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ABSTRACT 

 

The Platreef is a Ni-Cu-PGE mineralised tabular body at the base of the Rustenburg Layered 

Suite in the northern limb of the Bushveld Complex. The reef lies unconformably on a 

footwall (floor) sequence of Transvaal Supergroup sedimentary rocks and Archaean 

granite/gneiss basement, and is overlain by a hangingwall (roof) of Main Zone gabbronorites. 

Structural relationships suggest that the Platreef was emplaced as a broadly horizontal 

sill-like sheet into the Transvaal Supergroup, but local variations in its thickness and path of 

intrusion were caused by pre-existing structures in the country rocks. As the Platreef cooled 

and was nearly crystallised, ductile deformation occurred, possibly as an episode in a longer 

event. Main Zone magma was emplaced above the deformed, nearly consolidated Platreef and 

eroded the uppermost portion, locally assimilating mineralised reef. The Main Zone magma 

also intruded into shear zones as thin dykes down through the Platreef and metasedimentary 

floor. Structural patterns around a prominent dome in the floor rocks suggest that regional 

deformation may still have been active when the earliest Main Zone layers were developing, 

but ceased by Upper Main Zone time. 

Other studies of the Platreef beyond Sandsloot have shown that its earliest Ni-Cu-PGE 

mineralisation was orthomagmatic, largely preserved where the floor rocks are unreactive 

basement granite/gneiss. However, interaction between the Platreef magma and surrounding 

sedimentary rocks has produced different mineralogical associations and assemblages that 

were influenced by the local floor and roof rocks along the strike of the reef. At Sandsloot, the 

floor rocks are represented by reactive siliceous dolomites of the Malmani Subgroup. The 

Platreef magma caused contact metamorphism and metasomatism of the dolomites, releasing 

volatiles that entered the reef. These hydrothermal fluids stripped PGE from primary 

sulphides and redistributed the PGE within the reef and into the metasedimentary country 

rocks. In places, primary platinum group minerals were overprinted by lower-temperature 

species. 
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1. INTRODUCTION 

 

1.1 Prelude 

In the last decade or so, the unprecedented demand for platinum group elements (PGE) and 

the resultant surge in PGE prices has led to a worldwide boom in PGE exploration and 

mining. In recent years, new PGE mines have been opened and are being developed on the 

Merensky Reef and UG2 chromitite in the western and eastern limbs of the Bushveld 

Complex, and on the Platreef of the northern limb. In South Africa, which is the world�s 

largest supplier of PGE, changes in mineral rights legislation has contributed to the boom. 

Several other igneous bodies in southern Africa have recently been or are being explored for 

PGE by a number of mining companies. Further, the historically high PGE prices have made 

PGE an increasingly significant and profitable by-product of some primary nickel mining 

operations. 

The output of PGE mines in South Africa was reduced by a nationwide electricity 

shortage in 2008, raising fears of decreased PGE supply over the next 5 years and 

consequently lifting PGE prices higher still. In the latter part of 2008, however, the worldwide 

�credit cruch� had a severe effect on the global economy. The resultant fall in demand for 

commodities such as PGE led to a sharp drop in commodity prices. Since then, prices have 

seen a rapid recovery, with an attendant appetite for investment, and the exploration boom for 

many commodities has resumed, fuelled largely by massive demand in rapidly developing, 

highly populated nations such as China and India. However, current fears over the excessive 

national deficits of major nations are now causing uncertainty and resultant volatility in the 

markets.  

 

1.2 The platinum group elements 
 

1.2.1 Physical and chemical properties 

The platinum group elements (PGE) comprise a geochemically coherent group of siderophile 

to chalcophile metals that includes osmium (Os), iridium (Ir), ruthenium (Ru), rhodium (Rh), 

platinum (Pt) and palladium (Pd). They belong to the Group VIII transition elements together 

with Fe, Co and Ni, and are among the least abundant of all elements in the bulk Earth. 

Based on their position within the Periodic Table, the PGE may be divided into two 

subgroups or triads: the �heavy� Ir triad consisting of Os, Ir and Pt (atomic numbers 76, 77, 78 



2 

 

respectively), and the �light� Pd triad consisting of Ru, Rh and Pd (atomic numbers 44, 45, 46 

respectively). A more common subdivision on geochemical grounds separates the PGE into 

high temperature Ir-group PGE (IPGE) comprising Os, Ir and Ru; and the low temperature 

Pd-group PGE (PPGE), comprising Rh, Pt and Pd (e.g. Barnes et al. 1985; Tredoux et al. 

1995). The PGE, together with gold and silver, are often called �precious metals� or �noble 

metals�. 

 In chemical terms the PGE are highly siderophile, i.e. they tend to bond with metallic 

iron where it is present. The PGE form a diverse array of complete and partial solid solutions 

with each other, with Fe and Ni, and with elements such as Sn, Pb, Sb, and Bi (Berlincourt et 

al. 1981). The PGE dissolve slowly in concentrated acids but are virtually unreactive in 

diluted acids and alkalis. Pt and Pd are more reactive than the other PGE in concentrated acid, 

and dissolve readily in aqua regia. The PGE will all react with oxygen and halogens only at 

high temperatures to produce volatile PGE oxides and halide compounds. Perhaps the most 

important property of the PGE in the context of this study is that they dissolve in molten bases 

of the P block of the periodic table to form a wide range of sulphides, tellurides, arsenides, 

bismuthides, antimonides and selenides. These constitute many of the naturally occurring 

platinum group minerals (PGM), which will be outlined in a later section. Table 1-1 below 

shows some of the physical properties of the PGE. 

 

Property  Ru  Rh  Pd  Os  Ir  Pt 

Atomic number  44  45  46  76  77  78 

Atomic weight  101.07  102.94  108.42  190.23  192.22  195.08 

Density (g/cm3
)  12.45  12.41  12.02  22.61  22.65  21.45 

Melting point (°C)  2310  1960  1554  3050  2443  1769 

Boiling point (°C)  3900  3727  3140  5027  4130  3827 

Resistivity at 0°C (µɏcm)  6.80  4.33  9.93  8.12  4.71  9.85 

Hardness (annealed, VHN)  240  101  40  350  220  40 

Atomic radius (cmͲ8
)  1.336  1.342  1.373  1.350  1.355  1.385 

Oxidation state (common) 

Oxidation state (highest) 

+3

+8 

+3

+6 

+2

+4 

+4

+8 

+3 

+6 

+2

+6 

Thermal conductivity (watts/m/
o
C)  105  150  76  87  148  73 

Tensile strength (kg/mm
2
)  165  71  17  Ͳ  112  14 

Table 1-1. Physical properties of the platinum-group elements (data from Johnson Matthey 2011a). 
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1.2.2 PGE distribut ion in the Earth 

It is believed that the siderophile nature of the PGE has resulted in their concentration in the 

Earth�s core at an early stage of the planet�s formation (e.g. Azbel et al. 1993; McDonough & 

Sun 1995; Righter 2003). Some studies suggest that siderophile elements are more abundant 

in the Earth's mantle than core-mantle partitioning models predict (Borisov et al. 1994). 

Moreover, highly siderophile elements occur in approximately chondritic relative abundances 

in the mantle. These two features have been used to support the �late veneer hypothesis� in 

which highly siderophile elements were reintroduced into the mantle by intense meteoritic 

bombardment of the primitive Earth after core formation (Chou 1978; Morgan 1986; O�Neill 

1991). However, this hypothesis may not be in agreement with more recently published PGE 

data that seem to show PGE fractionation and heterogeneity in the upper mantle that is 

inconsistent with any of the major chondrite groups (e.g. Pattou et al. 1996; Snow & Schmidt 

1998). 

Processes of partial melting of mantle, which contains intermediate amounts of PGE, 

followed by emplacement into the crust and the action of various magmatic and fluid 

processes may result in economic concentrations of the PGE. In terrestrial environments, PGE 

concentration ranges from sub-ppb (parts per billion) level in rocks of felsic and intermediate 

composition to generally 1-100 ppb in mafic and ultramafic rocks (e.g. Misra 2000; Crocket 

1981, 2002; Barnes et al. 1985). Economic deposits typically contain 5-10 ppm (parts per 

million) PGE and involve concentration factors in the order of one thousand, similar to those 

for gold deposits. Whilst mafic and ultramafic rocks are the main exploration targets for PGE, 

it is not clear whether the essential silicate and accessory oxide minerals of these rocks are 

true collectors of PGE, or of specific PGE, in a magma (Crocket 2002); but there is evidence 

that PGE-rich inclusions may be present in the silicate phases (Keays & Campbell 1981; 

Barnes & Naldrett 1987). Rather, PGE are concentrated to much higher levels in sulphides 

and in rarer metallic alloys, tellurides, selenides, arsenides and sulpharsenides (Cabri 1992, 

1994, 2002). 

 

1.2.3 Aqueous geochemistry of the PGE 

The PGE are mobile in aqueous fluids, and it is generally considered that Pt and Pd are more 

mobile than Rh, Ru, Os and Ir (Westland 1981; Wood 2002). Aqueous fluids can be 

magmatic, metamorphic or meteoric, and hydrothermal processes appear to have operated at 

some stage in the evolution of the majority of PGE deposits, but the importance of each of 

these processes in the concentration of PGE to economic levels is debated. The PGE can be 

transported as chloride complexes, in bisulphide solutions, as hydroxide complexes and as 



4 

 

organic ligand complexes (Wood 2002 and references therein). In some deposits, aqueous 

solutions may be the primary mechanism of PGE concentration. In the Waterberg Pt deposit, 

for example, Pt owes its presence exclusively to hydrothermal processes (Wagner 1929; 

McDonald et al. 1995; McDonald et al. 1999; Armitage et al. 2007). 

 

1.2.4 Uses of the PGE 

The outer electronic structure of the PGE gives them outstanding catalytic properties. They 

are highly resistant to wear and tarnish, making platinum particularly well suited to fine 

jewellery. Other distinctive properties include resistance to chemical attack, excellent high-

temperature characteristics, and stable electrical properties. All of these properties have been 

exploited for industrial applications. Pure Pt, Pt alloys and Ir are used as crucible materials for 

the growth of single crystals, especially oxides. The chemical industry uses a significant 

amount of either Pt or a Pt-Rh alloy catalyst in the form of gauze to catalyse the partial 

oxidation of ammonia to yield nitric oxide, which is the raw material for fertilisers, 

explosives, and nitric acid. In recent years, a number of PGE have become important as 

catalysts in synthetic organic chemistry. Ru dioxide is used as coatings on dimensionally 

stable titanium anodes used in the production of chlorine and caustic soda. Pt-supported 

catalysts are used in the refining of crude oil, reforming, and other processes used in the 

production of high-octane gasoline and aromatic compounds for the petrochemical industry. 

Since 1979, the automotive industry has emerged as the principal consumer of PGE. Pd, Pt, 

and Rh have been used as oxidation catalysts in catalytic converters to treat automobile 

exhaust emissions (e.g. Huuhtanen et al. 2005). A wide range of PGE alloy compositions is 

used in low-voltage and low-energy contacts, thick- and thin-film circuits, thermocouples and 

furnace components, and electrodes. 

 Pt has the ability, in certain chemical forms, to inhibit the division of living cells, and 

the discovery of this property has led to the development of Pt-based anti-cancer drugs such 

as the intravenously administered Cisplatin, Carboplatin and Oxaliplatin (marketed under the 

trade name Eloxatin). Satraplatin, a new orally administered Pt anti-cancer drug, is 

undergoing clinical trials for treatment of prostate cancer. Pacemakers for heart disorders 

usually contain at least two Pt-Ir electrodes, and Pt electrodes are also found in pacemaker-

like devices (e.g. internal cardioverter defibrillators). Many catheters contain Pt marker bands 

and guide wires, which are used to help the surgeon guide the device to the treatment site. The 

radio-opacity of Pt enables doctors to monitor the position of the catheter by X-ray during 

treatment. 
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 Pt and principally Pd are the main PGE used in dental restorations. They are usually 

mixed with gold or silver as well as copper and zinc in varying ratios to produce alloys 

suitable for dental inlays, crowns and bridges. Small amounts of Ru or Ir are sometimes 

added. The most common application is in crowns, where the alloy forms the core onto which 

porcelain is bonded to build up an artificial tooth. 

 Fig. 1-1 illustrates the supply of Pt, Pd and Rh by region and the demand for the same 

metals by application in the year 2010. This was 1-2 years after the �credit crunch� and 

notable changes in PGE supply and demand (and therefore prices) have come about since 

2007, when world markets were at a high. In particular, there was a shortfall in Pt supply of 

265,000 oz (troy ounces) in 2007, but demand fell by about 1 Moz (million troy ounces) in 

2009, levelling into 2010, and was only just met by supply in 2009 and 2010. Pd demand fell 

only slightly between 2007 and 2009, but was still comfortably fulfilled despite a fall in 

supply of 1.145 Moz. In 2010, Pd demand rose by 1.26 Moz from 2009 while supply only 

rose by 115,000 oz. Rh was in slight undersupply in 2007 but in oversupply in 2009 due to a 

fall in demand of 260,000 oz. In 2010, Rh demand fell by 11,000 oz while supply fell by 

32,000 oz but there was still an oversupply of 114,000 oz. 

 

1.3 Platinum group minerals 

Cabri (1976) published a glossary of 74 platinum group minerals (PGM) and mentioned the 

reported occurrence of 65 or more unnamed PGM awaiting further characterisation. Later, the 

same author reviewed the mineralogy, geology and recovery of the PGE (Cabri 1981), 

covering inorganic chemistry, phases and phase relations, geochemistry, sample preparation 

techniques, analytical methods, PGM, PGE deposits and the relationship of mineralogy to the 

recovery of PGE from ores. By 1997 there were 96 approved PGM, over 500 unidentified 

platinum group phases, and more than 20 non-platinum group minerals containing varying 

concentrations of one or more of the six PGE. Daltry & Wilson (1997) reviewed the published 

literature and evaluated approximately 1500 published chemical analyses of PGM that had 

been accepted by the International Mineralogical Association as discrete mineral species, and 

unidentified (unnamed or inadequately described) platinum group phases reported in the 

literature but not proven to be discrete minerals. The database revealed some chemically 

related trends concerning the PGE themselves and the essential non-PGE constituents. In an 

update of his 1981 work, Cabri (2002) lists 109 PGM, the majority of which are recognised 

by the Commission on New Minerals and Mineral Names, and characterises their general 

appearance, physical and optical properties, chemical analytical data, reported localities, 

occurrence and relationship to other species.  
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Fig. 1-1. [Left column] Global supply of Pt, Pd and Rh by region and [right column] global demand for Pt, Pd 

and Rh by application in 2010 (pie charts from Johnson Matthey 2011b). 
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1.4 Types of PGE deposits 

Anomalous concentrations of PGE have been identified in geological environments ranging 

from high-temperature magmatic to low-temperature hydrothermal and sedimentary settings 

(e.g. Kucha 1982; MacDonald 1987; Lechler 1988; Naldrett et al. 1990; McDonald et al. 

1995; Naldrett 2004; Armitage et al. 2007; Barkov et al. 2008). Significant concentrations, 

however, are almost exclusively found in the mafic-ultramafic portions of large tholeiitic 

intrusions of Late Archaean to Early Proterozoic age (Maier 2005). Few examples are older or 

younger, and the scarcity of relatively young PGE-rich intrusions might be explained by the 

Archaean Earth being hotter than during subsequent aeons (Richter 1988). As a result, the 

degree of partial mantle melting (and thus the MgO, Cr, Ni and PGE contents of the magmas) 

has decreased with time, reflected by the rarity of post-Archaean komatiites. The scarcity of 

PGE-enriched intrusions of Early Archaean age may be partly due to the poor preservation of 

Archaean terranes. Another possibility is that the Archaean crust was denser than younger 

crust, such that mantle derived magmas could have ascended faster without being stored in 

crustal magma chambers. 

About 98% of the world�s identified PGE resources occur in two types of deposits that 

are both intimately associated with Ni-Cu sulphides or chromitite (Misra 2000; Mungall et al. 

2004; Naldrett 2004). These are: (a) stratiform or stratabound deposits in large layered 

complexes (e.g. the Bushveld Complex, Stillwater Complex of the USA, and Great Dyke of 

Zimbabwe), mined principally for PGE; and (b) massive Ni-Cu sulphide deposits mined 

primarily for Ni and Cu, but containing recoverable amounts of PGE as by-products, e.g. 

Sudbury intrusion of Canada, Noril�sk-Talnakh intrusion of Russia, Jinchuan intrusion of 

China, and Kambalda intrusion of western Australia. 

 

1.4.1 Physical environments for PGE deposits 

In order to form PGE deposits, magmas must initially be PGE-rich and a process must operate 

by which PGE-enriched phases become highly concentrated out of a large volume of magma 

into a smaller column of rock. The two principal collector phases are sulphide liquid and 

chromitite, and one of the optimal physical settings for collection of PGE is a conduit though 

which a large volume of magma passes (Mungall 2005). Sulphide melt may form due to 

assimilation of wall rocks at any point along the margins of the intrusion, but can be entrained 

in flowing magma or settle from crystal mushes, and will only accumulate to significant 

extents where changes in the conduit structure decelerate the flow regime and allow 

suspended droplets to be deposited (Maier et al. 2001). A great array of structural traps has 

been recognised within conduits: typical environments include embayments in the margins of 
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dykes or sills, hollows in the bases of ultramafic lava channels, sharp bends or sudden 

widenings of dykes or sills, magmatic breccias, or the entry points of dykes into larger magma 

chambers (Fig. 1-2). 

 

 

 

 

Fig. 1-2. Cartoon of conduits showing common 

geometries of structural traps in which sulphide 

liquid may accumulate (from Mungall 2005). 

 

Conduits occur in many shapes and sizes, for example as dykes (the Great Dyke, Zimbabwe), 

sills (Noril�sk-Talnakh, Russia) and cylindrical bodies of ultramafic cumulates such as 

Alaskan-Uralian type complexes (Uktus, Russia). Large layered intrusions are essentially 

enormous sills (Bushveld Complex, South Africa, and Stillwater Complex, USA) and are the 

product of magma that flowed through and emerged from a conduit system. A key feature of a 

conduit system is that it typically contains excessive quantities of cumulus phases (which may 

include the collector phase itself), such that the bulk composition of the rocks preserved 

within the conduit differs markedly from the bulk composition of the original magma that 

passed through it. Conduits can therefore be recognised as bodies of ultramafic rock lacking 

complementary mafic or felsic fractionates. A secondary characteristic of conduits for basaltic 

magmas is the common presence of a thermal metamorphic aureole that is unusually wide in 

relation to the size of the intrusion. This results from the continuous passage of hot magma 

through the conduit, and therefore a continuous transmission of heat into the host rocks, as 

opposed to the heat that could be accomplished by injection and cooling of a single pulse of 

magma (Naldrett 2005a). 

 

1.4.2 Overview of  PGE deposits in igneous rocks 

Layered igneous complexes account for about 90% of the world�s PGE resources, with the 

Bushveld Complex alone providing about two thirds of the global PGE production. Of the 

individual PGE, the Bushveld Complex hosts 75% of the world�s resources of Pt, 54% of Pd 

trough
or embayment

basal section
of dike

local depression

entry point or widening
of magma chamber

abrupt change
in orientation
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and 82% of Rh (Naldrett 2004, 2008; Fig. 1-3). As of 1999, proven and probable Bushveld 

ore reserves totalled 204 Moz (million troy ounces) Pt and 116 Moz Pd to a depth of 2 km, 

while total reserves and resources amounted to 1140 Moz Pt, with 387 Moz outside South 

Africa. Assuming an increase in demand of 6% per year, this is sufficient for 50 years 

(Cawthorn 1999). 

 

 

 

 

 

Fig. 1-3. Pt, Pd and Rh resources of major 

mining areas of the world (from Naldrett et 

al. 2008). 

 

 

The initial step in PGE exploration is the identification of prospective igneous bodies, so it is 

logical to group known PGE deposits by their petrological association. The resulting 

classification can then be used as an aid to exploration. However, a single layered intrusion 

may contain several different styles of deposit. These styles or associations are outlined 

below, and their settings in and around a hypothetical layered intrusion is shown in Fig. 1-4. 

Note that no single intrusion is likely to contain all of the styles shown, and deposits with 

magmatic mineralisation are the main focus of this section. 

 

1.4.2.1 T- and U-type magma mixing association 

The largest PGE deposits occur in intrusions that are characterised by a high proportion of an 

early magma with a distinctive Al2O3-poor and MgO-, Cr- and yet SiO2-rich (U-type) 

composition, followed in the same intrusion by one with a more typical tholeiitic composition 

(T-type) (e.g. Iljina 1994; Miller & Andersen 2002; Alapieti & Lahtinen 2002). Many of the 

PGE concentrations occur at levels in the intrusions at which trace element and isotopic 

signatures indicate variable degrees of mixing of these two magma types. 

In the Bushveld Complex, the lowest stratiform concentration of PGE-enriched 

sulphides is that of the MG3 chromitite, followed by the UG1 and UG2 chromitites, the 

Pseudo Reef and finally the Merensky Reef. These horizons occur within the interval over 
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Fig. 1-4. Simplified model of a layered intrusion showing the types of PGE deposits and their likely location 

within the intrusion (from Naldrett 2005a). 

  

which petrological, isotopic and geochemical data indicate the periodic introduction of new 

magma into the chamber, melted roof rocks in the case of the chromitites (Kinnaird 2004) and 

T-type magma in the case of the Merensky Reef. In the Stillwater Complex, the J-M Reef lies 

400 m stratigraphically above the level at which T-type magma was first introduced, in a 

sequence of rocks characterised by frequent small influxes of such magma (e.g. Zientek 1983; 

Todd et al. 1982; Helz 1985). The principal PGE reefs in the Finnish intrusions (S-J Reef at 

Pennikat, S-K Reef at Portimo) lie at the base of the first cyclic unit in which T-type magma 

was first involved (Iljina 1994; Alapieti & Lahtinen 2002). 

Much controversy surrounds the genesis of these �classic� PGE reefs. Magma mixing 

leading to sulphide immiscibility in a high �R factor� environment has long been favoured. 

The R factor is the mass ratio of source silicate magma to the sulphide liquid that extracts 

metals from it (Campbell & Naldrett 1979; Campbell et al. 1983). However, modelling of 

sulphur solubility has raised doubts as to whether sulphide immiscibility will ensue in this 

way (Cawthorn et al. 2002b; Li et al. 2001). 

A consistent key feature of the �classic� stratiform reefs is their occurrence in or close 

to orthocumulates that are associated with reversals in cryptic variation or modal cyclicity (in 

some cases also associated with magma quenching). This, along with the occurrence of these 

particular reefs close to levels at which the introduction of a second magma type has been 

documented, makes it difficult to rule out magma mixing as a major factor in their 

development. 

In the Bushveld Complex and the Finnish intrusions, stratabound (but not stratiform) 

mineralisation occurs in marginal rocks (e.g. the Platreef of the Bushveld Complex, and 
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Kontijärvi and Ahmavara bodies of the Portimo Complex) which are equated with the 

introduction of T-type magma into an intrusion that previously had developed largely from U-

type magma. Naldrett (2004) has proposed that upon injection of T-type magma, this mixed 

with U-type magma already in the intrusion and led to the precipitation of PGE-rich sulphide, 

some of which was swept out along the margins as the overall volume of the intrusion 

increased. Maier (2005) notes that the Platreef represents the only example of basal PGE 

mineralisation that is presently mined. However, as the present study will show, the Platreef 

was not originally a basal facies and is only marginal in its present setting. 

 

1.4.2.2 T-type magma association 

In some cases PGE deposits occur in intrusions that were produced by T-type magma with no 

evidence of an early U-type. Examples include the Keweenawan intrusions of the Lake 

Superior area, including the Sonju Lake intrusion within the Duluth Complex, and the 

Coldwell intrusion, the Cap Edvard Holm and Skærgaard intrusions of East Greenland, the 

Lac des Îles deposit in Canada, and the Stella reefs (Maier et al. 2003a) which are being 

evaluated by Platinum Australia. 

Miller & Andersen (2002) call attention to the contrast between (i) PGE reefs such as 

the Platinova reef of the Skærgaard Intrusion, Greenland, and the PGE-enriched horizon in the 

Sonju Lake intrusion, Duluth Complex, and (ii) what they define as �classic� reefs of the 

Merensky type. They point out that the former occur in the fractionated portions of intrusions 

that are the consequence of closed-system differentiation of T-type magma. They attribute 

PGE concentration to the accumulation of sulphur in the magma as a result of crystal 

fractionation, perhaps aided by periodic pressure release. 

The Lac des Îles intrusion (e.g. Lavigne & Michaud 2001) contains a very different, 

discordant style of mineralisation associated with rocks of this association. PGE (principally 

Pd, with the Pd/Pt ratio about 10) occur in an igneous breccia and associated mafic rocks that 

resulted from the remelting of the gabbroic portion of a mafic/ultramafic layered complex. 

 

1.4.2.3 Chromitite-hosted PGE 

Most chromitite seams in layered intrusions are enriched in PGE relative to their silicate host 

lithologies. In the case of the Bushveld Complex, grades of the major seams range from 0.1 

ppm to c. 6-7 ppm total PGE, but the <2 cm Merensky Reef chromitite stringers carry up to 

50 ppm. The only major chromitite that is presently mined for its PGE content is the UG2. 

Four major models may be distinguished for PGE mineralisation in chromitites (Maier 2005) 

but all are contentious to some degree: 
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(i) Concentration of PGE by magmatic sulphides, followed by (a) sulphide+chromite 

supersaturation triggered by contamination, or (b) sulphide supersaturation triggered by 

precipitation of chromite in response to contamination or other processes (e.g. Haughton 

et al. 1974; Naldrett & Von Gruenewaldt 1989). 

(ii) Concentration of some of the PGE, especially the IPGE and Rh, by means of solid 

solution in chromite (e.g. Capobianco et al. 1994; Peach & Mathez 1996; Righter et al. 

2004). This model is supported by the positive correlation between the IPGE and Cr in 

some mafic-ultramafic intrusions. 

(iii) Localised reduction of silicate melt by crystallisation of chromite, causing nucleation and 

crystallisation of PGE alloys and their subsequent enclosure by the crystallising chromite 

(Mungall 2002; Finnigan & Brenan 2004; Finnigan et al. 2008). 

(iv) Crystallisation of chromitite stringers in response to flux melting of norite-pyroxenite by 

percolating fluid-rich intercumulus magma rising through the semi-consolidated 

cumulate pile. If the protocumulates contained small amounts of disseminated sulphides, 

it is conceivable that these were concentrated during flux melting to form the reef 

(Nicholson & Mathez 1991). 

 

1.4.2.4 Dunite pipes 

Discordant, olivine-rich, pipe-like bodies in the Upper Critical Zone of the Bushveld Complex 

contained up to 100 ppm Pt (now mined out). The best known of these are the Onverwacht, 

Driekop, Mooihoek and Maandagshoek pipes and have some of the highest PGE grades 

reported in the complex (up to 2050 ppm: Wagner 1929; McDonald et al. 1995). Their origin 

has been ascribed to the injection of late-stage magmatic fluids, although associated with 

metasomatism of the enclosing igneous rocks (Schiffries 1982; Stumpfl & Rucklidge 1982; 

Tegner et al. 1993). Scoon & Mitchell (2004), however, argue against the fluid model and 

suggest that the pipes formed by downward percolation of dense, evolved Fe-rich melt from 

within the Bushveld Complex that scavenged PGE from reef-style deposits higher in the 

succession. These melts are only fertile in localities where the earlier-formed magnesian 

dunite pipes have provided the necessary heat to selectively melt PGE-bearing phases from 

layered cumulates at higher levels. 

 

1.4.2.5 Ural-Alaskan type 

In some areas, PGE production has been almost exclusively derived from the valleys of rivers 

associated with distinctive calc-alkaline intrusions with alkaline affinities (shoshonitic) that 

are commonly referred to as the Ural-Alaskan type (e.g. Johan 2002). Examples include 
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intrusions of the Platinum Belt in the Ural mountains of Russia, where at both the Volkovsky 

deposit (Poltavets et al. 2006) and the Baronskoye prospect (Zaccarini et al. 2004) PGE are 

concentrated in zones rich in titaniferous magnetite, apatite and Cu sulphides (Potter 2002). 

The intrusions themselves are not economic, but are the source of the most important Pt 

placer deposits, e.g. the Soleviev Hills, Urals; Kondyor massif, Eastern Siberia; and the 

Seynav-Galmoznav massif, Koryakia, Russia. 

 

1.4.2.6 Carbonatite-bearing alkaline association 

PGE occur in placer deposits associated with carbonatite-bearing mafic/ultramafic intrusions 

that are clearly alkaline in composition. An example is the Early Triassic Guli intrusion in the 

northern part of the Siberian platform that is the source of Os-Ir placers (Malich 1999). The 

placers are not economic, but they are important because they constitute the only significant 

concentration of Os-Ir minerals in placers, and are exploited on a small scale by local 

prospectors (Naldrett 2005a). 

 

1.4.3 Hydrothermal PGE deposits 

Few cases have been documented where hydrothermal processes are the only or main factors 

responsible for the concentration of PGE. Many are localised remobilisations of originally 

magmatic PGE in shear zones or faults associated with mafic-ultramafic intrusions. However, 

there are instances where PGE have been hydrothermally leached from mafic-ultramafic 

source rocks at depth, then transported to and precipitated in a distal environment. The 

generation of the hydrothermal fluids and the causes of precipation owe themselves to a 

variety of processes depending on the local setting. For example, at the Waterberg lodes in 

Rooiberg felsites near Mookgophong (formerly Naboomspruit), South Africa, hydrothermal 

PGE mineralisation with grades up to 990 ppm occurs in quartz-haematite-monazite veins 

(McDonald et al. 1995). The mineralisation is interpreted to have formed in response to 

neutralisation and/or reduction of highly oxidising fluids that may have leached PGE from 

underlying mafic-ultramafic rocks of Bushveld Complex (Armitage et al. 2007). 

 

1.5 Purpose of the study 
 

1.5.1 Problem statement 

PGE mining and exploration in the eastern and western parts of the Bushveld Complex to date 

have produced sufficient data to bring the genetic understanding of the Merensky Reef and 

UG2 chromitite mineralisation to a mature stage, although some aspects of their genesis are 
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still debated, e.g. Kinloch & Peyerl (1990), Wilson et al. (1999) Barnes & Maier (2002), 

Smith et al. (2004), Wilson & Chunnett (2006) and Mitchell & Scoon (2007) for the 

Merensky Reef; and Eales (2000), Mathez & Mey (2005) and Mondal & Mathez (2007) for 

the UG2. In the northern limb, PGE are associated with the Platreef, but until recent years the 

lack of mining activity in this area has meant that the economic geology has received 

considerably less attention than the eastern and western lobes. For example, Kinnaird & 

McDonald (2005) noted that the seminal volume of Mineral Deposits of South Africa, 

published in 1986, contains papers on the tin (Pringle 1986) and chromium (Hulbert & Von 

Gruenewaldt 1986) deposits of the region, but nothing on the Ni-Cu-PGE deposits of the area. 

Prior to 2003, reviews of Bushveld PGE mineralisation that included a description of the 

Platreef (Lee 1996; Viljoen & Schürmann 1998; Barnes & Maier 2002) focused exclusively 

on the central portion of the Platreef outcrop, where historical mining and exploration had 

been concentrated, and relied primarily on earlier summaries (e.g. Buchanan 1988; White 

1994). 

The Platreef rests directly on the Palaeoproterozoic sediments and Archaean 

gneiss/granite basement that form the floor of the Bushveld complex. It is a contaminated, 

frequently xenolith-rich unit that is geologically more complex than any of the PGE reefs in 

the eastern and western lobes, but which is also thicker and carries sufficiently consistent 

grade to allow large-scale open pit mining along some sections of its strike (Viljoen & 

Schürmann 1998; Bye 2001; Kinnaird & Nex 2003). Anglo Platinum currently operate five 

open pit mines on or straddling the farms Sandsloot 236 KR, Vaalkop 819 LR, Zwartfontein 

818 LR and Overysel 815 LR, and have plans for a further four (projects named Tweefontein 

North and Tweefontein Hill) to the south/southeast of Sandsloot. The potential for more high-

tonnage and low-cost open pits in this sector has led other companies to explore on the 

Platreef adjacent to Anglo Platinum�s licence area, and the northern lobe is currently one of 

the most active exploration centres on the Bushveld Complex. 

The Platreef contains high grades of PGE and stands as a PGE deposit in its own right, 

unlike sulphide mineralisation in the contact zones of other layered complexes such as the 

Jimberlana intrusion (Keays & Campbell 1981), the Stillwater Complex (Page et al. 1985) 

and the Duluth Complex (Tyson et al. 1985; Miller & Ripley 1996; Ripley et al. 1999; 

Severson & Hauck 2005) where Ni and Cu are the primary metals and the PGE are by-

products. However, the genesis of the Ni-Cu-PGE bearing Platreef is not fully understood, 

likewise its mineralisation and relationship to the main mafic layered sequence of the 

Bushveld Complex complex. 
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1.5.2 Aims and objectives 

This study aims to identify and evaluate the geological processes that have operated in the 

development of the Platreef and its mineralisation at Sandsloot. The objectives are: (i) 

acquisition of first-order data by geological mapping and sampling of exposures in the 

Sandsloot open pit mine; (ii) petrographic and geochemical analyses of the collected samples; 

(iii) critical assessment of the mapping and analytical data in order to evaluate the nature and 

extent of the geological processes they reflect. 

 Chapter 2 contains a review of the Bushveld Complex. This is followed by a more 

detailed review of the northern limb of the complex in Chapter 3 and of the Platreef in 

Chapter 4. Chapter 5 presents geological descriptions based on first-order observation of the 

Platreef and associated units in the Sandsloot open pit mine during fieldwork in 2000 and 

2001. Chapter 6 presents the mineralogy and geochemistry of lithologies sampled at 

Sandsloot. Chapter 7 discusses and synthesises the foregoing chapters, concluding with a 

model in Chapter 8 for the development of the Platreef at Sandsloot. 
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2. THE BUSHVELD COMPLEX 

 

2.1 Introduction to the Bushveld Complex 

The mafic component of the Bushveld Complex of South Africa is the largest igneous 

intrusion known on Earth and contains some of the most important magmatic ore deposits yet 

discovered. It hosts about 75% of the world�s resources of PGE (Kendall 2006). The most 

widely accepted description of the complex is a concentric set of 7-8 km thick mafic and 

ultramafic cumulate units situated almost entirely within the bounds of the Transvaal Basin. 

The complex spans a distance of about 240 km  300 km, and covers an area of 

approximately 65,000 km2 (Tankard et al. 1982; Eales et al. 1993; Eales & Cawthorn 1996; 

Cawthorn 1999). The layered igneous rocks, known as the Rustenburg Layered Suite (RLS: 

South African Committee on Stratigraphy 1980) is divided into eastern and western lobes or 

limbs of roughly the same size, a southern lobe identified beneath cover rocks by gravity 

studies (Cawthorn et al. 2002b), and a smaller northern limb. Emplacement was concordant to 

the sedimentary layers in the western limb and discordant in the eastern and northern limbs 

(Button 1986; White 1994). The northern limb differs in several important aspects from the 

better known eastern and western limbs (e.g. van der Merwe 1976; Buchanan et al. 1981; 

McDonald et al. 2005a). The major platinum group element (PGE) deposits of the complex 

are the stratiform Merensky Reef and UG2 chromitite layer in the eastern and western limbs, 

and the stratabound, but not stratiform, Platreef in the northern limb. 

 The Bushveld Complex, in a looser sense than known today, was first named the 

Bushveld Plutonic Series (translated from French; Molengraaff 1898a, 1898b). Within a few 

years the term changed to Bushveld Plutonic Complex to denote the intricate relationships 

between the various intrusive components. However, it became apparent that the extensive 

flows of felsite in the province showed that both intrusive and volcanic rocks constituted the 

Bushveld cycle, so the term Bushveld Igneous Complex was introduced by Hatch & 

Corstorphine (1905) and came into general use. Other references to the complex include 

Bushveld laccolite (e.g. Palache 1922) and Bushveld lopolith (Daly 1928). Hall (1932) 

preferred the aforementioned term Bushveld Igneous Complex, as “no single word could do 

justice to the collection of sills, dykes, stocks, surface flows, etc.” This term persisted until the 

qualifying term �igneous� became generally discontinued in modern usage. Fig. 2-1 shows the 

currently accepted constituents of the complex. 
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Fig. 2-1. Simplified geological map of the Bushveld Complex (after Kinnaird et al. 2005). 

 

Although Fig. 2-1 includes alkaline intrusions and felsic intrusives and volcanics in the 

Bushveld Complex, much of the literature restricts the term to the mafic and ultramafic 

sequence of the Rustenburg Layered Suite (RLS). This practice is also adopted in the present 

study. Harmer & Armstrong (2000) have suggested that between 0.7 and 1.0 million km3 of 

mafic magma was produced within 1-3 Ma (Ma = mega anna: million years), which would 

require magma generation rates of between 0.3 and 1.0 × 106 km3 per Ma, respectively. If the 

estimates of magma volumes of 384 × 106 km3 for the Rustenburg Layered Suite (Cawthorn 

& Walraven 1998) and 200 × 106 km3 for the coeval Molopo Farms Complex (Reichardt 

1994) are included, then a cumulative volume of magma in excess of 1 to 1.5 × 106 km3 was 

generated, which is comparable in volume to major flood basalt provinces such as the Deccan 

and North Atlantic Tertiary Provinces (Gibson & Stevens, 1998). 

 

2.2 Structure of the Bushveld Complex 

The shape, distribution and constituent parts of the Bushveld Complex remain controversial 

topics. While several studies describe these aspects of the complex, it is surprising that there 

have been relatively few attempts to associate the shape and distribution of the complex with 

the broad geological structure and tectonic history of the surrounding Kaapvaal Craton. 
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Rather, local structure and isolated �fragments� of the floor or roof rocks have received more 

attention (e.g. Verwoerd 1963; De Waal 1970; Sharpe & Chadwick 1982; Rozendaal et al. 

1986; Hartzer 1987; Uken & Watkeys 1997; Scoon 2002). 

Older geophysical models of the Bushveld Complex include a single gigantic lopolith 

(e.g. Hall 1932) and dipping sheet models (e.g. Du Plessis & Kleywegt 1987; Meyer & De 

Beer 1987). Hall (1932) and Cousins (1959) included the Great Dyke, the Trompsburg 

Complex and other similar �detached� intrusives in their definitions of the Bushveld Complex, 

but subsequent age determinations have revealed that these intrusions have very different ages 

and therefore cannot be related to the same event: Vredefort ultramafics (3.5-3.3 Ga: Tredoux 

et al. 1999), Great Dyke (2.575 Ga: Mukasa et al. 1998; Armstrong & Wilson 2000; Oberthür 

et al. 2002), Bushveld Complex (2.06-2.05 Ga: Kruger et al. 1986; Walraven et al. 1990) and 

Trompsburg Complex (1.9 Ga: Maier et al. 2003b). 

 Du Plessis & Walraven (1990) employed a five-fold geographical subdivision for the 

coeval parts of Bushveld Complex: (1) a far western or Nietverdiend compartment; (2) a 

western compartment; (3) the Villa Nora�Potgietersrust compartment; (4) the eastern 

compartment; and (5) the covered Bethal compartment in the south; and additionally the 

Molopo Farms Complex in Botswana. Excluding the Molopo Farms Complex, this is the 

subdivision used today (e.g. Cawthorn et al. 2002b), but the �compartments� are usually called 

�limbs� or �lobes� and the Villa Nora-Potgietersrust compartment is known as the northern 

limb. It is the western, eastern and northern limbs that receive most attention as these areas of 

the complex host the majority of PGE deposits that are currently mined. 

 Based on mineral assemblages, the Bushveld Complex is divided vertically into a 

medium-grained Marginal Zone, an ultramafic Lower Zone, an ultramafic to mafic Critical 

Zone with prominent layering, a gabbronoritic Main Zone, and a gabbroic to ferrodioritic 

Upper Zone. A complete succession occurs only in the northern sectors of the eastern and 

western limbs. In the eastern limb, for example, the full sequence is exposed north of 

Steelpoort, but to the south the Lower, Critical, and Main Zones successively abut against and 

terminate against the sedimentary floor rocks; a similar geometry is recorded in the northern 

limb and will be detailed in Chapter 3. 

 The stratigraphy and the positions of the PGE horizons in the eastern and western 

lobes of the complex are broadly the same (Lee 1996; Cawthorn & Lee 1998; Barnes & Maier 

2002). This, together with geophysical evidence, led Cawthorn & Webb (2001) to infer that 

the eastern and western lobes have been connected throughout much of the evolution of the 

Bushveld Complex, that similar magmas were present in both lobes, and that mineralisation 

processes operated concurrently in both lobes to produce stratiform PGE deposits such as the 
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Merensky Reef and the UG2 chromitite. Kruger (1999, 2003) followed the conventional 

stratigraphy and considered the northern lobe to have been linked with the eastern and 

western lobes during Upper Critical Zone and Main Zone times: a mixed Main Zone and 

Upper Critical Zone magma flowed north across the chamber, overtopped the Thabazimbi-

Murchison Lineament (locally manifested as the Zebediela and Ysterberg-Planknek Faults) 

and flowed into the northern lobe, generating the Platreef along the base. Webb et al. (2004) 

present gravity modelling in support of connectivity between the eastern and western lobes, 

envisaging a downwarp in the Moho beneath the Bushveld Complex to achieve isostatic 

balance. This interpretation supports the much earlier proposal of Hall (1932). 

Von Gruenewaldt (1979) reviewed concepts of the Bushveld Complex and concluded 

that the broad locus of emplacement was at the intersection of several prominent structural 

directions in the Kaapvaal craton, with the present-day configuration of the complex 

controlled by a series of pre-Bushveld dome- and basin-like features that were generated by 

interfering NNW-SSE and ENE-WSW oriented anticlinal and synclinal warps. Du Plessis & 

Walraven (1990) highlighted the observation that the ENE-trending Thabazimbi-Murchison 

Lineament (TML: Fig. 2-1) controls the cratonic structural grain in its vicinity. In this regard 

it appears to have played an important role in determining pre-Bushveld structures, and thus 

the emplacement of the Bushveld Complex, as well as post-Bushveld deformation. The TML 

is seen as a crust-rupturing lineament which, together with related ENE-trending en echelon 

lineaments, exerts control on the major stratigraphic differences in the Bushveld Complex 

north and south of the TML. An aeromagnetic image of the complex (Fig. 2-2) clearly shows 

the lobate structure of the complex and the apparent control of major lineaments on the lobes. 

 In a palaeomagnetic study, Hattingh (1995) envisaged that the mafic rocks of the 

Bushveld Complex were emplaced and formed with the layering in a horizontal orientation 

and, after temperatures had dropped below Curie temperature of the carrier of the remnant 

magnetisation (580oC: Gough & van Niekerk 1959; Hattingh 1991), subsidence in the centre 

of the Bushveld Complex led to the present general inward dip directions of the pseudo-

layering. It follows that where the igneous layering locally dips away from the centre of the 

complex, the dips are attributed to dome-like features that must postdate emplacement of the 

Bushveld Complex and cooling below 580oC. 

 A number of large domal structures occur in the high-grade metasedimentary rocks in 

the thermal aureole of the Bushveld Complex, and were already well known in early work on 

the north sector of the eastern limb (e.g. Kynaston 1906; Daly 1928; Hall 1932). The domes, 

which have spacings of 20-40 km and wavelengths of several km, have disturbed the footwall 

contact and penetrate the RLS to variable structural levels. Although the origin of the 
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Fig. 2-2. Aeromagnetic map of the Bushveld Complex with approximate town locations (modified after 

Kinnaird 2005b). High to low gravimetric signatures are purple (highest) through red, yellow, green, pale 

blue and dark blue (lowest). Note the lobate structure of the complex associated with east-west to ENE-

WSW trending lineaments, especially the Thabazimbi-Murchison Lineament close to Mookgophong. 

 

structures has been debated, most authors suggest that they represent pre-RLS folds that were 

modified following emplacement of the mafic-ultramafic rocks (e.g. de Waal 1970; Sharpe & 

Chadwick 1982; du Plessis & Walraven 1990; Hartzer 1995; Bumby et al. 1998). Daly (1928) 

was perhaps the first worker to propose that deformation of country rock strata at the 

Bushveld margin was a response to the sinking of crust under the weight of the layered 

sequence, and Button (1978) first proposed that the structures are diapiric. Uken & Watkeys 

(1997) suggested that the lower parts of the RLS intruded as fingers and that the diapirs 

formed by magma loading and upward amplification of ductile floor rocks in the �interfinger� 

areas. Marlow & van der Merwe (1977) describe the deformation of RLS rocks around an 
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antiform in the Malope area adjacent to the Wonderkop Fault, concluding that the antiform 

developed by folding that not only started well before intrusion of RLS, but continued until 

after emplacement of the Nebo Granite. Walraven (1974) presented a similar conclusion from 

an area southwest of the Crocodile River Dome. However, neither of the two latter studies 

suggests explicitly that the developing fold structures were accentuated by diapirism. Hunter 

(1975) considered that the Crocodile River and Moos River Domes reflect conditions of 

compressional deformation during subsidence of the Transvaal sedimentary basin, and 

proposed that deformation in the vicinity of the domes continued during crystallisation of the 

RLS, causing disruption of reefs and discrete layers. Hartzer (1995) suggested that the 

�Crocodile River Fragment� could be interpreted as a dome rather than a fault block as 

previously believed. Scoon (2002) studied the occurrence of the Merensky Reef on the flanks 

of several domes in the Dwarsrand area. The domes are interpreted to have formed by 

diapirism triggered by gravitational loading and heating of the Transvaal Supergroup in 

response to intrusion of the Bushveld Complex. This interpretation is similar to that of Uken 

& Watkeys (1997) but with more pronounced diapirs in the Dwarsrand area. Here, a pattern is 

seen in the mafic and ultramafic rocks that is suggested to be the product of episodic intrusion 

and uplift by multiple magma replenishment, in which each of the many cycles that comprise 

the Critical and Main zones corresponds to a new magma pulse, with the oldest layers being 

dragged to higher structural levels in response to diapiric uplift. The geometric result is 

similar to a sedimentary offlap model, and uplift may be several km on the flanks of the larger 

domes. Scoon & Teigler (1994) had previously proposed a magma replenishment model for 

syn-Bushveld deformation in the western limb, and suggested that the western, eastern and 

northern limbs of the Bushveld Complex are subdivided into compartments that are 

structurally controlled and with a unique stratigraphy. In a slightly later study, Scoon & 

Teigler (1995) stated that the structural dislocation and lithostratigraphical changes associated 

with domes and basins in the Bushveld Complex are controlled by primary magmatic 

processes and that faulting is a subordinate effect, not the causal mechanism. 

Another observation in Scoon�s (2002) study is that the Upper Zone is transgressive in 

relation to the Critical and Main zones, and may have formed by an entirely new intrusive 

phase rather than the generally accepted model of differentiation within the Bushveld 

chamber (Wager & Brown 1968; Kruger et al. 1987). Similar transgressive relationships are 

reported in the western limb (Viljoen et al. 1986a, 1986b; Wilson et al. 1994). 
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2.3 Palaeotectonic setting 

The Kaapvaal Craton, which hosts the Bushveld Complex, is an amalgamation of crustal 

blocks that were assembled at 3.7�2.7 Ga (De Wit et al. 1992). The assemblage can be 

divided into two periods: (1) at 3.7�3.1 Ga, continental lithosphere separated from the mantle 

by intraoceanic obduction and amalgamation followed by within-shield melting, granite 

formation and chemical differentiation of the upper lithosphere to create the Kaapvaal Craton; 

(2) Silver et al. (2004) interpreted mantle fabrics revealed by seismic anisotropy to conclude 

that an unknown orogeny prior to 2.9 Ga imparted a mantle fabric on the Zimbabwe craton 

(Fig. 2-3a). Then, around 2.9 Ga, the Pietersburg and Kimberley blocks collided with the 

Kaapvaal Shield, imparting an arc-like mantle fabric and forming the Thabazimbi-Murchison 

Lineament (TML in Fig. 2-3b). The Limpopo orogeny followed at 2.7�2.6 Ga, generating the 

Limpopo Belt between the Kaapvaal and Zimbabwe cratons, concomitant with intrusion of 

the Great Dyke and Ventersdoorp Supergroup (Fig. 2-3c). During the Magondi orogeny 

around 2.0 Ga, shear zones in the Limpopo Belt were reactivated and the Bushveld Complex 

was intruded along the TML (Fig. 2-3d). The final stage is the 1.9�1.8 Ga Kheis orogeny 

(Cornell et al. 1998), which generated the Soutpansberg rift (Fig. 2-3e). 

A seismic study by James et al. (2001) showed that thick mantle roots are confined to 

the Archaean cratons, with no evidence for similar structures beneath the adjacent Proterozoic 

mobile belts. The Bushveld magmatic event affected a broad swathe of Kaapvaal cratonic 

mantle beneath and to the west of the exposed Bushveld Complex. The mantle beneath the 

extended Bushveld province is characterised by seismic velocities lower than those observed 

in regions of undisturbed cratonic mantle. The mantle beneath the Limpopo Belt exhibits a 

cratonic signature. 

 

2.4 Source of Bushveld magma 

The mechanism(s) leading to the emplacement of the Bushveld Complex is a contested topic. 

Mills Davies (1925) hypothesised “an active molten rock magma of common or normal 

composition deep down in the Central Transvaal area and its gradual advance upwards 

through thousands of feet of strata until it emerged through devious ways through the 

quartzites and shales of the Pretoria Group and … spread out like a colossal cake”. Wagner 

(1929) characterises the complex as a lopolith and suggests intrusion into horizontal strata but 

does not propose a mechanism for intrusion. Hatton (1995) viewed the Bushveld Complex as 

the plutonic equivalent of a continental flood basalt province. On the basis of MgO and SiO2 

contents, he calculated that melting occurred at a depth of 18�40 km and argued that only a 
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buoyant mantle plume breaching the base of the crust could cause melting at these depths to 

provide the Bushveld magma. Cawthorn et al. (2002b), however, claimed that this 

geochemical basis for calculation of the melting depth is invalidated by the possible effects of 

 

 

Fig. 2-3. Tectonic scenario for the evolution of the Kaapvaal Craton (after Silver et al. 2004). TML = 

Thabazimbi-Murchison Lineament; CL = Colesberg Lineament; TSZ = Triangle Shear Zone; PSZ = Palala 

Shear Zone; SR = Soutpansberg Rift. 

 

fractionation and crustal contamination. These authors further note that kimberlites intruding 

the Bushveld Complex contain mantle xenoliths with an age of 3.0 Ga, much older than the 

Bushveld Complex, and argue that these xenoliths could not have been preserved if a plume 

had penetrated the mantle. They concluded that melting occurred at much greater depth in the 

asthenosphere, and magma rather than a plume penetrated the lithospheric upper mantle. In 

the Premier kimberlite in the eastern Kaapvaal shield, Carlson et al. (1999) determined Re/Os 
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ages around 2.0 Ga for xenoliths sourced from the upper lithosphere, and xenoliths with a 

deeper source have more typical Kaapvaal ages of around 3.0 Ga. The presence of the 

younger ages is explained by a resetting of the Re/Os system by a magmatic event, which for 

the younger xenoliths corresponds to the Bushveld Complex. Implicit in this argument is that 

if the Bushveld Complex was generated by a plume, the lower lithospheric mantle, where the 

older xenoliths are sourced, would also be �reset�. Richardson & Shirey (2008) show that 

sulphide inclusions in ~2.0 Ga diamonds from the 1.2 Ga Premier and 0.5 Ga Venetia 

kimberlites, on opposite sides of the Bushveld Complex, have initial Os isotope ratios even 

more radiogenic than those of the Bushveld sulphide ore minerals. Sulphide Re-Os and 

silicate Sm-Nd and Rb-Sr isotope compositions indicate that continental mantle harzburgite 

and eclogite components, in addition to the original convecting mantle magma, most probably 

contributed to the genesis of both the diamonds and the Bushveld Complex. Coeval diamonds 

provide evidence that the main source of Bushveld PGE is the mantle rather than the crust. 

 Magma feeders to the Bushveld Complex have not been identified with certainty, 

though gravimetric studies have inferred several feeders (Kinloch 1982). Whilst it has been 

assumed that areas displaying positive Bouguer gravity anomalies represent pipe-like feeders 

(e.g. Sharpe et al. 1981), du Plessis & Kleywegt (1987) note that these anomalies in the 

eastern and western lobes coincide with the upper contact of the Upper Zone where the mafic 

rocks attain their greatest thickness, resulting in positive gravity anomalies that can only be 

ambiguously interpreted as feeders. Van der Merwe (1976) interprets a highly positive gravity 

anomaly in the northern limb just west of Mokopane (Potgietersrus in Fig. 2-4) as a feeder. 

This anomaly is the strongest in the Bushveld Complex and does not coincide with a 

particularly thick mafic package. 

 Further, van der Merwe (1976) found no gravimetric evidence of connectivity between 

the northern and eastern limbs. Rather, they are separated by a linear zone (the TML). Kruger 

(2005a) envisages that the Main Zone magma intruded through a feeder near Mokopane at the 

intersection of the TML and the Pietersburg Greenstone Belt. The magma first flowed north 

into the northern lobe (with the Lower Zone already in place) before flowing south to the 

main chamber to form the Merensky Reef at its base. The similarity in 87Sr/86Sr ratios is 

highlighted by Kruger (2005a) and this, along with other geological and mineralogical 

similarities, implies that the Platreef and Merensky Reef are consanguineous and virtually 

coeval. This is a long-held view that is now increasingly questioned (e.g. McDonald & 

Armitage 2003; McDonald et al. 2005a). 
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Fig. 2-4. Gravity map of the Bushveld Complex (after Cawthorn & Webb 2001). Solid outline delimits 

surface outcrop of mafic rocks. 

 

 Naldrett et al. (2008) propose a �pudding basin� model for the marginal mineralisation 

of the Bushveld Complex. The authors note the absence of more differentiated cumulates and 

explain this by the expulsion of partially fractionated magma up and along the margins of the 

complex by the overpressure induced by a new influx. The analogy is the filling of the space 

between two nested pudding basins of similar size through a feeder at the base of the lower 

basin. In this regard, the complex is envisaged as a series of �pudding basins�, with one basin 

representing each lobe or limb and each basin displaying a different level of erosion. The 

eastern and western limbs are considered to be a single basin. 

The role of tectonic features in the emplacement of the RLS is also debated. Sharpe & 

Lee (1986) concluded that faults played no part in the emplacement of the RLS. Du Plessis & 

Walraven (1990), however, examined and compared structural features within the Lebowa 

Granite Suite and RLS in various compartments of the Bushveld Complex and evaluated them 

in terms of relationships to major structural features of the Kaapvaal Craton: the TML; the 

Kgomodikae lineament (westward extension of the TML in Botswana); the Melinda, 

Abbotspoort, Rustenburg and Steelport faults; and the Barberton lineament in the south. 
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These authors conclude that a craton-scale en echelon set of ENE trending lineaments 

exercised extensive control on the emplacement of the complex and its subsequent 

deformation. Von Gruenewaldt et al. (1987) correlated the 2044  24 Ma Molopo Farms 

Complex (Mapeo et al. 2004) with the Bushveld Complex and divided it into a mainly 

ultramafic northern facies and mafic-dominated southern facies. These facies are divided by 

the Kgomodikae lineament, an extension of the TML, which once again highlights the 

significance of this regional lineament. 

Linear feeders represented by shear zones have been proposed as magma conduits 

(Cawthorn et al. 2002b; Friese 2004). The Steelpoort Fault is considered to be such a feeder 

(Cawthorn et al. 2002b), as there are differences in stratigraphic thicknesses in units of the 

Lower and Critical Zones across the fault (Hatton & von Gruenewaldt 1987), which Cawthorn 

et al. (2002b) consider to be a result of differential flow of magma northwards and 

southwards of the feeder. The same authors propose that other large faults separating 

compartments of the Bushveld Complex also acted as conduits. 

 The TML is a 500 km long, 25 km wide ENE-WSW striking deformation belt that has 

been reactivated as a fault (McCourt 1983; McCourt & Vearncombe 1987). Good & de Wit 

(1997) consider the TML to be a long-lived, repeatedly reactivated, craton-scale relay 

structure that has probably influenced the emplacement of the Bushveld Complex, since the 

northern lobe is significantly offset from the eastern and western lobes across the lineament. 

Implicit in their interpretation is that the Bushveld Complex intruded syntectonically with an 

episode of movement along the TML and that the northern lobe is connected with the eastern 

and western lobes. Friese (2004) also suggests that the Bushveld magma utilised the TML, the 

Palala Shear Zone and Barberton-Magaliesburg Lineament as conduits; and at a critical level 

in the crust the magmatic pressure equalled the lithostatic pressure, allowing the lateral spread 

of the sill-like intrusion of the Bushveld Complex. Kruger (2005a) relies heavily on the TML 

to explain emplacement of the different zones of the complex, notably Main Zone magma 

intruding first northwards to form the Platreef, then southwards to form the Merensky Reef. 

Note that this model implies the Platreef is a basal facies of the Main Zone, but this traditional 

view of the stratigraphy is increasingly contested (e.g. McDonald et al. 2005a). Nonetheless, 

the apparent control of crustal-scale lineaments on the lobate structure of the Bushveld 

Complex is very evident in an aeromagnetic image (Fig. 2-2). 

 The model of Silver et al. (2004) interprets the Bushveld Complex, Ventersdoorp 

Supergroup, Great Dyke, and Soutpansberg trough as collisional rifts. There is no plume 

mechanism in the model; instead, intrusion of the Bushveld Complex is controlled only by 

variations in lithospheric stress. Further, Silver et al. (2004) show the crust north of the TML 
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to be part of the Pietersburg Block, whereas the crust to the south belongs to the Kaapvaal 

Shield. These cratonic blocks were separate and had no common history prior to collision at 

2.9 Ga. As the Bushveld Complex intruded on both sides of the TML, it is possible that the 

magmas on either side are derived from compositionally different sublithospheric mantle. 

 

2.5 Age of the Bushveld Complex 

Buick et al. (2001) sampled a large calc-silicate xenolith in the Upper Zone on the farm 

Avonduur 814 KS in the eastern limb of the complex. The xenolith preserves high-

temperature (~1200oC), massive, vesuvianite-rich or wollastonite+clinopyroxenite rich 

mineral assemblages that were later metasomatised and completely retrogressed by hydrous, 

retrograde (~600�700oC) fluids. Non-pervasive hydrothermal alteration also affected the RLS 

itself over a temperature range of 700�400oC (Schiffries & Rye 1990). Three possible 

explanations for retrogression are given: (1) hydrothermal circulation around the cooling 

RLS; (2) emplacement of slightly later Bushveld related granites; or (3) a younger event 

unassociated with Bushveld age magmatism. Stable isotope analyses by Schiffries & Rye 

(1990) had suggested that the retrograde fluids were derived from dehydration of the 

Transvaal Supergroup floor rocks during emplacement of the RLS. Buick et al. (2000) 

reached similar conclusions. U-Pb isotope data from newly grown titanite in the sampled 

xenolith yield an age of 2058.9  0.8 Ma (Buick et al. 2001). The authors conclude that 

titanite very likely preserves the crystallisation age rather than the cooling age. Therefore, 

retrograde fluid infiltration within the xenolith most probably occurred at 2058.9  0.8 Ma. 

This age is within error of a well constrained Bushveld emplacement age of 2060  3 Ma 

(Kruger et al. 1986), also a less precise age of 2060  27 Ma (Walraven et al. 1990) and is 

distinctly older than the emplacement of the Lebowa Granite Suite (2054  2 Ma; Walraven & 

Hattingh 1993). The titanite crystallisation age therefore suggests that retrogression was due 

to hydrothermal circulation associated with the cooling RLS, not with slightly later Bushveld 

granites, and is a minimum age of emplacement of the RLS. This, along with the 2061  2 Ma 

age of the Rooiberg Group roof rocks (Walraven 1997) would appear to tightly bracket the 

emplacement of the entire RLS of the eastern and western limbs of the Bushveld Complex to 

the interval 2059-2061 Ma. 

However, a new precise U-Pb zircon age of 2054.4  1.3 Ma has been determined for 

the Merensky Reef in the Rustenburg Section of the west limb (Scoates & Friedman 2008), 

and a U-Pb baddelyite age of 2057.7  1.6 Ma for the Marginal Zone about 30 km directly 

west of Lydenburg (Olsson et al. 2010). The slightly older age for the Marginal Zone is 
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consistent with Bushveld stratigraphy. The former, younger age is interpreted as the 

crystallisation age of the Merensky Reef, while the same study attained a U-Pb rutile age of 

2055.0  3.9 ma, interpreted as the cooling age. The crystallisation and cooling ages are 

significantly younger than the crystallisation age determined by Buick et al. (2001). The 

younger age of 2054.5  1.3 Ma for RLS crystallisation may be more reliable, because it is 

determined directly from the Merensky Reef and not interpreted through a xenolith in the 

RLS. Further, given the size of the Bushveld Complex and uncertainties about the intrusion 

sequence between the main lobes, crystallisation may not have occurred at the same time in 

widely different parts of the intrusion. 

 Dorland et al. (2006) present SHRIMP U-Pb zircon ages for quartz-porphry lavas in 

the Lower Swaershoek Formation (2054  4 Ma) and correlative Rust de Winter Formation 

(2051  8 Ma) in the Waterberg Group, stratigraphically close to the base of the formation. 

The Entabeni Granite is a post-tectonic granite that intrudes into the Limpopo Belt (Barton Jr 

et al. 1995) and its SHRIMP zircon age of 2021  5 Ma constrains the maximum age of the 

unconformably overlying Soutpansberg Group. Therefore, at least part of the Waterberg 

Group is older than the Soutpansberg Group and was deposited immediately after intrusion of 

the Bushveld Complex, and may be tectonically related to it. Dolerite sills in the upper 

formation of the Waterberg Group have an age of ~1875 Ma (Hanson et al. 2004). Therefore, 

most of the Waterberg Group was deposited between ~2054 and ~1875 Ma, placing it within 

the time frame of the 2000  50 Ma thermal metamorphic and non-penetrative shear 

deformation events in the Limpopo Belt. The deposition of the Waterberg Group and basin 

development could be coupled to tectonometamorphic events in the Limpopo Belt. 

 The Hekpoort Andesite within the sedimentary Pretoria Group has an Rb-Sr isochron 

age 2184  76 Ma (Cornell et al. 1996). As the Pretoria Group is intruded by the Bushveld 

Complex, the Pretoria Group rocks above the extrusive Hekpoort Andesite must have been 

deposited before intrusion of the Bushveld Complex. 

Other igneous complexes of Bushveld age occur within and on the margin of the 

Kaapvaal Craton. The Moshaneng Complex, occurring between the Bushveld Complex and 

Molopo Farms Complex, is a 35 km2 oval-shaped pluton, with coarse- to medium-grained 

gabbros and diorites at the centre rimmed by granites and syenites that show evidence of 

mixing and mingling of co-existing mafic and felsic magmas. U-Pb zircon and titanite 

isotopic data indicate an emplacement age of 2054  2 Ma (Mapeo et al. 2004), which is 

consistent with the age of Bushveld emplacement. The Okwa Basement Complex crops out at 

the northwestern edge of the Kaapvaal Craton, and all precise U-Pb zircon ages for all the 

major Palaeoproterozoic lithologies of the complex are indistinguishable at 2056 ± 2 Ma 
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(Mapeo et al. 2006; F. Corfu, pers. comm. 2007). This age can be broadly correlated with 

Palaeoproterozoic events in the Magondi belt at the northwestern margin of the Zimbabwe 

Craton and the Triangle Shear Zone in the Limpopo Belt (Fig. 2-3). However, the most 

precise correlation is with the Bushveld age, which is indistinguishable from that of the Okwa 

Basement Complex. This suggests a link between marginal and intra-cratonic Bushveld-age 

magmatism on the Kaapvaal Craton. 
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3. THE NORTHERN LIMB 

 

3.1 Introduction to the northern limb 

This chapter provides a review of previous studies on the northern limb of the Bushveld 

Complex, particularly its stratigraphy and age in relation to the main body of the Bushveld 

Complex. 

The first thorough investigation of the structure of the northern limb, combining field 

mapping, analysis of drill cores and geophysics, was conducted by van der Merwe (1978), 

who called it the �Potgietersrus Compartment� with an inferred triangular shape. The same 

author (1976, 1978) argued that the geophysical data suggest an overall shape which 

incorporates the following important elements: (i) a north-striking, trough-shaped body that 

widens northwards; (ii) a narrow feeder just west of Mokopane; (iii) a dyke-like southern 

sector but a wider, sill-like northern sector; (iv) no evidence of a broad linkage between the 

northern limb and the eastern limb; and (v) a dominant northwest-trending gravity feature 

northwest of Mokopane. In the northwesternVilla Nora area, the northern limb crops out again 

after disappearing beneath sedimentary cover further south. Here the limb dips to the south 

and southeast (Grobler & Whitfield 1970). Cawthorn & Lee (1998) and Cawthorn & Webb 

(2001) consider the northern limb and Villa Nora occurrence to be one compartment, formed 

by a postulated feeder west of Mokopane. This is supported by gravity data assessed by van 

der Merwe (1976, 1978). 

 

3.2 Structure of the northern limb 

In plan view, the northern limb has roughly the shape of a right-angled triangle with 

Mokopane at the southern acute corner, Villa Nora in the northwestern acute corner and the 

northern 90o corner near Blouberg (Fig. 2-1). The outcrop of the northern limb is divided into 

three sectors (Fig. 3-1). The northern sector comprises primarily Upper Zone magnetite-

bearing rocks, with a thin sliver of PGE-mineralised Main Zone gabbronorite rocks at the base 

of the sequence (Harmer et al. 2004; McDonald et al. 2005b). The central sector displays the 

full sequence of mafic rocks with Lower Zone ultramafic offshoots near the base, while in the 

southern sector only the lower units of both the Upper Zone and Main Zone, upper units of 

the Critical Zone mafics and a body of Lower Zone are developed. In the south, the northern 
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limb is truncated by the Zebediela fault that brings the Karoo basalts into juxtaposition with 

the Rustenburg Layered Suite. 

The gravity model suggests a maximum thickness of 10 km for the layered mafic 

rocks. Although other workers (e.g. Kruger 2005a) have suggested that the northern limb may 

extend much further to the west and have a more saucer-like shape, van der Merwe�s (1976) 

model is corroborated by reports from deep drilling carried out by the Council for Geoscience 

(formerly the Geological Survey of South Africa) at Afguns: this locality is southwest of the 

northwesternmost Villa Nora exposure, and drilling intersected no basic or ultramafic rock of 

the Bushveld Complex (cited by van der Merwe 1978). 

 

 

 

 

Fig. 3-1. Simplified map of the outcrops and 

estimated areal extent of the layered suite of the 

northern lobe of the Bushveld Complex (from van der 

Merwe 2008). 

 

 

The northern limb outcrop indicates a total thickness of 4 km for the Critical, Main and Upper 

Zones. The �hidden� Lower Zone in the northern limb is inferred to occupy the remaining 6 

km suggested by the gravity data, most notably in the southern part of the limb on the farms 

Grasvally, Volspruit and Zoetveld where the Lower Zone crops out most extensively and is in 

contact with the other units of the mafic sequence. The Lower Zone also crops out as several 

recognised satellite bodies, or �offshoots�: the Uitloop I and II, Rietfontein, Bultongfontein I 

and II and Zwartfontein bodies (van der Merwe 1978; Fig. 3-1, Fig. 3-2). The satellite bodies 

occur as separate sheet-like bodies arranged in a semicircle centred on the position of the 

northern limb feeder inferred by gravity data west of Mokopane. Discordant relationships on 

Grasvally and Zwartfontein suggest a hiatus between the intrusion of the Lower Zone and the 

main coherent northern limb (Hulbert 1983; van der Merwe 1978; de Klerk 2005). Recent 
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exploration around the Grasvally area indicates that the Lower Zone is exposed here due to 

upfaulting along one or more prominent north-south trending faults (Hulbert 1983; Hulbert 

and Von Gruenewaldt 1986; Verbeek & Lomberg 2005). 

 The northern limb has an outcrop width of 15 km at its southern extent near 

Mokopane, but south of the town, between the farms Moordrift and Rooiport, the sequence is 

condensed to 4.5 km and the Main Zone is only a few hundred metres wide. From south to 

north, the eastern margin of the northern limb transgresses progressively lower units of the 

Transvaal Supergroup: the Magaliesberg quartzites and shales of the Pretoria Group, and the 

Penge Banded Iron Formation and Malmani Dolomite of the Chuniespoort Group. The 

Malmani Dolomite wedges out at Zwartfontein, north of Sandsloot, where the mafic rocks 

come into contact with Archaean gneiss/granite basement (Fig. 3-2). 

The outcrop (and presumably the deeper structure) of the northern limb appears to be 

influenced by a number of structural features in the footwall rocks. In particular, the Malmani 

Dolomite protrudes into the layered sequence immediately south of the Sandsloot mine, and is 

expressed as an east-west trending antiformal �tongue� about 3 km long and 1 km wide (Fig. 

3-2). A strong, northwest trending gravity low in the area (Fig. 2-2) is considered to 

correspond to lighter underlying sedimentary rocks in a synformal part of the Transvaal 

Supergroup called the Eersteling Basin. The dolomite tongue is interpreted to be part of a 

tectonically positive area, the Uitloop platform (Button 1973), on the edge of the Transvaal 

Supergroup basin. Importantly, according to van der Merwe (1978) the Main Zone layering 

extends up to the tongue margin and is truncated against it without any noticeable change in 

strike, bending of igneous layering or any offset across the tongue. A map of geological 

relations around the tongue by the same author shows an uncertain path for the Platreef 

approaching the tongue from north and south: the reef is stippled to express its assumed 

occurrence approaching the tongue, but the stippling terminates near the base of the tongue 

with no observed occurrence of Platreef indicated around the structure. The tongue is 

therefore interpreted as a pre-Main Zone structure, and since van der Merwe (1976, 1978) 

considers the Platreef to be the base of the Main Zone, the structure implicitly predates the 

Platreef. This scenario is elaborated and discussed in later sections and chapters. Further, van 

der Merwe (1978) observed scattered occurrences of disseminated chromitite partly encircling 

the tongue, implying that the Platreef is �draped� around the antiformal structure. These 

fragments may represent a disrupted Platreef facies, but the present author observed fragments 

of banded ironstone widely scattered around the south edge of the dolomite tongue, 

superficially resembling chromitite, and respectfully suggests that van der Merwe (1978) 

might have misidentified these. 
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Fig. 3-2. Geological map of the lower portion of the northern limb, showing the locations described in the 

text (from McDonald et al. 2005a). 
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In contrast to the other limbs of the Bushveld Complex where the igneous layering is 

generally conformable and there are no gaps in crystallisation, the northern limb may have 

intruded in a more episodic fashion and transgressive relationships are more evident. For 

example, Hulbert (1983) and Hulbert & Von Greunewaldt (1985) have argued for a break 

between intrusion of the Lower Zone and younger cumulates. More recently, Holwell et al. 

(2005) and Holwell & Jordaan (2006) have documented a break in time, followed by 

deformation and magmatic erosion, between formation of the Platreef and the base of the 

Main Zone. Indications of this hiatus had already been observed in the present study and are 

described in Chapter 5. 

The Upper Zone usually lies concordantly on the Main Zone, but northwards from the 

farm Malokongskop the Upper Zone cuts northeastwards across the whole layered sequence, 

and for more than 20 km of strike it lies directly on the Archaean granite basement. Another, 

less dramatic, transgression of the Upper Zone across the layered suite occurs further south on 

the farm Gezond. Van der Merwe (1978) notes that the trangression has different directions in 

two major, NE-trending synclines in the layered suite and floor rocks, and corresponds to a 

trough-like Upper Zone structure that truncates all underlying units. 

Three sets of major faults affecting the northern limb were identified by Truter (1947), 

van Rooyen (1954) and de Villiers (1967): (i) N and NNW striking faults; (ii) NE-ENE 

striking faults; and (iii) NW trending faults. The NE-ENE trending faults appear to be very 

important structures as they divide the rock types and settings on the northern limb. The 

Lower Zone, except for the satellite bodies, is confined to an area south of the Ysterberg-

Planknek Fault, and the Platreef (sensu stricto) and Platreef-analogue rocks are also separated 

by the same faults. Hulbert (1983) recognised four episodes of fault deformation in the 

following order: (i) an episode of N�S-trending reverse faulting; (ii) WNW-striking faults; 

(iii) NE-striking faults assumed to be post-Waterberg; (iv) post-Karoo faults best 

demonstrated by the almost E�W-striking Zebediela Fault. Northwards, most of the faults 

strike NE and have a normal displacement with a downthrow to the south (White 1994). 

Friese (2004) carried out an exhaustive structural investigation of the northern limb 

including the Villa Nora occurrence, concluding with a tectonomagmatic model for the 

development of the Platreef. Disregarding the timing and geological/tectonic environment of 

Platreef intrusion, which will be discussed in a later section, Friese (2004) arrived at the 

following sets of structures in the northern limb, from oldest to youngest: 
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1. Shallow, NW dipping, SE verging thrusts and associated ENE trending, subhorizontal, 

low-amplitude regional folds with the Archaean basement, Transvaal Supergroup and 

Rustenburg Layered Suite. 

 

2. NW to WNW trending, moderate to steeply dipping extensional faults within the 

Transvaal Supergroup and Bushveld Complex, formed by reactivation of the similarly 

oriented Neoarchaean (~2.98-2.96 Ga) impactogenic (?) Pongola rift system developed in 

the underlying Archaean basement during the Murchison Orogeny. 

 

3. ENE to NNE trending, steep to subvertical, mainly SE dipping, dextral strike slip shear 

zones with associated NE verging, layer-parallel thrusts. These are interpreted as lateral 

ramps and oblique/frontal ramps, respectively. This system developed in the Transvaal 

Supergroup by reactivation of the upper section of a Neoarchaean (~2.78-2.64 Ga) 

sinistral strike slip system that developed in the underlying Archaean basement in 

response to sinistral transpressive tectonism during the Limpopo Orogeny. Note: Friese 

(2004) states that this system developed in the Bushveld Complex as well as the Transvaal 

Supergroup, but this is impossible as the 2.06 Ga Bushveld Complex did not exist at the 

time of the 2.7-2.6 Ga Limpopo Orogeny. 

 

4. N-S striking, moderately west dipping extensional faults, typically undulating and with 

imbricate, normal dip slip and sinistral strike slip duplexes in their immediate 

hangingwall. These faults transgress the Archaean basement, Transvaal Supergroup and 

Rustenburg Layered Suite. 

 

5. NW dipping, SE verging thrusts and associated ENE trending, subhorizontal, low 

amplitude regional folds of pre- to syn-Rustenburg Layered Suite age formed by mild SE 

directed stress within the northern Kaapvaal Craton at an early stage of the Ubendian 

(Magondi) Orogeny at ~2.1�2.058 Ga. 

 

6. WNW to WSW trending extensional fractures and joints with minor displacement that cut 

all other structural discontinuities. These represent the youngest population of structures. 

 

Except for the youngest group of structures, all populations of structures have undergone 

several phases of reactivation, such that the present magnitude and sense of displacement is an 

accumulative product of a kinematic history spanning more than 2 Ga. 
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 A prominent tectonic feature of the northern Transvaal outlined in Chapter 2 is a ~500 

km long, 25 km wide lineament striking ENE-WSW across the Kaapvaal Craton, called the 

Thabazimbi-Murchison Lineament (TML: du Plessis & Walraven 1990). The seismic 

signature of the TML suggests it is a deep lithosphere-mantle break within the Kaapvaal 

Craton and appears to form and/or influence: (1) the Palala Shear Zone marking the boundary 

to the north between the Archaean granite/greenstone terrain of the Kaapvaal Craton and the 

southern margin of the high grade terrain of the Limpopo Mobile Belt (Silver et al. 2004); (2) 

the southern margin of the Mesoproterozoic Waterberg Basin; and (3) probably also the 

emplacement of the Mesoproterozoic Bushveld Complex. The TML has a history of episodic 

tectonic activity spanning more than 2.5 Ga, and is characterised by a system of relay faults 

that were repeatedly reactivated with all senses of movement (extensional, lateral and 

reverse). Field data reveal a transition from a ductile dominated regime in the east to a brittle 

dominated regime in the west. This transition corresponds to a change in rheology from the 

granite basement upwards through the Proterozoic and Mesozoic sedimentary cover (Good & 

de Wit 1995, 1997; Good 1997). Karoo (Mesozoic) basalts and sediments of the Springbok 

Flats were deposited in half grabens formed by normal (extensional) reactivation of the 

formerly strike-slip Zebediela Fault (Fig. 3-2), which is part of the TML relay system. The 

TML is transgressed by a Mesozoic dyke swarm associated with the incipient dispersal of 

Gondwana. 

 Major deformation and fluid activity are recorded along the TML at 2.7 Ga and 2.0 

Ga. The older event is correlated with the formation of the Ventersdorp Graben and associated 

volcanism in the Witwatersrand Basin further south, and major uplift of the Limpopo mobile 

belt. The younger event is associated with the Magondi orogeny and the intrusion of the 

Bushveld Complex, which resulted in massive fluid expulsion along the TML from the 

underlying and flanking Transvaal basin. Analysis of the brittle structures suggests a sinistral 

transpressive system around 2.0 Ga and later. Accommodation structures are evident, for 

example the positive flower structure defined by the Ysterberg Shear Zone together with the 

Uitkyk Shear Zone and associated splay shears (Good & de Wit 1997). 

Variations in structural style with time along the TML are indicative of variable stress 

fields, possibly resulting from variable P-T conditions and strain partitioning along the zone 

throughout its long history. One curiosity, however, is that the TML does not appear to have 

responded to the dispersal of Gondwana even though the lineament was favourably oriented 

as a major extensional/transtensional fault zone. A possible explanation is the absence of 

contemporaneous fluid activity within the TML and the Kaapvaal lithosphere (Good & de Wit 

1997), possibly due to devolatisation caused by emplacement of the Bushveld Complex. 
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 The magnitude and direction of total accumulative displacement along the TML 

remains uncertain. The displacements of some sections are known, and in the case of the 

Ysterberg-Planknek Fault Zone is shown to be 8-10 km of dextral lateral movement and up to 

10 km vertical displacement in the Archaean (de Wit et al. 1992). The significance of the 

TML in this study is that it defines a tectonic boundary between the northern limb and the 

eastern and western limbs of the Bushveld Complex, and therefore obscures the relationship 

of the Platreef to the rest of the complex, which is a topic of current debate. Furthermore, 

components of the TML compartmentalise the mafic rocks of the northern limb, particularly 

the Lower Zone and the Platreef and its analogues; and the Waterberg Pt deposit appears to be 

hosted by a fault in the TML system (Armitage et al. 2007). 

 

3.3 Development of the RLS in the northern limb 

The subdivision of the mafic and ultramafic lithologies of the Bushveld Complex into four 

principal zones (Lower, Critical, Main and Upper zones) is based on characteristic mineral 

assemblages, and has been applied to the entire complex. Whether all of these stratigraphic 

zones are present in the northern limb and whether they can be correlated directly with rocks 

in the eastern and western limbs are controversial questions, and will be addressed to a 

modest extent in this thesis. 

 

3.3.1 Stratigraphy of the northern limb 

The stratigraphy of the northern limb differs in a number of ways from the Rustenburg 

Layered Suite south of the TML. Fig. 3-3 summarises the traditional view of the stratigraphic 

relationship between the main units of the Bushveld Complex. Further, there is a stratigraphic 

break within the northern limb marked by the NE-SW striking Ysterberg-Planknek Fault: the 

Lower Zone seems to be developed continuously south of the fault at Mokopane, while to the 

north the Lower Zone only occurs as satellite bodies in the sedimentary country rocks (Fig. 

3-4). 

 

3.3.1.1 Lower Zone 

Drilling by Rio Tinto Exploration Ltd in 1970, followed by more recent exploration by Pan 

Palladium during 2002-2004, intersected significant concentrations of Ni, Cu and platinum 

and palladium in harzburgites, dunites and pyroxenites of the Lower Zone in the southern 

sector of the northern limb. This is the only significant discovery of stratiform Ni-PGE 

mineralisation in the Lower Zone in the entire Bushveld Complex. Lower Zone lithologies are 

confined to two different geological settings. South of Mokopane � on the farms Grasvally,  
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Fig. 3-3. Traditional stratigraphic 

relationships between the eastern and 

western limbs and the northern limb of 

the Bushveld Complex (after White 

1994; Cawthorn & Lee 1998). 

 

Volspruit and Zoetveld � a north trending block containing a sequence of pyroxenite and 

harzburgite with chromitite layers (Hulbert & Von Gruenewaldt 1986) forms a horst between 

younger cumulates correlated with the �Critical� and Main Zones. Intensive faulting conceals 

the total succession, but a stratigraphic column more than 1600 m thick has been revealed by 

drilling (Hulbert 1983) and consists of at least 37 distinct cyclic units (Hulbert & Von 

Gruenewaldt 1985). The Lower Zone is divided into three subzones: (1) the Volspruit 

Subzone, in which pyroxenites predominate over harzburgite with chromitite; (2) the 

Drummondlea Subzone, containing harzburgite with chromitite layers; and (3) the Moorddrift 

Subzone, characterised by pyroxenite and harzburgite in approximately equal proportions 

(Fig. 3-5). 

The Lower Zone also occurs as smaller, pyroxenite-dominated satellite bodies north of 

Mokopane. These bodies form sheet-like intrusions in the Archaean granite and in the 

Transvaal Supergroup sediments, with inferred thicknesses of 200-700 m, but poor exposure 

makes their dimensions somewhat uncertain (van der Merwe 1976, 1978). Compared to 

similar Lower Zone rocks elsewhere in the Bushveld Complex, these mafic rocks are 

characterised by higher Mg# values � i.e. Mg/(Mg+Fe) � in olivine and orthopyroxene, 

contain chromitites with higher Cr2O3 (Hulbert 1983), and hosts a PGE-rich sulphide horizon 

(Hulbert & Von Gruenewaldt 1982). Van der Merwe (1976, 1998) considers these to be 

unique features of the northern limb that distinguish it from the rest of the Bushveld Complex. 

Willemse (1964, 1969) suggests that the northern limb Lower Zone occurrences are most 

probably representative of a postulated hidden level of the Lower Zone. Naldrett (2004) has 
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suggested that the sequences in the northern limb might represent a �Lower Lower Zone�, that 

is more primitive than the �Upper Lower Zone� which is exposed throughout most of the 

Bushveld Complex. 

Field relationships and the mineralogy of the Lower Zone satellite bodies and rocks 

ascribed to the �Critical� Zone and the Main Zone suggest a hiatus between emplacement of 

the Lower Zone and the younger cumulates (van der Merwe 1978; Hulbert 1983; de Klerk 

2005). However, the length of this break is poorly constrained and the wider question of 

whether Lower Zone-type magma was involved in later magmatic events such as the Platreef 

(e.g. McDonald et al. 2005a; McDonald & Holwell 2007; McDonald et al. 2009) remains 

open.  

 

3.3.1.2 GNPA Member (‘Critical Zone’) 

A 350 m thick sequence of rocks known as the Grasvally norite-pyroxenite-anorthosite 

(GNPA) member is developed over the Lower Zone and sedimentary rocks of the Pretoria 

Group south of Mokopane, on the farm Grasvally (Hulbert 1983; Hulbert & Von Gruenewaldt 

1985, 1986) (�Critical Zone� in Fig. 3-4). The GNPA member consists of layered norites, 

gabbronorites and anorthosites along with a chromitite layer, and has been labelled the 

�Critical Zone� of the northern limb (van der Merwe 1976, 1978; Hulbert 1983). Recent 

drilling into the GNPA member on the adjacent farm, Rooipoort, has shown that over strike 

lengths of 5-6 km it consists of a lower mafic unit dominated by pyroxenites and 

melanogabbros, with a chromitite layer, and an upper felsic unit dominated by gabbros and 

anorthosites. Both units contain Ni-Cu-PGE mineralisation associated with the chromitite 

layer, and a layer of pyroxenite-melanorite respectively. Surprisingly, there is also evidence 

on Rooipoort that the lower mafic unit and the upper felsic unit are often separated by a fine- 

to medium-grained gabbronorite unit that appears to be related to a younger sill of possible 

Main Zone affinity (de Klerk 2005).  

The chromitite layer of the GNPA member has been called the �UG2-like chromitite� 

by Hulbert (1983) and has been directly correlated with the UG2 chromitite in the Critical 

Zone of the central Bushveld Complex (e.g. van der Merwe 1998). However, while the Cr2O3 

contents of the GNPA member and UG2 chromitites are similar, the PGE pattern determined 

by Von Gruenewaldt et al. (1989) for the GNPA chromitite does not closely resemble the 

UG2, and the northern limb chromites have higher TiO2 and Al2O3 than normal UG2 (Hulbert 

1983). The associated silicates in the northern limb are also consistently richer in Fe 

(McDonald et al. 2005a).  
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Fig. 3-4. Geological map of the northern limb of the Bushveld Complex with farm 

boundaries (from Maier et al. 2008b, adapted from Ashwal et al. 2004). 
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Fig. 3-5. Stratigraphy of the northern limb south of 

Mokopane showing the major chromitite, magnetite and Ni-

Cu-PGE deposits (from McDonald et al. 2005a, modified 

after Von Gruenewaldt et al. 1989). 

 

The abundance of xenoliths and the presence of PGE mineralisation in the upper part 

of the GNPA member have led some authors to suggest that the top of the GNPA member 

may correlate with the Platreef north of Mokopane (Von Gruenewaldt et al. 1989). Maier et 

al. (2008b) correlates the GNPA member with the Upper Critical Zone and suggests that, 

where the Upper Critical Zone abuts the margin of the Bushveld Complex, “it can transform 

into contact-style mineralization remembling the Platreef”. This postulated correlation 

remains unclear, as limited geochemical and mineralogical information is currently available 

for the GNPA rocks (Kinnaird & McDonald 2005). However, van der Merwe (2008) observes 

a lateral lithological transformation/variation of Merensky Reef/UG2 south of the Ysterberg-

Planknek Fault into Platreef north of the fault, best demonstrated in borehole intersections 

either side of the fault. The same author supports this lateral transformation by drawing 
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attention to well documented lateral lithological variations in the western limb (Maier & Eales 

1997). The cause of this variation is considered to be a combination of interaction in the 

chamber between the magma, its differentiates and the variable floor rocks, and floor 

structures. South of the Ysterberg-Planknek Fault, Bushveld mafics are concordant with 

relatively refractory quartzite of the Magaliesberg or Smelterskop Fomations and ultramafic 

Lower Zone rocks. Less reactive conditions (Manyeruke et al. 2005) prevailed in this part of 

the chamber, causing the magma to differentiate into or develop a sequence similar to that in 

the eastern or western limbs of the complex where it is mainly concordant with the floor. 

North of the fault, the chamber cut across an uneven, protuberant floor comprising reactive 

dolomite, shale, and less reactive quartzite layers; here, the chamber is also closer to the 

postulated feeder (van der Merwe 2008). Conditions in such surroundings may trigger 

precipitation of sulphide and spinel layers (De Waal 1977; Manyeruke et al. 2005). 

 

3.3.1.3 Main Zone 

The Main Zone comprises a relatively monotonous, up to 2200 m thick succession of gabbros 

and gabbronorites (van der Merwe 1976). Northwest of Mokopane, persistent marker horizons 

occur in the form of four prominent pyroxenites developed at around 300 m above the base of 

the Main Zone and a 100-200 m thick troctolite and olivine gabbronorite is developed at 1100 

m above the base. These markers are not known in the rest of the Bushveld Complex. Van der 

Merwe (1976) suggests that a pyroxenite horizon that occurs 2000 m above the base of the 

Main Zone corresponds to the well established Pyroxenite Marker in the eastern and western 

limbs. However, Harris et al. (2004) and Ashwal et al. (2004) discount this correlation, as the 

dominant pyroxene in the unit they have formally termed the �Pyroxenite Horizon� is 

pigeonite (low-Ca clinopyroxene with augite exsolution lamellae) whereas in the Pyroxenite 

Marker it is low-Ca orthopyroxene. Further, the Pyroxenite Horizon appears to be absent 

south of Mokopane where the Main Zone is unusually thin and is not present in the 

stratigraphic compilations of Hulbert (1983) or Von Gruenewaldt et al. (1989). 

 Nex et al. (1998) have reviewed previous studies of Main Zone mineralogy and 

present a new subdivision into 5 zones (A to E), based on the variation in relative abundance 

of different pyroxenes. Although the study was conducted in the western limb of the Bushveld 

Complex, the five-fold subdivision can also be recognised in the lithologies of the eastern 

limb. Significantly, however, there was no attempt to apply this subdivision to the northern 

limb. 

 In contrast to the Main Zone of the eastern and western limbs, which are devoid of 

significant Ni-Cu-PGE mineralisation, the Main Zone in the northern limb is mineralised. The 
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most significant occurrence is in the far north of the limb, principally on the farms La Pucella 

693LR, Altona 696LR, Kransplaats 422LR and Nonnenwerth 421LR; currently being 

developed as the Aurora Project by SA Metals Ltd (currently delisted, formerly Pan 

Palladium Ltd). This company has reported a resource estimate of 133 Mt containing 5.77 

Moz 3E (Pt+Pd+Au) at a grade of 1.34 g/t for the Aurora area (Pan Palladium annual report 

2006). The PGE are associated with sulphides in a number of zones but the sulphides are 

notably richer in Cu when compared to the Platreef. The Aurora mineralisation is hosted 

within gabbros and anorthosites thought to be part of the upper Main Zone (Harmer et al. 

2004). The Main Zone is also mineralised south of the Planknek-Ysterberg Fault (Caledonia 

Mining Corporation 2005; de Klerk 2005; Maier et al. 2008a). 

 

3.3.1.4 Upper Zone 

Upper Zone rocks are scarcely exposed in the northern limb, and knowledge of the Upper 

Zone is acquired from boreholes. It is 1400 m thick and consists of a lower 500 m of mainly 

magnetite gabbro, anorthosites and olivine diorites, with a number of magnetite layers. One of 

these magnetite layers has been correlated with the Main Magnetite layer elsewhere in the 

Bushveld Complex on the basis of thickness and V2O5 content (van der Merwe 1976; Von 

Gruenewaldt et al. 1989). Sulphides are common in the lowermost part of the Upper Zone. 

The upper 900 m of the Upper Zone consists almost entirely of olivine-bearing cumulates 

exhibiting great variation in the proportions of cumulus olivine, pyroxene, magnetite, 

plagioclase and apatite, with some magnetite layers (Ashwal et al. 2004). The Upper Zone 

also crops out in the Villa Nora area, where the main lithologies are leuconorites, 

leucograbbros and anorthosites (Hattingh & Pauls 1994). Here, the lower parts of the Upper 

Zone are truncated by the Abbotspoort Fault. In terms of PGE, the Upper Zone is barren 

throughout (Barnes et al. 2004). 

 

3.4 Age of the northern limb 

As explained in Chapter 2, the age of the Bushveld Complex has been accepted by most 

workers as 2.06 Ga (Walraven et al. 1990) for all three or four limbs of the complex. Buick et 

al. (2001) confirmed this age with a more precise determination using U-Pb dating of titanites 

in calc-silicate xenoliths in the eastern limb. Further, the Merensky Reef has more recently 

been dated to 2054.4  1.3 Ma (Scoates & Friedman 2008). Some recent studies, however, 

cast doubt on synchronicity between the northern limb and the eastern and western limbs (e.g. 

McDonald et al. 2005a) and this necessitates a re-evaluation of the Bushveld age, which may 

be more heterogeneous than previously thought. 
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 There are currently only three successful attempts to date the northern limb, all of 

which indicate a slightly younger age for emplacement of the limb: (i) an Re-Os isotope study 

on Platreef sulphides from Turfpruit that gave an age of 2011  50 Ma (Ruiz et al. 2004), 

virtually identical to (ii) an Re-Os age of 2011  51 Ma on Platreef pyroxenites at Sandsloot 

(Reisberg et al. 2011) � these ages agree within the upper error with the accepted Bushveld 

age of 2060 Ma. Reisberg et al. (2006) had previously obtained a less constrained Re-Os age 

of 2011  90 Ma for the Platreef at Sandsloot. Further, (iii) a new SHRIMP zircon age for the 

Platreef at 2056.2  4.4 Ma (Yudovskaya et al. 2009) is indistinguishable from a 2053.7  3.2 

Ma zircon age for a granitic vein that cuts the Platreef and which may be derived from local 

melting of country rocks by the Platreef magma (Hutchinson et al. 2004; Kinnaird et al. 

2005). 

 Thus, the Platreef appears to be synchronous with the Merensky Reef (2054.4  1.3 

Ma: Scoates & Friedman 2008). Even well constrained ages, however, carry error margins 

that are large in relation to the likely short-lived emplacement history of the Bushveld 

Complex. The phases of intrusion are therefore difficult to distinguish temporally. 
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4. THE PLATREEF 

 

4.1 Introduction 

This chapter provides a review of previous studies on the Platreef, including an account of its 

exploration history. The Platreef is the principal mineralised unit of the northern limb and 

contains significant Ni-Cu-PGE mineralisation along strike for >30 km (Fig. 4-1). The Pt+Pd 

content of the reef is estimated to be 16.3 Moz (Cawthorn 1999). With its high PGE tenor and 

thickness of up to 400 m, it is amenable to open pit mining (Bye 2001). Potgietersrus 

Platinums Ltd, a subsidiary of Anglo Platinum, now operates five open pit mines at 

Sandsloot, Zwartfontein South, Zwartfontein North and Overysel. Collectively these are 

known as Mogalakwena. The ore is milled at the new, fully operational North Concentrator 

and at the older South Concentrator. The Mogalakwena life-of-mine extends to well beyond 

2060. The current life-of-mine plan consists of a mineral resource (exclusive of ore reserves) 

of 141.6 Moz 4E (Pt+Pd+Rh+Au) and an ore reserve of 55.3 Moz 4E. A further four open pit 

operations are planned: one in the southeastern corner of the Sandsloot property and three on 

Tweefontein. Several junior companies have joined the exploration bandwagon, making the 

northern limb one of the most intensively explored areas for PGE in the world. 

 

4.2 Setting of the Platreef 

The reason for treating the Platreef in a separate chapter is the lack of consensus on whether 

the Platreef is of Critical Zone affinity (e.g. White 1994) or Main Zone affinity (e.g. Kruger 

2005a); whether it is the northern limb equivalent of the Merensky Reef (e.g. Wagner 1929; 

Kruger 2005a; Naldrett et al. 2008); or whether it represents an event unique to the northern 

limb (McDonald et al. 2005a). These questions warrant more review than would be practical 

in the outline of the Bushveld Complex in Chapter 2. The Platreef (sensu stricto) is defined by 

Kinnaird & McDonald (2005) as “mafic units enriched in Ni-Cu-PGE that occur between the 

Archaean granite-gneiss basement or the Transvaal Supergroup and the 

gabbros/gabbronorites of the Main Zone, north of the Planknek Fault”. The Platreef can be 

traced for >30 km north of Mokopane, and along its path it transgresses progressively lower 

sedimentary units of the Transvaal Supergroup and eventually abuts against Archaean 

granite/gneiss basement (Fig. 4-1). The thickness of the Platreef varies from 400 m in the 

south to <50 m in the north. At the surface, the common strike is north to northwest and the 
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dip is moderate (40-45o) to the west, but becomes more gentle downdip. However, the overall 

geometry appears to have been controlled by irregular floor topography (Fig. 4-2). On the 

farms Macalacaskop and Turfspruit there are basement highs with thinned Platreef on the 

flanks and thick reef in the intervening basins. In the Macalacaskop basin, the Platreef is 400 

m thick, dips 32o NE on the south side and 47o SW on the north side. In the Turfspruit basin, 

the reef is 250 m thick with 40o inward dips on both sides (Kinnaird et al. 2005). The nature 

of these basement highs is equivocal, possibly representing an undulating floor, antiforms or 

horst blocks. 

 

 

 

Fig. 4-1. Simplified geological map of 

part of the northern limb, showing 

boundaries of farms referred to in the 

text (slightly modified from Kinnaird 

2005b). 
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Fig. 4-2. Schematic longitudinal section through the Platreef along the entire strike length (from Kinnaird 

et al. 2005). Note that between Witrivier and Altona a significant strike length is not shown. 

 

In plan view, a prominent �tongue� of Malmani Dolomite protrudes into the Platreef and Main 

Zone south of Sandsloot, separating the Sandsloot open pit from Platreef exposures on 

Tweefontein. The tongue has a metamorphic aureole, with a maximum thickness of 200 m, 

consisting of an outer pegmatitic plagioclase-quartz-hornblende rock and an inner 

serpentinised dolomite (van der Merwe 1978). The formation of this structure relative to the 

Platreef and Main Zone will be addressed in more detail in Chapters 5 and 7. 

On a broader scale, the strike of the Platreef changes abruptly in association with 

faults: a north-south striking, steeply dipping set predominates, with secondary ENE and ESE 

striking sets dipping 50-70o south. The faults are pre-Bushveld and locally control thickening 

and thinning of the layered sequence, especially in the south. Changes in strike of the Platreef 

are also noted in association with pre-Platreef synforms, and thick basal sulphide 

mineralisation occurs in this structural setting, such as at Tweefontein Hill (Nex 2005). 

The unresolved questions of the age and origin of the Platreef have important 

implications for the long-assumed link between the Platreef and Merensky Reef. This link is 

fundamental in the prevailing view of the stratigraphy of the northern limb and its relationship 

to the rest of the Bushveld Complex, but some recent studies have cast doubt on the 

stratigraphic link between the Platreef and Merensky Reef (e.g. McDonald et al. 2005a; 

Holwell & Jordaan 2006). Pronost et al. (2008) argue that the similarity in initial Sr- and Nd-

isotope composition between the Platreef and its immediate hangingwall norites and the 
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Merensky Reef suggests that the Platreef and Merensky Reef share a common origin, as 

originally suggested by Wagner (1929); and this would explain the similarity in initial Os-

isotope ratios between the Platreef and the Merensky Reef reported by Reisberg et al. (2006). 

Nex (2005) studied the structural setting of the Platreef on Tweefontein Hill, south of 

Sandsloot, noting a significant change in the strike of the Platreef and Transvaal Supergroup 

metasedimentary floor rocks. The study documents two pre-Bushveld ductile deformation 

events resulting in a major southwest plunging fold into which massive sulphides have been 

concentrated by gravitational settling. 

 

4.2.1 Sulphur isotope studies 

Peniston-Dorland et al. (2008) report sulphur (S) isotope measurements made on samples 

collected along two profies through the Platreef into underlying metapelitic and 

metacarbonate footwall rocks, concluding that the Platreef magma was apparently S saturated 

prior to emplacement and, counterintuitively, lost S during the formation of the present 

Platreef ore horizon. In both profiles, igneous rocks far from the contact have low ǻ33S values 

(average ǻ33S = 0.15�), whereas metasedimentary rocks far from the contact have high ǻ33S 

values (ǻ33S up to 5.04�) with a smoothly varying profile between the two end members. 

The midpoint in both isotope profiles is displaced into the footwall, but the same geometry is 

not present in the associated į34S values. The displacement of the ǻ33S front suggests fluid 

transport and advection of S into the country rocks; this was accompanied by back diffusion 

of the S isotope tracer into the Platreef. The multiple S isotope results suggest a different 

interpretation of Platreef mineralisation than that reached by consideration of į34S values 

alone. The ǻ33S measurements reflect a dominantly magmatic signature for S in the Platreef 

that is obscured in į34S measurements by late-stage disequilibrium and fractionation effects 

likely due to hydrothermal activity. This interpretation is consistent with the results of Harris 

& Chaumba�s (2001) study using oxygen isotopes, which suggested a large degree of fluid-

rock interaction in the Platreef, with a magmatic origin for the fluid. Although į34S analyses 

can decipher this signature when carefully linked to specific sulphide textures (e.g. Holwell et 

al. 2007), the chemically conservative nature of ǻ33S values removes the masking effect of 

secondary processes that are mass dependent and fractionate į34S, but not ǻ33S. Most 

intriguing, ǻ33S measurements preclude local footwall-derived S as a significant trigger for 

mineralisation in the Platreef. The ǻ33S profile indicates that contact enrichment of S in the 

Platreef is limited to distances <5 m from the contact and is best explained by minor amounts 

of back diffusion through fluids as S is transported away from a cooling and crystallising 

magma (Penniston-Dorland et al. 2008). 
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4.3 Exploration and research on the Platreef 

Exploration in the Platreef area began with early mining operations for tin, starting with the 

discovery of the Zaaiplaats and Union tin fields in the period 1906-1908 (Kynaston & Mellor 

1909; Pringle 1986). This was followed by the discovery of platinum in quartz veins near 

Mookgophong (formerly Naboomspruit) in 1923 (Wagner & Trevor 1923; McDonald et al. 

1999; McDonald & Tredoux 2005; Armitage et al. 2007). In 1924, Andries Lombaard 

discovered platinum on Maandagshoek in the eastern Bushveld, and soon afterwards Hans 

Merensky announced that he had located a �platinum-bearing horizon� in the Rustenburg 

(Wagner 1926) and Mokopane areas (Wagner 1929; White 1994). Early mapping revealed the 

general NNW-SSE strike and enormous lateral extent of the mafic rocks in the northern limb 

as well as broad similarities to the mafic sequences established in the rest of the Bushveld 

Complex (Hall 1908, 1926; Mellor & Hall 1910). After successfully tracing the Merensky 

Reef westwards to the Rustenburg area, the similarities in rock types outlined by Hall and 

Mellor led Hans Merensky and other prospectors back to the northern limb and to the 

discovery of the Platreef in 1925 (Mills Davies 1925). Merensky identified higher grade zones 

at the top of the pyroxenite sequence on Sandsloot, Vaalkop and Zwartfontein, and shafts 

were sunk on these properties. Platinum was also discovered in �crush zones� in the Penge 

banded ironstone on Tweefontein Hill (Merensky 1925). 

In recent years, prospecting activity on the Platreef has reached levels not seen since 

the 1925 �platinum rush�. The manner in which the Platreef formed was construed just a few 

months after the discovery of the reef � it was quickly recognised that the Bushveld magma 

had intruded into and transgressed the sedimentary Transvaal Supergroup, and that the 

mineralisation resulting from envelopment of the sedimentary rocks was a process that “might 

reasonably be looked for” (Mills Davies 1925). 

 By August 1925, the financiers Becker and Ohlthaver had amassed rights to an area of 

130,000 acres covering many of the key farms where Platreef mineralisation would be 

discovered. This land package was used to register a new company, Potgietersrust Platinums 

Limited (PPL). Finally, Becker and Ohlthaver approached Wakkerstroom Oil Company in 

November 1925 and secured the farms Tweefontein and Rietfontein for PPL. By the end of 

the year, PPL had acquired nearly all key platinum properties in the Mokopane area, and were 

then taken over by Johannesburg Consolidated Investments (JCI) (Matier 2004). 

 About 9 months of systematic exploration ensued on Tweefontein, Sandsloot, Vaalkop 

and Zwartfontein, and in September 1926 PPL built a processing plant. By 1928, PPL had 

produced 22,500 ounces of platinum from underground workings (White 1994). However, 
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1925 had been a boom year and the platinum production rate in 1928 was less than the market 

had expected. Much of the early work on the deposits of the northern limb was summarised in 

Wagner�s (1929) seminal volume �The Platinum Deposits of South Africa�. In May 1930, 

PPL ceased production on reported recovery problems and due to a falling metal price with 

the onset of the Great Depression. 

 The next 38 years was a dormant period for the Platreef deposits. In 1969, JCI 

resumed drilling and shaft sinking, then conducted underground mining, which halted in 1971 

because JCI were unable to follow the reef underground. However, interest in the platinum 

fields had developed among other companies, with drilling programmes undertaken by 

Chrome Corporation Limited, Rand Mines Limited, Rio Tinto Zinc PLC and Union Carbide 

Corporation. In March 1976, JCI�s interest was rekindled when they started a further 

systematic drilling programme, which led to a feasibility study and an exploration shaft on 

Overysel in 1980 (White 1994). 

 Another few years of inactivity followed until 1986 when JCI resumed drilling and, 

following positive results. it was decided to sink several incline shafts on the farms Sandsloot 

and Tweefontein followed by trial mining to obtain a metallurgical bulk sample. In October 

1990, a public report was issued by JCI stating that a new underground mine would be opened 

at Sandsloot with an initial open pit operation (White 1994). 

In 1992 PPL (now fully owned by Anglo American) opened the Sandsloot mine. For 

almost the entire decade, this open pit operation was the only significant activity on the 

Platreef. The successful, low-cost, high-tonnage model prompted a dramatic revival in 

exploration activity for Ni-Cu-PGE deposits along the length of the northern limb, and many 

junior companies have purchased exploration licences for farms covering the strike of the 

Platreef adjacent to the area held by Anglo Platinum. The boom in exploration on the northern 

limb also prompted a new wave of research, much of which was conducted on Anglo 

American�s property between the farms Tweefontein and Overysel, e.g. White (1994) and 

Viljoen & Schürmann (1998). The Sandsloot mine then became the focus of several studies 

that addressed Platreef contamination, mineralisation, structure, geochemistry, emplacement 

and mineralogy (respectively: Harris & Chaumba 2001; Armitage et al. 2002; Friese 2004; 

McDonald et al. 2005a; Holwell et al. 2005; Holwell et al. 2006). 

In 2010, the Mogalakwena Mine (formerly PPL) produced 589,100 oz refined 4E 

(combined Pt+Pd+Rh+Au) with 8,500 t (dry metric tonnes) Ni and 5,600 t Cu. Mogalakwena 

Mine�s proven and probable Platreef ore reserves, including primary ore stockpiles, were 

609.3 Mt (million tonnes) at a grade of 2.82 g/t 4E, equating to contained metal of 55.3 Moz 

(1,628.6 t) 4E. Measured and indicated Platreef mineral resources were 970.3 Mt at 2.21 g/t 
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4E, equating to contained metal of 69.0 Moz (2,145.5 t) 4E. Inferred mineral resources were 

1,200.1 Mt at 1.88 g/t 4E, equating to contained metal of 72.7 Moz (2,260.2 t) 4E. The 

applied 4E pay limit grade (�cut-off grade�) is 1.7 g/t for Sandsloot and Zwartfontein South 

and 1.0 g/t for Mogalakwena North and Central (Anglo American 2010; estimates as of 31 

December 2010). 

 The continuing exploration boom has been accompanied by an accelerating rate of 

academic publications. These publications now cover sections of the Platreef outside Anglo 

American�s property. Drilling on the farms Turfspruit and Macalacaskop, currently owned by 

Ivanhoe Nickel & Platinum Ltd (�Ivanplats�), has enabled studies on geology, geochemistry, 

mineralogy, isotope characteristics and geometric profile (respectively: Kinnaird et al. 2005; 

Kinnaird 2005a; Hutchinson & Kinnaird 2005; Sharman-Harris et al. 2005; Kinnaird et al. 

2010). The nature of the Platreef at the farm Piet Potgietersrus Town and Townlands (initially 

developed by Thabex Ltd and currently owned by Blackthorn Resources, formerly called 

AIM Resources) is described by Manyeruke et al. (2005). 

 Much of the recent research is based on Mogalakwena Mine�s new open pit operations 

north of Sandsloot: magmatic relationships at Zwartfontein are documented by Holwell & 

Jordaan (2006), while Holwell & McDonald (2006) studied the petrology and geochemistry of 

the Platreef at Zwartfontein, and the same authors (Holwell & McDonald 2007) analysed the 

distribution of PGM at Overysel. Holwell et al. (2007) investigated variations in sulphur 

isotope signatures to study the origin of sulphur in different sectors of the Platreef. The most 

recent studies address the relationship between footwall composition, crustal contamination, 

and fluid-rock interaction in the Platreef at Overysel, Sandsloot, Turfspruit and Macalacaskop 

(Pronost et al. 2008); the source of Platreef mineralisation based on the geometry of sulphur 

isotope distribution in the Platreef and metasedimentary footwall rocks (Peniston-Dorland et 

al. 2008); an assessment of the potential involvement of an early magma staging chamber in 

the generation of the Platreef (McDonald et al. 2009); and the importance of semimetals in 

the partitioning behaviour of PGE in natural magmatic sulphide ore systems (Holwell & 

McDonald 2010). The themes of these studies will be incorporated in the discussion in 

Chapter 7. 

 

4.4 Geology of the Platreef and associated units 

Wagner (1929) published the first account of the Platreef, describing it in general terms as a 

basal package of pyroxenites, norites, serpentinites and xenoliths of floor rocks carrying PGE-

Ni-Cu mineralisation that transgresses a variety of floor rocks and is overlain by 

gabbronorites ascribed to the Main Zone. On a more local scale, however, the Platreef is a 
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complex body of igneous and hybrid lithologies exhibiting along-strike variation that is 

caused, to a considerable extent, by the interaction between the Platreef magma and local 

floor rocks. The Platreef has a thickness of as little as 10 m in places at Sandsloot (Armitage 

et al. 2002) to as much as 400 m at Turfspruit (Kinnaird 2005a). Studies suggest that 

structures in the footwall have exerted some control on Platreef thickness and mineralisation 

(e.g. Friese 2004; Nex 2005). An overview of the Platreef follows, first with a description of 

the main footwall and hangingwall rocks (alternatively called floor and roof rocks), then a 

review of Platreef literature in geographical order starting at Townlands in the south, 

northwards through Macalacaskop, Turfspruit, Tweefontein, Sandsloot, Zwartfontein, 

Overysel and finally Drenthe (Fig. 4-1). 

 

4.4.1 Footwall lithologies 

A series of Palaeoproterozoic Transvaal Supergroup sedimentary rocks and Archaean 

basement comprise the footwall of the Platreef. Wagner (1929) describes the discordant 

relationship between the Platreef and floor rocks as an �igneous transgression�, in which the 

Platreef has intruded progressively older units northwards along its strike. From south to 

north, and therefore youngest to oldest, these units are: quartzites and shales of the Timeball 

Hill Formation; shales and diamictites of the Duitschland Formation; the Penge banded iron 

formation; and dolomite of the Malmani Subgroup that lies directly on Archaean basement 

granite and gneisses. At Sandsloot and Zwartfontein South, the dolomite has been thermally 

metamorphosed to what can broadly be labelled as calc-silicate hornfels with a wide variety 

of skarn assemblages. 

As noted above, the interaction between the Platreef magma and the various floor 

rocks has resulted in a complex body including hybrid lithologies, e.g. serpentinised 

websterites identified by McDonald et al. (2005a). Clinopyroxenites with low whole-rock Cr 

and high CaO at Sandsloot and Zwartfontein South, normally found between the Platreef and 

footwall calc-silicates, are interpreted as metamorphic clinopyroxenites (Harris & Chaumba 

2001) produced by thermal metamorphism and hydrothermal activity in the footwall contact 

zone. Wagner (1929) first used the term �parapyroxenite� for these clinopyroxenites in 

recognition of footwall origin, and the name has been in local use ever since. 

 

4.4.2 Hangingwall lithologies 

Along the northern limb, the Platreef is overlain by a thick (up to 2000 m) package of gabbro, 

magnetite gabbro and diorite belonging to the Main and Upper Zones. At least in the present 

study area and its vicinity, the hangingwall is Main Zone and comprises medium-grained 
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norites and gabbronorites containing cumulus plagioclase, cumulus and intercumulus 

orthopyroxene (En64-70) and generally oikocrystic clinopyroxene. In the Sandsloot-

Zwartfontein section, the base of the hangingwall is frequently observed as a thin fine-grained 

poikilitic leuconorite up to 30 cm thick, containing up to 90% cumulus plagioclase and 

oikocrystic pyroxenes. Occasional xenoliths of calc-silicate derived from metamorphosed 

dolomite similar to that observed in the footwall are present in the hangingwall (Gain & 

Mostert 1982; Kinnaird & Nex 2003; and this study), and pyroxenites with petrographic and 

geochemical characteristics similar to the Platreef are present within the hangingwall 

(McDonald et al. 2005a). 

 

4.4.3 Platreef lithologies 

The Platreef is recognised as a commonly feldspathic pyroxenite of cumulus orthopyroxene 

and intercumulus clinopyroxene and plagioclase, with accessory interstitial sulphides. Based 

on the results of trial mining by JCI at Overysel during the 1980s, White (1994) introduced a 

threefold subdivision of the Platreef, naming the three units A, B and C reef. The �A� reef was 

defined as a pegmatoidal feldspathic pyroxenite at the base of the sequence, carrying sporadic 

base metal sulphide (BMS) mineralisation. The �B� reef was the principal PGE carrier 

overlying the �A� reef, comprised of coarse-grained feldspathic pyroxenite with 50-90% 

orthopyroxene, intercumulus plagioclase, common BMS and very sporadic chromitite. The 

�C� reef was the top unit and consists of a PGE-poor, fine-grained poikilitic feldspathic 

pyroxenite with up to 70% clinopyroxene. This simplified tripartite division of the Platreef 

was based purely on mineralogical characterisation and was primarily used in mining 

terminology, but has become entrenched in the literature (e.g. Barton Jr et al. 1986; Lee 1996; 

Viljoen & Schürmann 1998; Cawthorn & Lee 1998; Barnes & Maier 2002; Cawthorn et al. 

2002b). The unfortunate consequence of the uncritical acceptance of the A-B-C sequence is 

that it has been assumed to represent �typical� Platreef. However, even before the A-B-C 

sequence was proposed, earlier investigations on Drenthe 788LR (Gain & Mostert 1982) and 

Overysel 815LR (Cawthorn et al. 1985) had already shown petrological and stratigraphic 

relationships that are incompatible with the A-B-C sequence, and further mismatches have 

been revealed in more recent studies (Kinnaird et al. 2005; McDonald et al. 2005a). Armitage 

et al. (2002) presented the initial findings of the present study and used the term �B-reef�, as it 

fitted the characterisation of White (1994), but also pointed out that rocks corresponding to 

�A� and �C� reef seemed to be absent in the sections they investigated at Sandsloot while 

other, previously uncharacterised reef lithologies were present. At Platreef workshops 
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convened in 2004 and 2005, the inappropriate nature of the A-B-C scheme was highlighted 

(e.g. Nex & Kinnaird 2004) and it is now falling out of use. 

 

Townlands 

Manyeruke et al. (2005) described a core through the Platreef at its southernmost outcrop on 

the farm Townlands. Here the Platreef overlies quartzites and shales of the Timeball Hill 

Formation. The reef is described as a 150 m thick package of three igneous units (Lower, 

Middle, Upper) separated by hornfels (metamorphosed shales), and each of the three units is 

interpreted as a distinct intrusive phase based on geochemical characteristics. The major 

silicate minerals of the Lower Platreef are subhedral or anhedral cumulus orthopyroxene (55-

75 modal %), mostly anhedral (intercumulus) and, to a lesser extent, subhedral (cumulus) 

plagioclase (20-40 modal %) and interstitial clinopyroxene (0-10 modal %). Accessory 

minerals include olivine, quartz, magnetite, sulphides and secondary biotite, amphibole, 

sericite and epidote. Notably, there is a relatively high amount of quartz (up to 3 modal %) in 

some of the rocks. The Middle Platreef is predominantly composed of cumulus orthopyroxene 

(65-80%), interstitial and poikilitic clinopyroxene (10-15 modal %) and mostly interstitial 

plagioclase (10-25 modal %) with some apparently cumulus plagioclase laths. In addition, 

variable amounts of olivine (up to 20 modal %) may occur. Minor phases are biotite, 

sulphides, magnetite and amphibole. The Upper Platreef is predominantly composed of 

cumulus orthopyroxene (55-75 modal %), with subordinate intercumulus clinopyroxene (0-20 

modal %) and intercumulus plagioclase (20-40 modal %). Olivine, quartz, biotite, magnetite, 

sulphide and amphibole are minor phases. The geochemical data reveal a reversed 

differentiation trend within the Platreef, with progressively more primitive rocks, enriched in 

Cr and MgO and depleted in incompatible trace elements, being found towards the top. 

The available S isotopic data on the Platreef has been summarised by White (1994), 

who showed that the Platreef rocks have 34S between -3 to +9 �, indicating the presence of 

external (crustal) S. At Townlands, all the Platreef samples have positive 34S values. The 

highest values are found in the hornfels and calc-silicates of the floor rocks, which have 

broadly similar S-isotopic signatures. The Lower Platreef and Upper Platreef tend to have 

higher 34S than the Middle Platreef. There is also a tentative trend of an increase in the 34S 

values towards the base within the Middle and Lower Platreef, a phenomenon that could 

possibly be explained by enhanced assimilation of crustal sulphur towards the floor of each 

layer, perhaps by means of continued degassing of the floor rocks during crystallisation of the 

Platreef. 



 55

Notably, the Pt/Pd ratios of <1 in the Platreef at Townlands and in other sectors of the 

northern limb are much lower than in sulphides and rocks elsewhere in the Bushveld Complex 

(Pt/Pd 1.82.9, Maier & Barnes 1999). 

Contrary to the study of Manyeruke et al. (2005), a reassessment of the core by 

Snowden Mining Consultants using a wider range of drilling data from Townlands 

(presumably including boreholes not studied by Manyeruke et al. 2005) showed the Platreef 

to be a pegmatoidal pyroxenite interfingered with pyroxenites, norites and melanorites with 

xenoliths of footwall sedimentary rocks (Snowden Mining 2004). There is no indication of 

intercalated sedimentary units in the reassessed core. 

 

Macalacaskop and Turfspruit 

At Macalacaskop and Turfspruit, the footwall rocks of the Platreef are hornfelses and 

dolomites of the Duitschland Formation. A few studies (Kinnaird et al. 2005; Kinnaird 2005a; 

Hutchinson & Kinnaird 2005; Sharman-Harris et al. 2005) have shown the Platreef here to be 

a much thicker sequence with a greater variety of lithologies than previously known in the 

Tweefontein-Overysel section. At Turfspruit the Platreef appears to be up to 800 m thick in 

drill core and some thick Lower Zone occurs around the same area, but not consistently. 

There also seems to be an unusual distribution of very thick Platreef and Lower Zone, in that 

the Lower Zone may occur as interlayers in the thick Platreef. However, the Mohlosane 

stream section exhibits an angular unconformity between the Lower Zone and assumed 

Platreef (J. Kinnaird, pers. comm. 2009). Thus, any Lower Zone interlayers in the Platreef are 

likely to be a result of the Platreef intruding the Lower Zone. 

At both Macalacaskop and Turfspruit, feldspathic pyroxenite is again the main 

constituent of the Platreef, but it also contains norites, melanorites, serpentinites, 

gabbronorites and micronorites. The micronorites are categorised as Marginal Zone. In a core 

from Turfspruit, Buchanan & Rouse (1984) describe 70 m of peridotite comprising the base of 

the succession. Serpentinised peridotites are noted here by Kinnaird et al. (2005) and 

Mothetha & Kinnaird (2005) and are classified as Lower Zone. These lithologies are only 

known in satellite bodies north of Mokopane, never as part of the Platreef package. 

 

Tweefontein North and Tweefontein Hill 

At Tweefontein Hill, north of Turfspruit, the floor rocks are aluminous argillaceous shales of 

the Duitschland Formation, and the Platreef is composed of feldspathic pyroxenites with 

xenoliths of ironstone and shale on the southern side (Wagner 1929). On the hill itself, the 

footwall is banded ironstone of the Penge Formation partially metamorphosed to magnetite-
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bearing hornfels (White 1994). Nyama et al. (2005) describe the Platreef here as a 220 m 

thick package dominated by pyroxenites and norites with a basal micronorite. At Tweefontein 

North, Buchanan et al. (1981) note a basal pegmatoidal pyroxenite and a 6 m thick massive 

sulphide in one borehole. Pre-Bushveld sills and metamorphosed shales overlie the 

pegmatoidal pyroxenite, and these are overlain by 200 m of Platreef gabbros. Other workers 

also note the relatively thick section of Platreef on Tweefontein Hill and attribute this to a 

structural downwarp in which the inert footwall has allowed gravitational settling of a 

sulphide liquid, resulting in net-textured and massive sulphides (White 1994; Viljoen & 

Schürmann 1998; Nex 2005). White (1994) draws a likeness to the Merensky Reef on the 

basis that 80% of boreholes at Tweefontein contain chromitite layers. These are generally 

uncommon in the Platreef but do occur as discontinuous bands at Sandsloot, Zwartfontein and 

Overysel (Holwell & McDonald 2006). 

 

Sandsloot 

The opening of the Sandsloot open pit mine in 1992 offered the only subsurface exposures of 

the Platreef for more than a decade. A series of studies followed at Sandsloot, such that the 

Platreef is better characterised at Sandsloot than elsewhere (Bye & Bell 2001; Harris & 

Chaumba 2001; Armitage et al. 2002; Friese 2004; McDonald et al. 2005a; Holwell et al. 

2005; Holwell et al. 2006). Here, the Platreef is a relatively thin package dominated by 

coarse-grained feldspathic pyroxenites with gabbros, peridotites, serpentinites and 

clinopyroxenites. The reef also contains xenoliths of metamorphic clinopyroxenites and calc-

silicate hornfels derived from its immediate country rocks. These footwall lithologies are 

commonly serpentinised and sporadically mineralised. The hangingwall to the reef consists of 

Main Zone gabbronorites, commonly with a basal mottled anorthosite representing the reef-

hangingwall contact that is described by Holwell et al. (2005). Detailed decriptions of the 

Platreef, footwall and hangingwall at Sandsloot will follow in Chapter 5. 

 New deep drilling at Sandsloot, specifically boreholes SS360 and SS361 (J. Kinnaird, 

pers. comm. 2009), has revealed a thick, PGE-mineralised feldspathic pyroxenite package 

underlying the dolomite footwall (Winch 2011). This is possibly another Platreef sheet, and 

the drill core indicates that a thick Lower Zone may also occur below it. The dolomite 

between the possible and known Platreef bodies also carries some PGE grade. 

 

Zwartfontein 

On the farm Zwartfontein, north of Sandsloot, the footwall changes from Malmani Dolomite 

to Archaean basement of granite and gneiss. At southern Zwartfontein, the footwall is similar 
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to that at Sandsloot but the Platreef is much thicker and considerably more serpentinised due 

to the alteration of entrained calc-silicate rafts (Holwell & Jordaan 2006). In Lonmin�s 

Akanini Project area, which is west and downdip of the surface outcrop of the Platreef on 

Zwartfontein, drilling has intersected Platreef with a gneissic footwall: the reef is described as 

occasionally chromitiferous, coarse-grained feldspathic pyroxenite with calc-silicate xenoliths 

(Spies 2005). 

 

Overysel 

The footwall to the Platreef here is commonly called �granofels� (tonalitic gneisses brecciated 

by granitic veins), and this gneissic package is intruded by the domal Utrecht granite. 

Cawthorn et al. (1985) describe the Platreef at Overysel as an up to 200 m thick unit with a 

thin basal medium-grained norite grading into a coarse pyroxenite. Two drill cores through 

the reef described by Holwell & McDonald (2006) contain feldspathic pyroxenite, 

serpentinised calc-silicate xenoliths, norite intrusions, chromitite xenoliths and a basal hybrid 

quartz-feldspathic pyroxenite. The latter is interpreted to have formed by invasion of a felsic 

melt derived from partial melting of the footwall. White (1994) noted the presence of 

occasionally thick, discontinuous chromitite bands in the reef. Viljoen & Schürmann (1998) 

observe large calc-silicate rafts (tens of metres in core) within the pyroxenitic reef but no 

gneissic or granitic material, even though the immediate footwall is tonalitic gneiss and 

granite. A possible explanation given by Cawthorn et al. (1985) is that the gneiss/granite 

fragments may have been completely assimilated, while the metamorphic olivine and 

pyroxene of the altered dolomite are refractory. 

 

Drenthe 

The northernmost sector of the Platreef described in the literature is on the farm Drenthe. 

Here the Platreef is described as a 250 m thick package with a 40�80 m basal feldspathic 

pyroxenite chilled at its base against footwall granites (Mostert 1982; Gain & Mostert 1982). 

This chill zone, however, is not reported in Cawthorn et al. (1985) and not observed by 

Holwell & McDonald (2006) at Overysel. The reef pyroxenites at Drenthe are overlain by 170 

m of norites and melanorites containing many calc-silicate xenoliths, and the top of the reef is 

a 10�30 m thick feldspathic pyroxenite. The most recent study (Naldrett 2005b) reports 

intrusions of hangingwall gabbronorites into the Platreef, similar to observations at 

Zwartfontein by Holwell & Jordaan (2006). 
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4.5 Emplacement and timing of the Platreef 

Opinions on the temporal and stratigraphic aspects of Platreef emplacement are not only 

contentious but in some cases greatly at odds with each other. Some workers have correlated 

the Platreef with the Upper Critical Zone of the RLS, mainly on the basis of the �Platinum 

Horizon� occurring with pyroxenitic rocks that are overlain by the Main Zone (e.g. Wagner 

1929; White 1994). Hulbert (1983) and van der Merwe (1978) positioned the Platreef at the 

base of the Main Zone and equated the GNPA Member with Critical Zone. This interpretation 

is supported by Kruger (2005b), who proposes that the Platreef and Merensky Reef are coeval 

and were formed when the main pulse of Main Zone magma entered the complex from north 

of the TML and spread over the northern limb while collecting sulphur from the country 

rocks, then overtopped the TML and flooded the rest of the complex. This interpretation 

envisages the Platreef as a basal unit in the northern limb and the Merensky Reef as the base 

of the Main Zone in the rest of the complex, overlying the Upper Critical Zone. 

Naldrett et al. (2008) suggest that the Platreef is the consequence of several surges of 

magma that were responsible for the different units within the main chamber of the Bushveld 

Complex, including the UG2 and Merensky Reef. These magmas were displaced and exited 

up the walls of the chamber in response to new influxes of magma entering the main chamber. 

A study by Nell (1985) suggests that the metamorphic aureole in the Mokopane area 

was generated in two stages of thermal metamorphism caused by magma emplacement. The 

first event relates to emplacement of Lower Zone magma and is estimated to have attained 

750oC at 1.5 kb pressure. The second event is suggested to have been caused by intrusion of 

the more voluminous gabbroic magmas of the Upper Critical, Main and Upper Zones, with 

equilibrium temperatures and pressures of about 900oC and 4�5 kb. Kruger (2005b) also 

presents a two-stage emplacement model based on Cr/MgO ratios. The model proposes that 

the Platreef is intermediate between Main Zone and Lower Zone, and formed when the initial 

Main Zone magmas assimilated Lower Zone rocks, citing the occurrence of chromitite 

schlieren in the Platreef as evidence. These studies imply a temporal hiatus between Lower 

Zone emplacement and the intrusion of the rest of the Bushveld Complex. 

An alternative view of McDonald et al. (2005a) is that the Platreef and GNPA 

Member are not Critical Zone but a mixture of Lower Zone and Main Zone magmas that 

formed during one or more mixing events rather than by Main Zone assimilation of Lower 

Zone proposed by Kruger (2005b). While the magma mixing scenario would seem 

incompatible with van der Merwe�s (1978) observation that the Lower Zone was fully 

consolidated and tilted before the intrusion of later magmas, this observation applies only to 

the satellite bodies of Lower Zone and not the continuous sequence south of Mokopane. 
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Friese (2004) and Friese & Chunnett (2004) advocated that the Platreef was emplaced 

as a syntectonic, boudinaged/duplexed, sheet-like intrusion along an east- to northeast-verging 

thrust zone that developed along the contact between the Main Zone and country rocks, at the 

same time as the Pyroxenite Marker in the rest of the complex, i.e. in post-lower Main Zone 

time. This view does not fit the direct evidence presented in Chapter 5 of the present study 

and the related study of Holwell & Jordaan (2006) that presents three-dimensional mapping of 

the Platreef-Main Zone contact at Zwartfontein. Further, these authors have not only shown 

that the Main Zone significantly post-dates the Platreef, but also that the Platreef was 

intruded, cooled and deformed before intrusion of the Main Zone. 

 

4.6 Mineralisation of the Platreef 

It was recognised at an early stage of exploration that Platreef PGE mineralisation is 

associated with BMS carried in the igneous pyroxenitic package and the immediate footwall 

metasedimentary rocks and Archaean gneisses (Wagner 1929). Mineralisation in the footwall, 

however, is highly variable in terms of extent and grade (White 1994; Armitage et al. 2002). 

Local, thin zones of mineralisation are also reported at the base of the hangingwall (Holwell 

et al. 2005; Kinnaird et al. 2005). The average Pt/Pd ratio along the length of the Platreef is 

around unity or slightly lower (Kinnaird & Nex 2003). An exception is Townlands, where the 

reef is relatively Pd-rich and the Pt/Pd ratio is about 0.5 (Manyeruke et al. 2005). Several 

authors have remarked on the fact that the contact-style (Platreef) mineralisation shows 

relatively low Pt/Pd ratios (Pt/Pd mostly <1) compared to the internal reefs and silicate rocks 

of the western and eastern Bushveld Complex (Pt/Pd >1). Maier et al. (2008b) suggest that 

the difference in Pt/Pd between the internal and the contact-style mineralisation can largely be 

assigned to two processes: (1) palladium (as well as S) may be mobilised in percolating late 

magmatic or hydrothermal melts and/or fluids, particularly if the sulphides are completely 

resorbed; and (2) in the contact-style environments, Pd could show enhanced partitioning into 

sulphide melt relative to Pt and Ir. 

In the feldspathic pyroxenites of the Platreef, the BMS occur as interstitial blebs, and 

sulphide content is variable along strike but can be up to 30 modal % in some cores (Kinnaird 

2004). The position of mineralisation within the Platreef is also variable, apparently being 

either top-, middle- or bottom-loaded (Viljoen & Schürmann 1998; Kinnaird et al. 2005), but 

there is no conclusive view of any mechanisms that might have controlled the distribution of 

mineralisation. At Turfspruit and Tweefontein Hill, net-textures and massive sulphides are 

common (White 1994; Nex 2005; Hutchinson & Kinnaird 2005), and here the abundance of 

sulphides is thought to be due to an upgrade of the original sulphur content of the magma by 
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assimilation of footwall sulphide (Sharman-Harris et al. 2005). At Tweefontein Hill, 

sulphides are believed to have accumulated in a structural downwarp by gravitational settling 

(Viljoen & Schürmann 1998; Nex 2005). 

 Gain & Mostert (1982) and Armitage et al. (2002) found that high grades of 

mineralisation are carried in altered (serpentinised) zones of the footwall and in serpentinised 

calc-silicate xenoliths in the reef. Whilst PGE are generally associated with BMS in the reef, 

decoupling of PGE from BMS has occurred in places (Gain & Mostert 1982; Hutchinson & 

Kinnaird 2005; Kinnaird 2005a; Holwell et al. 2006). The cause of this decoupling is 

probably late-stage hydrothermal redistribution of PGE and BMS resulting in, for example, 

serpentinites containing either high PGE grade and low BMS or vice versa (Armitage et al. 

2002; Holwell et al. 2006). 

 Regarding PGM assemblages, the present study was the first to investigate PGM at 

Sandsloot in any detail, and up to the time when fieldwork for this study was carried out, only 

Kinloch (1982) provided any detail of PGM in other parts of the Platreef. In recent years, 

however, comprehensive PGM studies have been conducted at Turfspruit (Hutchinson & 

Kinnaird 2005; Hutchinson & McDonald 2008), Sandsloot (Holwell et al. 2006) and Overysel 

(Holwell & McDonald 2007). PGM throughout the reef are dominated by tellurides and 

sperrylite with locally common antimonides, sulphides and bismuthides, but it has become 

evident that footwall lithology exerts a direct control on mineralisation styles and particularly 

the presence of certain PGM types and their concentration (Viljoen & Schürmann 1998; 

Holwell & McDonald 2005; Holwell et al. 2006; Holwell et al. 2007). 

 

4.7 Effects of contamination and hydrothermal activity 

4.7.1 Contamination of the Platreef by country rocks 

Many workers consider the mineralisation of the Platreef to have been extensively controlled 

by the interaction of the Platreef magma with the variety of country rocks it has discordantly 

intruded. Of specific interest is how these interactions affect the amount of sulphur in a 

magma and the sulphur-carrying capacity of the magma. Magmatic sulphur isotope signatures 

cluster around zero per mil. Assimilation of sedimentary rocks may be evident as the sulphur 

isotope ratio is driven away from zero to heavy or light values, depending on the nature of the 

contaminant. 

Buchanan et al. (1981) examined the role of footwall contamination in the 

precipitation of sulphides in the Platreef at Tweefontein, where the Malmani Dolomite is 

overlain by the Penge banded iron formation and graphitic sediments. On the basis of isotope 

analyses for unmetamorphosed sedimentary rocks in the area, the authors conclude that the 
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sulphur-carrying capacity of the Platreef magma was boosted by the addition of iron from the 

Penge banded iron formation, by the addition of carbon (a reductant) in the form of organic 

graphite, and additional sulphur was supplied by dolomitic xenoliths with anhydrite layers. 

Gain & Mostert (1982) consider mineralisation of the Platreef at Drenthe to have been caused 

by devolatisation of dolomite xenoliths that added CO2, H2O and sulphur to the magma, thus 

lowering the sulphur solubility of the magma and adding sulphur from an external source, 

resulting in the precipitation of an immiscible sulphide liquid. Buchanan & Rouse (1984) 

presented sulphur isotope data for metallic sulphides at Tweefontein and Turfspruit that also 

indicate a significant contribution from an isotopically heavy source of sulphur in the 

footwall, thought to be anhydrite in the Malmani Dolomite. 

Barton Jr et al. (1986) compared the role of footwall contamination of the Platreef and 

hangingwall at locations where the immediate footwall consists of siliceous dolomite or 

granite/granitic gneiss. Vertical profiles for Rb and Sr isotope ratios through the Platreef 

overlying both types of footwall suggest contamination by a granitic component in both cases. 

The authors conclude that the dolomite footwall acted as a barrier that delayed contamination 

of the Platreef by the granitic basement below. 

Cawthorn et al. (1985) investigated the interaction of floor rocks with the Platreef at 

Overysel. There the floor rocks consist of a suite of highly metamorphosed banded tonalitic 

gneisses with leucocratic veins. High 87Sr/86Sr, Rb/Zr and Ba/Zr ratios in the cumulate 

pyroxenites of the Platreef and the presence of relatively sodic plagioclase, phlogopite and 

quartz support substantial assimilation of siliceous material. It is argued that where the 

Platreef rests on dolomite and banded iron formation, e.g. at Sandsloot and Tweefontein, 

contamination cannot be explained by assimilation of the floor rocks, which have low 
87Sr/86Sr ratios and low K2O, Rb and SiO2 contents. Isotope and trace element modelling 

suggests instead that the contaminant was a fluid rather than a partial melt. None of the 

Transvaal sedimentary rocks exhibit appropriate chemistry, but the geochemical signatures of 

the granitic basement suggest it is the source of the contaminant fluid. 

On the basis of an oxygen isotope study in the Sandsloot area, Harris & Chaumba 

(2001) deduced that the Platreef magma has assimilated up to 18% dolomite. The 

devolatilisation of this volume of dolomite would have produced a considerable amount of 

CO2, which could have increased fO2 (oxygen fugacity), lowering the FeO content of the 

magma and thus the sulphur carrying capacity, inducing sulphur saturation as suggested by 

Buchanan et al. (1981). 

More recently, other lithologies have been shown to be a source of sulphur to the 

Platreef. For example, Manyeruke et al. (2005) presented data that indicate a significant 
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addition of sulphur from Timeball Hill shales and quartzites. Also, Sharman-Harris et al. 

(2005) identified pyrite in the Duitschland shales as a significant source of sulphur at 

Rietfontein, Turfspruit and Macalacaskop. 

While silicic and sulphurous contamination of the Platreef has been thought to trigger 

precipitation of immiscible sulphides, Barton Jr et al. (1986) conversely regarded 

contamination at Overysel to be later than sulphur saturation, while Lee (1996) further 

interpreted sulphide mineralisation to be a primary magmatic event, generated when pre-

formed PGE-rich sulphides were introduced from a staging chamber and settled out along the 

base of the intrusion to form the proto-Platreef, with footwall contamination occurring later. 

Holwell et al. (2007) show that contamination of the Platreef by footwall sulphur appears to 

be a localised process that upgraded the sulphur content of the reef, but did not directly trigger 

sulphur saturation. Further, sulphate in the floor rocks, particularly in the Malmani Dolomite, 

is unlikely to have contributed significantly to early sulphide mineralisation, but is more 

likely to have been incorporated into later-stage hydrothermal fluids. 

 

4.7.2 Hydrothermal modification 

Studies on the Platreef have demonstrated that the PGE in the Platreef are originally 

magmatic but have been redistributed within the reef and also transported into the footwall. 

The likely medium is hydrothermal fluids generated by the interaction of the Platreef magma 

with the country rocks, and the volumes and types of hydrothermal fluids depend on the local 

country lithology. Variations in PGM mineralogy along the Platreef (Kinloch 1982; Viljoen & 

Schürmann 1998; Hutchinson & Kinnaird 2005; Holwell et al. 2006) correspond to transitions 

in the footwall lithologies. PGM mineralogy also varies in different Platreef lithologies 

(Armitage et al. 2002; Kinnaird et al. 2005; Holwell et al. 2006; Holwell & McDonald 2006) 

and this variation is interpreted to be a result of hydrothermal fluids generated by interaction 

between the Platreef magma and the different country rocks on all scales. 

There are two known mechanisms that have distributed mineralisation in the footwall. 

One of these is hydrothermal and affects areas where the footwall consists of reactive 

sedimentary rocks such as the Malmani Dolomite at Sandsloot and Zwartfontein South. 

Footwall mineralisation is common at these localities (Armitage et al. 2002; Holwell et al. 

2006; Holwell & Jordaan 2006). Where the footwall consists of more resilient hornfels further 

south, mineralisation is restricted to a narrower zone adjacent to the Platreef (Hutchinson & 

Kinnaird 2005). The second mechanism applies to areas where the footwall consists of 

Archaean gneiss/granite, e.g. at Overysel. Here the predominantly anhydrous nature of the 

footwall has permitted only minor release of fluids, and textural evidence suggests that 
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mineralisation was introduced into the gneiss via an interconnected melt network in the 

partially melted footwall rocks (Holwell & McDonald 2006). 
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5. GEOLOGY OF THE PLATREEF AT SANDSLOOT 

 

5.1 Introduction 

This chapter presents first-order data from fieldwork carried out during 2000-2001 in the 

Sandsloot open pit mine. The data includes descriptions of the general three-dimensional 

geological structure of the pit, six rock faces exposed by blasting shortly before or during 

fieldwork, and three drill cores that were available for logging at the time (Fig. 5-1). Some 

microphotographs and SEM images of sampled lithologies from the mapped rock faces are 

also presented to substantiate the first-order data. 

 

 

Fig. 5-1. Wireframe plan view of Sandsloot open pit in July 2000 showing locations of faces mapped and 

corresponding sample suites in this study. Solid lines represent major bench crests. Deepest area of the pit 

(south central area) is approximately 190 m below outer rim level. Stippled grey line is approximate trace 

of Platreef. 
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5.1.1 Field methods 

The stepped benches of the Sandsloot pit have subvertical rock faces 10-15 m high, and those 

that exhibit complete sections across the Platreef were mapped at 1:100 scale. The mapped 

sections were delineated by spray-painting geopoints at the outer limits of the rock face, then 

the latitude, longitude and elevation were established by mine surveyors using a global 

positioning system. The lowermost approx. 3 m of the rock faces could be mapped with 

relative confidence, while much of the exposure above that height was often inaccessible and 

covered by thick dust, although this was periodically removed by hosing on some faces. 

About 200 rock specimens were collected from most of the major Platreef and 

metasedimentary footwall lithologies at 2-5 m intervals along each face, and at spot localities 

of special interest. Specimens selected for microscopy and geochemical analysis were cut into 

three parts: one part for preparation of polished thin sections and polished blocks, one part 

was powered in an agate tema mill for geochemical analysis, and one part was stored as spare 

material.  

 

5.2 The Sandsloot mine 

The Platreef orebody at Sandsloot is tabular, dips at approximately 45o and is sufficiently 

thick to allow the orebody to be excavated by open pit mining methods, which is considerably 

cheaper than conventional underground mining. The Sandsloot open pit is the largest open pit 

platinum mine in the world and has a final depth of 260 m. Waste stripping began in January 

1992 and the first blast at the Sandsloot site took place on 12 February 1992, with the first 

production in 1994. At the time fieldwork was carried out for the present study, the Sandsloot 

pit was only a half of its final size. The shape of the pit at that time and the main lithological 

units, delineated by drilling and subsequent face mapping by mine geologists, is shown in Fig. 

5-2. The Mogalakwena North, Central and South open pits and Zwartfontein South open pit 

mines are now in operation, and four other pits will be opened for mining along the outcrop of 

the Platreef south of the Sandsloot pit, extending the total open pit life to at least 100 years. 

Subsequent underground mining will add at least a further 200 years of operations to the 

Mogalakwena lease area (Bye 2001). 

 

5.3 General stratigraphy at Sandsloot 

The Platreef and associated lithological units at Sandsloot can be outlined by the stratigraphic 

column in Fig. 3-3. The Platreef itself is a mix of lithologies broadly described as gabbros and 
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pyroxenites in variable states of alteration, overlain by a hangingwall of norites and 

gabbronorites belonging to the Main Zone. The footwall consists of siliceous Malmani 

Dolomite of the Transvaal Supergroup thermally metamorphosed to calc-silicate hornfelses 

and metasomatised to clinopyroxenites (�parapyroxenite� after Wagner 1929) that have 

undergone variable degrees of retrograde alteration. 

While the metamorphic clinopyroxenites (�parapyroxenite�) are thought to represent 

the highest grade of metamorphism within the footwall and are believed to occur between the 

Platreef and calc-silicate assemblages, observations in the present study do not support a 

persistent zone of clinopyroxenites immediately beneath the Platreef. Further, the lowermost 

section of the Platreef in places exhibits hybrid igneous and metamorphic features. These 

observations depart from the typical image of the Platreef and associated units. They will be 

illustrated in later sections with suggestions for possible controls on the pattern of their 

occurrence. 

 The hangingwall contact is a primary magmatic boundary locally marked by a chill 

zone at the base of the Main Zone and/or by erosion of primary and altered Platreef 

assemblages. In places the hangingwall contact is tectonic, juxtaposing the Platreef and 

hangingwall at unknown stratigraphic levels in each unit. In vertical pit faces that intersect the 

Plateef at a high angle, layering in the Main Zone appears to be parallel to the Platreef (this 

study and Holwell 2006). The footwall contact is consistently magmatic and discordant to 

footwall bedding, and is marked by an abrupt transition from Platreef rocks to footwall calc-

silicates, or by a transition from Platreef rocks through hybrid lithologies to metamorphic 

clinopyroxenites or calc-silicate hornfelses of the footwall. 

 

5.4 Structural geology at Sandsloot 

Major structures are apparent in regional map view and in the south and east highwalls of the 

Sandsloot pit, allowing broad three-dimensional characterisation of the immediate area. The 

open pit is disturbed by three major northeast trending faults: the most prominent one in the 

southeast and two in the far north; also north trending faults exposed in the southwest (Fig. 

5-2). The Sandsloot area has been intruded by late phase quartz-feldspathic veins, which are 

associated with most of the critical jointing system. These veins dip steeply and are laterally 

and vertically continuous over hundreds of metres (Bye et al. 1999). The most extensive 

structure is the �dolomite tongue�, previously mentioned in Chapter 3 and expressed as a west-

pointing lobe of metadolomite attached to the main dolomitic floor rocks (Fig. 3-2; Fig. 5-3). 

The genesis of the tongue is equivocal and might be a diapir of the type proposed by Uken & 

Watkeys (1997), or a dome created by the interference of two fold phases (van der Merwe  
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Fig. 5-2. Map of the Sandsloot open pit mine (after Bye et al. 1999) showing its approximate outline 

shortly before this study. Important features of the map are the faults and the westward deflection of 

the Platreef in the south part of the pit. Note that �parapyroxenite� is attributed to the Platreef, but is 

shown in this study to be a footwall lithology. �Chuniespoort Group carbonate� is Malmani Dolomite 

at this location. 
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1978; Nell 1985; Friese 2004). The structure has a prominent ENE-WSW axis in outcrop, but 

it also has an approximately north-south axis, photographed in Fig. 5-4 from the north limb of 

the structure. The east wall of the pit (Fig. 5-5, Fig. 5-6) displays a more open syncline with 

an approximately ENE-WSW axis, and the south limb of the syncline rises towards the tongue 

structure in the south wall. The resultant three-dimensional structure, as expressed by the  

 

 

Fig. 5-3. LandSat TM image of Sandsloot and neighbouring properties. Image acquired in 1992, before 

mining began at Sandsloot. Area corresponds to that in aeromagnetic image in Fig. 5-8. Note prominent 

WSW-pointing �dolomite tongue� below left of centre, transgressed near its west tip by Sandsloot river where 

open pit mine is now located. Image is RGB 457 (red, green, blue; bands 4, 5 and 7) false colour composite, 

30 m spatial resolution. 

 

metaedimentary footwall rocks, is illustrated in Fig. 5-7. Regional geological maps (e.g. van 

der Merwe 1976, 1978; Friese 2004) show a series of these open folds in the Transvaal 

Supergroup adjacent to the mafic rocks of the northern limb, with the tongue closely 

associated with a pattern of regional folds. Further, the asymmetry of the structure in E-W 
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section (Fig. 5-4) is suggestive of a tectonic as opposed to diapiric dome and will be discussed 

further in Chapter 7. The geometry of the structure expresses the interference of 

approximately N-S and ENE-WSW axes (e.g. Fig. 3-4, Fig. 4-1 and Fig. 5-8). 

 

 

Fig. 5-4. Approximately southward view perpendicular to south highwall from base of Sandsloot pit 

showing open, asymmetrical antiform defined by footwall bedding. Direction of view is along or 

subparallel to axis of antiform. Note location of face S1 in left foreground on east limb of antiform. 
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Fig. 5-5. Approximately southeastward view from west rim of Sandsloot pit showing south limb of open, 

approximately ENE-WSW trending syncline defined by footwall bedding. Direction of view is oblique to 

fold axis. Location of mapped face S1 is indicated. 

 

 

Fig. 5-6. Approximately northeastward view from southwest part of Sandsloot pit showing hinge 

zone/axis and north limb of approx. E-W trending, very open syncline (�Sandsloot Syncline� in Friese 

2004) rising into north pit in the distance. View is oblique to fold axis. 
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Fig. 5-7. Schematic southeastward view of footwall structure as exposed in the Sandsloot south pit. 

Stippled lines represent bedding. 

 

 
A local aeromagnetic image (Fig. 5-8) shows that the lowermost (easternmost) Main Zone 

layering is deflected stratigraphically upwards (westwards) at the margins of the dolomite 

tongue. However, the degree of deflection decreases up-sequence (westwards) towards the tip 

of the tongue, where no deflection is apparent. Curiously, van der Merwe (1978) states that 

Main Zone layering is not deflected by the Sandsloot tongue but is only interrupted by it, even 

though his own map shows the same slight deflection of Main Zone layering as the 

aeromagnetic image in Fig. 5-8 and is possibly interpreted from that image or from an earlier 

version of it. The significance of the dolomite tongue will be discussed further in Chapter 7. 

The local aeromagnetic image also shows a curious magnetic high just east of the Sandsloot 

pit. There is no obvious geological control on this anomaly as the area is covered by the mine 

infrastructure, and since it has not been possible to ascertain when the image was acquired, 

the anomaly could be due to the numerous steel-framed buildings. 

 Most of the west highwall, especially the upper part of the wall in the south pit and the 

entire wall in the north pit, consists of highly jointed hangingwall gabbronorite in which no 

other major structures are visible. The joints are a geotechnical hazard and have caused 

troublesome slip failure (Bye 2001). 

 The shape of the orebody, consisting mostly of the Platreef, has been delineated by 

fire assays of drill cores and is illustrated in Fig. 5-9. The structural pattern here equates to 

that photographed in Fig. 5-5 and Fig. 5-6. Further, the strike of the reef swings from N-S to 

NE-SW in the south to southwest part of the pit, where the northern flank of the �dolomite 

tongue� occurs. On some geological maps of the northern limb (e.g. Fig. 4-1) the Platreef is 
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shown to wrap around the �tip� of the tongue to Tweefontein on the south side of Sandsloot. 

On other maps, the Platreef is shown to �onlap� against the tongue and does not wrap around 

it (e.g. Fig. 3-4). Vertical drilling through the tongue did not encounter Platreef (R. Montjoie, 

pers. comm.), supporting the surface observation that the structure is attached to the floor 

rocks. Note also that the major fault in the satellite pit shown in Fig. 5-2 isolates a body of 

mineralised pyroxenite (lower right of Fig. 5-2 and top left of Fig. 5-9), which Ashwal et al. 

(2004) ascribed to gabbroic rocks of the Critical Zone. Alternatively, it could be part of a 

�Lower Platreef� body (Winch 2011). 

 

 

 

Fig. 5-8. Local aeromagnetic image superimposed on aerial photograph of Sandsloot and adjacent 

properties (image and boundaries from Potgietersrus Platinums Ltd internal presentation). Note �dolomite 

tongue� immediately south and southwest of Sandsloot pit; Main Zone layering abutting the tongue on 

farms Sandsloot and Knapdaar; and high aeromagnetic signature of Penge banded iron formation (purple 

zone at Tweefontein). 
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Fig. 5-9. Southwestward oblique view of orebody in south pit at Sandsloot (red in vertical section). Pit 

faces are outlined in pale blue from data in early 2000, boreholes in dark blue. Longest axis (north-south) 

is approx. 1.7 km. 

 

Assays of drill chips from boreholes drilled in grid pattern for blasting are used to compile 

grade plans for recovery of ore after blasting. The grade plans confirm the shape illustrated in 

Fig. 5-9 and corroborate the position of the Platreef in the vertical face maps in this chapter. 

Two approximately north-south striking, moderately to steeply east-dipping, large (>2 

m wide) hydrothermal quartz-feldspathic veins cross the Sandsloot pit. They are observed in 

the footwall in the south wall of pit and in some expsosures in the central area of the south pit, 

and they cut the hangingwall in the north wall. In addition to coarse-grained quartz and 

feldspar, calcite and fibrous white chrysotile aggregates occur as later, lower-temperature 

phases. Locally, calcite occurs as spectacular pyramidal crystals in large vugs. Minor brittle-

ductile shear structures occur at the margins of the largest vein (the only one that could be 

closely observed), but do not occur within the vein itself. This suggests either that an earlier 

shear zone was the locus of hydrothermal precipitation concurrent with vein dilation, or that 

the competence contrast between the vein and country rocks has generated high contact 

strains during deformation and shearing was focused along the contacts. In either case, 

incompetent rocks adjacent to the vein, such as the footwall calc-silicate hornfelses, have 
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deformed plastically (Fig. 5-10). The veins may correspond to the N-S striking faults shown 

in Fig. 5-2. The relationship of this shearing to the Platreef and hangingwall could not be 

established. 

 

 

 

 

 

Fig. 5-10. Margin of large hydrothermal vein (right 

of hammer) in floor rocks in south highwall of pit. 

Note brittle-ductile shear along vein margin, 

expressed as disharmonious folding of country 

rocks. Serpentinisation (dark layers) of calc-silicate 

hornfels highlights fold pattern. 

 

 

 

5.5 Lithological descriptions 
 

5.5.1 Hangingwall gabbronorite 

The hangingwall of the Platreef consists of fairly homogeneous gabbronorites thought to be 

representative of the Main Zone elsewhere in the Bushveld Complex. An abrupt change in the 

pyroxene composition from bronzite (En72-78: ferriferous enstatite) in the Platreef to inverted 

pigeonite (En64-67: low-Ca clinopyroxene with augite exsolution lamellae) in the hangingwall 

has been cited as evidence that the hangingwall gabbronorites formed from a separate magma 

(Gain & Mostert 1982) prior to this work. Some sections of the hangingwall contact show an 

essentially planar, macroscopically sharp, magmatic boundary. Wagner (1929) reported veins 

of hangingwall gabbronorite cutting the Platreef in exploration trenches opened up in the 

1920s. Details of the hangingwall contact observed in the present study will be given in the 

face map descriptions later in this chapter. 

 The most common variety of hangingwall gabbronorite is a medium to coarse-grained, 

isotropic assemblage of approximately 50 modal % plagioclase, 35% orthopyroxene and 15% 

clinopyroxene. Its appearance is transitional between leuco- and melanocratic. The modal 
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content of pyroxene can be as high as 75% in the darkest melanorites and as low as 30% in 

the palest leuconorites. Accessory phases, such as phlogopite, oxides and sulphides, account 

for up to 5 modal %. The pyroxenes are dark grey to dark grey-green and have an anhedral to 

ragged habit, occasionally forming large aggregates (Fig. 5-11). Plagioclase occurs as 

randomly oriented twinned laths and, in contrast to the Platreef, generally constitutes the 

cumulus phase (Fig. 5-12). Xenoliths of calc-silicate hornfels that are similar to the footwall 

to the Platreef occur sporadically in the hangingwall, as observed in one of the three drill 

cores described later. Calc-silicate xenoliths are also known from studies of other sections of 

the Platreef (Kinnaird et al. 2005). 

 

 

Fig. 5-11. Photomicrograph of fine-grained 

hangingwall gabbronorite (plane polarised light), 

consisting of cumulus plagioclase and intercumulus 

pyroxene. Accessory phases are phlogopite and 

opaques. Specimen N1-31. Field of view ~2 cm wide. 

 

Fig. 5-12. Photomicrograph of hangingwall 

gabbronorite with fresh cumulus plagioclase and 

intercumulus pyroxene. Specimen N1-31. Field of 

view approx. 4 mm wide. 

 

 

5.5.2 The Platreef 

The Platreef at Sandsloot consists of pyroxenites and gabbros in various states of alteration, 

with the degree of alteration apparently dependent on primary mineralogy. Saussuritisation of 

plagioclase is common in the gabbros, while pyroxenites display considerable serpentinisation 

and replacement textures. No evidence was found for a consistent spatial and temporal 

relationship between the pyroxenites and gabbros. The thickness of the Platreef varies from a 

few metres in the centre of the pit (in faces N1, N2 and N3: Fig. 5-1) to 30-55 m at several 

localities in the southwest parts of the pit (faces SW1 and SW2). The contact to the footwall 

lithologies is irregular, and variably altered footwall xenoliths up to several metres long occur 

sporadically in the reef. A chill zone was not found at the footwall contact of the Platreef or 

around xenoliths within the reef. In most mapped faces, the hangingwall contact was a 
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macroscopically sharp break between coarse Platreef pyroxenites and hangingwall 

gabbronorites. 

 

5.5.2.1 Pyroxenites 

Pyroxenites dominate the Platreef in the southwest part of the pit. They are commonly coarse-

grained, dark grey-green assemblages of anhedral to subhedral orthopyroxene (60-90 modal 

%) with a subordinate content of intercumulus clinopyroxene (10-40 %) (Fig. 5-13). 

Postcumulus plagioclase occurs locally in small pods and constitutes up to 15 modal %. 

Accessory phases include small booklets of red-brown phlogopite and finely disseminated 

BMS identified by reflected light microscopy and microprobe analysis (pyrrhotite, 

pentlandite, chalcopyrite, bornite, pyrite and minor galena-clausthalite). Minor oxides present 

are magnetite, ilmenite, perovskite, chromian spinel (picotite) and chromite. 

 Extensive zones within the pyroxenites have undergone high degrees of alteration to 

serpentine and talc. In these zones the pyroxenes have a more rounded, ragged habit and are 

pervaded by networks of serpentine microveins, suggesting widespread infiltration of 

hydrothermal fluids. The inter- and intragranular serpentine is black, giving the altered rocks a 

distinctly darker colour than the unaltered pyroxenites. 

 

 

Fig. 5-13. Drill core of coarse-grained Platreef pyroxenite with minor plagioclase content (middle core) 

and medium- to coarse-grained Platreef pyroxenite with rare plagioclase (lower core). Note also red-

brown phlogopite in centre left. 
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5.5.2.2 Gabbros (feldspathic pyroxenites) 

Platreef gabbros have coarse-grained to pegmatoidal textures. Dark green orthopyroxene 

occurs as a sub- to euhedral cumulus phase (40-70 modal %) with dark clinopyroxene (up to 

10%) in a colourless postcumulate mass of plagioclase (30-50%). Most plagioclase has a 

cloudy appearance due to saussuritisation, whereas pyroxene appears to have evaded 

alteration in most of the observed gabbros. Quartz is a minor phase (<1%), while other 

accessory and minor phases are the same as those in the reef pyroxenites. However, interstitial 

sulphides are larger and more sporadic, rather than finely disseminated throughout the rock 

body as they are in the pyroxenites. Coarse gabbros occur at different stratigraphic positions 

in the reef, apparently as large irregular pods or contiguous bodies, and seem to dominate the 

northern and central parts of the south pit. This is typified by face N1, where the reef consists 

almost exclusively of gabbro, although it should be noted that a shear zone has possibly 

removed a significant part of the upper reef here. 

In terms of mineralisation, the reef pyroxenites and feldspathic pyroxenites are rich in 

pyrrhotite (Fe7S8), pentlandite (Fe,Ni)9S8, chalcopyrite (CuFeS2) and minor secondary pyrite 

(FeS2) and bornite (Cu5FeS4). These are unevenly distributed and occur within the interstitial 

phases in the reef pyroxenites and gabbros. The intergrowth of sulphides with plagioclase and 

alteration amphiboles (e.g. actinolite), epidote and micas means the sulphide crystals have a 

ragged morphology rather than occurring as euhedral crystal aggregates with sharp linear 

contacts to surrounding silicates as they do in, for example, the Merensky Reef (Li et al. 

2004; Holwell et al. 2006). Saussuritised plagioclase is characterised by small sulphide blebs 

rimming the interstitial area. Surrounding pyroxenes only occasionally contain sulphides, and 

in such cases the sulphide blebs occur along cleavage planes. 

 

5.5.3 Footwall lithologies 

 

5.5.3.1 Clinopyroxenites (diopsidites) 

A characteristically pale grey, coarse-grained, granoblastic, diopsidic pyroxenite normally 

occurs between the Platreef and layered calc-silicate hornfelses. These clinopyroxenites are 

also seen as elongate lenses and contiguous bands concordantly interlayered with calc-silicate 

hornfels (Fig. 5-14), and the boundaries between these two lithologies are usually transitional 

over a few millimetres to centimetres. 

 In mining terminology the grey clinopyroxenites are known as �parapyroxenite�, 

following the term originally used by Wagner (1929), who evidently regarded the diopside-

rich footwall lithologies as highly metamorphosed dolomites. In the present study they will be 
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referred to as diopsidites in order to avoid any confusion with igneous lithologies. 

Geochemical analyses have shown that the diopsidites have a non-igneous genesis: the 

diopsidites contain little Cr, whereas the �normal� reef pyroxenites and gabbros have Cr 

contents of thousands of ppm. Serpentine with relict cores of metamorphic olivine is common 

in the diopsidites and the varieties that are rich in olivine also contain little Ni, whereas 

igneous olivine with the same Mg/Fe ratio contains thousand of ppm Ni. Some diopsidites do 

contain Ni but also have high Cu contents because sulphides are present as well as olivine and 

the Ni is contained in the sulphides (Harris & Chaumba 2001). These trace-element 

characteristics suggest that both diopside and olivine are derived by high-grade 

metamorphism/metasomatism of the siliceous footwall dolomites, corroborating Wagner�s 

(1929) original interpretation. Further support for a metamorphic origin is the presence of 

grossular-andradite (Fig. 5-15) and vesuvianite (Fig. 5-16). Similar lithologies in the 

metamorphic aureole of the northern limb of the Bushveld Complex are considered to reflect 

extreme metasomatism (Buick et al. 2000). At Sandsloot, the paragenesis of the diopsidites 

has involved such a thorough textural transformation that no primary layering is preserved. 

The mineralogy of the diopsidite bodies also appears to correspond to at least one of the 11 

assemblage groups identified by Nell (1985) in calcareous rocks of the Bushveld 

metamorphic aureole in the Mokopane area. At Sandsloot, serpentinisation is common in 

irregular zones (Fig. 5-17). 

 

 

Fig. 5-14. Lenticular bodies and contiguous bands of diopsidite (grey) in folded footwall calc-silicate 

hornfelses (milky/beige colour). Large camera bag for scale, with hinge of open synform visible above it. 
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Fig. 5-15. Hydrogrossular (red) in footwall 

clinopyroxenite (diopsidite). 

 

Fig. 5-16. Coarse-grained footwall clinopyroxenite 

consisting of diopside (grey) and assumed 

vesuvianite (greenish). 

 

 

 

 

Fig. 5-17. Local variation between unaltered footwall 

diopsidite (grey) and serpentinised diopsidite (black), 

with sharp irregular boundaries.

 

 

5.5.3.2 Calc-silicate hornfels and serpentinites 

The calc-silicate hornfels and serpentinite footwall lithologies can be crudely described as 

skarns and contain minerals that reflect a very wide range of prograde and retrograde 

metamorphic reactions (Fig. 5-19 to Fig. 5-21). The original sedimentary layering is clearly 

preserved, with a bedding thickness of 5-60 cm. Relatively unaltered footwall hornfelses have 

a mottled beige and pale green colour. Several small ovoid bodies and thin bands of pure 

wollastonite were observed (Fig. 5-20), interpreted as the high-grade metamorphic product of 

chert nodules and bands in the carbonate protolith: 

 

CaCO3  + SiO2  > CaSiO3 + CO2     .......... (1) 

calcite chert wollasonite 

 

4 (Ca,Mg)CO3 + 3 SiO2   > Mg2SiO4  + 2 CaSiO3  +  4 CO2 .......... (2) 

dolomite  chert  olivine wollastonite 
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Bands and nodules of dominantly red chert are common in the Malmani Dolomite beyond the 

thermal metamorphic aureole (personal observation). 

Where alteration is evident, it is expressed by retrograde serpentinisation of prograde 

metamorphic phases such as forsterite by the following reaction: 

 

3 (Mg,Fe)2SiO4 + 8 H2O > Mg3Si3O5(OH)4   +   2 Fe3O4 + SiO2 ..........(3) 

olivine serpentine (antigorite) magnetite 

 

The magnetite from this reaction is seen in serpentine microveins in and around relict olivine 

(Fig. 5-18). 

 

     

Fig. 5-18. SEM images of metamorphic olivine at [left] incipient stage of alteration to serpentine (darkest 

pervasive veins) and magnetite (bright wispy bands); and [right] more advanced stage of alteration. Specimen 

N1-4. 

 

The colour of the footwall at any locality is usually an indication of the extent of 

serpentinisation, such that the darkest (practically black) zones represent extreme alteration to 

virtually pure serpentinite. These zones tend to comprise irregular bodies varying in size from 

a few decimetres to tens of metres and are often elongate parallel to the footwall layering. 

However, serpentinite often occurs in the intersection of joints/fractures that would offer a 

natural pathway for fluids. Less extensive serpentinisation in the hornfelses follows the 

original bedding, such that darker layers are visibly continuous. The varying degrees of 

alteration between layers are thought to reflect primary variations in mineralogical 

composition. Several thin, highly continuous, very friable layers of a serpentine-rich lithology 

occur with a strong sulphurous odour. These may originally have been beds of anhydrite, 

which is known from unmetamorphosed parts of the Malmani Dolomite, but macroscopic 

evidence for original anhydrite is lacking at Sandsloot. 
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 Like the Platreef, the footwall rocks contain common sulphides such as pyrrhotite-

troilite (Fe1-xS�FeS), pentlandite (Fe,Ni)9S8, chalcopyrite (CuFeS2) and bornite (Cu5FeS4), but 

less common sulphides occur in the footwall that have not yet been identified in the Platreef. 

These are sphalerite (ZnS), bravoite (Fe,Ni,Co)S2, godlevskite (Ni7S6), millerite (NiS) and 

hydrous valeriite: (CuFeS2)1.5(Mg,Al)(OH)2. An unidentified Fe-Zn-Mn-S phase (ferroan 

sphalerite?) is frequently encountered in footwall serpentinites, and stibnite (Sb2S3) and 

molybdenite (MoS2) are found as rare phases in the hornfelses and serpentinites. Magnetite is 

the only oxide found in the footwall. Other rare phases include altaite (PbTe), plumboan 

barite or hokutolite (Ba,Pb)SO4 as well as halogen-bearing phases such as bismoclite (BiOCl) 

and unidentified Fe-F-bearing and Pb-Cl-bearing phases. 

 

 

 

Fig. 5-19. Footwall calc-silicate hornfels in drill 

core SSP242 at 321.95 m depth. Large grey/green 

crystals are diopside. 

 

Fig. 5-20. Ovoid body of pure, white wollastonite in 

footwall calc-silicate hornfels. 

 

 

 

 

Fig. 5-21. Photomicrograph of meta olivine 

clinopyroxenite (plane polarised light) pervaded 

by network of serpentine microveins (dark 

material). Specimen PA-E142. Field of view ~2 

cm wide. 
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Fig. 5-22. Dark serpentinite associated with intersections of joints/fractures in footwall. Note compositional 

variation in footwall layers and thin, bedding-parallel, dark serpentinite bands. Yellow field book (20 cm 

long) for scale.

 

5.5.3.3 Pegmatoidal mafic dykes 

In the east-central part of the pit, a 4-5 m thick pegmatoidal dyke intrudes almost vertically 

through the footwall, but its relationship to the Platreef could not be seen. Several smaller 

dykes and veins branch from this dyke into the Platreef (suggesting the main body of the dyke 

also cuts the reef) and are seen as small pods on the rock face. Locally the texture is extremely 

pegmatitic, with pyroxene crystals up to 30 cm long in blasted-out boulders near the main 

exposure of the dyke. Small dykes and veins of similar composition were observed in some 

drill cores from various locations around the mine. The dyke has no chilled margins against 

the footwall serpentinised clinopyroxenites and Platreef. Its relationship to the hangingwall is 

not known, but the pegmatoid is notably lacking in the hangingwall in drill cores. There are, 

however, similar pegmatoidal dykes emating from the Main Zone (hangingwall) at 

Zwartfontein, mapped by Holwell & Jordaan (2006). 

 Two consistently characteristic features of the main dyke and its branching veins are 

their pegmatoidal texture and cumulus plagioclase laths with intercumulate graphite-grey to 

black pyroxene (Fig. 5-23), although locally the two phases display eutectic intergrowth. In 

the most pegmatoidal zones, pyroxene and assumed plagioclase were eutectic but the 

plagioclase is thoroughly altered to a microscopically fibrous epidote (Fig. 5-24) that is pale 
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green in hand specimen. In places, the branching veins are extremely feldspar-rich and sub- to 

euhedral pyroxene crystals in tooth-like or radial patterns grow inwards from the margins of 

the veins (Fig. 5-25). Within the dyke and some of the associated veins, bowed pyroxene 

crystals (Fig. 5-26) and fragments of pyroxene evidently broken away from the dyke margins 

suggest some form of directed stress, possibly the result of flow of melt or crystal mush, as 

there are no expressions of tectonic stress. Phlogopite occurs as an accessory phase, 

comprising large �booklets�. Sulphides are notably rarer than in the Platreef but large, 

interstitial blebs of pyrrhotite and pentlandite occur sporadically. Ilmenite and perovskite 

represent minor oxide phases, sometimes containing chlorapatite (Ca5(PO4)3Cl) and 

baddelyite (ZrO2). Narrow veins of similar composition and appearance to this major dyke are 

observed in the footwall lithologies along the east highwall of the pit. 

 

 

Fig. 5-23. Photograph of pegmatoidal mafic 

dyke. Note well developed, cumulus feldspar 

laths. 

 

Fig. 5-24. Photomicrograph of pegmatoidal mafic 

dyke (crossed nicols) consisting of highly altered 

cumulus plagioclase (sericite and epidote from 

sericite) and orthopyroxene, in this case in eutectic 

intergrowth, with reaction rim around orthopyroxene. 

Specimen PA-N1-0. Field of view approx. 4 mm.  

 

 

Fig. 5-25. Highly pegmatoidal anorthosite-pyroxenite 

pocket in the Platreef near the major dyke shown in 

Fig. 5-23 above. 

 

Fig. 5-26. Smaller pegmatoidal vein branching from 

the major pegmatoidal dyke in Fig. 5-23. Note large 

bowed pyroxene crystal right of centre.
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5.6 Face map descriptions and petrography 

Fig. 5-1 shows a plan of the Sandsloot open pit as of July 2000 and indicates the locations of 

all rock faces mapped for the present study. Composite photographs and accompanying maps 

of the individual faces are given in this section. Sampling points and numbers for all of the 

specimens collected for petrography and/or geochemical analysis are indicated on each map. 

Fig. 5-1 also shows the locations of three boreholes in the Sandsloot north pit, and graphic 

logs of the drill core are presented and described in a later section. 

In each face number, for example 138/038, the bench number is identified by the first 

three digits of the first number. The greater the number, the deeper the bench, and because the 

Platreef dips west or northwest, the reef occurs at increasing depth progressing westwards. 

The second set of digits in the face numbers represents a horizontal zone in the respective 

bench plan. This is the mining terminology. For simplicity, however, each face is given an 

abbreviated code; e.g. N1, SW3, indicating location in the north and southwest parts of the 

south pit respectively. These codes are used to prefix sample numbers, in which the number 

denotes distance in metres along the face; e.g. sample PA-N1-24 is from 24 m along face N1 

(the author�s initials PA are a fixed identifier). 

Six face maps that show the relationships between footwall, Platreef and hangingwall 

lithologies are presented in this section (N1, N2, N3, SW1, SW2, SW3), and structural detail 

of another face in partly mineralised footwall rocks (S1) is also described. An additional long 

face (E1) that joins faces N1 and S1 was also mapped and sampled, but it is exclusively 

footwall. Therefore it is not described here, but samples and photographs from the face are 

used for illustration. 

 

 Face 132/038 (N1 � Fig. 5-27) � a 32 m long, south facing exposure in the northwest 

corner of the south pit, displaying a virtually cross-strike section through the Platreef, 

where the reef has its general north-south strike and moderate dip to the west. 

 Face 132/032 (S1 � Fig. 5-34) � a 35 m long, north facing exposure in the east part of the 

south pit exhibiting structures in locally platiniferous footwall lithologies. No hangingwall 

or Platreef is exposed here. 

 Face 141/022 (N2 � Fig. 5-35) � a 35 m long, south facing exposure in the south pit 

displaying an approximately 10 m thick section of reef with contacts to the hangingwall 

and footwall. Again the reef strikes roughly north-south and dips to the west. 

 Face 144/011 (N3 � Fig. 5-37) � a 60 m long, south facing exposure in the central part of 

the pit showing the hangingwall contact zone but no footwall. 
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 Face (SW1 � Fig. 5-40) � a 50 m long, east-facing exposure in the �southwest extension� 

of the pit with a full section through footwall, Platreef and hangingwall. The reef has an 

approximately SW-NE strike and NW dip and displays significant compositional 

variation. 

 Face 138/014 (SW2 � Fig. 5-44) � another east-facing exposure, 85 m long, a short 

distance east of SW1 and geologically similar in many ways, but exhibits a thicker reef 

section and different internal variation. 

 Face 141/021 (SW3 � Fig. 5-48) � a 40 m long, NE-facing exposure further 

west/southwest of SW1/SW2 and, although it is a simpler package, it displays important 

variation within the reef. 

 

The locations of the mapped pit faces describe an arc (Fig. 5-1), with faces N1-N2-N3 lying 

along the regional strike of the Platreef, but between the N series of faces and faces SW1-

SW2-SW3, the strike of the reef swings abruptly westwards (cf. Fig. 5-2). This is where the 

reef turns towards the �tip� of the dolomite tongue along the north limb of the approximately 

ENE-WSW trending domal structure. 

 

5.6.1 Face 138/038 (N1) 

In face 138/038 (specimen suite N1: Fig. 5-27), the Platreef has a thickness of 12-15 m and is 

dominated by coarse-grained, pyroxene rich gabbro-gabbronorite that grades locally into 

pyroxenite and websterite. Cumulus orthopyroxene is ubiquitous and is accompanied by 

cumulus or intercumulus clinopyroxene, and intercumulus plagioclase that may occur as large 

oikocrysts. BMS and PGM are generally restricted to interstitial sites between the cumulate 

pyroxenes (Fig. 5-28, Fig. 5-29). Chromite, ilmenite, rutile, armalcolite, perovskite, 

phlogopite and zircon are present as accessories (Armitage et al. 2002; McDonald et al. 

2005a). The reef contains ragged xenoliths of dark serpentinite, which is assumed to be highly 

altered footwall calc-silicate hornfels (Fig. 5-30). Relict sedimentary lamination is clearly 

visible in the largest xenolith, and the shape of the smaller xenolith closer to the hangingwall 

seems to reflect bedding. 

A pegmatoidal zone of aplitic gabbro and fragmented pyroxenite (Fig. 5-32, Fig. 5-33) 

occurs along the footwall contact where the reef thickens but is absent from thinner reef lower 

down the face. The shape of this feature gives it some morphological similarity to �potholes� 

in, for example, the Merensky Reef. 

The contact to the hangingwall is tectonic in this rock face, comprising a serpentinised 

brittle-ductile shear zone up to 20 cm thick. It is considered very unlikely that the shear zone 
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has exploited the original hangingall contact, as an original magmatic hangingwall contact is 

exposed in other rock faces nearby (N2 and N3). Thus, it is likely that the top of the reef is 

truncated in face N1. The hangingwall is a medium- to coarse-grained norite with cumulus 

plagioclase and intercumulus pyroxene. 

 A distinct pegmatoidal mafic dyke dominates the eastern end of the face and was 

described in section 5.5.3.3. It intrudes the footwall, and smaller offshoots are observed in the 

gabbroid rocks of the Platreef. The relationship of the dyke to the Platreef and hangingwall 

could not be observed above face N1. 
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Fig. 5-27. Geological map and composite photograph of face 132/038 (N1). 
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Fig. 5-28. Photomicrograph of Platreef gabbronorite 

(plane polarised light), consisting of euhedral to 

subhedral cumulus orthopyroxene and clinopyroxene 

in intercumulus plagioclase. Minor phases are red-

brown phlogopite and opaques. Specimen N1-14. 

Field of view ~3 cm wide. 

 

Fig. 5-29. Photomicrograph of Platreef gabbronorite 

(crossed nicols) showing interstitial twinned 

plagioclase in variable state of saussuritisation 

between euhedral to subhedral crystals of 

orthopyroxene and clinopyroxene. Specimen N1-26. 

Field of view approx. 4 mm wide. 

 

 

Fig. 5-30. Dark serpentinite xenolith in very coarse 

Platreef gabbro in face N1, cut by a late quartz-

feldspathic vein. Note possible igneous layering in 

gabbro in centre right part of photograph (detail in 

Fig. 5-31). 

 

Fig. 5-31. Detail of apparent crude igneous layering 

in very coarse-grained Platreef gabbro in face N1. 

  

 

Fig. 5-32. Detail of pegmatoidal gabbroic pod at base 

of Platreef in face N1. Pale portion is aplite. 

 

Fig. 5-33. Detail of highly mineralised gabbro in 

pegmatoidal pod in face N1.
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5.6.2 Face 132/032 (S1) 

Face 132/032 (specimen suite S1, S2 and S3: Fig. 5-34) is a headwall from which a ramp was 

constructed for mine traffic soon after the face was mapped. It is a short, north facing 

exposure entirely within the footwall on the east side of the south pit (Fig. 5-1). Although the 

face displays no Platreef and may be several to tens of metres below the base of the reef, it 

was mapped in order to illustrate a system of shear zones that deform the footwall at this 

location. Samples were also collected for fire assay. 

The face shows interlayered calc-silicate hornfelses, diopsidites and meta olivine 

clinopyroxenites, with minor igneous tubes (assumed offshoots from related concealed 

dykes). Lithological variation appears to broadly follow bedding but with notable exceptions, 

and while the face map illustrates only the major variations, composition varies on a much 

smaller scale. Up to ~3 m from ground level, the face could be mapped with confidence. At 

higher levels, visual extrapolation was necessary in order to complete the structural picture, 

though some higher parts were accessible by climbing. 

 The mapped structures are west- to southwest-verging shear zones that initiated along 

bedding planes but have broken upwards (ramped), forming an incipient duplex. The shear 

zones are characterised by dark, similarly oriented serpentine fibres and by slickenlines and 

slickensteps in quartz, calcite and fibrolite. While the slip structures display a variety of 

orientations, the majority are aligned with the westward vergence of the shear zones. As the 

shear structures overprint prograde metamorphic assemblages, they are late syn- to post-

metamorphic in relation to hornfelsing of the metadolomite footwall. If the structures are 

extrapolated southwards, they are located on the east limb of the large anticline in the south 

wall of the pit (Fig. 5-4), and may then be part of a shear system that generated major N-S 

trending folds; or perhaps they represent �out of the syncline� accommodation structures in the 

hinge of a syncline that pairs with the anticline seen in the south highwall. East of face S1, 

bedding can be seen to dip approximately southwest, supporting the existence of a syncline. 
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Fig. 5-34. Geological map and photograph of face 132/032 (sample suite PA-S1) consisting 

entirely of footwall lithologies with minor igneous �tubes�. Labels 32GP9 and 32GP10 are survey 

geopoints. Sampling locations and sample numbers are shown. 
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5.6.3 Face 141/022 (N2) 

This south facing exposure towards the northeast corner of the south pit shows an unbroken 

sequence through the hangingwall, Platreef and footwall. The hangingwall is an 

unremarkable, medium-grained gabbronorite with a sharp magmatic contact to the underlying 

Platreef package, but could only be observed clearly in the lowermost part of the face because 

it was generally covered by much loose debris. 

The upper section of the reef from about 2 to 5 m along the face is a dark, coarse 

pyroxenite with some visible plagioclase but no visible sulphides. The upper zone of 

pyroxenite and the sharp magmatic hangingwall contact distinguish this face from face N1, 

where the hangingwall gabbronorite is in tectonic contact with coarse feldspathic pyroxenites. 

It is possible, but not provable, that the shear zone in face N1 has eliminated part of the reef 

that differs from the exposed feldspathic pyroxenites. 

The lower section of the reef from about 5 m to the footwall contact at 14 m is a 

coarse gabbroid rock similar to that in face N1, and is increasingly feldspathic, pegmatoidal 

and sulphide-rich towards the footwall contact. Despite this tendency towards a pegmatoidal 

texture, however, there is no distinct pegmatoidal pocket/pod at the base of the reef as there is 

in face N1. 

From the footwall contact at 14 m to at least 36 m, meta olivine clinopyroxenite 

occurs with little lithological variation but with abundant small patches of sulphides. 

 

 

Fig. 5-35. Geological map of face 141/022 (N2). 
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5.6.4 Face 144/011 (N3) 

The Platreef in face N3 (Fig. 5-36) is ~21 m thick and the upper 10 m is very similar to the 

gabbroic reef in face N1 (Fig. 5-27) and face N2 (Fig. 5-35), except with a 2-3 m thick zone 

of altered reef towards the top of the section. Again in similarity to face N2, a 12 m thick 

section of mainly meta olivine clinopyroxenite with abundant sulphides occurs beneath the 

reef, but with some relatively unaltered diopsidite. At around 29 m along the face there is a 

transition to the common layered calc-silicate hornfelses and diopsidites, which become 

increasingly serpentinised beyond about 40 m. The calc-silicate hornfelses and diopsidite 

zones reflect footwall bedding, which appears to have a relatively low angle to the reef-

footwall contact here. 

The hangingwall contact is well displayed and, rather than being a tectonic boundary 

as in face N1 or a single sharp magmatic contact as in face N2, is instead a planar magmatic 

contact zone defined by a 10-15 cm thick leuconorite with cumulus plagioclase and 

orthopyroxene oikocrysts (initially termed �mottled anorthosite� in the field), overlain by a 5 

cm thick layer of fine-grained gabbronorite. The leuconorite and gabbronorite specimens are 

numbered N3X-4B and N3X-4A, respectively, in Table 1 in Appendix 3. A similar 

relationship was observed north of Sandsloot in the dry river bed at Zwartfontein (Fig. 5-38), 

which is now an operational pit. A further observation in face N3 is that a slightly irregular 

zone of serpentinised pyroxenite near the top of the Platreef appears to be truncated by the 

hangingwall. 

Holwell et al. (2005) provide crucial microscopic evidence of the nature of the contact 

between hangingwall poikilitic leuconorite and coarse-grained, mineralised Platreef 

pyroxenite of a sample taken from the northern part of the Sandsloot pit (Fig. 5-39). The 

cumulus orthopyroxene crystals at the top of the Platreef are visibly eroded and resorbed by 

cumulus plagioclase of the fine-grained poikilitic leuconorite. The leuconorite does not 

permeate the pyroxenite, and the embayments made by the small plagioclase crystals into the 

pyroxenes strongly suggest that the Platreef was completely or nearly completely solidified 

before intrusion of the hangingwall magma. 
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Fig. 5-36. Geological map of face 144/011 (N3). 

 

 

 

 

Fig. 5-37. Detail of hangingwall contact zone in face N3 (from McDonald et al. 2005a). 
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Fig. 5-38. Fine-grained Main Zone gabbronorite intruded above mottled anorthosite in a dry 

river bed at Zwartfontein South, a short distance north of the Sandsloot pit, prior to 

commencement of the Zwartfontein open pit operation. Note wavy contact. The anorthosite 

overlies oxidised Platreef beneath sandy cover beyond the lower right margin of the 

photograph. 

 

 

 

 

Fig. 5-39. Composite photomicrograph showing the contact between fine-grained, hangingwall poikilitic 

leuconorite (upper half of photograph) and coarse-grained, mineralised Platreef feldspathic pyroxenite 

(lower half). Note the embayments made by hangingwall plagioclase in the cumulus Platreef 

orthopyroxenes (arrowed). Dark patches within the plagioclase are alteration (from Holwell et al. 2005). 
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5.6.5 Face 135/014 (SW1) 

In the southwest part of the pit, the Platreef shows important mineralogical and textural 

differences to the reef exposed to the north. In face SW1 (Fig. 5-40), Fe-rich olivine is 

widespread and occurs as a late-stage mineral (Fig. 5-41 to Fig. 5-43). It replaces 

orthopyroxene through many metres of the reef. Plagioclase may also be replaced by Fe-rich 

clinopyroxene, resulting in the development of Fe-rich wehrlites, olivine lherzolites and 

harzburgites, and an overall darkening of the rock conspicuous in the photograph of the face 

(Fig. 5-40). The Fe-rich zone also appears highly fractured after blasting. These rock types 

have been noted to the south where the Platreef rests on banded ironstone (Buchanan et al. 

1981; Buchanan & Rouse 1984) but have not been described elsewhere. The Fe enrichment 

and reaction textures observed here are similar to those found in Fe-rich pipes and pegmatoids 

elsewhere in the Bushveld Complex (Schiffries 1982; Viljoen & Scoon 1985) and may have 

been produced from reaction between reef pyroxenites and gabbros and a late-stage Fe-rich 

melt or fluid. This type of Fe-rich ultramafic reef will be referred to as �olivine replaced reef� 

(ORR � after McDonald et al. 2005a; Holwell et al. 2006). Perhaps more importantly, these 

feldspar-poor ultramafic zones are invariably truncated by hangingwall lithologies that 

contain fresh plagioclase. Thus, the Fe replacement event is restricted to the Platreef and 

never happened in the hangingwall. This is a vital constraint on the relative timing of the 

Platreef and Main Zone. 

At this location, however, the reef does not overlie banded ironstone and since the 

hangingwall truncates the Fe replacement zone, the cause of Fe enrichment can only be 

speculated. One reasonable possibility is that the Penge banded iron formation, which 

underlies the reef south of Sandsloot, continued above the Platreef at Sandsloot when the reef 

was emplaced but before the Main Zone intruded above it and eliminated the sedimentary 

roof rocks. This scenario assumes that the original roof rocks of the Platreef were the 

continuation of the Transvaal Supergroup known from the present footwall. 

Face SW1 also shows a serpentinised mixed rock comprising relict metamorphic 

clinopyroxenite (with or without olivine) and pyroxenites and websterites with igneous 

textures forming the base of the Platreef. This type of rock will be referred to as �footwall-reef 

hybrid� (after McDonald et al. 2005a). The primary Platreef is extensively replaced and 

mixtures of orthopyroxenites, websterites, gabbronorites and wehrlites are common. The 

rocks become more pegmatoidal and olivine-rich upwards, grading into Fe-rich olivine 

lherzolite close to the hangingwall contact. For at least a few metres above the contact, the 

hangingwall is fine-grained gabbronorite with cumulus plagioclase (specimen PA-SW1-47). 
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Fig. 5-40. Photograph and geological map of face 135/014 (SW1). 

 

 

 

Fig. 5-41. Photomicrograph of specimen SW1-43 

(plane polarised light). Note dull green olivine 

around eroded orthopyroxene grains (grey). 

 

Fig. 5-42. Photomicrograph of fresh, fractured 

olivine in orthopyroxene (crossed nicols). 

Specimen SW1-40. 
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Fig. 5-43. Olivine replacement texture in specimen 

SW1-40. Note embayments of olivine in orthopyroxene. 

 

5.6.6 Face 138/014 (SW2) 

Face SW2 (Fig. 5-44) also exhibits Platreef cutting the footwall bedding at a high angle and is 

similar in some respects to face SW1 (Fig. 5-40), probably due to their proximity. Olivine in 

the footwall is extensively serpentinised and these rocks contain an intricate fracture network 

filled with magnetite and ilmenite. A thick zone of serpentinised hybrid rocks (Fig. 5-45) is 

present at the base of the reef, and wehrlite occurs close to the hybrid rocks. This merges 

upwards into gabbronorite (Fig. 5-46) and pyroxenite (Fig. 5-47) that become very Fe-rich 

close to the hangingwall, but with little obvious development of olivine. 

A 15 cm wide, dark xenolith of websterite (specimen PA-SW2-83) that carries high 

levels of Cr and some PGE grade occurs a few metres above the contact in the hangingwall 

gabbronorite. This is interpreted as a xenolith of Platreef (Holwell et al. 2005) and the whole-

rock and cumulus orthopyroxene compositions (En78) are consistent with the Platreef 

(McDonald et al. 2005a). 
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Fig. 5-44. Geological map of face 138/014 (SW2).



 99

 

Fig. 5-45. Photomicrograph of footwall-reef hybrid 

(plane polarised light). Note eroded pyroxenes (grey) 

and network of serpentine veins (dark). Specimen 

SW2-28. 

 

 

Fig. 5-46. Photomicrograph of Platreef gabbronorite 

consisting of disaggregated cumulus euhedral 

orthopyroxene and minor clinopyroxene, and 

subhedral ortho- and clinopyroxene aggregates with 

saussuritised intercumuls plagioclase. Minor phases 

are red-brown phlogopite and opaques. Specimen 

SW2-49. 

 

 

 

 

Fig. 5-47. Photomicrograph of Platreef feldspathic 

pyroxenite consisting of aggregates of coarse, sub- to 

anhedral ortho- and clinopyroxene with minor 

interstitial plagioclase. Green mineral is chlorite. 

Specimen SW2-77. 

 

 

 

5.6.7 Face 141/021 (SW3) 

Face SW3 (Fig. 5-48) exhibits a relatively simple sequence of lithologies but with some 

important features. The clean appearance and unbroken verticality of the face reflects a 

general lack of alteration. The footwall-reef contact is highly unconformable and is a primary 

igneous boundary showing no sign of tectonic disturbance. A distinct interlayering of pale 

calc-silicate hornfelses and grey diopsidites characterises the footwall immediately beneath 

the Platreef, with a thick band of coarse-grained granoblastic calcite (marble). The continuity 

of these layers up to the igneous contact is evidence that metamorphic clinopyroxenites do not 

always occur adjacent to the lowermost reef. Further, the lack of tectonism in the footwall, in 

similarity to other mapped faces but much clearer in face SW3, is at variance with the 

conclusion of Friese (2004) that the Platreef intruded along a thrust zone. 
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The lowermost part of the Platreef is approximately 20 m thick and consists of 

footwall-reef hybrid, indicating some interaction with the footwall despite the sharp contact. 

The hybrid rock is overlain by a main body of websterite with a transition to a thin zone of 

melanocratic gabbronorite. The shape of the constituent reef lithologies is uncertain, as 

transitions could only be seen in the lower ~3 m of the face. 

The hangingwall contact is a sharp magmatic boundary, and although it is difficult to 

see the relative chronology of reef and hangingwall at the contact, the hangingwall 

gabbronorite is clearly in a fresher condition and is therefore likely to be the younger magma. 

A brittle fault displaces the contact with an apparent 3 m downthrow in face view. 

 

 

 

 

Fig. 5-48. Composite photograph (shadow of drill rig in centre) and geological map of face 141/021 (SW3). 
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5.7 Drill cores 

Three drill cores were available for logging during fieldwork at Sandsloot. The drilling 

locations in the northwest part of Sandsloot pit are shown in Fig. 5-1. The three cores are 

illustrated in Fig. 5-49, Fig. 5-50 and Fig. 5-51 and are described in turn. Each core is a 

vertical section through the hangingwall, Platreef and footwall, and show features that were 

also encountered in the mapped pit faces described earlier, supporting the observations made 

there. Despite the extremely limited view across a drill core, one advantage of cores is that 

they display very fresh rock and far longer, continuous sections through hangingwall and 

footwall than can be observed in rock faces. The cores are described from �end of hole� to top, 

i.e. stratigraphically upwards. The top of each core log is an arbitrary depth in the 

hangingwall above which no significant features were observed. The angles of lithological 

contacts in the graphical logs are not real, but only serve to illustrate that the main units dip 

moderately relative to the vertical boreholes. Thicknesses given in the description are 

therefore apparent thicknesses, such that real unit thicknesses normal to stratification are 

significantly smaller. Differences in dips between the magmatic and metasedimentary units 

are not necessarily real and are only intended to illustrate the discordant intrusion of the 

Platreef above the footwall. 

 

5.7.1 Core SSP242 

In core SSP242 (Fig. 5-49), a typical interlayering of footwall calc-silicate hornfelses and 

diopsidites occurs in variably serpentinised varieties from 343 m (end of hole) to 302 m 

depth. There is a sharp magmatic contact above the uppermost diopsidite to a coarse gabbro 

of cumulus pyroxene with intercumulus milky white plagioclase and large interstitial sulphide 

blebs. This unit is approximately 2 m thick and overlain by a thin band of coarse 

melanogabbro. These magmatic lithologies are interpreted as Platreef. The melanogabbro has 

a sharp contact to a pale mottled anorthosite approximately 1 m thick in section, which in turn 

has a sharp magmatic contact to a medium-grained gabbronorite. This is macroscopically 

unmineralised, exhibits modal layering and downward fining. The mottled anorthosite is 

interpreted as a chill zone at the margin of an intrusion above the Platreef, and the 

gabbronorite as �normal� hangingwall. 

 The gabbronorite continues to 287.5 m, where it is truncated by a thin quartz-

feldspathic vein. Above the vein is a thin (2 m) succession of coarse mineralised gabbro 

similar to that at 302�300 m, topped by a thin band of coarse, mineralised pyroxenite and 

melanogabbro again similar to that described at about 299.5 m. The upper contact of the 

melanogabbro is a thin transition to a band of serpentinised pyroxenite above which is a sharp 
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contact to fresh-looking gabbronorite very similar to that described at 297�287.5 m. Holwell 

& Jordaan (2006) mapped irregularly shaped, intrusive, fine-grained melagabbronorites 

towards the base of the hangingwall at Zwartfontein, and very occasionally these penetrate the 

Platreef and may contain minor PGE and BMS mineralisation. Returning to core SSP242 at 

Sandsloot, the sequence above 275.5 m depth is interpreted as hangingwall juxtaposed against 

an upper section of Platreef by a fault that has been filled by hydrothermal felsite. This upper 

section of Platreef has a magmatic contact to hangingwall gabbronorite, with the conspicuous 

absence of the mottled anorthosite that occurs deeper in the core. The possibility that the band 

of serpentinised pyroxenite may represent a minor shear zone was considered, but the 

hangingwall gabbronorite above it lacks tectonic fabric. The two possibilities for this upper 

reef-hangingwall contact are: (i) a chill zone did not develop; or (ii) the hangingwall magma 

has eroded a previously developed chill zone of mottled anorthosite and now rests directly on 

Platreef (cf. Holwell et al. 2005; Holwell & Jordaan 2006). 

 A final and important observation in core SSP242 is that a 4�5 m section of a xenolith 

of calc-silicate hornfels occurs in the hangingwall gabbronorite at a much higher level than 

illustrated in Fig. 5-49. This has two possible explanations: (i) the hangingwall (Main Zone) 

magma was locally in direct contact with the Malmani Dolomite, perhaps at greater depth, 

due to local absence of the Platreef or due to total erosion of the Platreef by the Main Zone; or 

(ii) the roof rocks of the Platreef were the same as the floor rocks in pre-Main Zone time. The 

latter scenario is the most likely, as there is no evidence from Sandsloot or elsewhere of total 

erosion of the Platreef by the Main Zone. 
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Fig. 5-49. Geological log of drill core SSP242. Colours for the various lithologies are the same as for the face 

maps (see legend in Fig. 5-27). 
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5.7.2 Core SSP257 

Drill core SSP257 is illustrated in Fig. 5-50. From 373 m (end of hole) to 259 m, footwall 

clinopyroxenite and serpentinised clinopyroxenites occur, with relatively minor units of 

variably serpentinised calc-silicate hornfelses and lesser volumes of almost pure serpentinites. 

From the sharp upper contact at 259 m is a 19 m thick succession of mineralised 

melanogabbros, pyroxenites and serpentinised pyroxenites all interpreted as Platreef. A 2 m 

thick felsite vein interrupts the upper pyroxenite unit. There is no evidence to suggest this is 

an infilled fault zone, especially as the pyroxenite country rock exhibits no brittle or ductile 

shear fabric. At 240 m, immediately above the Platreef, is a homogenous leuconorite with a 

sharp lower contact, interpreted as hangingwall. Although distinctly paler than the 

hangingwall gabbronorite seen in core SSP242, it is not an obvious chill zone of mottled 

anorthosite. 
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Fig. 5-50. Geological log of drill core SSP257. Colours for the various lithologies are the same as for the face 

maps (see legend in Fig. 5-27). 



  106

5.7.3 Core SSP258 

Although core SSP258 and core SSP257 are only 100 m apart (Fig. 5-1), they display some 

significant differences. In core SSP258 (Fig. 5-51) from 375 m (end of hole) to 342 m depth, 

the broad characteristic of the footwall is a transition from calc-silicate hornfels through 

serpentinised clinopyroxenite to relatively unaltered clinopyroxenite beneath the Platreef. A 

sharp magmatic contact marks the boundary to a dark, mineralised, serpentinised pyroxenite 

that continues about 25 m in the core to 317.5 m, and is succeeded by a 5 m thick section of 

coarse, mineralised gabbro. The gabbro is interrupted by a band of noritic pegmatite that may 

be a dyke or offshoot of a larger dyke, as the appearance of the pegmatite is similar to that of 

the dyke in the far right of face N1 (Fig. 5-27). Other, likely related pegmatite bands occur at 

various depths in this core. 

 The mineralised gabbro is followed by another thin zone of serpentinised pyroxenite 

(2 m), then by 3 m of serpentinised clinopyroxenite in upper contact with mineralised gabbro 

(2 m). These pyroxenites and gabbros are interpreted as Platreef. There is no evidence of 

tectonic contacts to the intervening clinopyroxenite, which is therefore interpreted as a 

metasomatised footwall xenolith. 

 A steep felsite vein terminates the magmatic succession at 305 m and marks an abrupt 

transition to a thick section (27 m) of serpentinised clinopyroxenite and relatively unaltered 

clinopyroxenite that are part of the footwall. The felsite vein is interpreted as a fault that has 

juxtaposed the footwall against a relatively high level of the Platreef. The footwall succession 

continues to 278 m where it is terminated by an apparent pegmatitic dyke. This does not 

resemble pegmatoidal variants of the reef and is again interpreted as a relatively late dyke 

akin to that in face N1. Above the dyke, and intruded by it, is a 10 m thick section of 

mineralised Platreef pyroxenite with a sharp, upper magmatic contact to hangingwall 

mesonorite. 
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Fig. 5-51. Geological log of drill core SSP258. Colours for the various lithologies are the same as for the face 

maps (see legend in Fig. 5-27). 
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The three individual cores are no more remarkable than the face maps, but when considered 

together they reveal several significant features. Starting in the footwall, bands of 

clinopyroxenites occur at considerable distance from the base of the reef, and are separated 

from it by up to tens of metres of granular calc-silicate hornfels. It is believed that the 

clinopyroxenites represent the highest grade of footwall metamorphism (e.g. Buick et al. 

2000), indicative of thorough metasomatism and recrystallisation of siliceous dolomite to 

coarse diopsidites that preserve no textural sign of their sedimentary origin. The highest grade 

of metamorphism would be expected immediately below the Platreef, as commonly 

represented in illustrations of �typical� Platreef stratigraphy. However, the occurrence of thick 

bands and roughly lenticular bodies of clinopyroxenites at various distances from the reef 

(e.g. Fig. 5-14) strongly suggests there are other controls on footwall metamorphism and 

metasomatism. These may be primary mineralogy, variations in degree of dolomitisation, 

variations in fluid content between beds, or a combination of these factors. The lenticular 

bodies are not tectonic as there are no discontinuities bordering them. Further, the angle of 

unconformity between footwall bedding and the footwall-reef contact does not appear to have 

affected the degree of metasomatism in beds abutting the contact (e.g. Fig. 5-48). 

Faults are responsible for the major differences between cores SSP257 and SSP258, 

which are from two locations in close proximity. The presence of faults in the cores disguises 

the true thickness of the Platreef. Core SSP257, however, appears to represent a fairly 

�normal� untectonised stratigraphy. Core SSP258 has by far the thickest section of 

(serpentinised) pyroxenite, and as serpentinisation has rendered the rock very friable in 

places, it is very difficult to distinguish possible faults in the strongly serpentinised rock. The 

thickness of this unit in core is compatible with the volume of serpentinised pyroxenite 

encountered in pit faces shown in Fig. 5-40, Fig. 5-44 and Fig. 5-48. Thus, in either case, 

faulting may not have affected the unit thickness. 

The coarse gabbros of the Platreef nearly always have a fresh appearance suggestive 

of only slight alteration, in stark contrast to the pyroxenites, which are usually strongly 

serpentinised. Two possible explanations are considered: (i) the gabbros represent a relatively 

late intrusive phase of the Platreef, emplaced after alteration of the earlier pyroxenites; or (ii) 

the postcumulus plagioclase that envelopes the cumulate pyroxene crystals has acted as a 

barrier to fluids that would otherwise alter the pyroxenes � it is also notable that the 

plagioclase is often saussuritised. Further, the gabbros are coarser than the pyroxenites, 

offering fewer crystal boundaries as pathways for infiltrating fluids. 
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5.8 Summary of observations 

There are five major conclusions to be drawn from the face mapping, drill core logging and 

petrography: 

 

1. The Platreef was emplaced before the hangingwall and a considerable gap in time separates 

them, as the Platreef had evidently cooled below solidus prior to its erosion by the 

hangingwall. 

2. The original thickness of the Platreef (pre-Main Zone) is unknown but probably not much 

thicker than its present expression, as the Platreef is not totally eroded by the Main Zone at 

any locality at Sandsloot or, as far as other studies show, in other sections of the reef. 

3. Despite some lateral similarity, e.g. between faces N3 and SW3 in the same pit bench, the 

Platreef shows significant compositional variation in three dimensions. The variation is a 

primary igneous heterogeneity as well as a result of alteration processes. However, there is 

no evidence of relative chronology of the igneous phases within the reef, e.g. magmatic 

contacts between gabbroid and pyroxenitic lithologies. 

4. The general shape and thickness of the Platreef mapped in available rock faces, and 

possibly the thickness of the orebody, is structurally controlled by a pre-existing ~ENE-

WSW fold phase and a ~N-S fold phase, but structures do not appear to be responsible for 

the lateral and vertical variation in the composition of the reef. 

5. Fe replacement of pyroxenitic Platreef occurs in the southwest extension of the pit, 

indicating that that ironstone may have constituted the roof rocks of the Platreef at this 

location.  
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6. MINERALOGY AND GEOCHEMISTRY OF THE 

PLATREEF AT SANDSLOOT 

 

This chapter presents data for bulk geochemistry comprising major element, trace element and 

PGE concentrations for a wide range of reef, hangingwall, footwall and dyke lithologies. The 

purpose is to elucidate patterns and anomalies to verify the first and second order observations 

presented in Chapter 5, providing more evidence for the interpretation of the various 

lithologies and their relationships. In addition, the results of mineral analyses and studies of 

PGM are also discussed. These geochemical and mineralogical data further serve to highlight 

similarities and differences between the Platreef at Sandsloot, other sectors of the Platreef and 

other major PGE deposits of the Bushveld Complex. 

 

6.1 Methodology 

Bulk analysis for major element and trace elements was carried out at Cardiff University 

using a JY Horiba Ultima 2 inductively coupled plasma optical emission spectrometer (ICP-

OES) and Thermo X7 series inductively coupled plasma mass spectrometer (ICP-MS). 

Samples were first ignited at 900oC to determine loss on ignition and then fused with Li 

metaborate on a Claisse Fluxy automated fusion system to produce a melt that could be 

dissolved in 2% HNO3 for analysis. Full details of the standard ICP analysis procedures and 

the instrumental parameters are given in McDonald & Viljoen (2006). The geochemical data 

for Platreef, hangingwall and footwall samples in the present study are presented in 

McDonald et al. (2005a) in Appendix 3. 

Detailed mineralogical examination and analysis of polished thin sections and blocks 

were performed at the University of Greenwich with a JEOL JSM-5310LV scanning electron 

microscope (SEM) and energy dispersive spectrometer with the aid of the Oxford Instruments 

ISIS 300 software suite. Further work on the same suite of samples was carried out at Cardiff 

University using a Cambridge Instruments LEO S360 SEM coupled to an Oxford Instruments 

INCA energy dispersive X-ray analysis system. Additional analyses were also conducted at 

the Natural History Museum, London, using a JEOL 5900LV (SEM) with attached Oxford 

Instruments EDX INCA system. 
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6.2 Bulk geochemical data 

This section describes the bulk geochemical data of a range of reef, hangingwall, footwall and 

mafic dyke lithologies that characterise �typical� reef. It also presents data for the �olivine 

replaced reef� (ORR) and the �reef-footwall hybrid� rocks that were identified 

petrographically in Chapter 5. 

 

6.2.1 Major element trends 

Fig. 6-1 and Fig. 6-2 show major element weight% for samples collected from faces N1 and 

SW1. These are given as face profiles for compatibility with the geological face maps in 

Chapter 5 (Fig. 5-27, Fig. 5-40). Faces N1 and SW1 were selected because they contain 

lithologies typical of the northern part of the central pit and of the southwest extension of the 

pit, respectively. As described in Chapter 5, the number and variety of reef lithologies is 

greater in the southwest and most of the variants occur in face SW1. 

The major element profile of face N1 can be broadly divided into 5 sections, each 

reflecting the main lithological unit as follows: (1) mafic dyke at 2 m along the face; (2) 

footwall at 4 m; (3) pegmatoidal pod at 10-12 m; (4) Platreef gabbro between 22 and 30 m; 

and (5) hangingwall at 31 m. SiO2 contents are in the region of 49-51 wt% for all lithologies 

except the footwall. MgO, Fe2O3, Al2O3 and CaO contents are fairly consistent in the Platreef 

gabbro from 22 to 30 m along the face and reflect the homogeneous appearance of the reef in 

face N1. The sample from the base of the reef at 11.5 m is low in MgO, possibly due to its 

proximity to the low-MgO pegmatoidal pod below. The proportions of these elements in the 

hangingwall and mafic dyke, however, are markedly different: both lithologies have far lower 

MgO and Fe2O3 relative to the reef, and a far higher Al2O3 content, reflecting the observed 

increase in plagioclase and decrease in modal pyroxene. While the difference is most 

prominent in the hangingwall, the fairly similar major element geochemistry observed 

between the dyke and hangingwall suggests a possible connection between the two rock types 

and this will be examined in more detail below. Note that there was no visible junction 

between the dyke and hangingwall on the bench above face N1 (thickly covered by blast 

debris). Although the dyke is highly pegmatitic and has no visible resemblance to the 

hangingwall, it does have a textural similarity in that plagioclase is generally the cumulus 

phase. 

 In the major element profile of face SW1 (Fig. 6-2), footwall rocks are not included 

because geochemical analyses began within the reef at 20 m along the face. As with face N1, 

there is a marked transition between reef and hangingwall, with low MgO and Fe2O3 contents 

in the hangingwall relative to the reef, and a higher Al2O3 content. Within the reef, major 
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element contents vary considerably and in different ways between samples: MgO shows a 

slight increase towards the top of the reef while Al2O3 exhibits a parallel and more subtle 

decrease that corresponds with an observed decrease in modal plagioclase. However, this 

trend is reversed at 43 m. The Fe2O3 content is consistent at ~14 wt% in samples collected at 

20, 24, 28 and 36 m, then increases dramatically to a maximum of 22 wt% in the uppermost 7 

metres of the reef. There is also a relatively high Fe2O3 anomaly at 32 m. This Fe2O3 

enrichment near the top of the reef may be due to the presence of the Penge banded iron 

formation above the reef before emplacement of the Main Zone, as suggested in Chapter 5, or 

due to the presence of a xenolith of the iron formation. 

The CaO content decreases dramatically from 20 to 32 m, which is the zone where 

petrographic work suggests that footwall-hybrid rocks are developed. Thereafter the CaO 

content attains values of 5-7 wt%, which are typical of the normal Platreef in face N1, and in 

the hangingwall there is a marked increase in CaO that corresponds to the observed increase 

in plagioclase content. A slight increase that reverses the trend at 36 m coincides with a 

decrease in Fe2O3. The petrography of SW1 samples, however, suggests the rock at 36 m is 

similar to that at 40 and 43 m, i.e. olivine-replaced reef. The CaO and Fe2O3 anomaly might 

therefore reflect minor local contamination by an assimilated country-rock carbonate xenolith, 

i.e. CaO enrichment at the expense of Fe2O3. 

The convincingly high CaO content at 20 and 24 m, at the expense of MgO, is 

consistent with the petrography of samples from these localities that suggests a footwall-reef 

hybrid lithology. The high CaO content is likely a result of the physical mixing of footwall 

dolomite with the reef magma. Consistent differences are also seen in other elements (Table 

6-1): Cr concentrations are 24063065 ppm in reef rocks and ORR but markedly lower 

(600800 ppm) in the hybrids. Cobalt concentrations show a more subtle difference, ranging 

between 53 and 137 ppm in the reef and footwall, but the lower half of the range generally 

characterises the hybrid rocks, and the footwall in faces SW1/SW2 has lower Co 

concentrations than the hybrids. Manganese shows similar concentrations in ORR and hybrids 

but significantly higher concentrations in the footwall. Titanium again shows broadly similar 

concentrations in ORR and hybrids (possibly slightly higher in ORR as one specimen stands 

out at 0.62 wt%) but great variability in the footwall, not only in faces SW1/SW2 but in all 

sampled faces. Thus, Cr and Co concentrations appear to reflect the mixing of footwall with 

the reef, while Mn and Ti seem inconclusive. However, ORR and hybrid samples in faces 

SW1/SW2 have higher Mn and Ti concentrations than �normal� Platreef in face N1, and at 

least in the case of Mn it is possible that some Mn in altered reef in faces SW1/SW2 derives 

from the country rocks. 
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    Reef lithologies Olivine replaced reef Hybrid lithologies 

Cr  ppm  24063065  15683104  602835 

V  ppm  126133  127261  76333 

Hf  ppm  0.260.55  0.351.22  0.321.70 

Co  ppm  113123  85137  5393 

Mn  wt%  0.220.29  0.320.38  0.290.40 

Ti  wt%  0.140.20  0.180.37  0.150.62 

Table 6-1. Concentrations of selected trace elements in reef, ORR and hybrid lithologies 

in faces SW1 and SW2. Data from McDonald et al. (2005a). 

 

 

 

 

Fig. 6-1. Major element concentrations (wt%) in samples collected along face N1, with schematic 

face map (red lines and text) to show sampling locations. 
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Fig. 6-2. Major elements concentrations (wt%) in samples collected along face SW1, with 

schematic face map (red lines and text) to show sampling locations. 

 

Harris & Chaumba (2001) carried out a similar geochemical profiling study at Sandsloot. 

Although their work focussed on the significance of oxygen isotopes (18O values) for crustal 

contamination and fluid-rock interaction, they also present major element data for a suite of 

samples collected across a 64 m long face (Fig. 6-3) on bench 20 in the east-central part of the 

Sandsloot south pit in 1995. This probably represented the lowermost available exposures at 

the time, 12-15 benches above the faces mapped in the present study. Those authors also 

recognised abrupt changes in composition across the hangingwall contact; particularly lower 

FeO and MgO but higher CaO in the hangingwall relative to the Platreef pyroxenites, which is 

consistent with higher plagioclase and lower orthopyroxene content in the hangingwall. For 

the parapyroxenites (metamorphic footwall clinopyroxenites), their study demonstrated an 

increase in CaO and decrease in MgO and Cr with increasing distance from the reef-footwall 

contact. This is consistent with the chemistry of the rocks either side of the parapyroxenites. 

 

6.3 Mineral chemistry 

Data for mineral analyses of orthopyroxene, clinopyroxene, plagioclase and olivine obtained 

during this work are provided in McDonald et al. (2005a; see Appendix 3). 

Pyroxene is the most common mineral in the Platreef and can be readily compared 

between localities along the strike of the reef beyond Sandsloot. However, the Platreef 

pyroxene compositions are complicated by the presence of a reactive footwall that is rich in 
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Fig. 6-3. Major elements concentrations (wt%) in samples collected by Harris & Chaumba 

(2001) from bench 20 in the east-central part of the Sandsloot pit. Schematic face map (red 

lines and text) shows sampling locations. 

 

both Ca and Mg. The original roof rocks were probably identical to the footwall, as 

demonstrated in Chapter 5. The data for Sandsloot show a range of orthopyroxene 

compositions with a main population between Mg#76-80 in samples of primary reef gabbro and 

pyroxenite, but with sub-populations of Mg#81-83 and Mg#64-74 (Fig. 6-4). Harris & Chaumba 

(2001) acquired similar results for pyroxenes in Platreef pyroxenites and norites in a higher 

bench in the Sandsloot mine. The high Mg# population in the present study represents one 

gabbro sample (N1-26) associated with ragged serpentinite xenoliths (Fig. 5-27, Fig. 5-30) 

and another gabbro (SW2-49) that has been partially altered to an assemblage of tremolite, 

actinolite, chlorite and sericite. Analyses from these two specimens are presented as 

�contaminated reef� (N1-26) and �altered reef� (SW2-49). In both specimens, the Ca content 

of clinopyroxenes is higher than expected for igneous pyroxenes (Wo45-48; Fig. 6-4) and the 

pyroxene compositions of these specimens seem to be affected by local enrichment in Ca and 

Mg. 

The low Mg# population in the dataset (Fig. 6-4) represents specimens of ORR 

collected near the top of the reef in faces SW1 and SW2. Orthopyroxene is commonly 

replaced by Fe-rich olivine, strongly suggesting that the Fe-rich pyroxene composition is not 

primary but related to a late-stage influx of Fe-rich fluid (as suggested by McDonald et al. 

2005a) or contamination of the reef by Fe-rich country rocks that formed the roof to the 
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Platreef, in a manner similar to that found further south on the farm Tweefontein where 

ironstones form the floor rocks (Buchanan & Rouse 1984).  

 

 

Fig. 6-4. Compositions of pyroxenes in Platreef gabbros (samples N1-26, SW2-49) and pyroxenites 

(SW2-77, SW1-40, SW1-43) at Sandsloot, from McDonald et al. (2005a). Shaded area shows the range 

of typical Merensky Reef pyroxenes (Buchanan et al. 1981). 

 

 

6.3.1 Plagioclase compositions 

Plagioclase grains were analysed in 3 reef gabbro samples and 1 hangingwall sample from 

face N1, 2 replaced reef samples from face SW1 and a single reef gabbro sample from face 

SW2. The main population has compositions of An60-83, representing typical intercumulus 

plagioclase in the reef and hangingwall samples. There are no subpopulations within this 

range. A small population at An92-98 represents radial calcic rims between the interstitial 

plagioclase and cumulus pyroxene grains. 

 The An63-84 range for plagioclase in this study overlaps with ranges for both the GNPA 

member south of Mokopane (Hulbert 1983) and the Upper Critical Zone in the rest of the 

complex. However, the Platreef range extends beyond the lower part of the Upper Critical 

Zone range and above the range observed in the GNPA member. Thus, plagioclase of less 

anorthitic composition is present in the Platreef at Sandsloot despite the presence of a 

carbonate footwall. A possible explanation is that Platreef plagioclase is the postcumulus 

phase, and much Ca had already been incorporated into the early crystallised cumulus 

pyroxenes. 
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6.3.2 Olivine compositions 

Buchanan et al. (1981) analysed apparently igneous olivine (Fo75-76) on the farm Tweefontein 

and Manyeruke et al. (2005) reported magmatic Mg-rich olivine (Fo79-80) in the Platreef at 

Townlands, but primary (magmatic) olivine has not been observed in any reef, hangingwall or 

dyke samples at Sandsloot. Whilst no comparison of primary olivine is possible, high-Mg 

metamorphic olivine (Fo82-85) occurs in the footwall at Sandsloot (Harris & Chaumba 2001; 

McDonald et al. 2005a) and secondary Fe-rich olivine (Fo60-71) that has grown at the expense 

of orthopyroxene occurs at the top of the reef in faces SW1, SW2 and SW3. 

 

6.4 Trace element geochemistry 
 

6.4.1 Rare earth elements 

Fig. 6-5 shows chondrite-normalised rare earth element (REE) plots for 14 reef samples from 

3 different faces (N1, SW1 and SW2). Samples DH-P and DH-G are grab samples of reef 

collected from the bench above face N1 and are not shown on the face map. The chondrite 

normalised REE patterns for the reef gabbros and pyroxenites show moderate LREE 

enrichment with a tendency for U-shaped patterns in the most REE-poor samples, and a slight 

but consistent negative Eu anomaly. Sample N1-30 shows the lowest REE concentrations for 

all elements except La, perhaps due to the proximity of this sample to the serpentinised shear 

zone that juxtaposes the reef and hangingwall, where REE were possibly removed by fluids in 

the shear zone. Similarly, sample SW1-20 stands out above the general pattern and the higher 

concentration of REE here may be a reflection of the hybrid character of the lithology, in 

which footwall material has mixed with the reef but was not fully assimilated. 

In general, the data from the three different faces at Sandsloot define a relatively 

restricted set of normalised patterns, similar to those found at Overysel (Holwell & McDonald 

2006) and to the LREE enrichment and stronger REE fractionation observed in the Upper 

Platreef at Townlands by Manyeruke et al. (2005) � see Fig. 6-6(a).  

Some important observations by Harris & Chaumba (2001) that the present study 

corroborates are: (1) the sudden change in texture and mineralogical and chemical 

composition across the hangingwall contact; (2) the much coarser grain size of the Platreef 

relative to the hangingwall; (3) a greater degree of visible alteration seen in the Platreef; and 

(4) a lack of dolomitic xenoliths in the hangingwall. All of these observations support a 

separate magma for the hangingwall and intrusion of the Platreef prior to emplacement of the 

hangingwall. Further, field and microscopic textural evidence proves the hangingwall magma 

intruded after the Platreef had cooled below solidus (Chapter 5, sections 5.6.4 and 5.7.1). 
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Fig. 6-5. Chondrite-normalised REE plot for a selection of Platreef samples. 

 

 

 

 

 

Fig. 6-6 (a-c). Chondrite-normalised REE 

plots for the Platreef and associated units at 

[a] Townlands (Manyeruke et al. 2005), [b] 

Overysel (Holwell & McDonald 2006) and 

[c] Sandsloot (this study and McDonald et 

al. 2005a). Overysel data is based on two 

drill cores. Figure modified from Holwell & 

McDonald (2006). 
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Fig. 6-7 is a chondrite-normalised REE plot for 6 hangingwall samples from 4 different faces 

(N1, N3, SW1 and SW2) and 3 dyke samples from face N1 (the E1-227 sample is from the 

northernmost extent of face E1 and is part of the dyke that occurs at the easternmost extent of 

adjoining face N1; Fig. 5-27). Again there is a generally flat pattern but with a marked 

positive Eu anomaly in contrast to the slight negative anomaly observed in the reef gabbros 

and pyroxenites. Two samples deviate from the general pattern. SW2-83 shares the general 

trend but shows a minor negative Eu anomaly. In Chapter 5, this was identified as a 

websterite reef xenolith that occurs a few metres above the hangingwall contact (Fig. 5-44), 

and its reef-like REE signature appears to be preserved. Sample N3X-4B, a leuconorite, has a 

consistently steeper REE curve (higher La/LuN ratio), with progressively lower HREE 

concentrations relative to LREE. The positive Eu anomaly, however, is the highest of all 

hangingwall samples, reflecting the high modal plagioclase content. Overlying the leuconorite 

in turn is a thinner band of fine-grained gabbronorite (sample N3X-4A) that has a typical 

hangingwall REE signature. Above that is �normal� hangingwall gabbronorite (Fig. 5-37). 

 

 

Fig. 6-7. Chondrite-normalised REE plot for a selection of hangingwall and mafic dyke samples. 

 

Fig. 6-8 is a chondrite-normalised REE plot for 25 footwall samples from 4 different faces 

(N1, E1, S1, SW1). Faces N1 and E1, however, join at 90o such that the highest sample 

numbers in the long E1 face are close to face N1. A grab sample (P1) from a surface locality 

east of the satellite pit is also included. This is from a thin, discordant body of virtually pure, 

friable graphite that was exposed during surface stripping by a mechanical excavator. Similar  
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Fig. 6-8. Chondrite-normalised REE plot for footwall samples differentiated into main 

lithological types. 
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bodies were not observed in any exposures in the south pit. Its exent and relationship to the 

footwall is unknown but is likely a product of extreme devolatisation and reduction of the 

original carbonate rock. It does, however, have a steeper and more negatively sloping REE 

curve than most other footwall lithologies. 

 The footwall rocks have a characteristic and in some cases quite pronounced negative 

Eu anomaly (Eu/Eu* 0.48-0.80), and show a range of LREE:HREE fractionation. La/LuN in 

the footwall varies between 0.09 and 5.89, but most samples fall within the range 1.2-4.0, 

which overlaps with the narrow range (1.3-3.3) observed in the reef rocks.  

Specimens E1-195 and S2-18 exhibit more prominent anomalous curves. E195 is 

unremarkable at the extremes of the REE range, although with lower concentrations than most 

other footwall specimens, but is progressively depleted from the extremes towards Eu. S2-18 

is highly depleted in LREE and shows slight enrichment in HREE towards Lu. There is no 

obvious control on these patterns. 

 

6.4.2 Spidergrams 

This section presents and interprets primary mantle-normalised spider diagrams displaying the 

concentrations of REE, large ion lithophile elements (LILE) and high field strength elements 

(HFSE) in bulk samples of Platreef, hangingwall and mafic dyke. Two series of reef rocks are 

presented separately, one for the gabbronorite-dominant N1 face (Fig. 6-9) and one for the 

pyroxenite-dominant SW1 and mixed SW2 faces (Fig. 6-10). Data for hangingwall samples 

from the same rock faces are given on a single separate graph (Fig. 6-11) as the hangingwall 

samples are macro- or microscopically very similar, in contrast to Platreef samples. Three 

samples were analysed from the mafic dyke in face N1 (Fig. 6-12): two from opposite 

margins of the dyke (specimens E227 and N1-2) and one from the middle of the dyke (N1-0). 

 Based on the composition of the marginal RLS rocks, it is generally proposed that they 

formed from two magma types: high-Mg basaltic andesite and tholeiitic basalt. The high-Mg 

basaltic andesite will be referred to as the B1 (Bushveld 1) magma and the tholeiitic basalt as 

the B2/B3 magma after Harmer & Sharpe (1985). In terms of major elements, the B1 magma 

could produce the Lower Zone and Lower Critical Zone cumulates, while the B2/B3 magma 

could produce the Main Zone cumulates (e.g. Harmer & Sharpe 1985). Primary mantle melt is 

expected to have smooth mantle normalised trace element patterns, but the shape of the 

patterns for the marginal RLS rocks suggest that they are not primary partial melts. The 

mantle normalised trace element pattern for the model B1 magma shows a strong enrichment  
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Fig. 6-9. Mantle-normalised concentrations of LILE and HFSE in a selection of 

reef samples in face N1. Trace element compositions of the model B1 basaltic 

andesite and B2/B3 tholeiitic basalt are given for comparison (data from Barnes & 

Maier 2002). 

 

in Cs, Rb, Ba, Th and K (large ion lithophile elements: LILE). In contrast, the B2/B3 magma 

shows far less enrichment in LILE, although Ba is enriched and, consequently, the B2/B3 

pattern has a positive Ba anomaly. Both magma types have large negative Ta, Nb, P and Ti 

HFSE anomalies. The shape of the B1 spidergram is similar to that of the upper crust, while 

the shape of the B2/B3 spidergram is similar to that of the lower crust. Thus, the trace 

elements suggest that the RLS magmas have undergone crustal contamination. Studies using 

various isotope systems confirm this: e.g. Sr isotope ratios, Nd values (Maier et al. 2000), 

and Pb isotope compositions (Harmer et al. 1995). 

The most striking feature of the spidergram for face N1 (Fig. 6-9) is the strongly 

negative Nb-Ta anomaly for all specimens. This Nb-Ta anomaly characterises all Bushveld 

magmas (e.g. Barnes & Maier 2002). It can also be seen, for example, in the Rooiberg felsites 

(Fig. 12 in Appendix 5) and is a feature of arc-derived magmas. Further, it is common in 

lower crustal gneisses and granulites. In the Bushveld Complex, the Nb-Ta anomaly is 

thought to reflect large scale contamination of the parent magma by upper crustal material in a 

master magma chamber in the crust or at some level below the main intrusion (e.g. Hatton & 

Schweitzer 1995). 

In terms of variation between specimens, N1-26 has a negative Rb anomaly, with a 

negative Hf anomaly nearly as pronounced as Nb. Adjacent specimens N1-22 and N1-24 

display no anomalous patterns in terms of Rb, Zr or Hf and have very similar patterns overall. 

In sample N1-30, however, the concentrations of Rb to K and Hf to Yb are notably lower than 

in other specimens, but with small positive anomalies for La, Sr, P and Zr. This variation may 
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be due to processes associated with the adjacent serpentinised shear zone that defines the 

hangingwall contact in face N1, involving removal of most REE by the fluids responsible for 

serpentinisation. 

Fig. 6-10 presents data for a range of Platreef, ORR, and hybrid lithologies in faces 

SW1 and SW2 in the southwest part of the pit. SW2-83 is a Platreef websterite xenolith in the 

hangingwall (Fig. 5-44) and its spidergram is similar to other reef samples in faces 

SW1/SW2, indicating that the entrainment of this reef fragment into the hangingwall magma 

has not affected its trace element signature. The ORR samples (Fig. 6-10b) have similar 

patterns to the reef samples, though SW2-35 is an oddity with no Nb-Ta anomaly; in fact it 

exhibits a slight positive Ta anomaly. The general similarity to �pure� reef samples, however, 

implies that Fe enrichment of ORR was a process that did not involve major changes in trace 

element composition. 

In contrast, the hybrid specimens (Fig. 6-10b) differ in several respects from the reef 

samples. Specimen SW1-20 stands out with strongly negative Ba, K, Sr and P anomalies but 

is enriched from Sm to Yb relative to the reef. Specimen SW1-24 is relatively enriched in Rb 

and K and shares pronounced K, Sr and P anomalies with SW1-20. The negative Sr anomaly 

is likely due to footwall influence, while the positive Sr and Nb-Ta anomalies in SW1-28 

have no ready explanation. The unsystematic differences between the hybrid samples 

probably reflect incorporation of variable volumes of heterogeneous footwall material into the 

reef magma. Some differences are consistent with the settings of the specimens: SW1-20 was 

collected within the lower portion of the reef that was petrographically characterised as �reef-

footwall hybrid� (Fig. 5-40) and greater footwall content or contamination explains the overall 

variation in the spidergram; SW1-24 is also hybrid but represents the stratigraphically higher 

transition between lesser hybrid and �purer� reef rocks, so a much smaller footwall influence 

is apparent. 

Comparing �normal� reef in face N1 to ORR in faces SW1/SW2, two differences are 

revealed: a near-flat Tb to Yb pattern and a negative P anomaly in faces SW1/SW2. The La-

Hf pattern may be somewhat flatter in faces SW1/SW2 as well; at least Sm-Zr-Hf defines a 

flatter pattern with higher concentrations than in face N1, which has a concave pattern with a 

low at Hf. Notably, specimen SW2-35 lacks a Nb-Ta anomaly for no apparent reason. 

Comparing the data for faces N1 and SW1/SW2, the SW1 series of reef specimens is 

characterised by a negative Ti anomaly which, like Nb-Ta depletion, is a sign of crustal 

contamination that is common in Bushveld magmas. The exception in the southwest area is 

specimen SW1-40, where the Ti anomaly is small and barely discernible relative to the Hf-Ti-

Tb trend. More significantly, however, the Ti anomaly is not seen at all in any of the Platreef  
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Fig. 6-10 (a-c). Mantle-normalised concentrations of LILE and HFSE in a 

selection of [a] reef (including olivine replaced reef), [b] hybrid and [c] footwall 

samples (calc-silicates, parapyroxenites, serpentinites) from face SW1 and SW2. 

Trace element composition of the model B1 basaltic andesite and B2/B3 tholeiitic 

basalt are given for comparison (B1 and B2/B3 data from Barnes & Maier 2002). 
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samples in face N1. This has no obvious explanation but is possibly some kind of Main Zone 

effect, as no Ti anomaly is seen in the hangingwall rocks (Fig. 6-11). However, it is 

questionable whether emplacement of the Main Zone would affect the composition of the 

underlying cooled reef below the very uppermost zone. 

The spidergram for hangingwall samples (Fig. 6-11) from three different rock faces 

(N1, N3 and SW1 faces) are more consistent than Platreef samples. Hangingwall specimens 

show a generally steeper gradient, and within the range there is far greater variation relative to 

the Platreef. Notable differences are the enrichment in Rb, K, La and Sr and the more negative 

Nb-Ta anomalies. There is a less pronounced P depletion and Sm enrichment, and the general 

Zr to Yb pattern trends upward from Hf to Y, then flattens out. The Zr to Yb pattern is flatter 

in the Platreef, except for the negative Ti anomaly in the southwest faces. 

 Specimen N3X-4B has the steepest overall gradient with slight enrichment in LILE 

and a more marked depletion in HFSE, reflecting the REE pattern of the same specimen (Fig. 

6-7). 

 

 

Fig. 6-11. Mantle-normalised concentrations of LILE and HFSE in a selection of 

hangingwall samples from faces N1, N3 and SW1. 

 

The spidergram for the mafic dyke at the east end of face N1 (Fig. 6-12) is again distinct from 

the Platreef rocks and, to a far lesser extent, the hangingwall. The Ba to K pattern for the dyke 

is similar to the hangingwall but more enriched in these elements. Sr enrichment is equal to 

the hangingwall, and then from Nd to Yb there is slight variation between the specimens: E1-

227 exhibits a gentle negative slope while N1-0 and N1-2 appear to have a minor positive Zr 

and Hf anomaly, with a minor negative Ti anomaly in N1-0. 
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Fig. 6-12. Mantle-normalised concentrations of LILE and HFSE in mafic dyke 

samples from face N1. 

 

6.5 Bulk PGE geochemistry 

This section describes the bulk PGE geochemistry of a wide range of reef, footwall and 

hangingwall rocks, with evidence of high grade zones in non-reef units, and presents PGE 

ratios and normalised patterns for comparison with the Merensky Reef and UG2. 

Bulk analysis for PGE and Au was carried out on a selection of samples using NiS fire 

assay collection followed by inductively coupled plasma mass spectrometry (ICP-MS) at the 

University of Greenwich. Details of the methodology and instrumentation have been given by 

Huber et al. (2001). The precision was determined by repeat analysis of a sub-suite of high 

and low grade specimens, and was 10-15% at PGE concentrations <5 ppb and 5-10% at PGE 

concentrations between 10 and 1000 ppb, but became worse again in specimens with PGE 

concentrations >1000 ppb due to the nugget effect � in these specimens the precision was 10-

25%. Accuracy was determined by repeat analysis of the standard WPR-1. Solutions prepared 

from PGE-rich specimens were diluted by an additional factor of 50 to give comparable 

concentrations with the range of calibration standards. 

 PGE and Au concentrations and metal ratios in the Platreef and footwall lithologies 

are given in Table 6-2 and compared to those of other Bushveld PGE reefs. Chondrite-

normalised patterns for PGE-rich samples are shown in Fig. 6-13. Although the reef 

pyroxenites and gabbros are consistently mineralised, there is considerable variation in PGE 

concentration within the reef. The mineralisation extends for a significant distance below the 

reef into the footwall. Some footwall lithologies are essentially barren, but certain zones and 

layers within the calc-silicate hornfels and serpentinites contain Rh+Pt+Pd+Au concentrations 

approaching those of the reef. The minor pegmatitic pods within the aplite body that separates 
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the footwall and reef in face N1 (Fig. 5-27) have high PGE concentrations, while the aplite 

itself is relatively poor in PGE. The pegmatoidal mafic dyke that cross-cuts the footwall 

contains very low PGE concentrations (<100 ppb Rh+Pt+Pd+Au): this is further support for a 

hangingwall origin, in addition to plagioclase being the cumulus phase, and an REE signature 

similar to the hangingwall. 

 

6.5.1 PGE mineralisation in the lowermost hangingwall 

PGE mineralisation is present within basal zones of the hangingwall where it overlies 

mineralised Platreef pyroxenite, and the primary PGM assemblage in these hangingwall zones 

is locally altered to one dominated by Pt/Pd germanides (Holwell et al. 2005, 2006). Evidence 

in Chapter 5 shows the hangingwall contact to be a magmatic unconformity and, as the 

hangingwall gabbronorites do not appear to be PGE-depleted (consistently 10-15 ppb), this 

suggests that PGE and S were scavenged or assimilated from the Platreef by the intruding 

hangingwall magma, producing zones of orthomagmatic PGE mineralisation in topographic 

depressions at the base of the crystallising hangingwall. It is notable that hangingwall 

mineralisation is absent where the hangingwall rests on the uppermost, thin, fine-grained, 

barren feldspathic pyroxenite of the reef, indicating that barren reef had to be breached by the 

hangingwall magma in order for it to scavenge PGE from the coarse-grained, mineralised 

feldspathic pyroxenite beneath. 

The broader three-dimensional shape of the contact is uncertain due to the limited 

lateral exposure in the pit faces. The contact is likely to be either: (1) an irregular, undulatory 

surface with or without pothole-like structures, where PGE were scavenged from the reef and 

recrystallised in-situ in depressions; or (2) the contact may be a planar surface that cuts an 

undulatory contact between the barren fine-grained and mineralised coarse-grained reef 

pyroxenites, such that PGE now reside in the mottled anorthosite immediately above the 

breached, coarse-grained reef pyroxenite (Holwell et al. 2005). The first of these possibilities 

has some tentative field evidence; e.g. the small depression below the hangingwall contact in 

Fig. 5-48. The second possibility is illustrated by a similar relationship in Fig. 5-35, where an 

apparently planar hangingwall contact cuts an undulatory contact between reef 

pyroxenite/websterite and melanogabbro. Greater detail of the hangingwall contact here is 

shown in Fig. 5-37. 
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SAMPLE  LITHOLOGY  Ir  Ru  Rh  Pt  Pd  Au  Ru/Ir  Rh/Ir  Pt/Ir  Pd/Ir  Pt/Pd  Au/Ir 

SW1Ͳ28  P�reef px�ite/websterite  61.5  226.0 207.3 3053 2378 398.5 3.7 3.4 49.6  38.6  1.3  6.5

SW1Ͳ32  P�reef px�ite/websterite  66.7  253.1 211.7 2125 2622 185.2 3.8 3.4 49.6  38.6  1.3  6.5

SW1Ͳ43  Platreef pyroxenites  117  503 540 6580 6460 1180 4.3 4.6 56.2  55.2  1.0  10.1

SW2Ͳ49  Platreef melanogabbro  119.9  393.0 273.0 4228 2857 313.2 3.3 2.3 35.3  23.8  1.5  2.6

SW2Ͳ83  Platreef websterite  2.3  5.0 4.7 175.6 106.7 25.3 2.2 2.0 76.0  46.2  1.6  11.0

N1Ͳ26  Platreef gabbronorite  34.4  109 137 4730 2440 880 3.2 4.0 137.5  70.9  1.9  25.6

N1Ͳ30  Platreef gabbronorite  85.8  385.9 302.4 3786 4082 472.9 4.5 3.5 44.1  47.6  0.9  5.5

DHͲP  Platreef gabbronorite  51.1  200.7 194.6 864 1088 100.1 3.9 3.8 16.9  21.3  0.8  2.0

DHͲG  Platreef gabbronorite  72.8  298.0 252.8 3052 2950 615.4 4.1 3.5 41.9  40.6  1.0  8.5

N1XͲ1  Gabbroic aplite  0.1  8.4 2.4 88.1 154 54 84.0 24.0 881  1540  0.6  540

N1XͲ3  Gabbroic pegmatite  58  103 55 1490 1570 220 1.8 0.9 25.7  27.1  0.9  3.8

N1Ͳ31  Hangingwall norite  0.16  0.22 0.00 3.62 2.67 5.83 1.4 0.0 22.6  16.7  1.4  36.4

N3XͲ4a  Basal h�wall gabbronorite  24.32  124.35 99.5 921.9 1014 19.84 5.1 4.1 37.9  41.7  0.9  0.8

N3XͲ4b  Basal h�wall anorthosite  1.15  8.2 0 24.43 28.1 4.42 7.1 0.0 21.2  24.4  0.9  3.8

SW1Ͳ47a  Hangingwall norite  2.29  7.84 8.65 166.1 170.5 20.28 3.4 3.8 72.5  74.5  1.0  8.9

SW1Ͳ47b  H�wall gabbronorite  1.03  2.36 2.24 45.8 48.4 10.81 2.3 2.2 44.5  47.1  0.9  10.5

N1Ͳ0  Pegm. mafic dyke  0.2  2.33 1.7 25.1 15.1 10.5 11.7 8.5 125.5  75.5  1.7  52.5

N1Ͳ0/2  Pegm. mafic dyke  0.1  0.31 0.51 2.2 0.8 0.9 3.1 5.1 22.0  8.0  2.8  9.0

S1Ͳ0  Serpentinite  7.4  30.3 36.0 341 629 40.9 4.1 4.9 46.0  84.8  0.5  5.5

S2Ͳ6  Diopsidite  0.1  9.1 6.2 30.1 10.9 7.7 91.0 62.0 301.0  109.0  2.8  77.0

S2Ͳ18  CalcͲsilicate hornfels  0.1  4.2 1.9 7.6 2.7 5.7 42.0 19.0 76.0  27.0  2.8  57.0

S2Ͳ12  Serp�ised clinopx�ite  0.8  6.3 2.8 55 100 35.2 7.9 3.5 68.8  125.0  0.6  44.0

S3Ͳ0  Serpentinite  0.1  0.73 0.25 10.8 109 69 7.3 2.5 108  1090  0.1  690

SW1Ͳ1  Serp�ised clinopx�ite  103.9  436.4 400.8 6755 7817 733.2 4.2 3.9 65.0  75.2  0.9  7.1

E1Ͳ55  CalcͲsilicate hornfels  27.9  66.2 100.3 1048 1064 40.8 2.4 3.6 37.6  38.2  1.0  1.5

E1Ͳ117  Diopsidite  7.4  31.8 55.6 698 1410 374 4.3 7.5 94.3  190.5  0.5  50.5

E1Ͳ165  Diopsidite  0.4  1.5 0.7 23.1 19.0 4.0 4.2 1.8 64.0  52.8  1.2  11.0

E1XͲ5  Serp�ised CaͲsil. hornfels  40.1  124 201 2590 3060 380 3.1 5.0 64.6  76.3  0.8  9.5

E1XͲ6  Serp�ised CaͲsil. hornfels  14.1  59.1 75.5 1060 1250 220 4.2 5.4 75.2  88.7  0.8  15.6

SARMͲ7  Merensky Reef  74  430 240 3740 1530 310 5.8 3.2 50.5  20.7  2.4  4.2

UG2  UG2 chromitite  60  106 600 3200 1960 50 1.8 10.0 53.3  32.7  1.6  0.8

Table 6-2. PGE and Au concentrations and ratios for Platreef, hangingwall, footwall and dyke lithologies 

(expanded after Armitage et al. 2002). PGE and Au data are reported in parts per billion. Additional data 

are also given for the Merensky Reef (SARM-7 preferred values from Steele et al. 1975) and the UG2 

chromitite (McLaren & De Villiers 1982) for comparison. 
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Fig. 6-13. Chondrite-normalised PGE concentrations of hangingwall, dyke, 

Platreef and high-grade footwall samples. 
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6.5.2 Comparison of PGE data with other Platreef sectors 

Along the length of the Platreef, previously quoted Pt/Pd ratios vary widely from 0.3 

(Manyeruke & Maier 2004) through 0.5 to 2 at the Turfspruit and Macalacaskop properties 

(Hutchinson et al. 2004; Kinnaird 2005a), 0.81.0 at Sandsloot (Vermaak 1995; this study) to 

0.70.8 at Overysel (Holwell & McDonald 2006) with an average of 0.93 for several hundred 

analyses from both Drenthe in the north and Turfspruit/Macalacaskop in the south (Kinnaird 

et al. 2005). Earlier work indicated that there is a systematic variation in the Pt/Pd ratio from 

north to south (Lee 1996). However, data from both the southern and northern sectors 

indicates a similar overall ratio of 0.93 (Kinnaird 2005a), although there is as much variation 

in Pt/Pd ratios within one core as between areas (0.1�3.3 from >250 samples in one hole from 

the southern sector). Further, at Sandsloot, there is as much variation in the Pt/Pd ratio across 

one face as there is between faces and between different parts of the pit, even within identical 

rock (e.g. 0.81.9 in coarse gabbronorite in face N1; Fig. 5-27). In contrast, in the far south on 

Townlands, the Pt/Pd ratio is lower than elsewhere at 0.6 (Manyeruke et al. 2005). A further 

complexity is shown by geochemical and lithological work in the southern Platreef, indicating 

that it resulted from several pulses of magma, each of which is characterised by a package of 

rocks with distinctive geochemical characteristics and Pt/Pd ratios, with differing sulphide 

textures and proportions (Kinnaird 2005a). 

 

6.5.3 Comparison of PGE data with Merensky Reef and UG2 

Comparison of the PGE ratios of the Platreef and its PGE-rich footwall lithologies with the 

Merensky Reef and UG2 chromitite reveals some interesting features. The Platreef and 

footwall are richer in Pt, Pd and Au relative to Ir than the Merensky or UG2 reefs, producing 

more fractionated PGE patterns (Armitage et al. 2002; Fig. 6-14). Pt/Pd and Pt/Au ratios in 

the Platreef and mineralised footwall are lower than in the Merensky or UG2 reefs. PGE-rich 

footwall samples and pegmatoidal aplites have generally lower Pt/Pd than reef gabbro or 

pyroxenite (1.0 or greater). This would appear to indicate some fractionation of Pd over Pt 

into late-stage fluids in the reef and footwall � a feature noted by Wagner (1929) and 

Ainsworth (1998) � due to the greater relative mobility of Pd compared to Pt and the other 

PGE (e.g. Wood 2002). Greater amounts of Pd during remobilisation of PGE into the footwall 

would imply that the original Pt/Pd ratio of the reef was unity or lower. Rh/Ir in the Platreef is 

comparable to that of the Merensky Reef, but lower than the UG2. 
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Fig. 6-14. Mantle normalised metal patterns for the 

Merensky Reef, UG2 chromitite and Platreef 

(modified from Kinnaird 2005b). 

 

 

Nonetheless, the Platreef gabbros and pyroxenites and PGE-rich footwall lithologies show a 

remarkably close similarity in terms of PGE ratios and normalised patterns and define a 

restricted area on chondrite normalised plots. This has been substantiated by the follow-up 

study of Holwell et al. (2006) for the northern portion of the Sandsloot open pit. The aplitic 

pod and some of the low-grade footwall samples (e.g. S3-0 and S2-12) exhibit dramatic 

enrichments in Pt, Pd or Au, but the relative distribution of various PGE between PGE-rich 

reef and footwall is very consistent and seems to be more than mere coincidence. This type of 

footwall mineralisation is a general feature of the Platreef and it is present across the 

Sandsloot pit. An important finding is that the elevated Pt/Ir and Pd/Ir ratios found in the 

footwall at Overysel by Holwell & McDonald (2006) are not widely observed at Sandsloot. 

There is some enrichment of Pt and Pd over Ir in one diopsidite (E1-117) but other 

mineralised footwall hornfelses and diopsidites produce patterns that are essentially sub-

parallel with the normal reef. 

Perhaps the most striking difference between the PGE deposits of the northern limb 

and the rest of the Bushveld Complex is to be found in their noble metal budgets: a feature 

first noted by Wagner (1929). The bulk Merensky PGE data compiled by Kinnaird et al. 

(2002) and Cawthorn et al. (2002a) show variation in the Pt/Pd ratio between different mining 

areas, in the range 1.82.9. This highlights the fact that Upper Critical Zone cumulates in 

general through the eastern and western Bushveld are systematically richer in Pt than Pd, i.e. 

Pt/Pd is >2.0 (with isolated values up to 24), for most of the sequence. The reasons for this 

striking Pt enrichment are not well understood but it seems to be a fundamental compositional 

feature of the magma(s) that fed the Upper Critical Zone. 
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PGE ratios for the Platreef at Sandsloot are lower than those found in the Upper 

Critical Zone elsewhere in the Bushveld Complex. The Platreef also shows greater 

fractionation of low temperature PGE (Pt and Pd) from high temperature PGE (Ir) than the 

UG2 and the Merensky Reef in the eastern and western lobes. The Platreef at Sandsloot and 

across the northern limb � e.g. Kinnaird (2005a), Holwell & McDonald (2006), Manyeruke et 

al. (2005) � shows Pt/Pd ratios lower than the Upper Critical Zone, where Pt/Pd ratios 

consistently exceed those in the northern lobe until well above the level of the Bastard Reef. 

Whatever the reason for the striking Pt enrichment in the eastern and western lobes during 

formation of the Upper Critical Zone, it is not repeated in the Platreef. 

 

6.6 Platinum group mineralogy 
 

6.6.1 PGM species 

Prior to the beginning of this study, very little data had been published on the PGM 

assemblages of the Platreef. Only Schneiderhöhn (1929) and Mostert (1982) provided brief 

references to the most common PGM. Kinloch (1982) presented a summary of exploration 

borehole data from Zwartfontein and Overysel, and proposed a connection between regional 

variations in PGM and the degree of contamination and assimilation of the different footwall 

lithologies. Later, Viljoen & Schürmann (1998) calculated that the overall abundances of 

PGM in the Platreef were 30% Pt/Pd tellurides, 26% alloys, 21% PGE arsenides and 19% 

sulphides. However, these authors also emphasised the variations in PGM assemblages across 

the farms along the strike of the Platreef that had been explored by Anglo Platinum up to the 

early 1990s. They identified the most abundant PGM, from north to south, as: tellurides on 

Drenthe, sulphides and tellurides on Overysel, alloys and tellurides on Zwartfontein and 

Sandsloot, sulphides on Tweefontein North, and tellurides at Tweefontein Hill. Subsequently, 

Hutchinson & Kinnaird (2005) showed the Platreef on Macalacaskop and Turfspruit to be rich 

in Pd bismuthides, tellurides and antimonides. 

In a preliminary characterisation of PGE mineralisation and PGM assemblages at 

Sandsloot (Armitage et al. 2002), 54 occurrences of individual PGM grains were identified in 

different reef and footwall lithologies. This was a forerunner to a more detailed study by 

Holwell et al. (2006) using a new set of thin sections from the same samples analysed in 

Armitage et al. (2002), as well as other samples collected from rock faces described in 

Chapter 5. More than 1000 individual PGM grains were identified. Platinum group 

mineralisation was found to occur throughout the Platreef, in footwall xenoliths in the reef, in 

the footwall and occasionally at the base of the hangingwall (Holwell et al. 2005; Holwell et 
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al. 2006). PGE grades vary within the reef and vary more erratically in the footwall. While 

overall grade in the footwall is lower than the reef, some serpentinised zones carry very high 

grades (section 6.5). 

One of the most important findings of the studies by Armitage et al. (2002) and 

Holwell et al. (2006) is that there seems to be an almost total lack of PGE sulphides in the 

Platreef at Sandsloot. Even in the 1008 PGM grains analysed by Holwell et al. (2006) only a 

single grain of PGE sulphide (laurite: RuS2) was found, and that was not in the reef but in 

basal mineralisation in the hangingwall gabbronorite. The lack of PGE sulphides stands in 

stark contrast to the Merensky Reef (Fig. 6-15), UG2 chromitite and other sections of the 

Platreef, namely Overysel (Kinloch 1982; Holwell & McDonald 2007) and Drenthe (Gain & 

Mostert 1982), where PGE sulphides are common and occur as cooperite (PtS), braggite 

[(Pt,Pd)S], laurite and other rarer minerals. At Sandsloot, the only identified PGM containing 

any sulphur are a few instances of the sulpharsenide hollingworthite-platarsite-irarsite series 

(this study and Holwell et al. 2006). 

 

 

 

Fig. 6-15. Pie charts showing proportions of different types of PGM in Platreef samples from Sandsloot 

[left] and in the Merensky Reef for comparison [right]. Platreef values are based on this study and 

Holwell et al. 2006, Merensky values from Anglo Research Centre. 

 

 

6.6.2 Grain size  and morphology 

In this study, the sizes of the great majority of PGM in the Platreef and footwall were found to 

be very small, nearly all <10 m and mostly <5 m. A few exceptions are in the size range 

20�60 m and these tend to occur in the coarsest igneous rocks. Similarly, analysis of grain 

size and morphology by Holwell et al. (2006) showed that in most rock types, ~80% of PGM 
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grains were <10 ȝm in longest dimension, except in the pegmatitic reef rocks, which had a 

higher average grain size with 50% of grains reported as >5 ȝm (presumably implying that a 

large portion of that 50% is >10 ȝm). The lowest average grain sizes, where >70% of grains 

are <5 ȝm, were found in the footwall calc-silicates, reef clinopyroxenites and hangingwall 

gabbronorite. No grains >100 ȝm were found.  

 PGM morphology was found to vary according to phase and textural association. 

Where surrounded by sulphides, PGM grains and especially electrum occur as rounded blebs. 

Where surrounded by silicates, PGM grains are anhedral to euhedral (e.g. Fig. 6-16). 

Moncheite (PtTe2) is commonly found as laths, Pt2Fe as cubic crystals (e.g. Fig. 6-17), and 

sperrylite (PtAs2) as tetrahedra (Holwell et al. 2006). A feature of the PGM assemblages 

revealed by the extensive dataset of Holwell et al. (2006) and not fully appreciated in the 

earlier study by Armitage et al. (2002) is that most PGM occur as single-phase grains. The 

earlier of these studies had suggested that compositionally zoned or polyphase PGM grains 

were common (e.g. Fig. 6-16), especially in some samples of olivine-replaced reef, but the 

wider study of Holwell et al. (2006) revealed the low frequency of these grains in the total 

PGM population. 

 

 

  

Fig. 6-16. [Left] SEM image of polyphase PGM grain with apparent matrix of isoferroplatinum and inclusions 

of rustenburgite and possible vincentite (with Sb, but no As or Te), occuring between large crystals of 

clinopyroxene and orthopyroxene in altered reef specimen SW2-49. [Right] Interpretation of PGM grain based 

on element mapping and spot analyses. 
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Fig. 6-17. SEM images of composite PGM 

grain in an intersilicate setting in specimen 

SW1-32. Note cubic form of sperrylite. 

 

 

6.6.3 PGM distribution 

The various host lithologies in the Platreef at Sandsloot contain their own characteristic PGM 

assemblages that reflect the processes controlling redistribution of the PGE through the reef 

and into the footwall during the evolution of the Platreef. The Platreef at Sandsloot is 

certainly richer in alloys and poorer in sulphides than at Overysel and Drenthe (Gain & 

Mostert 1982; Viljoen & Schürmann 1998; Holwell & McDonald 2007) where the footwall is 

Archaean granite/gneiss basement. This would suggest that greater volatile activity affected 

the Platreef where it intruded the dolomites than where it intruded the granites and gneisses, 

which is manifested in distinctively different PGM assemblages. 

 The pyroxenites and pegmatites of the igneous reef at Sandsloot contain a typical 

PGM assemblage dominated by Pt and Pd tellurides, electrum and some arsenides. Their 

presence in the interstitial regions, in close association with BMS, indicates a spatial 

relationship with the sulphides. The difference in PGM species between the igneous reef and 

mineralised metamorphic footwall units is striking. The dominance of tellurides, alloys and 

electrum with a total absence of antimony in the igneous reef is reversed in the footwall, 

where arsenides, bismuthides and antimonides dominate. The abundance of PGM containing 

semimetals such as As and Sb in the footwall lithologies suggests that significant volatile 

activity was involved in the redistribution of PGE into the footwall. The almost total absence 

of antimonides in the igneous reef is analogous to normal Merensky Reef, where PGE 
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antimonides are very rare (Kinloch 1982), while antimonides are common in areas where 

fluid activity has been prevalent. 

 Partial serpentinisation of footwall olivine has desulphurised BMS to form magnetite, 

a feature also seen in the Merensky Reef and UG2 (Li et al. 2004). In its early stages, the 

serpentinisation process appears to form a telluride-dominant PGM assemblage (often Pb-

bearing) largely similar to that found in the olivine-replaced reef at Sandsloot. If there is a link 

between the two assembages, it may be that the Fe-rich fluids that altered the reef originated 

from serpentinisation of the footwall (Holwell et al. 2005). An alternative put forward in the 

present study is that Fe enrichment is due to the presence of the Penge banded iron formation 

above the reef in pre-Main Zone time, which introduced Fe-rich fluids into the upper portion 

of the reef. 

 The PGM assemblage at the base of the hangingwall is of particular interest. Until the 

study of Holwell et al. (2005) the hangingwall was not thought to contain any PGE 

mineralisation, except around calc-silicate rafts (Kinnaird et al., 2005). Holwell et al. (2005) 

conclude that the Platreef was almost completely crystallised when the hangingwall 

gabbronorites were intruded. The PGE found in the basal portion of the hangingwall may be 

derived from sulphides and other low melting point components assimilated from the Platreef 

into the magma that formed the hangingwall gabbronorites, forming an unusual �primary� 

assemblage of PGM (e.g. thallides) including PGE sulphides and alloys. This assemblage 

formed as a result of the in situ cooling and fractional crystallisation of a PGE-rich sulphide 

liquid at the base of the hangingwall that is distinct from and postdates the main episode of 

mineralisation in the Platreef. 

 

6.7 Summary 

In face N1 in the northeast corner of the south pit (Fig. 5-27), the Platreef shows least 

evidence of replacement and is therefore considered to be the �freshest� example of reef 

gabbro. There is a gradual increase in Fe2O3 towards the top of the reef where a serpentinised 

shear zone marks the boundary to the hangingwall. The plagioclase-rich hangingwall rocks 

and the discordant gabbronorite dyke in face N1 carry a consistently positive Eu anomaly 

(Eu/Eu* > 1.0), while the opposite generally applies to the reef and footwall.  

In face SW1 in the southwest part of the pit, Fe enrichment of the reef is dramatic and 

Fe replaced reef is also enriched in Ti, Mn, Hf and Nb, locally also in U and Th, relative to 

�primary� reef. The source of Fe is uncertain but might have been a late-stage Fe-rich melt or 

fluid, or it may have been derived from contamination of the magma by banded ironstone of 

the Penge formation in the pre-Main Zone roof rocks. 
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 The overall chemistry of dykes intruded into the footwall below the reef is distinct 

from the reef, and the LILE pattern of the dyke samples is similar to that of the hangingwall 

(Fig. 6-11). If the possibility is entertained that the dyke may originate from hangingwall 

magma, a direct parallel can be drawn with convincing observations at Overysel, where 3D 

mapping has shown hangingwall dykes penetrating the reef and footwall via previously 

formed shear zones (Holwell & Jordaan 2006). Additionally, some major element 

concentrations in the dyke, particulary Mn, are directly similar to the hangingwall, and are 

generally half the Platreef values and a quarter of Mn in the footwall (Appendix 3). 

 Relative to the model B1 basaltic andesite (Barnes & Maier 2002), Platreef lithologies 

in faces SW1 and SW2 show a similar spidergram pattern but are relatively depleted across 

the element range. In face N1, Platreef spidergrams follow the same general pattern as in 

faces SW1 and SW2 but lack the negative Ti anomaly seen in the model B1 basaltic andesite. 

 Footwall-reef hybrid rocks carry concentrations of Si, Mg, Ca, Fe, Co and Cr that are 

intermediate between reef and footwall concentrations. Nonetheless, Cr concentration is a 

useful indicator for primary reef, hybrid zones and footwall where lithological relations are 

ambiguous. 

 Previous studies on PGM mineralogy of the Platreef have identifed sulphides, 

tellurides and arsenides as the dominant PGM, but in detail there appears to be significant 

variations as a function of the country rock intruded by the Platreef. The present study has 

shown that PGE sulphides are absent or extremely rare (e.g. hollingworthite in Fig. 6-17) in 

all parts of the reef at Sandsloot. Furthermore, different reef and footwall lithologies are 

characterised by different PGM assemblages, and the various rock types associated with the 

Platreef exercise a local control on the development of particular groups of PGM; e.g. Pt-Pd 

tellurides in the igneous reef, but arsenides, bismuthides and antimonides in the footwall. 

 The Platreef at Sandsloot has higher Pt/Pd and Pt/Au ratios than those of the Upper 

Critical Zone and the Merensky and UG2 reefs, but has higher Pt/Ir, Pd/Ir and Au/Ir ratios. 

Rh/Ir in the Platreef is comparable to that of the Merensky Reef, but lower than the UG2 

chromitite. 
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7. DISCUSSION 

 

This chapter aims to bring together the lines of evidence from the foregoing chapters to 

synthesise a model for the development of the Platreef at Sandsloot. The findings will be 

reviewed in light of the initial aims of the study presented in Chapter 1. Many aspects of the 

character of the Platreef at Sandsloot were poorly known before the present study began in 

2000. This work, together with related studies, has shown the entire Platreef to have a more 

complex history than was previously appreciated. Deformation, magmatism, contamination 

by country rocks, and hydrothermal activity arising from thermal metamorphism of the 

country rocks have all contributed to the present-day character of the Platreef and its footwall. 

  

7.1 Emplacement of Platreef magma 

7.1.1 Intrusive relations 

At present there is no proven magma feeder(s) to the northern limb. Point feeders have been 

proposed by some workers (van der Merwe 1976; Kinloch 1982; Kruger 2005a), while Friese 

(2004) and Kinnaird et al. (2005) have favoured the Steelpoort Fault and TML as linear 

feeders. On the basis of available data, the most likely location for a point feeder is the very 

high gravity anomaly located west of Mokopane and adjacent to the Ysterberg-Planknek 

Fault, which is part of the TML relay system. 

The TML segregates the northern limb from the rest of the complex. A number of 

differences are apparent in the Bushveld stratigraphy north and south of the TML (Ashwal et 

al. 2004; McDonald et al. 2005a). Further, the crust and lithospheric mantle under the 

northern limb, known as the Pietersberg Block (Silver et al. 2004) is different to the crust and 

mantle below the Bushveld Complex south of the TML. There are similarities between the 

limbs that are summarised by Ashwal et al. (2004), but any attempt to apply the stratigraphy 

of the eastern and western limbs to the northern limb is perilous because it may lead to an 

uncritically assumed connection between the limbs, in the same way that the �A-B-C� reef 

scheme for one Platreef locality was uncritically extrapolated to other sectors of the Platreef 

but was shown by this study and other work to be quite different. 

An important first-order observation in this study has shown that the Main Zone 

gabbronorites intruded after the Platreef, and more detailed macro- and microscopic evidence 

presented by Holwell et al. (2005) and Holwell & Jordaan (2006) have shown that the Platreef 
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and Main Zone are temporally quite separate units with sufficient time for intrusion and 

deformation of the Platreef before intrusion of the Main Zone. Thus, the Platreef is not a basal 

facies of the Main Zone as was previously believed (e.g. van der Merwe 1976; Kruger 2005a) 

but represents an older intrusive phase. This relationship is pivotal when considering the 

source of PGE to the Platreef. Holwell & McDonald (2007) and McDonald et al. (2009) 

observe that the Platreef contains quantities of Ni, Cu and PGE concentrated from a larger 

volume of magma than represented by the Platreef itself: specifically, the PGE tenors of 

Platreef sulphides are very high and comparable to Merensky Reef. Cawthorn et al. (2002b) 

concluded that if the PGE were concentrated from above, it required many thousands of 

metres of overlying magma. In the eastern and western limbs, the Main Zone has been 

considered by some workers to be the source of PGE to the Merensky Reef (Page et al. 1982; 

Maier et al. 1996) and the Main Zone seems to be appropriately depleted in PGE (Maier & 

Barnes 1999). In the northern limb, however, the Main Zone gabbronorites intruded after 

cooling and deformation of the Platreef and therefore could not have supplied Ni, Cu and 

PGE to the reef. 

The findings of the present study also cast doubt on the assumption that intrusion of 

the RLS took place primarily along the junction between the Transvaal Group and the 

Rooiberg Group (e.g. Cheney & Twist 1991; Kruger 2005a) in the case of the northern limb. 

This is demonstrably not the case. Xenoliths of possible Rooiberg Group have not been 

reported anywhere in the Platreef. As Main Zone emplacement in the northern limb is now 

proven to be post-Platreef, the Platreef probably intruded entirely within Transvaal 

Supergroup sedimentary rocks or on the boundary between the Transvaal Supergroup and the 

basement granitic gneiss, such that these country rocks formed the roof as well as the floor to 

the reef (Holwell & Jordaan 2006). This would explain the presence of metadolomitic 

xenoliths in the Main Zone at Sandsloot (observed in drill core in this study) and further north 

beyond Zwartfontein, where the footwall is Archaean granite/gneiss basement and not 

Malmani Dolomite (e.g. van der Merwe 1978). PGE-mineralised calc-silicate xenoliths are 

reported in the Main Zone at Drenthe (Kinnaird et al. 2005), several km north of Zwartfontein 

where the Malmani Dolomite pinches out against Archaean basement. If the Platreef intruded 

along the contact between Archaean basement and Malmani Dolomite north of Zwartfontein, 

it is likely that the dolomitic roof rocks were mineralised in a similar way to the floor rocks at 

Sandsloot. The later Main Zone then intruded the mineralised metadolomite and preserved 

some of it as xenoliths. 
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7.1.2 Constraints on relative timing 

The present work and a related study (Holwell et al. 2005) represent the most direct and 

detailed observations to date of the relationship between the Platreef and its hangingwall, and 

describe previously unrecognised features of the Platreef-hangingwall contact. Four 

complementary arguments are made for intrusion of Main Zone magma after emplacement of 

the Platreef: (1) cross-cutting relationships; (2) chilling and erosion at the base of the 

hangingwall; (3) PGE mineralisation in the hangingwall; and (4) source of calc-silicate 

xenoliths. This evidence was detailed in Chapter 5 and clearly shows that the Main Zone is 

post-Platreef. These observations have been confirmed in a wider study of the Platreef-

hangingwall contact along strike in drill core by Weise et al. (2008). Therefore, a thrust zone 

could not have developed along the contact between the Main Zone and Transvaal 

Supergroup or between the Main Zone and Archaean basement, as envisaged by Friese 

(2004), because the country rocks were never in direct, full contact with the eastern margin of 

the Main Zone in the northern limb. Whilst in theory it would still be possible for a discordant 

thrust zone to have developed in the Transvaal Supergroup and be exploited by the intruding 

Platreef magma, the present study found no evidence of thrust-related fabrics associated with 

an east-verging thrust in the footwall, and Holwell & Jordaan (2006) report no such evidence 

from detailed pit mapping at Zwartfontein. 

 

7.1.3 Structural controls  on Platreef emplacement 

The �four-leaf clover� lobe-like shape of the Bushveld Complex is conspicuous and has been 

suggested to reflect the operation of different magmatic feeders and/or a conical fracture 

pattern caused by the Bushveld magma chamber. Alternatively, and perhaps more likely, the 

shape reflects the control of major lineaments such as the TML and related WSW-ENE 

crustal lineaments on the shape of the lobes/limbs, with magma entering the limbs at different 

crustal levels on either side of the lineaments. This does not necessarily imply that a single 

magma feeder supplied the entire complex, but does suggest an association between feeders 

and deep crustal-scale shear zones. 

As discussed in the previous section, the present work has disproved emplacement of 

the Platreef along a thrust between the Main Zone and Transvaal Supergroup. Nonetheless, 

intrusion of the Platreef along some form of discontinuity in the country rocks still requires 

some consideration: 

Friese (2004) presents annotated images from locations in the Sandsloot pit showing 

features interpreted as thrust-generated structures in the footwall immediately beneath the 

reef. The present study, however, found significantly sheared and duplexed footwall rocks at 
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just one locality (Fig. 5-34), and the orientation and vergence of the structures there are 

incompatible with the orientation of the Platreef. In fact, the orientations of the reef and shear 

structures are almost perpendicular to one another, and this geometry does not suggest a 

conjugate relationship. Even if a conjugate pattern were apparent, the Platreef is unlikely to 

have intruded exclusively into only one of the two sets of conjugate structures if magma 

emplacement was guided by those structures. At all other mapped and observed locations, 

bedding in the footwall meets the base of the Platreef at a discordant contact and sometimes at 

a high angle (see face maps in Chapter 5). Further, there are no observed pervasive thrust-

related fabrics in the footwall that either cut the bedding or are roughly parallel to and 

adjacent to the Platreef, which would be the case if the reef intruded along a thrust zone. 

There are lenses of diopsidites in the footwall (described in Chapter 5), but these were shown 

to have primary mineralogical and/or metamorphic/metasomatic controls, as the lenticular 

diopsidites have margins that grade uninterrupted into the surrounding calc-silicate hornfelses 

and are not bounded by tectonic discontinuities. Friese (2004) misinterprets these lenticular 

diopsidite zones as tectonic lenses after Armitage et al. (2002). It is also possible that Friese 

(2004) relied heavily on a pit exposure where footwall structures fortuitously have a similar 

vergence to the up-dip direction of the Platreef. 

The development of a thrust zone within the Transvaal Supergroup in pre-Main Zone 

time cannot be entirely refuted, but it would mean that the Platreef completely obliterated the 

thrust fabrics. This seems unlikely, as no tectonic fabrics were found in the footwall even 

where the Platreef is thinnest. Further, Friese (2004) interprets the dolomite tongue as a pre-

Bushveld structure, yet it seems highly improbable from a structural standpoint that the 

postulated thrust could have veered around this very prominent structure and was later 

exploited and filled by the Platreef. Another reason to doubt the thrust hypothesis is that the 

tongue is still intact and firmly attached to the sedimentary floor, as seen in the south highwall 

of the Sandsloot pit. In a thrust-tectonic setting, the tongue would probably have been 

detached from its floor.  

 

7.1.4 Controls on the shape of the Platreef 

The presence of the thick Main Zone, which is proven to have been emplaced after the 

Platreef and eroded it, means the original shape and thickness of the Platreef is not known. 

Only the basal contact of the reef is preserved, although the development of the olivine 

replaced reef facies may represent part of an upper contact zone. The most likely proto-

Platreef geometry was a sheet a little thicker than the present Platreef, intruded above part of 

the Malmani Dolomite and below roof rocks that were likely to be the same sedimentary 
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sequence as the footwall. Tentative support is found in the southwest Sandsloot pit where Fe 

enrichment of the uppermost Platreef may have been sourced in overlying banded iron 

formation (continuation of the Penge Formation south of the pit on the northern flank of the 

dolomitic dome) prior to Main Zone emplacement. For the sake of discussion, the term 

�Platreef sheet� will be used for the reef in pre-Main Zone time, as the Platreef is clearly a 

discordant body, whereas a sill implies parallelism to bedding or lithological contacts. Only 

north of Zwartfontein does it seem that the Platreef may have intruded along the basal contact 

of the Transvaal Supergroup with the basement Hout River gneisses and granites, e.g. at 

Drenthe. 

The thickness of the Platreef sheet in pre-Main Zone time probably varied to some 

degree, controlled by pre-Bushveld country-rock structures that are preserved beneath the 

present footwall contact (e.g. Kinnaird et al. 2005). The final, present thickness is also 

controlled by Main Zone emplacement, as it appears the Main Zone has eroded more of the 

Platreef above structural highs than in the intervening lows and has �levelled� the upper 

contact of the Platreef to some degree (illustrated schematically in Fig. 4-2). The degree of 

erosion is unknown but probably limited, considering that the reef has acted as a barrier to the 

Main Zone along its entire strike length (but not to the Upper Zone) and has not been totally 

assimilated by the Main Zone at any location; also considering that PGM which were 

�cannibalised� from the Platreef (Holwell et al. 2005) have only been found locally in the 

lowermost 1-3 m of the Main Zone. 

More importantly, the observation of a magmatic hangingwall contact in several pit 

faces and smaller exposures demonstrates that a magmatic boundary is the norm, with 

discordant shear zones locally juxtaposing hangingwall and Platreef lithologies, as in Fig. 

5-27. Highly significant detail of the magmatic contact is presented in Holwell et al. (2005), 

who describe a specimen collected at the contact between fine-grained poikilitic leuconorite 

of the hangingwall and coarse-grained mineralised feldspathic pyroxenite of the Platreef in 

the northern part of the Sandsloot pit. The fact that the hangingwall rock is shown to erode the 

Platreef without permeating into it inherently requires a significant time break after 

emplacement of the Platreef, allowing the rock to cool sufficiently for it to behave in this 

manner. Holwell et al. (2005) found that in many of the mapped rock faces (additional to 

those in the present study), a planar magmatic contact occurs with poikilitic leuconorite or 

gabbronorite directly overlying the reef pyroxenites. A minority of faces display a sheared 

contact where the uppermost reef pyroxenites are sheared and subsequently altered to 

serpentine, sericite or carbonate. The overlying hangingwall rocks, however, show no 

evidence of shearing or alteration. 
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Another important finding of Holwell et al. (2005) is that PGE mineralisation occurs 

locally in the hangingwall, but specifically where the hangingwall overlies coarse-grained 

mineralised reef, and in these places the PGE grade in the lowermost hangingwall is 

sometimes comparable to that in the reef. Where the hangingwall overlies fine-grained, barren 

pyroxenite, there is no PGE mineralisation in the immediate hangingwall. This is a consistent 

relationship in the Sandsloot-Overysel sector. The mineralised zones in the hangingwall are 

typically in the lowermost 1 m and rarely more than 3 m. One example is an assemblage of 

Pd-bearing pentlandite, Pt-Fe alloy-BMS intergrowths and laurite. These are characteristic of 

an orthomagmatic PGM association (Kinloch & Peyerl 1990) and have not been observed in 

the Platreef pyroxenites (Armitage et al. 2002; Holwell et al. 2006; Hutchinson et al. 2004; 

Holwell & McDonald 2007; Hutchinson & McDonald 2008). Therefore the presence of 

mineralisation in the hangingwall appears to be very localised and highly constrained by the 

nature of the reef on which the hangingwall rests. Naldrett et al. (2008) observe high PGE 

tenors and Pt/Pd ratios in the upper portions of the reef in some boreholes at Sandsloot that 

they suggest is a primary feature. The sporadic occurrence of this high-grade zone may be 

related to its partial removal by the later Main Zone intrusion. 

 

7.1.4.1 The dolomite tongue 

The dolomite tongue is a critical structure at Sandsloot and is indicative of the relationships 

between the footwall, Platreef, Main Zone, and crustal or diapiric tectonism associated with 

the Platreef and/or Main Zone. The tongue is a contentious feature, as it is readily likened to 

structures in other parts of the Bushveld Complex that were formed by gravity inversion of 

country rocks (diapirs) during Lower Zone to Upper Zone emplacement. However, the 

Sandsloot tongue does not have the appearance of a fully developed diapir. Rather, there are 

strong indications that the tongue was largely a pre-Platreef structure but may have continued 

to form at a very late stage of Platreef emplacement or after emplacement: 

 

(1) An apparent attenuation of the Platreef around the tongue and the occurrence of scattered 

disseminated chromitite bands were noted by van der Merwe (1978). At face value, this 

suggests that the tongue may have been forming at a very late stage of Platreef 

emplacement or after emplacement. However, the present author found no surface 

exposure of the Platreef around the tongue just south of the pit (an area largely covered by 

mine dumps), although the area is strewn with small fragments of banded ironstone 

belonging to the Penge Formation that crops out a little further south at Tweefontein. It is 

possible that van der Merwe (1978) has misidentified the ironstone fragments for Platreef 
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chromitite. In any case, widespread fragments of (mistaken?) chromitite on the surface 

are unlikely to represent rare chromitite schlieren in the reef at Sandsloot mentioned by 

Holwell et al. (2006) and no chomitite bands/schlieren were observed in the mapped faces 

in the present study. Nonetheless, the major implication of the attenuation of the reef 

around the tongue (van der Merwe 1978) is that the tongue is unlikely to be a diapiric 

structure, as the original Platreef sheet may not have been much thicker than the present 

amplitude of the tongue. Therefore, the Platreef probably did not constitute a sufficient 

volume of magma to induce gravity inversion of the footwall. 

A further implication is that the tongue could not have formed by diapirism prior to 

Platreef emplacement, as there was no other large igneous body that could have caused 

gravity inversion in the area at the time. The Lower Zone is only represented by relatively 

small satellite bodies in the study area and the dolomite tongue occurs west of and above 

the Zwartfontein Lower Zone satellite body. Although gravity data suggest a large 

volume of dense rocks and a more extensive development of the Lower Zone beyond the 

satellite intrusions, there is certainly not the 8 km thick sheet of Lower Zone rocks found 

in the eastern Bushveld Complex. Even with a thicker Lower Zone than is apparent at the 

surface in the study area, diapirism could not occur above the Lower Zone where the 

dolomite tongue occurs. 

 A more plausible explanation for the tongue is that it formed by N-S and ENE-SSW 

compressional fold interference prior to intrusion of the Bushveld Complex, and at least 

one of these folding events may have remained active during Platreef emplacement. 

 

(2) The Platreef has a fresh appearance in the southwest extension of the Sandsloot pit (e.g. 

Fig. 5-48), and preserves igneous textures despite minor deformation and some alteration. 

If the tongue was entirely a late syn- or post-Platreef structure, much more deformation 

would be expected in the southwest pit where the reef would be highly flexed by the 

developing tongue. The marked westward deflection of the reef here seems to be an 

emplacement feature controlled by the shape of the dolomite tongue, not caused by 

folding of the reef. 

 

(3) Van der Merwe (1978) observes that Main Zone layering is not deflected by the 

Sandsloot tongue but is only interrupted by it, strongly suggesting that the Main Zone was 

emplaced after the tongue formed and the layering onlaps against the existing structure. 

On the one hand, this is consistent with the argument above for a compressional tectonic 

origin for the tongue, and is also consistent with the proven post-Platreef emplacement of 
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the Main Zone. On the other hand, the Main Zone may represent a sufficiently large 

volume of magma to have caused diapirism of the footwall, leading to upwarping of 

igneous layering in a similar manner to that seen in large domal structures in the eastern 

and western limbs, e.g. in the Dwarsrand area. A tentative explanation of the apparent 

lack of syn-Main Zone diapirism (at least at Sandsloot) is that the dolomite tongue was 

�locked� by the already cooled Platreef. Further, the Platreef may have provided a 

competent barrier to passive footwall tectonism along the entire northern limb during 

Main Zone emplacement, and this would explain the general lack of large domes 

penetrating the southern sector of the limb that is floored by the Transvaal Supergroup. In 

the northern sector, the gneisses that comprise the floor are even less likely to deform by 

diapirism. In other parts of the Bushveld Complex, diapirism appears to have been a 

continuous process beginning with Lower Zone emplacement and without a sufficient 

time break, such as the Platreef-Main Zone hiatus, to allow �locking� of the underlying 

country rock structure by an earlier-formed igneous sheet. However, there are 

contradictory reports in studies of metasedimentary domes. For example, Gerya et al. 

(2004) consider the Schwerin fold in the eastern limb to be a syn-Bushveld diapir that 

penetrates the RLS, but Cawthorn (pers. comm. 2002) observed the Lower Zone 

pyroxenites above the Schwerin fold and found them to be undeformed. 

 

(4) It could be argued that the earliest layers in the Main Zone have been flattened by the 

later layers, thus bending the terminations of the early layers where they abutted and 

dragged against the dolomite tongue. Alternatively, the tongue was slightly accentuated 

by diapirism as a result of the overlying Main Zone magma, and upwarped the lowermost 

layers of the Main Zone as they developed. Minor diapirism of the dolomite tongue is 

conceivable if the Platreef did not entirely envelope the tongue. In either scenario, 

however, the tongue is implicity a pre-Main Zone structure, which again is consistent 

with a compressional tectonic cause. 

 

The corollary of the above relationships between the Platreef, Main Zone and dolomite tongue 

is that the tongue represents an interference of two orogenic fold phases, not a diapir, and that 

at least one of the two phases was in operation during Platreef intrusion, probably at a late 

stage but prior to total consolidation. This accounts for the attenuation of layers/bands within 

the reef and possibly some of the pre-Main Zone deformation observed in the reef (Holwell et 

al. 2005; Holwell & Jordaan 2006). Further support for this hypothesis is to be found in the 

geometry of the tongue: It clearly has an approximately ENE-WSW axis that renders a west-
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pointing tip at the surface, but the fold geometry along this axis is unknown because there are 

no pit-face exposures across the axis. For the sake of argument, the ENE-WSW component is 

assumed to be a more or less upright open fold. When viewed along its approximately N-S 

axis in the south highwall of the Sandsloot pit, the tongue is asymmetrical with distinct 

eastward vergence (a steeper east limb but not overturned; Fig. 5-4, Fig. 5-7). A hypothetical 

diapir rising into Platreef magma would be affected by syn- to post-magmatic subsidence of 

the later Bushveld intrusions and consequent tilting of the layered rocks towards the centre of 

the limb, or towards the feeder, as documented by palaeomagnetic studies (Hattingh 1995). 

However, subsidence of the northern limb involving tilting to the west or southwest (seen in 

the overall dip of the Platreef and in Main Zone layering) cannot explain the slight eastward 

vergence of the dolomite tongue. In fact, the asymmetry of the tongue observed in the south 

highwall of the Sandsloot pit is exactly opposite to the tilt that would occur if a diapir was 

rotated by subsidence towards the west. The diapir would have a steeper or overturned west 

limb when viewed in E-W section such as the south highwall, whereas the opposite is the 

case. 

 An alternative explanation considered for the east-verging fold phase is a forcing 

mechanism caused by the subsiding northen limb as the volume of magma accumulated and 

cooled. This could have been caused by an outward thrusting of the Transvaal Supergroup at 

the margin of the Bushveld Complex such that radially verging structures were formed, as 

observed around other parts of the complex (P. Nex and J. Kinnaird, pers. comm. 2009). 

Similar structures are illustrated in Fig. 2a of Barnes & Maier (2002) but the cause appears to 

be the rising mantle plume beneath the Transvaal Supergroup. Neither of these mechanisms, 

however, explains why the emplacement shape of the Platreef appears to be affected by the 

dolomite tongue while the Main Zone does not. 

 Whilst an interference fold is the favoured interpretation for the Sandsloot tongue in 

this thesis, it does not discount a diapiric origin for large dome-like structures in other parts of 

the Bushveld Complex. A number of interpretations propose that some pre-Bushveld floor 

rock folds were accentuated by diapirism, but this cannot be the case at Sandsloot if, as stated 

by van der Merwe (1976), the lowermost Main Zone layering is undeflected along the tongue 

margin. Contrarily, in the local aeromagnetic image (Fig. 5-8), and as illustrated but curiously 

not considered by van der Merwe (1978), the lowermost Main Zone layering is upwarped 

against the base of the dolomite tongue and the degree of warping decreases towards the 

western tip of the tongue. This suggests that deformation ended in Upper Main Zone time. 

The contradictory nature of some findings of studies on Transvaal Group domes near the 

margin of the Bushveld Complex suggests that these structures may have formed at different 
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times and/or by different processes. In terms of diapirism, the major difference between the 

northern limb and the eastern and western limbs is that emplacement of the RLS south of the 

TML appears to have been a continuous process and therefore conducive to diapirism, 

whereas in the northern limb the Main Zone was probably the first igneous body capable of 

inducing significant diapirs, but was prevented from doing so by the previously emplaced 

Platreef sheet. 

 In summary, there are differing views in the literature regarding the genesis and timing 

of folds/domes in Bushveld country rocks, and a diapiric origin for the dolomite tongue at 

Sandsloot is too easily assumed. Some of the domal structures are interpreted as diapirs, 

others as compressional tectonic features possibly accentuated by diapirism. Regardless of 

their genesis, some of the structures appear to deform the entire RLS, even the Upper Zone, 

whereas others compartmentalise the mafic units, with magmatic zones or reefs being present 

on one flank of a fold/dome and absent on the other. These discrepancies suggest that there is 

no common genetic mechanism for all of the domes that occur at or near the margin of the 

RLS at the present surface. Rather, their development depends on their setting, in which the 

timing and thickness of major magma pulses played a strongly influential role. In light of this 

study, the relative timing and distribution of the RLS magmas north and south of the TML 

appear to be important factors. In the northern limb, the Lower Zone occurs only as isolated 

bodies separated from the rest of the RLS, except in the southern sector where it occurs 

directly below the GNPA member and occasional screens of Transvaal Supergroup country 

rocks (Maier et al. 2008b). Further, it has been shown that the Platreef intruded considerably 

earlier than the Main Zone. Thus, the development of the RLS in the northern limb was more 

episodic, involving spatially and temporally separate units, while south of the TML the 

development of the RLS was spatially continuous and temporally more continuous than in the 

northern limb. Further, the northern limb is characterised by pre-Bushveld deformation that 

generated structures such as the dolomite tongue at Sandsloot. This and related large-scale 

folds controlled the thickness of the Platreef. 

 

7.2 Interaction of Platreef magma with country rocks 
 

7.2.1 Contamination a nd source of sulphur 

Whilst a study of oxygen isotopes at Sandsloot has shown that up to 18% dolomite has been 

assimilated by the Platreef (Harris & Chaumba 2001), a more recent study using bulk 

geochemistry reached a similar estimate but concluded that contamination by the country 

rocks had not affected the early formed magmatic sulphides, since their isotope signature was 
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indistinguishable from mantle sulphur (Holwell et al. 2007). This is supported by Peniston-

Dorland et al. (2008), who concluded that the Platreef magma was apparently saturated in 

sulphur prior to emplacement (and, counterintuitively, lost sulphur during the formation of the 

present Platreef ore horizon). Conversely, at Turfpruit where the country rocks are shales of 

the Duitschland Formation, the early formed sulphides do indicate a strong contribution from 

country-rock sulphur (Sharman-Harris et al. 2005). At Sandsloot there is evidence of country 

rock sulphur only in late-stage calcite quartz veins that cut the reef and hangingwall; and it is 

suggested that the Main Zone magma set up a hydrothermal system large enough to dissolve 

sulphate and form sulphides in the late veins (Holwell et al. 2007).  

An explanation for the different sulphur isotope signatures in early sulphides at 

Turfspruit and Sandsloot is the sulphur association in the footwall: at Turfspruit, sulphur is 

largely present as sulphide (in pyrite), which will be assimilated by a magma at magmatic 

temperatures; whereas at Sandsloot, footwall sulphur is present as sulphate (in anhydrite), 

which will not be assimilated by a magma at magmatic temperatures but may interact with 

magmatic sulphide by hydrothermal leaching (Ripley & Li 2003). The result, which is 

manifested in the sulphur isotopes of magmatic and fluid-affected lithologies of the Platreef, 

is that sulphur exchange is controlled by assimilation at an early stage of magma 

emplacement where the country rocks contain sulphide, while sulphur exchange is controlled 

by later-stage fluid activity where the country rocks contain sulphate (Holwell et al. 2007). 

 Buchanan et al. (1981), Buchanan & Rouse (1984) and Sharman-Harris et al. (2005) 

suggest that sulphur addition due to contamination by country rocks triggered sulphur 

saturation and collection of PGE in the Platreef. Holwell et al. (2007) and Hutchinson & 

McDonald (2008), however, argue that contamination is a localised process and serves 

primarily to upgrade the sulphur content of the Platreef on a local scale. The latter authors 

further argue that, along the Platreef as a whole, sulphur saturation is likely to have taken 

place prior to Platreef emplacement, such that the ore-forming process occurred before 

Platreef emplacement. Contamination of the reef during its emplacement only modified the 

earlier-formed ore. Processes such as silicic contamination or an increase in fO2 (oxygen 

fugacity) might have triggered sulphur saturation in the Platreef magma during emplacement, 

but only on a local scale. 

A synchronous but separate effect of local country-rock contamination is the variable 

lithological expression of the Platreef along its strike. At Sandsloot, the metamorphism, 

assimilation or alteration (generally serpentinisation) of country rocks have been instrumental 

in the paragenesis of the olivine-replaced reef and serpentinised pyroxenites described in 

Chapter 5. Similar peridotites and serpentinised pyroxenites are also observed at Zwartfontein 
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South (Holwell & McDonald 2007). Further north at Overysel, Holwell & McDonald (2006) 

describe a network of felsic melt in the gneissic footwall that allowed downward percolation 

of sulphides. This melt probably also migrated upwards and invaded the lower portions of the 

Platreef as the sulphides migrated downwards, and is manifested as interstitial quartz and 

quartz-feldspathic veinlets in the basal portions of the reef. Cawthorn et al. (1985), however, 

claimed that the source of contamination of the Platreef at Overysel could not be the highly 

metamorphosed floor of banded tonalitic gneisses with leucotonalitic veins or the sedimentary 

floor rocks to the south. Instead, those authors argue that a partial melt or fluid phase derived 

from a granite that intrudes the floor rocks is shown to be the most likely contaminant. A 

subsequent study by Barton Jr et al. (1986) presented vertical profiles for Rb and Sr isotope 

ratios calculated to 2.05 Ga through the Platreef and overlying Main Zone for a range of 

different floor rocks, and found that the ratios depend on the type of floor rock. On a granite 

floor, it is suggested that the range of 87Sr/86Sr ratios is due to contamination by a melt 

derived from the granite. On a dolomitic floor, the initial 87Sr/86Sr ratios are lower, but high 

Rb contents again suggest addition of a granitic component, and the extent of contamination is 

curiously least at the base. In the lowermost Main Zone gabbronorites, pyroxene has a much 

lower initial ratio than its whole rock, indicating that the main cumulus phase crystallised 

before contamination and the granitic liquid from the floor rocks reacted with the interstitial 

basic magma to produce the contaminated intercumulus phases. This contamination is more 

likely to have arisen from assimilation of country rocks that formed the roof of the original 

Platreef sheet (banded ironstones or shales above the dolomite) and would be manifested in 

the intercumulus liquid rather than in early cumulus pyroxene. Further, the PGE grade of the 

Platreef is incompatible with the formation of an immiscible sulphide liquid from an 

interstitial liquid. It is an earlier formed phase, and therefore the separation of sulphide liquid 

may predate the main siliceous contamination process. At Turfspruit, however, Hutchinson & 

Kinnaird (2005) and Hutchinson & McDonald (2008) document the erosion of sulphides and 

redistribution of PGM by later stage quartz-feldspathic veins: some of these contain organic 

fluid inclusions and other phases suggestive of a footwall-derived melt. This mechanism does 

not appear to have operated in the Sandsloot-Overysel sector. 

 An important aspect of the discordant emplacement of the Platreef through the 

Transvaal Supergroup is the likelihood that, before Main Zone emplacement, the Penge 

banded iron formation continued above the Platreef from its present path below the reef south 

of Sandsloot. This is a potential source of Fe for the Fe-enriched zone at the top of face SW2 

(Fig. 5-44), called �olivine replaced reef� in this study. This may be viewed as the mirror 

image (upper contact) of Fe enrichment at Tweefontein where the Platreef rests on an 
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ironstone footwall (Buchanan & Rouse 1984). Alternatively, the source of Fe may have been 

a large country-rock xenolith, with the olivine-replaced reef developed as a halo around the 

xenolith. The xenolith itself is presumably assimilated by the Main Zone or floated in partial 

preservation elsewhere in the Main Zone. 

 

7.2.2 Metamorphism 

Nell (1985) documented two metamorphic events in the Transvaal floor rocks of the northern 

limb, where the estimated P/T conditions of metamorphism were ~1.5 kb and up to 750oC for 

the first phase, interpreted as the Lower Zone intrusion, and 4-5 kb and 850-900oC for the 

second phase, interpreted as the intrusion of magma that derived the Critical Zone, Main Zone 

and Upper Zone. Sharpe & Hulbert (1985) came to similar conclusions on P/T conditions for 

the eastern Bushveld, using similar mineral assemblages. However, more recent work by 

Waters & Lovegrove (2002) and Johnson et al. (2003) on P/T conditions in the eastern 

Bushveld suggest much lower pressures of 2�3 kb. The hiatus interpreted by Nell (1985) 

remains controversial and may represent a different time break than the pause between the 

Lower Zone and the combined Critical/Main/Upper Zones. If there is a significant time gap 

between the Platreef and the Main Zone, as initially recognised by this study and confirmed 

by Holwell et al. (2005), then Nell�s (1985) hiatus might represent the time break between the 

earlier Lower Zone/Platreef and the later Main/Upper Zones. This interpretation presupposes 

that the Platreef-Main Zone hiatus was longer-lasting than the Lower Zone-Platreef hiatus. 

The latter is expressed by discordant contacts in the southern sector of the northern limb, 

indicating a significant time break that might explain Nell�s (1985) metamorphic hiatus. 

 At Sandsloot, the most extensive and influential cause of metamorphism would have 

been the intrusion of the Lower Zone bodies and particularly the Platreef magma, as they 

came into direct contact with the sedimentary rocks. During the later emplacement of the 

Main Zone, the sedimentary sequence below the Platreef was shielded by the Platreef to a 

considerable degree. This �barrier effect� probably varied according to the local thickness of 

the reef. The sheer volume of the Main Zone magma may still have caused some thermal 

metamorphism by conduction of heat through the Platreef and via injection of dykes and sills 

that penetrate the Platreef and intrude the floor (e.g. in face N1 at Sandsloot � see Fig. 5-27; 

and Holwell & Jordaan 2006). The metamorphic history is complicated, however, by the 

presence of �gabbroic� bodies east of the Sandsloot pit that Ashwal et al. (2004) attribute to 

the Critical Zone, but their origin remains unclear. They could conceivably be pyroxenites 

related to the �lower Platreef� mineralised package discovered below a �regional raft� of 

dolomite by recent drilling (Winch 2011). A large Lower Zone body also occurs a little 
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further east. The intrusion of these igneous bodies before the Platreef may have had an early 

thermal metamorphic effect on the Malmani Dolomite in the Sandsloot area, and could 

explain the exclusive presence of calc-silicate hornfels between the Platreef and Lower Zone 

east of Sandsloot pit (van der Merwe 1978, p. 153). In the dolomite tongue and to the south, 

where no igneous bodies occur east of the Platreef, only a thin aureole of calc-silicate hornfels 

abuts the Platreef and quickly grades eastwards into dolomite. 

 

7.3 Mechanisms of PGE distribution 
 

7.3.1 Primary magmatic mineralisation 

In a number of disseminated PGE sulphide deposits, the association of PGM with sulphides 

and the presence of PGM within sulphides is a strong indication of a magmatic genesis. Well 

known examples are the Merensky Reef (e.g. Prichard et al. 2004; Godel et al. 2007) and the 

Great Dyke (e.g. Prendergast & Wilson 1989; Oberthür et al. 2003). Whilst relatively low-

temperature PGM such as tellurides and bismuthotellurides are also present in these 

orthomagmatic deposits, they commonly occur on the rims of sulphide blebs and are likely to 

have speciated by cooling and fractionation from a magmatic sulphide deposit. 

The most primary (i.e. unmodified) assemblages in the Platreef are believed to occur 

where the common feldspathic pyroxenites of the reef overlie an unreactive, anhydrous floor 

such as the gneiss/granite basement rocks at north of Zwartfontein (Holwell & McDonald 

2006; Holwell et al. 2007). At this location, there has been a very limited degree of 

contamination and hydrothermal activity affecting the Platreef and its mineralisation. This 

style of the primary mineralisation, which is largely preserved at Overysel, is characterised by 

Holwell & McDonald (2006), who found a strongly sympathetic relationship between the 

PGE and Ni, Cu and S, and concluded that the PGE and some semi-metals such as Te and Bi 

were collected by immiscible sulphide droplets; therefore the Platreef at Overysel can be 

considered in genetic terms to be an orthomagmatic sulphide deposit similar to the examples 

cited above (Holwell & McDonald 2007). Further, in a study of the source of Platreef 

sulphides, Holwell et al. (2007) found that the sulphur isotope signature of the earliest formed 

(and least modified) sulphides in uncontaminated Platreef is consistent with a mantle source. 

Sulphide inclusions in chromite are also strong evidence for an early sulphide liquid (e.g. 

Holwell et al. 2011). At Sandsloot, where the footwall is reactive siliceous dolomite, the 

sulphide association of PGM is all but totally absent due to pervasive decoupling of PGE from 

sulphides by fluids (Armitage et al. 2002; Holwell et al. 2005), and original PGM 

associations in different Platreef sectors (e.g. Overysel, Sandsloot and Turfspruit) are 



  152

influenced to different degrees by the effects of contamination (Holwell & McDonald 2006; 

Holwell & McDonald 2007). There is an emerging consensus that, in order to develop the 

high PGE tenors observed by Holwell & McDonald (2007) and Holwell et al. (2011), Platreef 

sulphides may have derived from a staging chamber. Nadrett et al. (2008) have recently 

developed a staging chamber model coupled with magma escape up the chamber walls for the 

development of the UG2 and the Merensky Reef. They believe this may be applicable to the 

Platreef as well. Alternatively, the association between the high grade Platreef sector and an 

apparently PGE-depleted Lower Zone intrusion nearby at Zwartfontein is believed to be 

significant in the local staging chamber models developed by McDonald & Holwell (2007) 

and McDonald et al. (2009). Lower Zone cumulates in the northern limb pre-date the Platreef, 

and some parts of the Lower Zone are depleted in Ni and Cu relative to similar rocks 

elsewhere in the Bushveld Complex, suggesting they may have interacted with sulphides in a 

sub-chamber or conduit. The scenario envisaged by McDonald & Holwell (2007) is that 

Lower Zone magma conduits may have stored PGE-rich sulphides that were later supplied to 

the Platreef. 

 

7.3.2 Hydrothermal re distribution of PGE 

The mineralisation style at Sandsloot contrasts with that found at Overysel to the north and 

with Turfspruit and Townlands much further to the south. The present study and Holwell et 

al. (2006) have shown that fluid activity has exercised a considerable influence on the 

distribution and mineralogy of PGE at Sandsloot, a feature that is minimal at Overysel except 

within xenolithic material. This is likely to be related to a fundamental footwall control, with 

the dolomites at Sandsloot and Zwartfontein releasing large volumes of fluids from both floor 

and roof during assimilation, metamorphism and subsequent serpentinisation, whereas the 

gneissic footwall at Overysel produced a felsic partial melt and very few volatiles. The 

mechanism of distribution of PGE into the footwall differs with footwall lithology. At 

Overysel, the redistribution of PGE into the footwall appears to be via a downwardly 

migrating sulphide liquid, with little fluid influence (Holwell & McDonald 2006) whereas at 

Sandsloot, fluid activity is largely responsible for the transportation of PGE into the calc-

silicate footwall and has resulted in some decoupling of PGE from sulphides (Armitage et al. 

2002; Holwell et al. 2006). Further south, on the farms Tweefontein and Turfspruit, where the 

footwall is comprised of Penge Formation ironstones and hornfelsed shales of the Duitschland 

Formation, PGE have not been significantly transported into the footwall (Hutchinson & 

Kinnaird 2005; Nex 2005; Hutchinson & McDonald 2008). The large crystals of sperrylite 

that are developed in the footwall on Tweefontein Hill (e.g. Wagner 1929) represent PGE that 
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have been remobilised during post-Platreef faulting (Nex 2005; Nex et al. 2008). Instead, at 

Tweefontein and Turfspruit, significant amounts of PGE are associated with sulphide-rich 

zones perched above competent, refractory footwall or above rafts of cordierite-spinel 

hornfels (Kinnaird 2005a; Sharman-Harris et al. 2005). While it is clear that many of these 

high-grade contact metamorphic rocks have not developed a partial melt network comparable 

to that found at Overysel, melting and devolatisation of sedimentary rafts have released 

volatiles (notably S, Sb and As) into the Platreef magma that have influenced its mineralogy 

(Hutchinson & Kinnaird 2005). 

 Another study of melt generation and fluid flow in the thermal aureole of the Bushveld 

Complex was conducted by Harris et al. (2003). The study focuses on granite sheets emplaced 

into the migmatite zone of the eastern contact aureole of the Bushveld Complex, resulting 

from “fluid-enhanced, incongruent biotite melting” of the underlying Silverton Formation 

shales during prograde metamorphism. These authors interpreted rounded/resorbed quartz 

grains in contact with feldspar in the granite sheets to reflect quartz-melt relationships. The 

findings are consistent with the earlier study by Cawthorn et al. (1985), which concluded 

(specifically to Overysel) that a partial melt or fluid phase from footwall granites 

contaminated the Platreef. Barton Jr et al. (1986) reached a similar conclusion. 

The presence of significant PGE grades in the footwall at Sandsloot requires that PGE 

were transported from the Platreef by fluids originating in the footwall or in the magma as it 

assimilated country rock fragments. The reef itself is a mafic-ultramafic package that would 

not have carried significant volumes of volatiles capable of transporting PGE directly into the 

footwall, and there was no other mafic body capable of doing so in the vicinity at the time of 

Platreef intrusion. Buick et al. (2000) present petrological, stable isotope and 

geochronological data to constrain the extent, source and timing of fluid flow in calcareous 

country rocks and xenoliths associated with the emplacement of the Bushveld Complex. Calc-

silicate xenoliths in the RLS preserve high-temperature (~1200oC), anhydrous mineral 

assemblages that were later metasomatised by hydrous, retrograde (~600-700oC) fluids. 

Metasomatism was achieved by fluid flow derived from devolatisation of interlayered 

metapelites up-temperature towards the intrusion. A similar mechanism is envisaged in the 

present study for the footwall at Sandsloot, but for siliceous carbonates rather than pelites. 

Heating of the footwall siliceous dolomites released high-temperature fluids which, possibly 

accompanied by metamorphic fluids and fluids released during serpentinisation of the 

Platreef, caused post-cumulus alteration of the reef. The same fluids also decoupled PGE from 

sulphides, redistributing them within the reef and into the country rocks. In this scenario, fluid 

movement is envisaged as circulatory, with fluids migrating up-temperature from the heated 
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footwall into the reef, where they were rapidly reheated and expelled downwards into the 

floor rocks as well as upwards (but down-temperature) into the roof rocks, thus mineralising 

the former roof. The recent finding of a series of �lower Platreef� sheets below the mined reef 

would add complexity to the circulation of fluids, as they may have been progressively boiled, 

transported and reboiled. The actual pathways of the fluid system would have been 

determined by the sequence in which the �main Platreef� and �lower Platreef� were emplaced, 

but the sequence is unknown and can only be established by future work. 
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8. SUMMARY AND CONCLUSIONS 

 

8.1 Development of the Platreef at Sandsloot 

The following geometrical and geological relationships that were documented and discussed 

in the foregoing chapters form the basis of the tectonic and magmatic model presented later in 

this chapter: 

 

(1) The strike of Main Zone layering parallels the general strike of the Platreef, as seen in 

map view and aeromagnetic images. The dip of the layering also parallels the Platreef in 

vertical mine faces. As layering formed horizontally by definition, it follows that the 

Platreef was a more or less horizontal, sill-like body when it intruded. However, local 

variation in the thickness/shape of the reef was controlled by pre-existing or actively 

forming structures, and thickened to occupy synformal basins. 

(2) As the footwall contact is unconformable, with different angles of unconformity in all 

observed rock faces, the Transvaal Supergroup must have been deformed prior to 

intrusion of the Platreef. 

(3) The Platreef follows the shape of the dolomite tongue, at least near the �neck� of the 

tongue where it connects to the main body of the country rocks. It was not possible to see 

on the surface whether the reef wraps around the entire tongue. Some maps show that it 

does, others do not, and no first-order evidence is presented in the literature for either 

case. 

(4) The local aeromagnetic image shows that the lowermost Main Zone layering is upwarped 

against both sides of the tongue, but to a decreasing degree up-sequence, i.e. towards the 

tip of the tongue. 

(5) Although ages for the Lower Zone and Platreef are not known, it is unlikely they are much 

older than the main body of the northern limb and not greatly younger or older than the 

central Bushveld Complex. Currently available age determinations (section 2.5) indicate a 

short period of intrusion for the complex, yet it is evident that some phases are more 

affected by deformation than others (particularly the Platreef versus the Main Zone, but 

also the Lower Zone versus the Platreef). This suggests, in combination with point 4 

above, that regional deformation was still in progress during intrusion of the Platreef, 

though at a waning stage, and ceased in Upper Main Zone time in the northern limb. 
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Notably, the Rooiberg felsites are folded in the vicinity of the Thabazimbi-Murchison 

Lineament (e.g. Armitage et al. 2007), indicating that a tectonic event affected the area 

after 2.06 Ga (age of the Rooiberg Group, which is the earliest expression of Bushveld 

magmatism). Documented events are the Magondi orogeny at ~2.0 Ga and the Kheis 

orogeny at ~1.9-1.8 Ga. The former of these may have been a syn-Bushveld event that 

affected the Lower Zone, Platreef and Lower Main Zone. 

 

8.1.1 Synopsis 

In pre-Bushveld time, the Transvaal Supergroup was folded, with interference of N-S and 

ENE-WSW fold phases producing domes that are most prominently expressed by the 

dolomite tongue at Sandsloot, as well as more regional features such as the Eersteling Basin. 

As the upper formations of the ~2.72.2 Ga Transvaal Supergroup are affected by the folding, 

it is assumed to have commenced after 2.2 Ga but before emplacement of the Bushveld 

Complex. This possibly attributes folding to the Magondi Orogeny. Bushveld magma likely 

rose through reactivated crustal-scale shear zones, developing feeders such as the one 

postulated at a location west of Mokopane where an unusually high gravity anomaly occurs. 

Although the Platreef transgresses the regional bedding of the Transvaal Supergroup, the 

overall geometry of the reef suggests it was largely controlled by country-rock fold structures 

during intrusion. This relationship is also seen in southern sectors of the Platreef where the 

reef is shown to be thinner above footwall structural highs and thicker in structural lows; i.e. 

the Platreef magma has filled the synformal zones of the pre-existing folds (Kinnaird et al. 

2005). 

The Platreef intruded in at least two magma pulses at Sandsloot, as the reef represents 

too small a volume of magma to attain such a high concentration of PGE and the overlying 

Main Zone cannot be the source of PGE to the reef because the Main Zone was emplaced 

after the reef had cooled below solidus. Rather, PGE were initially associated with sulphides 

derived from the same magma(s) that formed the Merensky Reef and which injected up and 

out along the intrusion walls as the chamber expanded. Alternatively, the sulphides may have 

formed in pre-Platreef staging chambers where they were upgraded by repeated interactions 

with batches of Lower Zone magma before being expelled as a crystal-liquid-sulfide mush by 

an early injection of Main zone magma, prior to the formation of the bulk of the Main Zone 

(McDonald & Holwell 2011). 

Post-cumulus alteration of the Platreef occurred due to high-temperature fluids 

released from the country rocks by heating of the footwall sedimentary rocks, and possibly 

due to metamorphic fluids and fluids released during serpentinisation. In a circulatory system 
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of boiling and re-boiling fluids as they migrated from the floor rocks into the Platreef and out 

again, PGE were decoupled from sulphides and redistributed within the reef and in its floor 

and roof rocks. 

Following intrusion and during interaction with the country rocks, the Platreef cooled 

to a considerable degree, certainly below solidus, and was moderately sheared by tectonism 

that was at a waning stage during Platreef intrusion and earliest Main Zone emplacement. 

This tectonic event was responsible for the final shape of the dolomite tongue, causing 

upwarping of Main Zone layering at the root of the tongue. The cooled Platreef was followed 

by emplacement of the Main Zone, which eroded and assimilated the uppermost section of the 

reef, particularly above structural highs, and in places intruded through the reef as dykes via 

earlier formed shear zones that are not found in the Main Zone. Where the Main Zone 

completely eroded an uppermost, fine-grained, barren section of the Platreef, it assimilated a 

sufficient volume of the underlying mineralised reef to melt and cannibalise the Platreef 

sulphides and produce a locally sulphide-rich basal Main Zone (Holwell et al. 2005; Holwell 

et al. 2006). The Main Zone entrained calc-silicate xenoliths from the roof of the Platreef that 

had been mineralised by fluid infiltration resulting from the earlier Platreef intrusion. A 

possible additional means of mineralised country-rock entrainment in the Main Zone is that 

the Main Zone magma breached the Platreef above structural highs, or entrained refractory 

xenoliths from where the Platreef itself was assimilated. 

The above sequence of events in the development of the Platreef and associated units 

is illustrated in Fig. 8-1 below. 
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Fig. 8-1. Three-dimensional block model, viewed to southeast, for Platreef development at Sandsloot. (1) 

Deposition of Transvaal Supergroup ~2.7-2.2 Ga. (2) Two-phase compressive deformation of Transvaal 

Supergroup after 2.2 Ga, during or culminating with the Magondi Orogeny. (3) Intrusion of Platreef sheet with 

overall horizontal attitude, but thickness locally controlled by pre-existing structures. (4) Deformation of cooling 

Plateef and Transvaal Supergroup country rocks, possibly at late stage of Magondi Orogeny, with accentuation 

of previously formed structures. (5) Emplacement of Main Zone, eroding uppermost Platreef, and intrusion of 

associated pegmatoidal dykes into shear zones through Platreef and footwall. Continuing late-stage deformation 

affects lower Main Zone but ceases during Main Zone emplacement. (6) Subsidence of northern limb down to 

west, and erosion to present-day surface. 
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8.2 Conclusion 

The mass of PGE in the Platreef is incompatible with the volume of the reef, and while 

contamination may have altered the chemistry and upgraded the sulphur budget of the reef, it 

cannot have provided the PGE required by the mass balance. Therefore, the PGE must have 

been concentrated from a large volume of magma elsewhere. Holwell et al. (2007) invoke a 

deep staging chamber as the locus of the PGE concentration process in which sulphur droplets 

in a sulphur-saturated magma scavenged PGE from the magma that passed over them. This is 

a feasible scenario that is supported by evidence from the present study. In particular, it has 

been proven that the Main Zone cannot have provided PGE to the Platreef as the Main Zone 

was emplaced after the Platreef had cooled below solidus. While the Main Zone formed the 

Merensky Reef at its base in the central complex, it is now known that there was a significant 

hiatus between the intrusion of the Platreef and Main Zone in the northern limb. The question 

of the relative timing of the Platreef and Merensky Reef remains open, as does the question of 

their genetic relationship. 

This thesis has shown that while the Platreef shows similarities to contact-type 

deposits that acquire sulphur and other elements by assimilation of country rocks (e.g. Peck et 

al. 2000), the �proto-Platreef� at Sandsloot and possibly Zwartfontein cannot have maintained 

its contact-type state for long, as fluids would have been quickly boiled out of the country 

rocks (particularly the sedimentary footwall) and then thermally circulated in the reef, where 

they were rapidly reboiled and expelled back into the country rocks, decoupling and 

redistributing PGE in their path. By this process, significant PGE grades are found in the 

footwall at Sandsloot and perhaps at Zwartfontein. Footwall sulphides are present in the 

orthogneissic footwall at Overysel, but they formed by downward migration of sulphides from 

the reef into a low density melt network in the footwall. In contrast, at Turfspuit there is no 

footwall mineralisation because the hornfels was too impermeable (Hutchinson & McDonald 

2008). For clarity it has been necessary to restrict the use of the term �Platreef� to that defined 

by Kinnaird & McDonald (2005), while the orebody is the total volume of grade-bearing 

rocks in the Platreef, footwall and to a lesser extent the hangingwall. 

The present study has also provided macroscale observations on the nature of the 

hangingwall contact that led Holwell et al. (2005) and Holwell & Jordaan (2006) to gather 

clear evidence for post-Platreef intrusion of the Main Zone and a significant time break 

between these two igneous units. This invalidates the model of Friese (2004) that the Main 

Zone was pre-Platreef. 

Structural considerations favour a compressional fold interference origin for the 

�dolomite tongue�, rather than gravity inversion (diapir), with the consequent admonition that 
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structures with dome-like surface expressions should not be automatically categorised as 

Bushveld magma-induced diapirs. Some structures may have formed before or during an early 

stage of Bushveld intrusion, and therefore imparted a local control on the emplacement of 

Bushveld magmas and possibly on the concentration of PGE by gravitional settling in 

synformal zones where, for example, the Platreef is thickest. 

Removing the Main Zone as the source of PGE to the Platreef requires that the metals 

were sourced elsewhere. This study favours the model of McDonald & Holwell (2007) and 

McDonald et al. (2009), which suggests the magmas that formed the (pre-Platreef) Lower 

Zone may have been the source of PGE, and highlights important first-order differences 

between Lower Zone intrusions in the northern limb compared to the rest of the Bushveld 

Complex, notably a strong depletion of chalcophile elements (Ni, Cu and PGE) in the Lower 

Zone intrusion at Zwartfontein. Nonethless, the possibility of a genetic link with the 

Merensky Reef (Naldrett et al. 2008, 2009; Reisberg et al. 2011) remains open. 

 

8.3 Epilogue 

Despite several years of focussed research on the Platreef, many questions remain. How can 

we prove or disprove a common magma for the Platreef and Merensky Reef? Why are all the 

northern limb deposits rich in palladium compared to other Bushveld PGE reefs? Is the 

Platreef a mineralisation event or a contact mineralisation style? 

 One of the advantages of this thesis is that it is largely based on first-order observation 

and mapping of rock faces in an open pit. Many studies in sectors of the Platreef that have not 

yet been mined have had to rely on boreholes, and while these provide excellent information 

in one dimension, much interpolation is required and geological relationships can often only 

be made by inference. The importance of grasping opportunities to map new exposures is 

borne out in Holwell & Jordaan (2006), who present a complete three-dimensional block 

illustrating relations between the Platreef, hangingwall and footwall, based entirely on first-

order observations of vertical rock faces and the base of the Zwartfontein mine. Their study 

added detail and conclusive evidence to some of the findings developed by the author from 

his field observations. 

A further important lesson is that detailed mapping should be not be blinkered by 

preconceived models. It is understandable that mine geologists are bound by company 

policies and standards, and their chief responsibility in the case of the Platreef is to demarcate 

the hangingwall, Platreef and footwall. However, a detailed academic study must objectively 

describe what is present in exposures, whether or not the observations agree with other 

schemes. For example, this study quickly recognised that the Platreef at Sandsloot does not 
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comply with the established A-B-C mining terminology, and also characterised previously 

unreported features that have changed the view of the genetic and temporal setting of the 

Platreef in the Bushveld Complex. Future studies that incorporate a significant component of 

mapping are strongly encouraged in new areas of the Platreef as they are opened up to mining, 

and will surely lead to an even more detailed insight into this remarkable PGE deposit. 
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Synopsis
The Platreef is a platinum-group element (PGE)
deposit in the form of a mafic–ultramafic, tabular
body at the base of the northern (Potgietersrus) limb
of the 2050 m.y. Bushveld Igneous Complex. The reef
transgresses sedimentary floor rocks (footwall) of
the 2600–2200 m.y. Transvaal Supergroup and the
Archaean granite basement. The roof rocks (hanging-
wall) of the reef are PGE-free Main Zone
gabbronorites of the Rustenburg Layered Suite. At the
Sandsloot open-pit mine the Platreef consists of coarse
to pegmatoidal pyroxenites and gabbros with accessory
phlogopite, base-metal sulphides and oxides. Thermal
metamorphism of siliceous dolomites that form the
footwall has produced clinopyroxenites and calc-
silicate hornfelses with a variety of skarn assemblages.
These were subjected to later hydrothermal alteration
and serpentinization that also affected parts of the
Platreef.

The link between sulphides and PGE in the Platreef
has led previous authors to consider the mineralization
as an orthomagmatic sulphide deposit, where sulphide
separation collected PGE from a large volume of melt.
In the reef and footwall, however, the development of
extensive alteration zones with high concentrations of
PGE- and semi-metal (Te, Sb, Se, Bi and Ge)-bearing
platinum-group minerals that are typical of many
low-temperature PGE deposits suggests syn- to post-
magmatic crystallization or redistribution of PGE by
hydrothermal fluids. The results obtained to date in a
new study suggest that the Platreef at Sandsloot is a
complex PGE deposit that has been subject to a num-
ber of different processes during its development.

The northern (Potgietersrus) limb of the 2050-m.y. Bushveld

Igneous Complex of South Africa (BIC, see Fig. 1) has a

north-striking, slightly sinuous outcrop over a length of

110 km and a maximum width of 15 km. The Platreef com-

prises the basal eastern margin of the northern Bushveld limb

(Fig. 1) and is variable in thickness along strike, attaining a

maximum thickness of 250 m. Wagner28 provided the first

descriptions of the Platreef during platinum-mining opera-

tions in the 1920s. These early operations soon ceased, but

exploration was resumed in 1967 by the Johannesburg

Consolidated Investment Company. Since Wagner’s28 early

reports there have been few detailed geological studies of the

Platreef. Most of the literature27,4,13,22,6,9,3,5 has been based

on surface mapping, drill core and geophysical data obtained

at various localities along the reef before the Sandsloot open-

pit was commissioned. A new isotopic study of the Platreef

based on samples collected from the open-pit has recently

been published by Harris and Chaumba.14

The initial results of fieldwork carried out in 2000–2001

at the Sandsloot open-pit mine, which is operated by

Potgietersrus Platinums, Ltd., a subsidiary of Anglo Platinum,

are presented here. The research is based on data from the

central, south and southwest parts of the pit (Fig. 2), where

new, deeper exposures of the Platreef and previously unrecog-

nized three-dimensional features have been mapped, and is

aimed at increasing our understanding of how PGE acquired

their present distribution at Sandsloot. The estimated reserves

at the Sandsloot mine in 1998 were 23500000 t ore at an aver-

age Pt+Pd+Rh+Au grade of 5.73 g/t, with further reserves of

150 000 000 t ore at a comparable grade located along strike

to the north and south.10 It is worth noting that the term

‘Platreef’ has sometimes been applied to the total ore zone that

embraces the igneous reef and the platiniferous parts of its

metasedimentary footwall (e.g. Buchanan et al.4). In the pre-

sent study the term ‘Platreef’ or simply ‘reef’ is used only for

the platiniferous igneous body.

Regional overview

From south to north the mafic rocks of the northern Bushveld

limb transgress progressively lower units of the 2600–

2200 m.y. sedimentary Transvaal Supergroup (Fig. 1). These

units are the Magaliesberg quartzites and shales of the Pretoria

Group and the Penge Banded Iron Formation and Malmani

Dolomite of the Chuniespoort Group. The Malmani Dolo-

mite wedges out north of the Sandsloot mine, where the

Platreef comes into direct contact with Archaean granite base-

ment. Main Zone gabbronorites of the Rustenburg Layered

Suite constitute the roof rocks (hanging-wall) of the Platreef

along its entire strike length. The Platreef appears to continue

south of Potgietersrus and may become part of the normal

Bushveld stratigraphic sequence rather than a marginal facies.

To the south of Potgietersrus the Zebediela Fault juxtaposes

the Platreef against the Phanerozoic Karoo sedimentary

sequence (Fig. 1). In the north the Platreef is covered by

1800-m.y. Waterberg volcano-sedimentary rocks. A gravity

high just west of Potgietersrus is thought to represent the

throat or feeder of the northern limb, and differentiation

indices suggest at least four major influxes of fresh, undiffer-

entiated magma.10

North of Sandsloot the Platreef has been divided into three

main units: (1) a PGE-poor, upper feldspathic pyroxenite

(‘C-reef’) in contact with the hanging-wall of Main Zone

gabbronorites; (2) a medium- to coarse-grained pyroxenite

(‘B-reef’); and (3) a lower, generally coarse-grained felds-
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pathic pyroxenite (‘A-reef’) in contact with a dolomitic or

granitic footwall.4 The thickness of the reef units varies along

strike, and the B- and A-reefs are major economic targets.10

In the present study only B-reef pyroxenites and gabbros have

been identified with certainty at Sandsloot.

Structure

Three linear geological features may have controlled the

emplacement of the northern Bushveld limb.27 These are the

northeast-striking Eersteling Basin, the northwest-trending,
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Fig. 1 (Top) Simplified map of Bushveld Igneous Complex emphasizing Rustenburg Layered Suite

(mafic phase) and showing location of enlarged map of northern Bushveld limb. (Main map) Simplified

geological map of northern Bushveld limb showing location of  Sandsloot open-pit north of

Potgietersrus
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2900-m.y. Usushwana basic dyke complex and a north–south

chain of igneous bodies from the Great Dyke in Zimbabwe

to the Trompsburg Complex in the south. The intersection of

these three features just west of Potgietersrus coincides

with the interpreted feeder of the northern Bushveld limb.

Regionally, north–south- and WSW–ESE-trending fold struc-

tures have been identified.27 The sinuous trace of the northern

Bushveld limb appears to reflect a megascopic WSW–ENE-

trending fold in the Transvaal Supergroup. More locally, a

characteristic feature of the Sandsloot area is the ‘dolomite

tongue’ at the south end of the Sandsloot pit (Fig. 1), which is

a shallowly plunging antiform or possibly a dome. The Platreef

appears to be concordant with the ‘dolomite tongue’,

i.e. enveloped around it, suggesting late- or post-tectonic

intrusion of the reef. Pre-existing fold structures have been

proposed to explain the presence of ‘footwall domes’ in the

eastern Bushveld lobe26 that compartmentalized the Lower

Zone and Critical Zone magmas in that area. Compart-

mentalization of Lower Zone rocks around Potgietersrus may

reflect similar pre-existing structures on the northern Bushveld

limb that controlled the intrusion of the Platreef magma.

It is argued on the basis of geothermobarometry that the

metamorphic aureole in the Potgietersrus area was generated

in two stages.23 The first event was related to emplacement of

Lower Zone magma and is estimated to have attained 750°C

at 1.5 kbar pressure. The second records the intrusion of the

more voluminous gabbroic magmas of the Upper Critical,

Main and Upper Zones, with equilibrium temperatures and

pressures of about 900°C and 4–5 kbar. The higher pressure

of the second event has been interpreted to reflect an elevated

deviatoric stress component that generated a large fold in the

floor rocks of the BIC.

Methods

The down-stepping benches of the Sandsloot open-pit have

sub-vertical rock faces approximately 15 m high, and parts of

faces that expose complete sections across the Platreef were

mapped at 1 : 100 scale (Fig. 2). The mapped sections were

delimited by spray-painting geopoints on the faces, whose

latitude, longitude and elevation were established by the mine

surveyors using global positioning. About 200 samples were

collected from most of the major reef and footwall lithologies

at 2–5-m intervals along each rock face and at spot localities

of particular interest—for example, in areas of abrupt litho-

logical variation. Samples selected for microscopy and

geochemical analysis were then cut into three parts. One part

was for preparation of thin sections and polished blocks,

another part was powdered in an agate tema mill and the

remaining part was stored as spare material. Thin sections

and blocks were examined under microscopes in transmitted

and reflected light. Detailed mineralogical examination

and analysis were performed at the University of Greenwich

with a JEOL JSM-5310LV scanning-electron microscope

and energy-dispersive spectrometer with the aid of Oxford

Instruments’ ISIS 300 software suite.

Bulk analysis for PGE and Au was carried out on a selected

group of samples using NiS fire-assay collection followed by

inductively coupled plasma–mass spectrometry at the
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Fig. 2 Wireframe plan view of Sandsloot open-pit mine in July,

2000, showing approximate locations of geological face maps in

Figs. 3 and 4. So lid black outline s, bench tops, stippled grey line s,

bench feet. Deepest part of pit (southern central area) is approxi-

mately 190 m

Table 1 PGE and Au concentrations, ppb, and ratios for Platreef lithologies. For comparison, data are also given for the

Merensky Reef (SARM-7 preferred values from Steele and co-workers25) and the UG2 chromitite20

Sample Lithology Ir Ru Rh Pt Pd Au Ru/Ir Rh/Ir Pt/Ir Pd/Ir Pt/PdAu/Ir

PA-SW43 B-reef pyroxenite 117 503 540 6580 6460 1180 4.3 4.6 56.2 55.2 1.0 10.1

PA-N26 B-reef gabbro 34.4 109 137 4730 2440 880 3.2 4.0 137.5 70.9 1.9 25.6

PA-NX1 Gabbroic aplite 0.1 8.4 2.4 88.1 154 54 84.0 24.0 881.0 1540.0 0.6 540.0

PA-NX3 Gabbroic pegmatite 58 103 55 1490 1570 220 1.8 0.9 25.7 27.1 0.9 3.8

PA-E117 Clinopyroxenite 7.4 31.8 55.6 698 1410 374 4.3 7.5 94.3 190.5 0.5 50.5

PA-S2-6 Clinopyoxenite 0.1 9.1 6.2 30.1 10.9 7.7 91.0 62.0 301.0 109.0 2.8 77.0

PA-S2-18 Calc-silicate hornfels 0.1 4.2 1.9 7.6 2.7 5.7 42.0 19.0 76.0 27.0 2.8 57.0

PA-S2-12 Serpentinized clinopyroxeite 0.8 6.3 2.8 55 100 35.2 7.9 3.5 68.8 125.0 0.6 44.0

PA-S3-0 Serpentinite 0.1 0.73 0.25 10.8 109 69 7.3 2.5 108.0 1090.0 0.1 690.0

PA-EX5 Serpentinized Ca-silicate hornfels 40.1 124 201 2590 3060 380 3.1 5.0 64.6 76.3 0.8 9.5

PA-EX6 Serpentinized Ca-silicate hornfels 14.1 59.1 75.5 1060 1250 220 4.2 5.4 75.2 88.7 0.8 15.6

PA-N0 Pegmatoidal mafic dyke 0.2 2.33 1.7 25.1 15.1 10.5 11.7 8.5 125.5 75.5 1.7 52.5

PA-N0/2 Pegmatoidal mafic dyke 0.1 0.31 0.51 2.2 0.8 0.9 3.1 5.1 22.0 8.0 2.8 9.0

SARM-7 Merensky Reef 74 430 240 3740 1530 310 5.8 3.2 50.5 20.7 2.4 4.2

UG-2 UG2 chromitite 60 106 600 3200 1960 50 1.8 10.0 53.3 32.7 1.6 0.8

Face

132/035

Face
141/021

250 m





not been found in the Platreef at the footwall contact, hang-

ing-wall contact or around xenoliths. In face 132/038 (Fig. 3)

a dyke-like body of aplitic gabbro with pegmatitic pods stands

between the Platreef gabbro and the coarse, serpentinized

clinopyroxenite of the footwall. The composition of the partly

pegmatitic aplite body appears to be the same as that of the

Platreef gabbro and may represent an elongate pod of resi-

dual Platreef melt.

Pyroxenites
B-reef pyroxenites dominate the Platreef in the southwest

part of the Sandsloot pit. They are commonly coarse-grained,

dark grey-green assemblages of anhedral to subhedral

orthopyroxene (60–90 modal%) with a subordinate content

of intercumulus clinopyroxene (10–40%). Postcumulus

plagioclase occurs locally in small pods and constitutes up to

15% of the modal mineralogy. Accessory phases are small

booklets of phlogopite and finely disseminated base-metal

sulphides (pyrrhotite, pentlandite, chalcopyrite, bornite,

pyrite and minor galena–clausthalite); minor oxides present

are magnetite, ilmenite, perovskite, chromian spinel (picotite)

and chromite.

Large zones within the pyroxenites have undergone varying

degrees of alteration to serpentine and talc. In such zones the

pyroxenes have a more rounded, ragged habit and are shot

through by networks of serpentine microveins, suggesting

widespread infiltration of hydrothermal fluids. The inter- and

intragranular serpentine is black, giving the altered rock a dis-

tinctly darker colour than its unaltered counterpart.

Gabbros
Platreef gabbros have coarse-grained to pegmatoidal textures.

Dark green orthopyroxene occurs as a sub- to euhedral

cumulus phase (40–70 modal%) with dark clinopyroxene (up

to 10%) in a colourless postcumulate mass of plagioclase

(30–50%). Plagioclase is locally saussuritized, whereas pyrox-

ene appears to have evaded alteration in most of the observed

B-reef gabbros. Quartz is a minor phase. Other accessory and

minor phases are the same as those found in the Platreef

pyroxenites. However, interstitial base-metal sulphides are

larger and more sporadic, rather than finely disseminated

throughout the rock body as they are in the pyroxenites.

Coarse gabbros occur at different stratigraphic positions in

the Platreef (as large irregular pods or contiguous bodies?)

and seem to dominate the central part of the pit. This is typi-

fied by face 132/038 (Fig. 3), where the reef consists almost

exclusively of gabbro.

Footwall lithologies

Clinopyroxenites
A characteristically pale grey, granoblastic, diopsidic clino-

pyroxenite normally occurs between the Platreef and layered

calc-silicate hornfelses, but the shapes of the clinopyroxenite

bodies are irregular. Clinopyroxenites are also seen as

elongated lenses and semi-continuous bands concordantly

interlayered with calc-silicate hornfels (e.g. Fig. 3), and the

boundaries between these two lithologies are usually transi-

tional over centimetre-scale distances.

The Sandsloot mine geologists refer to the clinopyroxenite

bodies as ‘parapyroxenite’, probably following the term

originally used by Wagner,28 who evidently regarded the

diopside-rich footwall lithologies as highly metamorphosed

dolomites. Recent geochemical work has shown that the

clinopyroxenites have a non-igneous genesis.14 The clino-

pyroxenites contain little Cr, whereas the ‘normal’ reef

pyroxenites and gabbros have Cr contents of thousands of

parts per million. Serpentine with relict cores of olivine is

common and the clinopyroxenites rich in olivine also contain

little Ni, whereas igneous olivine with the same Mg/Fe ratio

contains thousands of parts per million Ni. Some clinopyrox-

enites do contain Ni, but also have high Cu contents because
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Fig. 4 Geological map of face 132/038 in southwest part of Sandsloot pit



sulphides are present as well as olivine and the Ni is con-

tained in the sulphides. These trace-element characteristics

suggest that both clinopyroxene and olivine are derived by

high-grade metamorphism/metasomatism of the siliceous

footwall dolomites. The paragenesis of the clinopyroxenites

has involved such a thorough textural transformation that no

primary layering is preserved. Further support for a metamor-

phic origin comes from the presence of grossular–andradite

and idocrase (vesuvianite). Similar lithologies in the meta-

morphic aureole of the northern BIC limb are considered

to reflect extreme metasomatism.7 The mineralogy of the

clinopyroxenite bodies also appears to correspond to at least

one of the 11 assemblage groups in calcareous rocks of the

Bushveld metamorphic aureole in the Potgietersrus area iden-

tified by Nell.23

Calc-silicate hornfels and serpentinites
The calc-silicate hornfels and serpentinite footwall lithologies

can be crudely described as skarns and they contain minerals

that reflect a wide range of prograde and retrograde meta-

morphic reactions. The original sedimentary layering is

clearly preserved, with a bedding thickness of 5–60 cm.

Relatively unaltered footwall hornfelses have a mottled beige

and pale green colour. Only minor parts of the footwall are

untouched by retrograde hydrothermal alteration. This alter-

ation is mostly characterized by serpentinization of prograde

metamorphic phases, such as forsterite. The colour of the

footwall at any locality is usually an indication of the extent of

serpentinization, such that the darkest (virtually black) zones

represent extreme alteration to virtually pure serpentinite.

These zones tend to take the shape of irregular bodies varying

in size from a few decimetres to tens of metres and are often

elongate parallel to the footwall layering. The boundaries of

serpentinized zones are usually transitional, yet surprisingly

sharp in a few places. Less extensive serpentinization in the

hornfelses follows the original bedding, such that darker

altered layers are visibly continuous. The varying degrees of

alteration between layers are thought to reflect primary com-

positional variations.

Like the Platreef, the footwall rocks contain common base-

metal sulphides, such as pyrrhotite–troilite (Fe7S8–FeS),

pentlandite (Fe,Ni)9S8, chalcopyrite (CuFeS2) and bornite

(Cu5FeS4), but less common base-metal sulphides occur in

the footwall that have not yet been identified in the reef.

These are sphalerite (ZnS), bravoite (Fe,Ni,Co)S2,

godlevskite (Ni7S6), millerite (NiS) and hydrous valeriite

((CuFeS2)1.5(Mg,Al)(OH)2). An unidentified Fe–Zn–Mn–S

phase is frequently encountered in serpentinites (highly

altered calc-silicate hornfels), and stibnite (Sb2S3) and

molybdenite (MoS2) are rare sulphides in the hornfelses and

serpentinites. Magnetite is the only oxide found so far in the

footwall. Other rare phases include altaite (PbTe), plumboan

barite or hokutolite (Ba,Pb)SO4, as well as halogen-bearing

phases, such as bismoclite (BiOCl), and unidentified

Fe–Nd–F-bearing and Pb–Cl-bearing species.

Pegmatoidal mafic dykes
In the east-central part of the Sandsloot pit a 4–5 m thick,

pegmatoidal mafic dyke intrudes almost vertically through

the footwall (Fig. 3). Several smaller dykes and veins branch

from the large dyke into the Platreef (these occur just below

the base of the face map in Fig. 3). Locally the texture is

extremely pegmatitic and pyroxene crystals up to 30 cm long

have been found in blasted-out boulders near the main expo-

sure of this dyke. Its relationship to the hanging-wall is not

known. Small dykes and veins of similar composition are

observed in some drill cores from various locations at the

mine. Like the Platreef, the dyke has no chilled margins. Two

consistently characteristic features of the dyke and its branch-

ing veins are their pegmatoidal texture and green cumulus

feldspar laths with intercumulate grey to black pyroxene,

although locally the two phases display eutectic intergrowth.

Sub- to euhedral pyroxene crystals in tooth-like or radial

arrangements occur along the dyke margins. Within the dyke

and larger veins signs of flow are observed in the form of

bowed pyroxene crystals and fragments of pyroxene evidently

broken away from the dyke margins and entrained in the

central flow. Phlogopite is an accessory phase, comprising

large booklets. Base-metal sulphides are notably rarer than in

the Platreef, but large, interstitial blebs of pyrrhotite and

pentlandite occur sporadically. Ilmenite and perovskite repre-

sent minor oxide phases, sometimes containing chlorapatite

(Ca5(PO4)3Cl) and baddeleyite (ZrO2). Veins of similar

composition and appearance to this major dyke are observed

in the footwall lithologies along the east highwall of the

Sandsloot mine, but the feldspar in these instances is often

colourless to milky white.

Late hydrothermal veins

Planar, hydrothermal quartz-feldspathic veins cut all litho-

logies and their boundaries. Two large veins (>1 m) cross the

Sandsloot pit, striking approximately north–south with a

moderate to steep dip to the east. In addition to coarse-

grained quartz and feldspar, calcite and fibrous white

chrysotile aggregrates occur in the veins as later, lower-tem-

perature phases. Minor brittle–ductile shear structures occur

at the margins of the largest vein, but do not occur within the

vein itself. This suggests either that an earlier shear zone may

have been the favoured locus of this hydrothermal channel or

that the competence contrast between the vein and country

rock has generated high contact strains during deformation

and given rise to the shearing along the contacts.

PGE concentrations in the reef and footwall

PGE and Au concentrations and metal ratios in the Platreef

and footwall lithologies are given in Table 1 and compared

with those of other Bushveld PGE reefs. Chondrite-

normalized patterns for PGE-rich samples are shown in

Fig. 5. Although the B-reef pyroxenites and gabbros are con-

sistently mineralized, there is considerable variation in PGE
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Fig. 5 Chondrite-normalized plot of PGE-rich reef and footwall

lithologies. CI chondrite values from Jochum.16 Filled symbols,

Platreef B-reef samples; open symbols, footwall samples



concentration within the reef. The mineralization extends for

a significant distance below the reef into the footwall. Some

footwall lithologies are essentially barren, but certain zones of

clinopyroxenite and some highly serpentinized zones and

layers within the calc-silicate hornfels contain Rh+Pt+Pd+Au

concentrations approaching those in the B-reef. The minor

pegmatitic pods within the aplite dyke that separates the foot-

wall and B-reef in face 132/038 (Fig. 3) have high PGE

concentrations, while the aplite itself is relatively poor in

PGE. The pegmatoidal mafic dyke that crosscuts the footwall

and B-reef contains very low PGE concentrations (<100 ppb

Rh+Pt+Pd+Au).

Comparison of the PGE ratios of the PGE-rich Platreef

and footwall lithologies with the Merensky Reef and UG-2

chromitite reveals some interesting features. The B-reef and

footwall are richer in Pt, Pd and Au relative to Ir than the

Merensky or UG-2 reefs, producing more fractionated PGE

patterns. Pt/Pd and Pt/Au ratios in the Platreef and footwall

are lower than those in the Merensky or UG-2 reefs, indicat-

ing that the Platreef is richer in Pd and Au relative to Pt than

the Merensky or UG-2 reefs. PGE-rich footwall samples and

pegmatoidal aplites have lower Pt/Pd (consistently <1.0) than

B-reef gabbro or pyroxenite (1.0 or greater). This would

appear to indicate some fractionation of Pd over Pt into late-

stage fluids in the reef and footwall—a feature noted by

Wagner28 and Ainsworth.1 Rh/Ir in the Platreef is compara-

ble with that of the Merensky Reef, but lower than the UG-2.

Nonetheless, the B-reef and the PGE-rich footwall litho-

logies show a remarkably close similarity in terms of PGE

ratios and normalized patterns (Fig. 5). The aplitic dyke and

some of the low-grade footwall samples (e.g. PA-S3-0 and

PA-S2-12) exhibit dramatic enrichments in Pt, Pd or Au, but

the relative distribution of various PGE between PGE-rich

reef and footwall is very consistent and seems to be more than

mere coincidence. This type of footwall mineralization is a

general feature of the Platreef and it is present across the

Sandsloot pit as well as along strike at Tweefontein Hill to the

south and at Zwartfontein to the north.28 Any comprehensive

genetic model for the Platreef must take it into account.

Platinum-group mineralogy

Initial SEM studies of four polished blocks from the

Platreef—three from the footwall and one from a pegmatoidal

mafic dyke—have revealed 54 individual occurrences of plat-

inum-group minerals (PGM), ten occurrences of electrum

(Au,Ag) and a single instance of stromeyerite (AgCuS). The

last is the only precious-metal sulphide found to date. The

great majority of the PGM in the Platreef and footwall are

of very small grain size—nearly all <10 µm and most <5 µm;

a few exceptions are in the size range 20–60 µm. Each

PGM grain was analysed and grouped according to type and

textural/mineralogical association. The PGM identified are

classed as: (1) high-temperature alloys, e.g. Pt–Fe and Pt–Sn

alloys; (2) high-temperature semi-metallides, e.g. (Pt,Pd)

arsenides and antimonoarsenides; (3) lower-temperature

semi-metallides, e.g. Pd antimonides and (Pd,Pt) tellurides

and bismuthotellurides; and (4) lower-temperature alloys,

e.g. Pt–Pd–Ge–Pb, Pd–Au and Au–Ag alloys (Table 2).

The textural/mineralogical associations of the PGM are:

(1) in base-metal sulphides; (2) on the rims of base-metal

sulphides; (3) in oxides; (4) in primary silicates; and (5) in

alteration silicates. Table 3 shows the types of PGM found in

the Platreef, footwall and pegmatoidal mafic dyke. Table 4

gives a more detailed grouping of the PGM showing their tex-

tural/mineralogical associations. Unlike the Merensky Reef, in

which PGE occur mostly as PGE alloys and sulphides and

where laurite (RuS2) is usually present even in the most alloy-

dominated assemblages, the Platreef at Sandsloot is virtually

free of PGE sulphides. The authors’ preliminary data show

that the Platreef and footwall host a wide variety of PGM asso-

ciated with primary silicates, metamorphic silicates, alteration

silicates, primary and remobilized sulphides, and oxides. More

significantly, the present work demonstrates the abundance of

lower-temperature PGM in the form of (Pd,Pt) tellurides and

bismuthotellurides and low-temperature alloys, such as palla-

dian gold (Au,Pd) and electrum (Au,Ag) (Table 2).

The data show a slight dominance of high-temperature

PGM over low-temperature PGM in the reef samples, but a

more convincing majority of low-temperature PGM in foot-

wall samples. The types of low-temperature PGM and their

associations with surrounding silicates and sulphides are simi-

lar in the reef and footwall, supporting a common mode of
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Table 2 Names, chemical formulae and relative equili-

bration temperatures for PGM and Au–Ag minerals analysed

(total, 65; 16 high-temperature and 49 low-temperature)

Name Formula Instances Relative

equilibration

temperature

Isoferroplatinum Pt3Fe 4 High

Mertieite II Pd8(Sb,As)3 2 High

Rustenburgite (Pt,Pd)3Sn 2 High

Sperrylite PtAs2 4 High

Fengluanite Pd3Sb 1 Low

Kotulskite PdTeBi 2 Low

Michenerite (Pd,Pt)BiTe 3 Low

Moncheite Pt(Te,Bi)2 1 Low

Vincentite (Pd,Pt)3Sb 1 Low

Zvyagintsevite Pd3Pb 3 Low

Palladian gold (Au,Pd) 4 Low

Electrum (Ag,Au) 10 Low

Stromeyerite AgCuS 1 Low

Unnamed Pt(As,Sb)2 2 High

Unnamed (Pd,Pt)2Ge 1 Low

Unnamed (Pb,Ag)Te 1 Low

Unnamed (Pd,Pt)Sb 1 Low

Unnamed PdSb 7 Low

Unconstrained Pt–Pd–As 1 High?

Unconstrained Pt–As–Sb 1 Low

Unconstrained Pt–Sn 1 High?

Unconstrained Pd–Sb–As 2 Low

Unconstrained Pd–Sb–Se 1 Low

Unconstrained Ag–Te 1 Low

Unconstrained Pd–Pt–Sb–Bi 1 Low

Unconstrained Pd–Sb 2 Low

Composite, Pd–Pt–Te–As–Sn 1 Low

undifferentiated

Composite, Pd–Pt–Te–Bi–As–Sn 1 Low

undifferentiated

Composite, Pd–Pt–Te–Bi 1 Low

undifferentiated

Composite, Pd–As–Sb–Se 1 Low

undifferentiated

Composite, Pd–Pt–Pb–Te–Sb 1 Low

undifferentiated

Table 3 PGM types found in eight polished blocks from

Platreef, footwall and pegmatoidal dyke samples

High- T High- T Low-T Low-T Low-T

alloys semi- alloys semi- sulphides

metallides metallides

Platreef 6 1 12 10 0

Footwall 1 7 6 19 1

Mafic dyke 0 1 0 1 0



speciation. To date, the only deviation of possible signifi-

cance among low-temperature PGM is that an unnamed Pd

antimonide (PdSb) is predominant in a footwall serpentinite

(sample PA-S3-0).

The PGM distribution in the Platreef is very different from

that of almost all of the varieties of Merensky Reef described

by Kinloch and Peyerl,18 with the exception of some pothole

reef and reef that has been affected by late-stage dunite peg-

matoids. The association of Pt–Fe alloys in pegmatoids and

in the core of a pothole with a zone of telluride-rich mineral-

ization on the rim of the pothole have both been attributed to

the effects of fluids.17,18 Given the strong evidence for fluid

activity in the Platreef and the footwall, it is likely that fluids

have influenced the development of PGM in the Platreef in a

similar manner to volatile-rich portions of the Merensky Reef.

Discussion

Previous investigations of the Platreef have shown that it

exhibits differences in mineralogy, textures, thickness and

PGE distribution along strike. These differences appear to

reflect, in part, interactions with different floor rocks.28,10

Studies of the Platreef should proceed, therefore, with some

form of broad-scale lithological (facies?) division, of which

the mineralization at Sandsloot is viewed as one facies.

Generalizations about the entire Platreef based on the obser-

vations at Sandsloot should, therefore, be viewed with

caution until more data become available from new mining

developments. Kinloch17 recognized similar large-scale facies

variation within the Merensky Reef, which led to new think-

ing on the processes operating in that deposit. Given the

extensive strike lengths involved in both the Merensky Reef

and Platreef, it would be surprising if similar lateral variations

were not apparent in the latter as well. In the view of the

present authors, the true complexity of the Platreef is only

just being appreciated.

Wagner28 recognized the division between the pyroxenite

reef and the underlying footwall assemblages and ascribed

the formation of these units to magmatic and metamorphic/

metasomatic processes, respectively. Many subsequent

authors13,6,3,5,21,24 have emphasized contamination of the

Platreef magma by the footwall. The impression given by

many of these studies is that the PGE mineralization in the

Platreef is the result of purely orthomagmatic sulphide segre-

gation from a system with a high r factor8 and that the PGE

in the reef are strongly associated with base-metal sulphides.

Variable Fe/Mg ratios and PGE concentrations within the

Platreef have even been ascribed to the introduction of

multiple pulses of magma with different PGE budgets.1 In

none of these studies have the presence of significant PGE

concentrations in the footwall and its implications for the

development of the mineralization been considered.

The authors feel that one of the most significant results to

come out of the present study so far is the complete absence

of PGE sulphides—particularly laurite (RuS2)—and the

abundance of alloys and semi-metallides in the Platreef. This

trend acquires greater significance when comparison is made

with other Bushveld PGE reefs17,20,18 and PGE-bearing

sulphide deposits in other mafic intrusions, such as the Great

Dyke11 and the Munni Munni Complex,2 where PGE sul-

phides constitute anywhere between 10% and 60% of the

PGM assemblage. The PGM assemblage in the Platreef at

Sandsloot is quite different from that in any of these deposits.

Another significant result to emerge from this study is the

recognition of PGE signatures in the footwall broadly similar

to those found in the igneous Platreef. This is not what would

be expected if the PGE-rich footwall zones formed simply as

a result of remobilization of the most mobile PGE (Pt and

Pd) and Au from a pre-existing, PGE-rich magmatic sulphide

layer (represented by the B-reef). Rather, it suggests that the

final PGE distribution in both the B-reef and the PGE-rich

footwall was influenced or controlled by similar processes. In

accord with Wagner’s study,28 no evidence for a gravity-

driven percolation of sulphide into the footwall has been

found in the present work. Furthermore, models invoking

assimilation and contamination of footwall rocks to produce

the PGE-rich zones fail to explain why the footwall PGE

mineralization is concentrated in zones that have seen the

greatest fluid activity.

Table 3 clearly shows that the footwall contains a greater

proportion of lower-temperature PGE antimonides, tellurides

and alloys than the Platreef, in line with the obvious tempera-

ture gradient across the footwall contact. However, the same

low-temperature species occur in the same associations in

both units, indicating that P–T–X conditions in the Platreef

and footwall were broadly similar during the crystallization of

these PGM.

The evidence for ‘resets’ in MgO and Fe/Mg ratios and

variation in PGE concentrations within the Platreef presented

by Ainsworth1 also merits further consideration. The reports

of distinctive PGE-rich zones or shoots (over distances of

more than 10 m) within the B-reef and the enrichment in Pd

at the base of the B-reef reported by Ainsworth1 are con-

firmed by observations of the present authors. Variations in

PGE concentrations over these distances are difficult to rec-

oncile with sulphide immiscibility and collection of sulphide

droplets from an overlying magma unless there were multiple

pulses of magma (and sulphide) or a single generation of

sulphides (and associated PGE) was somehow redistributed.

The low Fe/Mg ratios and MgO resets cited by Ainsworth1 as

evidence for multiple magmas actually correlate with the

presence of serpentine and talc and reflect fluid replacement

or the presence of highly altered olivine-bearing dolomite

xenoliths, not primary magmatic variability. It is maintained

here that the metre-scale variability in PGE concentration,

coupled with the absence of any PGE sulphides and the

abundance of low-temperature PGM, cannot be linked to any

orthomagmatic model and is best explained by the action of

fluids.

The observations outlined above lead to the view that the

final distribution of PGE at Sandsloot was controlled by the

action of fluids. These played the dominant role in mobilizing

B43

Table 4 PGM types and their textural/mineralogical associations found in eight polished blocks from Platreef, footwall and

pegmatoidal dyke samples

High- T Pt–Pd alloys and semi-metallides Lower- T Pt–Pd alloys and semi-metallides

In On sulphide In oxide In primary In altered In On sulphide In oxide In primary In altered

sulphide rim silicate silicate sulphide rim silicate silicate

Platreef 0 4 0 3 0 7 7 0 6 2

Footwall 0 3 2 2 1 5 1 0 7 13

Dyke 0 1 0 0 0 0 0 0 1 0



and homogenizing PGE within the Platreef and carrying

them into the footwall, where they formed irregular zones and

regular layers containing high PGE concentrations. The

PGM assemblage crystallized under hydrothermal conditions

in a fluid envelope that affected both the reef and footwall,

but the means by which the PGE were initially concentrated

is less obvious. On the basis of stable isotope data Harris and

Chaumba14 concluded that the Platreef fluid was a mixture

of predominantly magmatic water with a minor component

derived from the footwall. It is not yet possible to say whether

this fluid activity introduced PGE into the Platreef from

deeper cumulates or residual melt during fluid migration

along the intrusion margin under a pressure and temperature

gradient, or whether it simply disrupted and redistributed the

metals from magmatic sulphides that had already scavenged

PGE. At this stage both possibilities must remain open. What

is clear is that the Platreef at Sandsloot can no longer be con-

sidered as a purely or predominantly orthomagmatic PGE

deposit. The extent of PGE remobilization is poorly con-

strained, and attempts to model the PGE distribution in the

Platreef using r factor calculations or sulphide fractionation

models are likely to be invalid.

Although the role of fluids within the B-reef and footwall

has been emphasized above, it is important to recognize that

not all fluid-rich rocks associated with the Platreef contained

PGE. The crosscutting pegmatoidal mafic dyke in face

132/038 in the central part of the pit (Fig. 3) is almost barren.

PGE mineralization appears to have been restricted to the B-

reef pyroxenites and their associated fluid envelope, but later

intrusions or crosscutting pegmatoids carried little or no

PGE.

Following Wagner’s28 original subdivision of the deposit, it

could be argued that the Platreef and associated footwall at

Sandsloot show features associated with skarn deposits.11

The envelope of footwall PGE mineralization hosted within

the metamorphosed carbonates could certainly be considered

an ‘exoskarn’. The case for the Platreef proper being an

‘endoskarn’ in the strictest sense is more difficult to establish.

PGE(Ni,Cu) skarns have not been recognized as a skarn

deposit type in themselves before this study. This work and

Wagner’s28 early accounts have shown the widespread nature

of the footwall mineralization and the presence of very high

PGE concentrations in the serpentinized skarn assemblages.

In the view of the present authors this style of PGE mineral-

ization is consistent with a ‘Pd–Pt–Au skarn’.

Conclusions

The Platreef is shown to be a complex PGE deposit that was

subjected to different processes over the course of its develop-

ment. At Sandsloot the B-reef facies of the Platreef is the

principal orebody, but extensive PGE mineralization is also

present in the metamorphic clinopyroxenites, calc-silicate

hornfels and serpentinites that constitute the footwall of the

intrusion. Mapping has revealed details of the relationships

between the B-reef, the footwall lithologies and later intru-

sions. This highlights the need for preliminary mapping to

provide a thorough understanding of the complexity of the

structural and lithological relations before samples are

collected. The Platreef is not a simple package of rocks, so

sampling traverses across the reef or sampling of boreholes

for geochemical studies need to be preceded by detailed map-

ping or logging on a metre scale or smaller.

There is widespread evidence for fluid activity in both the

B-reef and the footwall. The PGM assemblages in both units

are virtually free of sulphide species and are dominated by

PGM that are rich in low-temperature metals and semi-

metals found to be associated with fluid-rich conditions in

other areas of the Bushveld Complex. Orthomagmatic

processes (e.g. sulphide collection) may have played a role in

the initial development of the deposit, but these cannot be

seen as the sole influence. The final distribution of the PGE

in the reef and footwall was strongly influenced by fluid acti-

vity, and at this stage the Platreef should not be pigeonholed

as an orthomagmatic deposit.
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Observations on the nature of the contact between the

Platreef and its hangingwall have revealed that not only

were the hangingwall gabbronorites intruded after the

Platreef igneous rocks and the development of platinum

group element (PGE) mineralisation, but that there

appears to have been a significant time-break separating

the two intrusive events. The hangingwall gabbronorites

truncate several features present within the Platreef

pyroxenites but not in the hangingwall, such as shear

zones and reef which has undergone alteration by Fe-rich

fluids, implying that these features were formed prior to

intrusion of the gabbronorites. A fine-grained leuconorite

at the base of the hangingwall exhibits textures showing

erosion of Platreef orthopyroxene by fine-grained cumulus

plagioclase, suggesting intrusion of a hot magma over

cooled Platreef. Xenoliths of reef pyroxenite are also

found in the hangingwall. PGE mineralisation is present

within basal zones of the hangingwall where the

hangingwall overlies mineralised Platreef pyroxenite. We

interpret the contact as a magmatic unconformity and, as

the gabbronorites do not appear to be PGE-depleted,

suggest that PGEs and S were scavenged or assimilated

from the reef by the intruding magma, producing zones of

orthomagmatic PGE mineralisation in topographic

depressions at the base of the crystallising hangingwall.

The presence of calc–silicate xenoliths in the hangingwall

gabbronorites can be explained by footwall anticlines or

diapirism which the relatively thin Platreef had not

overtopped, allowing footwall dolomite to be exposed to

the main influx of hangingwall magma. The identification

of a time-break between Platreef and hangingwall

intrusion, and the most likely source of basal hangingwall

PGE mineralisation being the underlying Platreef, shows

that the magma that formed the gabbronorites could not

have been the source of PGE for the Platreef as previously

thought.
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Observations on the relationship between the Platreef and its
hangingwall

D. A. Holwell, P. E. B. Armitage and I. McDonald

INTRODUCTION
The Platreef of the northern limb of the Bushveld
Complex, South Africa, is currently one of the most
extensively explored deposits of platinum-group
elements (PGEs) in the world. It is a pyroxenitic unit
located between gabbronorites attributed to the Main
Zone of the complex, and floor rocks comprising
Palaeoproterozoic metasediments and Archaean
granite–gneiss basement. PGE mineralisation is hetero-
geneously distributed through the pyroxenite unit, and is
usually present in the immediate footwall and
occasionally in the immediate hangingwall.1,9,16,22 The
northern limb of the Bushveld Complex comprises a
succession of ultramafic–mafic lithologies, that have
been broadly correlated by some authors with the
Rustenburg Layered Suite (RLS) present in the eastern
and western limbs.20,24–26 The well-defined igneous
stratigraphy of the RLS comprises the Lower Zone of
harzburgites and pyroxenites, the Critical Zone of cyclic
chromitites, pyroxenites and norites, the Main Zone
norites and gabbronorites, and the Upper Zone of
magnetites, gabbronorites and anorthosites. In the

northern limb, the stratigraphy differs in several
important respects. The ultramafic Lower Zone is
developed south of the town of Mokopane, and as
satellite bodies within the floor rocks north of the
town (Fig. 1). Recent work has also shown that the
Lower Zone extends for a limited distance north of
Mokopane, with a series of serpentinised peridotites
and pyroxenites present on Macalakaskop being
attributed to the Lower Zone.14 The Critical Zone is
not fully developed, and there is debate as to whether
it is present at all.18 The Main Zone of the northern
limb lacks correlatory horizons with the Main Zone in
the rest of the complex, and includes a sequence of
troctolites unique to the northern limb.20 The Upper
Zone has not been linked extensively with the rest of the
complex, though one magnetite layer has been correlated
with the Main Magnetite Layer on the basis of V2O5

content.20,21 From south to north, the Platreef rests upon
a succession of progressively older sedimentary units of
the late Archaean to early Proterozoic Transvaal
Supergroup, and Archaean granite/gneiss basement, in
what has been termed an ‘igneous transgression’.25 The



footwall units are, north from Mokopane: quartzites and
shales of the Timeball Hill Formation; sediments of the
Duitschland Formation; the Penge banded iron
formation; the Malmani dolomite and, north of

Zwartfontein, the Archaean basement granites and
gneisses (Fig. 1).

The timing of intrusion of the Platreef with respect
to the units above it, and the general stratigraphy of
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1 Geological map of the Platreef showing localities referred to in the text. After Kinnaird and Nex,13 von

Gruenewaldt et al.,24 and Hammerbeck and Schürmann7



the northern limb of the Bushveld Complex remain
contentious issues. Traditionally, the Platreef pyroxenites
north of Mokopane have been correlated with the
Merensky Reef,25,26 and a series of norite–pyroxenite–
anorthosites with a chromitite layer (the GNPA
member) south of Mokopane (Fig. 1), with the Critical
Zone.10,20,24,26 Overlying gabbronorites have traditionally
been correlated with the Main Zone. Kruger15

suggested that the Platreef is the equivalent to the
Merensky Reef and formed as a result of the first
influx of Main Zone magma, therefore placing both
reefs in the lower Main Zone. McDonald et al.18

suggested another alternative; that the Platreef and
the GNPA member are the products of one or more
mixing events between Lower Zone and Main Zone
magma, and these represent a transitional zone before
the intrusion of the major influx of Main Zone
magma. All these models imply that the Platreef was
intruded before the Main Zone gabbronorites.
Conversely, Friese,4 and Friese and Chunnett5

suggested that a thrust zone developed along the
intrusive margin between the Main Zone
gabbronorites and the footwall country rocks, and
hypothesised that the Platreef represents a syn-
tectonic, sheet-like intrusion intruded along this shear
zone in post-lower Main Zone times. This paper aims
to review these models using first-order field and
petrological observations to constrain the relative
timing of the Platreef and hangingwall gabbronorites.

METHODS
Samples and observations presented in this paper are
part of an on-going study into the Platreef between
Sandsloot and Overysel. Field relationships have been
mapped and samples collected from Anglo Platinum’s
open pit mines at Sandsloot and Zwartfontein South
and from borehole cores drilled at Overysel (Fig. 1).
The down-stepping benches in the two pits have
subvertical faces 10–15 m high, and several faces from
both pits were mapped in detail at 1:100 scale and
sampled at regular intervals. Examples from the
Sandsloot pit are given in Figure 2 and in Armitage et

al.1 and McDonald et al.18 Two cores from Overysel
(boreholes OY335 and OY387) were also logged and
sampled, and many others were logged and described.
Detailed mineralogical analysis was performed at
Cardiff University using a Cambridge Instruments
LEO S360 scanning electron microscope, coupled to
an Oxford Instruments INCA energy dispersive X-ray
analysis system.

LITHOLOGICAL UNITS
The hangingwall is made up of medium-grained norites
and gabbronorites containing cumulus plagioclase,
cumulus and intercumulus orthopyroxene (En64–70) and
generally oikocrystic clinopyroxene. The base of the
hangingwall is often characterised by a thin, fine-
grained, poikilitic leuconorite up to 30 cm thick,
containing up to 90% cumulus plagioclase and
oikocrystic pyroxenes. Occasional xenoliths of

calc–silicate derived from metamorphosed dolomite
similar to that observed in the footwall are present in the
hangingwall,6,14 and pyroxenites with petrographic and
geochemical characteristics similar to the Platreef are
present within the hangingwall.18

The Platreef is made up primarily of hetero-
geneously textured feldspathic pyroxenite, containing
cumulus orthopyroxene (En74–78), and intercumulus
clinopyroxene and plagioclase. Base metal sulphide
(BMS) and PGE mineralisation is present within the
interstitial assemblage. There is, occasionally, a fine-
grained, feldspathic pyroxenite, barren of BMS and
PGE mineralisation at the top of the Platreef
succession. The maximum thickness observed for this
unit in any of the faces mapped is 7 m. In parts of the
Sandsloot pit and at Zwartfontein, portions of the
pyroxenites appear to have been affected by a late-
stage, Fe-rich fluid18 which has removed plagioclase,
and overprinted pyroxene with Fe-rich olivine (Fo60–70)
forming ultramafic lithologies that we have termed
olivine-replaced reef (ORR). This has altered the
normally telluride-dominant platinum-group mineral
(PGM) assemblage to one dominated by alloys.9

Calc–silicate xenoliths are common within the reef
and are often extensively serpentinised.1

The nature of the footwall varies along strike (Fig. 1).
At Sandsloot and Zwartfontein South, the Platreef rests
on dolomite of the Malmani Formation, which is
metamorphosed to calc–silicates, which are variably
serpentinised. At the transition from Platreef pyroxenite
into calc–silicate, a unit termed ‘parapyroxenite’ is
usually present which contains granoblastic clino-
pyroxene and is considered metamorphic in origin on the
basis of whole-rock Cr and CaO content.8 Below this
transitional zone, parapyroxenite also occurs as smaller
lensoidal bodies with gradational contact to the
surrounding calc–silicate. In the northern part of
Zwartfontein, and at Overysel, the Platreef pyroxenites
overlie gneisses and granites of the Archaean basement.

OBSERVATIONS

Macroscopic relationships

In most of the faces studied, a planar magmatic
contact is observed where poikilitic leuconorite or
gabbronorite directly overlie the reef pyroxenites. Only
a few faces show evidence for a sheared contact; in
these sections, the uppermost pyroxenites are sheared
and subsequently altered by serpentine, sericite or
carbonate. However, the overlying hangingwall rocks
show no evidence of shearing or alteration.

In areas of the Sandsloot pit where the Platreef has
undergone Fe-replacement, the rocks are visibly
darker and the replaced zones display a greater degree
of fragmentation in response to blasting than the rest
of the reef and the hangingwall (Fig. 2). In all cases
where these feldspar-poor, ultramafic zones have been
recognised, they are truncated by hangingwall
lithologies that contain fresh plagioclase. The
replacement event appears to be restricted to the
Platreef and is not present in the hangingwall.

Applied Earth Science (Trans. Inst. Min. Metall. B)  December 2005   Vol. 114 B201

Holwell et al. Observations on the relationship between the Platreef and its hangingwall



Petrography of the contact

Perhaps the most striking evidence for the nature of
the contact is shown in Figure 3, which illustrates the
contact between hangingwall poikilitic leuconorite
and coarse-grained, mineralised Platreef pyroxenite in
thin section of a sample taken from the northern part
of the Sandsloot pit. The cumulus orthopyroxene
crystals at the top of the Platreef are visibly eroded
and resorbed against cumulus plagioclase of the fine-
grained, poikilitic leuconorite. The leuconorite does
not permeate the pyroxenite in any sense, and the
embayments made by the small plagioclase crystals
into the pyroxenes strongly suggest that the Platreef
was completely, or nearly completely, solidified before
intrusion of the overlying unit.

PGE mineralisation

In all of the sections mapped, in cases where the
hangingwall overlies the fine-grained, barren pyroxenite,
there is no PGE mineralisation in the immediate
hangingwall. However, where the hangingwall is in
contact with coarse-grained mineralised reef, the base of

the hangingwall consistently contains PGE mineral-
isation, with grades sometimes comparable to that in the
main reef. This relationship also holds true for virtually
all borehole cores that we have logged and described
from the Sandsloot–Overysel section. Typically, this
zone of mineralisation is in the lowermost metre of the
hangingwall, and is rarely more than 3 m thick. One
such occurrence of hangingwall mineralisation is
described by Holwell et al.,9 where an assemblage of Pd-
bearing pentlandite, Pt–Fe alloy-BMS intergrowths and
laurite is observed, which is characteristic of an
orthomagmatic PGM association.12 Such assemblages
have not been observed in the Platreef pyroxenites.1,9,11

The presence of mineralisation appears to be very
localised and highly constrained by the nature of the
reef on which the hangingwall rests.

Xenoliths

Xenoliths of calc–silicate are common throughout the
Platreef and are also present in the hangingwall, up to
100 m above the Platreef contact, and are also present
further north several kilometres north of the last
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2 Photograph and geological interpretation of a vertical face in the south-western part of the Sandsloot pit showing

an exposed section of olivine-replaced reef, displaying a distinct darkening and different fracture pattern to the

surrounding lithologies. The replaced reef is truncated at a magmatic contact with the hangingwall gabbronorite.

FW, footwall; FRH, footwall–reef hybrid; FPX, feldspathic pyroxenite; ORR, olivine-replaced reef; HW,

hangingwall



footwall outcrop of dolomite, e.g. at Drenthe (Fig. 1).6

At Sandsloot, we have mapped rare occurrences of
pyroxenite xenoliths in gabbronorites at the base of the
hangingwall. These pyroxenites have whole-rock and
cumulus orthopyroxene (En78) compositions consistent
with the Platreef. Intercumulus clinopyroxene showed
evidence of partial recrystallisation.

DISCUSSION
In almost all current models for the formation of the
Platreef and northern limb of the Bushveld Complex,
the Platreef is taken to be the lowermost unit of the
complex north of Mokopane, and the gabbronorites
attributed to the Main Zone conformably overlie the
Platreef. Prior to this study, most authors, with the
exception of Friese,4 have believed that the Platreef
and the gabbronorites formed together, without any
significant break in time and that the magma above
the Platreef contributed some (or all) of the PGEs to
the reef.2,15 The field relationships and mineralogical
evidence presented in this paper identify features of
the Platreef–hangingwall contact that have not been
previously recognised and require a fundamental re-
assessment of these assumptions. Each line of
additional evidence is considered in turn below.

Cross-cutting relationships

Some of the earliest work undertaken on the Platreef
by Wagner25 describes veins of hangingwall norite
intruding down into the Platreef, which would clearly
imply a post-Platreef intrusion of the hangingwall.
Evidence of a time-break between the emplacement of
the Platreef and the gabbronorites that we have
identified lies in the truncation of certain features of
the Platreef. For example, where the reef has been
partially replaced by Fe-rich olivine, the olivine
replacement is present directly below the hangingwall
contact, but does not extend into the hangingwall at
all. The replacement is thought to be formed from the
percolation of a late-stage, Fe-rich fluid through the

reef18 that post-dates formation of interstitial
plagioclase and telluride-dominant PGMs. Late Fe-
rich ultramafic replacement bodies preferentially
replace plagioclase-rich units in the RLS in the eastern
and western Bushveld,23 producing a Christmas-tree
pattern of replacement; there seems no obvious reason
why they should stop and not continue into the
plagioclase-rich hangingwall at Sandsloot, unless it
was not there. The obvious and consistent truncation
of the Fe-rich olivine-replaced reef by the
gabbronorites shows that the Platreef pyroxenites had
both crystallised, and undergone alteration, before the
intrusion of the hangingwall gabbronorites.

Shear zones that are common in the Platreef
pyroxenites, with associated alteration appear truncated
by the hangingwall gabbronorites, with the hangingwall
occasionally resting on sheared pyroxenite, but with no
evidence of deformation or extension of alteration into
the gabbronorites. This would imply that either the
shearing took place before intrusion of the
gabbronorites, or that competency contrasts between the
pyroxenites and gabbronorites led to pyroxenites being
sheared preferentially under conditions of deformation.
In the first case, the gabbronorites must have been
intruded after the Platreef and the shearing events. In the
second case, it is not possible to constrain any relative
timing, but preferential shearing of the reef is considered
unlikely for shear zones which exhibit a high angle to the
hangingwall contact.

We have mapped occurrences of pyroxenite
xenoliths at the base of the hangingwall that have
orthopyroxene compositions consistent with the
Platreef. The fact that these xenoliths show evidence
of recrystallisation of clinopyroxene also suggests
intrusion of hot Main Zone magma over relatively
cool Platreef pyroxenite.

Chilling and erosion at the base of the hangingwall

Perhaps the most compelling piece of evidence for this is
shown in Figure 3. The erosion of the Platreef ortho-
pyroxene by fine-grained, hangingwall plagioclase can
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3 Composite photograph of a thin section showing the contact between fine-grained, hangingwall poikilitic

leuconorite (upper half of photograph) and coarse-grained, mineralised Platreef feldspathic pyroxenite (lower

half). Note the embayments made by hangingwall plagioclase in the cumulus Platreef orthopyroxenes (arrowed).

Dark patches within the plagioclase are alteration



only be explained by the intrusion of a hot magma onto
crystallised Platreef pyroxenite. The texture clearly
demonstrates erosion of a solid pyroxenite with rigid
properties, not a crystal mush. This inherently requires a
significant time-break after the Platreef emplacement so
as to cool the rock sufficiently for it to behave in this
manner.

PGE mineralisation in the hangingwall

The observation of hangingwall mineralisation
occurring exclusively in places where the gabbronorites
directly overlie mineralised reef is intriguing, and one
that has not been previously recognised. The question is:
where do the PGEs in the mineralised zones of
hangingwall come from? The Main Zone itself is a
possible source of PGEs. In the Merensky Reef, the
overlying Main Zone is depleted of PGEs;17 however, in
the Platreef hangingwall, we have consistently found Pt
and Pd concentrations to be around 5–15 ppb, which
indicates that the Main Zone in the northern limb is
PGE fertile and, by implication, did not have any of its
PGEs extracted to form the Platreef. The localisation of
hangingwall mineralisation in anorthosite and
gabbronorite directly overlying mineralised Platreef
pyroxenite and its corresponding absence above non-
mineralised feldspathic pyroxenite strongly suggests
incorporation of reef PGE into the basal zone of Main
Zone magma by localised processes operating on a
metre scale. The barren, fine-grained feldspathic
pyroxenite is stratigraphically higher than the coarser-
grained, mineralised feldspathic pyroxenite, and is quite
thin (maximum 7 m in the sections mapped). It is
possible that this barren, fine-grained unit was present
continuously after the Platreef was intruded, and that
the Platreef–hangingwall contact represents a magmatic
unconformity surface, which has cut down through the
uppermost barren pyroxenite and in places cut into

mineralised reef, assimilating some PGEs and enough
sulphur to attain sulphur saturation, and producing
very localised, basal zones of orthomagmatic PGE
mineralisation.

The three-dimensional structure of the contact on a
larger scale is uncertain due to the limited lateral
distance exposed by the bench faces, but it is likely to:
(i) be an irregular, undulatory surface (Fig. 4A); (ii)
contain abrupt pothole-like structures (Fig. 4B); or
(iii) be a planar surface, with the contact between fine-
grained and coarse-grained pyroxenite undulatory
(Fig. 4C). In either of the first two cases, PGEs are
scavenged from the reef and recrystallised virtually in
situ in depressions. The localisation of mineralisation
within these depressions suggests that the overlying
Main Zone magma was static, or had very low
turbulence at the time of formation. Such a situation
would support the pothole-like model, where the
potholes may have formed after the hot Main Zone
magma had been sitting on the cold Platreef for some
time before melting the footwall thus creating a
pothole-like structure. In such a model, one would
expect occasionally to see the edges of such structures
exposed in the bench faces, with the mottled
anorthosite cutting down and truncating the fine-
grained reef; however, as yet, none of the faces we have
mapped have shown such a relationship, and further
mapping is planned to attempt to confirm the true
nature of the contact. It is important to emphasise that
there is an important genetic distinction between this
contact and the unconformable contacts associated with
the potholes of the Merensky Reef and UG2 chromitite,
which formed at magmatic or close to magmatic
temperatures. There is no evidence of prior cooling of the
footwall before their formation, such as chilling at the
base. Here, we use the term pothole as a morphological,
rather than genetic, analogue.
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4 Schematic representation of the possible nature of the Platreef–hangingwall contact and the localisation of

hangingwall PGE mineralisation in gabbronorite that directly overlies mineralised Platreef pyroxenite. (A) The

contact is an irregular, magmatic unconformity; (B) the contact exhibits occasional pothole-like structures which

cut down into the Platreef abruptly; (C) the contact between mineralised and non-mineralised Platreef pyroxenite

is undulatory, and the gabbronorite forms a planar contact, occasionally cutting mineralised Platreef



Source of calc–silicate xenoliths

A prerequisite for any model which involves the Platreef
being intruded before the hangingwall gabbronorites are
emplaced is to explain the occurrences of calc–silicate
xenoliths within the gabbronorites, which occur to
heights up to 100 m above the Platreef contact at
Sandsloot (A. Bye, personal communication) and at
Drenthe.6 Friese4 used this as evidence of the Main Zone
being intruded prior to intrusion of the Platreef,
assuming that, if the Platreef was formed first, it would
have provided an impenetrable barrier between the
footwall sediments and the Main Zone magma. This is
not necessarily the case, and the occurrences of
calc–silicate in the Main Zone can be explained in a
number of ways, which still involve the Platreef being
intruded first. An irregular floor topography is one
explanation: if structures such as the domal dolomite
tongue, immediately to the south of the Sandsloot pit
(Fig. 1) are pre-Bushveld, then the relatively thin Platreef
may have intruded around such structures, thus leaving
areas of exposed dolomite topographically higher than
the Platreef. Such areas would, therefore, have been
exposed to the Main Zone magma as it was intruded,
and the incorporation of xenoliths of calc–silicate within
the Main Zone is entirely possible. Pre-existing fold
structures do appear to be influential in controlling the
thickness of the reef. The Sandsloot pit shows some large
antiformal and synformal footwall structures4 and our
mapping indicates that the Platreef is thicker (> 30 m
true thickness) in synformal basins and thinner (< 10 m
true thickness) close to the crests of the antiforms. This
supports the possibility that the Platreef may not have
completely covered larger antiforms.

Another possible explanation that produces an
analogous situation is that of footwall diapirism initiated
by the intrusion of the Platreef. Domal structures in the
floor of the eastern Bushveld Complex have been
interpreted to represent diapirism in the floor rock
sediments of the Transvaal Supergroup during the early
stages of magma emplacement.19 The process produces
basins with finger-shaped intrusions separated by domes
and ridges. If this were also the case in the northern limb,
then structures such as the dolomite tongue (and
presumably many unexposed structures) would represent
syn-Bushveld structures, but would facilitate the
exposure of footwall lithologies above the topographic
level of the Platreef, as in the previous model.

A third possible explanation of calc–silicate xenoliths
within the Main Zone is the possibility that they are
xenoliths derived from country rocks that formed the
roof of the Platreef. In the main part of the Bushveld
Complex, the floor rocks are quartzites of the
Magaliesburg Formation. These were unconformably
capped by volcanic rocks of the 2061 Ma Rooiberg
Group, and the intrusion of the mafic suite of the
Complex is thought to have immediately followed the
eruption of the Rooiberg Group, and was intruded
along the unconformable contact, with the
Magaliesburg quartzites forming the floor rocks and
the Rooiberg acting as a low-density carapace. Thus,
the roof rocks in the main part of the complex are
thought to have been the Rooiberg Group. This is not

necessarily the case in the northern limb. It is clear
from the transgressive nature of the Platreef–footwall
contact that the Platreef was intruded obliquely to the
country rock stratigraphy, as shown in the face maps
in Figure 2 and in Armitage et al.1 and it is entirely
possible that the country rocks which formed the floor
of the relatively thin Platreef also formed its roof.

Our observations outlined above are mutually
supporting and strongly suggest that the Platreef was
intruded first and that there was a sufficient break in
time to allow almost total crystallisation, cooling and
local alteration of the Platreef before intrusion of the
hangingwall gabbronorites. The time taken for the
Platreef to solidify and undergo Fe-replacement is
unknown, but cannot have been less than hundreds of
years. If the fine-grained pyroxenite at the top of the
Platreef represents the remnants of an upper chill zone, it
implies that the Platreef may have originally been a very
thin, possibly sill-like, package of pyroxenites without
any significant column of magma above it. Intrusion of
the magma that formed the hangingwall took place as a
separate, later event, and the cool Platreef formed the
floor of this larger intrusion.

With such evidence, the model of Platreef intrusion
in post lower Main Zone times4,5 seems untenable.
This model is based on several lines of evidence that
can be interpreted in more than one way, or is directly
contradicted by the new evidence that we present.
Friese4 considered a thrust zone at the contact
between the footwall and the Main Zone, along which
the Platreef has later intruded, and states that the
Platreef is bounded by major thrust zones at the
contacts with the footwall and hangingwall. Whilst
there is occasionally sheared pyroxenite below the
hangingwall contact, this is by no means wide-spread,
and no evidence of shearing in the hangingwall is seen.
We have also found no evidence of the footwall
contact being sheared, and Friese4 misinterprets the
observation by Armitage et al.1 of lenses of serpentinite
following the layering as representing thrust duplexes.
These bands are elongate bodies and layers of
serpentinite, usually with transitional boundaries, which
represent compositional variations in the original
bedded sediments, where forsterite has preferentially
formed during contact metamorphism and been
subsequently serpentinised. Figure 2 shows that the
bands/lenses of compositional variations in the
footwall have a relatively high angle to the footwall
contact, and are truncated at the contact, strongly
suggesting that they are not tectonic lenses formed by
shearing along the contact zone.

Source of PGEs in the Platreef

The discovery that there is a magmatic break associated
with the base of the hangingwall has profound
implications for the genesis of PGE mineralisation in the
Platreef. Until now, most studies have assumed that there
was an extensive column of magma above the Platreef
(represented by the hangingwall units) that could have
supplied PGEs via settling of immiscible sulphides to the
reef. If the Platreef was intruded and crystallised before
intrusion of the hangingwall magma, this cannot be the
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source of PGEs for the Platreef. The mass balance
question of how to account for the enormous mass of
PGEs in the Platreef is unresolved.3 If the hangingwall
magma is not responsible, another source of, and
mechanism for, concentration of PGEs in the Platreef
must be considered.

CONCLUSIONS
The evidence we present from mapping observations on
a metre scale to mineralogical textures on a millimetre
scale support the hypothesis that the Platreef formed
prior to intrusion of the hangingwall gabbronorites.
Furthermore, the presence of: (i) PGE mineralisation
located at the base of the hangingwall where it is in
direct contact with mineralised reef; (ii) mineralogical
textures at the contact that indicate chilling and erosion;
(iii) the truncation of replaced reef and sheared
pyroxenite by the hangingwall; and (iv) partially
recrystallised reef xenoliths within the hangingwall,
suggest that the Platreef pyroxenites were cooled and
almost completely crystallised before the Main Zone
was intruded. The intrusion of the Main Zone magma
imparted an unconformable contact on the Platreef;
where, the Main Zone magma cut down into
mineralised portions of Platreef, PGEs and S from the
reef were incorporated into the new magma, and
localised zones of basal PGEs and BMS mineralisation
were formed in topographic hollows. The incorporation
of xenoliths of calc–silicate into the Main Zone magma
show that if the Platreef was intruded first, it could not
have formed a complete barrier between the footwall
and the Main Zone magma. This can be explained by
there being an irregular floor topography at the time of
Platreef intrusion, possibly caused by syn-emplacement
diapirism of the footwall; or by interpreting the
xenoliths as derived from the roof of the cold, thin
Platreef, rather than from the floor beneath.
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Abstract The northern lobe of the Bushveld Complex is
currently a highly active area for platinum-group ele-
ment (PGE) exploration. This lobe hosts the Platreef, a
10–300-m thick package of PGE-rich pyroxenites and
gabbros, that crops out along the base of the lobe to the
north of Mokopane (formerly Potgietersrus) and is
amenable to large-scale open pit mining along some
portions of its strike. An early account of the geology of
the deposit was produced by Percy Wagner where he
suggested that the Platreef was an equivalent PGE-rich
layer to the Merensky Reef that had already been traced
throughout the eastern and western lobes of the Bush-
veld Complex. Wagner’s opinion remains widely held
and is central to current orthodoxy on the stratigraphy
of the northern lobe. This correlates the Platreef and an
associated cumulate sequence that includes a chromitite
layer—known as the Grasvally norite-pyroxenite-anor-
thosite (GNPA) member—directly with the sequence
between the UG2 chromitite and the Merensky Reef as
it is developed in the Upper Critical Zone of the eastern
and western Bushveld. Implicit in this view of the
magmatic stratigraphy is that similar Critical Zone
magma was present in all three lobes prior to the
development of the Merensky Reef and the Platreef.
However, when this assumed correlation is examined in
detail, it is obvious that there are significant differences

in lithologies, mineral textures and chemistries (Mg# of
orthopyroxene and olivine) and the geochemistry of
both rare earth elements (REE) and PGE between the
two sequences. This suggests that the prevailing inter-
pretation of the stratigraphy of the northern lobe is not
correct. The ‘‘Critical Zone’’ of the northern lobe cannot
be correlated with the Critical Zone in the rest of the
complex and the simplest explanation is that the GNPA-
Platreef sequence formed from a separate magma, or
mixture of magmas. Chilled margins of the GNPA
member match the estimated initial composition of
tholeiitic (Main Zone-type) magma rather than a Criti-
cal Zone magma composition. Where the GNPA mem-
ber is developed over the ultramafic Lower Zone, hybrid
rocks preserve evidence for mixing between new tholei-
itic magma and existing ultramafic liquid. This style of
interaction and the resulting rock sequences are unique
to the northern lobe. The GNPA member contains at
least seven sulphide-rich horizons with elevated PGE
concentrations. Some of these are hosted by pyroxenites
with similar mineralogy, crystallisation sequences and
Pd-rich PGE signatures to the Platreef. Chill zones are
preserved in the lowest Main Zone rocks above the
GNPA member and the Platreef and this suggests that
both units were terminated by a new influx of Main
Zone magma. This opens the possibility that the Platreef
and GNPA member merge laterally into one another
and that both formed in a series of mixing/quenching
events involving tholeiitic and ultramafic magmas, prior
to the main influx of tholeiitic magma that formed the
Main Zone.

Keywords Bushveld Complex Æ Platreef Æ Merensky
Reef Æ Stratigraphy Æ Platinum-group elements

Introduction

The Bushveld Complex of South Africa is the largest
repository of platinum-group elements (PGE) in the
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world (Lee 1996; Cawthorn 1999a). All PGE mining
activities in the eastern and western lobes of the Bush-
veld Complex currently take place from tabular horizons
within the layered sequence associated with sulphides or
chromitite where the PGE are concentrated. The most
important of these are the Merensky Reef and the UG2
chromitite layer. The stratigraphy and the positions of
the PGE horizons in the eastern and western lobes of the
complex are broadly the same (Lee 1996; Cawthorn and
Lee 1998; Barnes and Maier 2002a). This, as well as
other geophysical evidence, led Cawthorn and Webb
(2001) to infer that the eastern and western lobes were
connected throughout much of the evolution of the
Bushveld Complex, that similar magmas were present in
both lobes and that mineralisation processes operated
concurrently in both lobes to produce stratiform PGE
deposits such as the Merensky Reef and the UG2
chromitite.

While PGE mining and exploration in the eastern and
western lobes of the Bushveld Complex to date have
produced sufficient data to bring genetic understanding
of the Merensky Reef and UG2 chromitite mineralisa-
tion to a mature stage, the same cannot be said of the
PGE mineralisation in the northern (Potgietersrus) lobe
of the complex. In this sector, PGE are associated with a
basal unit called the Platreef that rests directly on the
early Proterozoic sediments and Archaean granite that
form the floor of the complex (Fig. 1). The Platreef is a
contaminated, frequently xenolith-rich, unit that is
geologically more complex than any of the PGE reefs in
the eastern and western lobes, but which is also thicker
and carries sufficiently consistent grade to allow large-
scale open pit mining along some areas of its strike
(Viljoen and Schürmann 1998; Bye 2001; Kinnaird and
Nex 2003). Anglo Platinum, currently operates one open
pit mine on the farm Sandsloot 236KR, is developing a
second on the farm Zwartfontein 818LR, and has plans
for others at staged intervals over the next 30 years (Bye
2001). The potential for more high-tonnage and low-cost
open pits in this sector have led other companies to
explore on the Platreef adjacent to Anglo Platinum’s
licence area and the northern lobe is currently the most
active exploration centre on the Bushveld Complex.

The Platreef was discovered not long after the dis-
covery of the Merensky Reef in the eastern Bushveld in
1924 and was systematically explored and mined until
1930, when the platinum price collapsed during the
Great Depression (Buchanan et al. 1981). The most
comprehensive early account of the geology of the de-
posit is given by Wagner (1929) who recognised and
documented key features of the Platreef, most notably:
(a) the great thickness of the mineralised layer(s); (b) the
position of the mineralised pyroxenite (‘‘bronzitite‘’) at
the base of the igneous sequence in contact with the
metamorphosed sediments and granite; (c) the ratio of
Pt:Pd at unity or lower; and (d) the presence of PGE
mineralisation in metamorphosed and metasomatised
footwall, often at considerable distance from the igneous
rocks.

Wagner (1929) observed a ‘‘feldspathic bronzitite’’
and a ‘‘pseudoporphyritic poikilitic diallage norite’’ at
many sites along the Platreef and termed these as
‘‘Merensky Reef’’ because of a similar appearance to the
rocks of Merensky Reef that were already known in the
eastern and western lobes of the Bushveld Complex.
Wagner (1929) took this further and evidently believed
that not only were the Platreef and the Merensky Reef
similar, but that they represented the same layer:

‘‘The Main Potgietersrust or Merensky Platinum
Horizon...is the main platinum horizon of the Potgi-
etersrust fields. This is taken to be the equivalent of
the Merensky Horizon of the Lydenburg and Rust-
enburg districts.’’ (p.167).

In discussing the wider genetic aspects of the miner-
alisation, Wagner (1929)

‘‘...maintains that in endeavouring to arrive at the
correct solution of the problem, the platinum deposits
of the Potgietersrust district must be viewed in their
entirety. In other words, the Zwartfontein deposits
must be viewed in their relation to the Merensky
Horizon as developed to the north and south of them
and in the Rustenburg and Lydenburg districts.’’
(p.182).

Wagner’s suggestion that there was a direct correla-
tion between the Platreef of the northern lobe and the
Merensky Reef elsewhere in the Bushveld Complex is of
great importance because it has been accepted uncriti-
cally in most subsequent work on the Platreef (e.g. Bu-
chanan et al. 1981; Kinloch 1982; Buchanan and Rouse
1984; White 1994; Vermaak 1995; Viljoen and Schür-
mann 1998). More fundamentally, the assumed link
between the two units is one of the foundations of the
prevailing view of the stratigraphy of the northern lobe
and its relationship with the rest of the complex.

The northern lobe

The stratigraphy of the northern lobe and the widely ac-
cepted view of its relationship with the rest of the Bush-
veld Complex are summarised in Figs. 2, 3. The northern
lobe is divided into four principal zones but detailed ele-
ments of the stratigraphy are different from the eastern
and western lobes. Lower Zone (LZ) rocks comprise
>1,600 m of pyroxenites and harzburgites with chromi-
tite layers, consisting of at least 37 different cyclic units
(Hulbert 1983; Hulbert and Von Gruenewaldt 1985). The
LZ is best developed to the south of Mokopane on the
farms Grasvally 293KR and Zoetveld 294KR (Hulbert
and Von Gruenewaldt 1986) but also occurs as small sa-
tellite bodies north of the town (Fig. 1). The mafic rocks



of the LZ here have higher Mg# ((Mg/(Mg+Fe)) values
in olivine and orthopyroxene and contain chromitites
with higher Cr2O3 than similar LZ-type rocks in the rest
of the Bushveld Complex. In addition, a sulphide horizon
with PGE occurs in the Volspruit Subzone (Fig. 2),
whereas the LZ in the rest of the complex contains no

stratiform PGE mineralisation (Hulbert and Von Gru-
enewaldt 1982; Hulbert 1983). Van der Merwe (1976,
1998) considers these as unique features of the northern
lobe, distinctive from the rest of the complex.

A thin sequence of rocks known as the Grasvally
norite-pyroxenite-anorthosite (GNPA) member is

Fig. 1 Geological map of the
lower portion of the northern
limb of the Bushveld Complex
showing the localities described
in the text



developed over LZ rocks and sediments of the Pretoria
Group south of Mokopane (Hulbert 1983; Hulbert and
Von Gruenewaldt 1985, 1986; Fig. 1). This sequence
contains layered norites, gabbronorites and anorthosites
along with a chromitite layer and is termed as the
‘‘Critical Zone’’ in all the current literature on the
northern lobe. Hulbert (1983) termed the chromitite
layer in the GNPA member the ‘‘UG2-like’’ chromitite
and it has been correlated directly with the UG2

chromitite by some authors (e.g. Van der Merwe 1998).
The top of the GNPA member is xenolith-rich and hosts
PGE mineralisation. The occurrence of both xenoliths
and PGE has led to suggestions that the upper part of
the GNPA member may correlate with the Platreef
north of Mokopane (Von Gruenewaldt et al. 1989).

Van der Merwe (1976) placed the Platreef (‘‘Platinum
Horizon’’ of Wagner 1929 and Willemse 1969) at the
base of the Main Zone (MZ). This correlation is not

Fig. 2 Stratigraphy of the
northern lobe showing the major
chromitite, magnetite and Ni-
Cu-PGE deposits (after Von
Gruenewaldt et al. 1989)



universally accepted and other authors (e.g. Von Gru-
enewaldt et al. 1989; White 1994) believe the Platreef to
be a part of the Upper Critical Zone (UCZ). The Pla-
treef can be traced for over 30 km along strike north of
Mokopane and is generally developed between norites
and gabbronorites ascribed to the MZ and the floor of
the complex. As the Platreef strikes north, it transgresses
sedimentary rocks of the Transvaal Sequence, and
eventually rests on Archaean granite (Fig. 1). The rest of
the MZ comprises 2,200 m of gabbros and gabbronor-
ites. The only reliable markers in this part of the se-
quence are four prominent pyroxenites developed 300 m
above the Platreef and a 100–200-m thick troctolite that
is found 1,100 m above the Platreef. These layers have
no equivalents in the rest of the Bushveld Complex. Van
der Merwe (1976) suggested that a pyroxenite corre-
sponding to the Pyroxenite Marker is developed 2,000 m
above the Platreef, but Harris et al. (2004) have dis-
counted this correlation. The pyroxenite unit also ap-
pears to be absent in the south of Mokopane and is
missing from the stratigraphic compilations by Hulbert
(1983) and Von Gruenewaldt et al. (1989).

The Upper Zone is approximately 1,400 m thick and
comprises a sequence of magnetite gabbros, anorthosites
and olivine diorites, along with a number of magnetite
layers. As indicated in Fig. 3, one of these may be cor-
related on the basis of thickness and vanadium content
with the Main Magnetite layer developed elsewhere in
the Bushveld Complex (Van der Merwe 1976; Von
Gruenewaldt et al. 1989).

The question of how the Platreef and other cumulates
that have been ascribed to the ‘‘Critical Zone’’ in the
northern lobe actually relate to the stratigraphy of the
rest of the Bushveld Complex has important implica-
tions for the timing and genesis of the Platreef miner-
alisation. If it is not equivalent to the Merensky Reef
and formed in a separate event, then genetic models
constructed for the Platreef on the basis of what is
known about the Merensky Reef or which link the two
horizons in time may be inappropriate. The purpose of
this paper is to critically review the geology of the Pla-
treef and Merensky Reef, using existing knowledge and
new geochemical and mineralogical data, with the aim of
establishing the validity of the assumed link between the
two units.

Samples

Samples of Platreef used in this study were collected
from faces 135/014 and 138/014 in the southwest corner
(SW1 and SW2 series) and faces 132/038 and 141/011
along the north wall (N1 and N3 series) of the southern
central pit at Anglo Platinum’s Sandsloot open pit mine
(Fig. 4). The footwall is composed primarily of siliceous
dolomite and calc-silicate. Close to the contact, these
rocks are transformed into a mixture of massive diopside
clinopyroxenites, locally rich in metamorphic olivine
(commonly referred to as ‘‘parapyroxenites’’), that have

suffered variable serpentinisation (Armitage et al. 2002).
Additional samples of footwall were collected from faces
that connect to the three reef sections along the south
and east walls of the pit. These samples are labelled as
the S series and the E series, respectively. Sample DH-G
is a grab sample collected from the same area as Face
132/038 and is included with the N1 series for compar-
ison.

Analytical methods

The initial preparation of samples was as described by
Armitage et al. (2002). Detailed mineralogical examin-
ations and the analysis of silicates were carried out at
Cardiff University using a Cambridge Instruments LEO
S360 scanning electron microscope coupled to an Ox-
ford Instruments INCA energy dispersive X-ray analysis
system. Additional analyses were also carried out at the
Natural History Museum using a JEOL 5900LV (SEM)
with attached Oxford instruments EDX INCA system.
Typical analytical conditions and procedures are de-
scribed in Hutchinson (2001). Bulk analysis for major

Fig. 3 Currently accepted stratigraphic relationships between the
eastern and western limbs and the northern limb of the Bushveld
Complex (after White 1994; and Cawthorn and Lee 1998)



element and trace elements was carried out using a JY
Horiba Ultima 2 inductively coupled plasma optical
emission spectrometer (ICP-OES) and Thermo X7 series
inductively coupled plasma mass spectrometer (ICP-
MS). Samples were first ignited at 900�C to determine
loss on ignition and then fused with Li metaborate on a
Claisse Fluxy automated fusion system to produce a
melt that could be dissolved in 2% HNO3 for analysis.
Full details of the ICP analysis procedures and the
instrumental parameters are given in McDonald et al.
(2005). Geochemical data for Platreef, hanging wall and
footwall samples are given in Tables 1, 2, 3. A complete
set of silicate mineral data, comprising over 200 analy-
ses, is available from the first author on request.

Petrography of the Platreef at Sandsloot

White (1994) recognised three principal rock types
within the Platreef that he termed as A reef, B reef and C
reef. The A reef is a pegmatoidal feldspathic pyroxenite
at the base of the sequence that carries sporadic base
metal sulphide mineralisation. Above this is the B reef,
the principal PGE carrier, which is a coarse grained
pyroxenite with 50–90% orthopyroxene, common base
metal sulphides and very sporadic chromitite. At the top
of the sequence is the C reef, which is a fine-grained
feldspathic pyroxenite that may contain up to 70%
clinopyroxene. Despite the fact that they are essentially
mining terms designed to categorise Platreef facies on a
broad scale, these have become entrenched in the recent
literature (Lee 1996; Viljoen and Schürmann 1998;
Cawthorn and Lee 1998; Barnes and Maier 2002a;
Cawthorn et al. 2002a) leading to the dangerous mis-
conception that the A–B–C sequence represents ‘‘typi-
cal’’ Platreef.

Sections of the Platreef have been described in several
papers prior to the A–B–C terminology being intro-
duced, and reveal how, without any preconceived sub-
divisions, the terminology is simply not applicable in
many parts of the Platreef. On the farm Drenthe 788LR,
Gain and Mostert (1982) describe a basal feldspathic
pyroxenite overlain by norites and melanorites, capped
by a feldspathic pyroxenite. This sequence of pyroxenite-
norite-pyroxenite is inconsistent with the A, B and C-
reefs, as the inferred ‘B-reef’ is noritic and contains
cumulus plagioclase. In the adjacent farm to the south,
Overysel 815LR, Cawthorn et al. (1985) describe the
Platreef as often having a thin medium-grained norite at
the base which grades upwards into a coarse pyroxenite
with inhomogenous mineralogy, overlain by gabbro and
norite.

More recent work has also revealed limitations with
the ‘‘A–B–C’’ terminology (Armitage et al. 2002; Kin-
naird et al 2005). The definitions of the reef types do not
conform to the recognised IUGS classifications, are not
sufficient to allow unambiguous distinctions between
different units, and encourage pigeonholing rather than
proper description of potentially new rock types. For

example, in the faces mapped by Armitage et al. (2002)
at Sandsloot, rocks corresponding to the A and C reef
types were conspicuously absent. That study and new
data presented here reveal other lithologies that form
components of the Platreef at Sandsloot and do not fit
into the previous terminology at all. For these reasons
we avoid it and classify our samples according to the
established IUGS guidelines.

Maps of face 132/038 (N1), and faces 138/014 (SW1)
and 141/021 (SW2) are shown in Figs. 4, 5, 6. Sample
points and numbers for all of the samples collected for
petrography and/or geochemical analysis are indicated
on each map. The upper portion of Platreef in face 132/
038 has been described previously (as face 132/035) in
Armitage et al. (2002); it has a true thickness of 12–15 m
and is dominated by coarse grained pyroxene-rich
gabbro-gabbronorite that grades locally into pyroxenite
and websterite. Cumulus orthopyroxene is ubiquitous
and is accompanied by cumulus or intercumulus

Fig. 4 Wireframe plan view of the Sandsloot open pit in July 2000
showing the locations of the faces mapped and sampled in this
study. Solid lines represent the bench tops and the deepest area of
the pit (south central area) is approximately 190 m below the level
of the outer wall



clinopyroxene, and intercumulus plagioclase that may
occur as large oikocrysts. Sulphides and PGM are gen-
erally restricted to interstitial sites between the cumulate
pyroxenes. Chromite, ilmenite, rutile, armalcolite,
perovskite, phlogopite and zircon are present as acces-
sories. A pegmatoidal zone of aplitic gabbro and frag-
mented pyroxenite occurs along the footwall contact
where the reef thickens but is absent from thinner reef
lower down the face. The contact with the hanging wall
in this face is tectonised, and comprises a serpentinised
brittle-ductile shear zone up to 20 cm thick (Fig. 3). The
hanging wall is a medium-coarse grained norite with
cumulus plagioclase and intercumulus pyroxene (sample
N1-31). The Platreef in face 144/011 (N3) appears sim-
ilar to face N1 and the top contact of the reef was
photographed and sampled. Here, instead of a tectonite,
there is a planar magmatic contact between the top of

the Platreef and the hanging wall gabbros. The contact is
marked by a 10–15 cm thick leuconorite with cumulus
plagioclase and orthopyroxene oikocrysts, overlain by a
5 cm thick layer of fine-grained gabbronorite (Fig. 6).
The leuconorite and gabbronorite are samples N3X4B
and N3X4A in Table 1.

Platreef in the southwest corner of the pit shows
important mineralogical and textural differences from
the reef exposed to the north. Towards the top contact,
Fe-rich olivine is widespread and occurs as a late-stage
mineral. It replaces orthopyroxene through many metres
of the reef. Plagioclase may also be replaced by Fe-rich
clinopyroxene leading to the development of Fe-rich
wehrlites, olivine lherzolites and harzburgites and an
overall darkening of the rock. These rock types have
been noted to the south where the Platreef rests on
banded ironstone (Buchanan et al. 1981; Buchanan and

Fig. 5 Dip parallel section through the Platreef on face 132/035 (N1). This shows the major lithologies and the positions of samples taken
for petrographic/geochemical analysis. 32GP13 and 32GP14 are the positions of mine survey geopoints



Rouse 1984), but have not been described elsewhere. The
Fe enrichment and reaction textures observed here are
similar to those found in Fe-rich pipes and pegmatoids
elsewhere in the complex (Schiffries 1982; Viljoen and
Scoon 1985) and may result from reaction between
Platreef pyroxenites and gabbros and a late-stage Fe-
rich melt or fluid. For the ease of discussion, this type of
Fe-rich (ultramafic) Platreef is hereafter referred to as
‘‘replaced reef’’.

Face 135/014 (SW1) shows Platreef cutting the foot-
wall lithologies at a high angle. A serpentinised mixed
rock comprising relict metamorphic clinopyroxenite
(with or without olivine) and pyroxenites and websterites
with igneous textures, (termed as ‘‘footwall-reef hybrid’’)
forms the base of the Platreef. The primary Platreef is
heavily replaced and mixtures of orthopyroxenites,
websterites, gabbronorites and wehrlites are common.
The rocks become more pematoidal and olivine-rich
upwards, grading into Fe-rich olivine lherzolite close to
the hanging wall contact (Fig. 7). The hanging wall for a
fewmetres above the contact is fine-grained gabbronorite
with cumulus plagioclase (sample SW1-47).

Face 138/014 (SW2) also shows Platreef cutting the
footwall calc-silicates at a high angle to the remnant
layering and is similar in some respects to Face 135/014.
Olivine in the footwall is heavily serpentinised and these
rocks contain an extensive fracture network filled with
magnetite and ilmenite. A thick zone of serpentinised
hybrid rocks is present at the base of the reef and
wehrlite occurs close to the hybrid rocks. This merges
upwards into gabbronorite and pyroxenite that become
very Fe-rich, but without much development of olivine,
close to the hanging wall. A 15-cm wide dark xenolith of
websterite (sample SW2-83) that carries high levels of Cr

and some PGE grade is present a few metres above the
contact in the hanging wall gabbronorite (Fig. 8;
Table 3).

Geochemical trends associated with the Platreef
at Sandsloot

Harris and Chaumba (2001) noted that the igneous
Platreef was richer in Cr, Co and Fe than the footwall or
the hanging wall lithologies, which is replicated here
(Tables 1, 2, 3). The footwall clinopyroxenites and
serpentinites contain less Si and Fe than the reef but
more Ca and Mn. Similarly, the hanging wall norites
and gabbronorites typically contain more Si, Al, Na, K,
Rb, Sr and Ba than the reef or the footwall. Harris and
Chaumba (2001) noted an upward trend of Fe enrich-
ment in their reef samples and in the N1 face, where
there is the least evidence of replacement; we find a
similar gradual increase in Fe towards the top of the
reef. In replaced reef (e.g. face SW1), the Fe enrichment
is dramatic and these areas are also enriched in Ti, Mn,
Hf and Nb (and sometimes U and Th) relative to pri-
mary reef. The plagioclase-rich hanging wall rocks and
the cross-cutting pegmatoidal gabbronorite dyke in the
N1 face are also characterised by a consistently positive
Eu anomaly (Eu/Eu* >1.0), while the opposite is gen-
erally true of the reef and the footwall. As might be
expected, footwall-reef hybrid rocks show concentra-
tions of Si, Mg, Ca, Fe, Co and Cr that are intermediate
between reef and footwall (Tables 2 and 3) but never-
theless the Cr concentration is a useful indicator for
primary reef, hybrid zones and footwall where the lith-
ological relations are ambiguous.

Fig. 6 Leuconorite and fine-
grained gabbronorite at the
hanging wall contact in face
141/011 (N3). The pen on the
right is 12-cm long



Table 1 Geochemical data for faces N1 and N3

E195 E205 E227 N1-02 N1-2 N1-4 N1-6a N1-6b N1-14 N1-X6 N1-22 N1-24 N1-26 N1-30 N1-31 DH-G N3X4A N3X4B

Unit FW FW DYKE DYKE DYKE FW FW FW PR XN PR PR PR PR HW PR HW HW
Rock Type SPT PPX GBNRT GBNRT GBNRT CS-PPX PPX SPT vein Fel PX SPT Fel PX GBNRT GBNRT GBNRT NRT WBST GBNRT LCNRT
SiO2 (wt%) 39.55 46.26 49.40 50.44 48.77 39.61 43.22 37.08 52.55 33.92 49.18 51.86 50.59 51.25 51.87 50.39 51.81 50.85
TiO2 0.09 0.26 0.33 0.17 0.18 0.12 0.26 0.07 0.19 0.20 0.20 0.16 0.17 0.14 0.16 0.19 0.20 0.09
Al2O3 2.77 3.22 16.52 14.81 16.85 12.87 11.31 8.46 6.42 10.88 4.28 5.19 5.70 4.17 22.63 5.79 17.48 26.64
Fe2O3 6.34 9.12 8.00 7.17 8.43 10.52 7.21 14.44 11.52 8.36 15.07 13.96 13.26 13.93 5.56 12.82 9.75 1.95
MnO 0.22 0.57 0.15 0.13 0.14 0.35 0.52 0.42 0.21 0.73 0.26 0.23 0.26 0.23 0.10 0.22 0.14 0.04
MgO 34.39 21.25 8.05 10.58 9.61 17.59 14.09 28.04 22.14 34.18 22.88 23.23 21.19 22.53 5.38 19.74 6.48 1.61
CaO 2.36 15.51 10.73 9.60 10.00 11.76 18.95 1.78 5.20 0.32 4.57 4.18 5.41 4.03 11.52 8.83 11.17 13.08
Na2O 0.01 0.21 2.79 3.76 1.91 0.22 0.05 0.02 0.50 0.02 0.58 0.46 0.91 0.66 2.77 0.26 1.79 3.35
K2O 0.01 0.15 1.99 0.72 1.20 0.50 0.05 0.09 0.24 0.03 0.20 0.14 0.07 0.05 0.52 0.01 1.30 0.79
P2O5 0.01 0.03 0.04 0.05 0.02 0.03 0.02 0.02 0.03 0.01 0.03 0.03 0.04 0.03 0.02 0.03 0.00 0.00
LOI 12.98 3.38 2.98 2.84 1.17 5.58 5.64 11.14 0.41 11.90 1.20 0.76 0.56 1.75 1.33 0.87 1.14 0.90
Total 98.73 99.95 100.99 100.26 98.27 99.14 101.30 101.55 99.42 100.55 98.46 100.21 98.16 98.76 101.85 99.13 101.25 99.30
Sc (ppm) 8.12 33.8 18.6 18.4 15.8 15.34 26.8 8.2 28.2 24.7 30.8 13.3 29.7 28.3 30.9 27.8 30.8 5.7
V 44.5 153.2 126.9 128.0 93.4 81.5 133.2 51.0 171.1 51.6 168.5 120.3 130.4 125.1 123.1 135.5 190.9 60.9
Cr 14.4 37.3 485.0 279.9 610.9 198.5 331.9 111.5 1817.4 144.1 1734 1916 1688 3021 462.9 1741 424.0 285.8
Co 42.0 20.4 68.3 44.8 43.9 41.1 55.9 83.1 88.0 35.8 158.1 112.8 110.0 121.4 53.3 98.1 40.9 14.7
Ni 389.8 62.6 289.5 165.1 716.0 253.6 408.1 152.1 1292 64.0 2818 4020 2597 3206 160.4 1736 346.2 56.9
Cu 115.2 69.3 148.7 11.6 310.6 139.3 133.1 227.3 210.1 93.6 1549 1577 885 834.7 74.5 610.1 120.6 79.0
Ga 5.2 5.8 13.5 12.26 14.4 10.7 10.99 15.14 6.71 18.62 5.9 6.3 6.76 4.86 22.9 6.72 18.2 24.64
Rb 0.0 16.2 107.2 36.32 59.7 34.0 1.79 6.24 3.50 1.02 7.2 8.2 1.08 2.74 28.9 2.10 49.9 20.70
Sr 7.7 14.1 280.3 236.0 238.6 164.7 66.3 16.3 101.9 9.5 37.8 54.4 55.4 35.0 332.6 16.9 332.8 385.5
Y 3.2 10.1 7.7 7.1 4.3 3.8 10.2 1.6 5.5 4.4 6.0 5.1 6.5 3.2 5.7 5.7 7.4 2.21
Zr 3.6 24.3 26.0 38.2 32.3 14.0 40.3 16.6 25.7 35.4 11.5 10.0 49.8 10.5 8.8 17.6 11.5 4.31
Nb 0.21 0.73 2.40 0.82 0.83 0.80 3.08 2.66 2.94 2.78 0.48 0.44 0.30 0.26 0.65 0.47 0.4 0.15
Ba n.d. 8.4 186.3 211.7 217.7 108.9 26.1 16.1 80.0 8.5 23.1 28.3 40.6 35.2 111.2 19.1 149.6 151.1
La 1.50 4.02 6.51 4.16 2.47 3.59 4.21 1.33 2.89 1.28 2.51 1.84 2.17 1.74 4.96 2.97 2.59 4.75
Ce 1.89 9.06 9.45 7.21 5.58 5.86 9.67 2.29 5.73 2.89 5.63 4.88 4.76 2.57 8.33 5.15 5.14 8.33
Pr 0.24 1.32 1.22 0.83 0.68 0.73 1.31 0.26 0.72 0.41 0.73 0.63 0.53 0.27 0.99 0.62 0.66 0.90
Nd 0.92 5.39 4.67 3.74 2.43 2.70 5.56 0.95 2.90 1.84 2.81 2.40 2.41 1.31 3.47 2.96 2.54 3.06
Sm 0.17 1.26 1.06 0.92 0.49 0.55 1.34 0.19 0.61 0.47 0.59 0.51 0.54 0.28 0.62 0.70 0.60 0.46
Eu 0.06 0.27 0.51 0.40 0.49 0.33 0.54 0.11 0.21 0.10 0.16 0.19 0.15 0.09 0.62 0.20 0.34 0.71
Gd 0.24 1.35 1.07 0.94 0.54 0.56 1.50 0.18 0.67 0.51 0.66 0.59 0.59 0.34 0.64 0.86 0.68 0.43
Tb 0.04 0.23 0.18 0.16 0.09 0.09 0.26 0.04 0.13 0.10 0.12 0.10 0.10 0.06 0.11 0.14 0.12 0.06
Dy 0.37 1.51 1.15 1.05 0.61 0.58 1.61 0.23 0.83 0.65 0.81 0.71 0.71 0.47 0.71 1.09 0.87 0.39
Ho 0.09 0.28 0.22 0.21 0.13 0.11 0.33 0.05 0.18 0.14 0.17 0.15 0.14 0.09 0.14 0.24 0.18 0.07
Er 0.35 0.90 0.73 0.65 0.44 0.38 0.86 0.14 0.50 0.39 0.61 0.57 0.48 0.33 0.47 0.76 0.64 0.21
Tm 0.06 0.13 0.11 0.09 0.07 0.06 0.13 0.02 0.08 0.07 0.10 0.09 0.08 0.06 0.07 0.12 0.10 0.03
Yb 0.48 0.81 0.70 0.68 0.46 0.36 0.94 0.20 0.65 0.50 0.68 0.58 0.56 0.43 0.48 0.92 0.69 0.17
Lu 0.09 0.14 0.12 0.10 0.08 0.06 0.19 0.08 0.15 0.13 0.11 0.10 0.07 0.05 0.08 0.14 0.11 0.03
Hf 0.09 0.67 0.67 0.73 0.64 0.36 1.20 0.42 0.60 1.08 0.29 0.22 0.14 0.17 0.20 0.43 0.25 0.09
Ta 0.02 0.07 0.18 0.08 0.07 0.05 0.23 0.18 0.21 0.21 0.06 0.05 0.05 0.03 0.04 0.05 0.01 0.01
Th 0.45 1.08 1.52 0.64 0.57 0.67 1.19 0.37 1.11 0.86 0.95 0.54 0.49 0.34 0.51 0.62 0.39 0.26
U 0.85 0.20 0.37 0.18 0.09 0.11 0.30 0.12 0.29 0.26 0.11 0.13 0.11 0.06 0.06 0.12 0.01 0.02
Eu/Eu* 0.90 0.64 1.45 1.29 2.86 1.81 1.16 1.79 1.02 0.62 0.78 1.05 0.78 0.93 2.97 0.79 1.63 4.78
La/LuN 1.77 3.03 5.85 4.12 3.39 6.66 2.34 1.82 2.01 1.03 2.42 1.98 3.16 3.35 6.48 2.16 2.42 19.42
PGE grade n/a n/a n/a v. low n/a low n/a n/a n/a n/a inter inter high high v. low inter inter v low
Pt/Pd n/a n/a n/a 0.75 n/a 0.90 n/a n/a n/a n/a 1.04 0.98 1.94 0.93 1.36 1.03 0.91 0.87

Rare earth element values in chondrite used for normalisation come from Taylor and McLennan (1985)
PGE grade bands based on total Rh+Pt+Pd+Au: <0.1 ppm = very low; 0.1–2.0 ppm = low; 2.0–6.0 = intermediate; 6.0–10.0 = high; >10.0 = very high
Major units: FW footwall; DYKE cross-cutting pegmatoidal dykes; PR primary reef; XN xenoliths; HW hanging wall
Rock types: SPN serpentinite; PPX para(clino)pyroxenite; CS calc-silicate; GBNRT gabbornorite; PX pyroxenite; NRT norite; WBST websterite; LCNRT leuconorite



Links between the Platreef and the Merensky Reef

Stratigraphic context

The modern consensus stems from Willemse (1969) and
van der Merwe (1976) who followed Wagner (1929) and
correlated the Platreef with the Merensky Reef. This
interpretation is primarily based on the nature of the
rocks immediately above the Platreef. The hanging wall
norites and gabbros are visually similar and have similar
orthopyroxene compositions to MZ rocks elsewhere in
the Bushveld Complex. Von Gruenewaldt et al. (1989)
suggested that the Platreef might be correlated with the
upper part of the GNPA member (shown in detail in
Fig. 9). Evidence cited in support of this includes: the
layering of some units and the presence of cumulus
chromite and development of a chromitite layer. These
are the characteristic features of the UCZ in the eastern
and western Bushveld and the MZ is notable for the
absence of both. The terms ‘‘Critical Zone’’ and ‘‘Main
Zone’’ when applied to the northern lobe effectively refer

to whether the rocks are located above or below the
Platreef. The veracity of this assumption will be tested
below.

Petrographic similarities between the Platreef
and the Merensky Reef

Both units are dominated by cumulus orthopyroxene,
with subordinate amounts of plagioclase and clinopy-
roxene, and carry an assemblage of interstitial sulphides
and elevated concentrations of PGE. Buchanan et al.
(1981) suggested that pyroxene compositions in the
Platreef were the same as in the Merensky Reef (see
below for discussion). In places, both units develop
pegmatoidal facies. Chromite in the form of one or two
chromitite layers is a ubiquitous feature of the Merensky
Reef and the highest PGE grades are generally associ-
ated with one or both chromitites (Lee 1996; Kinnaird
et al. 2002). Chromite occurs as isolated crystals, or
as rare pods/schlieren, in the Platreef (Viljoen and

Fig. 7 Slightly oblique section through the Platreef on face 135/014 (SW1). This shows the major lithologies with contacts extrapolated/
inferred at height and the positions of samples taken for petrographic/geochemical analysis. The key is as in Fig. 5

Fig. 8 Oblique section through the Platreef on face 138/014 (SW2). This shows the major lithologies with contacts extrapolated/inferred at
height and the positions of samples taken for petrographic/geochemical analysis. The key is as in Fig. 5



Schürmann 1998; Armitage et al. 2002), but is most
commonly an accessory component. A more widespread
chromitite (inferred from the presence of chromite at the
same level in many drillcores) is apparently developed in
the Platreef to the south of Sandsloot on the farm
Tweefontein 238KR. PGE grades are highest in the
pyroxenite immediately beneath the chromitite and Vil-
joen and Schürmann (1998) suggest that at this locality

the Platreef bears the greatest similarity to normal
Merensky Reef.

Strontium and osmium isotopes

Cawthorn et al. (1985) found a wide range of 87Sr/86Sr
initial ratios in Platreef whole rock samples that they

Table 2 Geochemical data for face SW1

SW1-1 SW1-4 SW1-8 SW1-20 SW1-24 SW1-28 SW1-32 SW1-36 SW1-40 SW1-43 SW1-47B SW1-47A

Unit FW FW FW HYB HYB PR RR PR RR RR HW HW
Rock Type PPX CS CS n/a n/a WBST LHRZ PX HZBG LHRZ GBNRT GBNRT
SiO2 (wt%) 43.51 40.24 40.94 44.38 42.66 45.16 44.84 46.55 48.11 44.21 51.44 49.44
TiO2 0.42 0.29 0.09 0.62 0.15 0.14 0.18 0.14 0.21 0.23 0.19 0.16
Al2O3 6.08 3.32 2.48 5.47 6.27 3.61 3.44 3.70 2.56 3.29 16.48 16.30
Fe2O3 8.03 3.89 7.38 13.49 12.86 13.28 19.36 13.43 17.85 22.08 8.83 9.04
MnO 0.35 0.68 0.73 0.31 0.29 0.24 0.33 0.22 0.32 0.38 0.19 0.15
MgO 14.79 29.81 27.00 10.62 18.43 20.63 22.58 23.27 23.46 21.76 6.93 8.55
CaO 23.83 9.61 11.52 24.30 16.05 12.36 6.31 8.99 4.75 6.48 12.06 11.75
Na2O 0.19 0.03 0.01 0.19 0.29 0.67 0.37 0.33 0.10 0.33 2.43 2.52
K2O 0.02 0.00 0.01 0.02 0.46 0.13 0.15 0.13 0.19 0.23 0.41 0.43
P2O5 0.03 0.00 0.01 0.03 0.02 0.03 0.05 0.02 0.03 0.04 0.01 0.02
LOI 0.83 10.85 8.28 0.27 4.00 3.09 1.06 1.57 0.52 0.57 1.34 2.27
Total 98.09 98.73 98.45 99.69 101.48 99.33 98.66 98.35 98.12 99.59 100.32 100.65
Sc (ppm) 28.0 5.57 4.90 46.12 26.9 34.8 24.3 30.0 25.8 31.0 37.8 28.1
V 159.2 46.1 47.4 333.4 117.7 129.2 126.5 126.3 145.4 187.9 200.0 152.2
Cr 41.5 27.7 48.3 835.0 601.8 3065 3042 3061 3104 2304 292.0 551.5
Co 37.8 11.3 56.4 71.0 92.9 123.3 116.4 134.9 131.3 136.9 48.3 59.1
Ni 1683 189.7 3732 928.3 2286 2156 2769 3921 2804 3390 406.9 376.1
Cu 1448 87.1 2097 675.5 839.0 828.7 764.5 1477 1156 1329 170.5 186.6
Ga 7.6 6.3 4.3 10.2 6.5 4.88 5.50 4.5 5.2 5.6 18.1 15.7
Rb 1.9 �0.1 0.1 3.7 26.3 6.32 5.72 7.3 15.4 11.9 7.3 11.9
Sr 25.5 7.6 7.2 25.6 31.3 47.1 85.5 60.9 34.4 66.1 282.2 233.9
Y 18.2 29.6 14.9 12.3 6.6 6.7 7.9 5.3 6.5 10.3 11.7 8.2
Zr 67.5 7.8 3.0 58.2 12.6 15.7 19.5 10.3 14.0 15.5 5.1 7.0
Nb 1.36 2.08 0.52 1.51 0.61 0.54 0.98 0.49 0.78 0.62 0.03 0.15
Ba 2.1 n.d. n.d. 1.8 37.7 54.0 85.6 44.2 37.3 52.1 76.6 71.6
La 5.53 6.27 1.93 3.91 1.82 1.90 3.24 1.69 1.82 2.52 1.80 2.04
Ce 15.56 17.57 5.40 9.40 4.61 4.47 6.94 3.46 4.54 6.35 4.03 4.53
Pr 2.26 2.26 0.75 1.43 0.67 0.59 0.87 0.50 0.64 0.97 0.60 0.64
Nd 9.29 8.51 3.10 6.16 2.91 3.06 4.07 2.22 2.67 4.23 2.68 2.75
Sm 2.27 2.11 0.81 1.69 0.74 0.81 0.98 0.56 0.62 1.11 0.75 0.73
Eu 0.61 0.46 0.21 0.42 0.23 0.21 0.28 0.18 0.17 0.29 0.39 0.45
Gd 2.49 2.64 1.19 1.80 0.88 0.96 1.04 0.70 0.72 1.27 0.95 0.86
Tb 0.42 0.54 0.24 0.30 0.16 0.16 0.19 0.11 0.13 0.21 0.18 0.16
Dy 2.64 3.68 1.74 1.86 1.02 1.09 1.23 0.81 0.94 1.48 1.23 1.07
Ho 0.48 0.73 0.37 0.34 0.19 0.22 0.25 0.15 0.19 0.28 0.24 0.21
Er 1.60 2.68 1.44 1.11 0.65 0.64 0.73 0.54 0.68 0.99 0.86 0.72
Tm 0.24 0.43 0.25 0.17 0.09 0.09 0.13 0.08 0.11 0.15 0.14 0.11
Yb 1.45 2.80 1.70 1.11 0.59 0.65 0.80 0.51 0.74 0.99 0.91 0.73
Lu 0.22 0.44 0.27 0.19 0.09 0.08 0.13 0.08 0.13 0.16 0.15 0.11
Hf 1.93 0.27 0.09 1.70 0.32 0.35 0.38 0.26 0.35 0.37 0.21 0.20
Ta 0.12 0.64 0.06 0.09 0.04 0.04 0.09 0.04 0.07 0.05 0.01 0.01
Th 1.63 11.93 1.32 1.45 0.52 0.58 0.86 0.51 0.76 0.71 0.29 0.29
U 0.86 0.95 0.11 0.41 0.10 0.11 0.26 0.04 0.15 0.12 0.00 0.01
Eu/Eu* 0.78 0.60 0.65 0.73 0.85 0.72 0.84 0.86 0.76 0.75 1.40 1.74
La/LuN 2.57 1.48 0.74 2.11 2.08 2.40 2.57 2.13 1.44 1.66 1.28 1.87
PGE grade v. high low v. high inter inter high inter high inter v. high low low
Pt/Pd 0.86 0.65 0.99 0.88 0.67 1.28 0.81 0.74 0.55 0.70 0.95 0.97

Rare earth element values in chondrite used for normalisation come from Taylor and McLennan (1985)
PGE grade bands based on total Rh+Pt+Pd+Au: <0.1 ppm = very low; 0.1–2.0 ppm = low; 2.0–6.0 = intermediate; 6.0–10.0=
high; >10.0 = very high
Major units: FW footwall; DYKE cross-cutting pegmatoidal dykes; HYB footwall hybrid; PR primary reef; RR replaced reef; HW
hanging wall
Rock types: PPX para(clino)pyroxenite; CS calc-silicate; GBNRT gabbornorite; PX orthopyroxenite; LHRZ lherzolite; HZBG harz-
burgite



ascribed to the effects of contamination by local granite
footwall. In a follow-up study, Barton et al. (1986)
determined 87Sr/86Sr initial ratios in orthopyroxene and
plagioclase mineral separates and found that most of the
radiogenic Sr was hosted by plagioclase and other
intercumulus minerals. The lowest 87Sr/86Sr initial ratio
found in orthopyroxene separated from the Platreef was

0.7079, outside the normal UCZ range of 0.7055–0.7065,
but within the range of initial ratios determined for the
Merensky Reef (e.g. Kruger 1994).

Chaumba et al. (1998) reported initial 187Os/188Os
ratios for the Platreef that ranged from 0.10974 to
0.20292. The Platreef range encompasses the range of
initial ratios found in the Merensky Reef (Os minerals

Table 3 Geochemical data for face SW2

S2-6 S2-12 S2-18 SW2-14 SW2-28 SW2-35 SW2-49 SW2-77 SW2-83

Unit FW FW FW FW HYB RR PR RR XN
Rock Type SPPX SPPX CS SPPX n/a WHRL GBNRT PX WBST
SiO2 (wt%) 40.71 31.57 26.73 34.12 46.60 46.40 48.49 50.03 52.78
TiO2 0.12 0.11 0.34 0.29 0.19 0.21 0.21 0.37 0.17
Al2O3 3.69 11.32 8.27 17.65 5.37 5.26 5.44 4.35 3.42
Fe2O3 11.02 8.79 11.85 7.66 8.83 15.53 16.48 16.95 10.23
MnO 0.54 0.26 0.31 0.26 0.40 0.33 0.29 0.34 0.23
MgO 27.08 20.30 21.95 13.22 23.53 20.27 18.63 16.33 22.59
CaO 7.50 15.98 18.17 20.09 13.09 11.07 8.73 9.65 8.64
Na2O 0.06 0.02 0.10 0.14 0.13 0.44 0.84 0.69 0.37
K2O 0.06 0.00 0.02 0.08 0.03 0.17 0.25 0.05 0.23
P2O5 0.03 0.04 0.03 0.02 0.02 0.03 0.06 0.02 0.02
LOI 8.05 10.12 11.68 5.41 2.98 1.02 0.86 0.57 0.93
Total 98.85 98.52 99.45 98.93 101.17 100.73 100.28 99.34 99.61
Sc (ppm) 11.5 3.1 4.8 16.0 20.6 32.3 28.8 48.3 37.4
V 55.7 8.1 28.8 76.6 76.0 137.1 132.9 261.0 157.2
Cr 64.5 20.5 35.9 215.3 777.1 2467 2406 1568 3435
Co 47.2 34.9 8.4 35.0 52.8 122.3 112.9 84.6 80.6
Ni 860.0 764.5 113.2 408.4 1451 3231 2779 559.1 1034
Cu 130.4 201.4 330.3 18.8 372.5 867.8 1395 139.1 198.2
Ga 4.46 21.09 8.77 20.67 6.36 6.75 7.16 7.16 5.2
Rb 2.24 0.06 2.21 1.86 2.01 3.08 13.74 1.34 9.7
Sr 10.8 5.0 3.3 28.7 74.4 101.4 106.9 44.9 38.1
Y 4.8 12.8 10.4 8.0 7.6 9.3 7.7 18.2 6.6
Zr 18.3 15.3 13.2 49.0 31.7 28.0 23.1 46.2 9.9
Nb 0.31 0.23 0.00 3.18 2.75 2.87 1.01 3.61 0.39
Ba 33.3 15.1 15.1 39.7 75.4 84.1 105.2 23.4 33.7
La 2.71 3.64 0.18 3.29 2.17 2.69 3.84 4.27 1.43
Ce 5.76 9.00 0.29 8.17 5.12 6.33 7.82 10.92 3.71
Pr 0.76 1.32 0.04 1.18 0.76 0.94 0.87 1.67 0.55
Nd 3.82 6.80 0.52 4.98 3.41 4.15 4.03 7.66 2.33
Sm 1.00 1.63 0.30 1.15 0.90 1.10 0.93 2.06 0.55
Eu 0.23 0.37 0.08 0.31 0.29 0.35 0.26 0.60 0.18
Gd 1.07 1.69 0.71 1.21 1.02 1.29 1.05 2.36 0.68
Tb 0.17 0.29 0.16 0.21 0.19 0.24 0.18 0.44 0.12
Dy 1.17 1.78 1.24 1.30 1.18 1.47 1.25 2.79 0.86
Ho 0.23 0.36 0.28 0.27 0.26 0.31 0.25 0.60 0.17
Er 0.68 1.02 0.92 0.68 0.65 0.82 0.78 1.62 0.62
Tm 0.10 0.16 0.17 0.10 0.09 0.12 0.12 0.24 0.09
Yb 0.68 1.03 1.13 0.72 0.71 0.91 0.87 1.83 0.61
Lu 0.09 0.16 0.19 0.15 0.14 0.17 0.13 0.33 0.10
Hf 0.36 0.23 0.31 1.60 0.95 0.75 0.55 1.22 0.27
Ta 0.05 0.02 0.01 0.22 0.19 0.20 0.08 0.26 0.03
Th 0.53 0.37 0.19 0.83 0.58 0.75 1.27 1.39 0.49
U 0.19 0.04 0.02 0.22 0.17 0.21 0.39 0.50 0.05
Eu/Eu* 0.66 0.67 0.51 0.79 0.91 0.89 0.80 0.83 0.91
La/LuN 3.00 2.43 0.10 2.32 1.58 1.63 3.10 1.33 1.52
PGE grade v. low low v. low n/a n/a n/a high n/a low
Pt/Pd 2.76 0.55 2.81 n/a n/a n/a 1.48 n/a 1.65

Rare earth element values in chondrite used for normalisation come from Taylor and McLennan (1985)
PGE grade bands based on total Rh+Pt+Pd+Au: <0.1 ppm = very low; 0.1–2.0 ppm = low; 2.0–6.0 = intermediate; 6.0–10.0 =
high; >10.0 = very high.
Major units: FW footwall; DYKE cross-cutting pegmatoidal dykes; HYB footwall hybrid; PR primary reef; RR replaced reef; HW
hanging wall
Rock types: SPPX serpentinised para(clino)pyroxenite; CS calc-silicate; GBNRT gabbornorite; PX pyroxenite; WBST websterite;WHRL
wehrlite



with 187Os/188Osi �0.94, and laurite with 187Os/188Osi
0.142–0.151; Hart and Kinloch 1989; McCandless and
Ruiz 1991). Chaumba et al. (1998) interpret this as
indicating that Os in the Merensky Reef and the
Platreef came form the same source. On close inspec-
tion though, the comparison is less robust than it first
appears. Chaumba et al. (1998) only presented the
range of initial ratios they found. No information was
given on what samples were analysed, their positions
within or outside the igneous reef, or which initial
ratios came from samples with the most Os. Until
more information is available, these Os data are open
to multiple interpretations and cannot be used to ar-
gue strongly for a link between the Merensky Reef
and Platreef.

Differences between the Platreef and the Merensky Reef

There are other lines of evidence that would seem to
contradict the stratigraphic link implied in Fig. 3. These
are outlined below:

Mineralogy of the ‘‘Critical Zone’’ of the northern lobe

Hulbert (1983) divided the GNPA member into two
sub-zones (Fig. 9). The lower sub-zone contains
orthopyroxene-clinopyroxene, orthopyroxene-clinopy-
roxene-chromite and orthopyroxene cumulates with
subordinate plagioclase-rich units. The upper sub-zone
is dominated by plagioclase cumulates with minor nor-
ites. Clinopyroxene is ubiquitous at between 5 and 25
modal%, even where chromite is present, and clinopy-
roxene is sometimes a cumulus mineral with chromite
(Hulbert and Von Gruenewaldt 1985). Clinopyroxene is
less abundant in the UCZ elsewhere in the complex
(typically <10 modal%; Cameron 1982; Maier and
Barnes 1998) and is never present in a cumulus associ-
ation with chromite. Unusual orthopyroxene-clinopy-
roxene-chromite cumulates (at �85 and +10 m; Fig. 9)
are only developed where the GNPA member rests on
LZ cumulates and are unknown from elsewhere in the
complex (Hulbert and Von Gruenewaldt 1985). Chro-
mite in the GNPA member has TiO2 contents (1.77–
3.08 wt%; Hulbert 1983) that are generally higher than
UCZ stratiform chromites outside of Fe-rich replace-
ment pegmatoids (e.g. Stumpfl and Rucklidge 1982) and
the Ti enrichment increases with stratigraphic height in
the GNPA sequence.

Rocks of the upper sub-zone of the GNPA member
are also unusual because the basal layers of all of the
cyclic units recognised by Hulbert (1983) are plagioclase-
only cumulates. The crystallisation order for this part of
the sequence appears to be governed by the liquidus
order plagagioclase-oorthopyroxene-clinopyroxene
(Hulbert 1983). A few cyclic units with basal plagioclase-
rich units are known from the UCZ in the eastern and
western Bushveld but even in these, plagioclase is

invariably joined by orthopyroxene or chromite as the
cumulus phase (Cameron 1982).

Considering only those cumulates containing >50%
orthopyroxene (in order to minimise the effects of
reaction with trapped liquid; cf Cawthorn 1996, 2002),
the compositions of cumulus orthopyroxene in the
GNPA member range between Mg#75-78(Hulbert 1983;
Fig. 9). These pyroxenes are systematically more Fe-rich
than those in similar UCZ cumulates elsewhere in the
Bushveld Complex (Mg#78-84; Cameron 1982; Naldrett
et al. 1986; Eales et al. 1993; Maier and Eales 1994;
Cawthorn 2002). The available data show that the
cumulus plagioclase compositions in the GNPA member
are An68-78(Hulbert 1983). This range overlaps with the
lower part of the range of UCZ plagioclase compositions
observed in the rest of the complex (An68-85; Cameron
1982; Naldrett et al. 1986; Kruger and Marsh 1985;
Maier and Eales 1994), but not with the upper part of
the range.

Mineralogy of the Platreef and the Merensky Reef

The primary Platreef records differences in mineral tex-
tures from those commonly found in the Merensky Reef.
In the Mernesky Reef, the liquidus order is orthopy-
roxene-plagioclase-clinopyroxene (e.g. Cawthorn 2002).
In the mafic units of the Platreef, clinopyroxene either
follows orthopyroxene or crystallises concurrently with
it, and generally precedes plagioclase, which is usually
intercumulus. Contamination of the Platreef with dolo-
mite at Sandsloot may promote clinopyroxene crystal-
lisation (e.g. Harris and Chaumba 2001) but it is
important to note that the same crystallisation order
also occurs where the footwall comprises rocks other
than dolomite. For example, orthopyroxene-clinopy-
roxene-chromite cumulates occur in the Platreef on
Overysel 815LR, where the footwall is granite (Hulbert
1983; D Holwell unpublished data). In this sense, the
Platreef shows greater similarity with the orthopyrox-
ene-clinopyroxene cumulates of the GNPA member
(which are floored by harzburgites or quartzites) than
the Merensky Reef. Chromite also shows important
petrographic differences. Chromite is consistently the
earliest phase in the Merensky Reef, forming layers and
inclusions in pyroxenes, but it is most commonly post-
cumulus in the Platreef.

Olivine is an important component of the Merensky
Reef in some sectors of the Bushveld Complex. In the
western lobe around the Union and Rustenburg sec-
tions, olivine (Fo79-80) is common and the reef may be
developed as a pegmatoidal harzburgite (Vermaak and
Hendriks 1976; Kruger and Marsh 1985; Maier and
Eales 1994) but in other areas of the complex, olivine is
absent from the Merensky Reef. Primary olivine in the
Platreef is more problematic. Van der Merwe (1976;
Fig. 3 and p.1341) alludes to olivine (Fo84) in a harz-
burgite or lherzolite at the base of the Platreef but the
locality is not described. High-Mg metamorphic olivine



(Fo82–85) occurs in the footwall at Sandsloot (Harris and
Chaumba 2001; this work) but Kinnaird et al. (2005)
also report the presence of igneous harzburgites with
magnesian olivine at the base of the Platreef on the farm
Macalacaskop 243KR. These rocks may belong to sa-
tellite intrusions of the LZ (see Discussion below). Bu-
chanan and Rouse (1984) found Fe-rich olivine (Fo71) in
a basal ‘‘peridotitic’’ Platreef facies on the farm Turf-
spruit 241KR which they ascribed to the assimilation of
banded ironstones into the reef. Similarly Fe-rich olivine
(Fo64–72) occurs in replaced reef at Sandsloot. Buchanan
et al. (1981) analysed apparently igneous olivine (Fo75–
76) and this is currently the best (and only) estimate of
the composition of primary Platreef olivine.

The most common mineral in the Platreef is ortho-
pyroxene and this allows the most systematic compari-
son between different localities. Buchanan et al. (1981)
studied orthopyroxenes on the farm Tweefontein 238KR
where the reef is contaminated by banded ironstone and
dolomite. They found pyroxenes with Mg#74–78 in pri-
mary reef but more Fe-rich pyroxenes (Mg#36–42) in
contaminated units. Orthopyroxenes in the Platreef on
Drenthe 788LR and Overysel 815LR, where the reef is

contaminated by granite, gneiss and dolomite (Fig. 1),
show a range of compositions with a similar upper limit
(Mg#65–77; Gain and Mostert 1982; Cawthorn et al.
1985).

Pyroxene compositions in the Platreef at Sandsloot
are complicated by the presence of a reactive footwall
that is rich in both Ca and Mg. Our data show a range of
orthopyroxene compositions with a main population
between Mg#76–80 (Fig. 10) in samples of primary reef.
The main population is similar to results obtained by
Harris and Chaumba (2001), but smaller sub-popula-
tions with Mg#81–83 and Mg#64–74 exist. The high Mg#
population come from a gabbro (N1-26) associated with
ragged serpentinite xenoliths (Fig. 4) and from a gabbro
(SW2-49) in the southwest corner that has been partially
altered to a mixture of tremolite, actinolite, chlorite and
sericite. Analyses from N1-26 and SW2-49 are shown as
‘‘contaminated reef’’ and ‘‘altered reef’’, respectively in
Fig. 10. In both cases, the Ca contents of clinopyroxenes
are higher than expected for igneous pyroxenes (Wo45–
48; Fig. 10) and the pyroxene compositions in these
samples appear to be affected by local enrichment in Ca
and Mg.

Fig. 9 Summary of the cumulate sequence in the Grasvally Norite-
Pyroxenite-Anorthosite member (adapted from Hulbert 1983).
Modal mineralogy comprises percentages of olivine (black square);
orthopyroxene (grey square); clinopyroxene (black triangle); and
plagioclase (white square). Layers indicated with S1–S7 contain

sulphide mineralisation with PGE. The high Mg# of orthopyroxene
in association with chromite in the ‘‘UG2-like chromitite’’ is not
primary, but the result of reaction (Fe loss) between the pyroxene
and spinel (Hulbert 1983)



The low Mg# population in our dataset comes from
samples of replaced reef, located close to the top of the
reef in southwest corner of the pit. Fe-rich olivine is
common as a replacement for orthopyroxene in many of
these rocks and this strongly suggests that the Fe-rich
pyroxene composition is not primary. Orthopyroxene in
a coarse-grained pyroxenite (SW2-77) at the top of the
reef is as Fe-rich as the hanging wall gabbronorite
(Mg#64-66; Fig. 10), but the rock has cumulus orthopy-
roxene and lacks obvious textural evidence for replace-
ment. It may represent differentiated Platreef that
crystallised from a residual melt or which underwent
some kind of reaction with the hangingwall liquid.

Based on all the data summarised above, if one ac-
cepts Mg#80 and Mg#76 as the upper compositional
limits of orthopyroxene and olivine in primary Platreef,
then the pyroxene composition is consistent with the
GNPA member (Fig. 10). However, the Platreef sili-
cates appear systematically more Fe-rich than their

equivalents in the Merensky Reef (Mg#78–84 for ortho-
pyroxene and Mg#79-80 for olivine; Buchanan et al.
1981; Kruger and Marsh 1985; Naldrett et al. 1986;
Holwell 2002; Scoon and Mitchell 2002).

Rare earth element geochemistry

Rare earth element data for reef, hanging wall and
footwall lithologies at Sandsloot are given in Tables 1, 2,
3. The footwall rocks have a characteristic and some-
times quite pronounced negative Eu anomaly when
normalised to chondrite (Eu/Eu* 0.48–0.80) and show a
range of LREE:HREE fractionation. La/LuN in the
footwall varies between 0.09 and 5.89, but most samples
fall within the range 1.2–4.0, which overlaps with the
narrow range (1.3–3.3) observed in the reef rocks. Small
negative Eu anomalies (Eu/Eu* 0.72–0.93) are observed
in most of the reef samples, with the exception of some

Fig. 10 a Compositions of
pyroxenes from different types
of Platreef at Sandsloot Mine.
Shaded area shows the range of
typical Merensky Reef
pyroxenes (Buchanan et al.
1981; Cawthorn et al. 1985).
Note the high En and Wo
contents of pyroxenes from
contaminated reef where
enrichment of Ca and Mg has
taken place (see text for more
information). b Compositions of
pyroxenes from the GNPA
member, GNPA member chilled
magmas and chilled MZ at
Grasvally (data from Hulbert
1983)



more plagioclase-rich reef gabbronorites from the north
wall (e.g. N1-14 and N1-24), where there are very small
positive anomalies (Eu/Eu* 1.02–1.05).

These observations are in marked contrast to the
melanorites in the Merensky Reef at Union Section
studied by Barnes and Maier (2002b). These rocks show
a much broader range of La/LuN ratios (2.8–5.7) and a
more pronounced negative Eu anomaly (Eu/Eu* =
0.42–0.80) when compared with the Platreef. Other py-
roxenites in the UCZ between the MG4 chromitite and
the Bastard Reef show La/LuN ratios (1.8–5.8), com-
monly above Platreef values. These pyroxenites also
show more pronounced positive and negative Eu
anomalies (Eu/Eu* 0.6–1.4; Maier and Barnes 1998).
The Platreef would appear to have formed from a less
LREE-enriched magma that had experienced less pla-
gioclase fractionation than the magma that formed the
Merensky Reef.

PGE mineralogy

The PGE in the Platreef and the Merensky Reef are
carried by common groups of PGM. Kinloch (1982)
recognised eight major categories of PGM and found all
of these in the Platreef and in the different regional facies
of Merensky Reef. Regional PGM variation in the
Merensky Reef was ascribed to proximity to magmatic
feeders and other local factors such as potholes and
occurence of replacement pegmatoids (Kinloch 1982;
Kinloch and Peyerl 1990). The Platreef also shows local
variation in PGM assemblages (Viljoen and Schürmann
1998) but these changes seem to correlate with changes
in the footwall lithology that interacted with the Platreef
magma. For example, Kinloch (1982) found a high
proportion of Pt sulphides in boreholes that intersected
the Platreef on the northern portion of the farm
Zwartfontein 818LR and the farm Overysel 815LR,
where the footwall is mostly granite. Boreholes on the
southern portion of Zwartfontein and samples from the
Sandsloot open pit, where the footwall is primarily
dolomite, show almost no Pt or Pd sulphides and the
assemblage is dominated by Pt and Pd tellurides and
alloys (Kinloch 1982; Armitage et al. 2002).

PGE Geochemistry

One of the most striking differences between the PGE
deposits of the northern lobe and the rest of the Bush-
veld Complex is to be found in their noble metal bud-
gets; a feature first noted by Wagner (1929). Davies and
Tredoux (1985) were the first to observe that the chon-
drite normalised PGE pattern of the Merensky Reef was
almost parallel to the pattern of high-Mg basaltic sills
thought to represent the parental (B1) magma of the
Lower Zone and possibly the Critical Zone (Sharpe
1981; Harmer and Sharpe 1985). This similarity has led
various authors to infer that the formation of the

Merensky Reef transposed the PGE signature of the
magma largely unchanged into the sulphide-bearing reef
(Davies and Tredoux 1985; Tredoux et al. 1995; Caw-
thorn 1999b; Ballhaus and Sylvester 2000). Similar
normalised patterns are found from other sulphide-
bearing reefs (Pseudoreef, Boulder Bed, Tarentaal and
Bastard) in the UCZ of the eastern and western Bush-
veld (Maier and Barnes 1999) and, like the Merensky
Reef, these layers provide a snapshot of the PGE
chemistry of the magma that formed the reef. One might
therefore expect that the PGE signatures of sulphide-
bearing reefs in the UCZ of the eastern and western
Bushveld and the GNPA member and the Platreef of the
northern lobe should be broadly similar, if these layers
formed from a common magma—as the currently ac-
cepted stratigraphy implies.

The Merensky Reef PGE data compiled by Kinnaird
et al. (2002) and Cawthorn et al. (2002b) show variation
in the Pt/Pd ratio between different mining areas, from
1.8 to 2.9. This highlights the fact that UCZ cumulates
in general through the eastern and western Bushveld are
systematically richer in Pt than in Pd, i.e. Pt/Pd is >2.0
(with isolated values up to 24), for most of the sequence
regardless of whether the rocks contain sulphide or not.
The reasons for this striking Pt enrichment are not well
understood and cannot be explained by silicate-sulphide
or sulphide-sulphide liquid fractionation (Maier and
Barnes 1999) and there are no matching Pd-rich cumu-
lates in the MZ or UZ to satisfy the mass balance
(Barnes and Maier 2002c). The excess platinum seems to
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Fig. 11 Variation in Pt/Pd ratios through the Critical Zone in the
western lobe (Maier and Barnes 1999) compared with the range
(represented by the bar) and the mean (represented by the ellipse)
for the ‘‘Critical Zone’’ and Platreef of the northern lobe (Von
Greunewaldt et al. 1989; this work). Very high Pt/Pd ratios in some
Critical Zone rocks that are off scale are not shown in the diagram.
Note the generally lower Pt/Pd ratios in the northern lobe
compared with the Critical Zone elsewhere in the complex



be a fundamental compositional feature of the magma(s)
that fed the UCZ.

Platinum group element ratios for the Platreef and
the sulphide-rich reef of the GNPA member are com-
pared with those in sulphide reefs of the UCZ in Ta-
ble 4. These comparisons indicate that all the sulphide-
bearing reefs in the northern lobe are different from
those found in the UCZ. The Platreef and all of the
sulphide reefs in the GNPA member show greater frac-
tionation of low-temperature PGE (Pt and Pd) from
high-temperature PGE (Ir and Ru) and all of them are
Pd-rich compared with reefs between the UG2 and the
Merensky Reef in the eastern and western lobes. It is
important to note that this comparison does not take
account of PGE in the footwall. High-grade zones in the
footwall at Sandsloot often show even lower Pt/Pd
ratios than the main reef (Tables 1, 2, 2), suggesting that
there may have been preferential mobilisation of Pd over
Pt into the footwall from the proto-reef. The outcome of
this would be to raise the apparent Pt/Pd ratio of the
Platreef, i.e. the original Pt/Pd ratio of the Platreef
before it preferentially lost Pd to the footwall could have
been even lower and further removed from UCZ values
than it appears currently.

An important primary observation from the northern
lobe is that the GNPA member and the Platreef (and
silicate rocks with total PGE contents as low as 10ppb;
Tables 1, 2, 3) show lower and more restricted Pt/Pd
ratios than the UCZ, where Pt/Pd ratios may exceed
those in the northern lobe until well above the level of
the Bastard Reef (Fig. 11). Whatever the reason for the
striking Pt enrichment in the eastern and western lobes
during formation of the UCZ, it is not repeated in any of

the sulphide-bearing reefs of the GNPA member, or in
the Platreef!

Discussion

Implicit in current models for the evolution of the
northern lobe is the idea that UCZ magma entered the
northern lobe and formed a sequence of layered cumu-
lates represented by the GNPA member prior to the
development of the Platreef (e.g. Van der Merwe 1976,
1998; Von Gruenewaldt et al. 1989). The GNPA mem-
ber was subsequently covered by mixed UCZ-MZ
magma that spread out to the north, interacted with the
footwall rocks, and formed the Platreef. If the Platreef is
correlated with the Merensky Reef, then introduction of
this magma into the northern lobe may be assumed to be
coincident with the massive injection of MZ magma that
led to the formation of the Merensky Reef and the MZ
sequence elsewhere in the complex (e.g. Kruger 2003).

In most tholeiitic magmas, chromite crystallisation
terminates before clinopyroxene attains cumulus status
due to a reaction relationship between spinel and
pyroxene but this reaction is sensitive to oxygen fugac-
ity. The lack of reaction between chromite and clino-
pyroxene in the orthopyroxene-clinopyroxene-chromite
cumulates of the GNPA member led Hulbert (1983) to
conclude that the GNPA member magma had an
unusually high fO2 that provided enough ferric iron to
stabilise chromite. If this is correct, it follows that the
Fe-rich nature of the pyroxenes in the GNPA member
cannot be ascribed to fO2 as, if the GNPA member
started with the same composition as the UCZ, a higher

Table 4 Platinium group elements ratios of Upper Critical Zone sulphide-rich reefs and parental magmas (see text for further details)

Pt/Pd Pt/Ir Pd/Ir Pd/Rh Source

Eastern and western lobes
Bastard Reef 3.03 41.8 13.8 3.45 1
Merensky Reef (eastern lobe) 1.57 41.1 26.2 12.9 1
Merensky Reef (western lobe) 1.94 41.9 21.6 8.46 1
Boulder Bed 3.04 32.6 10.7 4.97 2
Tarentaal 4.43 105.6 23.8 5.41 2
Pseudoreef 2.35 37.2 15.9 3.52 1

Northern lobe
Lower Platreef (Drenthe) 0.81 76 93 18 3, 8
Upper Platreef (Drenthe) 0.65 89 139 58 3, 8
Platreef (Sandsloot) 0.95 96 63 15 4
S7 Norite (top of GNPA member) 0.29 65 230 31 3
S6 Pegmatitic gabbronorite 0.99 41 41 19 3
S4 Ni-rich leuconorite 0.41 30 73 20 3
S2 Footwall (UG2-like chromitite) 0.43 63 130 19 3
S1 Basal gabbronorite 0.39 54 140 21 3
Pyroxenite (Unit 36 Lower Zone) 0.34 n/a n/a n/a 5, 6
UpperVolspruit (Unit 11 Lower Zone) 0.72 34 47 6.8 3, 7

Parental magmas
B1 (Lower/Critical Zone) 1.64 56.2 34.3 10 1
B3 (Main Zone) 1.55 77.8 50 15 1

Data sources: (1) Barnes and Maier 2002a; (2) Naldrett et al. 1986; (3) recalculated from Von Greunewaldt et al. 1989; (4) this work; (5)
Hulbert 1983; (6) van der Merwe 1998; (7) R.M. Harmer (personal communication); (8) A.J. Naldrett (personal communication). S1 to S7
refer to sulphide reefs in Fig. 8



fO2 would be expected to generate more Mg-rich sili-
cates. The lower Mg/Fe ratios observed in the GNPA
member are therefore most probably a consequence of a
starting magma composition that was more Fe-rich than
the UCZ magma.

We have shown above that, apart from the visually
similar appearance and the presence of high PGE con-
centrations, evidence linking the Platreef with the
Merensky Reef is not strong. Significant mineralogical
and geochemical differences exist between the Platreef
and the GNPA member of the northern lobe and the
Merensky Reef and the UCZ in the rest of the Bushveld
Complex. In contrast, the greater similarities in terms of
pyroxene compositions (Fig. 10), crystallisation se-
quences and PGE signatures between the Platreef and
the GNPA member are more consistent with a model
whereby these units formed from the similar or related
magmas.

The simplest explanation for this apparent paradox is
that the Merensky Reef and the Platreef (along with any
related pre-reef cumulates) formed from separate mag-
mas with different Mg/Fe ratios and PGE budgets. On
the basis of a higher modal clinopyroxene content, the
lower Mg# of orthopyroxene and the PGE ratios, the
northern lobe rocks formed from a magma that was
poorer in Mg, richer in Ca and Fe, was more highly
PGE fractionated (greater Pt/Ir and Pd/Ir ratios) and
was Pd rather than Pt-dominant relative to the mag-
ma(s) that formed the UCZ and Merensky Reef in the
eastern and western lobes.

The obvious question is what was this northern lobe
magma? The B1 magma of Sharpe (1981), believed to be
parental to the Lower and Critical Zones in the eastern
and western lobes, is a high Mg basaltic andesite that
produces a crystallisation sequence olivine; olivine-
orthopyroxene, orthopyroxene, orthopyroxene-plagio-
clase that is observed in the Lower and Critical Zones
(Barnes and Maier 2002a). In contrast, the B3 (tholeiitic)
magma believed to be parental to the MZ crystallises
plagioclase-orthopyroxene, and then plagioclase plus
both pyroxenes (Harmer and Sharpe 1985; Barnes and
Maier 2002a). Neither of these magmas on their own can
generate the observed crystallisation sequences for the
GNPA member or the Platreef.

In order to account for the different PGE ratios,
Cawthorn et al. (2002a) proposed that UCZ-type mag-
ma similar to that formed the UG2 chromitite in the
eastern lobe (which has a Pt/Pd ratio close to unity)
could have either flowed northwards or been present in
the northern lobe prior to the formation of the Platreef.
Cawthorn et al. (2002a) suggest that this magma did not
form any chromitite layers and retained its PGE signa-
ture until the event that formed the Platreef. This is not
supported by the available evidence as the GNPA
member contains a chromitite layer as well as thick
pyroxenite cumulates with disseminated chromite. The
model also fails to explain the Fe-rich nature of the
orthopyroxenes, the abundance of clinopyroxene in the
GNPA member and why and all the reefs actually have

Pt/Pd ratios lower than unity. In any case, the magma in
the eastern lobe became Pt-dominant again at the level
of the Merensky Reef. No evidence for this is found in
the northern lobe.

Development of the GNPA member

The answer to the question may lie with a marginal
member defined by Hulbert (1983) that is developed at
the base of the GNPA member where it rests on LZ
ultramafic cumulates and Pretoria Group sediments. He
suggested that these unusual pigeonite gabbronorites
were chilled ‘‘Critical Zone’’ magma or hybrids of chil-
led magma with LZ or sedimentary footwall melts.
Hulbert (1983) suggested that a sample (M78-53) found
in the marginal zone above the Pretoria Group might
represent the closest match to the initial ‘‘Critical Zone’’
magma composition. Another fine-grained pigeonite
gabbronorite (GR4-4-5) developed above LZ cumulates
has similar characteristics. The bulk chemistries of these
two rocks are compared with estimated compositions of
the parental magmas for the Critical and Main Zones in
Table 5 and their pyroxene compositions are compared
with GNPA member and MZ compositions in Fig. 10. It
is clear that both M78-53 and GR4-4-5 lie closer to the
model MZ magma than CZ magma.

If this is correct and these rocks represent chilled
tholeiitic (MZ) magma, then it offers a possible expla-
nation for the unique orthopyroxene-clinopyroxene-
chromite cumulates and the lack of mineralogical or
geochemical similarity between the GNPA member and
the UCZ in the rest of the complex. Where the marginal
member rests on the LZ, Hulbert (1983) cited the fine
grain size, the abundance of pigeonite and rapid reversal
in orthopyroxene compositions—from Mg#84 in the last
LZ harzburgite to Mg#67–71 just above the contact
(Fig. 9)—as evidence for undercooling and crystallisa-
tion of new liquid to form the marginal gabbronorites.

Hulbert (1983) observed at least five cyclic sub-units
within the marginal member, each with a fine-grained
basal gabbronorite. Skeletal plagioclase crystals with
trapped melt and orthopyroxenes with Mg#’s close to
the bulk Mg# of the rock (e.g. M78–53) suggest rapid
supercooling, which becomes less effective upwards.
Each sub-unit shows upward increases in the Mg# of
orthopyroxene and in the absolute concentrations of Ni,
Cu and PGE, which are most enriched in coarser
(sometimes pegmatitic) zones above the fine-grained
base of each sub-unit. Hulbert (1983) suggested that the
marginal member was emplaced as a series of thin pulses
of colder, denser liquid at the base of the magma
chamber. Model crystallisation of liquids with M78-53
or GR4-4-5 compositions at 1,500 bars in the PELE
programme (Boudreau 1999) produces liquidus tem-
peratures of 1210–1230�C and crystallisation sequences
of plagioclase, plagioclase-orthopyroxene, then plagio-
clase as well as both pyroxenes, which mirror the ob-
served textures. The idealised section given by Hulbert



and Von Gruenewaldt (1986) shows the marginal
member developed across the LZ cumulates and over the
adjacent Pretoria Group quartzites. In this situation,
heat loss would have taken place primarily against the
quartzites and a thermal gradient extended laterally
from this zone into the liquid overlying the LZ cumu-
lates. General coarsening of units upwards from the
contact suggests more effective thermal insulation as the
member thickened (Hulbert 1983).

Hulbert (1983) noted that pyroxenes in the marginal
member overlying the LZ cumulates were more Mg-rich
than those developed in the gabbronorites against the
Pretoria Group and that abundant sulphides, high PGE
and Cr concentrations were also restricted to the mar-
ginal member above the LZ. He argued that these fea-
tures could only be accounted for by adding some
residual LZ melt to the new liquid as the marginal
member developed. This may also provide a mechanism
to generate the unusual orthopyroxene-clinopyroxene-
chromite cumulates associated with the ‘‘UG2-like’’
chromitite (Fig. 9). In addition to the unusual crystalli-
sation order, these units are very rich in Cr (2,500–
28,500 ppm) and it is hard to see how to generate them
from liquids similar to M78-53 (with <400 ppm Cr)
alone. We suggest that mixing the new tholeiitic liquid
with an existing volume of overlying resident LZ-type
magma crystallising olivine, orthopyroxene (Mg#84–88)
and chromite could produce a hybrid magma that
crystallises orthopyroxene and chromite, followed by
orthopyroxene, chromite and clinopyroxene, which
mirrors the observed sequence in the lower part of the
GNPA member (Fig. 9). Densities calculated in PELE
for melts of M78-53 and GR4-4-5 at 1,500 bars are 2.71

and 2.65 g.cm�3, respectively, and may be sufficiently
high to displace a hotter (>1,270�C) LZ-type liquid
upwards in the manner suggested by Tegner et al.
(1993). Undercooling of the resident LZ-type liquid by
repeated injections of colder liquid at the base, coupled
with gradual heating of the new liquid as thermal insu-
lation of the thickening marginal member becomes more
efficient would lower the temperature gradient and the
density contrast to the point where the mafic and tho-
leiitic liquids might mix.

A second cycle with basal orthopyroxenite and orth-
opyroxene-clinopyroxene-chromite cumulates occurs
higher in the sequence at the zero reference, and a third
one at +75 metres is overlain by anorthosite (Fig. 9).
These orthopyroxene-rich cumulates are additionally
important because they carry sulphides and associated
Pd-rich PGE mineralisation. Decreasing volumes of
orthopyroxene-clinopyroxene-chromite cumulates and
the trend of Ti enrichment in chromite developed with
height probably reflect diminishing volumes of mafic
magma available for mixing as the chamber becomes
swamped with tholeiitic magma. Peck and Keays (1990)
have independently proposed a similar process, involving
injection of small volumes of gabbroic liquid into a larger
volume of ultramafic magma, to explain the development
of thin layers of chromite gabbronorite in harzburgites of
the Heazlewood River Complex.

We suggest that the explanation for why the ortho-
pyroxene-clinopyroxene-chromite cumulates are unique
to the northern lobe is because these two magma types do
not mix together in this manner elsewhere in the Bush-
veld Complex. The process outlined here is similar in
some respects to the mixing of ultramafic (U-type) and

Table 5 Comparison of fine-grained gabbronorite chills with estimated Critical and Main Zone magma compositions.

Sample Position GR4-4-5 78-53 B1 (LZ/CZ) B3 (MZ) Crit Zone Main Zone 78-92 N3X4A SW1-47B SW1-47A
LZ-GNPA Pret-GNPA GNPA-MZ Plat-MZ Plat-MZ Plat-MZ

SiO2 (wt%) 52.11 49.97 53.17 50.70 55.87 50.48 53.61 51.81 51.44 49.44
TiO2 0.10 0.62 0.36 0.41 0.37 0.71 0.34 0.20 0.19 0.16
Al2O3 17.31 15.67 11.36 16.03 12.55 15.79 17.36 17.48 16.48 16.30
FeO 5.34 8.82 10.72* 9.14* 9.15* 11.61* 5.13 n/a n/a n/a
Fe2O3 1.60 2.12 n/a n/a n/a n/a 1.84 9.75* 8.83* 9.04*
MnO 0.15 0.19 0.20 0.17 0.21 0.18 0.13 0.14 0.19 0.15
MgO 8.86 7.77 14.93 9.21 12.65 7.26 7.42 6.48 6.93 8.55
CaO 11.66 10.91 7.47 11.14 7.29 10.86 11.58 11.17 12.06 11.75
Na2O 2.15 2.15 1.57 2.52 1.53 2.20 2.38 1.79 2.43 2.52
K2O 0.67 0.58 0.17 0.23 0.77 0.16 0.58 1.30 0.41 0.43
P2O5 0.02 0.10 0.07 0.08 0.10 0.16 0.04 0.01 0.01 0.02
Sc (ppm) n/a n/a n/a n/a 41 35 n/a 31 38 28
V 90 232 n/a n/a 179 182 119 191 200 152
Cr 390 396 1240 205 939 335 317 424 292 551
Co 80 88 n/a n/a 73 53 66 41 48 59
Ni 184 184 337 162 329 128 128 346 407 376
Cu 75 120 n/a n/a 58 62 23 121 170 187
Rb 30 20 4 7 27 3 13 50 7 12
Sr 385 353 183 324 170 340 275 333 282 234
Y 7 19 15 n/a n/a n/a 13 7 12 8
Zr 6 30 47 20 80 60 39 12 5 7
Source 1 1 2 2 3 3 1 4 4 4

Position key: LZ Lower Zone; MZ Main Zone; Plat Platreef; Pret Pretoria Group; GNPA GNPA member
Sources: (1) Hulbert 1983; (2) Sharpe 1981; (3) Barnes and Maier 2002b; (4) this work
* indicates total Fe as FeO or Fe2O3 as appropriate



tholeiitic (T-type) magmas proposed by Irvine and
Sharpe (1986) for the origin of stratiform chromitite and
PGE reefs, including the Merensky Reef. The principal
difference lies in the nature of the U-type magma and the
degree of interaction. The Critical Zone in the eastern
and western lobes preserves chemical and isotopic sig-
natures inherited from the LZ and the new, distinctively
Pt-rich, magma(s) which hybridised with it during the
formation of the UCZ. The base of the UCZ marks the
change from olivine-orthopyroxene cumulates to a
chromite-orthopyroxene-plagioclase liquidus order,
which persists throughout the UCZ, until the introduc-
tion of MZ magma coincident with the formation of the
Merensky Reef (Kruger 1994), where the last cumulus
chromite appears. Mass balance modelling by Barnes
and Maier (2002b) suggests that the Merensky event in-
volved �40% tholeiitic magma mixed with �60% UCZ-
type magma crystallising orthopyroxene and plagioclase.

In the northern lobe, we suggest that there was no
distinctive Pt-rich magma and no intermediate stage
where the liquidus order shifted from olivine-orthopy-
roxene to chromite-orthopyroxene-plagioclase. The
GNPA member formed by a series of rapid and dra-
matic interactions between progressively larger volumes
of new tholeiitic liquid and a resident LZ-type liquid. In
addition, we suggest that the tholeiitic and mafic liquids
are derived from different sources with different isotopic
signatures (see below) and within a few mixing/
quenching interactions following the first introduction
of the tholeiitic liquid, the reservoir of mafic liquid was
exhausted or it ceased to be supplied to the chamber.
Magmatic evolution beyond that point is controlled by
the chemistry of the dominant tholeiitic liquid which
later formed the MZ of the northern lobe.

Further support for the involvement of tholeiitic
magma comes from the rocks at the top contact of the
GNPA member. Above a prominent mottled anortho-
site which caps the member, Hulbert (1983) found a 1–2-
m thick layer of medium-grained gabbronorite (sample
78–92) with distinctive radiating clusters of acicular
plagioclase and inverted pigeonite. He interpreted this as
an influx of new MZ magma which supercooled and
chilled against the GNPA cumulates. The composition
of 78–92 is close to the chilled rocks at the base of the
GNPA member (Table 5). This can only be explained if
MZ-type magma was involved prior to, during, and
after the formation of the GNPA member.

This interpretation apparently contradicts the view
that there was major hiatus between the emplacement
of the magmas of the LZ and the MZ (Van der Merwe
1978). Field evidence cited to support this is based on
apparently transgressive relationships established be-
tween LZ intrusives and the Platreef north of Moko-
pane that are not in dispute, plus the assignment of the
GNPA member to a pre-Platreef UCZ, which is dis-
puted. Fundamentally, van der Merwe’s model rests on
two assumptions; first, that the LZ was fully crystal-
lised (not just the satellite intrusions where the trans-
gressive relationships occur) and second, that the

Platreef and the GNPA member are unrelated to the
LZ. The evidence presented above suggests that mafic
liquid remained in the Grasvally magma chamber up
to the development of the GNPA member and it is
possible that supply of magma into the northern sa-
tellite chambers ceased while mafic magma continued
to enter the Grasvally chamber. The role of LZ magma
in the formation of the Platreef is discussed in the next
section.

Links between the GNPA member and the Platreef

The exact relationship between the Platreef and the LZ
and the GNPA member to the north of the Grasvally
area is poorly known and will only be revealed as further
exploration takes place on farms between Grasvally and
Mokopane. Hammerbeck and Schürmann (1998) indi-
cate that the ‘‘Critical Zone’’ wedges out to the south of
Mokopane but Von Gruenewaldt et al. (1989) equated
xenolith-rich portions of the GNPA member with the
Platreef and implied that one might merge laterally into
the other; a proposal supported by the data presented
here. Kinnaird et al. (2005) report that north of Mo-
kopane, LZ rocks may occur below the Platreef but the
LZ appears to wedge out on the farm Macalacaskop
243KR and the Platreef rests directly on metasedimetary
footwall from Macalacaskop northwards to Zwartfon-
tein. Indeed it seems more than a coincidence that the
modal mineralogy of the GNPA member orthopyroxene
and orthopyroxene-clinopyroxene cumulates (55–60%
opx, 15–25% plag, 20–25% cpx), the crystallisation or-
der, orthopyroxene compositions (Mg#70–78; Fig. 10)
and Pd-dominant PGE mineralisation are similar to the
Platreef at Sandsloot at many of the localities described
above. Orthopyroxene-clinopyroxene-chromite cumu-
lates, apparently similar to those that occur in the
GNPA member, occur in the Platreef on the farm
Overysel 815LR (Hulbert 1983).

It is also possible that the contacts between the
GNPA member and the Platreef with the base of the MZ
may correlate along strike. At Sandsloot, the unsheared
contact with the hanging wall MZ gabbros is marked by
leuconorite (‘‘mottled anorthosite’’) and a fine to med-
ium-grained gabbronorite (Fig. 6). This unit contains
traces of inverted pigeonite, PGE grade up to 2.0 g/t,
and a PGM assemblage containing laurite (RuS2) and
Pd-bearing pentlandite that is very different from that in
the Platreef (Holwell et al. 2004). On Turfspruit 241KR,
Kinnaird et al. (2005) observed that the upper contact of
the Platreef with the MZ is marked by a prominent
mottled anorthosite and on Drenthe 788LR, inverted
pigeonite is also found in the MZ immediately above the
Platreef (Gain and Mostert 1982). These associations are
remarkably similar to the rocks at the contact between
the MZ and GNPA member at Grasvally (Hulbert
1983). The chemistry of fine-grained gabbronorites from
just above the Platreef are compared with a MZ chill
against the GNPA cumulates (78–92) in Table 5. These



rocks are separated by �40 km (Fig. 1) but the match
between their major and trace element signatures is
striking and suggests that chilled MZ magma may ter-
minate both the GNPA member and the Platreef. The
presence of PGE in the MZ basal chill zone further
suggests that the quenching of MZ magma may be an
important trigger for the development of PGE-rich
zones around rafts of disaggregated country rock in the
MZ (e.g. on Drenthe 788LR and other farms).

In the light of the above, the finding by Barton et al.
(1986) that orthopyroxene separated from the Platreef
has an 87Sr/86Sr initial ratio of 0.7079 may be highly
significant. Barton et al. (1986) suggested that even this
should be considered an upper limit because of the
possibility that the pyroxene separates contained traces
of plagioclase with elevated 87Sr/86Sr initial ratios
influenced by late-stage melts or fluids derived from the
footwall. The MZ magma in the northern lobe shows
87Sr/86Sr initial ratios in the range 0.708–0.710 (Barton
et al. 1986). Data for the Lower LZ in the northern lobe
is lacking but if one assumes that this magma had a
similar initial ratio to LZ rocks in the western Bushveld
(0.705–0.707; Kruger 1994), then the lowest initial ratio
of 0.7079 found by Barton et al. (1986) in the Platreef is
consistent with a mixture of MZ-type and LZ-type
magmas. In the absence of further geochemical data,
particularly REE and isotopes from the GNPA member
and elsewhere on the Platreef, the proposed link between
the two must be considered possible, but unproven, at
this stage. Nevertheless, the similarity is intriguing and
underlines the need for further research into these rocks.

Implications for connectivity between the northern lobe
and the rest of the Bushveld Complex

Cawthorn and Webb (2001) concluded that the eastern
and western lobes were linked throughout the develop-
ment of the Critical, Main and Upper Zones but that
links with other lobes, including the northern lobe, were
less certain and had to remain speculative. Kruger (1999,
2003), following the conventional stratigraphy, consid-
ered the northern lobe to have been linked with the
eastern and western lobes during UCZ and MZ times. In
his model, a mixed MZ and UCZ magma flows north
across the chamber, overtops the Thabazimbi-Murchi-
son Lineament (locally manifested as the Zebediela and
Ysterberg-Planknek Faults; Fig. 1) and flows into the
northern lobe, generating the Platreef along the base.
LZ-type magma plays no role in forming the Platreef.

This work has shown that the conventional strati-
graphic interpretation shown in Fig. 3 is untenable. The
‘‘Critical Zone’’ of the northern lobe, incorporating the
‘‘UG2-like’’ chromitite and Platreef cannot be correlated
with the UG2-Merensky Reef package in the rest of the
complex. The UCZ-type magma with its high Mg/Fe
ratios, chromite-orthopyroxene-plagioclase-clinopyrox-
ene crystallisation sequence and distinctive Pt enrich-
ment did not play a role in the development of the

GNPA member or the Platreef. The orthopyroxene-
clinopyroxene-chromite cumulates of the GNPA mem-
ber and the Pd-dominant PGE mineralisation contained
in it and the Platreef are unique to the northern lobe of
the complex. Their origin requires different magmatic
components.

We interpret the available evidence to suggest that the
GNPA member and the Platreef may represent a tran-
sitional period where the earliest tholeiitic MZ-type
magmas interacted with pre-existing mafic LZ-type
magmas. It should perhaps be renamed the Transitional
Zone of the northern lobe. The questions of when these
two major magma types were introduced into the
northern lobe, how their introduction relates to
emplacement of magmas in the eastern and western
lobes, and how their interaction might have generated
the mass of PGE present in the GNPA member and the
Platreef all remain unclear at this time and need further
research.

In our view, the Merensky Reef and the Platreef
formed from compositionally different magmas with
different lineages and there is no genetic link between
them. The possibility remains that introduction of tho-
leiitic magma into the northern lobe took place at the
same time as into the eastern and western lobes but this
cannot be proved unequivocally and a reliable time line
cannot be drawn between the Merensky Reef and the
Platreef. The ‘‘Critical Zone’’ of the northern lobe is not
the Critical Zone as known from the rest of the Bushveld
Complex. The former term is confusing and should be
discontinued. There may be a reliable link between lobes
in the Upper Zone at the level of the Main Magnetite
(Fig. 3), but it remains to be established how closely the
stratigraphy of the MZ of the northern lobe matches
that seen in the rest of the complex. The northern lobe
may have been completely separated from the rest of the
complex until intrusion of the Upper Zone. The stra-
tigraphy of the northern lobe must be evaluated on its
own merits, without premature attempts to fit it into
that established elsewhere.

Conclusions

This work has shown that the Platreef and the GNPA
member, long thought to correlate with the Merensky
Reef and the UCZ elsewhere in the complex, formed
from a different magma than that which generated the
UCZ in the eastern and western lobes of the complex.
The Platreef and the GNPA member show pyroxene
compositions that are systematically more Fe-rich and
PGE signatures that are more fractionated and more Pd-
rich than the Merensky Reef and other reefs of the UCZ.
This work demonstrates that UCZ magma, with its
characteristic and economically significant Pt enrich-
ment, was not involved in the generation of the Platreef
and that there is no compelling evidence linking the
formation of the Platreef either genetically or temporally
with the Merensky Reef.



Chilled MZ-type magma is preserved at the base and
the top of the GNPA member and this unit is suggested
to have formed from the mixing of existing LZ-type
magma and new tholeiitic MZ-type magma that first
intruded along the floor of the Grasvally chamber.
Mixing/quenching events produced a series of orthopy-
roxenites that grade upwards into orthopyroxene-clino-
pyroxene-chromite cumulates that are unique to this
area of the complex. The basal orthopyroxenites are
invariably associated with the presence of sulphide and
elevated base metal and PGE values. The GNPA
member rocks show similarities in terms of mineral
chemistries, modal mineralogy, crystallisation se-
quences, and PGE ratios with Platreef rocks and a
compositionally similar MZ liquid is chilled against the
top of both the GNPA member and the Platreef. These
similarities open up the possibility that the Platreef and
GNPA member merge laterally into one another and
that both result from interactions between MZ and LZ-
type magmas.

On a final note, although we have demonstrated
that Wagner’s original link between the Platreef and
the Merensky Reef may be incorrect, it would be
unjust to be overly critical of him. The visual simi-
larity between the two reefs is striking and this, cou-
pled with the apparently unlikely possibility that there
could be another fantastically rich platinum horizon in
addition to the Merensky Reef, must have played a
part in forming his opinion. The fact that the assumed
link has remained unchallenged for so long is surely a
measure of the immense respect that Wagner’s
pioneering work still commands 75 years after his
death.
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ABSTRACT

Platinum group mineral (PGM) assemblages in the Platreef at Sandsloot, northern Bushveld Complex,

in a variety of lithologies reveal a complex multi-stage mineralization history. During crystallization of

the Platreef pyroxenites, platinum group elements (PGE) and base-metal sulphides (BMS) were

distributed thoughout the interstitial liquid forming a telluride-dominant assemblage devoid of PGE

sulphides. Redistribution of PGE into the metamorphic footwall by hydrothermal fluids has formed

arsenide-, alloy- and antimonide-dominant assemblages, indicating a significant volatile influence

during crystallization. Serpentinization of the footwall has produced an antimonide-dominant PGM

assemblage. Parts of the igneous reef were subjected to alteration by a late-stage, Fe-rich fluid,

producing ultramafic zones where the telluride-dominant assemblage has been recrystallized to an

alloy-dominant one, particularly rich in Pt-Fe and Pd-Pb alloys. A thin, small-volume zone of PGE-

BMS mineralization along the base of the hangingwall contains a primary PGM assemblage that is

locally altered to one dominated by Pt/Pd germanides. This is thought to have formed when the new

pulse of Main Zone magma entered the chamber, and scavenged PGE from the underlying Platreef

pyroxenites. That each major rock type at Sandsloot contains a distinctive PGM assemblage reflects the

importance of syn- and post-emplacement fluid and magmatic processes on the development of Platreef

mineralization.

KEYWORDS: PGM, Bushveld Complex, South Africa, Sandsloot mine, Platreef, Pt, Pd, base-metal sulphides.

Introduction

THE Bushveld Complex of South Africa is the

largest layered igneous intrusion in the world and

is the largest single host of platinum-group

elements (PGE) yet discovered. The major PGE

deposits of the Bushveld Complex are the

stratiform Merensky Reef and UG2 chromitite

layer, and the stratabound, but not stratiform,

Platreef. The complex can be divided into an

eastern and western limb of similar size; a

southern limb, identi®ed beneath cover rocks by

gravity studies; and a smaller northern limb

(Cawthorn et al., 2002). The Platreef, located in

the northern limb, has an estimated Pt+Pd reserve

of 16.3 million ounces (Cawthorn, 1999), and is

currently being mined by open-pit methods by

Potgietersrus Platinums Ltd., a subsidiary of

Anglo Platinum, at the Sandsloot and

Zwartfontein South pits ~30 km northwest of

the town of Mokopane (formerly Potgietersrus;

Fig. 1).

The northern limb of the Bushveld Complex

strikes approximately northÿsouth and is slightly

sinuous in shape (Fig. 1). Ma®c igneous litholo-

gies of the Rustenburg Layered Suite (RLS) of the

complex dip west-southwest with the pyroxenitic

Platreef located at the base of the igneous package

north of Mokopane, in direct contact with

metamorphosed sedimentary and igneous

country rocks. A thick sequence of fairly

homogenous gabbronorites and norites attributed
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FIG. 1. Geological map of the central and southern sections of the northern limb of the Bushveld Complex, showing

the Platreef and localities and lithologies referred to in the text (after Kinnaird and Nex (2003), von Gruenewaldt et

al. (1989) and Hammerbeck and SchuÈrmann (1998)).
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to the Main Zone of the RLS overly the Platreef

pyroxenites.

Other than brief references to the most common

platinum-group minerals (PGM) by SchneiderhoÈhn

(1929) and Gain and Mostert (1982), very few data

on the PGM assemblages within the Platreef have

been published. Kinloch (1982) summarized data

from exploration boreholes on Zwartfontein and

Overysel, north of the current Sandsloot mine and

suggested that regional variations could be related

to the amount of assimilation and contamination

from the differing ¯oor-rock lithologies. This was

discussed further by Viljoen and SchuÈrmann

(1998), who summarized the overall abundances

of PGM types in the Platreef as 30% Pt/Pd

tellurides, 26% alloys, 21% PGE arsenides, and

19% sulphides, and highlighted the variations

observed on different farms along strike.

According to Viljoen and SchuÈrmann (1998),

from north to south, the most important PGM

groups are: tellurides on the farm Drenthe;

sulphides and tellurides on Overysel; alloys and

tellurides on Zwartfontein and Sandsloot; sulphides

on Tweefontein north; and tellurides at

Tweefontein Hill. Recent work by Hutchinson et

al. (2004) has shown the Platreef on Macalacaskop

and Turfspruit to be rich in Pd bismuthides,

tellurides and antimonides. Armitage et al. (2002)

presented the results from a preliminary study of

the PGE mineralization at Sandsloot, which found

the PGM assemblage to be rich in alloys and

tellurides and devoid of sulphides. This study

builds on these ®ndings and aims to provide further

evidence of the processes governing the distribu-

tion of PGE in the Platreef.

Geology

From south to north, the northern limb of the

Bushveld Complex rests upon a succession of

progressively older sedimentary units of the late

Archaean±ear ly Prote rozoic Transvaa l

Supergroup and Archaean granite/gneiss base-

ment, in what has been termed an `igneous

transgression' (Wagner, 1929). The footwall

units are, north from Mokopane: quartzites and

shales of the Timeball Hill Formation; shales of

the Duitschland Formation; the Penge Banded

Iron Formation; dolomite of the Malmani

Formation and, north of Zwartfontein, Archaean

granite/gneiss basement (Fig. 1). Samples used in

this study were taken from the Sandsloot mine,

where the footwall is Malmani Dolomite. The

hangingwall along the entire strike of the reef is

composed of gabbronorites and norites ascribed to

the Main Zone of the RLS.

The geology of the Platreef at Sandsloot Mine

has been described by Harris and Chaumba

(2001), Armitage et al. (2002), McDonald et al.

(2005b), and Holwell et al. (2005) and is

summarized below, together with the authors'

own observations on previously undescribed

lithologies. The majority of the Platreef

`package' can be divided into hangingwall

lithologies, igneous Platreef lithologies, and a

variety of metamorphic footwall lithologies.

There are variations in lithology on a metre

scale along the length of the Platreef in the

Sandsloot pit, and the variations are summarized

in Fig 2.

Footwall lithologies

The lowermost footwall lithology exposed in the

Sandsloot pit is a series of highly altered and

variably serpentinized, metamorphosed calc-sili-

cate rocks, derived from the Malmani Dolomite.

These generally retain some semblance of the

original bedding and are often interbanded with

more massive clinopyroxenites and thin serpenti-

nites. In many places, the immediate footwall to

the Platreef pyroxenites, separating the igneous

reef and the calc-silicates, and are a series of

clinopyroxenites, which are either green, grano-

blastic diopsidites, often recrystallized with 120ë

grain boundary triple junctions, or more amor-

phous purple-grey clinopyroxenites. Olivine is

present in variable amounts, and is usually

serpentinized, occasionally to a stage where no

relict olivine remains. The rocks are of meta-

morphic origin, as shown by a higher Ca content

in the clinopyroxenes compared to those in the

igneous pyroxenites, and a whole-rock Cr content

much lower than the igneous reef (Harris and

Chaumba, 2001). These rocks were termed

`parapyroxenites' by Wagner (1929). Xenoliths

of clinopyroxenite and calc-silicate where all

original features have been overprinted occur

regularly throughout the igneous reef at Sandsloot

and are usually serpentinized.

Igneous Platreef lithologies

The igneous reef pyroxenites are typically coarse-

grained, occasionally pegmatitic, and made up of

cumulus orthopyroxene, with intercumulus

plagioclase and clinopyroxene. In many cases

plagioclase makes up >10% of the modal
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mineralogy, and therefore the rock should be

classi®ed as gabbronorite under IUGS classi®ca-

tion. However, in keeping with general Bushveld

nomenclature in which names generally re¯ect the

cumulus mineralogy, we refer to these rocks as

feldspathic pyroxenites, and gabbronorites are

rocks with both pyroxenes, and cumulus plagio-

clase. A ®ne-grained feldspathic pyroxenite

barren of mineralization, located below the

hangingwall contact, is present in the central

part of the Sandsloot pit. Plagioclase is commonly

altered to ®ne-grained white mica and epidote

minerals. Base-metal sulphides (BMS) occur

within the interstitial assemblage and are

discussed below. Chromitites were not encoun-

tered, though chromite, ilmenite and rare

armalcolite are present as minor phases, with

ilmenite particularly common in the pegmatitic

lithologies and most commonly found as inclu-

sions along cleavage planes in interstitial clino-

pyroxene. Some areas of the igneous reef in the

southwestern and northern parts of the pit contain

a considerable amount of replacement olivine,

which is Fe-rich (Fo62ÿ67) and overprints ortho-

pyroxene, producing peridotitic zones with up to

60% olivine (Fig. 3a). This is thought to have

formed from the reaction of a late-stage, Fe-rich,

SiO2-poor ¯uid with the primary Platreef pyrox-

enites (McDonald et al., 2005b), causing desili-

ci®cation of orthopyroxene to form olivine. Parts

of the igneous reef are also overprinted with a

secondary, low-grade metamorphic assemblage

that includes chlorite, sericite, actinolite and

sphene highly suggestive of abundant ¯uid

alteration. The basal part of the igneous reef in

some sections in the southwest part of the pit is

marked by a wehrlitic rock, with igneous, though

not cumulus, textures, which is often partially

serpentinized. This has been interpreted as a

footwall-reef hybrid lithology by McDonald et al.

(2005b), on the basis that geochemically, the

rocks are intermediate between reef pyroxenite

and footwall clinopyroxenite in terms of Ca and

Cr content. In the northern part of the pit, the

lower part of the igneous Platreef comprises

clinopyroxenite, with cumulus clinopyroxene, and

~5% highly altered interstitial plagioclase. These

rocks contain 1000ÿ2000 ppm Cr and the

clinopyroxenes have a composition of Wo45

which are consistent with the Platreef pyroxenites.

FIG. 2. Simpli®ed stratigraphic representation showing all major rock units in the southwestern, central and northern

parts of the Sandsloot pit.
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In contrast, footwall clinopyroxenites contain

<100 ppm Cr and have clinopyroxene composi-

tions of Wo50.

Hangingwall lithologies

The hangingwall to the Platreef pyroxenites is

made up of norites and gabbronorites, resembling

those of the Main Zone elsewhere in the Bushveld

Complex. Plagioclase is the cumulus phase and

makes up ~50ÿ70% of the modal assemblage,

with oikocrystic orthopyroxene and clino-

pyroxene making up the remainder in a crystal-

lization sequence plagioclase-orthopyroxene-

clinopyroxene. Base-metal sulphides (pentlandite,

pyrrhotite and chalcopyrite) and oxides (almost

exclusively ilmenite) are rare. A thin (<1 m)

mottled anorthosite layer is often present at the

base of the hangingwall. The contact with the

underlying pyroxenites is sharp and undulatory

and is described in detail by Holwell et al. (2005).

Mineralization

Base-metal sulphides (primary pyrrhotite,

pentlandite, chalcopyrite and minor secondary

pyrite and bornite) are common throughout the

reef pyroxenites, though heterogeneously distrib-

uted, and occur within the interstitial assemblage.

However, the sulphides do not occur as well

de®ned euhedral crystal aggregates with sharp

linear contacts with surrounding silicates as, for

example, they do in the Merensky Reef. They are

invariably `ragged' in morphology due to the

common intergrowth with plagioclase and

secondary amphiboles, particularly actinolite,

FIG. 3. (a) Thin section of olivine-replaced reef showing olivine overprinting orthopyroxene (opx); in cross-polarized

transmitted light. (bÿd) Backscattered electron photomicrographs of (b and c) typical associations of base-metal

sulphides (BMS) intergrown with altered plagioclase (alt plag) at the edge of the interstitial region enclosing

cumulus, sulphide-free orthopyroxene in Platreef pyroxenites at Sandsloot, and (d) typical association of discreet

BMS grains with unaltered plagioclase (plag) from the Merensky Reef in the eastern Bushveld, for comparison.
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epidote and micas (Fig. 3b,c,d). In samples where

plagioclase has been replaced by white mica,

small blebs of sulphide commonly rim the outer

edge of the interstitial region (Fig. 3b,c), and

rarely encroach into orthopyroxene, though

interstitial clinopyroxene often contains blebs of

sulphide along cleavage planes. In the footwall,

the assemblage is more diverse and contains the

above assemblage along with minor amounts of

sphalerite (ZnS), millerite (NiS), galena (PbS),

chalcocite (Cu2S) and alabandite (MnS).

Platinum group mineralization occurs

throughout the igneous reef, its xenoliths, into

the footwall and occasionally at the base of the

hangingwall. Grades are variable within the

igneous reef, and are more erratic through the

footwall, though it is generally lower than in the

igneous reef, however some serpentinized units

carry very high grades. Table 1 shows Pt/Pd ratios

for a range of reef, footwall and hangingwall

samples together with an indication of grade. The

Pt/Pd ratios in the igneous reef and hangingwall

are around unity, which decrease slightly into the

footwall, as would be expected if PGE were

transported into the footwall via ¯uid activity, due

to the greater relative mobility of Pd compared to

Pt and the other PGE (e.g. Wood, 2002).

Conversely, Pt/Pd ratios >1 in some reef

samples may indicate removal of greater

amounts of Pd during remobilization of PGE

into the footwall and therefore it is likely that the

original Pt/Pd ratio of the igneous Platreef was

probably unity or lower.

Platinum group minerals

Fifty-eight polished thin sections and blocks from

the hangingwall, igneous reef and metamorphic

footwall from the Sandsloot pit were analysed at

Cardiff University using a Cambridge Instruments

LEO S360 scanning electron microscope, coupled

to an Oxford Instruments INCA energy dispersive

X-ray analysis system. More than 1000 individual

PGM grains were identi®ed and are listed in

Table 2. Each individual grain was classi®ed by

type and association. The vast majority of PGM

were Pt and Pd minerals, while the only major

carriers of Ir, Ru and Rh identi®ed were members

of the hollingworthite/platarsite/irarsite series. No

carriers of Os were found, which may suggest that

TABLE 1. Pt/Pd ratios and relative grade for selected hangingwall (HW), reef and footwall (FW) samples.

PGE grade based on Rh+Pt+Pd+Au. low: <2.0 ppm; intermediate: 2.0ÿ6.0 ppm; high: >6.0 ppm.

Sample Lithology PGE grade Pt/Pd

PA-N1-31 HW norite low 1.36

PA-N3X4A HW gabbronorite low 0.87

PA-SW1-47B HW gabbronorite chill low 0.95

PA-SW1-32 Reef feldspathic pyroxenite intermediate 0.81

PA-SW1-28 Reef feldspathic pyroxenite high 1.28

PA-SW1-20 Reef feldspathic pyroxenite intermediate 0.88

PA-N1-30 Reef feldspathic pyroxenite high 0.93

PA-N1-22 Reef feldspathic pyroxenite intermediate 1.04

PA-N1-24 Reef feldspathic pyroxenite intermediate 0.98

PA-N1-26 Reef feldspathic pyroxenite high 1.94

PA-SW2-49 Reef feldspathic pyroxenite high 1.48

DH-G Reef feldspathic pyroxenite high 1.03

DH-P Reef pegmatoidal pyroxenite intermediate 0.79

PA-SW1-40 Olivine-replaced reef intermediate 0.55

PA-SW1-43 Olivine-replaced reef high 0.70

SNN1-68 Reef clinopyroxenite low 0.81

PA-SW1-8 Serpentinized calc-silicate xenolith high 0.99

PA-SW1-1 FW clinopyroxenite high 0.86

PA-E55 FW clinopyroxenite intermediate 0.98

PA-EX6 FW calc-silicate intermediate 0.84

PA-SW1-4 FW serpentinized calc-silicate low 0.65

PA-S2-12 FW serpentinized calc-silicate low 0.55

PA-S0 FW serpentinite low 0.54
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Os may not be present in discreet minerals, but as

a trace component in BMS, for example. The

PGM identi®ed were grouped as: (1) Pt/Pd

tellurides; (2) Pt/Pd bismuthides; (3) Pt/Pd

arsenides; (4) Pt/Pd antimonides; (5) Pt/Pd

germanides; (6) PGE sulphides; (7) PGE sulphar-

senides; (8) PGE alloys with Fe, Cu, Sn, Pb and

Tl; and (9) Au and Ag bearing phases. Each

occurrence was also classi®ed by its association:

enclosed in sulphide, at sulphide-silicate

boundary, or enclosed by silicates, in keeping

with other studies of the PGE deposits of the

Bushveld Complex.

Grain size and morphology

Each PGM grain's long and short axes were

measured in micrometres. Grains <1 mm were

ignored due to their relative volumetric insignif-

icance, and the dif®culties in accurately deter-

mining their composition. Relative proportions of

the various mineral phases and PGM species type

are based on an estimation of area (and by

inference, volume) of each grain. Using the long-

and short-axes dimensions, the area of each grain

was approximated to the area of an ellipse around

the two axes. This therefore produces data which

accurately re¯ect the relative proportions of each

PGM type within an assemblage. This method of

data presentation is preferable to proportions of

PGM type by number of grains, which can be

biased by a relatively large amount of very small

grains, for example. This approach is particularly

pertinent when comparing PGM data with Pt/Pd

ratios. If, say, the Pt/Pd ratio of the whole-rock

sample is around unity, when using the proportion

by number of grains method, there may appear to

be a de®cit of one particular PGE represented by

discreet PGM phases, which may be wrongly

attributed to its presence in BMS phases or

silicates. Therefore we present all the assemblage

data in percentage of total area of all PGM.

Grain-size data for all PGM grains >1 mm in

their longest dimension are shown in Fig. 4. From

Fig. 4, it can be seen that in most rock types,

~80% of grains were <10 mm in length, with the

exception of pegmatitic reef rocks, which had a

higher average grain size with 50% of grains

>5 mm. The units with the lowest average PGM

grain sizes (>70% of grains <5 mm) were the

footwall calc-silicates, the reef clinopyroxenites

and the hangingwall gabbronorite. No grains of

>100 mm were found.

The PGM morphology varies with individual

phases and also with association. Where

surrounded by sulphides, PGM, and particularly

electrum, are commonly present as rounded blebs.

Where surrounded by silicates, grains vary from

anhedral to euhedral. Moncheite (PtTe2) is

commonly found as laths, Pt2Fe as cubic crystals,

and sperrylite as tetrahedra. Most PGM identi®ed

occur as single-phase grains, though they may

occasionally occur as compositionally zoned

(Fig. 5a) or polyphase grains (Fig. 5b).

Assemblages

The PGM mineralogy in the variety of host-rock

lithologies studied are summarized in Table 3.

The most notable characteristic of the Sandsloot

FIG. 4. Range of PGM grain size (longest axis) in the various host-rock lithologies at Sandsloot. See Table 2 for

lithology abbreviations.
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PGM assemblages identi®ed here is the complete

lack of PGE sulphides (also noted by Armitage et

al., 2002), with the exception of a single grain of

laurite (RuS2) in the hangingwall gabbronorite.

This is unusual in that throughout the Merensky

Reef, the UG2 chromitite and elsewhere in the

Platreef, namely Zwartfontein north, Overysel

(Kinloch, 1982) and Drenthe (Gain and Mostert,

1982), PGE sulphides are ubiquitous in the form

of cooperite (PtS), braggite [(Pt,Pd)S], laurite and

other rarer minerals. The only other PGM found at

Sandsloot containing any sulphur are a few

TABLE 2. Name and ideal formulae of all occurrences of PGM and Au-Ag minerals in the variety of host-rock

types.

Name Formula HW PXT PEG ORR CPX FRH FWC CS PSP TSP Total

Kotulskite PdTe 7 53 24 45 1 2 7 8 44 1 192

Sperrylite PtAs2 30 6 6 2 52 18 13 4 131

Moncheite PtTe2 1 50 36 18 6 1 5 1 9 1 128

unnamed (Pd,Pt)2Ge 65 3 68

Electrum Au,Ag 1 15 4 9 1 5 1 20 2 58

Hessite Ag2Te 36 5 1 2 44

Sudburyite PdSb 5 5 29 39

Zvyagintsevite Pd3Pb 4 2 21 1 28

Palladoarsenide Pd2As 2 1 1 18 4 1 27

Paolovite Pd2Sn 1 20 3 24

Geversite PtSb2 4 5 14 23

unnamed Pd5Bi3(Te,Sb)2 23 23

Pt-Fe alloy Pt2Fe 10 8 4 22

Froodite PdBi2 1 2 1 16 20

Michenerite PdBiTe 1 6 3 6 16

Sobolevskite PdBi 2 3 3 3 5 16

unnamed Pd2(Sn,Sb) 15 15

Stibiopalladinite Pd5Sb2 2 3 1 4 1 3 14

Mertieite II Pd8(Sb,As)3 7 6 13

Atokite Pd3Sn 5 1 1 1 8

Native silver Ag 5 1 2 8

Hollingworthite RhAsS 1 2 4 7

unnamed Pd3Tl 7 7

Irarsite IrAsS 2 1 2 5

Isoferroplatinum Pt3Fe 2 1 1 4

Merenskyite PdTe2 2 2 4

Tulameenite Pt2FeCu 4 4

Platarsite PtAsS 3 3

Rustenburgite Pt3Sn 3 3

Tetraferroplatinum PtFe 1 2 3

Stillwaterite Pd8As3 1 1 2

unnamed Pd5Sb3 2 2

Auricupride Au,Cu 1 1

Insizawite PtBi2 1 1

Laurite RuS2 1 1

Majakite PdNiAs 1 1

Menshikovite Pd3Ni2As3 1 1

Niggliite PtSn 1 1

Palarstenide Pd5SnAs 1 1

Palladian gold Au,Ag,Pd 1 1

Palladobismutharsenide Pd2(Bi,As) 1 1

Plumbopalladinite Pd3Pb2 1 1

Stannopalladinite Pd5Sn2Cu 1 1

unnamed PtAg2 1 1

unnamed Pt2SbSb 1 1

unnamed PdTe3Pb3 1 1

unnamed Pd2Bi 1 1

unnamed Pd3Bi2 1 1

unnamed Pd2(Sb,Bi,Te) 1 1
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occurrences of the sulpharsenide hollingworthite/

platarsite/irarsite series. As a whole, the Platreef

at Sandsloot can be said to be dominated by Pt/Pd

tellurides, alloys, and to a lesser extent, PGE

arsenides and antimonides. In detail though, there

is a great variation from one host rock type to

another, particularly in terms of igneous reef

versus metamorphic footwall, and several major

trends in the PGM assemblage can be identi®ed.

Reef pyroxenites and pegmatites

The igneous reef pyroxenites and pegmatites are

dominated by Pt and Pd tellurides, particularly

moncheite and kotulskite (PdTe). Hessite (Ag2Te)

and electrum (Au,Ag) are common in the

pyroxenites. Arsenides, particularly sperrylite, as

throughout the deposit as a whole, are common,

particularly in the pegmatites. The immediate

associations of the PGM are shown in Table 4.

Most PGM in the pyroxenites and pegmatites are

surrounded by silicates or located at the BMS-

silicate boundary. However, even where

surrounded by silicates, the PGM retain a strong

spatial relationship with the BMS and many are in

association with secondary amphiboles which

replace BMS, and very few are found completely

isolated from any BMS. The secondary assem-

blages of tremolite and actinolite around BMS

grains in the primary Platreef pyroxenites are

similar to those found in the Merensky Reef and

UG2 chromitite, described by Li et al. (2004).

The appearance of PGM as satellite grains around

BMS grains may be due to the regression of the

BMS boundary, with the PGM (originally at the

edge of the sulphide blebs) remaining in their

original positions. This association has also been

noted in the Platreef at Macalacaskop and

Table 2 (contd.)

Name Formula HW PXT PEG ORR CPX FRH FWC CS PSP TSP Total

Unconstrained phases:

Pd-As-Sb 2 2

Pd-Te-Bi 2 2

Pt-Cu-Fe-Ag 2 2

Pt-Pd-Sb-As 1 1 2

Pt-Pb-Ag 1 1

Pt-Fe-Te 1 1

Pt-Au-Cu-Fe 1 1

Pt-Pd-Pb-Te 1 1

Pd-Pb-Te 1 1

Pd-Pb-Pt 1 1

Pd-Bi-Pb-Pt 1 1

Pt-Pd-Te-Sb 1 1

Pt-As-Sn-Sb 1 1

Pt-Fe-Te-Pb 1 1

Composite polyphase grains, unconstrained compositions:

Pd-Sn-As-Te-Pb 1 1

Au-Cu-Pt-Pd-Ag 1 1

Pd-Pt-Fe-Cu-Sn-Te 1 1

Pd-Pb-Te-Pt-Ir 1 1

Pd-Pt-Te-Bi-Cu-Fe 1 1

Pd-Bi-Sb-Sn-Te 1 1

Ni-Bi-Pd-Ag-Au 1 1

Pt-Sb-Te-Bi-Pb-As 1 1

Pt-Sb-As-Au-Pb 1 1

Pd-Sn-Sb-Pt-As 1 1

Pt-Sb-Te-Bi-As 1 1

Total PGM grains: 102 222 79 156 23 23 163 44 132 64 1008

HW: hangingwall gabbronorite; PXT: reef pyroxenite; PEG: reef pegmatite; ORR: olivine-replaced reef; CPX: reef

clinopyroxenite; FRH: footwall-reef hybrid; FWC: footwall clinopyroxenite; CS: calc-silicate; PSP: partially

serpentinized footwall; TSP: totally serpentinized footwall. Unconstrained phases were too small to determine

formulae.
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FIG. 5. Backscattered electron photomicrographs of PGM found in Sandsloot Platreef samples. (a) Zoned grain of

irarsite (ir) and platarsite (pl) with moncheite (mn) from pegmatoidal pyroxenite reef. Note how the grain is cut by a

secondary amphibole. (b) Polyphase PGM from pyroxenite reef consisting of menshikovite (mk), irarsite (ir), platarsite

(pl), palladoarsenide (pa), sperrylite (sp) and moncheite (mn). (c) Typically cubic crystal of Pt2Fe from olivine-replaced

reef. (d) Association of atokite (at) and kotulskite (kt) with pentlandite (pn), oxidized to magnetite (mag) in a partially

serpentinized sample of footwall. (e) Typical association of Pt2Fe intergrown with palladian pentlandite (Pd-pn) and

Pd3Tl from hangingwall gabbronorite. (f) Cluster of Pd germanides surrounded by secondary amphiboles replacing

non-Pd-bearing pentlandite with zvagintsevite (zv) in the same hangingwall gabbronorite as in e.
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Turfspruit (Hutchinson and Kinnaird, 2005). The

replacement by amphiboles and epidote appears

to be paragenetically late as there is evidence of

secondary minerals cross-cutting the PGM, such

as in Fig 5a. Most electrum is found as rounded

blebs within BMS grains. PGE antimonides were

found to be extremely rare in the Platreef

pyroxenites.

Olivine-replaced reef

Samples of reef pyroxenite which have undergone

replacement by Fe-rich olivine have their own

distinctive Pd-rich and alloy-dominant PGM

assemblage, with abundant Pd tellurides, and Pt-

Fe alloys. Table 3 indicates that Pt arsenides are

also very abundant; however, Table 2 shows that

only six sperrylites, in a total of 156 grains, were

identi®ed, though all were large relative to the

other grains, which has caused the high

percentage by area in Table 3. Table 1 shows

that the Pt/Pd ratio in these rocks is ~0.6,

therefore in this case, the proportion by area

data in Table 3 appears to have been skewed by a

small number of particularly large grains. We

therefore consider that the true dominant species

in this assemblage are Pd tellurides and alloys.

The most common telluride, kotulskite,

commonly contains much higher concentrations

of Pb (up to 12 wt.%) than kotulskite in the

unaltered pyroxenites, with a representative

c o m p o s i t i o n i n t h e s e r o c k s o f

Pd1Te0.74Bi0.14Pb0.12. The most common Pd

alloy is zvyagintsevite (Pd3Pb), which is particu-

larly characteristic of this lithology. The Pt-Fe

alloys have a typical composition of Pt2Fe, which

is intermediate between isoferroplatinum (Pt3Fe)

and tetraferroplatinum (PtFe), and is therefore

referred to under the nomenclature of Cabri and

Feather (1975) as Pt-Fe alloy. In these rocks, Pt-

Fe alloys occur as discreet cubic crystals (Fig. 5c)

rather than as intergrowths with BMS or

magnetite, which is the more common mode of

occurrence in the Merensky Reef (Kinloch, 1982;

Kinloch and Peyerl, 1990). The other common Pt-

dominant alloy in the olivine-replaced rocks is

tulameenite (Pt2FeCu), which was not found in

any of the other lithologies. A few examples of

PGE bismuthides and antimonides were also

found in the replaced reef, which are absent or

extremely rare in the unaltered pyroxenite reef.

Arsenides and electrum are also present. Only 8%

of PGM are included in BMS (Table 4) and many

of the 43% which are surrounded by silicates do

not show the close spatial relationship to BMS

that those in the unaltered reef show, with some

often isolated along veins.

Reef clinopyroxenites

The reef clinopyroxenites at the base of the

Platreef in the northern part of the pit were found

TABLE 3. Proportions of PGM type within each lithology in percentage of the total area of PGM. See Table 2

for the lithology abbreviations.

Lithology:

PGM type: HW PXT PEG ORR CPX FRH FWP CS PSP TSP

Pt tellurides 0.6 40.1 38.8 4.9 11.6 0.3 10.3 0.2 6.8 0.2

Pd tellurides 6.0 19.2 18.2 31.1 26.6 3.6 1.6 6.1 26.4

Pt bismuthides 0.1

Pd bismuthides 0.4 0.8 3.5 4.0 22.3 0.1 21.8

Pt arsenides 10.8 23.4 20.1 8.5 1.1 18.6 79.5 21.6 9.1

Pd arsenides 0.5 0.5 0.5 89.2 0.2 0.1

Pt antimonides 2.6 46.3

Pd antimonides 0.9 2.7 39.4 4.9 2.8 0.6 35.0

Pd germanides 55.3 0.5

PGE sulphides 0.4

PGE sulpharsenides 0.8 14.5 0.1 0.3 4.4

Pt-dominant alloys 28.2 0.1 25.3 0.3 0.2 3.0

Pd-dominant alloys 8.6 3.8 0.3 9.1 5.8 40.1 11.3 0.6 0.2

Au/Ag-bearing phases 23.0 3.8 3.1 9.9 1.4 19.3 1.6

Total no. of grains 102 222 79 156 23 23 163 44 132 64
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to be low grade (Table 1). The grade is also

known to decrease with depth away from the

contact with overlying feldspathic pyroxenites,

such that the calc-silicate footwall is not exposed

in the northern part of the pit. From Table 3 it

appears that the 23 PGM grains found differed

from the reef pyroxenites in that they contained a

large proportion of antimonides. Table 2,

however, reveals that this ®gure comes from a

single, relatively large grain of stibiopalladinite,

and other than this, the assemblage is similar to

the reef pyroxenites, containing mainly tellurides.

The small number of grains located requires any

trends identi®ed to be taken with caution, though

it appears that the assemblage is similar to that of

the reef pyroxenites, with a slight increase in the

number of PGM containing Bi and Sb. None of

the PGM is included in BMS, and all of the Pt

phases and 60% of the Pd phases are located in

silicates, which is much higher than in the reef

pyroxenites (Table 4). Overall grain size was very

small (Fig. 4), with most grains <5 mm long, and

the largest being only 15 mm in its longest

dimension.

Footwall clinopyroxenites

The footwall clinopyroxenites are dominated by

Pd-dominant alloys, particularly paolovite

(Pd2Sn) and the similar, but unnamed phase

Pd2(Sn,Sb), which contain Sn and Sb in equal

proportions. Bismuthides, and in particular an

unnamed phase with composition close to

Pd5Bi3(Te,Sb)2, are also common. Almost a

third of all grains were sperrylite, making it the

most abundant phase by occurrence, although

sperrylite only made up 19% of the assemblage by

area (Tables 2, 3). Other than sperrylite, very few

of the PGM grains were Pt phases. A few

tellurides and antimonides make up the remainder

of the assemblage. Almost two-thirds of PGM in

the footwall clinopyroxenites are surrounded by

silicates (Table 4). This ®gure increases to three-

quarters when only the Pt-dominant phases are

considered, which re¯ects the preference of

sperrylite to be isolated in silicate grains away

from BMS grains.

Footwall calc-silicates

The calc-silicates, like the clinopyroxenites, are

telluride-poor, and are rich in arsenides, particu-

larly sperrylite, which makes up nearly 80% of

the assemblage (Table 3). There are fewer alloys

than in the clinopyroxenites, although Pd-

dominant alloys are still the second most

common PGM type. However, in contrast to the

clinopyroxenites, bismuthides are very rare.

TABLE 4. Textural associations of PGM (excluding Au/Ag alloy) in the variety of host-rock types and the

percentage of grains. See Table 2 for lithology abbreviations.

All PGM, Au, Ag phases

Association: HW PXT PEG ORR CPX FRH FWP CS PSP TSP

Enclosed in BMS (%) 10.3 12.6 9.1 8.2 77.8 10.4 6.4 21.2

BMS-silicate contact (%) 29.9 38.1 16.9 49.0 30.4 11.1 27.6 14.9 60.6 11.5

Enclosed in silicate (%) 59.8 49.3 74.0 42.8 69.6 11.1 62.0 78.7 18.2 88.5

Pt-dominant phases

Association: HW PXT PEG ORR CPX FRH FWP CS PSP TSP

Enclosed in BMS (%) 23.1 8.4 11.9 6.5 9.8 4.3

BMS-silicate contact (%) 53.8 37.3 26.2 41.3 14.8 8.7 67.6 7.4

Enclosed in silicate (%) 23.1 54.2 61.9 52.2 100.0 100.0 75.4 87.0 32.4 92.6

Pd-dominant phases

Association: HW PXT PEG ORR CPX FRH FWP CS PSP TSP

Enclosed in BMS (%) 8.0 8.5 3.1 6.1 72.2 10.5 8.7 29.2

BMS-silicate contact (%) 22.7 34.1 3.1 51.0 40.0 16.7 34.7 21.7 55.6 16.1

Enclosed in silicate (%) 69.3 57.3 98.8 42.9 60.0 11.1 54.8 69.6 15.3 83.9
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Table 4 shows 79% of all PGM grains being

enclosed within silicate minerals, a ®gure

probably enlarged partially by the relative

paucity of BMS in the the calc-silicates compared

to the igneous reef. As in the clinopyroxenites, the

Pt phases (largely sperrylite) show a strong

preference to be associated with silicates.

Footwall-reef hybrid

A sample of footwall-reef hybrid rock contained a

large number of palladoarsenide (Pd2As) grains,

concentrated in and along fractures in BMS

grains. Comparatively few PGM were found

elsewhere in the sample, which include a few

tellurides. The small number of PGM grains in the

sample means any trends must be viewed

cautiously, though it does show a marked increase

in arsenides and Pd minerals compared to the

primary reef pyroxenites, possibly indicating a

more volatile in¯uenced environment more akin

to the footwall assemblages than the igneous

pyroxenites.

Footwall serpentinites

Two types of serpentinite were studied: partially

and completely serpentinized footwall. In the

partially serpentinized samples, where up to 60%

fresh metamorphic olivine (Fo88) is still present,

the PGM assemblage is dominated by Pd tell-

urides and lesser amounts of Pd bismuthides and

Pt arsenides. As in the olivine-replaced reef,

kotulskite contains relatively high concentrations

of Pb (often higher than Bi) which substitutes for

Te in the ideal formula PdTe. Signi®cantly, the

PGM in this rock type are very much associated

with BMS (Table 4) which are variably oxidized

to Fe-oxide phases (Fig. 5d), an association also

noted in serpentinized parts of the Platreef on

Drenthe by Gain and Mostert (1982). Li et al.

(2004) describe BMS being replaced by magnetite

in areas of serpentinization in the Merensky Reef

and UG2 in the western Bushveld. Nearly all of

the kotulskite and electrum is found in association

with these partially oxidized blebs of BMS. The

PGM in the completely serpentinized rocks,

however, are almost completely silicate-asso-

ciated (Table 4), with completely serpentinized

footwall containing very few BMS, with most

altered to magnetite. This PGM assemblage has

the most predominant enrichment in antimony in

any of the assemblages and is characterized by the

presence of geversite (PtSb2) and sudburyite

(PdSb). A few arsenides, tellurides and sulpharse-

nides make up most of the remainder of the

assemblage.

Hangingwall gabbronorite

Samples from the base of the hangingwall were

surprisingly found to contain appreciable occur-

rences of PGM. Sporadic BMS occur in both the

mottled anorthosite and the basal part of the

overlying gabbronorite in places where the

hangingwall sits on coarse-grained mineralized

reef (Holwell et al., 2005). One sample of

gabbronorite, taken from just above the basal

contact with the thin mottled anorthosite that

forms the base of the hangingwall in places, was

considerably rich in PGM. Patches of Pt2Fe

intergrown with chalcopyrite and pentlandite are

common (Fig. 5e), an association which differs

from the discreet cubic crystals of Pt2Fe found in

the replaced reef. The only grain of PGE sulphide

(laurite) found in the entire suite of samples

studied was located in the centre of one of these

Pt2Fe alloy-BMS intergrowths. Also associated

with the intergrowths were several grains of the

unknown Pd-Tl alloy, Pd3Tl (Fig. 5e). The only

other published occurrences of any Pd-Tl

minerals is a very rare, unconstrained Pd-Tl

phase from the Platreef on Zwartfontein and the

Merensky Reef in the eastern Bushveld (Kinloch,

1982) and a mineral close to the formula Pd3Tl,

with some substitution of Tl by Re, in the Wetlegs

deposit of the Duluth Complex, Minnesota

(Severson and Hauck, 2003). Signi®cantly, the

pentlandite which is intergrown with Pt-Fe and

Pd-Tl alloys in Fig. 5e also contains up to 6 wt.%

Pd, which is the highest recorded natural

concentration of Pd in pentlandite (L. J. Cabri,

pers. comm.). Overall, however, the sample was

particularly rich in the unnamed Pd germanide

phase with composition close to Pd2Ge. Sixty four

individual grains, plus many <1 mm, were found,

of which 11 contained some Pt in place of Pd, and

most contained some As in place of Ge. Typical

analyses of this phase are shown in Table 5,

together with the ideal compositions for Pd2Ge

and Pd11Ge5, the latter of which the analyses

match more closely. Armitage et al. (2002) noted

a single grain of (Pd,Pt)2Ge in the Platreef, and

the only other recorded occurrences of PGE-

germanides anywhere in the world are an

unconstrained Pd-Ge phase from the UG-2

chromitite (McLaren and de Villiers, 1982),

Pd2Ge recorded from the Noril'sk Ni-Cu-PGE
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orebody (Komarova et al, 2002) and (Pd,Pb)2Ge

(Grokhovskaya et al., 2005). The Pd2Ge grains,

and some rarer kotulskite and Pd arsenides are

found as satellite grains around larger BMS

minerals which are intergrown with secondary

amphiboles (Fig. 5f). The association of Pd-

bearing pentlandite, PGE alloy intergrowths and

PGE sulphides with unaltered BMS does not hold

any PGE germanides, whereas germanides are

present in association with non-PGE-bearing,

partially replaced BMS. The remainder of the

hangingwall assemblage is made up of zvyagin-

tsevite, kotulskite and a few arsenides.

Discussion

The results from this study show the Platreef to be

a very complex PGE orebody both lithologically

and mineralogically. The PGM mineralogy at

Sandsloot is distinctive within the Platreef

compared to other areas. In detail, we have

shown that the variety of host rock types in the

Platreef contain their own, characteristic PGM

assemblages which re¯ect the processes involved

in redistributing the PGE through the reef and into

the footwall during the evolution of the Platreef,

though the mechanism which led to the initial

introduction of PGE into the Platreef has yet to be

resolved.

The most characteristic feature of the Sandsloot

PGM assemblage, in comparison to most other

tabular Bushveld PGE orebodies, is the complete

lack of PGE sulphides. Throughout the Merensky

Reef, PGE sulphides make up a substantial

proportion of the overall PGM assemblage (e.g.

Kinloch, 1982; Mostert et al., 1982; Mossom,

1986; Prichard et al., 2004). In the Platreef, on the

farms Drenthe and Overysel, to the north of

Sandsloot, these minerals make up greater than or

nearly half the volume percentage of the

assemblage (Gain and Mostert, 1982; Kinloch,

1982). Kinloch (1982, Table 6) lists PGM from

eight borehole cores on Zwartfontein, the ®rst ®ve

of which are sulphide-poor, alloy- and telluride-

dominant, the remaining three are sulphide-

dominant and similar to the Overysel data in the

same table. The footwall changes from dolomite in

the southern and central part of Zwartfontein

(Fig. 1) to Archaean basement in the northern part

of the farm. The cores listed in Table 6 of Kinloch

(1982) are shown in south to north order (P. Hey,

pers. comm.) with the change from a dolomite

footwall to one composed of granite and gneiss

directly corresponding to the change in the PGM

assemblage with repect to the presence of PGE

sulphides. South of Sandsloot, on Tweefontein

where BIF and shales of the Duitchland Formation

form the footwall, sulphides are again reported

(Viljoen and SchuÈrmann, 1998). Immediately to

the south though, on Turfspruit and Macalacaskop

where the footwall is Duitchland Formation and

Pretoria Group shales and sandstones, Hutchinson

et al. (2004) describe a number of PGM

assemblages with very few PGE sulphides. The

lack of sulphides is probably due to low fS
2
which

would have prevented any free S being available

to combine with PGE. This appears to be directly

related to footwall lithology, with low fS
2

conditions characteristic of areas where the

Platreef magma has interacted with dolomitic

footwall. Elsewhere in the Bushveld Complex,

potholed Merensky Reef (Kinloch, 1982) and the

platiniferous dunite pipes (Tarkian and Stump¯,

1975) contain relatively few PGE sulphides and

are dominated by alloys, tellurides and sperrylite.

Volatile activity is thought to be important in both

these mineralizing environments, which therefore

suggests a link between volatile activity and

sulphide-poor, alloy-dominated PGM assem-

blages. The Platreef at Sandsloot is certainly

more alloy-rich and sulphide-poor than at

Overysel and Drenthe (Gain and Mostert, 1982;

TABLE 5. Compositions of unnamed Pd-germanide phase from the base of the hangingwall gabbronorite,

together with the ideal compositions of Pd2Ge and Pd11Ge5.

Grain no: 1 2 3 4 Pd2Ge Pd11Ge5

Wt.% Pd 75.84 76.52 60.00 59.51 74.56 76.32

Pt 18.33 17.23

Ge 21.80 20.42 21.96 21.44 25.43 23.67

As 2.54 3.53 0.77

Total 100.18 100.47 100.28 98.95 100.00 100.00
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Viljoen and SchuÈrmann, 1998) where the footwall

is Archaean granite/gneiss basement. This would

suggest that greater volatile activity affected the

Platreef where it intruded the dolomites than

where it intruded the granites and gneisses, which

is manifested in distinctively different PGM

assemblages.

The pyroxenites and pegmatites of the igneous

reef contain a typical PGM assemblage dominated

by Pt and Pd tellurides, electrum and some

arsenides. Their presence in the interstitial

regions, in a proximal association with BMS,

indicates a spatial relationship with the sulphides.

Typically, magmatic PGE associations are of Os,

Ir and Ru with chromite (Lee, 1996), and Pt, Pd

and Rh concentrated with sulphides (Naldrett and

Duke, 1980). In a typical immiscible sulphide

separating from a silicate magma and collecting

base metals and PGE (e.g. Naldrett et al., 1986),

the sulphide liquid collects the PGE, and PGM are

commonly found included in, or more commonly,

at the margins of BMS grains. In our samples,

most PGM are found either at the sulphide-silicate

boundary, or are silicate-hosted as satellite grains

around altered BMS. The intergrowth of BMS

with plagioclase and the frequent distribution of

small blebs of sulphide and PGM around the edge

of interstitial areas suggests that if PGE were

originally held in the sulphide liquid, redistribu-

tion of the PGE occurred during ¯uid ¯uxing after

orthopyroxene crystallization, but before the

interstitial ¯uid crystallized, unless the PGM

crystallized directly from the melt. The fact that

the pegmatitic rocks show a considerably larger

average PGM grain size also suggests that the

PGM crystallized at a similar, early stage, though

their relative enrichment in Pd tellurides and

sperrylite would suggest greater degrees of ¯uid

activity, which would be expected if the

pegmatoidal nature of the lithology is due to

¯uid interaction. The reef clinopyroxenites have a

similar PGM assemblage, although do contain a

few antimonides and bismuthides, more

commonly found in the footwall. Texturally, the

PGM in these rocks have less of an association

with BMS, which is more characteristic of the

footwall lithologies. This evidence, together with

the fact that the PGE grade decreases away from

the contact with the reef pyroxenites, may suggest

that the PGE have been transported from the

feldspathic pyroxenites by hydrothermal activity.

Base-metal sulphides in the igneous reef have

been variably altered around their margins and

replaced by actinolite, tremolite and epidote. The

appearance of PGM as satellite grains around

BMS may be the result of PGM, originally at the

edge of the sulphide grains, remaining in situ, as

the BMS boundary regressed. A similar associa-

tion was found in the Merensky Reef and UG2

chromitite by Li et al. (2004), who suggested

possible reactions for the replacement of BMS by

amphiboles and epidote. All of the reactions

proposed by Li et al. (2004) involve the addition

of aqueous Ca, Mg and Si, all of which are readily

available from the assimilation of the siliceous

Malmani dolomite. However, rather than the

BMS being replaced directly by silicates, it is

more likely that the hydrous ¯uids reacted with

the BMS to form sulphuric acid, dissolving the

BMS around its margins and hydrous silicates

were able to grow into the voids around the

regressed margins. The PGM appear to be

paragenetically earlier than the episode of

alteration that formed the hydrous silicates, as

seen by the cross-cutting of PGM by the

secondary minerals (Fig. 5a). This observation

for the Platreef would appear to contrast with the

conclusions of Li et al. (2004) who suggested that

secondary hydrothermal alteration may have been

important in redistributing PGE in the Merensky

Reef. In the case of the Platreef at Sandsloot, it

seems that ¯uid ¯uxing at or close to the time of

crystallization, and not later hydrothermal altera-

tion, was the most important factor in redis-

tributing PGE through the primary reef.

The presence of Pt-Fe alloy in crystal form

(rather than as intergrowths), Pd alloys and Pd

tellurides in olivine-replaced portions of reef is

analogous to the volatile-in¯uenced ultrama®c

platiniferous pipes of the eastern Bushveld and

pegmatoid-replaced Merensky Reef potholes

(Kinloch and Peyerl, 1990). The olivine-replaced

lithologies are thought to have formed from a late-

stage Fe-rich, Si-poor ¯uid (McDonald et al.,

2005b) which percolated through parts of the

pyroxenite, replacing orthopyroxene with olivine

(Fig. 3a). At present, the origin of this ¯uid

remains unclear, although it may have been

derived from serpentinization of the olivine-

bearing footwall lithologies. The ¯uid also

appears to have been Pb-rich as seen by the

formation of abundant zvyagintsevite (Pd3Pb),

and the replacement of some Te by Pb in

kotulskite. If PGM were present in the protolith

(probably reef pyroxenite), the Fe-rich ¯uid seems

likely to have recrystallized Pt into Pt-Fe alloys,

and the assemblage therefore post-dates the main

episode of mineralization.
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The difference in the nature of the PGM

between the igneous reef and metamorphic

footwall units that contain PGE mineralization

is striking. The dominance of tellurides, alloys

and electrum with a complete lack of antimony

observed in the igneous reef, is reversed in the

footwall, with arsenides, bismuthides and anti-

monides dominating. The dominance of PGM

containing elements such as As and Sb in the

footwall lithologies suggests a signi®cant

amount of volatile activity invovled in the

redistribution of PGE into the footwall.

However, the role of elements such as As, Sb,

Se and Te is believed to be to immobilize the

PGE, rather than be transported with them, as

reduced forms of these elements cannot be

transported with Pt and Pd (Wood, 2002). The

almost total absence of antimonides in the

igneous reef is analogous to normal Merensky

Reef, where PGE antimonides are very rare

(Kinloch, 1982), whereas in areas where ¯uid

activity has been prevalent, antimonides are

common. For example, the type localities for

the PGE antimonides genkinite, geversite,

stibiopalladinite, stump¯ite, sudburyite and

naldrettite and ungavaite are, respectively: the

Onvervacht pipe (Bushveld Complex, RSA); the

Driekop pipe (Bushveld Complex, RSA);

Tweefontein Hill (Bushveld Complex, RSA);

the Driekop pipe; Copper Cliff (Sudbury,

Canada), and the Mesamax Northwest deposit

(QueÂbec, Canada) (Cabri, 2002; Cabri et al.,

2005; McDonald et al., 2005a), all of which have

been ¯uid affected. This would imply that PGE

antimonides are indicative of ¯uid transport of

PGE, and are present in secondary assemblages.

The ¯uid activity that redistributed the PGE

would be expected to have preferentially

transported the more mobile Pd into the footwall

over Pt, therefore producing low Pt/Pd ratios in

the footwall, and raising the Pt/Pd slightly in the

igneous reef. Table 1 shows Pt/Pd ratios for reef

samples in the range 0.79ÿ1.94, whereas in

footwall samples the ratio is 0.54ÿ0.98, and in

the replaced reef it is ~0.6, showing a relative

enrichment in Pd over Pt in the areas where the

greatest ¯uid activity appears to have taken

place, indicating that the PGE were introduced

by ¯uid activity.

Partial serpentinization of footwall olivine

desulphurizes BMS to form magnetite, a feature

also seen in the Merensky Reef and UG2 (Li et

al., 2004) and in its early stages appears to form a

telluride-dominant PGM assemblage (often Pb-

bearing) which is not dissimilar to that found in

the olivine-replaced reef. If there is a link between

the two assembages, it may be that the Fe-rich

¯uids that altered the reef originated from

serpentinization of the footwall. Further degrees

of serpentinization are associated with a generally

®ne-grained, disseminated, low-temperature PGM

assemblage rich in volatile elements such as Sb

and As. The antimonide-dominant assemblage

formed is likely to represent recrystallization of

the telluride dominant-assemblage.

The PGM assemblage at the base of the

hangingwall is of particular interest, as until

very recently (Holwell et al., 2005) the hanging-

wall was not thought to contain any PGE

mineralization, except around calc-silicate rafts

(Kinnaird et al., 2005). Holwell et al. (2005)

concluded that the Platreef was almost completely

crystallized when the hangingwall gabbronorites

were intruded. Localized assimilation of miner-

alized reef into the new magma incorporated

PGE-rich sulphide into the hangingwall magma.

The observed high Pd content in pentlandite

requires rapid cooling, which would be likely if

the hangingwall magma chilled against a crystal-

lized and relatively cooled Platreef. The PGE-rich

sulphide liquid cooled rapidly to form, ®rst

monosulphide solid solution (mss), then the

`primary' assemblage of Pd-pentlandite, Pt-Fe

alloy-BMS intergrowths and laurite. In particular,

the presence of Pt-Fe alloy-BMS intergrowths is a

characteristic texture associated with primary

BMS, present in Merensky Reef that has not

undergone signi®cant volatile interaction

(Kinloch, 1982) and in other layered intrusions

(Cabri, 2002). Here we refer to `primary'

magmatic sulphides as pyrrhotite and pentlandite

derived from the recrystallization of mss on

cooling from magmatic temperatures. The PGE

mineralization seems to exhibit a two-stage

crystallization history. The primary assemblage

appears to have been locally altered on a

centimetre-scale, with Pd apparently exsolved

from pentlandite, BMS surrounded by secondary

amphiboles, and the PGM assemblage altered to

one rich in germanides.

Holwell et al. (2005) suggested that the PGE in

the basal portion of the hangingwall originated in

the Platreef, and was assimilated into the magma

that formed the hangingwall gabbronorites,

forming an unusual, primary assemblage of

PGM at the base of the hangingwall which is

distinct from, and post-dates, the main episode of

mineralization in the Platreef.
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Conclusions

The variety of characteristic PGM assemblages in

the host of rock types of the Platreef at Sandsloot

re¯ects the ¯uid and magmatic processes which

affected the Platreef during and after emplace-

ment. The method of initial introduction of PGE

is still to be resolved; however, from the data

presented here, it is possible to describe a

sequence of events which redistributed PGE

and/or recrystallized PGM through the reef and

its footwall and hangingwall, each of which

producing a characteristic assemblage in distinct

lithologies.

(1) During crystallization of the igneous reef,

PGM crystallized around the margins of BMS

within the interstitial liquid forming a telluride-

dominant assemblage, in close spatial association

with BMS. Fluids, originating from assimilation

and metamorphism of the dolomitic ¯oor, are

likely to have circulated within the interstitial

liquid during crystallization. The lack of PGE-

sulphides suggests conditions during this time

were characterized by low fS
2
.

(2) During emplacement of the reef, ¯uid

activity was very signi®cant in redistributing

PGE into the footwall. The footwall contains

characteristic arsenide,- alloy- and antimonide-

dominant PGM assemblages, showing a signi®-

cant volatile in¯uence during crystallization of

this secondary assemblage.

(3) Serpentinization of footwall olivine also

appears to convert earlier BMS to oxides, with

PGE-tellurides remaining in association with the

remnant sulphides. Further degreees of serpentini-

zation, where all olivine is replaced, produces a

more volatile-enriched antimonide-dominant PGM

assemblage, without the association with BMS.

(4) Late-stage, Fe-rich ¯uids percolating

through certain parts of the igneous reef

desilici®ed orthopyroxene to form olivine, produ-

cing peridotitic zones. PGM were also recrystal-

lized by this ¯uid, to form an alloy-dominant

PGM assemblage of Pt-Fe and Pd-Pb alloys,

together with possibly pre-formed tellurides.

(5) After a period of cooling and almost total

crystallization of the pyroxenitic reef, the

hangingwall magma was intruded, locally assim-

ilating PGE-rich pyroxenite reef and cooling

quickly to form a separate, primary PGM-BMS

assemblage of Pd-bearing pentlandite, Pt-Fe

alloy-BMS intergrowths and laurite. Later,

localized alteration has recrystallized PGM,

producing a germanide-dominant PGM assem-

blage of satellite grains around altered BMS.

This paper summarizes the assemblages present

in various rock types at Sandsloot. Elsewhere

along the Platreef the rock types and PGM

assemblages are known to be different (e.g.

Kinloch, 1982; Viljoen and SchuÈrmann, 1998;

Hutchinson and Kinnaird, 2005) and the Platreef

is obviously a highly complex orebody with a

varied and complex magmatic and ¯uid history

determined by several factors, most importantly,

the interaction of the Platreef magma with the

varying ¯oor rocks. The results of this study

reveal the importance of syn- and post-emplace-

ment ¯uid activity on the mineralogy and

distribution of PGE in the Platreef on a metre

scale at this locality, with the presence of

dolomite as the footwall rock producing a

distinctivly PGE sulphide-poor PGM assemblage.

Further work is planned to attempt to constrain

this footwall control by investigation into the

PGM mineralogy in other sections along strike

where the footwall is different.
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A geological investigation of the Waterberg
hydrothermal platinum deposit,
Mookgophong, Limpopo Province, South
Africa

P. Armitage*1, I. McDonald2 and M. Tredoux3

The geology around the unusual quartz-vein hosted Waterberg platinum deposit was mapped

using aerial photographs at a scale of 1 : 1000 to establish possible controls on this unique style of

mineralisation. The study area is located in the Mookgophong (Naboomspruit) District of the

Limpopo Province in South Africa and is dominated by a gently to moderately, NNW-dipping

irregular sequence of bimodal (rhyolite–basalt) volcanics, interbedded with many sedimentary

rocks, that form part of the extensive 2?06 Ga Rooiberg Group, that are cut by variably striking,

steep to subvertical quartz veins. The regional geology of the area was mapped at various scales

in the 1920s and 1940s, but much of this work remains inaccessible and mapping during this

study has uncovered more detail. The major platiniferous quartz vein (known as the ‘Main Lode’)

juxtaposes volcanic rocks of Rooiberg age against Triassic sandstones and therefore occupies a

fault. There is no textural evidence that quartz veining was syntectonic and may be much

younger. The well-exposed vein fabrics show many features typical of low pressure epithermal

quartz veins and probably formed near the present-day surface beneath a highly eroded Karoo

cover, suggesting a recent age for veining and Pt mineralisation. The Main Lode can be followed

for at least 3 km along strike, but Pt mineralisation is concentrated in a short section of the vein

around 500 m in length. A major regional fault (the Welgevonden Fault) occurs about 2 km to the

northwest of, and parallel to, the Main Lode. The Welgevonden Fault zone is suggested to extend

to the northeast and merge with the Planknek–Ysterberg Fault system, south of Mokopane

(Potgietersrus). The Welgevonden Fault is presently geothermally active, but this fluid system

does not carry significant concentrations of Pt and may represent a younger Pt-depleted stage of

hydrothermal activity related to the event that formed the Main Lode. It is unlikely that the

Rooiberg volcanics and younger rocks supplied the platinum-group elements in the deposit and

the source for these metals must lie elsewhere. It is suggested that shearing along the

Welgevonden–Plankneck Fault system transposed PGE-bearing mafic rocks of the northern

Bushveld Complex to a position at unknown depth beneath the Waterberg deposit, or provided a

network of shear zones which could be exploited by a recent hydrothermal event that transported

platinum and other metals westwards along the fault system and redeposited them near the

surface.

Keywords: Platinum, Quartz veins, Hydrothermal, Rooiberg, Welgevonden Fault, Waterberg

Introduction
The ‘Waterberg platinum deposit’, first formally
described by Wagner,39 is located on the farms
Welgevonden 353KR and Rietfontein 513KR, some
15 km west of the town of Mookgophong (formerly
Naboomspruit) in the Limpopo Province of South
Africa (see Fig. 1). The deposit occurs on the northern
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limb of the Swaershoek Anticline, one of a set of large,

gently plunging folds that affect all pre-Karoo age

lithologies in the region. The area is transgressed by

steep, subparallel faults related to the Welgevonden

Fault; part of the regional Thabazimbi-Murchison

Lineament (TML) relay fault system6,18 that formed in

the mid-Archaean and has been periodically reactivated

since that time.8 Linear to curvilinear, WNW-ESE

striking pre-Karoo faults and NE-SW striking post-

Karoo faults cross the region.

Some potentially confusing terms should be explained

at this point. The name ‘Waterberg platinum deposit’

does not allude to the age of the deposit or the

Waterberg Group (Fig. 1), but rather to the geographi-

cal proximity of the deposit to the Waterberg area.

Likewise, the term ‘Bushveld sandstone’39 is used in

compatibility with early mapping studies. This refers to

the occurrence of the sandstone within the Bushveld

region and not to the age of the sandstone, which is early

Mesozoic and therefore significantly younger than the

2?06 Ga Bushveld Complex.

The Waterberg deposit is perhaps the most unusual

example in the class of epigenetic Au-PGE (platinum-

group element) deposits, because it is dominated by Pt

while Pd and Au are subordinate: in other notable

deposits in the class, e.g. Serra Pelada and Minas Gerais

(Brazil), and Gold Ridge and Alligator River

(Australia), the concentrations of the metals follow the

sequence Pt,Pd,,Au.2,25,31 The Waterberg deposit

comprises two quartz veins that occupy a fault between

northwest dipping Rooiberg volcano-sedimentary rocks

and horizontally bedded Mesozoic sandstones. The

deposit has enormous historical as well as genetic

significance, as its discovery by the prospector Adolph

Erasmus in June 1923 marked the first find of platinum

as a primary metal in South Africa.38,39 The deposit was

mined between 1923 and 1926 by Transvaal Platinum

Ltd and an account of the short and somewhat

1 Simplified geological map of the Modimolle (Nylstroom) region after the Nylstroom 1:250 000 geological map pub-

lished by the Council for Geoscience:5 X–Y is the line of a profile across the structural grain (see Fig. 13)
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disastrous mining history is given by McDonald and
Tredoux.23 Brief accounts of the geology and setting of
the deposit are given by Wagner and Trevor,38 Wagner39

and McDonald and Tredoux.20 Details of the
mineralogy and geochemistry of the Waterberg platinum
mineralisation have also been published.19,21

In 1999, the authors began a programme of mapping
around the Waterberg mine and research into the
history of mining and geological studies in the area.
The aim of this paper is to present a new 1 : 10 000 scale
geological map of the deposit and surrounding area,
with implications for local stratigraphy and controls on
the development of mineralisation.

Since the original mine closed in 1926, the potential of
the deposit has been periodically re-evaluated (generally
during periods of high Pt prices), but up to 2005 no firm
plans to resume mining had been developed. In 2005,
Centurion Gold Holdings Incorporated (‘Centurion’)
announced that they had signed an agreement to acquire
prospecting rights for the area encompassing the
Waterberg mine and for areas of the adjacent farms
Rietfontein 345KR and Diamant 356KR. Centurion’s
own estimate of the contained metal content of the
Naboom Project was close to 2?4 million ounces of PGE,
with a headline value in excess of $(US) 2 billion.4 In
2006, Centurion commissioned an independent ‘compe-
tent persons’ report by the consultants SRK Ltd which
rated the project more conservatively as an exploration
plays with an unknown resource (and a correspondingly
lower value) but with significant potential.32 At the time
of writing, Centurion have been awarded a new order
prospecting permit for the Naboom property by the
South African Department for Minerals and Energy and
are attempting to raise finance for new exploration.

Previous mapping
The geology of the Mookgophong district was first
mapped by Mellor and Kynaston between 1905 and

190916,24 following the discovery of several important
tin deposits at Zaaiplaats and Doornhoek29 but the
presence of PGE and Au remained unknown. The most
detailed contemporary account of the discovery of the
Waterberg deposit and the local geology that had been
outlined during the initial phase of exploration was
published by Wagner and Trevor.38 This paper also
contains the only widely available geological map of the
deposit which focuses on a short section of the main
platinum-bearing vein (called the ‘Main Lode’), close to
where a branching vein/fault (termed the ‘Branch Lode’)
also contains high concentrations of platinum. Despite
its simple appearance, Wagner and Trevor’s map38

summarises the key structural setting of the deposit: the
Main Lode is hosted within a fault that juxtaposes
dipping felsites of the Rooiberg Group (now known to
have an age of 2?06 Ga)40 against younger horizontally
bedded pink sandstones that were assigned to the early
Jurassic Stormberg Group of the Karoo Supergroup on
the basis of Mellor’s earlier mapping. The vein dips to
the southeast at angles of 60–80u, with the hangingwall
downthrown to the south. Apart from the immediate
vicinity of the vein, no further information on the local
geology was provided in Wagner and Trevor’s account.
The key elements of Wagner and Trevor’s map,
combined with a plan of the mine workings in 1926 by
McDonald and Tredoux23 are shown in Fig. 2.

Welgevonden 353 KR, Rietfontein 513 KR and
several surrounding farms were remapped in 1944 by
D.P. van Rooyen on behalf of the Geological Survey of
South Africa.35 Van Rooyen’s hand drawn field sheet
was incorporated into a report37 and subsequently into
the Nylstroom 1 : 250 000 regional geological map5 that
is summarised in Fig. 1. Note that, although Nylstroom
has recently been renamed Modimolle, the map retains
its original name. A portion of van Rooyen’s map of the
area northwest of Naboomspruit is redrafted in Fig. 3.
The map shows a simplified sequence of Nebo Granite

2 Plan of the platinum lodes and the mining infrastructure when the mine was operational in 1926 (modified from

Refs. 23 and 38)
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of the Bushveld Complex intruded into felsite, agglom-
erates, shale and tuff of the Upper Rooiberg Group,
conformably overlain by clastic sedimentary rocks of
the Waterberg Group and unconformably overlain by
horizontally bedded Triassic sandstones. Post-
Waterberg dolerite sills and dykes intrude all pre-
Karoo lithologies. Northeast-Southwest to ENE-WSW
striking, anastomosing faults traverse the area and
apparently recognisable sequences are tectonically
repeated in a pattern that implies downthrow to the
southeast.

In mid-1945, van Rooyen produced a hand drawn
map of the local geology around the Waterberg deposit,
embracing parts of the farms Welgevonden 353 KR and
Rietfontein 513 KR.36 This map is redrafted in Fig. 4
with an English translation of van Rooyen’s Afrikaans
legend. In essence it shows the same sequence of units as
Fig. 3 but in greater lithological and structural detail,
and also shows some of the mining related features. A
peculiarity of the map is the occurrence of a ‘younger
diabase’ dyke in ‘Bushveld sandstone’ of Karoo age,
while in the same location in Fig. 3 the dyke is covered
by the sandstone. The discrepancy is assumed to be a
drafting error in the later of the two maps. Furthermore,
in Fig. 3 the ‘younger diabase’ is placed below the oldest
Rooiberg lithology at the base of van Rooyen’s map
legend, so the time reference of its ‘younger’ age is
uncertain. It is assumed that the diabase was interpreted
to be post-Waterberg, which is the relative age the
diabase has in Fig. 3 and in the Nylstroom 1 : 250 000
map,5 and that the stippled boundary of the diabase
dyke in Fig. 3 merely infers intrusion into older
Rooiberg lithologies beneath the sandstone. The other
possible interpretation is that van Rooyen mapped the
diabase as a post-Karoo hypabyssal system, which the
authors consider unlikely. Further interesting features of
van Rooyen’s original map are two corrections made to
the legend. He initially ascribed the shale and ‘Bushveld

sandstone’ units to Karoo age, then made an alteration
in which in the shale unit and ‘conglomerate and
sandstone’ unit were ascribed to Waterberg age. He
subsequently made a final alteration in which the
Bushveld sandstone was ascribed to Karoo age, the
shale to Rooiberg age and the conglomerate and
sandstone unit to Waterberg age. The redrafted map in
Fig. 4 reflects the final, corrected legend. As far as the
authors can determine, these maps, at this level of detail,
have remained unpublished.

While the 1945 map substantially improves knowledge
of the geology surrounding theWaterberg platinummine,
it lacks detail in the immediate vicinity of the deposit
itself. The present study began with the aim of producing
a new geological map of the Waterberg deposit and
providing more detailed structural data and geological
information on various lithologies surrounding the vein,
from sections of the vein sampled by the authors and
from historical vein samples that form part of theWagner
collection at the University of Cape Town.

Methods
As a prelude to detailed mapping, an initial interpreta-
tion of structures in the area using aerial photographs at
a scale of 1 : 30 000 was carried out. The results of this
analysis (Fig. 5) highlighted the potential extent of the
Main Lode and the fact that it follows a similar strike to
the larger Welgevonden Fault. Mapping was carried out
on a digitally enhanced air photograph at a scale of
approximately 1 : 1000. The positions of all localities
were determined using ahand held GPS system and
recorded on a UTM grid. A number of samples were
collected for geochemical analysis. These were cut with a
diamond saw to remove any weathering rinds before
being crushed to chips in a manganese steel jaw crusher
and reduced to fine powder in agate ring and ball mills.
Some samples of mixed units (e.g. PA-99-21) contained
more than one rock type and sub-samples (,1 cm3

3 Redrafted map of the Naboomspruit area, originally hand drawn by van Rooyen35
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cubes) of (visually) pure felsic and mafic lithologies were

prepared using a small diamond saw. These small cubes
were broken into chips using a hammer and then hand

ground in an agate mortar and pestle.

Solutions for analysis were prepared by fusing the
samples with Li metaborate flux and dissolving the

resulting melt in 2%HNO3. Concentrations of major and
trace elements were determined using a combination of

ICP-OES and ICP-MS. A more complete description of
all the analytical procedures for rock samples is given in

McDonald and Viljoen.22 Water samples were collected
from hot springs in plastic bottles, filtered on site under

vacuum through 0?45 mm a filters using a hand pump
and later acidified to an effective acidity of 10%HCl
using ultrapure concentrated HCl, before analysis by

ICP-MS.

Results
The results of the mapping carried out in this study are
presented in Fig. 6. This new map confirms many of the

findings of van Rooyen36 (Fig. 3) but resolves some of
his broad lithological units into individual rock types
and adds considerably more structural detail. Both the
Rooiberg volcanics and sediments and the younger
Mesozoic rocks are cut by high-angle quartz veins that
occupy faults, such as the ‘Main Lode’, which strike
approximately NE-SW with a component of down-to-
southeast normal movement evidenced by the juxtaposi-
tion of Mesozoic sandstones against Palaeoproterozoic
felsites. The bedrock geology of the map area is largely
concealed by recent ferricrete and by savannah-type
cover and vegetation. Lithological contacts are rarely
exposed and correlation along strike between isolated
exposures is made tentative by the extensive cover and
by the paucity of continuous marker horizons and
distinctive stratigraphic sequences. Correlation is also
complicated by the obliteration of kinematic indicators
by quartz veining in the faults, which precludes even a
simple estimation of separation or sense of displacement
across the veins. For these reasons a detailed strati-
graphic column is not attempted.

4 Redrafted geological map of the area immediately around the Waterberg mine digitally traced from van Rooyen’s

hand drawn original36
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Lithologies
The oldest lithologies are volcanic effusives and asso-

ciated sedimentary rocks belonging to the 2?06 Ga

Rooiberg Group40 with a divide across the Main Lode

between dominantly red and grey massive felsites to the

southeast with relatively little evidence of sedimentary

interbeds, and a bimodal volcanic sequence to the

northwest with more mafic lavas and perceptibly greater

volumes of interbedded sedimentary rocks. Cherts and

shales occur within the lowermost mapped part of the

south block, and cherts and sandstones occur within the

north block. A body of dolerite intrudes the far western

part of the study area and is probably part of the

extensive dolerite sill system of post-Waterberg age

shown on the regional geological map (Fig. 1). More

detailed descriptions of individual lithologies are given

below. Geochemical data for various samples of acid

and basic volcanics, sandstones and portions of the

mineralised veins are compiled in Table 1.

Felsites
Grey and red felsites dominate the eastern and southern

parts of the map area. The felsites are consistently

microcrystalline to fine-grained, and three main types

are recognised in the map area:

(i) massive, fine grained, grey and red felsite

(ii) massive red felsite with small (,2 mm) green

pinitoid grains after feldspar phenocrysts

(iii) layered felsite with local flow structures, with

layers and bands defined by differences in

crystallinity, vesicularity and lithophysae.

Pebble to cobble sized xenoliths also occur sporadically.

Some of these are volcanic blocks and bombs that have

formed compactive dimples and sags in the underlying

strata and were subsequently overdraped (Fig. 7a).

The present study has revealed two types of irregular
quartzite bodies in the felsite:

(i) vitreous, medium-grained quartz in a partly
porous, sugary texture with a dusty, pale pink,
interstitial cement that is possibly a clay derived
from altered feldspar. These bodies have thick-
nesses of a few metres on the surface. The clarity
of the quartz grains suggests that the rock is not
sedimentary, and one possibility for its genesis is
alteration of felsite in hydrothermal pipes, where
feldspar was broken down to fine mica and the
chemically resistant quartz left largely unaffected

(ii) amorphous, totally recrystallised red quartzite
that probably represents fragments of a pre-
eruptive metasedimentary sequence.

Agglomerate
The term ‘agglomerate’ is used for a rock of porphyritic
appearance containing 5–40 mm, dark brown angular
clasts in a paler, fine-grained groundmass (Fig. 7b).
There is no oriented fabric and the surfaces of clasts are
slightly indented relative to the groundmass as a result
of differential weathering. The general appearance of the
clasts is similar to the altered felsite fragments of the
Main Lode, so they may be early formed felsite that
underwent a degree of alteration before being fragmen-
ted by an erupting magma to form a volcanic mush.
Units of agglomerate several metres thick occur at
various levels in the stratigraphy, and continuously for
more than 400 m in a thick bed or lens adjacent to the
hangingwall contact of the Main Lode. It is interesting
to note that this prominent band of agglomerate
coincides with the area between Number 3 and
Number 6 winzes on the Welgevonden section of the
original mine, where high PGE grades were proven
during mining.23,39

5 Structural interpretation of the study area based on aerial photographs 998 and 1005 (modified from Ref. 20)
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Basalts and basaltic tuffs
Microcrystalline to fine-grained plagiophyric basalt
occurs in 20–50 cm thick, internally massive layers
representing individual flows northwest of the Main
Lode. The outer 2–3 cm of exposed layering surfaces is a

red weathering rind that superficially resembles felsite,

but a darker rock is revealed on fresh surfaces. The

relatively resistant basalt layers are conspicuous by their

protrusion above the eroded felsites and felsic tuffs

and by their smoother layering and fracture surfaces

6 Detailed map of the geology surrounding the Waterberg hydrothermal platinum deposit. The map area comprises the

eastern part of Welgevonden 343 KR and northern part of Rietfontein 513 KR (cf. Figs. 2–5)
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(Fig. 7c). Cavities after plagioclase phenocrysts are seen
in this massive basalt. Basaltic tuffs also occur in
thinner, upward-fining, graded beds up to a few
centimetres in thickness (Fig. 7d), some of which have
a basal zone of tiny (,1 mm) lapilli. Geochemical
analysis of samples 99–22 and 99–25, collected from
different flow units located close to and far from the
Main Load, shows that although the basalts have been
extensively affected by alteration and silicification,
concentrations of Mg, Fe, Cr and Ni remain signifi-
cantly higher than the felsites (Table 1).

Silicified basalt spheres in rhyolite
This highly distinctive lithology occurs northwest of the
Main Lode and consists of a very fine-grained, massive,
yellow-brown rhyolite containing randomly distributed,
fine grained, apparently mafic bodies in the form of
spheres that are 5–8 cm across (Fig. 7e and f). The
boundaries between the dark spheres and surrounding
pale rhyolite are consistently sharp. The rock was
found at one locality only (see Fig. 6) where it has a

stratigraphic thickness of a few metres with concealed
upper and lower contacts. It overlies a 1?5–2 m thick unit
of banded chert and underlies an extremely fine-grained,
hard, massive lithology of uncertain thickness, texturally
resembling silt- or claystone. Weathered-out dark spheres
and large chert blocks were found 200 m further west,
indicating that the unit continues at least that far. Sample
IM-B/SP (Table 1) is a ,8 cm3 cube cut from the centre
of one of the largest mafic spheroids in this unit.

In three dimensions, some of these mafic bodies are
not spherical but exhibit tubular or crude caterpillar-like
forms (e.g. Fig. 7g), which is interpreted as an expres-
sion of pinching of a single mafic globule in plastic state,
in an igneous analogy to tectonic boudinage. Other
mafic bodies display a peanut-shell shape, interpreted as
either an advanced stage of pinching where a single large
globule in a plastic state was in the process of splitting
when it solidified; or two globules collided gently, began
to fuse, and solidified. There is other evidence of
collision and/or fusing of more than two globules of
different sizes in a molten or near-plastic state.

Table 1 Geochemical data for Waterberg vein samples and country rocks

Sample IM-B/SP 99-25 99-22 99-21B 99-21A 99-21F 95-6 99-STN 99-4a 99-2 W317 W347 W350

Lithology Basalt Basalt Basalt Basalt Felsite Felsite Felsite Stone Stone Vein Vein Vein Vein

Major elements

SiO2 Wt-% 63.97 72.03 69.29 64.15 77.32 78.77 80.35 91.84 98.74 69.65 93.97 74.05 92.81

TiO2 0.68 0.25 0.48 0.77 0.26 0.30 0.23 0.13 0.01 0.23 0.08 0.24 0.05

Al2O3 16.60 10.78 13.44 15.36 12.07 10.88 11.66 3.82 0.71 4.95 2.98 4.83 1.53
Fe2O3 9.35 6.94 7.84 12.91 3.12 1.99 2.62 0.63 0.45 21.71 2.24 18.94 4.13

MnO 0.02 0.07 0.02 0.03 0.01 0.01 0.02 0.01 0.01 0.03 0.01 0.02 0.01

MgO 4.74 3.82 2.80 2.74 0.31 0.28 0.31 0.01 0.1 0.27 0.17 0.36 0.15

CaO 0.89 0.26 0.52 0.82 0.01 0.16 0.07 0.01 0.01 0.03 0.01 0.03 0.02

Na2O 1.09 0.30 0.87 1.43 0.14 0.18 0.17 0.08 0.02 0.02 0.02 0.01 0.01

K2O 1.19 3.19 2.45 0.38 4.03 4.14 3.89 0.61 0.12 1.2 0.52 1.38 0.28

P2O5 0.13 0.03 0.02 0.05 0.02 0.02 0.03 0.01 0.01 0.04 0.01 0.05 0

LOI 0.83 2.27 1.56 1.04 2.52 2.16 1.32 3.13 0.53 1.46 0.67 0.79 1.17

Total 99.49 99.95 99.30 99.68 99.82 98.89 100.68 100.29 100.71 99.59 100.68 100.70 100.16

Trace elements

Sc ppm 33.7 4.2 14.5 51.6 3.4 3.2 4.4 1.8 0.3 10.5 1.6 6.4 1

V 62.3 34.7 20.2 84.5 2.2 22.9 8.1 45.6 2.5 45.3 7.4 15.5 6.1

Cr 78.8 203 95.3 110 2.9 17.9 8.0 7.1 21 20.3 281 229 25.8

Co 15.7 11.9 9.9 20.9 2.0 4.8 3.2 6.3 0.4 11 1.4 2.5 1.1

Ni 324 178 23.2 82.4 3.7 6.2 8.3 12.4 29.5 28.5 30.9 29.9 38.4

Cu 85.7 34.4 145 131 31.4 132 39.4 0.7 2.2 205 22.7 177 34.7

Zn 88.9 72.3 147 111 15.8 54.8 29.1 7.5 6 89.5 12.8 93.5 10.4

Ga 35.4 14.8 36.4 37.0 19.7 18.6 16.2 6.1 1.9 10.2 5.7 11.6 3.2
Sr 117 24.0 81.8 133 6.1 31.5 19.8 13.5 5.9 13.9 9.5 14.8 6.8

Y 107 47.9 45.3 26.1 64.6 51.9 52.4 12.1 0.5 48.3 20.9 48.9 7

Zr 313 391 410 315 459 372 402 379 4 140 79.1 130 48.2

Nb 4.8 19.0 11.5 5.9 19.2 24.0 20.1 12.9 0.3 71.3 9.1 18.9 3.4

Ba 409 316 305 226 741 719 641 162 71.5 214 157 131 45.9

La 130 48.1 22.1 47.6 98.3 50.2 79.5 16.1 0.9 55.1 27.3 191 25.7

Ce 175 50.4 52.3 59.4 123 103 102 17.8 1.2 23.2 36.6 228 20.7

Pr 25.7 9.9 6.1 9.2 21.3 11.4 17.0 3.0 0.3 9.4 5.2 29.6 3.4

Nd 79.9 32.8 23.5 28.4 70.8 39.9 56.1 9.8 0.9 27 15 81.8 9.4

Sm 15.2 5.6 6.7 5.3 13.6 7.9 10.4 1.9 0.2 4.3 2.4 10.5 1.2

Eu 3.7 1.0 1.4 1.4 2.5 1.4 1.8 0.4 0 0.5 0.3 0.9 0.1

Gd 15.0 5.2 6.3 4.6 11.6 7.2 9.4 1.4 0.2 4.3 2.2 8.1 1

Tb 2.6 0.9 0.9 0.7 1.7 1.1 1.6 0.2 0 0.8 0.4 1.1 0.2

Dy 17.1 6.2 5.5 3.9 10.2 6.9 8.2 1.6 0.2 6.3 2.5 7.2 1.2

Ho 3.1 1.4 1.1 0.8 1.8 1.4 1.6 0.4 0 1.3 0.6 1.4 0.2

Er 9.0 4.8 3.9 2.5 5.5 4.7 4.3 1.3 0.1 4.6 2 4.9 0.8

Tm 1.3 0.8 0.7 0.4 0.9 0.8 0.7 0.3 0 0.8 0.3 0.8 0.1

Yb 7.9 5.6 5.0 3.2 6.0 5.4 4.8 1.9 0.1 5.2 2.3 5.2 0.9

Lu 1.1 0.9 0.8 0.6 0.9 0.9 0.8 0.3 0 0.8 0.4 0.8 0.1
Hf 7.6 9.5 9.3 8.3 10.3 9.4 9.6 8.6 0.2 3.3 1.7 3.2 1.2

Ta 0.9 1.2 1.6 0.9 1.3 1.3 1.9 0.2 0 0.6 0.3 0.7 0.2

Th 14.8 18.4 13.5 16.2 20.3 16.7 28.0 7.5 0.1 28.7 8.7 27.7 4.2

U 4.1 4.2 4.9 4.6 5.4 5.0 8.9 2.0 0.3 10.6 1.9 5.5 2.8
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The segregation into mafic bodies and felsic ground-

mass probably occurred before eruption of the mixed
magma, as the contacts are sharp, indicating that mafic
bodies may have been in the solid state at time of

extrusion. Furthermore, it is unlikely that the mafic

bodies were deposited as bombs, as there is no evidence

of other ejecta in the rhyolitic groundmass, no evidence
of impact disturbance of the groundmass, and no
evidence of impact fracturing in the mafic bodies. It is

suggested that the rock formed by injection of a hot

a volcanic bomb in layered felsite (UTM coordinates 62539 94116): note depression beneath and draping above the

bomb; b agglomerate adjacent to the Main Lode; c thick-layered basalt north of the Main Lode (UTM 61310 93740); d

layered and graded basaltic tuffs north of the Main Lode (UTM 61486 93720); e rhyolite with basaltic spheres north of

the Main Lode (UTM 61628 93537); f close view showing spherical nature of basalt; g example of elongate tubular basalt

in rhyolite; h rhyolite with basalt blebs south of the Main Lode (UTM 62227 934386): hammer is 40 cm long; pencil is

12 cm long

7 Felsic and basic volcanics
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mafic melt into cooler felsic magma chamber, with
consequent segregation of the mafic melt into globules
due to thermal and density contrast with the felsic
magma. The hotter mafic globules were cooled below
their solidus temperature, crystallised, and were carried
as solid bodies in the felsic magma during effusion or
relatively gentle eruption. It is possible that the injection
of mafic melt superheated the felsic magma above its
liquidus temperature and induced eruption.

An equally peculiar variant occurs in a 15–20 m thick
unit southeast of the Main Lode. Here, the mafic
component is present as very irregular rounded blebs up
to 4 cm in the longest axis, in a groundmass that is paler
and finer (Fig. 7h) than the variant northwest of the
Main Lode. These distinctions, in addition to the fact
that the lithologies under- and overlying the two
variants are entirely different, makes it unlikely that
they are part of a single unit tectonically repeated across
the Main Lode. Rather, they probably represent related
but temporally separate episodes of igneous activity in a
cyclic igneous process. The finer grain size, more
irregular bleb shapes and smaller bleb size of the
southeastern variant probably attests to a shorter time
between magma mixing and eruption. In this interpreta-
tion, the mafic component has either been injected more
suddenly and dispersed, or been disrupted to a greater
degree after its injection into the felsic melt, relative to
its counterpart northeast of the Main Lode. There was
neither the time nor sufficiently calm thermal and fluid
conditions in the host melt to allow development of the
mafic component into larger globules or spheres. Sample
PA-99-21 is an example of this rock and analyses of
separated mafic and felsic components (99-21B and 99-
21A and 99-21F respectively) are shown in Table 1. The
mafic portion is enriched in Ti, Al, Cr, Co, Ni (and
somewhat surprisingly, Na) compared with the felsic
portion. Elevated concentrations of immobile Al and Ga
in the mafic portion probably reflect significant plagio-
clase in the primary rock although only traces were
found in thin section. This feldspar has been altered by
later fluids, with considerable removal of Ca and to a
lesser extent, Na.

Layered felsic lapilli tuffs
Units of layered tuff occur north and south of the Main
Lode, interbedded with felsites or, more commonly in
the north, with basalts and basaltic tuffs. These felsic
tuffs are characterised by 1–3 cm thick rhyolitic (sensu
lato) beds, most of which exhibit a basal zone of up to

70 vol.-% grey or red, 1–2 mm microgranitic lapilli. The
lapilli appear spherical in hand specimen but have
slightly irregular, ragged edges under a microscope. The
groundmass is very fine-grained throughout with a tan/
beige, sometimes pale grey colour (Fig. 8). Wave ripples
and scour marks are well developed on some bedding
surfaces, indicating subaqueous deposition or reworking
of pyroclastic materials. A finer-grained, harder variant,
common in the northern part of the map area, exhibits a
regular lamination (layers ,1 cm). This variant has
smoother fracture surfaces and is darker, with no
observed evidence of water action.

Shale
A highly fissile, brown shale with a purple hue is well
exposed at the roadside below the farm perimeter fence
close to the southeast corner of the map area (Fig. 6).
The shale exhibits a very planar and well-defined
lamination, a characteristic green colour on fracture/
joint surfaces, and small ripples on some bedding
surfaces (Fig. 9). The orientations of bedding in both
the shale and the Rooiberg lithologies north of the Main
Lode are similar, and the lithologies overlying the shale
are similar to others elsewhere in the map area,
suggesting the shale is of Rooiberg age. The shale is
meso- and microscopically devoid of fossils, and there is
no other evidence that it belongs to a younger sequence.

Banded chert
Cryptocrystalline chert with characteristic conchoidal
fracture occurs as numerous 0?5–2 m thick beds
throughout the sequence to the northwest of, and
distant from, the Main Lode, but is rare within the red
and grey felsite to the southeast and immediately
northwest of the Main Lode. The chert bands are
characterised by slightly undulating bands up to a few
millimetres thick with white, grey, black and red
colouring, and may have formed through alteration of
felsites.

Massive microcrystalline lithologies
A number of minor, microcrystalline lithological units
of uncertain genesis also occur within the stratigraphy.
Most cannot be traced for more than a few meters along
strike beneath the cover and are therefore not mapped
as discrete units. Texturally, most of these lithologies
resemble clay- or siltstone but do not display the typical
fracture or jointing pattern of pelites, and their colours

8 Layered lapilli tuff with basal zones rich in spherical

lapilli (UTM 61958 94570)
9 Rippled marked shale in a cutting on the north side of

unpaved road in far southeast corner of map area

(UTM 62669 93616)

Armitage et al. Geological investigation of the Waterberg hydrothermal platinum deposit

122 Applied Earth Science (Trans. Inst. Min. Metall. B) 2007 VOL 116 NO 3



vary from cream through pale grey to deep red-brown.
They are interpreted as very fine-grained volcanics that
may represent the lightest, latter stages of felsic
pyroclastic deposits.

Dolerite
An undeformed, medium- to coarse-grained dolerite
with very minor sulphide (pyrite-chalcopyrite) miner-
alisation crops out as scattered small, rounded, resistant
knolls protruding from the cover in the west corner of
the map area (Fig. 6). The margin of the dolerite is not
exposed and is inferred to occur between the observed
exposures of dolerite and surrounding felsite. The
inferred trace of the margin appears gives the dolerite
body an irregular shape that is discordant to bedding in
the country rocks. The relative chronology of intrusion,
faulting and quartz veining is unknown, as no definitive
cross-cutting relationships were found. However, the
dolerite could belong to a hypabyssal system of post-
Waterberg age that crops out at many locations in the
Nylstroom region, particularly in the Waterberg Group
north of the map area (Fig. 1), or may be even younger;
a Karoo age intrusion.

Sandstone
The southeastern part of the study area is dominated by
a friable, cream to pink, fine-grained sandstone contain-
ing accidental lithic fragments of various lithologies up
to pebble size and spheres of hard sandstone up to 8 mm
in diameter (Fig. 10). Another distinct minor compo-
nent is small, dark, elongate, sharp-ended clasts that

appear to be concentrated in local clusters. Although the
sandstone matrix looks homogeneous in outcrop,
microscopic inspection shows it to be quite poorly
sorted at the fine end of the grain size scale.

The unit is bounded to the north by the Main Lode
and to the west by an older NNE-SSW trending fault
that has been filled by a quartz vein. Throughout the
exposure, the angular clasts comprise a very small
proportion of the rock volume and their distribution is
highly variable. A number of spoon-shaped and spoon-
size brown stains were observed, possibly representing
microslumps in the unconsolidated sand. The disconti-
nuities created by the slumps were later preferentially
stained by Fe oxides during burial and consolidation.

Adjacent to the hydrothermal quartz veins, the
sandstone has been chemically indurated to a hard
quartzite. A very fine lamination was observed at a
couple of localities, but unfortunately only in loose
blocks. Therefore the orientation of the bedding/
lamination, and thus the relationship of this unit to
the Rooiberg lithologies, could not be confirmed. The
friability of the rock, however, attests to a relatively
young age and it has been previously mapped as
sandstone of Karoo age by workers familiar with this
sequence in the region.16,35,37 In fact, the sandstone
belongs to the horizontal Mesozoic sedimentary
sequence deposited in pull-apart basins and half grabens
of the Sprinkbok Flats and it has been assigned to the
(Triassic) Clarens formation on the 1 : 250 000 scale
Nylstroom geological map.5 Large angular clasts and
the pea-size spheres are frequently encountered, and
represent silicified CaCO3 concretions of an inorganic
nature (H. Praekelt, pers. comm., 2007), although the
small spheres may have been organically induced. The
origin of the smaller, dark, angular fragments also
observed remain uncertain: one interpretation is that
they represent petrified wood, which would point to a
post-Silurian age, compatible with the interpreted
Mesozoic age for the sandstone, and another is that
they are Fe-oxides which were accumulated during the
original aeolian formation of the Clarens sandstones
(ibid.).

Structural geology

Bedding
A stereonet showing contoured poles of bedding in
Rooiberg volcanic and sedimentary lithologies is given
in Fig. 6. The strike of bedding is generally NE-SW but
varies between N-S and E-W, with gentle to moderate
dips but approaching steep angles at a few localities.
Layering was not observed in situ in the younger
sandstone in the southeastern part of the map area.

The spread of dip angles between 7 and 65u has an
uncertain cause. Possible explanations are:

(i) draping of volcanic rocks over an irregular
substrate

(ii) fault-block rotation and drag folding adjacent
to faults

(iii) doming of bedding over volcanic vents in Rooiberg
time and by emplacement of post-Rooiberg
igneous bodies such as the post-Waterberg hypa-
byssals or the Nebo Granite, which crops out on
the adjacent farms Rietfontein 513KR and
Rietfontein 345KR (Fig. 3)

10 a friable Bushveld sandstone with accidental lithic

fragments south of and abutting the Main Lode (UTM

62399 93679) and b Bushveld sandstone south of the

Main Lode with dark, angular fragments: origin of

these features remains to be resolved (UTM 62317

93601)
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(iv) folding, which is addressed in more detail
below.

Any combination of these mechanisms is also possible.

Faults
Since the Main Lode is a quartz vein that is known to
occupy a fault and the stratigraphy of the area is largely
covered, it was decided the best way build a structural
image of the area was to locate and trace the resistant
quartz veins that protrude above the cover. Three sets of
veins were identified:

(i) NE-SW to ENE-WSW striking quartz veins
representing faults and fractures subordinate to
the similarly oriented Main Lode (Fig. 6)

(ii) NW-SE quartz veins of unknown tectonic
character. The largest of these veins may
represent faults, as the dolerite in the west seems
to be disrupted or truncated in the vicinity of an
extrapolated major NW-SE vein. This particular
vein was extensively trenched for exploration
and despite the very different strike direction to
the Main Lode, and the intensive trenching
indicates the high significance attached to the
lode-like fabric of the vein

(iii) NNE-SSW and NNW-SSE striking, minor
quartz veins. Only a minority of these exhibit
the brecciated altered felsite seen in the Main
Lode and other major veins, and even in these
cases the felsite clast content is minor. Many of
these veins are characterised by coarse ‘dog
tooth’ quartz rather than massive hydrothermal
quartz or generations of comb quartz that
characterise the major veins. One exception is a
NNW-SSW striking, trenched vein close to the
southwest boundary of the map that meets the
Main Lode at the same point as a major NW-SE
vein (Fig. 6).

There are other significant quartz veins that have unique
or uncommon orientations. One of these is the Branch
Lode, interpreted as a splay fault that narrows north-
eastwards and either rejoins the Main Lode further
northeast (as inferred in Fig. 6) or is cut by an equally
large vein striking NNE-SSW. This large vein is
certainly a fault because it juxtaposes Rooiberg lithol-
ogies against Mesozoic sandstone. It was not recognised
by Wagner and Trevor38 but does appear on van
Rooyen’s local map (Fig. 4). Unlike the main and
Branch Lodes, however, it contains little other than
massive hydrothermal quartz, which probably explains
why no exploration trenches are found along it. Another
intensively trenched vein branches SW from the Main
Lode at its western end and exhibits a peculiar ‘knee’
where its strike changes abruptly to SSW.

Three veins with an approximately NE-SW strike and
slightly arcuate trace occur northwest of the Main Lode
(Fig. 5). Together they define an en echelon pattern and,
assuming that their proximity and approximate paralle-
lism to the Main Lode indicates they are coeval, the
pattern indicates a dextral shear component. Trenches
were excavated in two of these three en echelon veins and
the trenching immediately northeast of the Lumavoha
farmhouse was probably carried out by Doornhoek
Platinum Ltd, who explored this area adjacent to
Transvaal Platinum’s property in 1925–1926 without
success.23

Cross-cutting relationships are rarely exposed and are
inconsistent. For example, some NW-SE striking veins
can be traced across the Main Lode without offset and
would appear to have formed later than the Main Lode.
However, a greater number of NW-SE veins appear to
be truncated by the Main Lode and are therefore older.
This suggests two generations of NW-SE veins.

Quartz veining has completely obliterated kinematic
indicators in the main fault zones. A few small-scale,
brittle fault planes some distance from the quartz veins
display sets of slickenlines and slickensteps overprinting
each other, expressing movement in 2–3 very different
directions. In road cuts a short distance east of the map
area, several well developed brittle planes with a steep to
subvertical orientation show unambiguous evidence of
movement. Here, slickenlines and slickensteps on NW-
SE to NNW-SSE striking planes express subhorizontal
dextral movement, while similar indicators on N-S
striking planes express oblique down-to-southeast move-
ment. Geometically and kinematically these appear to
have no relationship to the Main Lode.

Folds
Folds are rare and poorly exposed. In the northeast part
of the map area, adjacent to the perimeter fence,
opposing dip directions to the northwest and southeast
over distances of a few metres to several tens of metres
makes compelling evidence for folding. The interpreted
axial traces are parallel to those of the map-scale folds
on the Nylstroom 1 : 250 000 scale geological map5 and
a parasitic relationship is therefore suggested. Weak,
subhorizontal to gently plunging parasitic folds may
contribute to the variation in angle of dip throughout
the map area.

In the northeastern area where mesoscale folds were
observed, van Rooyen36 also recognised changes in dip
direction. His map extends into the neighbouring farm
Rietfontein 345 KR (Fig. 4) and shows the dip of
bedding to vary between west and northeast, implying
either part of a local dome or a north to northwest
trending, moderately plunging fold axis.

Weakly developed, decimetre- to metre-scale, north-
east-verging monoclines occur sporadically and have a
well-developed axial-planar cleavage. These structures
are scarce and their tectonic significance is not clear. In
best estimation, they suggest a minor top-to-east
movement relative to bedding. Again, this is compatible
with a dextral component of shearing along the fault
zones.

Discussion

Implications for Rooiberg Group stratigraphy
and the main Bushveld magma chamber
A surprising variety of lithologies, including intriguing
expressions of bimodal volcanism and especially magma
mixing, are developed in the Rooiberg Group rocks
around the Waterberg deposit. This variety is unex-
pected if these units forms part of the upper Rooiberg
Group (Kwaggasnek and Schrikkloof Formations) as is
currently assumed on the regional geological map.5 The
regional Rooiberg stratigraphy, compiled by Hatton and
Schweitzer,11 Schweitzer et al.30 and Twist,34 indicates a
significant component of mafic lavas in the lower
Rooiberg (Dullstroom formation) but only acid lavas
and volcaniclastics in the upper Rooiberg group
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(Fig. 11). This leads to the conclusion that either the

units observed here are not upper Rooiberg, or that

mafic lavas were involved at different times and in

different places across the Rooiberg volcanic province,

and that the ‘classic’ stratigraphy, compiled from other

Rooiberg sequences distant from Mookgophong, may

oversimplify important volcanic facies variations. Apart

from higher concentrations of U, which may have been

introduced by later fluid activity, the felsites found

around the Waterberg deposit are geochemically

identical to the mean compositions of conventional

Kwaggasnek and Schrikkloof low Mg felsites (Fig. 12),

suggesting that the acid volcanics are probably also part

of the upper Rooiberg and the presence of basic

volcanics is anomalous.

Geochemical analysis shows that all units are heavily

silicified and overprinted by Fe, U and REE. However,

‘basaltic’ units retain elevated levels of Cr, Ni and Co,

compared with the felsites (Table 1) and suggest that

they do indeed belong to a more primitive magma that

was spatially associated with the more voluminous acid

magma. It should also be noted that vein samples from

the Main and Branch Lodes contain high concentrations

of Cr (Table 1). Given the high degree of alteration it is

conceivable that the Rooiberg basalts could have

supplied some of this Cr to the veins, so the measured

Cr concentrations in some basic units may under-

estimate the original Cr concentration, particularly for

samples close to the lodes. Mantle normalised patterns
from some of the basalts (the exception being IMP-99-B/
SP, which is highly enriched in REE) show similarities
with high Mg felsites and Low Ti andesites from the

Lower Rooiberg Dullstroom Formation (Fig. 13), but
also the B1 and B3 magma types believed to be parental
to the Rustenburg Layered Suite (e.g. Barnes and

Maier).1 Concentrations of Cr, in excess of 200 ppm in
the sample furthest from the most intense hydrothermal
alteration (PA-99-25), exceed those in any of the Lower
Rooiberg mafic lavas, and suggest (at least occasional)

eruptions of very basic liquid. Based on the mapping
carried out in this study, 10–20% of the volcanic
sequence around the deposit may be basaltic. Van
Rooyen36 previously mapped these rocks as undiffer-

entiated tuffs and traced similar units across the region
(Fig. 3) suggesting that a larger volume of basic rocks
may be present outside of the immediate study area.

These findings of high Cr volcanics are significant in
the context of the wider Bushveld Complex as some
workers (e.g. Cawthorn and Walraven3) have suggested
that, in order to account for the enormous quantities of

olivine and chromite in the Lower and Critical Zones of
the Rustenburg Layered Suite (RLS) of the Bushveld
complex, large volumes of magma (partially depleted in
Cr and Mg) may have periodically escaped the main

Bushveld magma chamber, either as lateral hypabyssal
intrusions or as lavas, presumably after the RLS
chamber was developed underneath the low density
Rooiberg carapace. To date there has been no field

evidence to support Cawthorn and Walraven’s sugges-
tion and it has remained controversial.7,15 This may be
the first evidence to support occasional eruption of

relatively Cr-rich mafic magma in Upper Rooiberg times
and it merits further research.

Structural setting
In terms of structural geology, an obvious point to
emphasise is that the Main Lode occupies a relatively
recent fault that provided a ready pathway for fluids.
This seems to be the case for most of the quartz veins in

the study area, and while the local structural pattern is
inconclusive when considered in isolation, it becomes
more significant in the context of known regional
structures. The northwesterly dip of bedding reflects

the location of the map area on the northern limb of the
approximately east-west trending Swaershoek Anticline

11 Stratigraphy of the Rooiberg Group showing the

expected predominance of felsic volcanics in the

Kwaggasnek and Schrikkloof formations (modified

from Refs. 11 and 31)

12 Mantle normalised spidergrams of Waterberg felsites

compared with mean compositions of Kwaggasnek

and Schrikkloof low Mg felsites (LMF)11

Armitage et al. Geological investigation of the Waterberg hydrothermal platinum deposit

Applied Earth Science (Trans. Inst. Min. Metall. B) 2007 VOL 116 NO 3 125



(Figs. 1 and 14), which is cogenetic with the Nylstroom

Syncline, Zwartkloof Anticline and related folds to the

south. As the anticlines have west-pointing closures and

the synclines have east-pointing closures, the fold axes

are interpreted to have an approximately westward

gentle plunge. The axial traces of these folds, however,

are slightly bowed and indicate a degree of refolding

which is more pronounced near the closures (Fig. 1).

The question is whether the refolding was a temporally

separate event or a progressive episode in, for example, a

transpressional event involving initial folding normal to

the shear boundary followed by refolding and axis

rotation due to continued shearing. An answer may be

sought in larger lineaments to the north and northeast of

the study area such as the Welgevonden Fault and the

larger Zebediela and Planknek-Ysterberg Faults.

On the Nylstroom 1 : 250 000 scale geological map,

the eastern end of the Welgevonden Fault is suggested to

merge with or abut against an unnamed NNE-SSW

striking fault and the generally ENE-WSW striking

Zebediela Fault (Fig. 1) and the Welgevonden Fault is

commonly assumed to be an extension of the Zebedeila

fault system along the TML relay system.6,8 However

there may be an alternative explanation involving the

Planknek-Ysterberg Fault which extends ENE from

Mokopane for 40 km towards Polokwane (Pietersburg).

While the current map indicates a 20 km gap between

the eastern end of the Welgevonden Fault and the

western end of the Planknek-Ysterberg Fault, both

faults possess a near identical strike and there is some

evidence to suggest they may merge into a common

structure.

Aeromagnetic surveys conducted for exploration of

Platreef-type mineralisation south of Mokopane27,29

indicate that the Planknek-Ysterberg Fault extends

further southwest than shown on the Nylstroom map;

across the farms Baviaanskloof 290KR and Waterval

297KR to the edge of the survey area at close to 24u19’S

and 28u55’E. There are no publicly available geophysical

data with which to trace the fault further southwest but

an extrapolation of the strike encompasses the promi-

nent granite scarp that runs across the farms

Cyferfontein 298KR and Naboomfontein 320KR as

well as an obvious line of waterpumps, disappearing

streams and offset drainage that occur at the foot of the

scarp and extend WSW on to the farm Rietfontein

13 Mantle normalised spidergrams of Waterberg felsites compared with mean compositions of Lower Rooiberg Group

Low Ti andesites (Low Ti) and high Mg felsites (HMF):11 mantle normalisation values from Taylor and McLennan33

14 Cross-section along line X–Y (Fig. 1) perpendicular to the structural grain showing the Welgevonden Fault and the

Pt-bearing Main Lode, interpreted by the authors
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318KR. The western end of the scarp and its associated
hydrogeological features are developed close to the
inferred eastern extension of the Welgevonden Fault on
Rietfontein 318KR at 24u24’S and 28u46’E, and it is
suggested that the Welgevonden Fault and the
Planknek-Ysterberg Fault could form part of a larger,
linked structure that crosscuts the Zebediela Fault and
the unnamed NNE-SSW striking fault.

Some support for movements induced by stresses
oblique to the ENE-WSW trend of the inferred
Welgevonden-Planknek structure is found in the sigmoi-
dal, strike-slip duplex, flower and transfer fault pattern
of the region and in the area around the Waterberg
deposit. In Fig. 5, a sigmoid outline is incompletely
defined by the Main Lode and Welgevonden Fault.
Whatever tectonic regime was in operation when the
faults formed, it is clear that the latest movement in the
study area involved a significant component of down-to-
southeast movement. This indicates a relatively young,
extensional event.

Age of faulting and mineralisation
Since the tectonically isolated sandstone in the south-
eastern part of the map area is assumed to be of Karoo
(Triassic) age,5 faulting along the Main Lode and related
faults must be syn- or post-Triassic. The major post-
Karoo event of interest is the crustal extension and
rifting that progressed to the break-up of Gondwana at
,180 Ma. Extension occurred across a roughly NNE-
SSW boundary reflected by the present N-S to NNE-
SSW trending coastline of the southeastern African
continent. The tensional stresses induced by this exten-
sion on pre-existing major ENE-WSW striking struc-
tures would be expected to cause sinistral transtension
along a lineament like the TML, but the studies of Good
and de Wit8 have revealed little or no response at this
time. Furthermore, the admittedly minor indicators of
shear sense in the present study are dextral. Thus the age
of faulting in the study area, very likely related to an
episode or episodes of fault (re)activation, is unknown,
but probably younger than 180 Ma. The quartz veining
and mineralisation associated with the Main Lode are
the youngest features on the deposit-scale geological
map (Fig. 6) and could have occurred after development
of the initial fault. The concept of ‘golden aftershocks’
advanced by Micklethwaite and Cox26 where initial
movement on a major structure triggers a period of
aftershocks that lead to repeated ruptures and enhanced
fluid flow through minor structures, could be important
in the development of the Waterberg deposit.

Source of the platinum
The high purity of the native platinum and the greater
lateral extent of the mineralisation relative to its vertical
depth have led to suggestions that the mineralised veins
might represent supergene enrichment of Pt from an
earlier deposit or some other host rock (see discussion in
Ref. 21). This seems unlikely, given the geometry of the
deposit and the lack of any obvious source for supergene
enrichment in the felsite. A supergene mechanism,
moreover, is at odds with the breccia-hosted nature of
the platinum, the vuggy nature of the quartz, and fluid
inclusion studies which indicate that inclusions trapped
in the platinum-associated quartz homogenised at
temperatures around 200uC.21 It therefore seems certain
that the metals were introduced via a fluid phase. It is

interesting to note that Cabral and Kwito-Ribeiro2 came
to the same conclusion about the Pd enrichment they
observed in the Gongo Soco Fe-ore deposit in Brazil.

There is no obvious source for the PGE and Au in the
Main and Branch lodes among the granites, felsites and
minor basalts of the area. While these rocks could have

supplied LREE, U, and also perhaps some Cr to the
mineralising fluid, they lack significant concentrations of
PGE and it seems more likely that the Pt comes from a

source not outcropping in the immediate vicinity of
the mineralisation. It is important to remember that
although the Waterberg deposit is enriched in Pt over

the other PGE and Au, McDonald et al.21 have shown
that this, coupled with the high purity of the platinum, is
likely to be a consequence of highly oxidising fluids and

changes in pH which favour deposition of Pd and Au
before Pt. This means that the source rocks need not be
unusually Pt-rich, and that sources with Pt/Pd ratios

significantly lower than those found in the mineralised
veins (typically Pt/Pd ranges between 3 and 20) could be
sources of the metals.

In this context, the proximity of the Waterberg
deposit to larger structures such as the proposed
Welgevonden-Planknek Fault system may be highly

significant. The Planknek-Ysterberg Fault cuts the mafic
rocks of the northern Bushveld Complex immediately
south of Mokopane. One possibility is that slivers of

PGE-rich mafic bodies such as the Platreef12,14,17 or the
Volspruit Sulphide Layer9,13 might have been displaced
from the area where they currently crop out south of

Mokopane and be present as disrupted tectonic lenses
along the steep fault zone (Fig. 14). This mechanism
could provide a metal source by translating fault-

bounded slivers of PGE reefs westwards to a position
beneath the Waterberg deposit. Indeed, Hattingh and
Pauls10 suggest that gravity signatures northwest of

Mookgophong are caused by concealed mafic rocks.
Alternatively, the fault system could simply generate an
array of shear and fracture zones that became primed

for fluids that subsequently liberated and redistributed
PGE along the fault network.

A pertinent feature of the Welgevonden Fault is that it

hosts leisure resorts (Die Oog, Libertas and Lekkerrus –
see Fig. 5) based around natural hot springs that exploit
a presumably young and near-surface geothermal
source. This fault zone is located barely 2 km northeast

of the Waterberg deposit. The source of this heat is
unclear but ICP-MS analysis of spring waters sampled
at the nearby hot springs of Die Oog, Lekkerus and

Libertas show only very low concentrations of PGE and
Au, close to or below the limits of detection (Table 2)
and not significantly different from control hot springs

at Warmbaths where there is no known PGE miner-
alisation. However, considered together with (i) the

Table 2 Concentrations of Pd, Pt and Au in hot spring
waters from the Welgevonden Fault (Die Oog,
Lekkerus, Libertas) and PGE-poor springs at
Warmbaths*

Warmbaths A Warmbaths B Die Oog Lekkerus Libertas

Pd 0.033 0.057 0.047 0.052 0.039

Pt ,0.015 ,0.015 ,0.015 ,0.015 ,0.015

Au 0.012 ,0.009 0.011 0.021 0.016

*All concentrations expressed in parts per billion (ng per mL).
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likely tectonic relationship between the Welgevonden
Fault and the Main Lode, and (ii) the fabrics of the
Main Lode which indicate recent quartz veining and
mineralisation, the present hot springs may represent a
waning, mineral-depleted stage of hydrothermal activity,
unrelated to that which generated the Waterberg deposit
(cf. Ref. 26).

Another, more exciting possibility is that the PGE
source was not tapped and redeposited in only one small
area, but that other parts of the fault system with
favourable country rocks may also host significant
concentrations of Pt. During the early phases of explora-
tion immediately following the discovery of theWaterberg
deposit, Wagner and Trevor38 noted other reported
discoveries of platinum on several farms (Doornhoek
352KR, Kromkloof 203KR, Geelhoutkloof 202KR and
Zuikerboschfontein 198KR) to the west of the Waterberg
deposit where the Welgevonden Fault and related veins
are also developed. While it is likely that many of these
claims were made purely to drive the share prices of the
companies owning the land (see discussion in McDonald
and Tredoux),23 most have never been re-evaluated using
modern exploration methods and it would be premature
to rule out the possibility that another deposit like the
Waterberg might exist elsewhere along the structure.

Conclusions
This study has significantly improved geological knowl-
edge of the Waterberg platinum deposit and the
surrounding lithologies. Mapping has shown that in the
Rooiberg sequence north of the deposit, there is a
surprising amount of basic volcanic rocks (basalts and
basaltic tuffs) associated with the more voluminous
felsites, agglomerates and felsic tuffs. Two volcanic units
contain immiscible felsic and basaltic liquids, implying
that Rooiberg volcanism in this area was bimodal, with
both magmas occasionally erupted together. This episode
of bimodal volcanism in the upper Rooiberg sequence has
not been recognised before andmay have implications for
models that invoke occasional loss of mafic magma from
the underlying Bushveld Complex magma chamber.

The fault that hosts the mineralised Main Lode is one
of the youngest geological features in the area. The strike
of the Main Lode parallels the larger, and geothermally
active, Welgevonden Fault immediately to the north and
it is highly likely that the Main Lode forms a companion
structure to the Welgevonden Fault. Furthermore,
evidence from aeromagnetic surveys and analysis of
topography and drainage patterns to the northeast of the
study area suggests that the Welgevonden Fault may be
an extension of the Planknek-Ysterberg Fault system that
cuts mafic rocks (including PGE reefs) of the Bushveld
Complex south of Mokopane. If these faults are linked, it
would provide a link to a potential source of PGE for the
Waterberg deposit. The PGE could be derived from
slivers of PGE-rich reefs that were displaced along the
fault zone to a position below theMain Lode, or via fluids
that leached PGE from source rocks close to Mokopane
and then travelled along the fault zone to deposit
platinum and other metals in the Main Lode.
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