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'THE MEASUREMENT OF THE VELOCITIES OF PARTICLES IN AN AIR-SOLID FLOW

D.G.H. Andrews

ABSTRACT

Theoretical investigations of two-phase flows have not so far 
produced a useful model since the interdependence of the many variables 
has been difficult to predict. Progress towards such a model is dependent 
on accurate experimental work on two-phase flows. Particle velocity is an 
especially important property, but most available techniques either disturb 
the flow or are slow or inaccurate.

The laser-Doppler velocity meter, LDV, was developed for measurements 
in single-phase flows, but it has been demonstrated by a few authors to be 
practical for particle veocity measurements in air-solid flows. The aim 
of the investigation was to find the range for which the LDV was suitable, 
and also to make useful measurements in a pipe conveying a dilute 
suspension of solids pneumatically.

Air and solid velocity distributions across the diameter of a 
vertically upward flowing air-solid suspension in a 50 mm diameter pipe 
were made using an LDV. The solids conveyed were spherical glass balls, 
mean diamter 455 ym, and sand, mean diameters 176 \m and 366 yra. The 
maximum ratio of solids to air mass flow rate was 2.5 and the maximum 
mean air velocity was 50 ms *. Significant slip between the phases was 
found. Some of the correlations postulated between the particle 
velocity and other flow properties, such as the pressure drop, were 
investigated.

Velocity measurements were also attempted with an LDV on plastic pellets, 
with effective diameters of 2 to 3 mm and varying degrees of success were 
achieved. The optical properties of the particles appears to be important 
when applying the laser-Doppler particle measuring technique to flows conveying 
particles of this size.
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CHAPTER 1 

INTRODUCTION

1.1 Air-Solid Flows

Multiphase systems occur frequently, both in the natural and man- 

made world, and have therefore drawn much interest. A multiphase 

system consists of a fluid medium and one or more partictilate components 

which can be either solid, liquid or gas. Examples of such multiphase 

systems in nature are, for instance, dust particles in suspension in 

the atmosphere, blood, silt conveyed in rivers, et cetera, and multi- 

phase systems of industrial interest include chemical reactors» 

pneumatic and hydraulic conveyors, dispersion of soot particles from 

chimneys, and many others. The systems investigated in this project 

were two-phase air-solid flows. There has been much work, both 

experimental and theoretical, on such flows during the last few years 

[Soo (1967), Boothroyd (1971), Birchenough (1975) ].

However, air-solid flows are extremely complex and purely theor- 

etical analysis of the flow is unlikely to be successful due to the 

very large numbers of variables involved in such flows. Many solutions 

of single phase fluid behaviour are of a semi-empirical nature, since 

the behaviour has not been explained theoretically. When solid particles

are added to such a fluid the interactions between the particles,;. between 

the particles and the fluid, and between the particles and the boundaries 

of the fluid have to be taken into account. This does not mean that 

theoretical approaches to the problem cannot produce any useful results. 

If appropriate approximations are made to simplify the problem it should

be possible to predict the behaviour of an air-solid flow in different 

situations. However, in order to test the validity of such approxim- 

ations, and the accuracy of the predictions, it is necessary for
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experimental techniques to be devised to measure the properties of the 

flow.

The aspect of air-solid flows investigated in this project is 

pneumatic conveying which is widely used for bulk solids transport 

throughout industry. Pneumatic transport involves the conveying of 

particulate solids through pipes by an air flow. The solids conveyed 

can vary widely in size, shape and chemical composition; for instance, 

pneumatic conveying has been used to convey grain, chemicals, plastic 

chips, foodstuffs, cement and many other materials. Since such 

systems are so widespread in industry a greater knowledge of the flow 

behaviour leading to improved plant designs would be greatly welcomed.

This investigation is mainly based on applying the laser-Doppler 

velocity meter to the measurement of particulate velocities in a 

pneumatic conveying duct. The particulate velocity is an important 

property of air-solid flows, but it is difficult to measure. The 

laser-Doppler velocity meter had been used by a few authors [Riethmuller 

and Ginoux (1973), Birchenough(1975)] for particle velocity measurements 

in air-solid flows and seems to offer many advantages over other 

techniques.

1.2 Pneumatic Conveying

Pneumatic conveying was the first aspect of air-solid flows to be 

widely used in industry, although many other uses have been developed, 

such as heterogeneous reactors and dust collectors. Initially, the 

major use of pneumatic conveying was in the transportation of grain 

[ Segler (1951) ], and was particularly utilised in emptying grain

from large containers such as ships. For this a reduced pressure 

system is used and the grain is carried up by the air flow into a 

collecting nozzle. This system is still used, but many other applic-
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ations for pneumatic conveying have been found. The range in 

pneumatic conveying systems at present in use is enormous, from the 

conveying of chemicals around a factory to the transportation of 

domestic rubbish over long distances.

Pneumatic transport has many advantages over other forms of bulk 

transport. Large quantities of solids can be moved without contact 

with human beings, which is often desirable when the solid is either 

poisonous or requires a high degree of hygiene. Dust from powders is 

often a health hazard which can be avoided by using pneumatic conveying. 

Since the system can be largely automated, large reductions in labour 

costs can be achieved. Hydraulic transport of solids is also common 

in industry and it is more energy efficient than pneumatic transport. 

However, many materials have to be kept dry and, therefore, pneumatic 

transport is more appropriate in these cases.

Pneumatic transport is often classified into dilute phase and 

dense phase conveying. In dilute phase conveying the majority of the 

volume of the pipe is occupied by the air and there is little variation 

in the solids concentration along the pipe. In dense phase conveying 

only a small proportion of the volume of the pipe is occupied by the 

air and the solids tend to collect together in dense slugs with air 

gaps between them. Dilute phase conveying relies on the suspension of 

particles in the air flow, whereas in dense phase conveying the 

particles are closely packed together and are forced down the pipe by 

the pressure drop along it. The transport velocities are higher and 

the pressure drop less in dilute phase systems as compared to those in 

dense phase systems. This is because in dilute phase flows large mass 

flow rates of air are required and the pressure drop is largely due to 

the air phase, the opposite being true for dense phase conveying. The 

value of the solids to air mass flow ratio at the transition from dilute

to dense phase flow is dependent mainly on the properties of the solids
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conveyed. Only dilute phase flows were investigated in this project.

The design of pneumatic conveying plants requires consideration 

of several points. Pneumatic conveying is more energy consuming than 

most other forms of bulk solids transport and therefore it is partic- 

ularly important for the system to be.running at the highest possible 

efficiency. The size of the blower or compressor should be no bigger 

than that required for the designed solids mass flow rate. However, 

in order to do this, the total pressure drop along the conveying line 

must be calculated. If the air mass flow rate produced by the 

compressor is too low for dilute phase flow, saltation in horizontal 

pipes and choking in vertical pipes can occur, which causes blocking 

of the pipe. Since the pressure drop along a pipe cannot be accurately 

predicted, present design practice often involves using a compressor 

much bigger than necessary to avoid blockages, which reduces the 

efficiency of the plant. Other factors to be taken into account include 

electrostatic charging of particles, particle degradation and bend wear. 

Electrostatic charging can increase the pressure drop, and also cause 

explosion from sparks. Inflammable materials such as sulphur cannot 

be transported pneumatically because of the risk of explosion. Particle 

degradation can be a problem, especially for solids such as foodstuffs, 

where the final size range is important. Bend wear is also important 

to avoid since holes in bends can cause expensive delays in the process 

and possibly release dangerous solids into the environment. The metal 

removed by the abrasive wear of the pneumatic conveying plant can 

contaminate the material conveyed [Mills (1977) J.

1.3 Modelling of Flows

. It has been established that there is a need for a model of air- 

solid flows in order that the behaviour of the flow can be predicted 

under any conditions, including dependence on the size of the conveying
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duct, the mass flow rate of both phases, the type of solid, and the 

geometry of the conveying system. Single-phase flows have been modelled 

successfully under some conditions and velocity profiles predicted, but 

no satisfactory model has yet been produced for two-phase flows. This 

is mainly due to the large number of parameters of the flow.

Since theoretical modelling of the flow is extremely difficult, 

it is desirable that experimental work should be done so that more 

knowledge of the behaviour of air-solid flows can be obtained. 

However, accurate measurement of the properties of air-solid flows 

presents many problems, especially since the flow tends to be hostile 

to most forms of instrumentation. Therefore, there is a need for 

adapting measuring instruments to air-solid flow conditions. All 

possible properties of the flow should be measured so that useful 

comparison with the results published by other workers can be made.

1.4 Work Undertaken

The main aim of this investigation was to develop instrumentation 

for measuring the properties of two-phase flow and to apply it to 

measure the properties of several types of air-solid flows. In this 

work, the problems involved in the investigation of air-solid flows 

are examined and the previous work on such flows is reviewed. The work 

was mainly concerned with measuring particle velocity distributions, 

which are known to be an important factor in two-phase flows. Many 

problems and inaccuracies have been found in most methods of particle 

velocity measurement used previously. The laser-Doppler velocity 

meter was found to be the best solution to the problem (see Chapter 2).

The pneumatic conveying plant which was available for the project 

was slightly modified in order that some problems involved in its 

earlier use could be rectified. Also, a small pneumatic conveying

plant was constructed in order that the performance of the laser-Doppler

.5.



velocity meter could be tested in a variety of flows. This is 

described in chapter 3. The meters measuring the mass flow rates of 

the air and the solids in both conveying plants were calibrated and 

the physical properties of the solids to be conveyed were measured. 

In the main conveying plant two types of solids were used, spherical 

glass ballotini and irregular sand particles. The ballotini were used 

because they had a small size range and were spherical, which reduced 

the number of variables in the flow. The sand had a large size range 

and was angular in shape, and so the difference in the flow using the

sand as compared to that with the ballotini indicated the effect of 

the size range and particle shape. Large plastic chips were used in 

the small conveying rig so that the laser-Doppler velocity meter could 

be tested with much larger particles. (see chapters 4 and 11)

The laser-Doppler velocity meter was developed to measure the 

velocity of fluid in single-phase flows [Yeh and Cummins (1964) ] , using 

the Doppler shift of light frequency when scattered by very small 

particles moving with the fluid, (see chapter 5) A few authors 

[Reithmuller and Ginoux (1973), Birchenough (1975)] have used the laser- 

Doppler velocity meter for particle velocity measurements in air-solid 

flows. The instrument has many advantages over other forms of particle 

velocity measurement, such as the non-obstruction of the flow, and was 

therefore used in the project. There are, however, many difficulties 

involved with the use of the laser-Doppler velocity meter in air-solid 

flows and these are given in chapter 6.

Measurements were taken in the main conveying plant with the solids 

described above. These measurements included the particle velocity 

profiles and the pressure drop in the pipe (see chapters 7, 8, 9 and 

10).
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CHAPTER 2 

PNEUMATIC CONVEYING

2.1 Introduction

In this chapter some of the theoretical analyses of two-phase air- 

solid flows published in the literature are reviewed. The majority of 

the published work has concerned the pressure drop along a pipe, which 

is of great importance in the design of pneumatic conveying systems. A 

few authors have analysed theoretically other parameters of the flow, 

such as solids velocity distribution, and the more relevant papers are 

briefly described here.

Also described in this chapter are some of the methods of particle 

velocity measurement which have been employed for both local and mean 

velocity measurement. The techniques are compared, giving the advant- 

ages and disadvantages of each. The reasons for adopting the laser- 

Doppler velocimeter, LDV, for this investigation are briefly stated.

2.2 Literature Survey

2.2.1 Pressure Drop Investigations into the behaviour of air- 

solid flows were initially concerned with grain elevators. Cramp and 

Priestley (1924) attempted to calculate the forces acting on each 

grain, taking account of the drag on the particle and the friction 

between the pipe wall and the particle. From this they obtained an 

expression giving an estimate of the pressure drop in the elevator. 

Cramp (1925) extended this method to the prediction of the pressure 

drop in a pneumatic transport system conveying other materials.

There has been much work published on the pressure drop encount- 

ered in an air-solid flow since then. Most of the work has been 

based on the assumption that the total pressure drop along a straight
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length of pipe, Ap , can be split up into several non-interacting parts, 

i.e.

ApT = A Paa+ APah+ Apaf +Apsa + Apsh + Ap sf (2.1)

where Ap is the pressure drop due to the acceleration of the air,
acx

Ap is the pressure drop due to the static head of air, 

Ap is the pressure drop due to the friction between the

pipe and the air, 

Ap is the pressure drop due to the acceleration of the

particles,

Ap is the pressure drop due to the static head of the particles, 
sh

and Ap is the pressure drop due to the friction between the 
si

particles, and between the particles and the pipe wall. 

A few of the papers will be surveyed below, in some cases giving 

the final expressions for the pressure drop. In order to simplify the 

problem, all the theoretical derivations required assumptions and the 

validity of some is rather dubious.

Voigt and White (1948) derived an equation for the pressure drop 

due to the friction between the air and the particles, and the pipe 

wall, Ap . They started with the Fanning equation for the pressure

drop in a pipe due to the friction of a single phase fluid:-

(2.2)Ap _ 4pv 2 f
2gD

where f is the friction factor. They assumed that this expression 

could be extended for use in air-solid flows using dimensional analysis 

and produced the expression :-

A pf D 2 Pa Ls k _1 = i + A A <-* -£> k (2.3)
Apaf d p s Re

1 3i 
where A and k are functions of [3 (Ps - Pa ) Pa 6d /P ]~, the actual

values being found experimentally, and Re is the Reynolds number of the 

air in the pipe. Although the expression does not involve the particle
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velocity, one of the assumptions made in the analysis was that the

slip velocity (v -v ) is proportional to the * air velocity v . In
as £

neither the present work nor other experimental investigations of the 

air velocity (e.g. Jokati and Tomita (1971) and Jodlowski(1976)) was 

this assumption found to be justified.

The pressure drop due to the acceleration of the particles, 

was investigated by Hariu and Molstad (1949). They calculated tho 

upward acceleration, a, of each particle in an accelerating upward 

flowing mixture to be :-

a= ^Td x <V'A - «--5-* (2 - 4)
s

where Cis the drag coefficient of the particles and f is tho friction 

factor of the solids. In this derivation they assume,d that the particle- 

wall friction pressure drop could be represented by a modified Fanning 

equation [equation (2.2)] in which the variables of the fluid were 

substituted with those of the solid. The pressure drop due to the 

acceleration of the particles from zero velocity to v was found to be:-
S

aG
Ap = -=4 (2.5)

*sa gv 
s

where G is the solids mass velocity. The modification of the 
s

Fanning equation to give the pressure drop due to the friction between 

the particles and the walls has been used by several authors [Stemerding 

(1962), and Rose and Duckworth (1969)] . It seems reasonable to assume 

that the pressure drop due to the friction of the solids,Ap is 

a function of the solids velocity, but whether it is proportional to 

the square of the mean velocity, as implied by the modification of the 

Fanning equation, should be investigated.

Clark et al (1952) also used the drag of the particles on the 

air to derive an equation for the pressure drop due to the solids 

friction in a horizontal conveying line :-
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L L P P v - v
r^ 2 a - r > (-) o-V
V TTR *S K T T 

S

where \r. is the terminal velocity of the particles in a fluid density 

p^. This analysis assumes that the drag on each particle is not 

affected by the walls or other particles, which is reasonable in dilute 

flow since the particles are in close proximity to each other and to 

the pipe wall for only a very small proportion of the time. However,

they also assumed that collisions of a particle with other particlesf

and with the wall did not affect the drag. This seems unlikely since 

even in dilute flows, particle-wall collisions occur frequently, 

changing the momentum of the particles.

McCarthy and Olson (1968) derived an expression for the total 

pressure drop using a continuum approach. They equated the change in 

momentum of the mixture with the shear stress and pressure gradient. 

The final equation for the pressure drop involved both the solid and 

air velocity, so that measurement of these variables was needed in 

order to test this analysis.

Rose and Duckworth (1969) produced an expression for the total 

pressure drop due to the solids and air in fully developed flow by 

considering the forces acting on a small section of the mixture in the 

pipe. Assuming that the solids velocity and shear stress in fully 

developed flow is constant, the total pressure drop was found to be :-

G p 4
ApT = g LsinG p a+ ^ (1 --£) +   TW (2.7)

s s

where 9 is the angle of inclination of the flow to the horizontal. 

The dependence of the variables in equation (2.7) on the properties of 

the conveyed material and the conveying system was further analysed 

using dimensional analysis, and a semi-empirical formula for the 

pressure drop using their experimental results was given. Dimensional

analysis was also used by Boothroyd (1966) in a similar way to produce a
.10.



semi-empirical expression using experimental results. In both these 

cases the mean velocity was incorporated in the final expression.

Yang (1977) also used a modified Fanning equation for pressure 

drop due to the particle-wall friction. He produced an equation for 

the solids friction factor which was a function of a modified Reynolds 

number, and obtained the coefficients in this equation by correlating 

the results of other authors. This approach to the particle friction 

pressure drop implies that the relation to the particle velocity is not 

simply a square law.

At very low solids to air mass flow rate ratios, the phenomenon 

of drag reduction has been reported by many authors. This is the 

reduction of the pressure drop to less than that of the single phase 

fluid. When this occurs the use of equation (2.1) for the analysis of 

the total pressure drop becomes unsatisfactory because it suggests 

that the pressure drop due to the air phase is unchanged by the 

presence of particles. If this was so then when drag reduction 

occurred the frictional pressure drop due to the solids would have to 

be negative. This problem was overcome LPfeffer and Kane (1974)] 

by combining the frictional losses of the two phases together :-

(2.8)

The total frictional pressure drop, Ap , is always positive, and can 

be found, with the reservations given above, from the modified

Fanning equation :-

Ap 4 v
-  - =   -  f (2.9) 

L 2D m

There have been many other papers describing theoretical or 

semi-empirical derivations of the pressure drop in air-solid flows 

le.g. Jones et al (1967), Jokati and Tomita (1971) and Jodlowski (1976)]

The expressions given by these and other authors were analysed and
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compared by Modi et al (1978). In most cases they found that the 

correlations in each paper usually predicted well the experimental 

results given in that paper, but usually disagreed with the experim- 

ental results given in other work. This probably indicates that the 

assumptions made in the analyses were not valid in all cases , and not 

all the parameters influencing the flow were taken into account. 

Richarson and McLeman (1969) found that the pressure drop could vary 

by as much as 100% between runs, and attributed this to the electro- 

static charging of the particles. None of the correlations mentioned 

here take account of the electrostatic charge.

2.2.2Properties other than Pressure Drop There has been 

comparatively little work published on a theoretical solution of the 

properties of air-solid flows other than the pressure drop, although 

these are also of importance in the design of pneumatic conveying 

systems. The distribution of properties such as the particle velocity 

across the flow is very difficult to predict, but some approximate 

solutions have been found.

Soo (1962) and (1969) calculated the velocity and concentration 

distribution across a pipe of small particles for low solid to gas mass 

flow rate ratios. He suggested that the vleocity profile was described

approximately by the expression :-

v - v 
P pw _ x.  

v - v R 
pc pw

where m is a constant found by experiment. However, the results of 

Birchenough (1975) did not fit this expression at all well. Further 

experimental and theoretical work is needed to produce a valid 

expression for the particle velocity distribution.

Chan (1976) examined the forces acting on an air-solid mixture 

and produced a computer program to solve the equations of motion. He

showed that a large number of computer drawn graphs giving the particle
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velocity, electric-potential, particle density, mass flux, and diffus- 

ivity distributions in horizontal pipe flows with varying flow constants 

However, as with all theoretical analyses, many assumptions had to be 

made, for instance that the flow was incompressible, and that all the 

particles had the same electric charge. Much experimental work is 

needed to measure the distribution of the properties so that they can 

be compared with the results predicted by the computer program. In this 

way it can be found if the assumptions were reasonable.

2.3 Particle Velocity Measurement

In the last section several theoretical analyses, many of them 

requiring a knowledge of the particle velocity, of the behaviour of 

two-phase flows were described. Several methods have been employed in 

the measurement of particle velocity, some of which will be described 

in this section. The methods can be divided into those measuring the 

mean particle velocity across the pipe, and those which measure the 

local particle velocity in a small volume, so that the particle 

velocity profile across the pipe can be found by moving the measuring 

volume along a diameter.

One of the first methods of measuring the average particle 

velocity was the isolation method [Segler (1951), Mehta et al (1957)]. 

A section of the pipe was isolated by two slide valves acting 

simultaneously and v/eighing the solids contained in that section. This

gave the dispersed phase density of the particles, P , and using the
  _

mass flow rate of the solids , n_ the mean particle velocity v , cans s

be calculated as:-

m 

However, there are several problems involved with this method. It is

not a very accurate method since the isolation of the pipe cannot be
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completed instantaneously. The plant has to be shut down after each 

measurement, unless a bypass system is provided, and it is a very 

tedious procedure.

A common method of mean particle velocity measurement involves the 

use of cross-correlation of the signals from two transducers set at a 

distance apart from each other along the flow. The time delay between 

similar signals from each transducer gives the velocity between them. 

Richardson and McLeman (1960) injected a pulse of air into the flow 

and, using two transducers to measure the electrostatic field at the 

outside of the pipe, the time for the pulse to pass from one transducer 

to the other was measured. However, the injection of an air pulse must 

have greatly disturbed the flow, and also the velocity of the air pulse 

was not necessarily equal to that of the particles. A more accurate 

method was used by Ottjes et al (1976), utilising two sensors measuring 

the flow of electrical charge through the pipe, and using an electronic 

cross-correlator to find the time delay between similar signals and 

the degree of correlation of those signals. This method causes no flow 

disturbance, but relies on a flat particle velocity correlation over 

long lengths of pipe, which indicated that the profile was flat.

There are several optical methods of particle velocity measurement, 

but unlike those methods described above the solids-to-air mass flow 

rate ratio is limited to a small value in order that the light can 

penetrate the flow. Photographic methods have been used for both mean 

and local velocity measurements. Jokati and Tomita (1971) and 

Jodlowski (1976) took high speed cine films of the flow and, by 

examining the film frame by frame, the mean particle velocity was 

obtained by averaging the velocity of each particle. McCarthy & 

Olson (1968) took double flash photographs using a very narrow depth 

of field camera. The distance each particle moved between flashes 

was measured, together with the time delay between flashes, giving the
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velocity of the particles. Since the particles were only in focus over 

a very small distance, the velocity distribution was obtained.

In order to make local particle velocity measurements, some authors 

used a probe inserted into the flow. Soo et al (1964) used a fibre optic 

probe which recorded the local particle number density by pulses as the 

light beam between two fibre optics was interrupted by the particles., The 

local mass flux was recorded by an electrostatic ball probe. They assumed 

that the charge per unit mass on the particles was constant, and the 

charge on the particles was measured using the contact charging effect. 

From this, using an equation of the form of equation (2.12), the local

velocity was calculated. The spatial resolution of this method was not 

good, since the probe was over 3mm in diameter, and also accuracy was 

limited because the charge per unit mass has been shown to vary consider- 

ably [Chan (1976) ] . Peskin and Dwyer (1964) used an electrostatic probe 

similar to that used by Soo et al to measure the mass flux. From this 

they calculated the velocity of the particles. However, in order to do 

this the, particle velocity at the centre of the pipe was assumed to be 

equal to the air velocity at the centre of the pipe. This assumption 

was found to be incorrect, both in the present work and by other authors.

Eichhorn et al (1964) employed an aerofoil shaped probe with a slot 

cut in the leading edge. Two optical fibres were embedded in the probe 

and light was shone down them. The light reaching the other end of the 

fibre was measured and, as particles went through the slot, they interr- 

upted the beams. The time for one particle to pass from one fibre to 

the other was measured to give the local particle vleocity. Intrusive 

velocity measurement probes like this, however, have an unknown and 

possibly large effect on the particle velocities. Also, the probes tend 

to become quickly eroded by the abrasive flow and have to be replaced 

frequently.
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Non-intrusive cross-correlation techniques for measuring local 

particle velocities have been used. Reibold .et al (1970) and 

Venselaar et al (1978) passed two parallel laser beams through the 

flow and observed the signals arriving from one point on each beam using 

two photomultipliers. Again, an electronic cross-correlator was used 

to obtain the time delay of a particle passing between the beams. This 

method has been used successfully, but Lehinann (1975) found that the 

instrument was only suitable for measuring velocities below about 

25 ms . In order that the particles have a significant probability 

of passing through both beams the beams have to be quite close together, 

and at high velocities; the time resolution of most available correl- 

ators is not sufficient to measure the tine delay accurately.

The laser-Doppler velocimeter , LDV, has been used for particle 

velocity measurements in two-phase flows by several authors [e.g. 

Boutier and Philbert (1972), Rinkevichyus (1969) , and Riethmuller and 

Ginoux (1973) and Birchenough (1975) ] . This method is also non- 

intrusive and can provide instantaneous measurement of the local 

particle velocity. There are no limitations on the velocity which 

this instrument can measure and the measuring volume can be made very 

small, in both cases it is superior to the laser cross-correlation 

technique. For these reasons the LDV was chosen for the particle 

velocity measurements undertaken in this project. The problems and 

principles of the laser-Doppler velocity meter are described in 

chapters 5 and 6.

2.4 Conclusions

In this chapter various theoretical derivations of the behaviour 

of the air-solid flows have been described, but it can be seen that 

there is little agreement either in the theoretical or experimental 

work. This indicates that there is a need for more accurate experim- 

ental investigations into the behaviour of the flows. The particle
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velocity is an important factor in the flow but it is difficult to 

measure without causing significant disturbances to the flow. Some 

of the methods used in measuring the particle velocity were described 

and it was shown that many of them are inaccurate. The laser-Doppler 

velocity meter seems to offer a useful technique for such measurements 

and was therefore used in this project.
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CHAPTER 3 

PNEUMATIC CONVEYING PLANTS

3.1 Large Plant, Design Requirements

The main pneumatic conveying rig was designed to produce a vertical 

dilute phase air-solid flow in a vertical pipe. In order that the flow 

properties were not specified to the conveying system, the air-solid 

flow had to be fully developed at the measuring point. Also, the air 

and solid mass flow rates were required to be constant and the swirl 

in the flow kept to a minimum.

The system was designed to give a range of air and solids mass 

flow rates, with a simple and accurate method of measuring each, in 

order that the flow properties could be studied under a variety of 

known conditions. Since the measuring procedure was time-consuming, 

properties of the flow had to remain steady for periods of up to about 

90 minutes.

The diameter of the vertical test pipe was chosen as 50 mm, since 

this was small enough to be practical in the restricted space available 

and large enough to be of industrial significance. The pipe needed to 

be transparent and resistant to abrasion, so that laser-Doppler velocity 

measurements could be made through the wall.

3,2 Original Large Conveying Plant

The pneumatic conveying plant used in the project had been designed 

and used in previous work by Birchenough (1975). It is shown in figures 

3.1 and 3.2, excluding the modifications described in the next section.

The air was supplied by a Roots positive displacement blower which

 2 3  1 5  2 
delivered a maximum of 9,4 x 10 m s of air at 1.9 x 10 Nm absolute

.18.



The air was oil-free to prevent contamination of the solid. The 

blower was driven by a 15 KW electric motor having an operating speed 

of 2860 r.p.m.. A valve through which air could be vented to atmos- 

phere provided variation of the air mass flow rate.

The air from the blower was cooled in a heat exchanger mounted 

above the blower. Cooling of the air was necessary since light plastic 

pipes were used for the air supply line. The variation of the flow 

rate of the cooling water provided some degree of control of the 

temperature of the air. The blower and heat exchanger were supported 

on anti-vibration pads in a sound-proofed room.

The air left the blower room in a 75 mm diameter P.V»C, pipe. 

An orifice plate meter, designed to B.S. 1042 and with sufficient up 

and downstream straight pipe, was situated halfway along the horizontal 

section. This provided metering of the air mass flow rate and it was 

calibrated as described in section (4.2).

After being reduced in diameter to 25 mm in order to increase the 

air velocity, the air line was connected to the mixing chamber which 

is described in section (3.3). The solids were conveyed to the mixing 

chamber by a screw feeder and were mixed with the air. The air-solids 

mixture left the mixing chamber via a 50 mm diameter mild steel pipe, 

which brought the flow down to floor level and included a section of 

rubber tubing to reduce the transmission of vibrations. The short 

length of pipe at floor level included a section which could be removed 

and replaced with a venturi contraction to reduce the pressure so that 

sub-micron titanium dioxide particles could be injected into the flow 

for air velocity measurements - see section (7.2).

The air-solid mixture then passed up the vertical test pipe, which 

was a 3 metre length of Q.V.F. glass pipe with a diameter, measured 

at either end, of 49.84 mm. The pipe was firmly anchored to and

supported by, a triangular frame of square steel tubing. The glass
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pipe had pressure tappings at intervals along its length, each 

carefully drilled so that the inside of the, glass was not chipped. 

Above the glass pipe was a metre length of perspex pipe, 51.71 mm in 

diameter, in which Pitot-static measurements could be made - see

section (4.2). The flow then passed into the collecting/storage hopper

3
This hopper, 4.5 m capacity, acted as both a cyclone separator

and a store for the solids. The air passed out through a filter above 

the hopper and was vented to the atmosphere via a duct. The storage 

hopper was pivoted on two points and rested on an hydraulic load cell 

at the third point. This load cell was found to be an inaccurate 

measure of the mass of the solids in the hopper - see section (4.3).

The solids in the storage hopper were discharged into the feed 

hopper underneath by means of a 150 mm diameter butterfly valve. A 

valve-controlled pressure balance pipe was provided to equalise the

pressure in the two hoppers before opening the butterfly valve. The

3 
feed hopper had aim capacity, and the solids from the hopper fed

into the mixing chamber by means of a screw feeder. The flow of the 

soldis out of the hopper could be assisted by a Simon's bin activator. 

The screw feeder consisted of a 47 mm screw driven by an electric 

motor via a Carter hydraulic gear unit which controlled the rate of 

rotation of the screw. The particles from the feed hopper fell into 

a trough, which could be vibrated to assist the flow, and were then 

transported by the screw and discharged into the mixing chamber. The 

method of calibrating the mass flow rate through the screw feeder is 

described in section (4.3).

The platform from which measurements were taken was completely 

separate from the rest of the pneumatic conveying plant and rested on 

rubber pads to reduce vibration. The height of the platform was such 

that the velocity measurements were taken about 2.5 metres from the 

bottom of the test pipe.
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3.3 Modification of the Large Plant

Some problems had been encountered previously in the performance 

of the mixing chamber. Two arrangements had been tried, neither of 

which were ideal. In the first, shown'in figure 3.3a, air entered the 

bottom of the chamber vertically through a 25 mm diameter pipe and, after 

mixing with the solids entering through the side, left through the top 

of the chamber by a 50 mm diameter pipe. This arrangement produced a 

good mixing of the two phases of the flow, but, due to the abrasive 

nature of the flow, the extension "shaft of the screw feeder which passed 

through the chamber was rapidly worn through. In the second arrangement, 

shown in figure 3.3b, the air again entered the chamber through a 25 mm 

pipe, but the air-solid mixture left through a horizontal pipe below 

the screw feeder port. This arrangement was found to stop the erosion 

of the extension shaft of the screw feeder and it also reduced the 

number of bends needed after the chamber. However, in this arrangement 

the solids gain substantial downward momentum before reaching the air 

flow and thus require a large amount of energy to be entrained into the 

flow. It was found that this system became blocked at higher values 

of solids to air mass flow rate ratios.

The arrangement of the mixing chamber used in this project is shown 

in figure 3.3c. The air entered the bottom of the chamber by a 50 mm 

diameter pipe and left by a 50 mm diameter pipe at the side, above the 

screw feeder port. The entrance pipe was situated to one side of the 

chamber so that the extension pipe was not subjected to the direct flow 

as it was in the first arrangement. Since the exit port was above the 

screw feeder port, the solids needed less energy to become entrained 

into the flow than in the second arrangement. The use of a 50 mm diam. 

entrance pipe reduced the back pressure from the mixing chamber and did 

not reduce the mixing of the phases. In use it was found that this 

arrangement did not block even at the highest possible solids mass flow
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rate, and the extension shaft of the screw feeder did not fail even 

after many hours use.

It was noticed that the flow in the glass pipe had been given a 

slight swirl by the proceeding bends. An attempt to remove this swirl 

was made by replacing the bend at the bottom of the vertical section 

with a steel box, shown in figure (3.4). It was found that, although 

the box appeared to reduce the swirl, it also produced a very large 

pressure drop and caused blockages. The former bend was replaced and 

the small degree of induced swirl tolerated.

Another problem was encountered in calibration of the orifice plate 

meter. It was possible to measure the air mass flow rate either by a 

Pitot-static traverse in the perspex pipe above the glass pipe, or by 

a laser-Doppler traverse in the glass pipe (section (7.3). However, 

these measurements could only be made in the absence of solids in the 

flow. Pressure pulsations were caused by the solids and, with the rig 

in its original configuration, it was not possible to discover if these 

pressure pulsations affected the calibration of the orifice plate 

meter. This problem was overcome by replacing the vertical section of 

the 75 mm diameter P.V.C. air supply pipe with a 50 mm diameter perspex 

tube having the facility for making Pitot-static traverses. The 

measurements were taken at about 2.5 m from the start of the pipe to 

allow the flow to become fully developed. The calibration of the orifice 

plate meter is described in section (4.2). The plant is shown with its 

modifications in figures (3.5) and (3.5a).

3.4 Small Pneumatic Conveying Plant

The large conveying plant was used to investigate the properties of 

the air-solid flow and, from the results obtained, it was decided to 

investigate the performance of the laser-Doppler velocity meter in a

variety of situations.A pneumatic conveying plant was designed to convey

a selection of solids in a continuous circuit so that small quantities of
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of the solids could be used.

The plant is shown in figure 3.6. Air was supplied by a Roots

reciprocating blower driven by an electric motor. After passing through 

an air reservoir to reduce any pressure pulsations, the air entered a 

venturi feeder (see figure 3.7), into which the solids were entrained 

by the flow. The pressure in the venturi feeder was controlled by the 

distance between the nozzle and the exit pipe, and also by the air 

mass flow rate from the blower. The air mass flow rate could be 

reduced by opening an outlet valve situated between the blower and the 

reservoir. The solids entered the feeder from a hopper above it, the 

mass flow rate being controlled by a gate valve.

The air-solid mixture left the venturi feeder by a 50 mm diameter 

steel pipe and passed into a horizontal, 40 mm square steel pipe. 

After about 2 metres of horizontal flow, the air-solid mixture then 

passed round a square section bend into a vertical square-section pipe 

about 2.5 metres long. The pipe reverted to the round section and the 

flow was returned to a point above the feed hopper.

After entering a funnel covered with filter cloth, the flow 

passed down a metre length of perspex pipe, 51.88 mm in diameter 

(measured). The bottom of the perspex pipe could be closed by means 

of a butterfly valve. The solids then entered the feed hopper, which 

was also covered with a filter cloth. It was found that the filter 

cloth produced so much back pressure that the venturi feeder mal- 

functioned. This problem was overcome by connecting an air release 

pipe between the hopper and the collecting hopper of the large plant, 

using the filter in the large plant to remove any fines contained in 

the air flow.

The air mass flow rate was measured by taking an air velocity 

profile with a Pitot-static .tube in the pipe between the reservoir and 

the venturi feeder. The solid mass flow rate was measured by closing

the butterfly valve in the perspex pipe above the hopper and measuring
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the time needed to fill the pipe between two levels. Since the bulk 

density of the solids was measured (see section 4.4), and the volume 

between the two levels in the pipe was known, the solids mass flow rate 

could be calculated. Although neither the air not the solids mass flow 

rate measurements were very accurate, they provided an estimate of each 

with sufficient accuracy for what was required. The properties of the 

LDV, rather than those of the flow, were being investigated.

The square section pipe was employed so that the removal of 

transparent windows was simplified: Flat glass windows were set into 

the pipe near the end of both the horizontal and vertical sections, to 

enable laser-Doppler velocity measurements to be made. The use of 

removable windows meant that they could be replaced or cleaned, thus 

reducing the attenuation of the light by the window. Flat windows were 

chosen for their ease of manufacture and their lack of refraction 

problems which can be encountered with round glass pipes.

The piping of the small conveying rig was fixed to the framework 

of the large rig, with the blower underneath. This meant that the 

vertical square-section pipe passed through the platform and so the 

laser-Doppler equipment could be placed on the platform for measurements 

to be taken in the square pipe.
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Figure (3.3a)
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Figure (3.3b)
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Figure (3.3c)
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Figure (3.4)
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(3.5)
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Since the properties of the two-phase flow in the large pneumatic 

conveying plant were being studied, it was necessary to be able to 

measure accurately the air and the solid mass flow rates. The air mass 

flow rate was measured with an orifice plate meter which was designed to 

conform with B.S. 1042. Although the Standard provides the calculation 

needed for obtaining the air mass flow rate without calibration, the air 

flow through the orifice contained pulsations, especially when solids 

were added to the flow, and calibration was necessary to discover whether 

the Standard was still valid. The solid was delivered into the flow by a 

screw feeder having variable speed control, and calibration gave the 

relation between the speed of rotation of the screw and the mass flow 

rate for the solid. Calibration was necessary for each type of solid used

The properties of the particles used in the project were measured 

so that it was possible to compare the results obtained with each type of 

particle, and also it was possible to compare the results with those 

measured by other v/orkers.

4.2 Calibration of the Orifice Meter

The orifice plate is shown in figure (4.1). It was set between two 

flanges in the P.V.C. pipeline in the position shown in figure (3.5). 

Static pressure tappings were set at positions 'D' and 'D/2' as 

described in BS 1042. The pressure drop across the orifice plate was 

measured with a water-filled U-tube manometer and the upstream pressure was 

measured with a mercury-filled U-tube manometer. The temperature of the
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air was recorded by a thermocouple protruding into the flow after the 

heat exchanger, and the atmospheric pressure was measured with a mercury 

barometer.

Initially calibration was carried out in the absence of solids in 

the flow. The air mass flow rate was measured with a Pitot-static tube 

in the perspex pipe above the glass test pipe (see figure (3.5)). The 

Pitot-static pressure was measured with an oil-filled inclined manometer, 

and was measured at 2 mm intervals along orthogonal diameters of the 

pipe. For each calibration test the air temperature was allowed to settle 

before the measurements of pressure drop across the orifice plate, 

upstream pressure at the orifice plate, Pitot-static pressure profile 

and static pressure at the test point were taken.

The air mass flow rate was calculated from the Pitot-static traverse 

using the method described in Ower and Pankhurst (1977). Bernoulli's 

equation :

L+ 3^- M2 Y - 1 (4.1)

However, since the maximum velocity expected in the test pipe was about 

60 ms"~ , the maximum value of M will be about 0.2, and so the third 

and subsequent terras can be ignored as negligible, giving:-

PQ - p = ipv2 (4.3)
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and the average velocity by :-

v = V a/ irr 2 (4.7)
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Run

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Air Mass Flow Rate

B.S.1042 
(x 102kgs"1 )

2.48

3.48

4.39

4.82

5.41

6.04

6.52

6.97

7.14

7.65

7.91

8.50

9.66

9.91

10.12

10.44

10.72

Pitot-static 

(x 102kgs~1 )

2.46

3.48

4.36

4.82

5.53

6.12

6.50

6.85

7.04

7.68

7.85

8.26

9.45

9.77

9.94

10.30

10.45

Difference

(%)

-1.2

0.0

-0.7

0.0

2.2

1.3

-0.3

-1.7

-1.4

0.4

-0.8

-2.8

-2.2

-1.4

-1.8

-1.3

-2.5

(4.1)

.43.



Run

P2

P3

P4

Pll

P12

P13

P14

P21

P22

P23

P24

P25

Screwfeeder 
Setting

2

4

6

0

2

4

6

0

2

4

6

8

Air Mass Flow Rate

B.S. 1042 
(x 102kgs"1 )

8.66

8.48

8.16

5.08

4.85

4.83

4.57

12.40

12.06

12.80

12.80

12.70

Pitot-static 
(x lO^gs"1 )

8.64

8.38

8.14

5.07

4.86

4.86

4.59

12.34

12.05

12.73

12.71

12.08

Difference 
(%)

-0.2

-1.2

-0.2

-0.2

0.2

0.6

0.4

-0.5

-0.1

-0.5

-0.7

-5.3

Solid mass 
loading 
ratio

0.76

1.06

1.66

0

0.94

1.92

2.90

0

0.35

0.66

1.00

1.34

(4.2)
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