surface 

is insulated. The heat flux may be estimated from measurements obtained from a surface or 

interior temperature sensor at lx x . The temperature measurements are usually taken at 

discrete times jt , 1,2, , tj N , and are denoted as jY .  Assuming that the cross-section, as 

shown in Figure 5.2, is a homogeneous and isotropic slab of inifinite length, the mathematical 

model governing the heat conduction process may be reduced to a one-dimensional problem 

as given below 
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                      (5.7) 

where ( , )u x t is is the temperature distribution at a spatial location x  and time t ,  , C , K  

are density, heat capacity and thermal conductivity, respectively. Equations (5.11b) and 

(5.11c) are two Neumann boundary conditions and Equation (5.11d) is the initial condition. 

For simplicity, the physical properties may be taken as 1K C L    which are the same as 

using non-dimensional data. Here, ( )q t  is the unknown heat flux to be determined. 

If the temperature at the heated surface is known, there exists an exact solution for the 

heat flux. Unfortunately, the physical situation at the surface may be unsuitable for attaching 

a sensor, or the accuracy of a surface measurement may be seriously impaired by the 

presence of the sensor. Although it is often difficult to measure the temperature history of the 

heated surface of such a re-entering body, the temperature history at an interior location or at 

the insulated surface of the body may be measured easily. 

The solution process of the inverse problem involves solutions of the direct problem for 

every approximated heat flux. For simplicity and accuracy, the Crank-Nicholson implicit 

finite difference method is adopted and is given below 

                  

1 1 1 1
1 1 1 1

2 2

2 2

2 2

j j j j j j j j
i i i i i i i iu u u u u u u u

C K
t x x


   

        
     

 ,                       (5.8) 

where j
iu  is the temperature at the j th time step, 1,2,..., tj N , along the i th grid point, 

1,2,..., xi N . A second order discretisation is used for the boundary condition Equation 

(5.11b) leading to 

                                                     0 1 23 4

2

j j j

j

u u u
K q

x

  
 


,                                                (5.9) 

where ( )jq q j t   is the discrete representation of the heat flux at time t j t  .  
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5.2.2 Numerical tests 

In this section, the QPSO method is used to solve the IHCP of estimating the heat flux. The 

continuous function of the heat flux ( )q t  is discretised for numerical computation and 

simulated by a particle. The position of a particle represents a candidate solution of the heat 

flux. The dimension D  of the position is equal to the number of time steps tN . The fitness 

objective function [ ]J q  is defined as in Equation (5.1). At each generation k  of finding the 

minimum of the objective functional [ ]J q , the particle i  representing a feasible solution,  is 

defined as 

                 1 2 1 2( ) ( ( ), ( ),..., ( ),..., ( )) ( , ,..., ,..., )
ti i i ij iD j NX k X k X k X k X k q q q q                     (5.10) 

where tD N represents the dimension of the particle’s position and number of time steps 

required in the computation. Substituting ( )iX k  into Equation (5.11), the temperature u  can 

be computed by solving the direct problem. Each feasible solution ( )iX k  is evaluated by 

computing the fitness function [ ]J q .  At each generation, the positions of the particles are 

updated as according to Equation (4.31). This process is repeated until a pre-defined number 

of generations have reached or the solution converged. errorq , as defined in Equation (5.8), is 

used to evaluate the accuracy of the converged solution.
                       

 

The numerical test in this section was to determine the heat flux defined by the 

triangle function 

0 0

0 0.6
( )

1.2 0.6 1.2

0, 1.2 1.56

t

t t
q t

t t

t


      
  

 as discussed in [1].  

The parameters in the QPSO were set respectively as 20M  , max 2000k  , 0 1.0  , 

1 0.5  . Table 5.1 shows the results of average errors for the test cases with different mesh 

sizes and temporal step sizes. Note that unlike the effect on the solution of a direct problem, 

smaller mesh size does not necessarily produce better solution for an inverse problem. That is 

because of the ill-posedness of inverse problems, too small mesh size or temporal step size 

will lead to oscillations in the solution. The results produced with 0.05x   and 0.1x  are 

better than or have comparable accuracy with that obtained with 0.01x   and 0.02x  . 

While for too large mesh sizes, i.e. 0.2x   and 0.5x  , the accuracy of the results 

obviously deteriorates. Therefore, considering from both aspects of accuracy and 



105 

 

computational time, 0.1x  is chosen. Furthermore, it can be seen from the data in the fifth 

row of Table 5.1, the smaller temporal step size, i.e. t =0.01, 0.02, 0.03, does not produce a 

better solution than that obtained with 0.04t   or even 0.06t   and 0.12t  . The 

reason may be due to the number of particles used in QPSO, i.e. 20M  , which is not 

sufficient to optimise a problem with dimensional size 53, 79, and 157 ( /fD t t  ). Table 

5.2 gives the results of average errors and computational time when the number of particles 

M  increases to 30, 40 and 50 with different temporal step sizes except 0.12t  . For 

0.04t   and 0.06t  , increasing the number of particles does not improve the accuracy 

of the results because 20 particles are sufficient for dimensional size 27D   and 40D  . 

While for 0.01t  , 0.02t   and 0.03t  , the accuracy of the results improves when the 

number of particles increases. But the required computational time increases a lot as well. 

Considering both accuracy of the solution and the computational time, 0.03t   is adopted 

in the subsequent tests and the number of particles M  is set as 30 correspondingly.  

Table 5.1: Effect of mesh size and temporal step size on the average error errorq .  

   t                          

x         
0.01 0.02 0.03 0.04 0.06 0.12 

0.01 7.3E-03 5.3E-03 1.5E-03 9.37E-04 1.4E-03 3.5E-03 

0.02 6.3E-03 3.3E-03 1.6E-03 8.20E-04 1.4E-03 3.5E-03 

0.05 8.4E-03 3.1E-03 1.2E-03 7.78E-04 1.4E-03 3.5E-03 

0.1 8.3E-03 3.7E-03 1.1E-03 7.83E-04 1.3E-03 3.5E-03 

0.2 1.2E-02 3.0E-02 1.7E-03 1.1E-03 1.6E-03 4.0E-03 

0.5 7.5E-03 7.3E-03 8.5E-03 9.6E-03 1.2E-02 1.5E-02 
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Table 5.2: Effect of number of particles on the average error and computational time. 

            t  

 M         
0.01 0.02 0.03 0.04 0.06 

20 
8.3E-03 

(183.95) 

3.7E-03 

(102.14) 

1.1E-03 

(62.89) 

7.83E-04 

(47) 

1.3E-03 

(34.44) 

30 
5.4E-03 

(263.53) 

1.8E-03 

(132.55) 

6.49E-04 

(93.34) 

8.08E-04 

(68.47) 

1.3E-03 

(46.78) 

40 
4.6E-03 

(528.84) 

8.06E-04 

(270.77) 

5.47E-04 

(183) 

7.84E-04 

(137.16) 

1.3E-03 

(94.23) 

50 
3.8E-03 

(865.69) 

6.31E-04 

(449.44) 

5.42E-04 

(300.27) 

7.84E-04 

(232.69) 

1.3E-03 

(157.34) 

 

 Figure 5.3 shows the results obtained by QPSO with the sensor located at 0.5x . 

The temperature measurements in this case contained no noise. Note that the agreement with 

the exact heat flux is very good. The only time that heat flux function has large discrepancy is 

that where abrupt changes appear. Figure 5.4 shows the results obtained for the same test case, 

but with the sensor located at 1.0x . Note that the closer the sensor is to the heated 

boundary, the better the estimated result is. Figure 5.5 shows the results of the estimated heat 

flux by using QPSO with the sensor located at 0.5x , and with noise level 0.01   in the 

temperature measurement. The estimated heat flux converges to the exact heat flux with 

minor deviation. The average error of the estimated heat fluxes and the objective function 

values are listed in Table 5.3. 
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Figure 5.3: Estimated heat flux by using QPSO with sensor at 0.5x and exact 

measurements. 

 

Figure 5.4: Estimated heat flux by using QPSO with sensor at 1.0x  and exact 

measurements. 
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Figure 5.5: Estimated heat flux by using QPSO with sensor at 0.5x  and noisy 

measurements with 0.01  . 

Table 5.3: Tests of sensor locations and noise levels. 

Sensor Location Noise Level   errorq  [ ]J q  

0.5 0.0 6.49E-04 3.53E-05 

0.5 0.01 2.2E-03 2.99E-04 

1.0 0.0 3.0E-03 4.21E-05 

1.0 0.01 8.4E-03 2.54E-04 

 

Figure 5.6 and Table 5.4 show the results obtained by using CGM with different initial 

guesses 0q , and with sensor located at 0.5x . The temperature measurements in this case 

contained no noise. Note that different initial guesses may lead to different performance, in 

particular for the values near the final time ft . Because the gradient [ ]J q  is always equal to 

zero at ft t , it is difficult to estimate the values near ft  unless an accurate initial guess is 

given. It can be also noted that the estimated heat flux with 0q  randomly chosen in [0, 0.6] 
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oscillates up and down from the exact value. However, the computational time required in 

CGM is only 0.8906 seconds. This suggests that CGM converges fast, and strongly depends 

on the choice of initial approximation. On the contrary, QPSO can obtain relatively good 

results with random initial populations while requiring much more computational time. 

 

Figure 5.6: Estimated heat fluxes with different initial guesses by using CGM with sensor at 

0.5x  and exact measurements. 

Table 5.4: Effects of initial guesses on CGM. 

Initial guess 0q  errorq  [ ]J q  

0.0 1.9E-03 3.0E-05 

0.2 4.1E-03 1.0E-05 

0.6 6.4E-03 5.0E-04 

random 2.87E-02 8.00E-04 

 

In order to overcome disadvantages of both QPSO and CGM, the hybrid method 

proposed in section 4.6 was used to estimate the unknown heat flux. In essence any function 

could be approximated by a polynomial function such as Equation (4.46). In such case the 
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inverse problem reduces from function estimation to parameter identification. The QPSO was 

used to solve the parameter identification problem with a small number of particles and 

generations, which can reduce the computational time. A rough estimation, but nevertheless a 

smooth curve of the heat flux is obtained with the estimated parameters 0 1( , ,..., )na a a . Then 

the value of the heat flux instead of the parameters may be used in CGM as its initial 

approximation and the solution iterate until the predefined tolerance is reached. In other 

words, the QPSO is first used to solve the parameter identification problem followed by 

CGM being used to obtain the results of the function estimation problem.  

Figure 5.7 shows the results obtained by using the hybrid method (HM1). Note that good 

results are obtained by CGM with initial approximation with sufficient smoothness from 

QPSO. In this problem, 3n   is used in the polynomial approximation. 

 

Figure 5.7: Estimated heat flux by using HM1 with exact temperature measurements. 

The problem leading to the result in Figure 5.7 was tested again assuming standard 

normal distributed error with noise level 0.01   (Figure 5.8) in the temperature 

measurements. Note that accurate estimation is obtained. The average error of the estimated 

heat fluxes is shown in Table 5.5. The computational time used in HM1 is 9.28 seconds. It is 
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suggested that the hybrid method is stable and efficient to solve the unknown heat flux 

function estimation problem. The estimated result by QPSO is only slightly better than that 

obtained by HM1. However, the saving in computational time achieved by using HM1 is 

tremendous due to the fact that smaller dimension is used in the positions of the particles, i.e. 

3D  . 

 

Figure 5.8: Estimated heat flux by using improved hybrid algorithm, measurements with 

noise level 0.01  . 

Table 5.5: Numerical results of the hybrid method (HM1). 

Noise Level   errorq  [ ]J q  

0.0 1.4E-03 1.98E-05 

0.01 2.8E-03 2.45E-04 
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5.2.3 Conclusion 

In this section, the QPSO was used to estimate unknown heat flux functions in heat 

conduction problems. Numerical experiments demonstrated the viability, efficiency and 

stability of the QPSO for the solutions of IHCPs. The stochastic algorithm avoids 

complicated gradient computation in a gradient-based method but guarantees the global 

optimum. In order to overcome the high computational costs of the QPSO and the strong 

dependence on initial approximations of the CGM, the hybrid method proposed in section 4.6 

combining advantages of the QPSO and the CGM is used. In order to avoid oscillation of the 

results, a polynomial function is used to approximate the unknown heat flux function, and the 

smoother curve obtained by the QPSO is used as an initial guess for use in the CGM. The 

results indicate the efficiency and stability of the hybrid algorithm in solving IHCPs. 

 

5.3 Estimation of Heat Sources in Heat Conduction Problems 

The inverse problem of determining an unknown heat source has received a lot of attention 

recently with several important applications in engineering, including the design of thermal 

equipments, systems and instruments, etc. [63], [77], [90]-[94], [121]-[127]. This problem 

also finds important applications in practice, e.g. in finding pollution source intensity and 

designing the final state in melting and freezing processes. The inverse source problem is 

concerned with the determination of the heat source term, from the knowledge of directly 

measureable temperature.  

A variety of numerical and analytical methods for solving the inverse source problems 

have been proposed in the literature. The least-squares method with the addition of 

regularisation term was proposed by Beck et al. [1]. The CGMs have been widely used in 

inverse heat conduction and convection problems [63]. A stochastic search method known as 

genetic algorithm (GA) was used in [94] to estimate the plan heat source.  

In this part of the thesis, another two stochastic methods PSO and QPSO, described in 

chapter 4, are used to solve this inverse problem of estimating the time-varying heat source. 

And the results are compared with those obtained by using GA and CGM. 
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5.3.1 Mathematical description 

Consider a one-dimensional rod of length L  with constant thermal properties. A plane 

surface heat source of strength ( )G t located at a specified position sx x generates heat. 

Assume boundaries at both ends of the rod are insulated. The longitudinal side of the rod is 

shown in Figure 5.9.  

0x  x L

sx

heat source ( )G t

 

Figure 5.9: A one-dimensional rod with a heat source. 

The mathematical formulation of this problem is defined as 

                0

( , ) ( , )
( ) ( ),  0 ,  0<   (a)

0,  0<                                                                         (b) 

0,  0<                          

s f

f
x

f
x L

u x t u x t
C K G t x x x L t t

t x x

u
K t t

x

u
K t t

x

 





            


 



 



00

                                               (c)

,  0                                                                             (d)
t

u u x L











   

         (5.11) 

where ( )   is the Dirac delta function, Equations (5.15b) and (5.15c) are two insulating 

Neumann boundary conditions, and Equation (5.11d) is the initial condition. For simplicity, 

the physical properties are taken as 1K C L    which are the same as using non-

dimensional data. Here, ( )G t  is the unknown heat source to be determined. The 

determination of ( )G t  requires additional data such as temperature measurements ( , )iY x t

( 1,2i  ) obtained from the sensors located at both boundaries of the rod ( 1 0.0x  , 2 1.0x  ).  

In order to solve the direct problem, the Crank-Nicolson implicit finite difference method 

is used to discretise Equation (5.15) 
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where j
iu  is the temperature at the j th , 1,2,..., tj N , time step and i th mesh point, 

1,2,..., xi N . jG  is the discretised approximation of  G j t , 1,2,..., tj N . 

 

5.3.2 Numerical tests 

In this section, the QPSO is applied to solve inverse problem of estimating the time-varying 

heat source. The position of a particle represents a candidate solution of heat source. In a 

discretised computation, the dimension D  of the position is equal to the number of time steps 

tN  involved in the simulation. The objective fitness function [ ]J G  is defined as in Equation 

(5.1). At each generation k  of finding the minimum of [ ]J G , a particle is defined as 

         1 2 1 2( ) ( ( ), ( ),..., ( ),..., ( )) ( ( ), ( ),..., ( ),..., ( ))
ti i i ij iD j NX k X k X k X k X k G t G t G t G t          (5.13) 

where tD N represents the dimension of the particle’s position and number of time steps 

required in the computation. Substituting ( )iX k  into Equation (5.21), the temperature u  can 

be computed by solving the direct problem. Each feasible solution ( )iX k  is evaluated by 

computing the objective fitness function [ ]J G . At each generation, the positions of the 

particles are updated as according to Equation (4.31). This process is repeated until a pre-

defined number of generations have reached or the solution is converged. errorG , as defined in 

Equation (5.8) is used to evaluate the accuracy of the converged solution. 

In order to verify the viability and efficiency of the QPSO and compare the 

performance of PSO, QPSO, GA and CGM for solving the inverse source problem of 

estimating the time-varying strength, the typical example 

                                                    

1.8 , 0 0.5

( ) 1.9 2 , 0.5 0.8

0.3, 0.8 f

t t

G t t t

t t

  
   
  

                                         (5.14) 

described in [94] is examined here. The heat source is located at 0.5sx   and the total time of 

simulation is 1.0ft  . 

In the numerical tests, the temporal step size was chosen as 0.02t   and the mesh size 

was set as 0.05x  . The parameters in PSO are set as 20M  , / 50t fD N t t    , 
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max 1.0V  , 1 2 2.0c c  , 0 0.9  , 1 0.4  , max 2000k  . The crossover probability and 

mutation probability in GA are chosen as 0.6cP  , 0.05mP  . In order to compare the results 

under the same conditions, the same values were used in those common parameters in QPSO, 

PSO and GA. Due to the strong dependence of the CGM on the initial guess, the initial value 

of the unknown function needs to be chosen carefully. Here ( )G t  was initially set to zero 

( 0 ft t  ). While in the stochastic methods, such as GA, PSO and QPSO, all the particles or 

chromosomes were initialized randomly instead of given a specific initial value.  

All the test examples are listed in Table 5.6, each with different noise levels were used to 

examine the stability of the numerical methods. Three different noise levels were used for 

each method. 

Table 5.6: Test scenarios for the comparison of the methods and noise levels. 

Run Number Method Noise Level   

Run 1 QPSO 0.0 

Run 2 QPSO 0.03 

Run 3 QPSO 0.05 

Run 4 PSO 0.0 

Run 5 PSO 0.03 

Run 6 PSO 0.5 

Run 7 GA 0.0 

Run 8 GA 0.03 

Run 9 GA 0.05 

Run 10 CGM 0.0 

Run 11 CGM 0.03 

Run 12 CGM 0.05 

 

Figure 5.10 shows the comparison of the estimated results obtained by different 

methods using measurements without noise. Note that the estimated heat source obtained by 

the QPSO is almost identical to the exact heat source, and is much better than those obtained 

by GA and PSO. Because the gradient of the objective function [ ( )]J G t  at ft t  is always 

equal to zero in CGM [63], the estimated heat source near the final time is always difficult to 
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find, unless the initial guess at the final time is equal to the exact value. The values of average 

error errorG  and the objective function [ ]J G   are listed in Table 5.7.  

 

Figure 5.10: The estimated results by using different methods with exact measurements. 

Table 5.7: Analysis of different methods with exact measurements. 

Run Number errorG  [ ]J G  
Computational 

Time (s) 

Run 1 7.48E-04 1.12E-07 5.13 

Run 4 5.30E-03 9.64E-07 4.33 

Run 7 1.67E-02 3.37E-06 4.40 

Run 10 9.85E-03 1.14E-07 0.62 

 

Figure 5.11 and Figure 5.12 illustrate the inverse solution of ( )G t  obtained by the same 

methods used in Figure 5.10, using the temperature measurements with noise level 0.03   

and 0.05   respectively. Note that the estimated heat source by QPSO is in relatively good 

agreement with the exact heat source, and is also much better than those obtained by GA and 

PSO. Special attention should be paid to the result obtained by the CGM, large oscillations 

are exhibited in the estimated heat source with noisy measurements. It looks strange that the 
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estimated heat source with 0.03   is even worse than that with 0.05  . The reason may 

be because the stopping criterion is set as the number of maximum iterations. The 

convergence history of CGM can be seen from Figure 5.13. The accuracy begins to 

deteriorate after several iterations. Correspondingly, the average error and the obje ctive 

function value are listed in Table 5.8 and Table 5.9. 

 

Figure 5.11: The estimated results using different methods with noise level 0.03  . 

Table 5.8: Analysis of different methods with noise level 0.03  . 

Run Number errorG  [ ]J G  
Computational 

Time (s) 

Run 2 2.33E-03 1.91E-05 5.13 

Run 5 5.69E-03 1.50E-05 4.27 

Run 8 8.31E-03 1.72E-05 4.53 

Run 11 5.68E-02 4.31E-06 0.70 
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Figure 5.12: The estimated results using different methods with noise level 0.05  . 

Table 5.9: Analysis of different methods with noisy level 0.05  . 

Run Number errorG  [ ]J G  
Computational 

Time (s) 

Run 3 2.85E-03 1.47E-05 5.11 

Run 6 9.28E-03 3.98E-05 4.27 

Run 9 6.76E-03 4.15E-05 4.50 

Run 12 1.06E-02 3.18E-05 0.62 

 

Figure 5.13 shows the convergence history of different methods used to solve the 

IHCP of estimating the heat source. It can be easily seen that CGM converges much faster 

than other methods, but it stagnates after only a few iterations. In addition, of the three 

stochastic methods, QPSO converges faster than GA and PSO, and the converged result 

obtained by using QPSO is much better than those obtained by using GA and PSO. 
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Figure 5.13: Convergence history of different methods after 2000 generations with exact 

measurements. 

To check the robustness of the QPSO for estimating heat sources located at any 

position, two other cases with 0.1sx   and 0.8sx   were tested. The estimated sources are 

shown in Figure 5.14 and Figure 5.15, respectively. It can be seen that QPSO is robust 

enough to solve the inverse heat source problem with the heat source located at an arbitray 

position. 
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Figure 5.14: The estimated results using different methods with heat source located at 

0.1sx  , with exact measurements. 

 

Figure 5.15: The estimated results using different methods with heat source located at 

0.8sx  , with exact measurements. 
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5.3.3 Conclusion 

The QPSO method was used to solve the inverse heat source problem of estimating the time-

varying heat source. No prior information about the functional form is needed. The numerical 

results validate the efficiency and stability of the QPSO method. Comparison with CGM, GA 

and PSO is also presented showing the robustness of QPSO. However, the algorithms 

encounter difficulties in estimating the value of heat source near the final time when the 

measurements contains noise.  

 

5.4 Estimation of Groundwater Contaminant Sources in Advection-Dispersion Problems 

Environmental contamination is a widespread problem that may affect the utility of resources 

such as a groundwater aquifer or a surface water body. Identifying  contaminant sources in 

groundwater is important for developing effective remediation  strategies and identifying 

responsible parties in a contamination incident. Groundwater contamination broadly defines 

any constituent that reduces the quality of groundwater. Contamination can be chemical, 

physical or biological. Chemical contamination can be broken down further into soluble 

components and non-aqueous phase liquid components. Soluble components are dissolved in 

the groundwater and are transported with the groundwater as it moves. Non-aqueous phase 

liquids are bodies of liquid that are separate from the water and are generally not transported 

with bulk groundwater movement. This work addresses transport of dissolved chemicals in 

water-saturated porous media. Transport of soluble chemicals is subjected to process of 

advection and dispersion. Advection describes the movement of a contaminant along with the 

bulk movement of groundwater. Dispersion describes the spreading of a contaminant as it 

moves through the porous media.  

If the initial and boundary conditions, model parameters and contaminant release history 

are known, the advection-dispersion equation can be solved directly using analytical 

techniques or numerical simulations to obtain the distribution of contaminant concentration. 

This process is called forward advection-dispersion problem, which has a unique solution and 

is well-posed. In contrast, the inverse advection-dispersion problem for groundwater models 

considered here involves the determination of the unknown time-dependent contaminant 

release history from the knowledge of concentration measurements taken within the medium. 

The inverse problem of groundwater source identification is ill-posed. Since concentration 

data is sampled at finite discrete points, infinite number of source history functions can 
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produce the same set of measured data. As a result, the solution of this inverse problem is not 

unique. In addition, instability of the solution of the inverse problem caused by the 

unavoidable measurement noise and computation error makes the problem ill-posed. 

In this part of the thesis, a source history reconstruction problem is studied using a point 

source of contamination at a known location in a one-dimensional flow field. The spatial 

distribution of the contaminant concentration is sampled at a specific time after the initial 

source release.  

 

5.4.1 Mathematical description 

The governing equation for contaminant transport in groundwater is described by the 

advection-dispersion equation. A one-dimensional contaminant solute transport through a 

saturated homogeneous porous medium can be written as 
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where u is the contaminant concentration, d  is a constant dispersion coefficient, V is a 

uniform steady pore velocity, ( )C t  is the source located at 0x  , and 0 ( )u x  is the initial 

spatial distribution of the contaminant concentration. The first term on the right hand side of 

Equation (5.19a) is the dispersion term and the second term is advection term. Here ( )C t  is 

the unknown contaminant source history to be determined. 

Because a central difference approximation to the advection term of Equation (5.19) 

may lead to oscillation in the solution, an implicit upwind finite difference method is used to 

discretise the Equation (5.19), leading to 
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5.4.2 Numerical tests 

In this section, a modified QPSO with perturbation operator proposed in section 4.4.1 was 

applied to solve the inverse problem of estimating the time-varying contaminant source. The 

position of a particle represents a candidate solution of the contaminant source ( )C t . In a 

discretised computation, the dimension of the position D  is equal to the number of time steps 

tN  used in the temporal discretisation of ( )C t . The objective fitness function [ ]J C  is defined 

as in Equation (5.1). At each generation k of finding the minimum of [ ]J C , a particle is 

defined as 

           1 2 1 2( ) ( ( ), ( ),..., ( ),..., ( )) ( ( ), ( ),..., ( ),..., ( ))
ti i i ij iD j NX k X k X k X k X k C t C t C t C t        (5.17) 

where tD N represents the dimension of the particle’s position and number of time steps 

required in the computation. Substituting ( )iX k  into Equation (5.19), the contaminant 

distribution ( , )u x t  can be computed by solving the direct problem. Each feasible solution 

( )iX k  is evaluated by computing the objective fitness function [ ]J C . At each generation, the 

positions of the particles are updated as according to Equation (4.31). This process is repeated 

until a pre-defined number of generations have reached or the solutions converged. errorC , as 

defined in Equation (5.8), is used to evaluate the accuracy of the converged solution. 

In order to verify the viability and efficiency of the method and compare the 

performance of the original PSO, QPSO and modified QPSO with perturbation (QPSO-PER) 

to solve this inverse source problem, the typical source example  

                   
2 2 2

2 2 2

( 130) ( 150) ( 190)
( ) exp 0.3exp 0.5exp

2 5 2 10 2 7

t t t
C t
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                 

        (5.18)  

in the literature [104-109] was used in the numerical tests. 

The contaminant source history of Equation (5.22) is plotted in Figure 5.16 from 0t   

up to 300t   days showing three peaks within the period. This true release history is used to 

generate the contaminant concentration which may be used as sampling concentration in the 

subsequent computation. The sampling concentration distribution after 300 days at various 

locations of the measurements is shown in Figure 5.17. 
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The inverse problem is to reconstruct the source history using measured concentration 

sampling between [0,300]t ( 300ft  ), with 1.0V   and 1.0d  . The temporal step size 

was chosen as 3.0t   and the mesh size was set as 1.0x  .  

 

Figure 5.16: The time-varying contaminant release history 

 

Figure 5.17: Contaminant plume after 300 days, with measurement locations denoted by 

circles. 
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The algorithmic parameters in the original PSO were set as, 50M  , 

300 / 100tD N t    , max 1.2V  , 1 2 2.0c c  , 0 0.9  , 1 0.4  , max 2000k  . In order 

to compare the results in the same condition, the same values were used in those common 

parameters in QPSO, QPSO-PER and PSO. 

In the literature, three types of samples are included: samples taken at one location over a 

period of time, samples taken at many locations at one time, or a combination of the two. 

Numerical tests were performed to evaluate the effects of the sampling time ( st ) and location 

( sx ) on the solution of the inverse source problem. The sampling times and locations of these 

tests are listed in Table 5.10. Figure 5.18 shows the estimated contaminant source history for 

the three run cases. Their corresponding average errors errorC  and objective function values 

[ ]J C  are listed in Table 5.11. Note that samples obtained at more locations over a period of 

time produce results with better accuracy as can be seen from Figure 5.19c. 

Table 5.10: Test scenarios for the analysis of the sampling time and location. 

Run Number Sampling Time Sampling Location 

Run1 s ft t  25 locations as in Figure 5.17 

Run2 ,2 ,...,s tt t t N t     / 2sx L (middle of the domain) 

Run3 ,2 ,...,s tt t t N t     25 locations as in Figure 5.17 
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(b) 

 

(c) 

Figure 5.18: Reconstructed source history with data in (a) Run1, (b) Run2, (c) Run3. 
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Table 5.11: Results of analysis of the sampling time and location. 

Run Number errorC  [ ]J C  

Run1 7.96E-03 5.20E-06 

Run2 2.12E-02 1.00E-04 

Run3 2.95E-03 3.38E-04 

 

To analyse the effect of the regularisation term on the solution of the inverse source 

history problem, two different scenarios were tested. Various regularisation terms and noise 

level details, as outlined in Table 5.12 were used in the tests. Figure 5.19 shows the 

reconstructed source history by using QPSO, where exact measurements were used with first 

and zeroth order regularisation terms. The optimal regularisation parameter obtained by L-

curve method is 36 10   . Table 5.13 shows the average error and the objective function 

value. It can be seen that the first-order regularisation can deal with the non-smooth function 

effectively, while the zeroth-order regularisation can not reduce the oscillatory feature of the 

input function.  

Table 5.12: Test scenarios for the analysis of the regularisation term. 

Run Number Regularisation Order Noise Level ( ) 

Run4 First order 0 

Run5 Zeroth order 0 

Run6 First order 0.05 

Run7 First order 0.2 
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(a) 

 

(b) 

Figure 5.19: Reconstructed source history with (a) Run4 (b) Run5. 
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Table 5.13: Results of the analysis of regularisation. 

Run Number errorC  [ ]J C  

Run4 1.81E-03 2.03E-04 

Run5 3.49E-03 3.12E-04 

 

In order to verify the stability of the QPSO for solving the inverse source history 

problem, measured concentrations with noise were used in scenarios of Run6 and Run7. The 

reconstructed contaminant source history is shown in Figure 5.20 and Table 5.14 listed the 

corresponding average error and objective function value. Note that the QPSO is able to 

reconstruct the source history with high accuracy even with noisy samples. 
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(b) 

Figure 5.20: Reconstructed source history using data in (a) Run6 (b) Run7. 

Table 5.14: Results of the analysis of noisy measurements. 

Run Number errorC  [ ]J C  

Run6 2.94E-03 7.66E-02 

Run7 2.07E-03 0.29 

 

In order to examine the performance, PSO and GA were also used to solve the inverse 

source history problems for the test scenarios listed in Table 5.15. From Table 5.16 and 

Figure 5.21-Figure 5.22, it can be seen that the reconstructed source history and performance 

obtained by QPSO are much better than those from PSO and GA. In particular, QPSO is 

more robust in dealing with noisy samplings than its competitors. 
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Table 5.15: Test scenarios by PSO and GA. 

Run Number Methods Noise Level ( ) 

Run8 PSO 0.0 

Run9 PSO 0.1 

Run10 GA 0.0 

Run11 GA 0.1 
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(b) 

Figure 5.21: Reconstructed source history by using PSO in (a) Run8, (b) Run9. 
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(b) 

Figure 5.22: Reconstructed source history by using GA in (a) Run10, (b) Run11. 

Table 5.16: Results of PSO and GA for solving the inverse source history problem. 

Run Number errorC  [ )]J C  

Run8 7.59E-03 2.58E-03 

Run9 1.02E-02 0.31 

Run10 1.10E-02 0.32 

Run11 7.10E-03 0.46 

 

Finally, the modified QPSO with a perturbation operator (QPSO-PER) was applied to 

reconstruct the contaminant source history for the test scenarios listed in Table 5.17. The 

results are shown in Figure 5.23 and Table 5.18. It can be obviously observed that the QPSO-

PER provides a better estimation of the unknown source history than other methods. The 

convergence history of the methods tested here used is shown in Figure 5.24. It can be seen 

that QPSO and QPSO-PER show better convergence rate. 
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Table 5.17: Test scenarios by using QPSO-PER. 

Run Number Methods Noise Level ( ) 

Run12 QPSO-PER 0.0 

Run13 QPSO-PER 0.1 

 

(a) 

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time

so
ur

ce
 h

is
to

ry

 

 

true source history

reconstructed source history



135 

 

 

(b) 

Figure 5.23: Reconstructed source history by using QPSO-PER in (a) Run12, (b) Run13. 

Table 5.18: Results of QPSO-PER for solving the inverse source problems. 

Run Number errorC  [ ]J C  

Run12 1.59E-03 1.89E-04 

Run13 3.64E-03 0.28 
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Figure 5.24: Convergence history of the methods used for solving the inverse source history 

problems. 

 

5.4.3 Conclusion 

A modified QPSO with perturbation operator (QPSO-PER) is applied to solve the inverse 

problem of reconstructing the contaminant source history. No prior information about the 

functional form is assumed and a number of peaks exist in the function. The numerical results 

suggest that these methods are all able to converge to the optimal or sub-optimal solutions. 

The QPSO-PER is more robust than the other methods in dealing with the noisy samplings. 

It should be pointed out that deterministic methods such as MRE require a gradient 

calculation while stochastic methods such as QPSO developed in this thesis do not require 

this and are guaranteed to converge to the global optimum as seen in the tests above.  
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5.5 Estimation of Heat Transfer Coefficients in Heat Conduction Problems 

The heat transfer coefficient, in thermodynamics, is used in calculating the heat transfer, 

typically by convection or phase change between a fluid and solid. Accurate knowledge of 

the heat transfer coefficient at the surface of the plate is important in many engineering 

applications, including the cooling of continuously cast slabs and electronic chips [1]. 

In the past decades, much research work has been contributed to the estimation of 

time-varying heat transfer coefficient. Su and Hewitt [69] used Alifanov’s iterative 

regularisation method to estimate the time-varying heat transfer coefficient of forced-

convective flow boiling over the outer surface of a heater tube. In this section, the QPSO 

described earlier is used to estimate the time-varying heat transfer coefficient. Other methods 

and studies are refered to in Chapter 1. The result is compared with that obtained by using 

CGM. 

 

5.5.1 Mathematical description 

A flat plate over which a fluid is flowing at a constant temperature u  [1] as shown in Figure 

5.25 is used as the test example here. 

fluid at u

temperature sensor

electric heater
x

y

L

 

Figure 5.25: An electrically heated flat plate. 

If the plate was suddenly heated by a certain electric heater inside it, the temperature of the 

plate would rise. Assume the material of the flat plate is homogeneous along the y -axis and 

that convective boundary conditions are specified at 0x   and x L . The mathematical 

model is given by 
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where ( , )u x t  is the temperature distribution at a spatial location x  and time t . ( )G t  is the 

strength of the heat source at sx x . u  is the ambient temperature and 0u  is the initial 

temperature distribution. For simplicity, 1C K    and 1L , which is the same as using 

non-dimensional data. Here ( )h t  is the unknown heat transfer coefficient to be determined. 

Applying an implicit finite difference method to Equation (5.23) leads to 
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At x L , the second order discretisation of the convective boundary condition leads to  
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5.5.2 Numerical tests 

QPSO is used to estimate the time-varying heat transfer coefficient ( )h t . Every particle 

( )iX k  is treated as a candidate solution of ( )h t , namely  

                1 2 1 2 1( ) { ( ), ( ),..., ( )} { ( ), ( ),..., ( ), ( )}
t ti i i iD N NX k X k X k X k h t h t h t h t  ,                   (5.22) 

where tD N . Substituting ( )iX k  into Equation (5.23), the temperature u  can be computed 

by solving the direct problem. Each feasible solution ( )iX k  is evaluated by computing the 

objective fitness function [ ]J h  as defined in Equation (5.1). At each generation, the positions 

of the particles are updated according to Equation (4.31). The process is repeated until a pre-

defined number of generations have reached or the solution converged. errorh , as defined in 

Equation (5.8), is used to evaluate the accuracy of the converged solution. 

In the subsequent numerical tests, the square-wave function [69] 
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is used. It is the most difficult case to inversely estimate. The problem settings are 0.5sx  , 

3.0ft  , 0 0.0u  , ( ) 10.0G t  , 100.0u

 , 0.05x   and 0.05t  .                                                

In order to examine the effect of the number of sensors and their location on the 

estimation, a set of different cases as listed in Table 5.19 were used. Figure 5.26 shows the 

results of the inversely determined heat transfer coefficient using one, three and five sensors. 

Note that the estimated results obtained with 3 and 5 sensors are not better than that obtained 

with only one sensor. Therefore, it is suggested that one sensor is sufficient to obtain the 

satisfactory estimation for this problem.  

Table 5.19: Different number of sensors and their locations. 

No. of sensors Locations [ ]J h  errorh  

1 0.9 1.37E-05 2.52E-04 

3 0.3, 0.6, 0.9 3.15E-04 1.60E-03 

5 0.1, 0.3, 0.5, 0.7, 0.9 7.37E-03 2.87E-03 

 

Figure 5.26: Estimated ( )h t  by using QPSO with different number of sensors. 
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Therefore, only one sensor is used in the subsequent tests. The effect of sensor locations on 

the heat transfer coefficient estimation was examined as shown in Figure 5.27. Table 5.20 

lists four cases of sensor locations and their corresponding average error errorh  and objective 

function value [ ]J h . Note that the closer the sensor is to the boundary with convection, the 

better the result is, see also Figure 5.27. 

Table 5.20: Effects of sensor locations. 

Sensor location [ ]J h  errorh  

0.0 0.11 3.52E-02 

0.3 8.32E-02 3.20E-02 

0.6 3.79E-02 1.84E-02 

0.9 1.37E-05 2.52E-04 

 

Figure 5.27: Estimated ( )h t  by QPSO with different sensor locations. 

The simulated experimental temperatures with different noise levels were used to 

examine the effect of measurement errors. Three different noise levels were used in the test. 

Table 5.21 shows the average error and objective function value obtained by QPSO and 

CGM. Figure 5.28 shows the comparison of results obtained by QPSO and CGM. Note the 

excellent result by QPSO, especially for the values near the final time. The comparison of 
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convergence history of QPSO and CGM in estimating the heat transfer coefficient is shown 

in Figure 5.29. Note that CGM converges faster in the early stage of the iteration process but 

stagnates after several iterations. Although the QPSO with randomly initialised particles 

converges slowly in the early stage, the global optimum is ensured. 

Table 5.21: Comparison QPSO and CGM with different noise levels. 

Noise level 
QPSO CGM 

[ ]J h  errorh  [ ]J h  errorh  

0.0 1.37E-05 2.52E-04 3.23E-03 1.61E-02 

0.01 6.46E-04 3.74E-03 5.58E-03 1.65E-01 

0.05 4.17E-03 6.26E-03 2.94E-02 6.69E-01 
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(b) 

 

(c) 

Figure 5.28: Estimated results by using QPSO and CGM with different noise levels. 
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Figure 5.29: Convergence history of CGM and QPSO in estimating the heat transfer 

coefficient, 0  . 
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and a piecewise linear waveform  
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are used to represent the heat transfer coefficient variation. 

The estimated results by QPSO and CGM are shown in Figure 5.30 and Figure 5.31. It 

can be seen that the time-varying heat transfer coefficients estimated by QPSO agree very 

well with the exact heat transfer coefficient. 
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Figure 5.30: Estimated ( )h t  with smaller wave duration by using QPSO and CGM. 

 

Figure 5.31: Estimated waveform ( )h t  by using QPSO and CGM with exact measurements. 

 

0 0.5 1 1.5 2 2.5 3
0.5

1

1.5

2

2.5

time t

he
at

 tr
an

sf
er

 c
oe

ffi
ci

en
t h

(t)

 

 

estimated h by QPSO

estimated h by CGM

exact h

0 0.5 1 1.5 2 2.5 3
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

time t

he
at

 tr
an

sf
er

 c
oe

ffi
ci

en
t h

(t)

 

 

estimated h by QPSO

estimated h by CGM

exact h



145 

 

5.5.3 Conclusion 

In this section, the inverse problem of estimating the time-varying heat transfer coefficient at 

the surface of a plate was solved by using QPSO. Results obtained with simulated 

measurements demonstrated the viability and stability of the method with respect to 

measurement error. The effect of number of sensors and sensor locations on the accuracy of 

the estimation was also investigated. The comparisons of QPSO and CGM illustrate the 

superiority of the QPSO in estimating the heat transfer coefficient. CGM has difficulty to 

estimate the values near the final time because of the gradient computation. 

 

5.6 Estimation of Temperature-Dependent Thermal Conductivities in Heat Conduction 

Problems 

The determination of the thermal conductivity of certain material from a measured 

temperature profile is also an important IHCP [1], [3]. In most practical engineering problems 

the thermal conductivity is temperature dependent. Thus, the governing heat conduction 

equation is a nonlinear equation which is harder to solve. A brief overview is given of 

methods developed to determine the temperature dependent thermal conductivity of materials. 

Huang et al. [64]-[68] used the CGM with an adjoint equation to search for the thermal 

properties in one or two dimensional inverse problems. The main problem they saw was the 

initial guess of the unknown quantities that must be chosen carefully to guarantee 

convergence of this method. In addition convergence rate could stagnate near the final 

computing time. Terrola [71] applied the Davidon-Fletcher-Powell method to determine the 

temperature dependent thermal conductivity. Kim et al. [72] formulated the problem to find 

the solution through the direct integral method. One limitation of this method is that it 

requires the material to be homogeneous. Other studies are mentioned in chapter 1. 

 

5.6.1 Mathematical description 

Consider a typical one-dimensional homogeneous heat conduction medium with length L  as 

shown in Figure 5.32. It is initially at a constant temperature 0u . When 0t  , the left end of 

the medium is heated by a constant heat flux 1q , while another heat flux 2q  is applied to the 

right end.  



146 

 

( )K u

0x  x L

1q 2q

 

Figure 5.32: Model of a heated slab. 

For the case of temperature dependent thermal conductivity ( )K u , constant heat 

capacity per unit volume C  and density  , the heat conduction process is governed by 
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                      (5.26) 

For simplicity, 1C   and 1.0L , which is the same as using the non-dimensional data. 

Here the thermal conductivity ( )K u  is the unknown to be determined from temperature 

measurements ( , )iY x t ( 1,2i  ) obtained from the sensors located at the both ends, i.e. 

1 0.0x  , 2x L , of the heated medium . 

When generating simulated temperature measurements ( , )Y x t  with a predefined  

( )K u , the nonlinear direct problem defined by Equation (5.30) is required to be solved. An 

iterative technique is needed in solving the problem in conjunction with an implicit finite 

difference method.  

As the temperature ( , )u x t  is approaching its converged result by using an iterative 

technique under some specified initial and boundary conditions, the values of K  at any time 

and position ( , )x t  are fixed, because temperature ( , )u x t  is known and fixed at any ( , )x t . 

Under this situation, Equation (5.30a) is discretised as 
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where j
iu  and j

iK  are the temperature and thermal conductivity at the j th time step 

1,2,..., tj N , along the i th grid point 1,2,..., xi N . For the boundaries, the second order 

discretisation is used 
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The average error value, which intends to evaluate the accuracy of the estimated thermal 

conductivity, is defined as 
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j j

error i i
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where j
iK  is the estimated thermal conductivity and j

iK  is the exact thermal conductivity. 

The Tikhonov regularisation method, as described in section 2.3, is used to address 

the ill-posedness of the inverse problem and stabilise the solution. The objective function 

given by Equation (5.1) needs to be modified as 

                             
 

2
22 2

1 0

[ ( , )] ( , ) ( , ) ( , )
ft

i i
i t

J K x t u x t Y x t dt LK x t
 

    .                       (5.31) 

In the numerical solution of the direct problem, 1( , )ju x t   is computed from ( , )ju x t . 

Therefore in the inverse problem, the thermal conductivity may be computed step by step 

from 0t  to 
tNt . Hence, to determine ( , )jK x t , the objective function is given by 
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which can be solved in the same way as ( )v x  defined in Equation (5.1). 

 

5.6.2 Numerical tests 

Because the inverse problem of determining the temperature dependent thermal conductivity 

is highly nonlinear and ill-posed, the QPSO with global topology converges too fast and the 

diversity of the population decreases quickly. In order to avoid being trapped into a local 
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optimum, the QPSO with ring topology (SQPSO), proposed in section 4.4.2, was applied to 

solve this inverse problem. Every particle ( )iX k  of the QPSO is treated as a candidate 

solution of the thermal conductivity ( , )jK x t  given by 

              1 2 1 2( ) { ( ), ( ),..., ( )} { ( , ), ( , ),..., ( , )}
xi i i iD j j N jX k X k X k X k K x t K x t K x t  .              (5.33) 

The dimension size D  of particle’s position equals to the number of space nodes xN . 

Equation (5.36) is used as the objective function to evaluate the particles at time jt . Two 

different methods may be used to select the contraction-expansion coefficient   as described 

in section 4.4.2. Substituting ( )iX k  into Equation (5.30), the temperature u  can be computed 

by solving the direct problem. At each generation, the positions of the particles are updated 

according to Equation (4.31). The process is repeated until a pre-defined number of 

generations have reached or the solution converged. errorK , as defined in Equation (5.34), is 

used to evaluate the accuracy of the converged solution. 

The solution procedure of SQPSO for estimating thermal conductivity is shown as below. 

For j =1, 2,… 1tN    

Initialize particles with random positions (0)X ; 

Initialize pbest (0)P , lbest (0)LBEST ,  , 0k  , stopping criteria  ; 

While ( maxk k ) or (  is not reached) 

Compute the Mean Best Position ( )C k  by Equation (4.30); 

          For each particle  1,2,...,i M : 

       Compute ( )ip k  by Equation (4.15); 

                Update the position ( 1)iX k   according to Equation (4.31); 

       Evaluate all the particles [ ( )]iJ X k , according to Equation (5.36);  

       Update pbest ( )iP k  and lbest ( )iLBEST k ; 

          End for  

 Update   according to Equation (4.28) or keep constant; 
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1k k  ; 

End while 

1(:, ) (1: )j g xK t P N   

End for 

The polynomial variation thermal conductivity  

          
2 3 4 5 6

0 1 2 3 4 5 6
7 7 7 7 7 7

( )
u u u u u u

K u a a a a a a a
a a a a a a

           
                 

           
            (5.34) 

defined in [76] is used as the reference solution in the numerical tests. Here 

0 1 2 3 4 5 6 1.0a a a a a a a        and 7 50.0a  . This slab material has an initial 

temperature 0 1.0u   . When 0t  , the left and right ends of the slab are subjected to 

constant  heat fluxes 1 20q   and 2 14q   , respectively. The total simulation time is 0.8ft  . 

The spatial mesh size and temporal step size are 0.05x   and 0.05t  . To illustrate the 

viability and stability of the QPSO and SQPSO in predicting temperature dependent thermal 

conductivity, no prior information of the functional form is assumed. 

The parameters in SPSO are set as 20M  , 21D  , 1 2 2.05c c  , 0.72984  , 

max 3000k  . In GA, crossover probability and mutation probability are 0.6cP  , 0.05mP  . 

In order to compare the results under the same conditions, the same values are used for those 

common parameters in QPSO, SQPSO, SPSO and GA. The value of   was set as that in 

section 4.4.2. Different from gradient-based methods, in the stochastic methods used here, 

GA, SPSO, QPSO and SQPSO all the particles or chromosomes are initialized randomly 

instead of being given a specific initial value.  

The estimated results by GA, SPSO, QPSO and SQPSO are shown in Table 5.22, and 

Figure 5.33-Figure 5.35. The meaning of QPSO1, QPSO2, SQPSO1 and SQPSO2 are QPSO 

with linearly decreasing  , QPSO with constant  , SQPSO with linearly decreasing   and 

SQPSO with constant   respectively. Figure 5.33 shows the comparison of the estimated 

results using exact measurements. Note that the estimated thermal conductivity obtained by 

QPSO1 and QPSO2 are almost identical to the exact value, a little better than SQPSO1 and 

SQPSO2. With exact measurements, QPSO with global topology model converges fast and 

the converged results are good. The comparison of convergence history with exact 
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measurements is illustrated in Figure 5.36, in which, QPSO2 obviously outperforms others in 

both convergence rate and quality of converged solution. The estimated results with noisy 

measurements are shown in Figure 5.34-Figure 5.35, from which, it can be noted that the 

result obtained by SQPSO1 is better than others with noise level 0.01  , while for noise 

level 0.02  , QPSO2 outperforms others. Actually, as in [22], despite the advantages of a 

local topology, it is important to note that it should not always be considered to be the 

optimal choice in all situations. Even on some very complex multimodal problems a gbest 

model swarm can deliver performance competitive with the lbest model, given proper 

circumstances.  

Table 5.22: Estimated results of the test Example  

Methods 

Average Error errorK  

(Objective Function Value [ ]J K ) 

0   0.01   0.02   

GA 
1.18E-02 

(0.18) 

1.23E-02 

(0.31) 

1.36E-02 

(0.35) 

SPSO 
5.73E-03 

(5.09E-02) 

6.66E-03 

(0.11) 

9.18E-03 

(0.11) 

QPSO 

~ (1.0 0.5)   
2.41E-04 

(3.24E-05) 

2.59E-03 

(1.39E-02) 

4.22E-03 

(5.88E-02) 

0.75   
1.73E-04 

(1.69E-05) 

2.66E-03 

(1.35E-02) 

4.64E-03 

(7.64E-02) 

SQPSO 

~ (1.0 0.5)   
3.89E-04 

(7.05E-05) 

2.43E-03 

(1.49E-02) 

4.31E-03 

(7.17E-02) 

0.75   
5.29E-04 

(1.60E-04) 

2.94E-03 

(1.73E-02) 

5.77E-03 

(6.40E-02) 
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(e) 

 

(f) 

Figure 5.33: Estimated thermal conductivity using exact measurements. 
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(e) 

 

(f) 

Figure 5.34: Estimated thermal conductivity using measurements with noise level 0.01  . 
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(e) 

 

(f) 

Figure 5.35: Estimated thermal conductivity using measurements with noise level 0.02  . 
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Figure 5.36: Convergence history of the algorithms for estimating thermal conductivity with 

exact measurements. 

 

5.6.3 Conclusion 

In this section, QPSO with ring topology (SQPSO) with both linearly decreasing and constant 

contraction-expansion coefficient was used estimate the temperature-dependent thermal 

conductivity with no priori information of the functional form. The numerical results 

demonstrate that SQPSO shows competitive performance compared to QPSO when 

measurements are without noise. However, SQPSO shows its superiority in handling noisy 

measurements.  

 

5.7 Identification of Boundary Shapes in Steady Heat Conduction Problems 

Shape identification problems involve estimating the shape of a part of the boundary of the 

domain, which arise in many branches of science and engineering [138]. They also have 

important applications in industrial design and maintainance such as optimal design of 

aircraft, ships and engines, and non-destructive evaluation of structured behaviour [128]. 

Such identification problems find applications in material loss defect determination [129], 

electromagnetic crack detection [131] and corrosion detection [132], [135]. These problems 
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are nonlinear and ill-posed, which require special techniques in order to accurately and stably 

solve them numerically. In [95], Nachaoui estimated the boundary shape using the CGM. 

Mera et al. used GA to solve the boundary detection problem in [96], which requires the 

information of the functional form of the boundary shape. In [97] and [98], the inclusion 

detection problems are investigated, in which the singularity of the BEM and the expensive 

computational cost are the most difficult points. 

In this section, an inverse steady heat conduction problem of estimating the shape of a 

part of the boundary from the measured boundary temperature on the remaining known part 

is investigated. The hybrid method (HM2) proposed in section 4.6 is used in order to 

overcome the disadvantages of both CGM and QPSO. 

 

5.7.1 Mathematical description 

Consider a steady state heat conduction problem in a bounded domain  , depicted in Figure 

5.37, where 1 2 3 4       is the boundary of the domain. A heat flux ( )q x  is 

imposed on the boundary 1 , while boundaries 2  and 4  are insulated. The boundary 3  

has the Dirichlet condition 0u u  and the shape of this boundary ( )y f x  is unknown. 

1

2

3

4

x

y



10L 

 

Figure 5.37: A two-dimensional steady state heat conduction problem. 

For simplicity, the Laplace equation is treated in this section, i.e. 
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where ( , )u x y  is the temperature distributed over the domain. In the formulation of direct 

problems, the geometry boundary shape is assumed to be known. Then the temperature 

distribution over the entire domain can be determined using BEM. In the inverse-geometry 

problems, the boundary shape 3  is unknown and needs to be determined from the extra 

temperature measurements obtained on 1 . 

Assume experimental measurements of temperature are available at a set of points on 

1 , denoted as iY  ( 1,2,...,i m , m  is the number of survey points). In the numerical tests, 

simulated measurements which are computed by solving the direct problem Equations (5.39) 

with a predefined exact boundary shape, were used.  

 

5.7.2 Numerical tests 

The BEM [41], [134] is adopted to solve the direct problem, since the geometry of the system 

changes for every possible solution during the optimisation process. Further, BEM does not 

require any meshing of the domain but only needs the discretisation of the boundary, which 

reduces the modeling effort to a minimum. However, one disadvantage of BEM is that the 

resulting matrix is dense and non-symmetric. Numerical solution of a large dense system is 

expensive. Therefore, the hybrid method (HM2) proposed in section 4.6 was used to solve 

this steady IHCP of identifying the boundary shape. Initially, a smaller number of boundary 

elements were used in QPSO to ensure small computational time. The continuous function 

( )f x  was discretised for numerical computation and simulated by a particle. The position of 

a particle represents a candidate solution of the unknown boundary shape. The dimension D  

of the position is equal to the number of space steps xN  of ( )f x . The objective fitness 

function [ ]J f  is defined as in Equation (5.1). At each generation k  of finding the minimum 

of [ ]J f , a particle is defined as 
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      1 2 1 2( ) ( ( ), ( ),..., ( ),..., ( )) ( ( ), ( ),..., ( ),..., ( ))
xi i i ij iD j NX k X k X k X k X k f x f x f x f x  ,      (5.36) 

where xD N represents the dimension of the particle’s position and number of space nodes 

required in the computation. Substituting ( )iX k  into Equation (5.39), the temperature ( , )u x y  

can be computed by solving the direct problem. Each feasible solution ( )iX k  is evaluated by 

computing the fitness function [ ]J f . At each generation, the positions of the particles are 

updated as according to Equation (4.31). A roughly estimated boundary shape is achieved 

after a pre-defined small number of generations. 

 The smooth estimated shape obtained by a spline interpolation on the rough 

estimation is used as the initial value for CGM, in which a large number of boundary 

elements are used to ensure the accuracy of the estimated solution. errorf , as defined in 

Equation (5.9), is used to evaluate the accuracy of the converged solution. 

To illustrate the hybrid method in estimating the unknown boundary shape ( )f x  from 

the knowledge of measurements obtained on the bottom boundary 1 , two test examples 

were considered. In the first one, the exact boundary and the exact solution ( , )u x y  of the 

governing Equation (5.39) are known and the exact temperature on boundary 1  is used as 

the desired measurement. In the second one, the exact boundary is given, the desired 

measurements on 1  are obtained from solving Equation (5.39) using BEM. 

For all numerical experiments described below, 10L . In the first stage of QPSO 

estimating the boundary shape, the boundary is coarsely discretised into 18N   boundary 

elements (Figure 5.38), which can largely reduce the computational time. While in the 

process of CGM, the number of boundary elements is 220N   (Figure 5.39) to guarantee 

accuracy. The first order regularisation term is used in the following examples to ensure the 

smoothness of the estimated shape. And the L-curve method is applied to choose the 

regularisation parameter. 



164 

 

1

2

3

4

x

y



10L 

 

Figure 5.38: Coarse element discretisation with 28N  . 
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Figure 5.39: Dense element discretisation with 220N  . 

Example 1. The temperature over the domain is given by ( , )u x y y , which implies that 

( ) 1q x   , 0( ) ( )u x f x  and ( ) 0Y x   for all [0, ]x L . The exact boundary shape 3  is 

given by   2
( ) 1 0.4exp / 2 / 3f x x L    , [0, ]x L . 

From Figure 5.40, it can be observed that the final estimated shape is close enough to 

the exact boundary shape, which shows the viability and accuracy of the hybrid method in the 

boundary shape identification. Figure 5.41a) shows the convergence history of the QPSO, in 

which the objective function value [ ]J f  decrease quickly even within 6 iterations. Then the 

CGM produces a convergent optimal solution after 20 iterations with the initial value from 

QPSO (Figure 5.41b)).  
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Figure 5.40: Estimated boundary shape in Example 1 by using HM2 with exact 

measurements. 
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(b) 

Figure 5.41: Convergence history of the hybrid method (HM2). 

Example 2. The temperature on boundary 3  is 0( ) 100u x  , heat flux on boundary 1  is 

( ) 20q x  . The exact boundary shape function 3 is  ( ) 1.5 0.8sin 0.2f x x  , [0, ]x L . 

The effect of the number of boundary elements on the accuracy of the estimated results is 

examined. Figure 5.42 and Figure 5.43 show the estimated boundary shape by using HM2 

with the number of boundary elements 110N   and 220N  . The computational CPU time, 

average error of the estimated ( )f x  and the objective function value are listed in Table 5.23. 

Note that, more boundary elements produce better estimated results, but require large 

computational time. 

 

.  

0 2 4 6 8 10 12 14 16 18 20
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

iteration

co
nv

er
ge

nc
e

 

 

CGM



167 

 

 

Figure 5.42: Estimated boundary shape in example 2 by using HM2 with 110N  .  

 

Figure 5.43: Estimated boundary shape in example 2 by using HM2 with 220N  .  
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Table 5.23: Effect of number of elements on the results. 

No. of Elements N  CPU time (s) errorf  [ ]J f  

110 612.38 9.90E-03 0.31 

220 4520 3.10E-03 1.02E-02 

 

Then the effect of the measurement errors on the inverse solutions was also discussed. 

Two different noise levels of the temperature measurement error 0.01   and 0.05   were 

studied. The estimated boundary shapes of the two test cases are presented in Figure 5.44. 

Note that the estimated results are seriously affected by the error from the temperature 

measurements. The most important thing from the figures is the oscillations in the estimated 

results near 0x   and x L , the cause of which lies in the CGM. The gradient of the 

objective function 
u

J
y y

 
 

 
, 

 
as defined in section 3.3, is always zero at  0x   and x L , 

because of 0
u

y





 and 0

y





 at both 2  and 4 . This is the inherent problem of CGM, 

unless the exact initial value of ( )f x  is given.  
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(b) 

Figure 5.44: Estimated boundary shape in Example 2 by usingthe hybrid method with noise 

measurement. (a) 0.01   (b) 0.05  . 

To overcome this stagnated problem of CGM and reduce the computational CPU time 

of QPSO in estimating the boundary shape, the parallel QPSO proposed in section 4.5 

running on Heracles system was used. Table 5.24 shows the comparison of the performance 

between synchronous and asynchronous parallel QPSO for example 1. Note that the average 

error of the estimated shape obtained by synchronous QPSO (both sequential and parallel) is 

better than that obtained by asynchronous QPSO. However, the computational CPU time 

required in synchronous QPSO is much longer than that in asynchronous QPSO. It seems 

strange that the efficiency of the asynchronous parallel QPSO exceeds 100%. That is because 

the process of parallel asynchronous QPSO is not exactly the same as the sequential 

asynchronous QPSO (Figure 4.18 and Figure 4.19). The parallel asynchronous QPSO makes 

full use of the computational resources without idle waiting, which saves much 

computational CPU time. 

Table 5.25 shows the average error of the estimated boundary shape obtained by the 

parallel static subpopulation QPSO, which is not as good as that obtained by parallel master-

slave QPSO. The result becomes worse when the number of processors increases. The reason 
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is because the small number of particles in the subpopulation is not enough to produce good 

result in a large problem space, e.g. 4 particles in search space with dimensional size 50. 

Figure 5.46 shows that the estimated boundary shape is very close to the exact shape and 

much better than that estimated by CGM, especially at the both ends of the curve. 

Table 5.24: Performance of parallel synchronous and asynchronous QPSO. 

Number of 

Processors 

errorf  
Computational 

Time (s) 
Speedup Efficiency 

Syn Asyn Syn Asyn Syn Asyn Syn Asyn 

1 4.47E-04 5.53E-04 690.98 650.18 1 1 100% 100% 

4 4.56E-04 4.78E-04 222.75 80.63 3.10 8.06 77.5% 201.59% 

8 4.22E-04 4.37E-04 105.76 53.44 6.53 12.17 81.6% 152.08% 

16 3.73E-04 4.32E-04 53.97 18.60 12.80 34.96 80.0% 218.47% 

 

Table 5.25: Performance of static subpopulation QPSO. 

No. of 

Processors 
errorf  

Computational 

Time (s) 
Speedup Efficiency 

1 6.75E-04 653.99 1 100% 

4 6.76E-04 164.62 3.97 99.3% 

8 8.75E-04 82.82 7.89 98.7% 

16 1.79E-03 41.88 15.62 97.6% 
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Figure 5.45: Estimated boundary shape in Example 1 by using parallel QPSO. 

 

Figure 5.46:  Estimated boundary shape in Example 1 by using CGM. 
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5.7.3 Conclusion 

In this section, the geometric shape of the boundary in heat conduction problems is identified 

using the hybrid method (QPSO + CGM) together with BEM, which is based on the 

minimisation of the squared errors between the measured and calculated temperatures at 

some observation points. Tikhonov regularisation method with first-order regularisation term 

is used to stabilise the solution. Two numerical examples are tested, which demonstrate the 

viability and effectiveness of the hybrid method in solving the problem of identifying the 

geometric boundary shape. Besides, the hybrid method avoids the careful choice of initial 

value as in gradient-based method and reduces the computational time as in the QPSO, which 

is more adaptive and much easier to use.  

To overcome the stagnated problem of CGM to identify the values near  both ends of the 

boundary and avoid expensive computational CPU time in QPSO, the parallel QPSO is used.  

 

5.8 Simultaneous Estimation of  Two unknown Quantities in Heat Conduction Problems 

The determination of the thermal properties from a measured temperature profile is a 

coefficient inverse problem of heat conduction [1], [3]. In the literature, several methods have 

been developed to address this problem, see the discussion in chapter 1.  

In this section, the QPSO and the modified QPSO with Gaussian mutation are applied to 

simultaneously estimate the temperature dependent thermal conductivity and heat capacity 

with no prior information about the functional form. 

 

5.8.1 Mathematical description 

Consider a one-dimensional homogeneous slab as shown in Figure 5.47, with thickness L  

and initial temperature 0u . Two constant heat fluxes 1q  and 2q  are imposed on the both 

boundaries. 
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Figure 5.47: One-dimensional heated slab. 

For the case of temperature dependent thermal conductivity ( )K u  and heat capacity per unit 

volume ( )C u  and density  , the heat conduction process is governed by 
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                   (5.37)  

For simplicity, 1   and 1L , which is the same as using non-dimensional data. 

The task is to find ( )C u  and ( )K u , with which the temperature ( , )iu x t  ( 1,2i  ) 

computed from Equation (5.41) is as close to measured temperature ( , )iY x t  as possible. The 

nonlinear least squares method is used as  

                                     
 

2
2

1 0

[ ( ), ( )] ( , ) ( , )
ft

i i
i t

J C u K u u x t Y x t dt
 

   .                                  (5.38)   

When generating simulated temperature measurements ( , )Y x t  with a predefined 

( )C u  and ( )K u , the nonlinear direct problem defined by Equation (5.41) is required to be 

solved. An iterative technique is needed in solving the problem in conjunction with an 

implicit finite difference method.  

As the temperature ( , )u x t  is approaching its converged result by using an iterative 

technique under some specified initial and boundary conditions, the values of K  and C  at 
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any time and position ( , )x t  are fixed, because temperature ( , )u x t  is known and fixed at any 

( , )x t . Under this situation, Equation (5.41a) is discretised as  

                       

1 1 1 1 1 1 1 1
1 11 1 1 1 1 1
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2
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j j j j j j j j j
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               (5.39) 

where j
iu , j

iC  and j
iK  are temperature, heat capacity and thermal conductivity at the j th time 

step 1,2,..., tj N , along the i th grid point 1,2,..., xi N . For the boundaries, the second order 

discretisation Equations (5.28) and (5.29) are used. 

The average error values, which intend to evaluate the both of the estimated heat capacity and 

thermal conductivity, are defined as Equation (5.34) and 
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1 1
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t xN N
jj
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   ,                                       (5.40) 

where j
iK  and j

iC  are the estimated thermal conductivity and heat capacity, j
iK  and 

j
iC  are 

the exact thermal conductivity and heat capacity. 

The Tikhonov regularisation method as described in section 2.3 is used to address the ill-

posedness of the inverse problem and stabilise the solution. The objective function becomes 
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    ,                         (5.41) 

where 1  and 2  are the regularisation parameters. 

In the numerical solution of direct problem, 1( , )ju x t   is computed from ( , )ju x t , 

therefore in the inverse problem, ( )C u  and ( )K u  may be computed step by step from 0t  to 

tNt . Then for ( , )jC x t  and ( , )jK x t , the objective function becomes 

                           

 
1

2 2

1

2 22 2
1 2
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
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The regularisation operator is the same as ( )Lv x , which becomes 
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for the zeroth-order regularisation and  
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for the first-order regularisation. 

 

5.8.2 Numerical tests 

In this section, the modified QPSO with Gaussian mutation proposed in section 4.4.3 is used 

to solve the inverse problem of simultaneously estimating temperature dependent thermal 

conductivity and heat capacity, in which, every particle ( )iX k  is treated as a candidate 

solution of ( , )jC x t  and ( , )jK x t  ( 1,2,..., tj N ), 

                 
1 2

1 2 1 2

( ) { ( ), ( ),..., ( )}

{ ( , ), ( , ),..., ( , ), ( , ), ( , ),..., ( , )}
x x

i i i iD

j j N j j j N j

X k X k X k X k

C x t C x t C x t K x t K x t K x t

 
   ,                 (5.45) 

where 2 xD N .  Equation (5.49) is used as the objective function to evaluate the particles at 

time jt . Two different methods were used to select the contraction-expansion coefficient   

as described in section 4.4.2. Substituting ( )iX k  into Equation (5.41), the temperature u  can 

be computed by solving the direct problem. At each generation, the positions of the particles 

are updated according to Equation (4.31). The process is repeated until a pre-defined number 

of generations have reached or the solution converged. errorK  and errorC  as defined in 

Equations (5.46) and (5.47), are used to evaluate the accuracy of the converged solutions. 
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Procedure of QPSO with Gaussian Mutation for the simultaneous estimation of ( )C u  

and ( )K u  

For j = 1: tN  

Initialization: 

particle positions: 1 2(0) { (0), (0),..., (0),..., (0)}i MX X X X X ; 

personal best positions: (0) (0)P X ; 

global best position: gP ;  

contraction-expansion coefficient  , 0k  , stopping criteria  ; 

while ( maxk k ) or (  is not reached) 

Compute the mean best position ( )C k  by Equation (4.30); 

For each particle 1,2,...,i M  

     Compute the attractor ( )ip k  by Equation (4.15); 

Update the position ( 1)iX k   according to Equation (4.31); 

Evaluate the fitness [ ( 1)]iJ X k   according to Equation (5.42); 

                  End for 

          Update ( )P k  and ( )gP k ; 

                Decrease contraction-expansion coefficient   linearly or keep constant; 

                 1k k  ; 

End while 

1(:, ) (1: )j g xC t P N  ; 

1(:, ) ( 1: )j g xK t P N D   . 

End for 

To demonstrate the viability, accuracy and stability of the modified QPSO with 

Gaussian mutation, a typical example used in [67] is considered. The predefined functional 

forms of ( )K u  and ( )C u  are defined as 

                                               1.0 4.5exp 2.5sin
80 3

u u
K u         

   
                                 (5.46) 

                                                  2( ) 1.2 0.02 0.00001C u u u                                             (5.47) 
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The material has initial temperature 0 1u  . When 0t  , the two boundaries are subjected to a 

constant heat flux, 1 17q   and 2 6q  , respectively. The total simulated time is assumed to 

be 1.2ft  , which is also dimensionless. The temporal step size and mesh size are set as 

0.02t   and 0.05x   for the numerical tests. 

Before addressing the simultaneous estimation of ( )C u  and ( )K u , special cases 

involving the estimation of either ( )C u  or ( )K u  are considered, assuming the other function 

as exactly known. Figure 5.48 shows the estimated ( )K u  obtained by QPSO with exact 

measurements, by assuming ( )C u  known as in Equation (5.47). The estimated ( )C u  with 

known ( )K u  as in Equation (5.46) is shown in Figure 5.49. The average errors of the 

estimated ( )K u  and ( )C u  are 8.84E-04 and 4.05E-05, respectively. Note that accurate 

results were obtained. 

 

Figure 5.48: Estimated ( )K u  at 0.5x  with known ( )C u  by using QPSO with exact 

measurements. 
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Figure 5.49: Estimated ( )C u  at 0.5x  with known ( )K u  by using QPSO with exact 

measurements. 

Then, the case of simultaneous estimation of ( )K u  and ( )C u  is examined by using 

QPSO, in which, the significant aspect is how the solutions are represented. The first xN  

components of each particle’s position represent the heat capacity ( )C u  which are initialized 

in the range [4.0, 9.0], and the next xN  components represent the thermal conductivity ( )K u  

initialized in the range [1.0, 1.5]. Figure 5.50 shows the estimated results obtained by using 

QPSO with exact measurements. It can be seen that the estimated results are reasonably 

accurate.  
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(a) 

 

(b) 

Figure 5.50: Simultaneous estimated results at 0.5x  by using QPSO with exact 

measurements. 
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The estimated results using measurements with noise level 0.001   and 0.005  are 

shown in Figure 5.51 and Figure 5.52, respectively. As expected, increases in the 

measurement errors cause decreases in the accuracy of the inverse solution. Especially for the 

estimated ( )C u  with noise level 0.005   large oscillations exhibit around the exact value.  
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(b) 

Figure 5.51: Simultaneous estimated results at 0.5x  by using QPSO with noisy 

measurements 0.001   
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(b) 

Figure 5.52: Simultaneous estimated results at 0.5x  by using QPSO with noisy 

measurements 0.005  . 

To improve the quality of the estimation results, QPSO with Gaussian mutation to mbest 

(MGQPSO), as described in section 4.3, is used to solve the inverse problem. The estimated 

results are shown in Figure 5.53-Figure 5.55. Note that the quality of the estimated ( )K u was 

improved to get closer to the exact value. On the other hand, from the view of figures, the 

quality of the estimated ( )C u  is not improved at all. But the average error of ( )C u  has 

improved significantly, as shown in Table 5.26. The reason may be because the range of 

( )C u is in [1.0,  1.45] , a small perturbation looks like a large oscillation from the exact ( )C u . 
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(a) 

 

(b) 

Figure 5.53: Simultaneous estimated results at 0.5x  by using MGQPSO with exact 

measurements. 
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(a) 

 

(b) 

Figure 5.54: Simultaneous estimated results at 0.5x  by using MGQPSO with noisy 

measurements 0.001  .  
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(a) 

 

(b) 

Figure 5.55: Simultaneous estimated results at 0.5x  by using MGQPSO with noisy 

measurements 0.005  .  
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Table 5.26 gives the average error of the estimated ( )C u  and ( )K u  with different 

noise levels by using QPSO and MGQPSO, from which, one can see that the results obtained 

by using MGQPSO are better than that obtained by using QPSO.  

Table 5.26: Average error of different tests. 

Method Noise level   
Average error 

errorC  errorK  

QPSO 

0.000 8.53E-04 1.93E-03 

0.001 8.43E-04 1.96E-03 

0.005 9.74E-04 3.06E-03 

MGQPSO 

0.000 7.05E-04 1.53E-03 

0.001 7.09E-04 1.60E-03 

0.005 8.13E-04 2.90E-03 

Figure 5.56 presents the average error of ( )K u  and ( )C u  with respect to the number of 

generations obtained by QPSO and MGQPSO. Note that QPSO converges much faster than 

MGQPSO at the beginning of the search process. But QPSO stagnates and gets trapped into a 

local optimum in the latter stage. On the other hand, the Gaussian mutation helps MGQPSO 

escape from the local optimum and have chance to search for the global optimum. 
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(b) 

Figure 5.56: Convergence history of QPSO and MGQPSO for the simultaneous estimation of 

(a) ( )K u , (b) ( )C u .  

 

5.8.3 Conclusion 

The QPSO method with Tikhonov regularisation was applied to simultaneously estimate the 

temperature-dependent thermal conductivity and heat capacity with no prior information 

about the functional forms. The numerical experimental results demonstrate the viability of 

QPSO even with sensors only at the boundaries. In order to enhance the global search ability, 

a modified QPSO with Gaussian mutation was applied to the inverse estimation problem. The 

results illustrate the efficiency and stability of the proposed method, especially for the ill-

posed problem with noisy measurements. 
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5.9 Closure  

This chapter gave six applications of IHCPs in estimating time-varying heat flux, heat source, 

heat transfer coefficient, temperature-dependent thermal conductivity, boundary shape and 

simultaneously thermal conductivity and heat capacity. In addition, one application of inverse 

advection-dispersion problem of estimating the contaminant source was also examined. Both 

stochastic and deterministic methods were tested. To improve the estimated solution and the 

performance of the algorithms, the proposed hybrid method was applied to solve the inverse 

problems. In each application, the comparison of performance between different algorithms 

was presented and discussed. 
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Chapter  6 CONCLUSIONS AND FUTURE 
WORK 

 

This thesis provided an in depth study of solving inverse problems numerically using 

deterministic and stochastic algorithms. Two types of engineering applications, including 

heat conduction problems and groundwater contamination problems, were examined in detail 

with unknown quantities such as boundary heat flux, heat or pollutant source, thermal 

properties, boundary shape. Measurement data such as temperature or concentration was used 

to provide the additional information in the process of determinating the unknown quantities.  

Finite difference method was used to solve the direct problems for regular 

computational domains, while the boundary element method was used for irregular domains. 

The computing time for large numbers of boundary elements becomes very high. 

Inverse problems are ill-posed because the solution is sensitive to random errors in the 

measured input data. Regularisation techniques are used to improve the stability. Nonlinear 

Tikhonov regularisation method was discussed in Chapter 2. The L-curve method for the 

regularisation parameter selection was used in the numerical tests presented in this thesis.   

 The conjugate gradient method (CGM) is a useful technique for inverse function 

estimation problems because regularisation is implicitly built into the algorithm and the 

number of iterations can be used as the regularisation parameter. The combination of a 

minimisation algorithm with an adjoint equation that provides the gradient to be used in the 

minimisation iterative procedure is the basis of the CGM. However, one main disadvantage 

of this method is that the initial guess for the iterative procedure must be chosen carefully in 

order to ensure convergence to the global minimum. In essence, the initial guess must fall 

into a very restricted region containing the exact solution. Another disadvantage of CGM is 
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that stagnation of the convergence often appears with the value close to the final time in 

estimating time-varying unknown quantities (e.g. heat flux) or with the value near the two 

boundaries in estimating spatial-dependent quantities (e.g. boundary shape). 

A population-based heuristic algorithm known as quantum-behaved particle swarm 

optimisation (QPSO) was re-visited and examined. This thesis provided a new insight into the 

quantum behaviour of the particles, in particular the reasons behind using such behaviour and 

the application of the delta-well. The QPSO method is robust and easier to use than CGM, 

because the particles which represent the candidate solutions may be initialized randomly and 

do not require computing the complicated gradient of the objective function.  In other words, 

the QPSO method is a derivative free method. 

One disadvantages of a QPSO system is the loss of diversity in the population as in 

other population-based evolutionary algorithms. In the latter part of the search period, the 

particles are clustered together gradually and the swarm is likely to be trapped into local 

optima. To enhance the global search ability of QPSO for complex multi-modal problems, 

several modifications to QPSO are proposed. These are perturbation operation, Gaussian 

mutation, ring topology model and several methods for algorithmic parameter selection. 

Benchmark functions were used to test the performance of the proposed modified algorithms.  

In complex engineering optimisation problems, every fitness evaluation costs long 

computational time, e.g. BEM for solving a two-dimensional steady heat conduction problem. 

It requires a large amount of CPU time in QPSO with thousands of generations. QPSO, as 

other population-based methods, is intrinsically parallel and can be effectively implemented 

on massively parallel processing architectures. Two parallel models of QPSO, master-slave 

parallelizaiton (synchronous and asynchronous) and static subpopulation parallelization are 

developed and applied to estimate the boundary shape. From the estimated results and 

performance of the parallel QPSOs, it can be concluded that the scalability of the static 

subpopulation parallel QPSO is limited and not suitable for systems with large number of 

processors, the asynchronous parallel QPSO makes full use of the computing resources 

without idle waiting. 

A hybrid method, which makes use of deterministic (CGM) and stochastic (QPSO) 

methods, was proposed in this thesis to enhance the quanlity of the estimated solutions and 

the performance of the algorithms for solving the inverse problems numerically. Two novel 
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data transfer methods were proposed to pass a rough estimated solution from QPSO as an 

initial approximation to CGM. 

Finally, the proposed methods were used to solve typical examples in the research 

literature of estimating time-varying heat fluxes, heat sources, heat transfer coefficient and 

contaminant sources, temperature-dependent thermal conductivities and two simultaneous 

unknown quantities. The numerical results demonstrate the feasibility and efficiency of 

QPSO and the global search ability and stability of the improved versions of QPSO. The two 

hybrid methods were applied to the estimation of heat flux and boundary shape, respectively. 

The results obtained are accurate, especially for the boundary shape determination problem. 

The simultaneous estimation of temperature dependent thermal conductivity and heat 

capacity is addressed by using QPSO with Gaussian mutation, the estimated results of which 

are much better than CGM and more stable with noisy measurements.  

All of the objectives defined in Chapter 1 of the thesis have been achieved.  

 Possible future work may begin by applying the proposed algorithms to higher 

dimensional problems. This may not lead to significant complexities but simply increase the 

computational time and require more measurements to obtain accurate solution. Therefore, 

migrating the parallel QPSO algorithms onto other massively parallel processing 

architectures, such as GPU, or other computing resources, such as Cloud Computing on the 

internet to save computational time is one way out. 

 The random error existing in data measurements inevitably affects the accuracy of the 

numerical inverse determination of the unknown quantities. Methods of quantifying such 

inaccuracy would be useful in comparing different methods. In addition, such knowledge 

would be able to feed into a heuristic optimisation technique as a stopping criterion of the 

iterative algorithm. One way to understand such error manifestation is to examine the 

stochastic response due to a controlled random disturbance to a chosen property, such as 

thermal conductivity, on the direct solution of the field variable.  

 The methods developed in this thesis can be easily generalised to other science and 

engineering applications. In particular the wave equation falls into similar category of 

problems as investigated in this thesis. On the other hand tomographic reconstruction of 

hidden surface seems to be a challenging area coupling image processing and inverse 

problems. For example, in an inverse scattering problem for a time-dependent elastic wave 

equation, one seeks to determine unknown material parameters with variation in space from 
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measured wave reflection data. Typical applications involve many types of inverse problems 

occurring in seismic wave propagation, non-destructive testing and medical imaging. 

Heuristic algorithms without evaluation of derivatives would be very useful in inverse 

problems. In particular methods such as Plant Propagation Algorithm, Bacteria Growth 

Algorithm, Predator model, etc.   
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