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ABSTRACT

BOND STRENGTH HISTORY IN PRESTRESSED CONCRETE REACTOR VESSELS

M. Ahmad

An attempt has been made to study bond strength history ia
Prestressed Concrete Reactor Vessels (PCRV) which house the Advanced
Gas-cooled Reactors.

Three-dimensional non-linear analytical model has been developed
in which the effect of bond is included. A finite element computex
program is written in which solid, membrane, line and bond-linkage
elements have been used to represent vessel concrete, steel liner, pre-
stressing tendons and bond (between steel and concrete) respectively.
Concrete is assumed to be non-linear material in compression and linear
brittle (tension cut-off) material in tension, and the steel as elasto-
plastic material with strain hardening. Provision is also made for
concrete cracking, crushing and visco-elastic creep.

Two experiments have been carried out during this research. The
purpose of the first experiment was to determine bond coefficients
required for the analysis. This was achieved by pull-out tests on
prestressing specimens using 5 mm and 7 mm diameter prestressing wires.
The second experiment was performed on an octagonal prestressed concrete
slab representing a top cap of a reactor vessel. The experimental results
obtained from this slab are corroborated with the analytical results.

A typical Prestressed Concrete Reactor Vessel with boilers and
circulators housed within the vessel wall thickness has been analysed
for bond strength under increasing gas pressure at suitable intervals
of its 30 year life. A comparison is made between the unbonded and
bonded vessels. All analytical results compare well with those obtained
from the experiments and available published data.
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NOTATION

denotes matrix or a vector

strain-displacement matrix

strain-displacement matrix at node i

inverse of material matrix

constitutive matrix

constitutive matrix in crack coordinate system
tangent constitutive matrix in global coordinate system
vector of Cartesian strain components at point i
vector of Cartesian stress components at point i
initial strain vector

creep strain vector

initial stress vector

incremental strain/stress vectors

stress vector in crack directions

strain vector in crack directions

incremental strain/stress vectors in crack directions
incremental thermal strains

shear interlocking factor

modulus of elasticity for concrete

Poisson's ratios for concrete

concrete cylinder compressive strength

concrete limiting tensile strength

vector of body forces per unit volume

concrete crushing strain

element stiffness matrix

global structural stiffness matrix

bond linkage stiffness matrix

length of the line elements

diameter of the line element

direction cosines relating local to global axes
shape function of node i

element shape function matrix

vector of external element loads

vector of surface pressure
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- global load vector
- strain transformation matrix

stress transformation matrix

- gl i 9
)

- transformation matrix (relating local to global displacements

at nodes)
ue ~ element nodal displacement vector
u - global nodal displacement vector
Ui, e, We - displacements at node i
X,Y,Z - global coordinate system
X\y,z' - local Cartesian coordinate system
XY,z - crack coordinate system
§.7,¢ - local curvilinear coordinates
ds - differential surface area
dvol - differential volume
detJ - determinant of Jacobian
g, - Jacobian matrix
E., E,,E, - bond slip moduli in horizontal, vertical and lateral directions
Ay - incremental bond stress vector
As - incremental slips
Sg - bond stress vector
Eb - bond linkage constitutive matrix
t - thickness of membrane element
Qg - elastic material matrix for membrane element
1 - first stress invariant
J2 - second invariant of stress deviator tensor
O¥n - mean stress
E;,El,E3 - moduli of elasticity in three principal directions
Ecu - uniaxial equivalent strain in ith direction
Aty - incremental uniaxial strain
o~ - principal stresses, i=1,2,3
& - principal strains, i=1,2,3
G - shear modulus
G - shear modulus for cracked concrete
o - equivalent stress
d¢p - plastic strain increment
QE - elastic material matrix for steel
Qp - plastic material matrix for steel
Dep - elasto-plastic material matrix for steel
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CHAPTER 1

General Introduction

In recent years, many complex prestressed concrete structures have
been designed and built. The complex nature of the geometric configura-
tion and material behaviour of many of these structures has given rise
to many new problems. A prestressed concrete reactor vessel is such a
structure, the complex behaviour of which is directly associated with
material anisotropicity and non-linearity, temperature, creep and
shrinkage. Gas increasing pressure, load history and a cracking con-
dition assume important roles in the vessel's short and long-term
performance. Where the vessels have been bonded (grouted tendons),'fhe
ultimate load carrying capacity is influenced by the complex three-
dimensional bond-slip phenomenon. This is the theme of the current
research. Prior to the establishment of a case for a bonded vessel, it

is essential to discuss this important phenomenon.

In the tension zone within the vessel concrete, bond-slip takes
place at the steel-concrete interface prior toe cracking. It contributes
to further cracking under loads and consequently affects the ultimate
load capacity. Bond-slip behaviour is non-linear in nature and is
influenced by many factors such as the strength of the concrete,
roughness of the steel surface and diameter of the steel. As soon as
bond breaks, the steel and concrete separates and wider cracks appear,
producing greater slip. During and after the crack formation, pre-
stressing tendons carry most of the load and may deform plastically,
thereby affecting the integrity of the vessel. In addition, the effect
of temperature and creep also adds additional problems to bond-slip

situations.

The bonded vessels under such conditions need to be investigated
by sophisticated numerical techniques. In the present research, the
finite element method is adopted in order to model the bond strength

history of the vessels under increasing loads.
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1.1. Bonded and Unbonded Tendons

Bonded and unbonded tendons and their choice for conventional pre-
stressed concrete structures have always been the subject of much con-
troversy. This is more so in the case of prestressed concrete pressure
vessels. The proponents of the unbonded tendons suggest that the loss
of prestress in tendons due to various sources such as high temperature,
shrinkage and creep of concrete cannot be adequately assessed owing to-
the approximate nature of analyses and material models. On the other
hand, unbonded tendons can be inspected and restressed, thus ensuring
their load carrying capacity for both short and long-term conditionms.
The main disadvantage of unbonded tendons lies in the incorrect assess-
ment of the structural reliability of their anchorages. Expensive
equipment for inspecting tendons and recording of the losses are
additional problems caused by the use of unbonded tendons. These are
fully described by Bangash (47).

Vessels with bonded tendons provide reasonably good corrosion
protection. In the bonded vessel, the prestress force is transferred
from the steel to the concrete through the bond, thus minimising the
influence of the structural reliability of the end anchorages. In
principle, the grouted tendons in many ways behave like unstressed bonded
reinforcement. It is unlikely that a sudden increase in cavity pressures
would cause any explosive failure of the vessel. A vessel with bonded
tendons has a well-disposed crack pattern. With bonded tendons, the
vessel achieves high ductility, if and when a cavity pressure exceeds
the prestressing force. The ductility of the vessel is extremely
important, since it utilises the full strength capacity of tendons right
up to the ultimate conditions. If any well-disposed small cracks exist,
this ductile nature will enable the liner to span cracks without

yielding. The biggest issue of a leaked liner will be avoided.

From the above brief discussion, the bonded vessel will perform
better than the unbonded vessel, provided that correct assessment of the
grouted prestressing tendons (analytical, experimental and site moni-

toring) have been made on reliability of the grouted prestressing tendons.
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Little information is available on the behaviour of bonded vessels.

It is intended that this investigation will give more understanding of
the realistic behaviour of the vessel's short and long-term

performance using bonded tendons. The techniques given in this research
will encourage many engineers to use bonded tendons in future vessels
for advanced gas-cooled reactors, pressurised water reactors, high
temperature reactors, fast-breeder reactors, and even for the use of

non-nuclear work.
1.2. Scope of the Present Research

The scope of the present research is to analyse bonded and
perfectly bonded prestressed concrete reactor vessels. For comparative
study, an unbonded vessel is also analysed. The vessel chosen for the
analyses is of multicavity type, in which boilers and circulators are

housed within the vessel wall and cap thickness.

The main investigation is based on bond between the prestressing
tendons and the vessel concrete. An attempt has been made to carry out
analytical study on bonded vessels. In order to corroborate results,
experimental tests have been performed on an octagonal prestressed con-
crete slab and pull-out specimens. Using parameters obtained from bond
tests, the analyses have been carried out on the slab which represents
the top cap of the concrete vessel for an advanced gas-cooled reactor
(AGR). Realistic material models with regard to progressive cracking
and compression of concrete, steel yielding and bond stress distribution
have been developed for analysis, with and without the influence of
temperature and creeﬁ effects. The following lines cover the programme

of this research.

Chapter 2 gives a brief review on the analytical and experimental
work of prestressed concrete reactor vessels and end slabs. This
Chapter also reviews the subject of bond and local bonded-slip
relations for prestressing strands and conventional steel. This is

then followed by Chapter 3 which covers the finite elements developed

-14-



to model vessel components. Linear equations of these elements are
given. Chapter 4 gives non-linear material constitutive relations for
concrete (cracking and compressive behaviour), elasto-plastic relations
for prestressing tendons and the liner, and a non-linear bond-slip
relation for bond linkage elements. Equations for creep and thermal
effects have also been given. Non-linear equations are solved using

incremental/iterative techniques which are described in Chapter 5.

The above equations are used to develop a computer program which is
described in detail in Chapter 6. Flow charts of various segments of
the program are also given. This Chapter is supported by a User's

Manual given in Appendix B.

Chapter 7 describes the experimental programme carried out during
this research. The experimental programme was carried out first to
understand the local bond-slip behaviour of prestressing wires, and
second to test a bonded prestressed concrete slab representing the top
cap of the vessel. Chapter 8 gives the comparative study of the

analytical and experimental results.

-15-



CHAPTER 2

Literature Review

2.1. Introducfion

In
state of
pressure
Wherever
examined

concrete

this Chapter, an attempt has been made to briefly review the

the methods of analysis and experimentation of concrete reactor
vessels with particular emphasis on bond.and bond-slip relations.
possible, bond-slip behaviour of conventional structures has been
and an analogy is made for the possible bond-slip phenomenon of

pressure vessels.,

2.2, Step-by-step Review

Several conferences have been held (144, 145a, 145b, 145c, 145d,

145e) on

various aspects of the analysis, design and construction of

prestressed concrete reactor vessels. A comprehensive review is given by

Bangash (21a) concerning the historical development, stress analyses and

design of vessels, mostly with unbonded tendons. It is not intended here

to repeat this work. However, certain cases relevant to this research

have been critically re-examined in order to give a better understanding

of the aim of the current research.

2.2.1.

Methods of Analyses

Earlier finite element analyses of concrete pressure vessels have

been performed assuming axial symmetry in which two-dimensional elements

have been used. Rashid (14, 15) carried out linear and non-linear

analyses

yielding

using finite element and predicted deformation, cracking and

of steel of the Fort St. Vrain vessel. The analysis performed

on this vessel, in which tendons were unbonded, is two-dimensional.

Three-dimensional non-linear analysis of a reactor vessel has been

carried out by Sangy et al (22, 23) in which creep effects were

-16-



included in the finite element constitutive equations. A failure.
criterion containing the effect of first and second stress imvariants
was used. The failure surface in stress space is of cone shape. The
non-linear effect of concrete in compression is taken into account by
changing the shear moduli which is assumed to be a function of the
second stress invariant. The initial stress method was used to solve

the finite element equations.

Similarly, a non-linear analysis of a reactor vessel model was

performed by Mohraz et al (11) using the lumped parameter method.

Phillips et al (19, 20) carried out a two-dimensional finite
element analysis on a model vessel adopted already by Mohraz et al (11),
in which a non-linear model of concrete in compression is described by
changing the shear moduli and the bulk moduli. An octahedral shear
stress law was used as failure criteria once the stress had reached the
peak value. This law as appeared there is only applicable to a biaxial

state of stress. Cracking was modelled by using tension cut-off.

Argyris et al (10, 10a) analysed prestressed concrete reactor
vessels using an elasto-plastic material model. The failure criterion
of Mohr-Coulomb was used as yield criterion. A tension cut off model

was used in tension.

Bangash (21) analysed vessels using the hypo-elastic concept to
model the compression side of the concrete. This concept was first
introduced by Truesdell (137) and was later used by Coons and Evans (30)
to model non-linear behaviour of plain concrete. Bangash (21a) has
carried out ultimate analyses of several unbonded vessels in order to
establish a factor of safety for these vessels. To achieve this
objective, two types of analyses were performed. The first one was a
three-dimensional non-linear finite element analysis in which the hypo-
elastic material model was used. The second analysis was based on the
limit state concept. Factors of safety from both analyses compared

favourably.

-17-



Long-term elastic analyses of reactor vessels have been carried
out by many other investigators (71, 73, 74, 81, 83, 85, 132a) -
England et al (74) have used the rate of creep method in which thermal
effects were also included. Two-dimensional finite element analyses
were performed and the results obtained were fully corroborated.
Kawamata et al (81) have used the rate of creep method to analyse a
multicavity vessel. Elastic long-term stresses up to ‘40 years of the
vessel's life were predicted in conjunction with their early method of
n"sliced substructure'" (8la). This method is an approximation of the

usual three-dimensional finite element method.

Smith et al (83) have carried out reactor vessel analysis using a
visco-elastic creep model. The creep compliance function of concrete
was expressed as the Dirchlet series with temperature coefficients.

A comprehensive experimental work on cylindrical specimens was carried
out under multiaxial loading and temperature. Results up to five years
were obtained. With these results, a creep compliance function which is
fitted to a five term Dirchlet series was obtained. This function

was generalised for multiaxial creep strains. Three-dimensional iso-
parametric finite element analyses, in which the creep model was inc-
luded, form the basis of his modified program NONSAP. No information is
available as to whether the researchers (81, 83, 85) considered any bond-

slip phenomenon.

Takeda et al (18) have carried out inelastic analysis of a pre-
stressed concrete multicavity reactor vessel. A 1/20th scale model was
selected. The concrete constitutive law in compression was modelled as
an elasto-plastic material with Drucker-Prager's failure surface as
yield criterion. Concrete in tension was considered to be a linear
brittle material. The prestressing steel was also modelled as an
elasto-plastic material. The vessel model was then analysed by two
and three-dimensional finite elements. This analysis considers both
cracking and crushing states of the vessel. Again, no consideration

was given for the tendon bond-slip condition.

-18-



Connor et al (17) have reported a non-linear numerical procedure
for analysing prestressed concrete reactor vessels. Three-dimensional
finite element analysis was adopted. The concrete in compression was
modelled by a non-linear orthotropic model and for tension, a tension
cut-off model was used. Steel (liner and prestressing cables) was
treated as elasto-plastic material. Creep and temperature effects were
also included. The stress contours and crack patterns are shown for
the Fort St. Vrain vessel. Since the tendons are treated as unbonded,
no consideration was given to the influence of bond on the load carrying

capacity of the vessel.

Gallix et al (17) carried out a two-dimensional non-linear analysis
for the multicavity reactor vessels. The vessel concrete was modelled
by a non-linear orthotropic stress-strain constitute law and the steel
liners and prestressing steel were modelled by an elasto-plastic material
using Von Mises yield criterion 1/10th scale Hartlepool vessel and

1/20th scale high temperature gas cooled reactor (HTGCR) were analysed.

A brief description of the comparative results for bonded and
unbonded tendons has been given by Bangash (47) for a typical reactor

vessel. No detailed analysis is available in this paper.

2.3. Model Techniques and Model Testing

In order to understand the vessel behaviour under overload conditions,
several experimental investigations (13, 113, 113a, 113b, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124) have been carried out on scaled
models and isolated vessel components in the last decade or so. Some of
these are reviewed here. Brading and Hills (113a) presented results of
six models, two of which were reinforced slabs. The other four 1/24th
scale models had a span to depth ratio of 2.9. The main purposes of the
tests were to provide information for the design of the Dungeness 'B'
vessels. Only one model was pressurised to failure. Tests on the

remainder were discontinued, mainly because of leakage in the liner.

-19-



Cambell-Allen et al (13, 113b) have carried out two types of
experiment. The first one had seven 263 mm diameter slabs with clear
span to depth ratios of 3.67 and 1.835. The hoop prestress, which
ranged between 2.35 N/mm2 and 24.10 N/mm2 consisted of straight tendons
either 5.1 mm or 7.0 mm diameter in unlined ducts. On the second type
of experiment, a small number of discs and skirted slabs were loaded to
failure. The prestress was applied by external bolts acting against

either one or a series of octangonal stiff rings.

Morgan (114) indicated that about twelve models slightly more
than 610 mm diameter were tested for checking the design of the Oldbury
and Hinkley Point 'B' pressure vessels. No experimental details or
results were reported. However, it was stated that shear failure did

not take place in any of the models.

Sozen et al (116) at the University of Illinois have carried out
25 tests on skirted prestressed concrete slabs. The span to depth
ratios in these investigations covered a range of 1.67 to 5, and the
amount of force required to restraint varied between 1.52 N/mm2 and
2.90 N/mmz. It was reported that eight of these slabs failed in shear
and the remaining slabs either failed 1in flexure or the tests were dis-
continued because of leakage in the pressure system. The reason for
the high percentage of liner leakage was given as due to the usage of
long length barrel and the lack of hoop forces to prevent the large

displacement of the barrel stub.

Langan et al (119) reported a comprehensive description of the
design of multicavity pressure vessels used for both the Hartlepool
and Heysham nuclear power stations. Elastic analysis of the vessels

was carried out using dynamic relaxation. The 1/10th scale model of the

Hartlepool model has been successfully tested for serviceability and

-20-



ultimate conditions, and the data provided were extremely valuable for
three-dimensional analyses. Various graphs were plotted between
pressure deflection and pressure strain for cap and wall of the model

at the design pressure and at 2.5 times the design pressure. Crack
sizes for various internal pressures were given, together with a typical

crack pattern at 2.5 times the design pressure.

Meerwald and Schwiers (115) reported a test on a 1/20th scale
model of perforated prestressed concrete end slab with a span to depth
ratio of 3.1. The applied hoop prestress was about 10.30 N/mmz. Failure
took place when the central core was forced out at a pressure of
196 N/mmz.

Langan and Garas (117) reported tests on more than twenty thick
restrained circular slab models in order to study the shear failure
mechanism. The variables investigated were the effects of bonded re-
inforcement, lined and unlined penetrations, span to depth ratio and the
level of hoop prestress. The hoop prestress ranged from 2.482 N/mm2 to
6.206 N/mm2 which was provided by wire-winding. The vertical prestress
varied between 1.345 N/mm2 and 19.035 N/mm2 and was provided by the

high tensile bars.
Very few models with bonded tendons have been considered. It

is necessary to look at conventional structures for more information on

various aspects of bond-slip characteristics.
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2.4. Bond and Bond-slip
2.4.1. General Introduction

Although a great deal of effort was made a few decades ago to
understand the bond characteristics between steel and concrete, the
subject is still open to doubt and critical discussion. The questions
to various unknown variables affecting bond and bond-slip have not been
answered. In concrete reactor vessels subject to multiaxial loading
conditions, the accurate investigation of bond and bond-slip with and
without the influence of creep and shrinkage is a dilemma. In the last
few years, awareness of the importance of bond has increased greatly.
This culminated in an international conference on bond in concrete
(146) in which subjects ranged from bond between cement paste and
aggregate, to that of plain and deformed bars and prestressing strands
and concrete. The effect of cyclic, impact and sustained loading,
thermal and corrosion have been included. Only simple structures were
considered. Complicated structures, such as prestressed concrete
reactor vessels, were excluded. Nevertheless, it has become even more
important to review the most important research papers on bond relevant

to the current research. This review is given below.
2.4.2. Nature of Bond

It is generally considered that bond between steel and concrete 1is
due to a combination of adhesion and friction. Adhesion bond develops
first and, after a small slip, it disappears. For relatively larger
slips, frictional bond develops between steel and concrete sliding
surfaces. The adhesion between steel and concrete is not significant.
The bond of plain steel is mainly due to frictional resistance which
depends on the roughness of the steel surface and any change in its
lateral dimension along the embedded length. The bond between deformed
bars and concrete 1is radically different from that of plain steel bars.
It is due to the interlocking of the ribs and sgrrounding concrete.

Adhesion and friction resistance also exists, but the great improvement
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of the bond is related to the bearing pressure of the concrete against
the lugs. 1In the case of a plain bar, the failure usually occurs due
to slip of the bar and the bar usually pulls out of the concrete. On
the other hand, deformed bar failure is almost always associated with

longitudinal splitting along the surface nearest the bar.

2.4.3. Bond Characteristics

Bond in pretensioned prestressed concrete is of two types
transfer bond (anchorage) and flexural bond. Transfer bond utilises
a part of the available tensile strength of the steel to establish
compressive forces in the concrete. Flexural bond results from external
force applied on the structure. After cracking, the increase in steel
stress above effective prestress causes flexural bond stress between

steel and concrete. The two cases are shown in Figures (2.5).

Transfer bond exists near the ends of the member after the load
in pretensioned steel (strand) has been transferred. The length over
which this transfer is made is known as the prestress-transfer length
(or anchorage length), and mainly depends on the amount of prestress
and the surface conditions of the steel (strand). Three factors which
contribute to bond performance are adhesion, friction and mechanical
resistance between the steel and concrete. In the tensile zone, the
reduction in tensile strain of the steel is generally not equal to the
compressive strain of the concrete at the same point. There 1is,
therefore, a relative movement between the steel and concrete. This
indicates that the adhesion does not contribute much to the transfer of
prestress. Friction assumes a greater role in prestress transfer. As
soon as tension in the strand is released, the strand diameter tends
to increase, resulting in radial pressure against the concrete, which
in turn, produces high frictional resistance to slip in the transfer

zone.
Flexural bond in prestressed concrete is of significant magnitude

only if it is loaded up to its cracking stage. When the concrete cracks

the bond stress in the immediate vicinity of cracks rises to some
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limiting stress and slip occurs over a small portion of strand length
adjacent to the cracks. The bond stress near these cracks is then
reduced to a low value. With increasing load, the high bond stress
generates a wave from the original cracks to the far ends. The bond
stress remaining behind this wave is always lower than the maximum
value at the peak of the bond stress wave. If the peak of high bond
stress wave reaches the prestress transfer length zone, the increase in
steel stress resulting from the bond-slip decreases the steel diameter,
which reduces the frictional bond resistance in this region. Hence
mechanical resistance in a transfer zone becomes important. This
resistance is at a minimum for plain smooth wire and maximum in the

case of strand.

In order to simulate the above two conditions in prestressed con-
crete beams, there have been a number of experimental investigations of
pull out and beam tension test specimens. Further empirical expressions
were obtained from these tests which could be applied to practical

structures.

In order to understand the bond characteristics of prestressing
strand, .Dably (96) carried out a series of tests involving four pre-
stressed concrete beams. Each was reinforced with11.11 mm (7/16")
strands. The anchorage length was determined by measuring the concrete
strains at the level of the strand. An anchorage length of 610 mm to 813 mm
(24" to 32") was reported and high values for a larger concrete cover
under the strand. Base (97) reported an anchorage length oc 228.6 mm to
482.6 mm (9" to 19" of 5/16") strand. Ratz (98) conducted 200 tests on
concentrically prestressed concrete prisms to study the concrete
strength on anchorage length. Bond in this investigation was found to
be the direct function of concrete strength for any type of wire and
strand. An empirical formula was given in order to calculate the slip

within the anchorage zone.
Dinsmore et al (99) performed 42 pull out tests and four pre-

stressed beam tests in order to study the anchorage length required to

transfer the prestressing force. Clean strands of 11.11 mm (7/16")
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diameter were used. The anchorage length to transfer the prestress
force of 950.8 N/mm2 to 1143.74 N/mm2 (138 KSI to 166 KSI) range from
228.6 mm to 914.4 mm (9" to 36'"). Rehm (100) carried out tests on

16 different types of prestressed steel using concentrically prestressed
concrete beams. The general indication of results shows that the
increase in concrete strength lead to a decrease in anchorage length.
The release of stress, the time effect on anchorage length, was also
studied. Kaar et al (101) performed the influence of the concrete
strength on the anchorage length of a seven wire strand by testing

36 concrete prisms. Preston (102) reported a comparative study of an
anchorage length of clean and rusted 12.7 mm (3') strands. Results
indicated that for major cases, the bond characteristics were almost
identical. Hulsbos et al (103) studied the load capacity of pretensioned
prestressed concrete beams with web reinforcement. They reported
anchorage length of 11.11 mm (7/16") strand for 1067.95 N/mm2 (155 KSI)

stress was 457.2 mm (18").

Over et al (104) investigated the influence of the strand diameter
on anchorage length with the aid of six square concrete prisms. The
diameters investigated were 63 mm, 9.25 mm and 12.7 mm (1/4", 3/8'" and
1") and results indicated that anchorage length increased with the
increase in strand diameter. Hanson (95) studied the influence of
surface roughness on anchorage bond and flexural bond strength in 12
prestressed concrete beams using 11.11 mm and 12.7 mm (7/16" and 3'")
strand. Clean as received, partially rusted and rusted strands were
tested. Results show a 30% improvement in the anchorage length when
using rusted strand. The flexural bond strength of the beams rusted

was high than that for clean strand.

Evans and Robinson (94) tested pretensioned prestressed concrete
beams by measuring the strain and slip distribution along the steel wire
during loading by means of X-ray photography. Their findings indicate
that bond stresses were only detected when cracking commenced, and
as the crack opened, the values of bond stresses increased until a slip

of 0.1 mm was reached. Thereafter, the bond stresses began to decrease.
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Bond stresses found in this investigation are much higher than those
normally obtained for wires. They concluded that the tangential
friction was the main source of bond in cracked beams and the measured

high bond stresses were due to this kind of friction.

Hanson and Kaar (95) carried out tests on rectangular pre-
tensioned beams to study the flexural bond of strand. Strain in strands
was measured by instrumenting with electrical resistance strain gauges
at spacings ranging from 300 mm to 500 mm. The results indicated

average flexural bond stresses ranging from 1.05 N/mm2 to 2.75 N/mm2 for

s

lg;z»mm strand. Before cracking, the bond stresses were very small.
After cracking, the maximum bond stress progressed from the cracks
towards the beam ends as the load was increased. The conclusion was
drawn that in pretensioned beams, failure in bond mainly depends on the
anchorage length, i.e. the distance from the section of maximum steel

stress to the beam end.

Stocker and Sozen (105) reported the results of 486 pull out and
five beam tests using strands and plain wires with embedment length of
25.0 mm. These tests were performed to provide information on the
relationship between bond and slip and te study the effect of the
various variables on the bond strength.These are (a) strand diameter,

(b) concrete strength, (c) shrinkage, (d) settlement of concrete, (e) con-
fining pressure, (f) concrete cover, (g) time effects. Some of the
results from this investigation was reproduced and are shown in Figures
2.1. and 2.2. Figure 2.1. shows a slight trend towards increasing bond
stress due to an increase in strand diameter, but a study of all the test
data indicated that this trend was not statistically significant. The
bond strength was found to increase significantly with the concrete
strength (see Figure 2.2.). The unit bond force increased by approxi-
mately 10% per 7 N/mm2 of concrete strength. High bond strengths were
also obtained due to dry cured specimens, concrete cover and lateral
pressure. The conclusion was drawn that initially bond stress of

strand increases at a slip too small to be measured. After having

reached a value of approximately 0.0025 mm, .the slip increased more
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rapidly. Beyond that point, the bond strength continued to increase at
a small rate. Some tests on plain wire (the middle wire of the strand)
showed that the bond strength of strand was higher than the bond
strength of plain wire. Finally, the bond characteristics obtained in
the pull out tests were used in calculating the anchorage length of a
strand in a pretensioned beam. It was shown that the calculationbased
on the results of 25 mm embedded length of pull out tests using non-

prestressed strand provided a reasonably safe estimate of the anchorage
length.

More recently, Edward and Picard (90) reported bond pull out and
tension tests on 12.7 mm strand in order to obtain the local bond
stress-slip relationship. They used 38.1 mm embedded length with
three concrete covers of 12.7 mm, 25.4 mm and 38.1 mm. The results
obtained, plotted as bond stress-slip curves showing elasto-plastic
type behaviour, are reproduced in Figure 2.4. The results indicated
that the average maximum bond strength decreased when the concrete cover
was increased. Also, some empirical expressions for crack widths and

spacings were given.

Jeager (89) presented a state of the art of corrosion protection
of prestressing tendons in prestressed concrete reactor vessels. The
advantages and disadvantages of grouted and the non-grouted vessels
were also given. Bangash (47) presented in detail certain arguments for
and against the use of bonded and unbonded tendons in prestressed
concrete reactor vessels. Two-dimensional finite element models were
used to calculate bond stresses for bonded reactor vessels. On the
basis of this calculation, various <endon types and their sizes for

bonded and unbonded tendons were recommended.

Morris Schupack (107, 108, 109) carried out various tests on post-
tensioned grouted tendons, mainly used in containment vessels. Grouting
tests of a large 54 strand post-tensioning tendon (107) were performed.
The tendon was embedded in a concrete beam and it was stressed at 76%
of GUTS. After cutting the tendon at 31 days of grouting, the bond
transfer length of 3.1 mm to 3.7 mm was found. Mottock et al (110)
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carried out a comparative study of prestressed concrete beams with and
without bonded tendons. The primary variables were the presence and
absence of bond and the amount of bonded reinforcement. The results
reported show that the unbonded post-tensioned beams with minimum re-
commended reinforcement had serviceability characteristics, strength
and ductility equal to, or better than, those of comparable bonded

post-tensioned tendons.

Naus (112) studied the behaviour of grouted and non-grouted
tendons in relation to prestressed concrete reactor vessel application.
The various aspects of bond performance were studied experimentally.
Flexural tests were performed on beams (dimensions of 3.05 mm length,
0.15 m width and 0.31 m depth) prestressed with a 12.7 mm diameter
seven wire prestressing strand. Prestressing load (0.5 to 0.7 GUTS)
and loading rates of 0.074 KN/second to 74 KN/second were adopted in
the tests. The beams were tested in flexure at a loading rate of
0.074 KN/second. The results indicated that the grouted tendon beams
have increased cracking and ultimate loads for the same level of pre-
stressing and also improved crack control, i.e. more cracks with smaller
widths. On the other hand, rates of loading did not indicate any

significant effect on the ultimate load on either tendon system.

Experimental studies of bond between strands and concrete have
been carried out by Javor and Lazar (147). Relationships between the
compressive strength of concrete and the transfer length of a seven wire
strand were obtained. The results obtained indicate that there is a
relationship between the strand slip and transfer length and that the
stress distribution in the strand over the transfer length is

approximately linear.

None of the above experimental tests on bond, except those of
Stocker and Sozen (105) and Edward and Picard (90) were carried out for
local bond-slip relationships. The local bond-slip relationship of
various éteel bars (e.g. plain bar, deformed bar, prestressing strand

and wire) is very important, since this indicates a local constitutive
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relation at the interface of steel and concrete. This relationship has
an analogy with the stress-strain relationship of steel. Various
difficulties were encountered in obtaining a local bond stress and slip
on pull out and tension tests (Fig.2.6.). A large number of pull out and
tension tests were carried out (94, 106a, 90, 91, 106b, 93, 106, 105)
differing in the dimensions of the test specimen, measurement of bond
stress and slip. A bond pull out test used by Edward and Picard is
shown in Figure 2.3. Nilson (92) established the local bond-slip for
deformed bars by indirectly calculating strains of steel and concrete.
An extensive study of local bond-slip behaviour of plain and deformed
reinforcing bar was made by Yannopoulous (91) under static and repeated
loading. Bond-slip curves are reproduced in Figure 2.7. for plain bars

(16.0 mm diameter).
2.4.4. A Case for Present Research

The above literature review indicates that not many reactor vessel
analyses and experiments have been performed for bonded cases. Most of
the analyses were performed on unbonded reactor vessels. In order to
study the bonded reactor vessels, it is intended in the present research
to carry out three-dimensional non-linear finite element analyses in
which the effect of bond is included. For comparative purposes, an
unbonded reactor vessel is also analysed. The review also indicates
that significant work has been done for bond and bond-slip relationships
for plain and deformed steel bars. Very little in comparison has been
done on bonded prestressing wires and strands. For small or large
tendons, it is rare to find any reference work on their bond with
concrete. In order to study bond behaviour experimentally and to
determine local bond-slip relationships, the following experiments have

been carried out :

(a) Prestressed concrete bonded slab

(b) Pull out tests on prestressed concrete beams

These are fully described in Chapter 7.
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CHAPTER 3

General Finite Element Analysis

3.1. Introduction

This Chapter discusses the general finite element analysis required
for the bond strength investigation of prestressed concrete reactor
vessels. Three-dimensional isoparametric solid elements were used to
model the vessel concrete. Liner and prestressing tendons (bonded re-
inforcements) were modelled by curved membrane and axial line elements
respectively. The interaction between steel and concrete was modelled
by specially developed bond-linkage elements. The displacement finite
element method was used throughout. As the literature covering the
finite element method is vast and comprehensive (1, 2, 3, 4), only the
essential features to develop these elements are given. The displace-
ment finite element method is presented first, followed by the expressions
for the element stiffness matrices, loads, strains and stresses.

Elastic (linear) material constitutive relationships are assumed in this

Chapter.

3.2. The Displacement Finite Element Method

The displacement finite element method is adopted. Displacements
at nodes are unknown variables. The displacement field within each

element can be expressed as

e

U= NU (3.1)
n
=2 NcIUg (3.1a)
where (¢ - -element nodal displacement vector
L;L - .displacements at node 1
N - element shape function matrix
;SL - shape function of node i
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- 1dentity matrix of n x n

- number of nodes of an element

¢ 3

- denotes a matrix or a vector

When the displacements are known at all points within each element, the

strain at any point within the element may be written as

N
€= Z.Bdlt = BU° (3.2)
N L= e
B-= [@1,52.;53-----—-,3@- ————— Bn] (3.3)
where £§ - strain-displacement matrix for an element
B; - strain-displacement matrix at node i

In general, the stresses are calculated within the element using the

following relationship

o= D(E-E)+0a% (3.4)
where Q% - 1initial stresses
& - initial (thermal) strains
D - elastic constitutive material matrix

When virtual displacements,dgﬁ are applied at the nodes, the sum of work
done by the stresses, distributed body and surface forces over the

element volume (vol) and surface area(s) is respectively given by

T T .
din = (du) ({8 ochvol - | N'R ds- [NTR dwet) — (3.5)
Vol s = voo ~
where g - surface force per unit surface area
B - force per unit volume

P~

In order to maintain equilibrium within the element, a system of
external nodal forces, &, must be applied, and the external work

equated to the internal work
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-
@y) Be= @ue) ({Bodwol - (N'R ds - [ N'R clvot )
vol [ Vol -

//" (3-6)‘

Equation (3.6) is valid for any set of virtual displacements,dU?,
and may be eliminated from both sides of Equation (3.6). Substitute

Equations (3.2) and (3.4) to obtain :

_

B = ([BDB dvet) U (BpEoctuct + ggfesdvoa-y NPsds— (N'R dwt (3.7)
vot vol ot s~ Vot~

Br= KW+ B+ RE+R°+R (3.8)

Equation (3.8) is the force-displacement relationship with stiffness

transformation. In which :

(a) The element stiffness matrix, Eez YE’QEde (3.8a)
Vol

e
(b) The element body force, B:-g ﬂngvoe (3.8b)

vot
(c) The element nodal force due to surface pressurehgﬁz-iﬂﬁgds (3.8¢)
S

(d) The element nodal force due to initial stress,’g.e; S'B}:);dvoﬂ (3.8d)
ot

(e) The element nodal force due to initial strain,ﬁ%:iﬁiggghml (3.8€)
ot

Equation (3.8) is assembled to form a global stiffness matrix and load

vector. The following force-displacement relationship for the entire

structure is written as :

P= KU (3.9)
where K - stiffness matrix of the structure
P - generalised force vector for the structure

Equation (3.9) is solved for the unknown nodal displacements, U.
The strains and stresses at any point within the element are calculated

using Cquations (3.2) and (3.4) respectively.
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3.3. The Solid Isoparametric Elements

The solid isoparametric elements represent concrete of the pre-
stressed concrete reactor vessels and are shown in Figures (3.1a),
(3.1b) and (3.1c). The essential features of these solid isoparametric

elements in relation to the development of their stiffness matrices and
load vectors are briefly given below.

3.3.1. Strain-displacement Relation

The strain displacement relation given earlier in Equation (3.3)

is now invoked. For the case of three-dimensional solid elements,

the B of node i is given below :

M5 0
IR N
o % ©
N (3.10)
BL = O o oz
= NC OM
6x3 355 ‘§§F @)
IN¢ LN
°© SF &
N 2N¢
E A 3
" -~
- £= 2 Blle ; ¢=L¢ '
with ¢ = & el ) §6— <, 8, €, Yiy, Yy, Yax ] (3.10a)
%

Appendix Al.1.4. gives full details of the coordinate trans-
formations between Cartesian and curvilinear axes. The Jacobian matrix
J, and derivatives of Equation (3.10) are obtained in terms of deri-
vatives with respect to curvilinear coordinates. As there are three
degrees of freedom at each node, the dimension of 8 matrices for the
8, 20 and 32 noded elements is (6x24), (6x60) and (6x96) respectively.
Although the 32 noded element is not used in this research, nevertheless

it is included for future requirements.
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3.3.2. The Stress Calculation

The stress at any point within the element is given by Equation

(3.4) and is now rewritten as :

—
= D(E -&) + o (3.11)
in which
T M 3.11
Q=E%’%»%1T'Y!TY’Z)T?"1 ’ §°=£E"°la‘f‘“££¢’o/0103 (3.11a)
éxt éx1
where 12 - anisotropic material matrix for concrete (see
¢x¢

Equation (A2.1)

For isotropic cases, all V's and E's along three principal axes are

the same respectively.
3.3.3. The Element Stiffness Matrix

The element stiffness matrix given in Equation (3.8a) is now

rewritten as :

+ 2+

Ké= { EDBdwt = S'gg_e_}' B detTdgdndy ~ (3.12)
v .

~~

-y =i -

where D, B and detJ are defined by Equations (A2.1), (3.10) and
(Al.4a) respectively.

3.3.4. The Load Vectors

The various load vectors of Equation (2.8) are now rewritten as :
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+|

| +i
R® = - { f f NTEs detJdgdndy (3.13a)
-y =1 =i
R =- SNT%ds (3.13b)
s~ ~
]
R =- fff,@”pgo detTdgdndy (3.13¢)
-1 =1 =
s atl
P = B v detT dg dnd (3.13d)
B= | §‘ B'o 744
where detJ = determinant of Jacobian

Further details of the calculation of the pressure load vector
(Equation (3.13b)) are given in Appendix Al.1.5. The point load vector
jdea is also extended for the loads which are not acting directly at

nodes. These loads are named as patch loads (see Appendix Al.1.6.).

The integrals of Equations (3.12), (3.13a), (3.13b), (3.13c) and

(3.13d) are carried out using the Gauss quadrature formula (2).

3.4. The Membrane Isoparametric Elements

The membrane elements are used to model the steel liner in a
prestressed concrete reactor vessel and are treated as thin shell
elements. The elements are capable of transmitting only in plane
actions and the strain in thickness direction is assumed constant
(plane stress conditions are enforced). These elements are compatible
with the one face of the solid elements modelled for concrete. The
element local, global and curvilinear coordinate systems are shown 1in
Figures (3.2a), (3.2b), and (3.2¢c). Appendix Al.2. gives details of
shape functions, their derivatives and B matrix. Details for these

elements are given below.
3.4.1. The Strain-displacement Relations
As the element may be in any direction in the three-dimensional

space, the strains refer to a local orthogonal Cartesian system

(X'. Y'. Z'). The strain components which contribute to the strain
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energy are from Equation (A1.10).

!
tx = U
¥ =K
Ey' =
Y=g
Tx'y'= éa% + 29 (3.14)
or g =8BY

After carrying out the transformation, the following may be written

(see Appendix Al.2)

-~

§, = ,BVLJ: ) g =L E&x, &y , Vgt 3 (3.14a)

Il

The B matrix in this case is slightly different. Full details are given

in Appendix (Al.2). For node i the B matrix can be rewritten as

(Equation (Al.23)).

. | S
Rx'x d¥y Rxydy Rx'z dy
EL: R‘{'x d“'fz RY'Y d'i‘z Rx'z d%z

(3.15)

(Rx'xdlya+ Ry dy)  (Rey d+ Ryry d‘},) (Rxzd¥+ Ry’z d;f,)
L_ -

Further details about the strain-displacement matrix are given in

Appendix Al.Z.
3.4.2. The Stress Calculation

The local stresses at any point are written as :

g’ = Dw (£ -€5) (3.16)
. . T
in which @"'=Cog, 0y, 'n,Y,]T 5 é; = L&xy ,Eys, 0] (3.16a)
3x1 3x1
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For the plane stress case, the elastic material matrix is given by :

— h
L Vs 0]
Es
D= Vs 1 (0] 3.17
~M 1_));- ( )
o o

Where Es and ¥s are the modulus of elasticity and Poisson's ratio of steel.
3.4.3. The Element Stiffness Matrix

The element stiffness matrix for this element is given by :

i+
Ke= (" B'Dw B detJ dg dv (3.18)
- -l
In which Dwof Equation (3.17) and B of Equation (3.15) are used. The

numerical integration is again adopted for Equation (3.18).
3.5. The Line Elements

The line elements are used to model the vessel prestressing tendons
and reinforcements (primary and secondary). The elements are only
capable of transmitting axial stress and strain and are classified

according to the following categories :

(a) Two node line element (Direct Approach)
(b) Two, three and four node elements (Isoparametric Approach)
(c) Isoparametric line element in the body of solid element (Body

Element)
3.5.1. Two Node Line Element (Direct Approach)

This is the simplest element (Figure (3.3a)) in the series of
line elements. The element is straight with length L, end nodes 1,

2, cross-sectional area, A, and modulus of elasticity Es. The follow-

ing displacement function is taken into consideration :
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U= Qo+ a; % (3.19)
The stiffness matrix in global system can be written as :

KE=TT K. T (3.20)

~ ~

In which K is the element stiffness matrix in local system. This may

be written as :

KL = Ef‘_ﬁ[ii _11} (3.20a)
2X2 -

AndI is the transformation matrix
e

r’
[”—1»‘"71»"?1 0, 0, 0:] (3.20b)

0, O eljml) YM

~

26

where {; , m; ,n are the direction cosines of element axis with respect
to global axes. The explicit form of Equation (3.20) is given in

Appendix Al, Equation (A1l.25).
The local strain and stress are now written as :

&= L L€ (Uz= W)+ my (V2-Vp) 0y (Wa-wWy)) (3.21a)

o = Es(&x'-&y) (3.21b)
where U, , Vyooa Wy and Uz , V2 , W, are the global nodal displacements of
nodes 1 and 2 respectively. Es is the modulus of elasticity andégx)the
initial strain.
3.5.2. Isoparametric Line Elements

The concept used in this case to develop the stiffness matrix is

very similar to that for the solid and membrane elements developed in

the previous sections. The shape functions, derivatives and the strain-

displacement matrices for these elements are given in Appendix Al.3.2.
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The element stiffness matrix is then written as (Figures (3.3a),
(3.3b) and (3.3c¢)):

e HoT L )
KE = 3‘1 BEsB A(Q)Ldgz%':lngng'ijJA(f,j) (3.22)
where
n . -
Ag)= %ﬂNLAL (3.22a)
where A, - cross-sectional area at node i, n = number of nodes

on element
NG - number of integration points, N{= shape function at

node 1

E, B8 have been defined earlier. Reference is made to Appendix Al.3.2.

The strain and stress are calculated as follows :

)

Exi= BU (3.23)
oy = BsEx, (3.24)

where U¢ is the global nodal displacement vector for the element.

3.5.3. Line Element in the Body of the Solid Element (refer to
Figure (3.4))

The main use of this element is in modelling the reinforcement
inside the concrete. The solid element, together with this element
represents a composite element. An assumption made in deriving the
B8 matrix (Appendix A3.3) is that the steel has to lie in the directions
of local curvilinear axis (é > 4 ) of the parent solid element. The
stiffness matrix of this element may be written as :

e i

K'= | B'EsB A(§) detT dg (3.25)
1
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where B is defined by Equation$ (A1.36) and (Al1.37) and detJ is defined

by the determinant of Jacobian matrix.
3.6. The Three-dimensional Bond-linkage Element

The three-dimensional bond linkage element, the Ahmlink element,
has been developed to model the interface relationship between steel and
concrete. This element connects the line and the solid elements together
and has two nodes as is shown in Figure (3.5). This element was first
developed in a two-dimensional form by Scordelis (8) and was later used
by others (9, 44). In this work, the element is extended to three
dimensions. Physically, the element does not exist, but its mechanical
action is represented by three orthogonal springs connected in the hori-
zontal, vertical and lateral directions to steel and concrete elements.
The horizontal spring represents the bond stiffness and acts as bond
between the steel and concrete. The other two springs represent the
vertical and the lateral adhesion between the steel and concrete. The
procedure for the derivation of stiffness matrix and computation of

stresses is given below :

Let X, Y, Z and X', Y', Z', be the global and the local coordinate
systems (Figure (3.5)) respectively. The direction cosines of the local
axes (X', Y', Z') with respect to global axes (X, Y, Z) are (1, m, n),
(p, q, 0) and (r, s, t). Let P, Q be the line element nodes. The

direction cosines in terms of nodal coordinates may be written as

follows :

¢ = XG.L—XP ; om= YQ:YP , n= ZQ:ZP

-

= —m = £

i 1_-nz ’ v Ni-n2

= =in ) s= —n ; t=Jd1-n2

Ji-nz 1-n? (3.26)

in which L = \f(xq-xp)z+ (Ya - Yp)+(2a -2p)* (3.27)
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In the case of 1=m=0 and n=1, the direction cosines take the following

values :
P=0; q=1; t=0; v=-1; s=o0 (3.28)

With this definition for the direction cosines, the local X' is always
tangential to line element with the other two directions being

orthogonal to it.

Let ASy, ASv and ASe be the incremental slips in the horizontal, lateral
and vertical directions of the steel element. The incremental relation-

ship between the slip and the nodal displacements can then be written

as :
ASp, | e ,-m ,-n L, m, n |[0u]
_ AVy
ASV { - "'P ’“q y O, P: 3 , O ) AW (3.29)
ASe -r,-s ,-t 71, s, t Ay, r
_ _ . - .
or AVJ (3.29a)
ASS = T AUE LA

where T is the transformation matrix,Agfare the global element dis-

placements.

The local incremental bond stress and bond-slip may be written as :

A%y, E, O o | [4sy]
thoy 5 o E O |{4sv) (3.30)
40y [0 o Eo | [8Se

, (3.30a)
Ao = EpASE

where g, , Ey and E¢ are the bond-slip moduli in the three directions.

These can be obtained by using an idealised bond-slip curve. These

curves are shown in Chapter 2 and elsewhere in this thesis.

Here Eh= éﬂi

AS
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wheredf, 4sare the incremental bond stress and slip from a specified

bond-slip curve.

Assuming bond stresses as average stresses along the length of the
steel with length L, the incremental nodal force and the stress relation

may be written in the following form :

AP = ;dL T' Agy? (3.31)

T
where A%e = LAG“{, , 46y , AG3]

APt = [ ARV ARY 8RS, AR, AR, ARL]
d - diameter of steel embedded in concrete
JtdL - surface area over which the linkage element 1is

connected with the steel

Now the relationship between the incremental nodal forces and the
incremental displacements by substituting Equation (3.29) and (3.30)
in Equation (3.31)

T ,
AP® = mdL T f:bIT ALE — (3.32)
AP = Kb AU® (3.32a)
where Kp = TTdL ITEb[ -~ (3.32b)
- oo
jﬁb - bond-linkage stiffness matrix
6x6

The explicit form of Kp is given in Appendix (A1.5).

The stresses in terms of nodal displacements can be calculated by sub-

stituting Equation (3.29a) in Equation (3.30ag as follows :

Aof = E,T AU (3.33)
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Figure 3.1 Isoparametric Solid Elements
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XYZ - Global Cartesian System
X'Y'Z' - Local Cartesian System

(a) 4 Noded Membrane Element

B

(b) 8 Noded Membrane Element

(¢) 12 Noded Membrane Element

Figure 3.2 Isoparametric Membrane Elements
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Figure 3.3 Isoparametric Line Elements
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CHAPTER 4

Constitutive Relations for Concrete and Steel

4.1. Introduction

During the past two decades, considerable research and development
effort has been devoted to the analytical modelling of concrete structures.
Different techniques have been developed in order to model linear and
non-linear behaviour of concrete and steel. Despite all this effort, no
one method has come out as yet to solve the complex nature of the multi-
axial behaviour of concrete under compression, cracking in tension and
related phenomena such as aggregate interlock, dowel action of steel
(reinforcements and prestressed tendons), bond-slip between steel and
concrete, temperature and creep. In this Chapter, an attempt has been
made to present a unified approach by bringing together all these areas.
In order to achieve this objective, this Chapter gives the non-linear
constitutive relations of concrete (compression and tension cracking),
elasto-plastic constitutive relations of steel (liner and prestressing
tendons) and non-linear bond-slip relations at the steel-concrete inter-
face. These relations are further extended by the }nclusion of thermal

and creep effects.
4.2. Literature Review on Compression and Cracking of Concrete
4.2.1. The Characteristic Behaviour of Concrete

The characteristic stages of reinforced concrete behaviour can be
illustrated by a typical load-displacement relationship as shown in
Figure 4.la. This highly non-linear relationship is roughly divided into
three intervals : the '"uncracked elastic stage', 'crack propagation"
and the '"'plastic' stage. The non-linear response is caused by two major
material effects, i.e. '"cracking' of concrete and '"plasticity' of steel
and the compression of concrete. Moreover, time-independent non-

linearities arise from the non-linear behaviour of the individual
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constituents of reinforced concrete, for example, bond-slip between
steel and concrete, aggregate interlock of a cracked concrete and dowel
action of reirforcing steel. The time-dependent effects, such as

creep, shrinkage and temperature change, also contribute to the non-

linear response.

In all these areas, multi-dimensional stress-strain relations
have been developed which adequately describe the basic characteristics
of concrete materials subjected to monotonic and cyclic loading. These
constitutive equations are the most fundamental relations required for
any analysis of reinforced or prestressed concrete structures. Several
approaches for defining the complicated stress-strain behaviour of
concrete under various stress states can be divided into four main

groups

1. Representation of given stress-strain curves by using curve

fitting methods, interpolation or mathematical functions.
2. Linear and non-linear elasticity theories.
3. Perfect and work hardening plasticity theory.
4, The endochronic theory of plasticity.

Looking at the mathematical representation of concrete in
compression, the three models, namely hypoelastic (9, 31, 30, 40, 41, 42,
44), plastic flow (10, 24, 27, 28, 38, 39, 51, 52, 111) and endochronic
(63, 64) are widely accepted.

The hypoelastic models have been used in various forms. The
earlier forms of hypoelastic models to represent the non-linear behaviour
of concrete were based on the non-linear elasticity (9, 31, 44). 1In
these models, the material constitutive matrix depends on the current
state of stress, the increment of stress during loading calculated

generally as

doy = D(ox) de, (4.1a)
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In numerical applications, the incremental relations of Equation (4.la)
are combined with an equilibrium equation as

g = gu(g) (4.1b)

where i is the point on the non-linear stress-strain curve

D = material matrix at stress level 0%

Initially the concrete is assumed isotropic. However, due to the
dependence of material moduli (€ andV ) on different stress components,
a stress induced anisotropy occurs. Many researchers later on took
interest in the anisotropicity of concrete. A hypoelastic model of
degree one 1is proposed by Coon and Evans (30) in which concrete moduli
depends only on two stress invariants. Strains in this model are implied
to be infinite at maximum stress. A similar concept of hypoelastic
model is used by Bangash (21, 22) where non-linear behaviour of concrete
was adequately modelled using orthotropic approach. Similar orthotropic
models (17, 40, 41, 42) have been developed in which concrete moduli are
calculated from a non-linear uniaxial stress-strain curve (34) in
individual principal stress directions. The effect of biaxial or tri-
axial stress ratios on the concrete moduli has been taken into

consideration.

Non-linear incremental .elastic models are proposed by Phillips et
al (19, 20) in which the bulk modulus (K) is assumed constant and the
tangential shear modulus (G) is assumed to be a function of the octa-
hedral shear stress only. A similar approach has been adopted by Cedolin
et al (29) who considers the bulk and shear moduli to depend on all the
stress invariants. The proposed model is applicable to triaxial com-

pressive states only.

Another triaxial model of non-linear type was proposed by Saugy
et al (22, 23) in which the bulk modulus was considered as constant while
the shear modulus was assumed. to vary as logarithmic function of the

second stress invariant. This model has been used for three-dimensional
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analyses of prestressed concrete reactor vessels. This model is

fully corroborated with experimental results.

Ottosen (36) uses a non-linear elasticity model in which secant
values of modulus of elasticity (Es) and Poisson's ratio (Vs) are
changed according to non-linearity index. The non-linearity index is
determined by triaxial failure criterion proposed also by Ottosen (35).
The model includes the effect of all three stress invariants, concrete
dilatation near failure and the tensile state of stress. The failure
criterion (35) contains all three stress invariants and it corresponds
to a smooth convex failure surface with curved meridians, open in
‘negative direction of hydrostatic stress axis. The trace in the
deviatoric plane changes from nearly triangular to more circular shape
with increasing hydrostatic pressure. This failure criterion for

concrete is known as '"four parameter model'.

In many other investigations the non-linear compressive behaviour
of concrete is represented by the flow theory of plasticity (10, 10a,
38, 39, 51, 52, 24, 27, 28, 18, 111). In these models the main effort
has been to develop suitable yield criteria, flow rules and hardening
and softening rules to get a good approximation of non-linear behaviour
of concrete. Argyris et al (10, 10a) have used Mohr Coulomb and
Drucker Prager yield criteria. William et al (24) have used a more
refined concrete yield surface (five parameter model) in conjunction with
the flow theory of plasticity. Chen et al (27, 28) in their elasto-
plastic models, investigated the post-yield behaviour of concrete by
including the hardening rules of plasticity. In all the elasto-plastic
models of concrete the objection is that the flow rule of plasticity is

not applicable to concrete.

Another concrete compressive model is proposed by Bazant and Bhatt
(63) and is called the endochronic theory inelastic model. The theory
of the model is very similar to plasticity model except that it does
not have yield surface. The theory was first proposed for steel by

Valanis (65). Important characteristics of concrete, such as dilation,
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softening and realistic failure stresses are simulated, and the model

can be applied to general state of stress. All the inelastic concrete
parameters were determined with only concrete compressive strength and
are applicable to a particular type of concrete. A critical appraisal

is given (66) of this model in which doubts have been expressed regarding
the model's stability.

Baker (150, 151) suggested concrete failure criteria which was
based on the fact that concrete has hetrogeneous system and the
principal causes of cracking and failure are due to the difTerential
stiffness between the aggregate, matrix and their interface, the bond
interaction and the weakness in tension of the mortar matrix. He
modelled the failure surface by using a tetrahedron (Figure 4.1b) in
which the Poisson thrust ring, plastic flow and cracking effects are
represented by the relative stiffness of the rods, which, in turn,
depend on the changing behaviour of load. He developed expressions
assuming that crack forms in the mortar pocket then eventually extends
around the stone interfaces. It is an impressive contribution to
improving the situation in which the Poisson's ratio, ¥ , and the
Young's modulus, E, change rapidly as the failure approaches. The

following two equations were proposed by Baker (150):

M‘é = 1+4.50..§. for G"‘>C1‘:I_=C7:'3 (4.2a)
a 3

i+ _ o54108 for @4=03>03 (4.2b)
% Cc

where ¢y , 0y , 03 are the principal stresses and 0z is the uniaxial

compressive strength of concrete.

A test case in the above equations proves what Vile (152) has
established. It is interesting to note from the above that the triaxial
compressive quadrant of stress space can be achieved by rewriting

Equation (4.2a) and (4.2b) in the following form :
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% = O + 350y (4.2¢)

0y = 1oz + S 03 (4.24d)

When Equations (4.2c¢) and (4.2d) are plotted in stress space, as shown
in Figures (4.1c) and (4.1d), the failure envelope agrees both in shape
and magnitude as suggested by Hannant and Frederick (153). In the case
of high triaxial compression, when (9 +0+03)> 160, the constants in

Baker's equations need to be adjusted.

The above experimental equations are flexible enough to accommodate
all the experimental parameters of researchers mentioned earlier. Any
new experiments to be carried out must be such to warrant the necessary
accurate parameters required by Baker's equations. In this regard,
efforts have been made by Chinn and Zimmermann (141) and Acroyd (154)
and Newmann (138).

-

4.2.2. Concrete Cracking Models

In the finite element analysis of concrete structures, three

different approaches have been employed for crack modelling

(a) Smeared cracking model.
(b) Discrete cracking model.

(¢) Fracture mechanics model.

The selection of any of the three models depends upon the purpose
of the analysis. 1In the smeared cracking model, the cracked concrete
is assumed to remain in continuum, i.e. the cracks are smeared out in a
continuum fashion. Here, an assumption is made that after first cracking,
concrete becomes orthotropic or transversely orthotropic and one of the
material axes has oriented along the direction of cracking. In this
approach, shear strength reserves due to concrete aggregate interlocking
can be accounted for by retaining a positive shear modulus. Here the
crack is not discrete, but the model considers an infinite number of

parallel fissures across the finite element.
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An alternative to the above model is the introduction of ''discrete
cracks' (8). This is done by disconnecting the displacement at nodal
points for adjoining elements. Here the difficulty is that the location
and orientation of the cracks are not known in advance. Hence geo-
metrical restrictions imposed by the preselected finite element mesh can
hardly be avoided. To some extent, this can be rectified by redefining
the element nodes. Such techniques are complex and time-consuming.

For problems involving a few dominant cracks such as the diagonal tension
crack in reinforced concrete beams, the discrete model offers a more
realistic representation, i.e. this crack represents a strain dis-
continuity. The success of fracture mechanics theory is based on the fact
that concrete is a notch-sensitive material and the cracking criterion
based on tensile strength can be handled withoﬁt being unconservative.
Bazant and Cedolin (148) have produced some results. At present this

area 1s being very actively studied by several researchers (148, 149).

The cracking of concrete in tension has been studied by various
investigators. The first such study using finite elements was made by
Ngo and Scordelis (8). They treated both steel and concrete as linear
elastic materials while incorporating linear elastic bond-linkage
elements. Here cracks are predefined and are represented by separation
of nodal points. Nilson (9) extended this work by introducing non-linear
material behaviour. With crack propagation and hence continually
redefinition of structural topology made this approach unpopular.
Franklin (44) tried to overcome this problem by predefining the expected
total length of a shear crack which he observed in various experiments
of reinforced concrete beams. Two sides of a crack were initially held
rigidly together by very stiff linkage elements. By varying the stiffness
value of the linkage elements, the crack propagation was simulated

without redefining the nodal points.

Cervarka (39) studied two-dimensional crack problems using iterative
methods. The initial stress method (51) applicable to elasto-plastic
problems is extended to cracking of reinforced concrete by Valliappan
and Doolan (134). Schnobrich (135) suggested periodically updating the

stiffness matrix. Cracking was considered as changing the material
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properties of concrete. This way of introducing crack allows some shear
capacity to be retained in the cracked concrete. This allowance for
shear corresponds to taking into account the concept of aggregate
interlock across the crack surface. Suidan and Schnobrich (38) used

the same general approach for three dimensional case. They keep small

values of shear stiffness across the open cracks.

Lin and Scordelis (136) analyse reinforced concrete shells.
Triangular layered elements are adopted in which steel is represented as
smeared layer. A concept of '"tension stiffening" is introduced in which
open cracks have a decreasing (rather than zero) tensile strength after
cracking. Using this concept, the effect of bond between steel and

concrete is incorporated in their cracking analysis.

Based on the above mentioned study, three constitutive models

selected for concrete in compression are
o
1. Orthotropic model. .
P o
2. Shear and bulk moduli model.
3. Endochronic theory model.*
*The endochronic theory model has been included later on in the computer
program. It has been a part of the validation procedure, tested on
simply supported beams only.
4.3. Formulation of an Orthotropic Concrete Constitutive Model
4.3.1. Incremental Stress-strain Relations
Here an attempt has been made to give a three-dimensional non-

linear stress-strain relationship developed for concrete using hypo-

elastic orthotropic approach, which incorporates the equivalent uniaxial
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strain concept of Darwin and Pecknold (40, 41), the non-linear
representation of Saenz (34), and the ultimate surface of Ottosen (35)
in such a way as to represent the actual concrete behaviour. The
concrete constitutive relations are then written in an incremental form

in which material parameters are obtained from uniaxial stress-equivalent

uniaxial strain relations.

The incremental stress-strain relations for general three-

dimensional orthotropic material can be written as

_ do- do- dey
deg, = R
dE, = -, 9 cley d 03
2 v?.l E| + Ez — \)23 -Eg'
de, = =V 4% ., des Jo L1,
3 3t E 32 £, + E% (4.3)
d¥i2 = T2
12 Gi2
G23
d¥y = T
Gay

or in matrix form

Foy ~ - 7
de, %, -2 Y3 o o o do
: E2 Es
€ -y 1 -V23 o} do;
de, ‘éz;' %, _F:z; o O 2
des L = |-Y% -Y2 % o o o J9%
| 3y i £, %4 \ y (4.3a)
dYW_ o % o yGu_ O O dq’(z
d¥zs o o0 o 0o Y. 0| |[d%s
1 T
d¥y | o 0o o o o [l d T |

where €, , €, , E3 and Y, , Yy and v; are moduli and Poisson's ratios.

Due to symmetry, the following relations are defined :

VU_ E\ = VZIE-L .
4.
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Also define equivalent Poisson's ratios

V= V),
"\"7.

2= Vz3))32 (4.5)
V3= V3 Vi3

Using Equations (4.4), Equation (4.3a) is written as

I de, | i Y Y Vi3 o o o | [ax
o e T ‘
cle, I/E2 Voo O o o de,
JEzE3

ce; I o o o ) doy

<b } - Es .
d-Y‘Z ‘/GIIZ o (o) d-"(cz r
d.YZS SNM- |/G23 o dg
dfsl yasl d"r3l J

which, upon inversion and using relations of Equation (4.5), becomes

r~ a r - . T 7
do E1(1-1]Y) {EE; (V. 05+7) T +%) o o) o dg,
dey Ea( I-T’; ) JE:E A +VY3) O o) o} de,
dog |, B (-9} o o o J df,

{ = — >
d. ( y Sym. Gy Q o) d¥ia
d%s G23Y o d ¥
d %G, G13V da%l

or

dg = Drd€ (4.6)
where Vv = 1- —\3'7. - v - Vi — 2V, Yy Vs (4.7)

D; is the tangent material matrix

In the above orthotropic material matrix Dy, it is required to
determine three shear moduli defined above. At present, no experimental
results are available to determine shear moduli under triaxial state of

stress. It 1s assumed that no particular direction is favoured with
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regard to shear moduli and they remain invariant upon the rotation of
material axes. If Dy is transformed to a new set of axes 1', 2', and
3' and the constraint is imposed that the shear moduli remain invariant,

the following values of shear moduli are obtained :

2
Qz =-—{E - 29, JeE, - (g P } .
2 e { ) ¢ Ep 29 Jg E, (JE\)’Z+J—E—2V3) S

- - — 2

Ga3 =Z'T {Ez + E3 - 2WJE,E; —(E;%-&-ﬁ;ﬂ)} (4.8)
- = <\2

Gia =;:—5{Ea+ By - 2HIEE, - (&7, +E0)'} |

Equation (4.6) is the main incremental constitutive relation in
which six independent material parametefs, El, E2, E3,‘31,372, andiJS
are the function of current state of stress. These are determined from
the uniaxial stress-equivalent uniaxial strain relations. The concept

of equivalent uniaxial strain follows.
4.3.2. Equivalent Uniaxial Strain

According to this concept (41), the degradation of stiffness and
strength of plain concrete is described during load-history and also
the actual triaxial stress-strain curves can be duplicated from uniaxial
curves. In this way the variation of incremental moduli with respect
to the variation of stress is determined wusing the uniaxial stress-
strain curves. In a uniaxial case, the strain is always a function of
stress in the direction of load. For the trizxial case, the strain in
one direction is not only a funcpion of stress in that direction, but
also it is affected by the stresses in two orthogonal directions due
to Poisson's effect (See Equation (4.3a)). The concept of uniaxial
strain provides a method to separate the Poisson effect from the
cumulative strain. The definition of equivalent uniaxial strain is

written using Equation (4.3) by ignoring the Poisson effect, i.e.

dt iy = d'ot/gt-' , L=1,2,3 (4.9)

a————— -
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In matrix form, it is written as

dtwy (%, o o] [d%]

4.9a
<dfy O o %, ol ¢ diy > ( )
dgay | | o o Ves) |49 |

and the total equivalent uniaxial strains for the load path are written

by integrating Equation (4.9) along the load path as

do
3 = padihd
iu S =
or
. e
Eiw = ZI AE'E (4.10)

Lead increments

in which 4%= change in stress in the ith direction

E;= tangent modulus in the ith direction

It should be mentioned here that the concept of introducing d&iu
and €iu is purely fictitious (except in the uniaxial test) and they have
significance as a measure on which to base the variation of material
parameters. These also do not transform in the same manner as stresses
and strains of Equation (4.3). The stresses in Equation (4.3) are
defined in material principal axes of orthotropy. If these are assumed
to follow the current principal axes of total stress, it indicates
immediately that de€;, must be defined with respect to the current principal
axes of orthotropy. This last statement implies a similarity between
equivalent strain parameters in elasto-plastic analyses (di}) and
equivalent uniaxial strains (42). Since €4 are not transformable, they

are assumed to be defined only in the current principal stress directions.

The general constitutive relationship using this concept can now

be written as

de = F(dg, fde) (4.11)
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in which the stress increment is a function of the strain increment
during the current iteration and the state of stress accumulated to
date. The above relationship is path-dependent, and has a strong

resemblance with the hypo-elastic law proposed by Truesdell (137).
4.3.3. Equivalent Uniaxial Stress-strain Curve (Figure 4.2)

The concept of equivalent uniaxial strain is utilised now to define
equivalent uniaxial stress-strain curves for plain concrete. In order
to calculate parameters for tangent material matrix developed in
Equations (4.6) and (4.7), it is necessary to write Saenz's relation

(34) in terms of equivalent uniaxial strain given by Elwi and Murray (42)

Eoﬁi,u. 5 (4 12)
. Y £. *
t+ (8 +R-2)(E) - (2R-D(gaT+R ()

where Eo = initial modulus of elasticity
Esec = %ﬁi = secant modulus at maximum stress (4.12a)
Eiw = wuniaxial strain in the ith direction
®e = maximum stress associated with direction i
which depends on the current principal stress ratios
€c = maximum strain associated with @4,
. 347 O (31°5 - 3.a70% ) x16 (4.12b)
@¢¢ = stress at failure of descending branch of the
curve
= O-850%, (4.12¢)
€4 = failure strain
- l
A= e
Re - Sic
Re = TEZ
Ecf

The tangent elastic moduli are obtained by differentiating Equation (.13

with respect to equivalent uniaxial strains as

—— (;="Z/3 (4.13
decy )
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2 3
E; = Eo {1+ (2R-1) g - 2R & }

(4.14)
J1+ (R 1R-2)E - (2R-1 ¢k Reﬁ}z
where $ =i_fu (4.14a)

&LC

Therefore the material moduli of Equations (4.14) are in general a
function of accumulated equivalent uniaxial strains and current state
of stress. Equations (4.1 and (4.14) are applied to the whole stress-
strain curve including the descending portion of the curve (see Figure
(4.2)). 1If the ascending part of the uniaxial stress-strain curve is
required, it can readily be obtained by setting R=o in Equations (4.12)
and (4.14). '

4.3.4. Poisson's Ratios

The incremental moduli can now be determined from Equation (4.14)
provided the parameters described above are known for a particular ratio
of the total stresses. Nevertheless, the incremental stress-strain
relation cannot be achieved without evaluating Poisson's ratios. Poisson's
ratio is determined from uniaxial compression data of the Kupfer et al
tests (25) as a function of strain by a least square fit of a cubic

polynomial. This results in the expression given by Elwi and Murray (42)

Lia 3¢ (Eia ) g.59¢ (£ )
y =v°{1 + 1'3763(5&.)—53‘(54;‘:)-.-858‘(8&()} (4.15)
. Ecu
or Vi =f(F) (4.15a)

Three independent Poisson's ratios are postulated as :

Vr=Vv o, Vr=Vady , V= Wy (4.15b)
with i =1, 2, 3

where Yo = initial value of the Poisson's ratio
€. = & for uniaxial test
€y = Strain in the direction of uniaxial loading
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It should be noted from Equation (4.7) thatV may become negative for

Y greater than 0.5 which is not acceptable. Therefore a restriction on
Equation (4.15) is imposed which is this when V. 20.5, the VY, should

be set to 0.5. This limit physically means that there is a zero
incremental volume change as is the case in incompressible material.
Kostovos and Newmann (138) noted that the point at which this limit is
reached corresponds to the onset of unstable microcrack propagation. This

causes concrete to dilate upon approaching the ultimate strength.
4.3.5. Failure Criteria of Concrete

The strength of concrete under multiaxial stress is a function
of the state of stress and cannot be predicted by limitations of simple
tensile, compressive and shearing stresses independently of each other.
The strength of concrete can be adequately evaluated by considering the

interaction of the various components of the state of stress.
4.3.5.1. Stress and Strain Invariants

A failure criterion of materials based on the state of stress is
an invariant function of the state of stress. One method of representing

such a function is to use the principal stresses, i.e.
f(cr?:o\'z;%)=o (4.16)

to show the general functional form of the failure criterion. Under
multiaxial state of stress, this approach to establishing a failure
function is difficult to pursue. This difficulty is due to supplying
information on the basis of both a geometrical and a physical explanation
of failure. It is therefore important to rewrite Equation (4.16) using
three particular principal invariants which are more susceptible to
geometrical and physical interpretations and which are independent of the

properties of the materials. The Equation (4.16) is written as

£(1,,3,33)= © (4.16a)
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Various versions of Equation (4.16a) have been adopted and ‘verified.
The analytical versions of the failure envelope based on Equation

(4.16a) have been adopted by Sangy et al (22, 23), Willam and Warnke
(29) and Ottosen (35).

A failure criterion proposed by Ottosen (35) known as the 'four
parameter failure criterion' has been adopted. This failure surface

contains all three stress invariants and has the following characteris-

tics
(a) The surface is smooth and convex with curved meridians.
(b) It is open in the negative direction of the hydrostatic axis.

(¢c) Trace in deviatoric plane changes from an almost triangular

to circular shape with increasing hydrostatic pressure.

(d) The surface is in good agreement with experimental results
over a wide range of stress state including those where

tensile stresses occur.

Figures (4.3) and (4.4) show the surface in principal stress
coordinate system in which the compressive meridian,@ (8=60, &=027¢3)
and the tensile meridian,f (©=0 , ¢y=03 < ¢3) are defined. The
meridians are curved, smooth and convex and € increases with increasing

hydrostatic pressure.

An analytical failure surface containing all the above characteris- °

tics is defined in the following form by Ottosen (35)

”
f(r,m,=0a B L Al Iy o (4.17)
o 0 0c
where It = Ok +6y+% = first invariant of stress tensor (4.17a)
J; = second invariant of stress deviator tensor

L, (Sx + s§+5F) + Wy +Tez + (4.17b)
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J;
T = cos3s = 15J3 =X 4.17¢c
I (4.17¢)
J3 = third invariant of stress deviator tensor
= SxSySz + 2%y TyaYax -Sx"t‘:}_ - 51’1‘:2 - Sz”(;} (4.17d)
SX = O'x - Il/3
Sy = 0% - Ii/3 (4.17¢)
Sa = 0% - Li/3
AN = A(Cs38) >0 ; a and b are constant
A = Ky Cos(f c8'(Kacas30)) for Cos3e >o
(4.17€)
A = K cos(My3- 58! (-kaCasag))for Cosss € ©

Kl,-Kz, a and b are material parameters to be determined

0
0%

uniaxial compressive cylinder strength for concrete

uniaxial tensile strength for concrete

Equation (4.17) defines the failure at a point if {>o0 and § <o
which also corresponds to a point inside the failure surface. A failure
will not occur at a point under compressive hydrostatic pressure, 1i.e.

three equal compressive stresses will never fail the material.
4.3.6. Determination of Four Parameters (a, b, Kl’ Kz)

The four material parameters are determined with the biaxial test
results of Kupfer et al (25) and triaxial results of Balmer (140) and
Richert et al (139). The following three failure states were represented :

1. Uniaxial compressive strength, g .

2. Biaxial compressive strength, o= =160z , 03=0

(test results of Kupfer et al (25).
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3. Uniaxial tensile strength, ey = R G¢

Hereafter the method of least squares is adopted to obtain the best fit
of the compressive meridian for §/v.>-5-0 to test the results of
Balmer (140) and Richart et al (139). Figure (4.5) shows the process
where compressive meridian passes through a point (where Y 5 9@2

= (-5, -4)). With this procedure, the values of material parameters are
determined as given in Table (4.1 and (4.2. From these Tables, it is
clear that the material parameters show considerable dependence on

R==m9%2 but the failure stresses in compressive regime are only slightly
affected.

4.3.7. ¢ Value

It remains now to assess @¢, (1 = 1, 2, 3) the peak stress for the
calculation of tangent moduli (Equation (4.12)) for various principal
stress ratios. Under uniaxial conditions, @4 1s equal to the compressive
cylinder strength (oz ). However, under multiaxial stress conditions, the
compressive strength of concrete increases. To obtain ¢ in three
directions for principal stress ratio, a surface in stress space is used.
First of all, current principal stresses are established (let these be
0%, %, , Opa where 0‘},76‘,;,)@",3 ). It is then assumed that op,
and 0%, are held constant while the third principal stress is changed
such that it reaches to the failure surface. This establishes that the
ultimate stress is 0%c . Similarly, @4. and 03¢ are calculated by
increasing their values while the other two stresses remain constant.
This means that the principal stresses are substituted in failure
surface (Equation (4.17)) and then one of the stresses (more compressive)
is increased while the other two remain constant until Equation (4.17)

is satisfied.
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4.4. Other Concrete Compressive Models
4.4.1. Shear and Bulk Moduli Model*

Constitutive relations for this model are given in Appendix A5,

Most of this work is due to Sangy et al (22, 23).
4.4.2., Concrete Model Based on Endochronic Theory*

This type of model was initially developed for steel by Valanis
(65) and has subsequently been modified by Bazant and Bhat (63) and is
given in Appendix A6. Here constitutive equations are arranged in
modified form by Ahmad to suite the three dimensional finite element

analysis proposed in this research.

*Both these models have been included in the program NSARVE described

elsewhere in this research.

4.5. Concrete Cracking and Crushing Criteria
4.5.1. Assumptions

The cracking criterion is based on the concept of changing the
material properties and allowing the effect of cracking by redistributing
the stresses to the surrounding material!. Maximum principal stress and
strain criteria are used to define the cracks. When a principal stress
(strain) in any direction exceeds a prescribed value (allowable
limiting tensile strength, 6y or tensile strain, &, ), a '"crack" forms
perpendicular to the principal stress (strain) direction. Thus, for

cracking :

oy > 0y (4.18)
or , (4.19)
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The model developed herein is applicable to general three-
dimensional problems. On further loading, it is possible that new
cracks will form at some angle to the first crack. It is assumed that

further cracks are only allowed in orthogonal directions to the first

crack.

Concrete in tension up to the point of cracking is linearly elastic
material. However, the material becomes orthotropic as soon as it cracks.
When a crack first occurs, it is assumed that direct tensile stresses can
not be supported in the direction normal to the crack. Moreover, the
material matrix in this direction is reduced to a small value (or zero)
and also it is assumed that there is no interaction between this and
other directions. The material parallel to the crack is still capable
of carrying stresses which are given by the new material constitutive

relationship.

The crack initiation (onset of cracking) is always defined using
the maximum principal stress criterion. This is because for cyclic
loading the crack may initiate upon unloading from compressive state in
which a tensile stress at compressive strain may be reached as shown in
Figure (4.6b). A crack is assumed to close when the strain normal to
the crack is compressive and also it is less than the strain at which
the crack was opened. Figures (4.6a) and (4.6b) show a uniaxial crack
initiation, closing and reopening criteria for both cases where first
load in tension and compression is applied. In both cases loading starts
at point A. Crack is assumed to open at point at point B where stress
suddenly drops to zero. Towards the CD direction, the crack remains open.
Upon reverse loading at point E (at strain where zero stress was last
reached) the crack closes. By further cyclic loading at points F and G
the crack will be assumed to reopen and close. In reality, the strain
values when the crack closes will be influenced by the relative movements

parallel to the crack. This effect is not included in this study.
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4.5.2. Shear on Open and Closed Cracks

The surfaces of a typical cleavage crack in general will be rough
and irregular. Due to the parallel differential movement of an open
crack, it is possible that opposite faces will have aggregate interlock
restraining this movement. For a widely opened crack, the opposite
faces will completely separate and there is no interlocking effect. The
most important effect of interlocking is that the shear stress along
the crack will not be zero. Due to the lack of experimental information,
the interlocking is taken into account by assuming that the shear stress

along the crack is a linear function of shear strain, such that :

=GV (4.20)
where G' = BG (4.20a)
G = shear modulus of uncracked concrete
B = shear retention factor'having values
™ = shear stress along the crack
Y* = shear strain along the crack

For an open crack, p= 0.5 was used in numerical calculations. For a
closed crack, it is assumed that full shear stress develops along the

crack, 1.e.

= pGY* (4.20b)

where R 1.0

For other ranges, Bangash (21) gives the value of B between 0.5 to 0.87.
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4.5.3. Concrete Model in Tension and Cracking

The constitutive relationships of uncracked concrete for the three-

dimensional case is written as :

A = Dy Ag (4.21)

~

where Dy is the tangent material matrix and can be written as

e~ sany

Dy Dig D3 o o o
DZ[ Dll D13 o] o O
" DS‘ Dbz D33 o o o (4 .21a)

(o] O o Dyy O O

o) o o o ° Dg, q;,-»ww
L. .

in which D, to D¢ are given by the values of Equation (4.6).

As soon as crack occurs, orthotropic conditions are introduced and
the incremental constitutive relations are written in the cracked material
directions. The total normal stress across the crack is reduced to zero
and also the shear terims ire introduced to account for any aggregate

interlocking. Write the following in the crack coordinate system :

AG* = Dy AEX + Dy AEy + DpAéz (4.22a)
A%' = Dy Atx + Da2Afy + Dy3A& (4.22b)
Mg = Dylek  + DapBEY « Dypley (4.22¢)
NG = Dy ¥xy (4.22d)
AT = Dsshe (4.22¢)
Aix = Deg¥ex (4.226)

The asterisk (*) refers to crack directions (see Figure (4.80)).
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Upon cracking in direction 'l', the concrete offers no resistance in

this direction, i.e.

A% =0 (4.23a)
From Equations (4.22a) and (4.23a)

A% = - Didel _ Diag (4.23b)
Du Oy,
—

Substitute Equation (4.23b) into Equations (4.22b) and (4.22¢), and the

following expressions are obtained :

Acy’ = (Dzz‘D—*'zD"‘) Agy +(Daz- DI'DB)AE{ (4.23c)
Dy D
/
- D » DaiD *
0% = (Dy,- D_é.tv_“'_z)AeY + (Dyy- 220 ae} (4.23d)

Shear in the plane of crack due to interlocking effect can be written as :

Aoy = @D%z&: (4.23e)
A%y = B Dec Yrx (4.23f)
and A%z = Des Yoz (4.23g)

Equations (4.23a) to (4.23g) can be written in matrix form for concrete

cracked in direction '1l' as :

A¢* = DY AE* (4.24)

If the concrete cracks in two directions (say in directions 'l' and '2'),

then from Equations (4.22a) and (4.22b)

A% =0 = DyAEX + D A8f + DyaAch: (4.25a)

0’ = 0 = Dy A%y + Doy M&f + Doy el ] (4.25b)
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Solve for Atsand A&y from Equations (4.25a) and (4.25b)

AE; = (323D\| - 2,03, AE;
Dz2;Dyy - Dy D22 '

AE;: (D|3D22 - D!‘).Dn) A&;
D2 Dz — Du D22

Substituting ae% and A¢§ in Equation (4.22c), the expression for 467 is

obtained as :

—
aoy* = {933._ D3, (213022~ 0na D3 ) - Dsz( DnDz23 - Doy )} Aty
; Dy D,; -0y D2 DuDy2 - D21 D2

Shear stresses are then given by :

A%y = B Daa thy (4.25d)
A%: = BDssHhe (4.25€)
00 = @D“ﬁ; (4.25f)

Similarly, for two open cracks in '2' and '3' directions, and '3' and

'1'" directions :
2-3 direction

A% =0 , B803* =0 (4.262a)

Lo { By D (DnDsa- Dula y _ (D Dra = Douby )} ret (4.26b)
DD, - 0,03 D33 D22~ D3; Dy3

3-1 direction

"AGk =0 , A%=mo (4.27a)

M"':{_D - Dqay {DrD33-D3,08 \ D, Dy Dz ~ D3; Dj2 }A *
Y 22 (9"033“ 33'%) 3(9“%_ Da'%) & (4.27b)

Shear stresses for both cases are given by Equations (4.25d) to (4.25f).
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For all three directions cracked, the material matrix becomes null
and concrete at this point carries no stress. Hence DY={Q ] should

be adopted in Equation (4.24).

Figures (4.7a), (4.7b) and (4.7c) show these types of crack for the
three-dimensional concrete for which the constitutive relations are
defined above. Figures (48a) and (4.8b) show the state of stress before
and after cracking. Equation (4.24) with Eg‘=L33 also applies if concrete

crushes in compression.

4,5.3.1. Transformation of Cracked Material Matrix to Global Coordinates
As ¥ refers to a local (crack) coordinate system (Figure (4.8b)),

it is necessary to transform it back into the global coordinate system

for the calculation of stiffness matrix. This is performed as follows

First of all, the strain and stress vectors between the two

coordinate systems are related using the following relationship :

AE' = T AE (4.28)
and A" = Te Yy (4.29)

°

where Tg and T, are 6x6 strain and stress transformation matrices and are
given in Appendix A4 (Equations A4.3 and A4.4). From Equations (4.28)

and (4.29), the following equations are obtained :

Ag = T¢' Ag (4.283)
and Ao = Ty AC? (4.29a)

By observing the special relationship between T¢ and Te-., it can be easily

shown that :
Te'= Te (4.30)
and T = 72 (4.30a)
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Therefore, the values of A¢ and A¢ become

. T
AE = Te AT — (4.31)
Ay =T AGT (4.32)

If it is argued that the energy computed in the two coordinate systems
must be independent of the coordinate system, then :
. -

SU = Agaw = AE Aot (4.33)

Substituting Equations (4.21), (4.24) and (4.28) in the above expression,

the following relationship is obtained :

T T
At Dy AE = 4#¢" Dy Ag” (4.33a)
- A§T( ng_‘r-fg) Af;/ (4.33b)
Hence D; =T¢ D1 (4.34)

Frequent transformations are required in finite element stress and strain
calculations related to two systems. Equations (4.28), (4.29), (4.31),
(4.32) and (4.34) will always be called upon in the computer program dis-

cussed elsewhere to solve constitutive equations for cracking.
4.6. Constitutive Model for Steel
4.6.1. Introduction

Steel linevr, prestressing tendons and reinforcements of prestressed
concrete vessels are modelled as elasto-plastic materials. The theory
describing their material behaviour is based on the incremental theory of
plasticity (51, 52, 53, 54, 55, 56, 62). In this section, a brief dis-
cussion is presented firstly on the elasto-plastic constitutive relations
of steel for general three-dimensional cases, and secondly, these equations
are specialised for steel Iiner (plane stress case) and prestressed

tendons (uniaxial case).

-78 -



4.6.2. General Elasto-Plastic Constitutive Relations

There are three main items used in formulating the elasto-plastic

constitutive relations for steel, and these are :

(a) A yield function
(b) A flow rule

(c) Post-yield surfaces (strain hardening)

During the loading, before elasto-plastic constitutive relations are
applied, it is necessary that the yield function must be satisfied, i.e.
the stress state must be on yield surface using :

F(e ,K)= 00 -K (4.35)

where K depends on the plastic deformation and is characteristic of strain

hardening.

T
Q: =LO‘X)°"‘)¢'2){\G“1)BGI%)TEX]

@ - equivalent stress (4.36)

For Von Mises yield criterion :

]

& =(353,)° (4.36a)

where Jy = Y (S + Sy + SF) + Ty + Tz + Tox (4.36b)
and SX = 0";( - o;n

sa-‘—-’ 0‘2 et 0'm
Otn =(0% +03+03)/3 = mean stress (4.36d)

For a small increment of load, the incremental constitutive relation may

be written as :

Ag = Dy A€ (4.38)
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For elastic material, Dy=Dg , where Dg is the elastic material matrix

defined earlier. A§==[A£X,Aa,,Ag!,Axa,Aﬁq,Aﬁu]T is the total mechanical

strain increment.

This strain increment is decomposed into elastic and plastic components

as .

A§' = ASE + AEP

The elastic strain increment may be written as (Hook's law)

A% = Df Ag

~

From Equations (4.39) and (4.39a)

A = D' Aq + Agp

or A% = De (4 - dep)

which may be written as :
Ag = A% - A

with elastic stress increment as
80: = De A

and plastic stress increment as :
A% = De Agp

If Equation (4.40d) is written as
Ap = Dr 4%

where Dp - plastic material matrix
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Then from Equations (4.40a), (4.40b) and (4.41)

Ag> = (De-Dp) AE = Dep a¢

(4.42)
= Dy o (4.42a)

where Dy=(Dg-D,) is the tangent material matrix or the elasto-plastic
matrix.

Therefore the material constitutive relations in elastic and elasto-

plastic ranges are fully defined by Equations (4.38) and (4.42a)
respectively.

Next, the plastic strain increment (Equation 4.40d) and the plastic

material matrix, Dp (Equation 4.41) are determined in order to define the
stress increment in the plastic region.

Assuming that the plastic strain increment is always normal to the

plastic potential, @(&,k) which is similar to yield function given in
Equation (4.35), then :

a(%,k)=0 (4.43)
The plastic strain increment is given by (flow rule)
Agp = A 2?; = Ab - (4.44)
where A - proportionalityconstant and greater than zero
bz‘aaﬁg (4.44a)

If F = Q, the plastic strain increment is normal to the yield surface.
For example :

(4.44Db)

(4.44¢)
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Later on, special cases are given simply replacing b of
Equation (4.44) by a of Equation (4.44a).

The consistency equation for plastic deformation dF = 0 is given by :

dF = Si_dt+%‘;d~ ' (4.45)
Define A= - )lT %": dk (4.45a)
then ?a—;df - AA (4.45b)
or atAr -) A (4.45¢)

Premultiply Equation (4.40) by é”?g substituting 4% from Equation

(4.44), one obtains the following equation :
@ Dedg = @ b6 +a'De b A (4.45¢)

From Equations (4.45) and (4.45), an expression for A 1is obtained as :

& De Ag
A: e e e

(4.46)
{4 + @"Deb)

From Equations (4.44) and (4.46), the plastic strain increment is

obtained :
ba Dg Ag
Agp = 2= = F (4.47)
(A+ & D)
From Equations (4.40d), (4.41 ) and (4.47)
Deb @D
Dp= =2 5= (4.48)

(A +d Deb]

And finally, the tangent material matrix of Equation (4.42) can be

written as :

(4.49)
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Since the associated flow rule is adopted in this study, b 1n Equations
(4.46) to (4.49) should be replaced by ¢ . By making A = 0, the rigid

plastic conditions are achieved.
4.6.3. Hardening Phenomena

The hardening phenomena in metals can be modelled in many ways.
There are three types of hardening models used in metal plasticity. The
first model which is known as isotropic work hardening was proposed by
Hill (55) and Hodge (57). In this case, it is assumed that during plastic
flow the yield surface expands uniformly without changing its shape and
origin. The special case in this category is the ideal plastic where
surface remains constant during the plastic flow. The second hardening
model was proposed by Prager (58) and it was later proposed in different
form by Ziegler (59) and is known as kinematic hardening. According to
this model it is assumed that during plastic flow, the yield surface
translated in stress space (JU- plane) and there is no expansion of yield
surface. This type of hardening model is useful in cyclic loading, where
Bauschinger's effect is represenfed. The model proposed by Hodge (61),
known as Combined Hardening, gave a better approximation to the actual
material behaviour. This model assumes that during plastic flow the yield
surface translates according to kinematic hardening and at the same time
expands according to isotropic hardening. Haisler (62) gives more details

on this model.

Since this study is not concerned with the cyclic loading, the
isotropic hardening model is used. The ideal plasticity can be derived
from the isotropic strain hardening model. The main thing which represents
the hardening phenomena in the constitutive equation is the parameter A.
For ideal plasticity, A is set to zero. For isotropic strain hardening

material, it can be shown (52) that

(4.50)

= strain hardening parameter (4.50a)

o

]

where

\U)
{q

which is the slope of the equivalent stress versus equivalent plastic

-83-



Strain curve- If uniaxial stress strain curve is

available, then H can be calculated in the following manner :
Ee = TS (4.50b)

where Et = tangent modulus

Let E be the elastic modulus at zero stress. Then :

_ d¢ die dege

| - =t _ 1 L

E{‘B}’W*'dcr—a*"* (4.50c¢)
EE¢

H= -ty (4.504)

Therefore, if the initial modulus and the stress-strain curve of the
material is known, the strain ha:rdening parameter, H, can be calculated.
On the other hand, if it is a bi-linear stress strain curve,. then Et is

simply a post-yield modulus.
4.6.4. Elasto-plastic Constitutive Relations for Liner
The vessel liner is treated as two-dimensional material under plane

stress condition. The elastic constitutive relations are defined in

Chapter 3 (Equation (3.16)). This can be written in incremental form as

~ _ - o ;
Aoi 1 Vs (o] { Atx
e
J AN »= —= Vs i o] p, AEY > (4'51)
-y}
ATey o o 1%
. J L 2 . -dﬁYﬂ
or AE——' QEA,%
where Ay =CAGk, 40y , 8%y 1" 5 AE = [dgx, Asy, Alxy]" (4.51a)
Fi Vs fo] i
Es
De = —,
and e T |Ys 40 (4.51b)
1=y
|0 o TS

Now the equations of the previous section are specialised as follows
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4.6.4.1. Von Mises Yield Criterion
Equations (4.35) and (4.36) are rewritten in modified form as
F=0-0y=0 (4.52)

where 6::=‘I§ (Sgits%-+$§ﬁ+273§)%L (4.523)

Sx =(20% - Y) /3
Sy =(20y - 0%)/3
Se = - (Ox +6%) /3 (4.52b)

where 0y = wuniaxial yield stress of the liner

In Equation (4.49) b is replaced by a

E Sx |
where - Iy
° 3
L = S2= JIF L==— 1398
AR eI —= {8 | (4.53)
oF 2%y
_97‘1_} ]

Therefore, Equation (4.38) may be written as

IAY g De Ag -1 FOy

(4.54)
A% = DeeAE - T ooy
The post-yield stress calculation is performed in two ways. The first is
the ideal plasticity case where H in Equation (4.49) is set to zero.
The second is the strain hardening case where H in Equation (4.50) is
calculated from bi-linear stress-strain curve as shown in Figure (4.9 ).
The strain hardening parameter, H, in terms of initial and post yield

moduli is given by Equation (4.50d).
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4.6.5. Elasto-plastic Constitutive Relations for Prestressed and

Reinforced Steel

Prestressed tendons and reinforcements are assumed to transmit
only axial stress and strain. Therefore, their material behaviour is
described by a uniaxial stress-strain curve (Figure (4.9 )). From

Chapter 3 (Equation (3.24)), the incremental stress-strain relation is

given by :
A =De b ~— (4.55)
X1 Ix( l;‘l
where A = Acy
A‘E= Afx (4.56)
De=Es - initial modulus of tendon or reinforcement

4.6.5.1. Von Mises Yield Criterion

For this case, Equations (4.35) and (4.36) are modified :

F= ¢ -0 (4.57)
where T = 0% (4.57a)
0y = uniaxial yield stress of tendon or reinforcement

Equation (4.49) for associated flow rule and isotropic strain hardening

can be modified to include :
oF _
A=R 5 a=T5H=1 (4.57b)

By substituting @ and Dg from the above, Equation (4.49) assumes the

following simplified form :

EsH
Rer = (H+Eg)

(4.58)
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The stress increment becomes

00y = De A% W <oy

(4.59)
Adk = QE\’ AEx . i F 7/0\'{

For strain hardening, Equation (4.50) is invoked.
4.7. Bond and Bond-slip Constitutive Relations

The mechanism of bond and bond-slip is given in detail in Chapter 2
(section 2.4.). 1In this section, the local bond and bond-slip con-
stitutive relations governing the interface behaviour are given. The
stress transfer by bond between steel and concrete is difficult to
model realistically because of the several variables affecting the bond
problem. The bond spring stiffness (Chapter 3, Equation (3.30)) along

the length of the steel is determined as :

doy, A0%
E o es—— 1 b
h "y is (4.60)
where Eh = slope of the local bond slip curve at any point on the
curve (tangent modulus)
doy = incremental local bond stress
dS = incremental local slip

In order to model various types of interface characteristics, an
experimental bond-slip curve idealised as shown in Figure (4.10a) is used.
The non-linear curve is idealised by a series of bond stress and slip
points joined linearly. The slope (Eh) at point i of the bond slip

curve is given as :

Ep: = 0o — 0o _ 403, (4.61)
(A

Si+1 — S¢ ASc
and the other two spring coefficients in vertical and lateral directions

of the steel are taken as

Ev. = OﬂEﬁ“ (4.62)
04

EIL. = X Eh(
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where ¢ is a multiplication factor which was taken between 102 to 106.

This means that the vertical and lateral springs are rigidly connected
between steel and concrete. Once the incremental moduli En; > Eue
and E¢. are known, the incremental bond stresses are calculated using

the constitutive relations of Chapter 3 (Equation (3.30)) as

[ Ao;,c- | (B, o o | |osy
4 Ay » = o Eve O JASVL' > (4.63)
| 8%% o o By Asu;
- . L — L ._1
or AOLE = Ep, AS:‘- (4.63a)

The element nodal force vector given by Equation (3.31) can be rewritten

as ¢

APS = udL T A6y (4.64)
and the element stiffness matrix (Equation (3.32b))

Kb = JtdLTT’F:bt-TT (4.65)

~
éx¢

where T is the transformation matrix given in Equation (3.29).

The constitutive relations (4.63) are valid between points O and
A (Figure (4.10a)); thereafter the bond stress increment becomes zero
(region AB), i.e. the slip occurs at constant bond stress. The bond is
assumed to fail at point B (Figure (4.10a)) when maximum allowed slip
has been reached. At this point, the total bond stress is released.
This creates a non-equilibrium state which is corrected by performing

equilibrium iterations (e.g. by the initial stress method).

Now a scheme is suggested to calculate a correct bond stress
from a specified bond-slip curve (see Figure (4.10b)). Let Sr be the
total slip reached at any point in the calculation. This slip lies

between the pointsi-1 and i on the specified curve. Bond stresses are
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Calculated which are compatible with the total slip (Sr) by linear

interpolation as

e = mb(,-( + & (Svy-S¢4) (4.66)
where O = slope of the specified curve at point 1-1
oy - — 0%
-1 bi-l
= 4.67
( S{ - 8- > ( )

Let the total bond stress calculated using constitutive equation (4.63)
be @y . The difference (0%,-0%,) is treated as initial stress and is

corrected by performing equilibrium iterations.
4.8. Constitutive Relations using Creep and Thermal Effects

Concrete exhibits time-dependent strains due to creep .
and shrinkage . which profoundly affect the behaviour of concrete as a
structural material. The literature covering concrete creep is com-
prehensive (67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 84, 126,
127, 128, 129, 130). It is not intended to review this literature in
greater depth. However, a brief discussion on the results obtained by
various researchers (70, 72, 76, 77, 126, 127, 128, 129, 130) is given.

Creep in concrete represents the dimensional change in the material
under the influence of sustained mechanical loading. Quite small loads
will cause the concrete to deform. The phenomenon of creep occurs at
elevated and at ambient temperatures. The rate of creep is increased
at elevated temperatures. Various experimental tests (126, 127, 128)
have been conducted to identify the effect of temperature on concrete
creep. England and Ross (126) presented results of sealed and unsealed
cylinders up to the temperature of 140°C and a testing duration of 60 days.
The results on sealed cylinders show that the creep at 80°C and 140°C
was about 3.5 and 4.2 times the value at 20°C. Nasser and Neville (127)
reported their observations from experimental tests at temperatures
ranging from 21.1°C to 96.1°C with stress/strength ratios from 0.35 to
0.7. The concrete was cured at 41.34 N/mm2 (6000 psi) and tested after
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24 hours of casting. They found that the pronounced maximum for the
creéep rate at a temperature of about 71°C. This creep rate was based
on creep measurements made during a period from 21 to 91 days after
loading. Hannant (128) conducted creep tests on sealed 104.775 mm (4 1/8'")
by 305 mm (12") cylinders of an approximately 62 N/mm2 (9000 psi) lime-
stone aggregate after curing them 5 months in water and an additional
month in a sealed and saturated condition. Results showed a nearly
linear increase of specific creep with a range of 27°C to 77°C for
loading periods of two years. The creep at 77°C was approximately 4 to
4.8 times that at 27°C. Up to stresses of 12.78 N/mm2 (2000 psi) creep
remained proportional to stress. Poisson's ratios of creep determined

on sealed specimens were similar in magnitude to its elastic value.

In order to understand the influence of creep, a typical deformation
Vs time curve is shown in Figure (4.11). A concrete specimen loaded
under uniaxial compression gives an immediate elastic deformation. If
this load is sustained, additional deformation due to creep occurs. The
rate of the deformation decreases with time (Figure (4.11)). If this load
is removed, there is an immediate recovery of deformation and following
this, a recovery of creep deformation (delayed recovery) rate occurs,
which rapidly decreases with time as shown in Figure (4.11)). At the
end of this, a residual deformation is left thch is ‘greater than the
initial elastic deformation. Figure (4.12) shows time-dependent strain
curve for ambient and elevated temperatures between time ty and t,.
The creep recovery strain occurs immediately after the instantaneous
elastic strain which is extensive at first, but reduces after a short
period of time. The creep recovery 1is essentially independent of

temperature (127).

At a low level of stress, a concept of specific creep is introduced.
Specific creep or creep strain per unit of stress is a useful indicator
of creep effects. It is also sometimes useful to normalise creep strain
data with respect to stress and temperature. This quantity is known as

specific thermal creep.

-90-



Various methods of creep analysis have been used over the last

fifty years. Among those available, they may be classified into two

main categories.

(a) Direct methods.

(b) Iterative or step-by-step methods.

The direct methods allow the calculation of creep effects in a
single time step. The effective modulus (130) and steady state (70)
methods are examples of this category. Other direct methods, in refined

form, have been presented by England (72, 76).

In the iterative methods, the period of time (over which creep is
sought) is divided into a number of steps and separate calculations are
carried out for each step. An assumption is made that stress is constant
during each time step while strain is being calculated. The accuracy and
stability of the solution depends on the length of the time step chosen
and successive calculations depend on those in previous time steps. The

iterative type of methods of creep solution are :

1. Method of superposition (129).
" 2. Rate of creep (130)
f’-S. Strain hardening.
(’f4. Rate of flow method (77)

The constitutive relation for concrete under uniaxial stress is
established based on the rate of flow method. The total time-dependent

strain in concrete may be written as :

(1) = E () + E¢(t) + g4(1) ;

oy | (% hy
== Saﬂ”m T ¢-0dr+ | -0dT (4.68)
E(t) 2T 7
o o
where E®= total strain ; &) = irreversible or flow component

of creep strain
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where Ee(t)

elastic strain ; ¢€4lt)= reversible or delayed

elastic component of creep strain

JeCe)

specific flow (flow strain per unit of stress)

Jd(t) = delayed elastic strain per unit of stress
t = age of concrete
e = time under load
Components of strain are shown in Figure (4.13). Creep compliance for

concrete may be written as (E is assumed constant with time t)
I = — o+ T+ Ja(v-1) (4.69)

A parameter is introduced at this stage known as pseudo time, t',
which itself is specific flow component and this may be used in place of
actual time, t, together with the representation of a non-ageing visco-
elastic material. The pseudo time concept transforms the age-dependent
creep relationship in real time to the simpler non-ageing Maxwell law in
pseudo time. The time transformation eases the analytical or numerical
corputation which leads to a solution without changing the basic creep

equation. Now, with this transformation, J_. (69) may be written as :
q £ y

Je(t'-T) = t- 7 (4.70)
and also the delayed elastic strain :
’ n 'tl"(r’ ‘
J4(t 1) = Jaex (i- QP( )) r (4.71)

If we represent the constitutive model in the pseudo time axis by
a Maxwell fluid unit (model 1 in Figure (4.14)) and connect it 1in series
with a Kelvin solid unit (model 2 in Figure (4.14)) to make it what is
known as Burger's model (Figure (4.14)), in this model the dashpot and
the Kelvin unit correspond to flow and delayed elastic components

respectively. Equation (4.69) may then be written as :
~

J(tLT) = ‘T-; +(-T) + Jam (1 - éB({'—t')) (4.72)
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Appendix A7 gives formulations for creep strains under multiaxial stress

and kinematically equivalent loads due to changes in creep and thermal

strains.
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Table 4.1.

Table 4.2.

-Four Material Parameters (k = 0% /oz)
k
a b k1 k2
0.08 1.8076 4.0962 14.4863 0.9914
0.10 1.2759 3.1962 11.7365 |.0.9801
0.12 0.9218 2.5969 9.9110 0.9647
Values of Function (k =0% /og)
k ,\£ /\c Ac_/,\t
0.08 14.4725 7.7834 0.5378
0.1 11.7109 6.5315 0.5577
0.12 9.8720 5.6979 0.5772
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Figure 4.7a Load - Displacement Diagram for Reinforced
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CRACKS

%

Figure 4.1b Tetrahedral Model ( Baker - 150 )

Figure 4.1¢c Failure Surface in Compression Quadrant
of Stress Space

Figure 4.1d Failure Surface on Deviatoric Plane
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Non=linear Curve
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Figure 4.2 Typical Compressive Stress-Uniaxial Equivalent Strain Curve
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Figure 4.3
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(a) one crack (b) two cracks (c) three cracks

f‘igure L,7 Types of Cracks for Three Dimensional Case
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Figure 4.9 Uniaxial Stress = Strain Curve for Steel
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Figure UL.14 Visco-Elastic Models for Concrete Creep
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(¢) Model 3 = The Burger Model of Creep Behaviour
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CHAPTER 5

Non-linear Solution Techniques

5.1. Introduction

This Chapter discusses the solution techniques for general non-
linear problems. The non-linear solution techniques have been applied
successfully to both geometric and material non-linear problems. The
non-linearity which stems from the material constitutive relations for
concrete, steel and bond-slip, is considered. A detailed description of
the relations defining these effects is given in Chapter 4. General
steps for the solution of non-linear problems are presented first, and
these are followed by solution procedures for temperature and creep

effects and loading and unloading schemes for steel and concrete.
5.2. Non-linear Solution Methods

The application of the finite element to non-linear problems is
well established (1, 2). The non-linear solution methods have been
successfully applied to both geometric and material non-linear problems
(1, 2, 51, 52, 53). In this research, strains are assumed small and
therefore the strain-displacement relations are linear. A non-linear
solution is obtained by piecewise successive linear solutions until the
material constitutive laws and the conditions of equilibrium (also
compatibility)aresatisfied within a specified tolerance. Therefore, using

this solution technique, the basic linear finite element formulations of

Chapter 3 are still applicable.

The solution process is incremental and therefore path-dependent.
At any stage of loading, the externally applied loads are compared with
the internal nodal loads due to total stress. The difference between the
two is taken as a set of residual loads that can be interpreted as a

measure of any lack of equilibrium. To maintain equilibrium, the
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residual loads are then applied to the structure and the problem is
solved again. This process is repeated until the residuals are

sufficiently small.

Now rewrite equilibrium Equation (3.6) from Chapter 3 in this

form :
<
R= [Fodet - Ry (5.1)
vol -~
where Fut - total externally applied loads from all the sources

B - residual loads

g- are the total actual stresses to date and may be expressed in a

general form as
f(q:,;).—-o (5.2)

For non-linear problems, the residuals, R#$ o, so consider the variation

of R due to the changes of displacements, W , using Equation (5.1)

dR= ggrdgj dvol + Sdgg:dvoll - d,fext (5.3)

vo¢ Vo

Since B and Re are independent of displacements, U , their variation 1is

therefore zero, so :

dR = [87de dwt

Vol

(5.3a)

If the incremental stress is evaluated using the material constitutive

law from a given incremental strain as :
de = Dy d€ ~ (5.4)

where Dy may be the incremental, tangent or initial material matrix. Then

from Equation (5.3a)

dR = (iFTQngvoﬂ> du (5.5)
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where d€=BdU (from Chapter 3)

Thus :
dg = f"’ cllg: (5.6)
where Kr = )‘ B'DrB dvol (5.7)
Vot

Equation (5.6) is the basic ingredient for a solution technique.
This is known as the pure Newton-Raphson method. By starting from a
trial solution u: which produces non-zero residuals, R¢, using
Equation (5.1). An incremental displacement field may be obtained using

Equation (5.6) as :
-1
AU (yi= Kne R (5.8)

where ¥y is the tangent stiffness matrix evaluated at displacement Ue.
This process continues until 8{ (residuals) become sufficiently small.
The general form of the Newton-Raphson process is the variable stiffness
method given by Equation (5.8) and it is illustrated in Figure (5.la) for
the one-dimensional case. There are many variants of Equation (5.8),
the first being one where a constant stiffness matrix, g, , replacesky,
is known as the Modified Newton-Raphson method, or the initial stress
method (51) (see Figure (5.1b)). In this case, Equation (5.8) may be

written as :
-
Aliv =Ko R (5.9)

Equation (5.8) (tangent stiffness method) suffers from an economic dis-
advantage because the entire stiffness matrix is reformulated for each
iteration. Equation (5.9) (initial stress method), on the other hand,
although economic, often shows a slow rate of convergence, especially
when the structure behaves in a very non-linear manner. Therefore, a
combination of both techniques in which the stiffness matrix is updated
every so often is considered as an attractive compromise. Two such -

alternatives were included in this work. In the first case, the stiffness

-111-



matrix is updated at the beginning of each load increment and then kept
constant. In the second, the stiffness matrix is updated at every

second iteration of each load increment. This is known as KT2 option.
Various examples were analysed using these methods, but for the main
reactor vessel analysis, because of the prohibitive cost involved in
reformulating the stiffness matrix, the initial stiffness method was used.
Two types of convergence criteria were used. They were the residuals and

the displacements convergence. The Euclidian norms were tested as :

(a) ( gﬂ/rfﬂt[) < Tou (5.10)
(b) ( A,LLH/ gl) < ToL (5.11)

where |R| =,F§T§? is the Euclidian norm of the residuals, M}uﬂ =~IEiT£;
is the Euclidian norm of the externally applied 1oad,lmu“=.f&5izg:

is the Euclidian norm of the incremental displacements, U |= gIgy

is the Euclidian norm of the total displacements and the tolerance limit
was usually taken between 0.03 and 0.001 for the various problems

analysed.
5.3. General Steps for Non-linear Analysis

A brief outline is presented for the application of non-linear
methods to concrete structures. The non-linearities considered are
that of concrete, steel and bond-slip described in Chapter 4. The detailed
discussion and flow charts of the individual material non-linearities is

given in separate sections.
1. Apply a load increment, AR,, where n is the load increment.

Accumulate total load Ph=PFn. + AR, and R= AP where R is

the residual load vector.
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Solve AQ¢=E-‘B_ , where ¢ is the iteration number and X
is the stiffness matrix of the structure. Here, various
solution options may be used (see the section on non-linear
methods of solution), e.g. K = K - initial stress method,
X = K, - pure Newton-Raphson method, or K may be updated at

the beginning of each load increment only, etc. Accumulate

total displacements
1;&(. = Ui+ A%L

For each element type calculate strain increments
A,EJ.' = 5- Agf
and strains
B = &iu + BEL
If initial strains, such as creep and thermal strains;, are

present, then

Ag = Ag - Ag™. agc

~

For each elemtnt type, the stress increments are

calculated using the current non-linear constitutive matrices.
For concrete, the cracking and compressive criteria are con-
sidered; for steel, elasto-plastic relations are considered
and non-linear bond-slip relations at steel-concrete are con-

sidered. They may all be expressed in the general form :
Accumulate stresses

Té = 07, + AEL'

The total stresses are converted into equivalent interhal loads

as : g B g dvol
Yol

and the residual load vector is calculated by
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6. Check for convergence. If convergence is not achieved, go to
step 2. and repeat all the steps for the next iteration.
If convergence is achieved, then go to step 1. and repeat the

process with the next load increment.
5.3.1. Explanation of Step 4 for Concrete

For each element and its integration points the following are

calculated

(a) Firstly an estimate of stress is calculated as

g':.', = 27.-! + AEZ'I
where 46{'=D,4t and in which Dy is the current tangent
material matrix for concrete. This is calculated on the basis
of current material state, i.e. according to the crack

indicator and loading and unloading state.
(b) Calculate

- If no cracks are already present at this point, principal

stresses and strains

o=@, j=1,2,3
6_,:“(2(.) s J

i
—
>
[\9]
-
N

- If cracks are already present at this point, transform

stresses and strains as

x
A =Tebe 5 Ei=Tek
/
91: = IO' Ol 3 NL'*‘= -l:cr~ Ll

(c) With either the current principal stresses (o7, j = 1, 2, 3)
or the transformed current streSseshgf', check for concrete

cracking. Also, check for crack closing or reopening by

€ > ® - crack open
€ < o - crack closed
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(d)

(e)

(£)

Update the crack indicator according to the current crack
state. Check for loading or unloading state at this point

and update the unloading indicator. For loading and unloading,
the total equivalent strain criteria is used (i.e. a:m).
If the equivalent strain E; is less than its value from the
last load increment, then unloading at this point is defined
(see Figure (5.2)).

According to the current material state (which includes
cracks, loading and unloading state, and concrete compression
criterion, there are three options available (see section 4.3.);

form the material matrix and calculate

-~ T - if no crack
= G+ 08¢

or

At = D* * ‘ .
Ti=Drag - 1if there are cracks

T = g +ap

Release stresses normal to the open cracks and transform

back the stresses into global directions if already in crack

directions
T x
92 = g g

Check that the stress state is within the failure surface

(see concrete failure criteria defined in section 4.3.5.)

-115-



5.3.2. Explanation of Step 4 for Steel

P ISP - stress point indicator
| = 0 - elastic point
= 1 - plastic point
= 2 - unloading from plastic state
Oy - uniaxial yield stress

(a) Firstly, the stress increment is calculated using the elastic
material matrix as A0 =D AE ; where D is the elastic material
matrix for steel liner or reinforcements or tendons. (These
are defined in Chapter 3).

First estimate of total stress :
0" = Qi+ a0y

(b) Calculate :

& = foo) 0%, =F () - Von Mises yield criterion

(¢) If plastic point (i.e. ISP = 1), go to step (e).

(d) - If & =0y - point plastic (ISP = 1), transition from

elastic to plastic, calculate factor, fac :

l‘.l

B

4) (see Figure (5.3a))

fac =

N
2

1
stress at yield surface, gf‘, Qzﬂ-+{hc*692

calculate elasto-plastic stress increment
Ao = Dep(e!) *(1-fac) 4g

total stress, = a7’ + Agv
set ISP = 1; go to (g)

- If 03;<0y - elastic point,g;=0¢' ; go to step (h).
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(£)

(g)

(h)

Plastic point in the previous iteration, check for unloading,

i.e. >0 ; go to step (f). (See Figure (5.5) also).

Unloading at this point, set ISP = 2, total stress
2 = Qv+ 407 and setog= 0. ; go to step (h).
Loading at this point, A = Dgp(%-) 4E

total stress Qv = O, + 40

Stress calculated using the elasto-plastic material matrix
usually drifts from the yield surface as shown in Figure
(5.3b). The following correction is suggested which is
based on the equivalent stress-strain curve. Correct stress

from the equivalent stress-strain curve

a:COYY = 6‘?‘( + H KEP

where A—'EP""J% Aé:'j AE’EJ' =%—9I~A - equivalent plastic strain

increment

H is the strain hardening parameter. For one-dimensional case,

such as reinforcements, AEp= A .

Equivalent stress calculated from the current stress state

.(-7"2 = ‘F(,o:t)
FC.IY
factor = —
[oxd

Therefore the correct stress state which is on the yield

surface

g:" = factor % ,91'

3

End.
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5.3.4. Steps for Non-linear Bond-linkage Elements (Step 4)

(a)

(b)

(c)

Calculate incremental slip from the nodal displacements

(Equation (3.29))
Ag; = I Ag«.

where T is the transformation matrix and U, are the element

nodal displacements.

Total slip at iteration i :
S¢ = S + AS¢

Calculate the incremental stress based on the bond stress at

iteration i-1 :
Aoy = Eo(0g.) AS,

‘Total stress :
9:b(= g‘bt‘ﬂ + A?:b‘-.

Check the state of the bond, i.e. whether bond is broken or

not and calculate stress accordingly.

- If |Sil)> Shax> Set flag Iflag =1, i.e. bond is broken.
At this point, the bond stress is instantaneously dropped
to zero, i.e. 9t = 0.0, where Smax is the maximum slip

allowed.

- If ISﬂ < S .» calculate the bond stress which is
compatible with the slip, Si' This is obtained by linear
interpolation of a non-linear bond-slip curve. The curve
1s simulated by multi-linear lines. Figure (4.10b) gives
the scheme for the linear interpolation. Let gy’ be the

bond stress compatible with the slip, S;. The difference
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between @y . and Q'J 1s treated as initial stress and this

may be converted into nodal loads, i.e.

2 3
A?:D = 91( _glb

The correct stress, Qﬁu‘= 0%, — 40

(d) Total internal equivalent loads and residuals are calculated

as

v,

o~

nt = JALT' 0%,

10

= =Bt

5.4. Steps for Creep and Temperature Analysis

The following steps are performed to include the effects of creep

and temperature in the constitutive relations discussed earlier.

1. At time t = 0, carry out elastic (linear analysis). If
thermal loads are considered calculate the kinematically

equivalent load as Equation (A7.13)

AP (EDegtdvot

Yol

Calculate stresses, strains, etc.

2. Specify a small time increment, 4t , during which the stresses
are assumed to remain constant. The creep strain increment

for concrete is calculated using Equation (A7.3) as

AE=$(%, 8t ,¢,T)

3. Convert creep strain increment into kinematically equivalent

load using Equation ( A7.12) as

AP = f ,B_TDAE: dvol
~ Yoo = 7

where [ - elastic material matrix
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Assuming AP as external load, the incremental nodal dis-

placement may be obtained as :
AL = K'0R

where 5 - stiffness matrix of the structure.

Total displacement :

Ugae= Ut AU

Calculate the total incremental strain as
Mg = B AU

Total strain :

Eteae= E¢ + AL

Calculate the stress increment as :
Ar = D(Ag- AL - Ag™)

-if temperature load was applied in Step 1.

l>

= Q( Aé'Aéc)

-if no temperature was applied in Step 1.

Total stress at the end of current At :

Oivae = 9{‘:*' e

This solution process is conditionally stable. The stability
requirement (80) is that the stress increment, 8¢, must be
small compared to the previous stress,fy . If this condition
is not satisfied, the same process from Step 2 should be
repeated taking smaller At, otherwise go to Step 2 for the
next time increment and repeat this process until the final

time step is reached.
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If creep analysis of more than one load increment is to be

calculated, then go to Step 1 and apply the next load

increment and repeat the Steps from 2 to 7 for time increments.

If should be noted that during initial or transient states of
creep, the stresses change very rapidly and it is essential
to choose exceptionally small time increments in this region.
However, as the solution approaches a steady state condition
(i.e. 40-+»0 ) it is possible to increase the time step

without violating any assumptions.

5.5. Non-linear Response with Creep

The steps required to carry out creep analysis with non-linear

material response are very similar to those for linear material behaviour.

The difference is that at the end of each time step the equilibrium is

restored.

The creep strains cause incompatibility which is corrected by

applying a kinematically equivalent load due to creep strain to the

structure.

1. Apply load and time increments separately. (For example, the
load increment is applied first, then the time increments are
followed).

2. Using the stresses that exist in the structure at the end of
the previous load increment, calculate the change in creep
strain (Equation (A7.3)

A= £, ot,t,T) 7~
Convert Aglinto‘kinematically equivalent load vector using
Equation (A7.12) :
q ( . e

0p° = | B'Dragdwt

~ Vol

where p, is the tangent material matrix based on the current

state of stress.
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3. Solve incremental nodal displacement

b = KO

Accumulate

U = U+ + AUcC

4. Strain increment
AF_L- = § Al;l_u'
Total strain

& = B v 05

5. Calculate the stresses due to additional non-linearities found

(due to higher compression or cracking described in Chapter 4)
A% = Dr (8g. - 4g7) '

and
G"L' = g‘("l “+ AE‘L

6. Iterations for time or load increment are performed to restore
equilibrium. If convergence is achieved, then go to Step 1
and apply new load or time increment. This process is

repeated until the total load for time is reached.
5.6. Solution Technique for Descending Stress-strain Curve

Figure (5.4) shows the downward sloping portion of the stress-
strain curve. The tangent modulus of elasticity for this portion of the
loading curve is negative. However, using a negative value of E in the
constitutive matrix may lead to non-positive definite stiffness matrix.
In order to circumvent this problem, the tangent modulus on the downward
portion of the stress-strain curve is set to zero for the purposes of
numerical solution (Figure (5.4)) and the stress is corrected to the proper

value at the end of each iteration.
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5.7. Unloading of a Point in Concrete

Unloading of concrete in compression is treated differently than
for tension. For compression, the unloading of a point 1is calculated
based on the maximum equivalent strain ever reached in the analysis.
If the equivalent strain(F%?EI?iS') of a point is less than the
equivalent strain in the previous load increment, the point is considered
to be unloading during this load increment. The unloading is treated
as elastic as shown in Figure (5.2). The equivalent strains of all
points from where unloading started need to be stored. For example,
the unloading in the figure starts at point 2 and follows the linear
line 20' and the equivalent strain of point 2 is stored. Reloading of
this point will follow the unloading line 0'2 until the equivalent
strain of point 2 is reached. After that, the non-linear curve is
followed. For example, upon reloading at point 1 (see Figure (5.2))
the curve 123 is followed. In this case, part of the strain increment
is treated as linear and the rest as non-linear. The linear and non-

linear strains are calculated as follows (Figure (5.2)).
Fraction of linear (elastic) strain increment, FRAC =(§,_—E;)/(E3—§\)'

where €, , €, , 53 are the equivalent strains at point 1, 2 and 3

respectively
- T c _ ig T = 2T -~
€& =]30¢% ,  E=13hE ;0 E3=N3%3 ks (5.12)

Linear (elastic) part of the.strain increment :

AE, = FRAc » 8% (5.13)
Non-linear part of the strain £ncrement

A€ = (1 - FRac)* AE (5.14)

where  Af =4€  + A&y, = total strain increment (5.15)
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Unloading of a point in tension is treated as elastic provided
the point is uncracked. For a cracked point, the strain across the
crack is checked to see if it is positive in which case the crack is
assumed to be open and the material matrix of this point 1is adjusted.
If the strain across the crack is negative, then this point can develop
compressive stress in that direction and the material matrix in com-
pression is calculated. On further loading, this point may develop
tensile strain and the crack will be assumed to be open if the strain
across the crack becomes positive. A full scheme of crack closing/

opening is shown in Figures (4.6a) and (4.6b).
5.8. Accelerated Newton-Raphson Method

Various accelerating techniques for improving the convergence in
certain non-linear problems have been used (86, 134). In these, the
previous displacement and residual load vector histories are examined
and those from which a more accurate displacement increment is calculated.
In this work, the Accelerated Newton-Raphson Method (86) is used. The
method was successfully applied to some examples analysed. The method
is fully explained by Crisfield in reference (86) and therefore a brief

review is presented in the following.

The essence of the method is to predict an accurate incremental
displacement field at the end of each iteration so that the solution
converges faster. Firstly, we write the steps for the modified Newton-

Raphsan method.
For a load increment, AP, the incremental displacement is calculated as

Mo = K'AP 7 (5.16)
and U = },LO*‘ALJ;"/ (5.17)

where U, is the displacement vector at the end of the previous increment

and K may be the tangent or initial stiffness, as the case may be.
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For subsequent iterations, the Newton-Raphson method gives :

Au‘,.' — \,<:‘ B" (5.18)
Ueo =l AL (519
where ‘Bg - residual load vector
i - iteration i

With the Accelerated Newton-Raphson method, Equation (5.19) is written

as
Uier = Yo + AUC (5.20)

where 4Uc is the updated incremental displacement field which is cal-

culated as follows :

MW= € Alcy + AU hy (5.21)
where € = hg(i-%)-i y  hi=-ai/b; (5.22)

Qi = AU Re

be = AEL.'Z-I(BC_B('-J (5.23)

Ci = AUY (Ri-RiJ)

where R, Ui are the residuals and displacement increments from the
previous iteration. Therefore, the Accelerated Newton-Raphson method

may be implemented easily in an existing Newton-Raphson computer program

by simply storing two extra vectors,5;4 and.qgél. When applying the
accelerated procedure to non-linear problems, returning to the standard
modified Newton-Raphson method is sensible in certain unusual circumstances.

In the event that this is considered desirable, two checks are made :

1. If the angle between the accelerated and standard iterative

direction is too large :

9=M<Iéf 5 ﬁAg}iﬂ: |ALIYAQ'¢ (5.24)

joui] Joud) Joud = S AT
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2. If the contribution of the previous iterative displacement

(due to e;) is too large, i.e.

led >2 (5.25)

If any of the above two conditions are satisfied, the original Newton-

Raphson method is used. For such cases, set €;=0 and h=10 in
Equation (5.21).
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(a) Newton - Raphsen Methed { Tangent Stiffness Method)

(b) Inital Stress Method (Constant Stiffness Method)

Figure 5.1 Load = Displacement Diagrams
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Figure 5.5 Loading/Unloading Scheme for Steel Used in the Program
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CHAPTER 6

—
Description of Finite Element Computer Program NSARVE

6.1l. Introduction

This Chapter gives the main features of the computer program
NSARVE developed for this research. The program is written to deal
with the non-linear response of reinforced and prestressed concrete
structures in general, and prestressed concrete reactor vessels in
particular. The theoretical models as developed in Chapters 3 and 4,
are fully implemented. Individual modules and subroutines, their
functions and capabilities, are fully described. A complete flowchart
supported by Appendix B is included to acquaint the user with the

salient features of the program.
6 .2. Computer Program NSARVE

The computer program NSARVE is developed to carry out two and
three-dimensional analyses of prestressed concrete reactor vessels.
It is based on the displacement-type finite element formulation. The
reactor vessel components are modelled by three-dimensional isoparametric
solid concrete elements, rectangular steel liner elements are one-
dimensional steel bar elements. The bond at the interface of steel and
concrete is modelled by non-linear bond-linkage elements. Under
increasing loads, the behaviour of reactor vessels is predicted in terms
of displacements, strains, stresses, etc., plasticity and cracks.
Temperature and visco-elastic creep models are included for short and

long-term behaviour of vessels.

Loads and times are applied in increments. Equilibrium iterations
are performed for each load and time increment. Results are printed at
the end of each load and time increment. The program has the flexibility
to suppress the output of any load increment . Any node on the structure

can be suppressed in any three global X, Y, Z, directions and also in
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a skew direction on the X-Y plane, i.e. in a direction O from global
X-axis. The program uses incore and out of core assembly and equation
solution techniques. Hence very large problems can be analysed. For
large problems, the stiffness matrix and load vectors are stored in
auxiliary storage devices such as tapes or discs. Seven disc files are
used for NSARVE. The first five disc files are used for the solution
of out of core equations and the other two files are used to store
element stresses, strains, stress indicators etc. Where an incore
solution is used, the first five discs are ignored. At the end of a

successful analysis, all the auxiliary files are closed and deleted.

The program was written in the FORTRAN IV language and has been
run on a DEC-KL10 and a PRIME-750 computer. The User's Manual given

in Appendix B gives sample examples which are analysed on these two

machines.
6.3. Description of NSARVE

The sequence of the main program NSARVE is given by the flowchart
in Figure 6.1. The sequence of operations and functions of various

modules and subrQutines is given below.
6.3.1. Modules

The program is divided into eight modules, each of which has a
distinct operational function. Each module is called by the main pro-
gram which controls of the flow of operations. The main program is
called NSARVE (Non-linear Stress Analysis of Reactor VEssel). Each
module is composed of one or more subroutines. One subroutine may be

called in different modules. The modules are :

(a) INPUT DATA (b) INITIALISE (c) LOADS
(d) STIFFNESS (e) SOLUTION (f) STRESS AND RESIDUALS
(g) CREEP (h) OUTPUT
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6.3.1.1. INPUT DATA Moduie

This module handles all input data to the finite element program.
The module reads in all the controlling parameters, geometry, element
topology, material and geometric properties, etc. This is the first

module called by NSARVE. INPUT DATA module is used only once.

6.3.1.2. INITIALISE Module

This module initialises all the necessary arrays and controlling
parameters. Some of the arrays are initialised to zero, while others

are initialised to a specified value. This module is called only once
by NSARVE.

6.3.1.3. LOADS Module

This module reads iﬁ the incremental or total external loads.
Various load types are included and they are : pressure loads, point
loads, patch loads, self-weight and temperature loads. This module is
called once for each load increment. The incremental loads are accumu-
lated as well. Flexibility exists for the inclusion of other types of

loads including seismic, impact and blast loads.
6.3.1.4. STIFFNESS Module

This module organises the stiffness calculations of various
element types (isoparametric solid elements, membrane elements, line
elements and bond-linkage elements, etc.) and assembles the global
stiffness matrix. The global stiffness matrix is decomposed (triangularised)

using the Gaussian elimination method.
6.3.1.5. SOLUTION Module
This module mainly solves for the nodal displacements. The incre-

mental load or residual load vector is resolved and back substitution

is performed.
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6.3.1.6. STRESS AND RESIDUALS Module

This module carries out the calculation of strains, stresses and
"residuals" for various element types. The stress increments are
calculated using the non-linear constitutive relations (see Chapter 4)
including those of cracking of concrete, yielding of steel and non-
linear bond-slip response at steel-concrete interfaces. Equilibrating
internal loads are calculated by integrating total stresses. _
"Residuals' are calculated by subtracting external and internal loads.
The module is divided into three submodules, each of which carries out
the non-linear stress and '"Residuals'" calculations for concrete,
steel and bond at the steel-concrete interface. Flowcharts of sub-

modules are given in Figures 6.2., 6.3. and 6.4.

6 .3.1.7. CREEP Module

This module controls the creep analysis of each time increment.
If a creep analysis is not requested, then this module is ignored and
bypassed. This module has two functions : (1) it calculates the
incremental creep strains for each concrete element using the visco-
elastic creep model. (see Chapter 4), and (2) it calculates the kine-
matically equivalent loads due to the incremental creep strains and

assembles them into a global load vector.
6.3.1.8. OUTPUT Module

This module is called at the end of each load and time increment.
This module prints out displacements at nodes, strains, stresses,
principal stresses (direction cosines) and stress indicators at
integration points of each element. It is controlled by a parameter

from the INPUT module.
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6.3.2. Description of Subroutines

A brief description of the main functions of each subroutine 1s
given below.

INPUT

This routine reads in all the input data except the load data.
The main items read in are the controlling parameters, nodal
coordinates, element connectivity, material and geometric properties,
nodal fixities, nodal temperatures, etc. The number of equations and
the semi-bandwidth are also calculated for the stiffness matrix. All

the read items are echoed and checked for obvious errors.

INITL
INITL initialises all the necessary arrays and variables used
in the program. The arrays and variables are initialised to zero or to

a specified value.

EQVINT

EQVINT updates the equivalent stresses OT the equivalent strains
at the end of each load increment. These equivalent quantities are
used during the stress recovery of steel or concrete materials to
establish loading or unloading. This routine calls two functions :

SIGEFF and ZMISE.

PRNRES
" This routine prints out the global residual load vector upon

request.

LOAD1P

Subroutine LOAD (see later) is called by LOAD1P. This routine
calculates the total load applied and stores it in an array. During
the analysis, this load is factored using the set of pseudo times

specified. This routine also calls ROTATE.
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LODINC
LODINC is called for each load increment and calls subroutines

LOAD and ROTATE. ' The total external load is also accumulated.

LOAD

The function of this routine is to read in the controlling
parameters concerning loads and to identify the type of loading used
in the analysis. According to controlling parameters, the routine
further reads in necessary loading details and kinematically equivalent

nodal loads are calculated. The types of loading available are :

(a) Surface pressure (uniform or variable)
(b) Point loads

(c) Patch loads (loads not directly on nodes)
(d) Gravity loads

(e) Thermal loads

The routines called by LOAD are ISOP2, IFACE, DEMAT, STFLIN, TMINTP,
ISOP3, ASSLOD and LINEL.

IFACE
This routine sets up face numbers for solid elements. For more

details of face numbering scheme, refer to the User's Manual given in

Appendix B.

ASSLOD
This routine assembles the element load vectors into the global

load vector.

RESID
Calculates the internal element 10ad vector and also assembles

it into the global load vector :

T

i.e.

"

and

-0 9
i
‘““m»
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The routine ISOP2 is called by this routine.

RZERO and RZEROQ

Routines to set real and integer arrays to zero respectively.

MVECT

This routine multiplies an array of dimension nxm with a vector
of dimension mxl, i.e. C = A * V
MPRODT

This routine multiplies two rectangular matrices, A and B

(dimensions 1xm and mxn respectively) to produce a resulting matrix C.

ROTATE

This subroutine transforms the global load vectors into local
load vectors for inclined boundary supports (skew boundary conditions).
The displacement vectors are also transformed before stresses are

calculated.

INCLNE
This routine transforms the element stiffness matrix of those

nodes which have inclined boundary supports.

GAUSS

GAUSS sets up the Gauss point positions and corresponding weight-
ing coefficients. The number of Gauss points available are 1,2,3,4, and
14. Any combination of these can be used, depending upon the user's
requirements. The defaults are 2x2x2 for solid elements, 2x2 for membrane

elements and 3 points for axial line elements.

STIF and STIFF
These two routines calculate element stiffness matrices for each

of the element types used in the analysis. The first routine calculates
the stiffness mdtrix with the assembly being performed at the same time.

The second routine calculates the element stiffness matrix and puts it
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to a temporary backing file. This is recovered at the time of assembly
in the assembly routine (this routine is suitable for very large
problems). These routines call the following routines : ELSTIF,

MBNSTF, LINEL and LINKEL.

ELSTIF

Calculates the element stiffness matrix for the solid elements.
The contribution of the line element in the body of the solid element
1s also included in the stiffness matrix. The stiffness matrix is
transformed to the local inclined directions if inclined supports are
present. The following routines are called by this routine : STFLIN,

ISOP2, DVARB, INCLNF and BOUNDC.

MBNSTF

Calculates the element stiffness matrix for the membrane elements.
The stiffness matrix for the inclined supports is also transformed into
the local axis system. The following routines are called by this
routine : ISOP3, MEMDAT, INCLNE and BOUNDC.

LINEL

In this routine the element stiffness matrix, the internal
element load vector and the thermal load vector are calculated for the
AXIAL LINE elements. The routines called are ZESBAR, INCLNE, TMINTP
and BOUNDC.

STFLIN

The element stiffness matrix, the load vector and the thermal load
vector are calculated for the line element in the body of the solid
element. The routines called by this routine are ZESBAR, ISOP2, ASSLOD
and TMINTP.

LINKEL

The element stiffness matrix and the element (internal) load
vector for the 2 node linkage element are calculated. The element
stiffness matrix 1is transformed if the element node has inclined boundary

supports. This routine calls INCLNE and BOUNDC.
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STFDEC

This routine sets up solution controls and calls incore or out of
core assembly and decomposition routines. The Gaussian elimination
method is used to decompose the stiffness matrix. The routines called
are FORMEQ, DECOMP, ASSEMB and LEQSOL.

FORMEQ

The element stiffness matrices are assembled into the global
stiffness matrix. Incore or out of core assembly may be used upon
request by the user. The minimum storage for the stiffness matrix
(declared as a dimension) is 2*NHBD*NHBD for it to remain incore,
Where NHBD is the semi-bandwidth of the stiffness matrix.
The routine called by this routine is STIF.

ASSEMB

This routine performs the same task as FORMEQ but the whole
operation is performed out of core with no restriction on the size of
the stiffness matrix. The stiffness matrix 1is divided into blocks and
they are put to the backing file once full. Subroutine STIFF is called

by this routine.

DECOMP
This routine decomposes the stiffness matrix assembled by FORMEQ

in triangular form using Gaussian elimination.

LEQSOL

The stiffness matrix assembled in the routine ASSEMB is de-
composed (Gaussian elimination). The load vector is also resolved and
back-substitution is performed. All these operations are carried out

using the out of core scheme.

RESOLV
This routine resolves the load vector and performs the back-

substitution using the decomposed stiffness matrix produced by the
routine DECOMP.
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SOLVE
This routine calls RESOLV and LEQSOL.

TOSTRS

This routine calls the appropriate stress routines. The stress,
strain and residual load vectors are calculated by the routine called
by TOSTRS. These routines are ROTATE, MEMBST, LINEST, BONSTR, PRNRES
and SOLDST.

SOLDST

Stresses, strains (total and'incremental), creep strain, thermal
strain and the equilibrating forces are calculated for the solid
elements. The stress calculation at each Gauss point is performed
using the appropriate constitutive matrix (cracking and high compression).
The routines called by this routine are STRESS, TMINTP, ISOP2, CREEP,
NONSTR and ASSLOD.

STRESS

This subroutine calculates the incremental strain and stress for
each element type. The following routines are called : DVARB, DMEMB,
TMINTP, ZESBAR, BONDST and ISOP2.

TMINTP

This subroutine checks the temperature distribution for the solid,
membrane and axial line elements. If temperatures are found for the
element type which are not allowed, then that temperature is overwritten
by this routine. For example, temperature type constant, linear and
quadratic are allowed for the linear, quadratic and cubic elements
respectively. This ensures that the thermal strain is of the same

order as the mechanical strains produced by the temperature load.

ISOP2

Shape functions, derivatives of the shape functions, determinant
of the Jacobian and the strain-displacement matrix are calculated for

the solid and line element in the body of the solid element.
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ISOP3
Shape functions, derivatives of the shape functions, determinant
of the Jacobian and the strain-displacement matrix are calculated for

the membrane elements.

OUTPUT
OUTPUT prints out the displacements and external loads for all
nodes. Stresses, strains anc element indicators are also printed for

each element type.

NONSTR

NONSTR calculates the stress increments according to the
current state of stress and the state of the material (concrete com-
pression and cracking). Loading and unloading at the current point is
checked and the current stress state updated. The routines called by
this routine are CRACK, DMATL, ENDOST, PRINCL and TRANSF.

MEMBST

Stresses and equilibrating forces are calculated for the membrane
elements. The incremental theory of plasticity with isotropic hardening
is used. The following routines are called : ISOP3, TMINTP, STRESS,
ASSLOD and PLASTM.

LINEST

Stress and stress increments are calculated for the axial line
and line element inside the solid element using the incremental
plasticity theory. The routines called are STFLIN, LINEL, STRESS and
STELST.

CRACK

This is the main crack routine which examines the state of
stress and strain at a point and sets up the current crack indicator.
The crack initiation, possibility of crack closures and reopening of the
closed cracks are also considered. The routines performing these tasks
are GETNCK, GETNCR, CRACLS, CRKOPN and CRINT,.
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GETNCK and GETNCR
The crack at a point is represented by a single number or by
three numbers in three principal directions. GETNCK gets three numbers

for a given number and GETNCR does the reverse.

CRINT
This routine initiates crack(s) at a point. The maximum principal
stress criteria is used to initiate crack(s) normal to the principal

stress under consideration. CRKIN is called by this routine.

CRACLS
Checks the existing crack closure and updates the crack indicator

accordingly.

CRKOPN
Checks the reopening of closed crack(s). The principal strain

criteria is used and the crack updated accordingly.

CRKIN
Checks that any of the principal stresses exceed a specified

limiting tensile stress. The crack flag is set up accordingly.

BONSTR
This routine calls the routines BONDST and STRESS.

BONDST
BONDST calculates the incremental bond stress and slip. The
current stress and slip are also accumulated. Finally, the equili-

brating forces are calculated.

CONVER
The Euclidian norms of the total external loads, total displace-
ments, residual loads and incremental displacements are calculated.

Also the following ratios :
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are calculated. These are checked against a specified tolerance by the

main program.

CCREEP

This routine was written to convert the creep strains into kine-
matically equivalent nodal loads. The routines CREEP and ROTATE are

called by this routine.

CREEP

The element incremental creep strain is calculated in this routine.

The following routines are called : ISOP2, RESID, DEMAT and RESID.

DVARB

DVARB sets up the material matrix for the solid elements. The
constitutive matrix is calculated according to the material state. The
cracked matrix is transformed to the global system. Adjustment is also
made for higher concrete compression. The routines called by DVARB

are DMATL, DDMAT, TRANSF and PRINCL.

DMATL

DMATL sets up the material matrix according to the type of con-
crete compression criteria used. The endochronic theory, the uniaxial
equivalent strain concepts and-the shear-bulk modulus approach are the
compression criteria available. The routines called are COMPRN, DTBRK,

DZIMER and GETNCK.
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DZIMER
Sets up the concrete constitutive matrix based on the bulk-shear
modulus approach. The shear modulus is assumed to be a function of the

second invariant of stress.

BOUNDC

Boundary conditions at the element stiffness level are imposed.
The strategy adopted is to zero out the row and column associated with
the degrees of freedom under consideration and to set the diagonal term

to one.

INTPOL
Interpolates the modulus of elasticity for concrete at higher

temperature using linear interpolation.

PLASTM

The elasto-plastic stress increment and the current stress are
calculated for the membrane elements. The stress at the end of the
iteration is brought back to the yield surface. The routines called
are SUBINST, MEMDAT and ZMISE.

SBINST
This routine calculates the stress increment of a plastic point

using the sub-incremental method. The routines called are MEMDAT and
ZMISE.

STELST
Elastic or elasto-plastic stress increment and the total stress
are calculated by this routine for the line elements. This routine

calls the function ZESBAR.

TRANSF
TRANSF sets up the transformation matrices for stress and strain
transformations between local (crack) and global axes. The cracked

material matrix is also transformed into the global coordinate system.
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DDMAT

Sets up the material matrices in the local (crack) directions

for the Gauss points where cracks have developed.

DMAT

Three-dimensional elastic material matrix is set up by this routine.

PRINCL
This subroutine calculates the principal stresses and strains and

the direction cosines.

ZMISE
This function calculates the equivalent stress (Von Mises) for the

plane stress condition.

ZECJ2
Calculates the equivalent strain for the three-dimensional solid

elements.

ZESBAR
Returns elastic or an elasto-plastic modulus for the uniaxial line

elements.

DMEMB
The elastic material matrix is set up for plane stress membrane

elements.

MEMDAT
The elastic or elasto-plastic material matrix is set up for plane

stress membrane elements. The routine called by this routine is DMEMB.

SECANT
This subroutine sets up the orthotropic material matrix for the
solid elements. Three moduli in three principal directions and corres-

ponding Poisson's ratio are used.
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COMPRN

The modulii of elasticity for concrete in three principal
directions are calculated using the uniaxial strains and the ratios of

principal stresses. The routines called by this routine are CONSTV and
SECANT.

CONSTV

This routine calculates the ultimate stress and strain for given

principal stress ratios.

OTTENS
This routine uses Equation (4.16) to calculate the ultimate stress

using Ottosen failure surface (35).

CONWEL
This routine calculates the ultimate stress using Argyris William

failure surface.

MEMTRF

Local membrane stresses are transformed to global stresses.

ACCNEW
This subroutine calculates the modified displacement increment
using the current and old displacement increments and the residual load

vector. This is called the accelerated Newton Raphson procedure.

CONCR1

This routine calculates the concrete failure surface according to
Equation (4.16).
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The following are routines based on the endochronic theory :

ENDOST

Calculates the stress increment using the endochronic theory.

The routines called by this routine are PARAM and ENDITR.

PARAM

Sets up concrete parameters used in the endochronic theory

formulation.

ZPARAM
This subroutine calculates the intrinsic time function and the

inelastic dilatency parameter (lambda). The function ZECJ2 is also
called.

UPDIST

Calculates the inelastic stress increment if cracks are present.

-

ENDCHN
This routine calculates the inelastic stress increment and con-
stitutive matrix using the endochronic theory. The following routines

are called by this routine : ZPARAM, DTBRK, GETNCK, UPDIST and DDMAT.

DTBRK

Sets up the constitutive matrix based on the endochronic theory.

ENDITR
Calculates the incremental stress for the loading and unloading

points based on the endochronic theory. The routines ENDCHN and DTBRK

are also called.
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FIGURE 6.1.

Flow Chart of the Non-linear Program NSARVE
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FIGURE 6.2.

Flow Chart of STRESS and RESIDUAL fer Concrete

- ith iteration
. - indicates crack direction
NCR - crack indicator
Ao, - stress increment
-t - stress at the beginning of the ith iteration
gq - global stress at the end of this iteration
Agc - strain increment (total)
At - thermal strain increment
Ater - creep strain increment
& - total strain
To- - stress transformation matrix
Te - strain transformation matrix
;&,!? - concrete material matrices
R - residual load vector
Fex - total external load
(: START :)
A
Ag= AE.-Atm—0Ec
Agi= Dy AE
FIRST ESTIMATE OF
STRESS
95?==QT>|*-A§§’
PRINCIPAL
STRESSES AND
STRAINS YES
0% =4{(a) B
Ek = f(@c’) J
K=1,2,3

TRANSFORM g%, , o~/
AND E£¢ AND ag IN CRACK
DIRECTIONS, I.E.

bE=TAE ; & =Tek:

L]
" e . » ’
Ti=Teor 5 of*=Too!

ﬂ

AA

-151-



SET NCR=999
RELEASE
STRESSES

i.e. @ =0.0

CRACK
(see flow-
chart)

A
CHECK FOR LOAD
ING AND UM-
LOADING AND
UPDATE THE
LOADING FLAG
| ACCORDINGLY

SET UP PyORD
ACCORDING TO INDICATORS
AND HIGH COMPRESSION,
CALCULATE :

Aoi= Dr A WITH
AND NO
Qv =0y, +40; | CRACKS
No?'= DAL
ANI')J Doe WITH
" = ot 4 Ag* | CRACKS
Y

RELEASE STRESSES
NORMAL TO OPEN CRACKS

f
Q: =Te 8 - IF CRACKS

CHECK gy INSIDE FAIL.
SURFACE.

it

K |

RESIDUAL LOAD VECTOR
R= B« - [ B'gvdvl

vol

=

-152-




FIGURE 6.2a Flow Chart of CRACK
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FIGURE 6.3. Flow Chart of STRESS and RESIDUAL for Steel
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FIGURE 6.4. Filow Chart of Stress and Residual for Bond
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FIGURE 6.5. Accelerated Newton-Raphson Procedure
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CHAPTER 7

Experimental Investigations of

Bond-Slip Specimens and Bonded Slab

7.1. Introduction

A limited number of isolated scale model tests (13, 113a, 114, 115,
116, 119) have been performed on post-tensioned slabs using unbonded
tendons. These tests assess the behaviour of such slabs under elastic,
inelastic and cracking conditions. A valuable experimental data on
unbonded slabs is now available. However, there is a lack of experi-
mental data on the non-linear and cracking conditions of slabs using

bonded tendons.

In this Chapter, a test has been carried out on a scaled model
of an octagonal slab, post-tensioned with 5 mm and 7 mm high tensile
steel wires in the two orthogonal directions. In certain areas, mild
steel bars of 12 mm diameter have also been provided. This slab together
with prestressing wires and conventional reinforcements have been designed
using the Yield Line Analysis. Loads in various increments have been
applied on this slab and the results have been processed using data
logger. In addition pull-out tests have been carried out on bonded
prestressed concrete specimens in order to obtain local bond-slip data.
These are several beams in which the same 5 mm and 7 mm prestressing

wires have been used.
Results from both these experiments are presented in this Chapter.

It is intended to use these results in the constitutive relationships

for Ahmlink element given earlier.
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7.2. Material Data from Tests

For bond test specimens and octagonal slab, the concrete mix was

designed. The mix properties by weight were :

Water 0.46
Cement 1.0
Sand 1.6

Coarse aggregate 2.32

The grout mix was designed from cement, water and admixture
(cabaco expanding agent). The water/cement ratio for this mix was 0.45
by weight. The expanding agent was added according to the supplier's
instructions in order to control shrinkage. This grout mixture was

used for both the bond specimens and the octagonal slab.

The concrete properties using this mix were determined by testing
concrete cubes and cylinders. Three cubes of 150 mm were tested in
compression. Six cylinders of 150 mm x 300 mm diameter were chosen for
testing, three under compression and three for splitting conditions.
The modulus of elasticity and Poisson's ratio were measured on cylinder
tests. The average material properties determined from these tests at

28 days are as follows

Uniaxial concrete cube crushing strength, Oy = 45.0 N/mm2
Uniaxial concrete compressive cylinder

strength, 0¢ = 39.76 N/mm2
Uniaxial concrete tensile strength, & = 3.93 N/mm2
Modulus of elasticity , E. = 27.5 x 103 N/mm2
Poisson's ratio, w = 0.17
Steel used in these tests were of two types : (a) plain mild

steel bars (12 mm diameter), and (b) high tensile steel wires (5 and 7 mm

diameter). The following material properties were obtained :

Modulus of elasticity for steel, Es = 200,000 N/mm2
Yield stress for mild steel bars, = 297 N/mm2
Yield stress for high tensile steel wires, 0= 1,340 N/mm2
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7.3. Details of Test Specimen

Details of the local bond strength and bonded post-tensioned

slab specimens are given below :
7.3.1. Bond-Slip Test Specimen

The test specimen chosen was based on 'flexural only case'. A
rectangular beam (cross-section 152 mm x 152 mm) of one metre length
was chosen (Figure (7.1.)) with two rectangular holes on each side of
a 38 mm bonded length (Lb). A circular duct running along the beam
through the centre of the cross-section was cast void for later
insertion of the prestressing wire. This duct in the central part of
the specimen between rectangular holes was grouted using the cement

grout after post-tensioning.

Two strain gauges (gauge factor 2.5) were mounted onto the wire
50 mm apart from the centre of the wires prior to the insertion of the
wires in the ducts. The strains on these wires were recorded from the
Peekel strain indicator (photograph 7.1.). Four high precision dis-
placement transducers were placed at both ends of the bonded length
(with two at each end). The slip of the wires was measured using these
transducers with a measuring accuracy of lO-Smm (photograph 7.2.). The
slip was directly recorded from the transducer measuring unit (photograph
7.1.).

The load was applied with a prestressing hydraulic jack and the
accuracy of the load increment was recorded using a load cell. A

complete general view of the bond test specimen is shown in Figure (7.1.).

To study the influence of various parameters on the bond between
the prestressing wire and the grout, two main parameters were investi-
gated; the magnitude of the prestress force and the wire diameter.
Wires of diameters 5 and 7 mm were prestressed to 65% and 75% of the

guaranteed ultimate tensile strength (GUTS). Ten beam specimens were
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tested. Table 7.1. shows the prestressing loads and wire diameters

for these beams.
7.3.2. Details of the Bonded Slab

A scaled model of a prestressed concrete slab (Figure (7.2.))
representing the top cap of a typical prestressed concrete reactor
vessel was tested. The object of the test was (a) to study the
physical behaviour of a prestressed concrete slab with bonded tendons
under increasing load up to the point of failure, thereby providing
load displacement relationships, distribution of cracking and the
failure mechanism, and (b) to compare these results with those obtained

from the analytical model developed in Chapters 4 and 8.

Yield Line Theory was used to size up initially the octagonal bonded
slab.Table 7.3 shows the yield line analysis and results obtain major
cracks only along the two centre lines of the slab. A sufficient amount
of ordinary reinforcement was provided in certain areas in order to help

the initiation of these cracks.

The octagonal prestressed concrete slab representing the top cap
of a vessel was prestressed with 5 mm and 7 mm diameter wires in two
orthogonal directions. A conventional reinforcement of 12 mm diameter
mild steel bars were provided as shown in Figure (7.2.). Four 7 mm
diameter wires were placed along the centre line BB, two on either side
of the centre line at distances 115 mm (Cl) and 350 mm (Cz) respectively.
These wires are shown with broken lines were at height of 36.5 mm from
the bottom surface of the slab. Eight 5 mm diameter wires were placed
along the centre line AA, four on either side of the centre line at
distaﬁces 115 mm and 350 mm and at heights of 18 mm and 55 mm from the
bottom surface of the slab. Eight 12 mm diameter bars spaced at 65-mm
were provided in one quadrant of the slab. A total of 32 bars were

provided in the slab as shown in Figure (7.2.).
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Photographs were taken at various stages of the construction of this
slab. Photograph 7.3.shows a formwork of an octagonal shape with
mild steel reinforcing bars. Special hooks were provided for lifting
the slab from the mould after it was cast and cured. Photograph 7.4.
shows the next stage of this construction in which temporary steel rods
were provided (marked C) in the formwork which were removed later on

in order to leave holes for the post-tensioning wires. The same photo-
graph shows a steel frame used to hold straight steel rods (marked A).
Strain gauges placed on reinforcements are also shown. After the slab
was cast, the temporary rods from both sides were taken out. These
were replaced by 5 mm and 7 mm diameter prestressing wires on which

strain gauges were placed to measure the steel strain.

The prestress force was provided by stressing 8 number of 5 mm
diameter and 4 number of 7 mm diameter wires in two orthogonal directions.
A uniform prestress force was applied by stressing in sequence in both
directions using CCL prestressing system. Each wire was stressed up to
75% of GUTS. Photograph 7.5. shows the slab after it has been prestressed.
The prestressing wires were then grouted using a cement grout. The grout
was injected under high pressure. The slab was then lifted and placed
on to the rigid and roller supports. The rigid supports were placed
diagonally opposite to the roller supports (Photograph 7.6.). The slab
was transversely loaded with an approximately uniformly distributed
load. This required a typical rigid steel frame (Photograph 7.6.)’
through which this load is applied. The dial gauges were placed on
one-quarter part of the top surface of the slab to measure the transverse
deflection. Rosette strain gauges were also placed on the top surface

of the slab.
7.4. Brief Details of Test Rigs

The details of test rigs for both experiments are briefly given

below.
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7.4.1. Bond-Slip Test Rig (Figure (7.1.))

The complete test set-up of the bond-slip experiment is shown
in Photograph 7.1. To accurately measure the applied %oading, a
load cell was used between hydraulic jack and a steel plate. The
load was directly recorded with the load cell measuring unit. Four
linear displacement transducers, two on each side of the bonded length,
were clamped with a 1.5 mm thick steel sleeve, which was glued to the
beam surface. Two rigid brackets were clamped to prestressing wire
and the transducers were in contact with these brackets (Photograph
7.2.). Therefore any movement of the prestressing wire was recorded

by the transducers.
7.4.2. Test Rig of Prestressed Concrete Slab (Figure (7.3.))

The slab was loaded with the loading rig producing four load points
on the main steel frame and 12 load points on the slab. The loading rig
is shown in Photograph 7.6. Four deep steel I sections were welded
together at 90° to make a main rigid steel frame. This frame was
supported by two strong steel beams running across the slab, which were
supported by the columns. Each rigid frame was connected to a hydraulic
jack. Hydraulic jacks were connected to a common hydraulic pump. Each
hydraulic ram was lowered onto a three-legged spreader frame, with the
load being transferred between each leg and the slab with a steel plate.
This steel plate has a rubber pad underneath it to distribute the load.
The steel plates and rubber pads were spread over a diameter of approxi-
mately 1780 mm. 100 KN load cells were used on each hydraulic jack
for accurate measurement of load. The load was applied from the common
hydraulic pump whereby each hydraulic jack applied a load on one-
quarter of the slab. Figure (7.3a) shows the schematic details of the
loading rig where points A, B, C and D are the positions of the hydraulic
jacks. Figure (7.3b) shows the details of the three-legged frame
representing the position A of the hydraulic jack. The schematic view
is also shown in Figure (7.3c). The relationship between uniformly

distributed load and the total load is given by :
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6

p = P/A 0.40185 x 10 " P
where p = uniform pressure, N/mm2
P = total loads from all hydraulic jacks (Newton)

The vertical deflections were measured on the top surface of the
slab with dial gauges which were capable of measuring with an accuracy
of 2 x 10-3 mm. The dial gauges were placed only on one-quarter
of the slab due to symmetry and these were clamped with rigid steel
beam which was running across the slab. The locations of 24 dial
gauges are shown in Figure (7.4.). Strain gauges were embedded onto
prestressing wires and reinforcements. The locations of strain gauges
on these steél wires are shown in Figure (7.5.). The surface strains
of concrete were measured using rosette strain gauges (see Figure (7.4a)).
The strain gauges and the rosette strain gauges were connected to a
data logger (compulog) as shewn in Photograph 7.6. For each load
increment, the strains were recorded by compulog and these were also
printed on the teletype. The positions of dial gauges and strain gauges

in Figures (7.4.) and (7.5.) were chosen such that they matched with the

finite element mesh, the details of which are provided in Chapter 8.
7.5. Testing Procedure and Results of Bond-Slip Tests

The load in bond tests was applied at one end of the wire by
using the prestressing hydraulic jack and it was measured with a load
cell (see Photograph 7.1.). The load was applied in increments of
0.25 KN. For each load increment, the readings were taken. The steel
strains were recorded with the Peckel strain indicator and the slips
were recorded with the transducer measuring unit. The load was stopped
when change in bond stress became nearly zero. The bond stresses, oy

?

were calculated from measured steel strains using the expression :

AP Es As )AE
7= FdLs ‘(mub ) (7.2.)
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where AP

change in steel force over the bonded length, Lb

Ats =&, -& = change in steel strain over the bonded length
. = steel strain at the loaded end

& = steel strain at the free end

As = steel cross-sectional area

ES = modulus of elasticity for steel

Lb = bond (embedded) length

d = diameter of steel

KdLb = embedded surface area of steel

The slip was obtained by taking an average value of the transducer

readings.

The experimental bond-stress slip results obtained are plotted in
Figures (7.6.) to (7.9.). It can be seen from these figures that at
the early stages of loading the bond stress increased with a very small
slip. With the increase in load, the rate of slip also increased.

In all cases, the curves show that up to a maximum bond stress, there
is a non-linear relationship with slip, and when slip increases beyond
a certain value, the bond stress is almost constant and is equal to its
maximum value. This occurs at a slip varying from 0.019 mm to 0.065 mm
in different curves. Slip values of 0.01 mm to 0.06 mm were reported
by Yannopolous (91) in his experiments of plain bars. The slope of

the curves decreases with increasing slip, having a maximum value at
zero slip and approximately zero at maximum bond stress. The initial
slope (slip modulus, E ) of the bond-slip curves (Figures (7.6.) to
(7.9.)) are not much different. The average value of initial slip
modulus is 501.40 N/mmz/mm. Results of all tests are summarised in

Table 7.2.

Results shown in Figure (7.6.) are for beams 1, 2, 3 of 5 mm
diameter wires which were stressed up to 75% GUTS. There is a scatter
of results for the beams tested under the same conditions. This is
because of the complicated nature of the steel-concrete interface factors

such as local shrinkage, settlement of the grout which give rise to
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variation in the bond strength. An average maximum bond stress in
this series of tests is approximately 1.64 N/mm2 at an average slip

of 0.048 mm when bond stress stops increasing.

In the second series of three tests (beams 4, 5 and 6) in which
7 mm diameter prestressing wire with a prestress of 75% GUTS are
shown in Figure (7.8.). The bond-slip curves again become non-linear
at the final stages with an average maximum bond stress of 1.80 N/mm2
and an average slip of 0.057 mm. The bond stress at this point stopped
increasing its value. The maximum value of bond stress is slightly
higher than that in the previous case of beams 1, 2 and 3. These results
indicate that 7 mm diameter wire gave slightly higher bond stress in

comparison with S mm diameter wire.

Figure (7.9.) shows the results for beams 7 and 8 in which 7 mm
diameter wire was also used with a prestress of 65% GUTS. In this
case as shown in Figure (7.9.) a relatively large scatter of results
are obtained for maximum bond stress. An average value of maximum
bond stress is found to be 2.05 N/mm2 at an average slip of 0.025 mm
when bond stress stops increasing. In this case curves indicate less
non-linearity and maximum bond stress is relatively larger than that
for beams 3, 4 and 5. The maximum slip at which the bond stress stops
increasing is less here than for beams 3, 4 and 5. Figure (7.7.) shows
the results for beams 9 and 10 in which 5 mm diameter with prestress of
65% GUTS is used. The average maximum bond stress is found to be
2.21 N/mmz. The slip at which this maximum bond stress was obtained
is 0.0205 mm. Comparing these results with those of beams 1, 2 and 3

it can be seen that the maximum bond stress is larger with a smaller slip.
7.5.1. Conclusion

From the above results it may be concluded that the maximum bond
stress decreases with the increase of prestressing force in the wire
and at a lower slip value. The effect on maximum bond stress due to
the variation of steel wire diameters is negligible. For any definite
conclusions on large tendons, much more testing with variations of

prestress and tendon diameter need to be performed. There are SO many
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local factors at the steel-concrete interface which need to be
investigated, especially for commercial prestressing tendons, if
ever bonded. The tests carried out for bond-slip and average
maximum bond stress are enough for the present research to be used

in the constitutive relationship of Ahmlink linkage element.
7.6. Testing Procedure and Results for the Octagonal Slab

The load was applied in small increments using a hydraulic pump
which had four hydraulic jacks as stated in section 7.4.2. connected
to it. At each load increment, the readings of the dial gauges and
the strain gauges were recorded. In the early stages of the loading
larger load increments of 20 KN (0.032 N/mmz) were applied. At the
later stages of loading, smaller load increments of 8 KN (0.01286 N/mmz)
were applied. The bottom part of the slab was painted with whitewash
in order to observe the cracks. The part of the slab which was vulnerable
to cracking was divided into small 50mm square divisions in order
to accurately estimate the positions and propagation of cracks. The
slab was examined for cracks at each load increment. As cracks
appeared, they were marked with a dark pencil so that they were visible
in the mirror placed underneath the slab. A camera was mounted at the
corner of the slab to take photographs of the cracks reflected in the

mirror.

The total load up to the point of failure of the slab was applied
in 53 increments. The results obtained are plotted in the form of
load-displacement curves. The experimental load-displacement curve
at the centre of the slab for the entire load history is shown in
Figure (7.10). The deflected shapes of the slab along two centre lines
(i.e. AA and BB) for various loads are shown-in Figures (7.11) and (7.12).
Photographs of cracks at the bottom surface of the slab were taken at
various stages of loading. Photographs 7.7. to 7.9. show crack patterns
of the slab at 428 KN (0.17199 N/mm?) and at failure. The marked cracks
at the bottom surface of the slab are shown in Figures (7.13) to (7.17).
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The numbers marked on these cracks indicate the load in KN at which

these cracks have occurred.

The slab behaved elastically (linear) up to a load of 160 KN
(0.0643 N/mmz). This initial linear behaviour mainly depends on the
amount of prestress provided in the slab and the type of boundary
supports. The early non-linearity of load-deflection curve
(Figure (7.10)) is caused by the flexural cracks at the bottom surface
of the slab. The initiation of first such cracks occurred at a load
of 180 KN (0.007233 N/mmz) as shown in Figure (7.13). As the load
increased further up to 200 KN (6.0804 N/mmz) the existing cracks
are extended with the addition of some new cracks. The cracks marked
at this load are shown in Figure (7.14) and are related to the load-
displacement diagram (Figure (7.10)) where a slight deviation in the
load-displacement curve has occurred which is due to the loss of stiffness
as a result of cracking. This loss is contributed possibly by the
reduced load of grouted tendon, ineffective grout and

the variable boundary conditions imposed on the slab.

With the further load increments, the existing cracks are enlarged
and are joined by the newly developed cracks in the region. Figure
(7.15) shows the crack pattern up to the total load of 248 KN
(0.09966 N/mmz). By studying the results shown in this Figure and
comparing them with those of Figure (7.13), it becomes clear that the
yield lines are beginning to form in the direction of free edges of the
slab. At this stage, a large part of the slab has already cracked and
the stiffness is lost. The vulnerable load in stages are 200 to 250 KN.
This might explain the sudden small depression on the load-displacement
curve shown between the load of 200 KN (0.0804 N/mmz) and 248 KN
(0.09966 N/mm®) as shown in Figure (7.10). This deviation of the load
deflection curve is marked as AB in Figure (7.10). At this stage of
loading, the displacement of the slab started increasing at a faster

rate than before.
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As the load increased further, more cracks developed forming additional
yield lines. At a load of 280 KN (0.1125 N/mmz) the crack pattern
assumes the form as shown in Figure (7.16). It can be seen from the
figure that most of the slab has cracked at this stage and yield

lines have formed in the direction of the free edges. As a result

of the formation of these cracks, a further degradation in the stiffness
of the slab has occurred as shown in Figure (7.10). In this region

of loading (marked C in BC region, see Figure (7.10)) large deflections
of the slab were observed visually and most of the cracks were clearly
visible. With the further increase in load in the region CD in

Figure (7.10) the deflection of the slab has occurred due to the
rotation of the slab about the yield lines section. As a result, due

to large existing cracks additional strains occurred both prestressing
and conventional steel. As a result, the rotation of the slab about

the yield line occurs and the concrete compressive zone (at the top
surface of the slab) is being gradually reduced (point D in Figure
(7.10)) and prestressing wires have started yielding. This can also be
seen in Figures (7.11) and (7.12) showing as well the deflection profiles

along the two centre lines of the slab with increasing loads.

Figure (7.17) shows the crack pattern of the slab just before
failure. The figure only indicates the position and the distribution
of cracking at the surface of the slab, but it does not show the depth
and width of cracks. This can, however, be seen in the photograph taken
at failure (Photographs 7.8. and 7.9.). The slab finally failed
at the load of 544 KN (0.2186 N/mmz) where deflections large and beyond

the limit of the available deflection measuring gauges.
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Table 7.1.

Parameters of Bond-Slip Specimen

. Amount of Pre-
No.
Beam No Diameters (mm) stress (% GUTS)
1 ) 75
2 5 75
3 5 75
4 7 75
S 7 75
6 7 75
7 7 65
8 7 65
9 5 65
10 5 65
Table 7.2. Results of Bond Tests
. Prestress | g~ Average . Average | Ep Average
B&am No. ?;;5 force (% (N?giﬁ) @~ bmax %;;? slip (N/mm2/ | Ep, (N/
GUTS) (N/mm2) (mm) mm) mm2 /mm)
1 75 1.6 ] 0.044] 380]
2 75 1.64] 1.64 0.052} | 0.048 540] 473.3
3 5 75 1.68] 0.05 ] 500]
9 65 221 g2 [ 001911 o205 | 5091 526.0
10 65 2.22] 0.022] 543]
4 75 1.84) 0.055] 510]
5 75 1.81] 1.8 0.065] | 0.057 520] 523.3
6 7 75 1.75] 0.052] 540]
v 65 2.1] 0.026] 466 ]
8 65 201 | %% 0.024] | 292> | 500 483.0
C'bmax = wultimate (maximum) bond stress
Ey = initial slope or slip modulus
Average value of Ey, = 501.4 N/mmz/mm
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Table 7.3. Yield Line Analysis

e b —
T T
¥ .
d
d: dl d' tz zl
AP LD E W, ’ —T) £
4 1 T, £
X L

Frestressing Wites Remforcements
( ASy = 153.8¢ mm?) ( AS2= 809.2 mm2)

Numerical values :

- 2 -
oy = 45 N/mm d' = 109 mm
d1 = 72.5 mm d2 = 79 mm
d = 75.75 mm b = 1990 mm
€ = 0.003
nd - depth of neutral axis
C - compressive force in stress block
Tl - tensile force in prestressing steel
€1 - strain in prestressing steel
Er - strain in reinforcements
T2 - tensile force in reinforcements

The value of n is calculated by balancing compressive force in concrete

and tensile force in steel, as

C=ZT=T1+T2 (1)

@)
i

%0 bnd, =0.4

2.7133 x 10° n

(@]
1]

-174-




From the geometry of the above figure

81
&2
for n = 0.3
C = 0.814 x
61 = 0.01245
£, = 0.00743

From stress strain

1
Therefore Tl
T1 +
So for n = 0.3 Eq
nd
11

Total moment along
Myl

The external moment

the figure overleaf

dl 45.3

Ga - D & * Gogx38.48° -

- prestrain in the wire

d2
nd 1) e

curves of reinforcements and prestressing wires

= 1568 N/mmz, o~y = 317 N/mm2
= le AS1, T2 = sz AS2
6
T2 = 0.814 x 10
uation (1) is satisfied.
= 22.72 mm
= 64.13 mm, l2 = 67.64 mm
yield line
= 0y ASt 11 *+ 0, AS1 12
6
= 54.27 x 107 N-mm (2)

is calculated due to external loads as shown in
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W = total load

Moo= Ny Wy Y = 701.3 mm, Y = 378 mm
ex Z o 2 ¢’ o) c
= 161.6 W N-mm (3)
Equate (2) and (3)
161.6 W = 54.27 x 10°
W = 336 KN
! - S
Total load = 336 KN vw
. |
|
' yield Line

Loaded Avea
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Displacement transducer
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(bond)
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I 1 -
' l | & 12 Pull-out
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FAY frame L' 23

]
1y
Prestressing wire

Displacement transducer

DIMENSIONS:
L = 1000,0 mm
lp,= 38.0 mm
1q= 76.0 mm
1lo= 38.0 mm

Figure 7.1 Details of Prestressed Concrete Pull-Out Specimen
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Figure 7.13 Experimetal Cracks at the Bottom Surface of the Slab
(Upto the Total Load of 180KN(0.0723 N/mn>) )
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Figure 7.14 Experimetal Cracks at the Bottom Surface of the Slab
( Upto the Total Load of 200KH(0.0803 N/mm?))
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Figure 7.15 Experimetal Cracks at the Bottom Surface of the Slab
(Upto the Total Load of 24L8KN(0.0996 N/mm ))
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Figure 7.16 Experimetal Cracks at the Bottom Surface of the Slab
( Upto the Total Load of 280KN (0.1125 N/mm2) )
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Figure 7,17 Experimetal Cracks at the Bottom Surface of the Slab

just Before Failure
-190-


















CHAPTER 8

Comparative Study of Results

8.1. Introduction

In this Chapter, the numerical analysis of various problems
is carried out using the proposed analytical model. Two main problems
are considered. The first problem is the prestressed concrete octagonal
slab (see Chapter 7). The slab given in Chapter 7 is of an octagonal
shape and is post-tensioned with prestressing wires. The prestressing
wires are bonded. Two types of analyses of bonded slab are performed.
In the first, the bond between the steel and concrete is considered by
a specially developed linkage element, whereby slip between the steel
and concrete is allowed. The second analysis assumes a perfect bond
(i.e. no slip between the steel and concrete). Both these analyses on
the slab are 8 noded solid and 2 noded axial line elements. The
analytical results from both these analyses have been compared with

those from the experimental results.

Greater confidence is obtained by validating the analytical tool
on this slab. This work is then taken further and is applied to

various cases of prestressed concrete reactor vessels.

The vessel under consideration is stressed vertically by means
of longitudinal tendons and circumferentially by means of wire/strand
winding. These tendons may or may not be bonded. Three cases of
vessel analysis are performed, namely unbonded, bonded and perfectly
bonded. For bonded vessel, the bond between the tendon and concrete
is represented by linkage elements. For perfectly bonded vessel, a
rigid bond between the tendon and concrete is assumed. For unbonded
vessel, there is no bond between the tendon and concrete and the load
is transferred through anchorages. In all cases the vessel is modelled

by 20 noded solid, 8 noded membrane and 3 noded line axial elements to
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represent vessel concrete, liner and prestressing tendons respectively.
The vessel for above three cases is analysed under both normal
operation (up to 40 years of vessel creep) and with gas increasing
pressure up to the point of failure. Deformed shapes, load-displace-

ment diagrams, crack patterns and safety margins have been obtained

for all the above mentioned cases.
8.2. Validation of Program NSARVE using Simple Problems

The validity of the finite element computer program NSARVE has
been tested on a number of problems. The main purpose is to
demonstrate the accuracy of the theoretical model and to test various
facilities provided within the program NSARVE. Linear, materially
non-linear, thermal and creep analyses are tested using different
formulations, elements and material models available in the program.
The numerical results obtained are compared with analytical and
published data. The representative test examples are briefly given

in Appendix B1.2.
8.3. Analysis of the Octagonal Prestressed Concrete Slab
8.3.1. General Information

Details of the experimental results for this slab are given in
Chapter 7. Figure (7.2.) gives the main dimensions of the slab
together with the positions and locations of prestressing wires and
ordinary reinforcements. The wires are stressed up to 75% of the
guaranteed ultimate tensile strength (GUTS) and are grouted. The slab
is now treated as bonded and is simply supported on four edges as
shown in Figure (8.8.). The slab has been analysed using three-
dimensional finite element program NSARVE given in Chapter 6. The

analytical results have been given for the following three cases
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Case I Bonded Prestressed Concrete Slab - the interface behaviour

between the steel and concrete is modelled using Linkage
(Ahmlink) Element

Case II Perfectly Bonded Prestressed Corcrete Slab - the steel
element is placed on one side of the solid element and

a perfect (rigid) bond is assumed between the two

Case III Unbonded Prestressed Concrete Slab - the steel elements
are not included in the analysis but their prestress forces

are included in the analysis of slab

All loads due to prestressing are treated as uniform pressures on
four opposite edges of the slab. The pressure, after taking into con-
sideration various prestressing losses, is 1.89 N/mmz. The applied
load on the top surface of the slab is also treated as uniform pressure.

A total load at failure from the experiment is 544 KN (0.2186 N/mm’).
8.3.2. Finite Element Meshes, Geometry and Material Data

Due to symmetry, only one-quarter of the slab is analysed
(Figure (8.8a)). This slab is restrained from moving in Y direction
along AB (i.e. v = 0) and in X direction along AC (i.e. u = 0). The
centre point A is restrained in both the X and Y directions (i.e. u = 0,
v = 0). The edge DE is supported in the Z direction {(i.e. w = 0).
Figure (8.8a) shows these boundary conditions. The finite element mesh
of one-quarter of the slab with element dimensions is shown in Figure (8.8b).
The choice of this mesh is made so that the prestressing wires and re-
inforcements are to lie on the sides of the solid elements. The nodes
of solid elements and line elements are connected either by Ahmlink
elements for bonded slab or by rigidly interconnected for perfectly
bonded slab. Where a large amount of ordinary reinforcement is closely
spaced in the slab, they are modelled as line elements in the body of
the\solid elements. Such elements are shown as broken lines in
Figure (8.8b). Two solid elements are chosen through the thickness of

the slab. The line elements are placed at an effective depth of 72.5 mm
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(Figure 8.8b). The details of finite element meshes for three different

cases are given below :

Case I : Bonded Slab

The slab concrete is modelled using 8 noded isoparametric solid
elements, the reinforcements and prestressing wires are modelled using
2 noded axial line élements and the bond between the steel and concrete
is modelled using 2 noded Ahmlink elements. Figure (8.9.) shows the
finite element mesh for this case only. The mesh comprises 60 solid
isoparametric elements, 48 line elements, 28 Ahmlink elements and
40 body axial line elements (these are shown as broken lines in Figure
(8.9.)). The nodes for steel and concrete are represented by different
numbers, although they occupy the same points in space. The Ahmlink
elements (joining steel and concrete) are located at nodal points along
the steel-concrete interfaces. Figure. (8.9.) shows the
Ahmlink elements connected to solid elements. Here, solid element nodes
26, 29, 47 and 50 are connected to the line element nodes 130, 131, 137
and 138 through the Ahmlink elements. Node numbers 26 and 130, 29 and
131, 47 and 137 and 50 and 138 have the same coordinates in space. There

are a total 150 'nodes and 450 degrees of freedom for this case.
Case II : Perfectly Bonded Slab

Finite element mesh for this case is shown in Figure (8.10). The
mesh is similar to the bonded slab case except that Ahmlink elements are
replaced by traditional line elements rigidly placed on solid elements.
It is assumed to have a perfect bond between the solid element and the
line element. The steel line elements are assumed to lie along the sides
of solid element sharing the same nodes (Figure/t8.10)). The finite
element mesh for this case.comprises 60 isoparametric solid elements,

48 line elements and 40 body axial line elements. There are total

126 nodes and 378 degrees of freedom.
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Case III : Unbonded Slab

In this case the line elements representing prestressing steel
are not included in this analysis since they are unbonded. The
finite element mesh (Figure 8.10) in this case is identical to the
case of perfectly bonded slab except that here the line elements
representing prestressing wires are excluded. The finite element mesh
comprises 60 isoparametric solid elements representing concrete, 24
axial line elements and 40 body axial line elements representing

ordinary reinforcements. There are total 126 nodes and 378 degrees

of freedonm.

Table 8.1. gives the details of geometric and material property
data for the slab. The stiffness properties of bond-linkage elements
(see Chapter 3, Equations (3.30) and (3.32b)) are obtained from the
experimental tests described in Chapter 7. A local bond stress-slip
curve for 7 mm of wire (Figure (8.11)) is a mean curve obtained from
the statistics of the experimental curves. Fifteen points are taken
on the bond slip curve and they are assumed to be joined by linear
lines. The bond stress-slip relations for these 15 points are taken as
an input for the program NSARVE. The program has the flexibility to
take other types of bond-slip curves. The instructions to prepare data

deck for program NSARVE are given in Appendix Bl.
8.3.3. Discussions on the Analyses and Results

As mentioned earlier that the slab has been analysed for three
different cases, namely bonded, perfectly bonded and unbonded cases.
The total load (pressure) on.the slab has been applied in 11 increments.
The first load increment is due to prestress applied on the edges of
the slab. The second increment and onwards are due to the transverse
pressure applied on the top sufface of the slab. These pressures are

given below :
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prestress (N/mmz) : 1.89
pressures.(N/mmz) : 0.0603, 0.0804, 0.1005, 0.1206, 0.1407, 0.1608,
0.1809, 0.201, 0.2074, 0.2138

For each load increment, iterations are performed to correct the
equilibrium. A maximum of 12 iterations per increment are allowed and
iterations are generally terminated when the Euclidian norm of the

residual loads becomes less than the specified tolerance (Tol = 3)(10—2

).
The constant stiffness option (Initial Stress Method) is employed for
all cases. The orthotropic concrete model in compression and tension
cut-off model for cracking of concrete and elasto-plastic model with

strain hardening for steel (Chaptér 4) have been adopted throughout.

The results obtained from these analyses are plotted in the form
of load-displacement curves, crack patterns and deflected shapes as
shown in Figures (8.12) to (8.18). Cracking of concrete has a particularly
strong influence on the behaviour of the slab. Figure (8.12) shows
the load-central deflection history of the slab. The experimental curve
is also shown for comparison. It is seen that the predicted results
for three cases compare favourably with the experimental results.
These curves show that they are in very good agreement in the early stage
of loading (between 180 KN (0.0723 N/mmz) to 280 KN (0.112 N/mmz)). At
this stage most of the cracking takes place. There is a slight
disagreement between the computed load-deflection curve and the
experimental curve between the load range of 300 KN (0.1205 N/mmz) to
450 KN (0.18 N/mmz). This is due to the facts described in Chapter 7.
The ultimate load computed from the analysis is less than the experimental
failure load. The difference between the two is roughly 2.2%.
These variations are due to assumptions built into the
analysis and probability of variations of material data and boundary
conditions. 1In the analysis very large displacements are predicted at
load level of 544 KN indicating the collapse of the slab. The computed
crack distribution of the slab for various load levels are plotted in
Figures (8.17) and (8.18) for bonded and fully bonded slab cases

respectively. Comparing these two cases, there seems to be close
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relationship in certain areas. These crack patterns have also been
compared with experimentally obtained crack patterns as shown in
Figures (7.13), (7.16) and (7.17). At a load of 200 KN (0.0803 N/mmz)
the cracks have formed along the two centre lines of the slab which
compares favourably well with the experimental cracks. At load of

280 KN a large part of the slab is cracked and between 280 KN and

336 KN practically the whole bottom surface of the slab is cracked

as can be seen in Figures (8.17) and (7.16) and (7.17). The comparison
between the computed and the experimental crack patterns is reasonably
good. The analytical results only show the position and the direction
of cracking which is based on the principal directions of the stress

state. Nevertheless, they do not show the sizes of cracks.

The crack patterns of the slab from the analysis may be related
to the load-displacement curve of Figure (8.12). 1Initially the slab is
linear (elastic) up to the load of 150 KN (0.602 N/mmz) when the first
set of cracks developed at a load level of 200 KN (0.0803 N/mmz) the
curve has deviated slightly from its linear path. At load of 280 KN
(0.1125 N/mmz), as a result of more cracking, the curve deviates
further due to the loss of stiffness. When load reached at 336 KN
(0.135 N/mmz) a large part of the slab has cracked already in two
directions indicating further loss of stiffness which is clear from
Figure (8.12). Thereafter, the curve is almost linear (between 336 KN
to 450 KN) indicating the widening of the existing cracks up to the point
when yielding of steel starts. After that, the slab has failed due to

excessive cracking producing large deflections.

By making the comparison of load-deflection curve (Figure (8.12))
for the above mentioned three cases, namely bonded, perfectly bonded and
unbonded cases, it is clear that the results are almost identical
in the early stage of loading. As soon as sufficient cracks are
developed in the slab, the results from perfectly bonded analysis are
rather higher than the bonded and unbonded analyses. This would be
expected, since in the perfectly bonded analyses the steel and the concrete

is assumed to be rigidly connected, which allows no slip between the steel

and the concrete
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The difference in the ultimate strength of the two cases is about
1.4%. 1In addition, the third case of unbonded slab has also been
analysed for comparison. The computed ultimate load is reasonably
close to the other two analyses, but the computed displacements at
the ultimate load are much too large. This reason is explained
earlier. Figures (8.13) and (8.14) illustrate the deflected shapes
along the two centre lines of the slab. The computed and the
experimental deflected shapes are in close agreement. Figure (8.15)
shows the maximum steel stress (reinforcement and prestressing tendon)

as a function of applied load as computed from the analysis.

load increments. The total number of 18 increments has been adopted
using the initial stress method and equilibrium iterations. A further
sophistication in results has been achieved and the results are in

good agreement with those from the experiment. With smaller increments
within the total range of the same load, large deflections, as expected,
have been computed. Although the ultimate load of the analysis is
taken to be the same as the experimental load, but the deflections

in comparison are much too large. It is seen that there is a depression
in the load-deflection curve for load level of 250 KN to 350 KN.

With the small load increments the results do show the depression in
the nearby region which could not be observed by using large load
increments. In case II, the slab has been analysed using incremental
approach with no iterations. In this case, the stiffness matrix is
updated according to the Newton Raphson method. The results of this
incremental method are shown in Figure (8.12). It can be seen from
the Ffigure that the ultimate load for this analysis is highly
overestimated, while the deflections at ultimate load are much too
small. The ultimate strength of the slab for this case has been
overestimated by 11%. The reason is gathered from the fact that
because of no iterations, the released stresses as a result of this
cracking are not redistributed to the surrounding material. This
assumed case 1s normally adopted for approximate analysis and gives

much higher results.
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8.4. Analyses of the Prestresses Concrete Reactor Vessel

8.4.1. Objective of the Analyses

The purpose of the present analyses is to predict the structural
response of the prestressed concrete reactor vessel (Figure 8.19) under
increasing gas pressure up to the point of failure at various stages
of its life. The influence of creep on the normal operational con-
dition up to 40 years of vessel life is also investigated. The
vessel is analysed for three cases, namely bonded, perfectly bonded
and unbonded. Analyses will be expected to predict short and long-
term stress distribution, load-displacement curves, crack patterns
and safety margins for such vessels. It is intended to examine and
compare these results and to assess the structural integrity of both

bonded and unbonded vessels.
8.4.2. General "Introduction of the Vessel

A High Temperature Gas-Cooled Reactor (HTGCR) Vessel is chosen
for the analysis as shown in Figure (8.19). The Prestressed Concrete
Reactor Vessel (PCRV) is a multicavity thick-walled cylindrical con-
crete structure with an external diameter of 24.5 m and overall height
of 32.31 m. The main pressure cavity (core cavity) is 11.21 m in
diameter and 21.946 m high and contains the reactor core and its
shielding. The wall contains eight equally spaced vertical cavities
for the boilers (steam generators) of 3.048 m diameter. They are
linked by radial gas ducts to the top and bottom of the main cavity.
All cavities are lined with a 19.0mmthick continuous steel liner.

The PCRV is prestressed by two post-tensioning systems. The prestress
force in the circumferential direction is provided by the wire/strand
winding system. The BBRV system was used for the vertical prestressing
of the PCRV. Each vertical tendon has a guaranteed ultimate tensile
strength of 9.75 mN. These tendons may be grouted (bonded) or left

ungrouted (unbonded) for the reasons discussed elsewhere.
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8.4.3. Finite Element Meshes and Vessel Data

Due to symmetry only 1/16th part (223° wedge) of the vessel is
analysed. Only the top half of the vessel is considered for the
analysis. Boundary conditions as shown in Figure (8.24) are applied
in order to maintain three-dimensional symmetry. The vessel is
restrained from moving in Y direction along AB and in Y' direction
along CD. 1Inclined or skew boundary conditions are applied along
CD which are also fully discussed in Appendix A. At the mid-height
of the vessel along EF, the vessel is restrained from moving in Z
direction. Finite element meshes or 223° wedge of the vessel are

described below.

I Bonded Vessel with Ahmlink Element

The vessel concrete is modelled using 20 moded isoparametric
solid elements and the steel liner is modelled using 8 noded iso-
parametric membrane elements. The prestressing tendons are modelled
using 3 noded line elements. The line elements are also used as
“body line elementswithin the solid elements. The bond-slip
behaviour at the steel and concrete interface is represented by using
Ahmlink elements. Figure (8.20) shows the finite element mesh for
this case. The mesh is generated using the FEMGEN preprocessor. The
instructions to prepare finite element meshes are given in the FEMGEN
User Manual (155). A detailed finite mesh of the same vessel with
element and node numbers at various levels is given in Figure (8.21).
The mesh comprises 62 solid isoparametric elements, 32 membrane
elements, 72 line elements, 36 line elements in the body of the solid
elements and 156 Ahmlink elements. There are a total of 632 nodes

and 1896 degrees of freedom for this case.

IT Unbonded and Perfectly Bonded Vessel

Figure (8.22) shows the three-dimensional finite element mesh
of the unbonded and perfectly bonded vessels. For perfectly bonded

vessels, the prestressing tendons are assumed to lie along the sides
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of the solid elements sharing the same nodes or they are modelled
inside the solid elements. Both cases represent a perfect bond
between the vessel concrete and the tendons. A detailed finite
element mesh element, together with node numbers at various levels
is given in Figure (8.23). The mesh comprises 62 solid elements
representing vessel concrete, 32 membrane elements representing
the steel liner, 72 line elements and 36 body axial line elements,

representing the tendons. The total number of nodes and degrees of

freedom are 472 and 1428 respectively.

The finite element mesh for the unbonded vessel is the same
as for perfectly bonded vessels, except the vessel tendons at various

mesh levels are not taken into consideration.

Full details of geometric and material data of this vessel
are given in Table 8.2. The stiffness properties of bond-1linkage
elements (Chapter 3, Equations (3.30) and (3.32)) are obtained from
the experimental bond-slip curves of 12.5 mm strand. The local bond
stress-slip curves for 12.5 m (1) strand are due to Edward and

Picard (90) and are given in Chapter 2 (Figure (2.4.))

Very little difference has been found in the stress strain
behaviour of strands used in the Dungeness B model tests (156) and
the tendons adopted in the vessel for the Dungeness B station (the
same tendons are used for the vessel under consideration). Hence
bond-slip curves for strands obtained from these results are thus

assumed to be identical to Dungeness B vessel tendons if bonded.

An average lécal bond stress-slip curve with 23 points joined
by straight lines as shown in Figure (8.25) are used in the analysis.
These points are input to the program NSARVE and are given in Table 8.2.
However, the computer program is flexible enough to include any other

bond-slip data.
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The solid elements are integrated using 3x2x3 integration rule,
the membrane elements by 2x2 integration rule and the line elements
by 4 point integration rule. Figure (7.27c) shows the main

dimensions of the finite element mesh and the Gauss point locations.
The loading conditions in the PCRV are idealised as follows.

(a) Normal operational condition - this includes prestress
forces, internal gas pressure at the design level and
the design operational temperatures. The details of
prestress forces, internal gas pressure and the temperature
distribution in the vessel are given in Figures (8.25) and
(8.27a) and (8.27b). The prestress forces given in the
figures at present do not deduct losses due to various
conditions. The details for losses are given in Table 8.2.
The pressures in the radial ducts and the boiler cavity

are assumed equal to the main cavity pressure (5.68 N/mmz).

(b) Ultimate loading condition - the pressure in all cavities
(main cavity, duct, boiler) is increased gradually until
the failure conditions of the vessel are met under normal

temperatures.
8.4.4. Types of Analyses

Three main types of analyses are performed for bonded and
unbonded vessels. The first one is for unbonded vessels. In this
case it is assumed that vertical tendons only contribute to the
prestress force in the vertical direction and the tendon forces are
transferred through the anchorages. The traditional method of
analysing bonded vessels is to assume a perfect bond between the
tendons and the vessel concrete. This means that the displacements
and strains of both tendons and the concrete are assumed to be the same.
In practice, however, when substantial cracking has occurred, this

assumption ignores the differential movement between the tendon and

-207-



the concrete. To account for this effect, the bonded vessel is
analysed using a specially developéd linkage element known as the
Ahmlink element after the name of the author. This gives a

realistic representation of the bonded vessel behaviour.

The bonded vessel is also analysed assuming a perfect bond
between the tendons and the vessel concrete. In order to assess the

strength history, the vessels are analysed for the following cases.
I Linear analyses under normal operational conditions and creep
analyses for 40 years of bonded, unbonded and perfectly bonded
vessels. This covers the reactor operational conditions.
II Ultimate load analysis of unbonded vessel
III Ultimate load analysis of perfectly bonded vessel
IV Bonded reactor vessel analysis using Ahmlink element
(a) Ultimate load analysis for short-term prestress losses
(1-5 years)
(b) Ultimate load analysis after 10 years prestress losses
(¢) Ultimate load analysis after 20 years prestress losses

(d) Ultimate load analysis after 30 years prestress losses

For cases (a) to (d) long-term material properties for steel

and concrete are used.
8.4.5. Discussion of the Analyses and Results
8.4.5.1. Normal Operational and Creep Analyses

All three vessel cases are analysed first for normal operational
conditions and then with 40 years of creep. This is usually the

service life of the vessel. Creep analysis is performed with 'rate of

flow' method, and the Burger visco-elastic creep model (see Chapter 4).
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The total creep time of 40 years is applied in small time increments
during which incremental creep strain under the sustained stress and
temperature is evaluated. This is followed by the calculation of
redistribution of stresses through a cycle of elastic analysis.

In the beginning of the analysis the stresses do change rapidly,
therefore a careful selection of time increments is required. The

following time increments are chosen :

7., 36., 66., 76., 80., 100., 365., 400., 695., 825., 1000., 1650.,
2000., 3650., 3650., days

The obtained results are plotted in the form of stress and
deformation histories. The results obtained for three vessel types
are almost identical, the reasons for this being that the effect of
bond in the elastic range of loading is almost negligible. The
results of the normal operational analysis are first examined. The
vessel is in compression at most places, except at the outside wall
near the equator where vertical tensile stresses were found. These
values are small and are unable to cause any cracking (see Figure (8.30c)).
The deformations of the vessels for normal operation and creep analysis
are shown in Figures (8.28), (8.28a) and (8.28b). A vessel deformations
of these vessel cases when compared show very little difference.
Figure (8.29) shows the principal stress distribution just at the
beginning of the normal operation, while Figure (8.29a) shows those
under normal operation after 40 years of creep. Since the PCRV has
a non-uniform temperature distribution (i.e. temperature gradients
through the wall and the cap), the stresses change with time and re-
distribution takes place due to temperature-dependent creep in the
early stage of creep analysis. Owing to creep, the tensile stresses
were converted into compressive stresses at the outer surface near

the mid-height of the vessel.
The analysis in general predicts a significant stress reduction

and redistribution due to concrete creep. A maximum compressive hoop

2 . : C
stress os 22.0 N/mm~ is calculated under normal operational conditions
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at the inner side of the main cavity at mid-height of the PCRV.
This value is reduced to 15.73 N/mm2 after 40 years of creep, a
reduction of stress by 30%. Similarly, the tensile stress at the

outer surface of the wall at mid-height is reduced from 1.7 N/mm2

to a compressive stress of 8.6 N/mmz.

Figure (8.30) shows the variation of circumferential stresses
with time. A steady state condition is reached after 10 years of
creep. Figures (8.30a) and (8.30c) show the variation of circum-
ferential stress in the wall of the vessel, while Figure (8.30b) shows
the variation of circumferential stress in the top cap of the vessel.

The figures indicate a substantial stress redistribution due to creep.
8.4.5.2. Ultimate Load Analyses

For the ultimate loading conditions, in addition to the normal
operational loads of the vessel, the pressure in all cavities of the
vessel 1s increased monotonically until failure occurs. The internal
pressure to the point of failure of vessel is applied in 15 increments.
The first increment is the normal operational condition loads (prestress
forces, internal pressure at the design level and temperature loads)
and the rest of the increments are carefully chosen as a fraction of
the design pressure. This decision is taken so as not to cause any
excessive non-linearity within the load increments. Analyses are

performed at the following pressures (N/mmz)

5.68, 7.384, 9.08, 10.792, 11.928, 13.064, 14.2, 15.336, 16.188, 17.04,
17.892, 18.744, 19.312, 19.88, 20.448

The constant stiffness method (initial stress method) is used
for all cases analysed in this section. An average of 10 iterations
per increment are required for the convergence of the solution.
Iterations within each load increment are terminated when a norm

of residuals has reached a specified tolerance of 3x10-2.
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The ultimate load analyses are performed for the following two

conditions :

TYPE I Ultimate analyses of bonded, perfectly bonded and unbonded
vessels in which short-term prestress losses were considered

TYPE I1I Ultimate analyses of bonded vessel for léng-term prestress

losses due to creep, relaxation and shrinkage, etc.

The analyses also take into account the changing material properties
with time and have been performed for 10 years, 20 years and 30 years
in terms of prestress losses and material properties. Details are

given in Table 8.2.

The obtained results of these analyses are plotted in the forms
of pressure-deflection curves for the entire loading history, deflected

shapes and crack patterns of the vessel.
TYPE 1 CASE I+CASE II+CASE III AND IV(a)

Figures (8.31) to (8.38c) show a history of pressure-deflection,
deflected shapes and crack patterns of bonded, perfectly bonded and
unbonded vessels. The pressure-deflection histories are plotted for
the centre of the top cap and at the outside of the mid-height wall.
As a result of increased internal cavity pressure and the beoiler
pressure, the PCRV's displaced upward in the vertical direction (cap)
and outward in the radial direction. This results in some bending
in the wall and the top cap as shown in Figures (8.33), (8.34) and (8.35).
The cracks formed at the outside surface of the wall are due to the
vertical extension and bending of the wall causing horizontal cracks
(due to the vertical stress). The radial cracks are formed at the
top surface of the end slab and in the wall near the inner surface.
These are formed due to the radial expansion causing circumferential
tensile stresses. Inclined cracks have also formed in the radial/
circumferential direction near to the junction of the cap and wall.

Cracks and failure in compression are marked at the integration points.
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The study of the load-deflection history can be made in
relation to cracks developed, since this is the major source of non-
linearity in the vessel. Figure (8.32) shows the load-displacement
curves of the wall for three vessel types analysed. It can be
seen that the curves of the three vessel types are identical up
to the load factor of 2.5 (14.2 N/mmz). The reason for this can
be explained by examining the crack patterns of these three types
shown in Figures (8.36b), (8.37b) and (8.38b). From these figures
it is seen that the crack patterns developed in three vessel types
are identical. When the pressure is increased further up to the
load factor of 3.0 (17.04 N/mmz) the three curves start deviating.
The results of the bonded vessel with Ahmlinks and perfectly bonded
vessels are higher than the unbonded results. Cracks at this stage
of loading in the three vessels are shown in Figures (8.36¢), (8.37c)
and (8.38c). By comparing these figures, it may be seen that the
crack patterns of bonded and perfectly bonded vessels are still
identical, except in a few places where the extent of cracking in
the bonded vessel is more. However, for the unbonded vessel, the
analysis seems to indicate much more cracking especially between the
boiler and the outside wall, where most of the section has cracked
in two directions. This causes more radial displacement of the wall
The extent of damage of these vessels at this load level is excessive
and the vessel has substantially cracked at this load level.
Examination of the top cap indicates that still very little cracking
has occurred. This can also be assessed from Figure (8.31) where
the pressure deflection curves of the top cap of the three vessel
types are plotted. The pressure deflection curves up to the load
factor of 2.5 are almost linear. A slight non-linearity is observed
between load factors 2.5 to 3.0. This non-linearity may be due to

crack formation at the junction of the cap and wall.

When pressure is increased further to a load level of 3.3
(18.74 N/mmz), excessive deflections occur for the unbonded vessel,
especially in the caps of the vessel. The solution for this vessel
could not converge after 12 iterations. The analysis-was stopped at
this load level. This is now considered to be failure load of the

unbonded vessel. Crack patterns, deflected shapes and the load-
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deflections of the wall and the cap at this load level are shown

in Figures (8.38d), (8.31), (8.32) and (8.35). Due to crushing of
the concrete at the inner surface of the cap (see Figure (8.38d)) and
extensive cracking at the upper part of the cap, this has caused a
local instability in the numerical model (the stiffness matrix of

the system) thereby resulting in excessive deformation of the cap
(Figure (8.35)). Nevertheless, changes in the shape of the vessel
with increasing internal pressure shown in Figure (8.35) can easily
explain the progressive failure of the vessel. On the other hand,
the computed crack patterns of the vessel (Figures (8.38a) to (8.38d))
provide a useful guide in interpreting the internal failure process

of the vessel.

When the pressure is increased to a load factor of 3.5
(19.88 N/mmz), a further crack development takes place for bonded
and perfectly bonded vessels. The crack patterns for this load level
are shown in Figures (8.36d) and (8.37d). At this stage, the whole
vessel is cracked and the most damage the bonded vessel has received
(Figure (8.36d)) is in the cap of the vessel where failure in com-
pression (due to crushing) and triaxially cracked concrete have
resulted. This may have caused the unstable state of the system in
the numerical model resulting in excessive deformation of the cap as
shown in Figure (8.33). The obtained solution for the bonded vessel
did not converge in 12 iterations and therefore the analysis was stopped
at this load level. This load-displacement curve of the bonded
vessel (Figure (8.31)) indicates an abrupt change of slope between
load factors 3.0 and 3.3, with a further increase in the load and
excessive deflection of the centre of the slab. Comparing the crack
patterns of bonded and perfectly bonded vessels (Figures (8.38d) and (8.37d))
generally the wall of each vessel has very identical cracks. However,
a marked difference in these can be seen in the cap. The cap of the
bonded vessel has crushed and cracked, while the cap of the perfectly
bonded vesseldid not damage to that extent. This is seen in
Figure (8.34) where deformed shapes of perfectly bonded vessel are
plotted.
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A further pressure was increased to a load factor of 3.6
(20.448 N/mmz) where this vessel also failed due to the excessive
deformation of the wall. The solution did not converge in 12 iterations
and therefore the analysis was stopped at this load level. Deformed
shapes of perfectly bonded vessel for various pressures are shown

in Figure (8.34).
TYPE I1I CASES IVa, b, and c

In this category, the bonded vessel was studied using long-
term effects on loading and material properties. The object is
to investigate the influence of the effect of loading (mainly as a
result of prestress losses) and concrete material properties on the
structural integrity of the vessel. This means that the bonded
vessel is to be overloaded at suitable intervals of its service
life. The periods for these analyses were chosen as 1-5 years, 10 years,
20 years and 30 years. The prestress losses and material properties
for these periods are given in Table8.2. The vessel for 1-5 years
has already been analysed, as discussed in TYPE I. The other three
cases are analysed in this section. The results obtained for the four
above analyses are compared with one another in order to assess the
effect of the long-term loading on the behaviour of the bonded vessel.
The predicted results are expected to give some insight into the
failure of bonded vessel with increasing internal pressure for both

long and short-term conditions. The analyses compare the following :

- load-deflection histories at the centre of the top cap and at mid-
height wall

- deformed shapes of the vessel with increasing internal pressure

- damage of the vessel due to cracks and compression failure

- safety margin

Figures (8.39) to (8.46b) show results for the above cases. The
pressure deflection histories are plotted for two points on the vessel,
one at the centre of the top cap and the other at the mid-height wall.
Curves for all above four cases are shown in Figures (8.39) and (8.40).
As a result of increased pressure, the PCRV displaces upward in the

vertical direction (cap) and outward in the radial direction (wall).as
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shown in Figures (8.41), (8.42) and (8.43). This results in the
formation of cracks in the wall and the cap as shown in Figures (8.44)
to (8.46b). The integration points are marked where the status of

the integration point indicates cracking or crushing.

Figures (8.39) and (8.40) show the comparison of pressure
deflection curves for the above four cases for both the wall and the
cap. It can be seen that the curves for the cap are similar and
identical up to load factor of 2.5 and thereafter the curves start
deviating, although the margin of deviation for these curves is
negligible. On the other hand, the load-displacement curves for
the wall (Figure (8.39)), shows a marked difference in curves for
various cases starting from the origin to the point of failure. The
reason for this difference is due to the fact that when overload
analysis started giving different deformations in the wall due to
different prestress losses in the radial direction. The curves seem
to suggest that the load carrying capacity of the wall for 1-5 years
old vessel is more than the 30 years old vessel, i.e. the older the

vessel, the more flexible is the wall.

The picture on the top cap side is totally different from the
wall. (Figure (8.40)). In this case, more flexibility in the 1-5

year old vessel is observed than an old vessel with 30 years life.

The study of load-displacement history and deformed shapes with
increasing internal pressure can be made in relation to the formation
of cracks for various cases. In all cases, the cracking has occurred
in the horizontal direction (due to vertical stress) in between the
boiler and the outer wall near the equator of the vessel (Figure (8.36)).
When pressure is increased to a load factor of 2.3 (13.064 N/mmz)
cracks in two directions (radial and horizontal) are formed as shown
in Figures (8.44), (8.45), and (8.46). These are the cracks
calculated for 10, 20 and 30 years old vessel respectively. It is seen
from these figures thatmuch more cracking has occurred between the boiler
and the inner wéll of the vessel for the 30 year-old vessel than for

the 10 year old vessel. This is reflecteéd in the pressure-deflection
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curves of the wall (Figure (8.39)),.as discussed earlier. It is
interesting to note that very little cracking has occurred in the top
cap of all vessel types at this level of loading. This is reflected

in the pressure-displacement curves of the top cap (Figure (8.40)).

When pressure is-further increased at load factor of 3.0
(17.04 N/mmzj the resulting crack patterns for the four cases are shown
in Figures (8.36¢c), (8.44a), (8.45a) and (8.46a). At this load
level practically the whole wall for section AA has cracked (section
through the boiler) while there are still very few cracks in the top
cap. Radial cracks at the outer surface of the top cap have developed
indicating a slight non-linearity in the pressure-deflection curve
(Figure (8.40)). Deformed shapes at load level 3.3.(18.744 N/mmz)
are shown in Figures (8.33), (8.41), (8.42) and (8.43). By comparing
these figures it seems to suggest that the larger deformations of the
wall are observed for older vessels and the reverse is true for the top

cap.

When the pressure is slowly increased to load factor 3.5
(19.88 N/mmz) a further damage to the vessels is done in the form of
more extensive cracking and compression failure. Solution at this
load level did not converge in all cases and therefore the analysis
is stopped. The extensive cracking and crushing of the vessels at
this failure load level is shown in Figures (8.36d), (8.44b), (8.45b) and
(8.46b). It is clear from these figures that the damage of the vessel
at 30 years load is much more in the wall of the vessel than in the top
cap. This gives results opposite to those of the vessel when loaded
at an earlier age. The damage of these vessels is reflected in the
pressure-displacement curves (Figures (8.39) and (8.40)). Figures (8.33),
(8.41) to (8.43) deformed shapes of these vessel at failure which definitely
indicates that a~1-5 year old vessel is likely to fail with the
excessive deformation of the cap while the 30 year old vessel is
likely to fail with the excessive deformation of the wall. The numerical
model at this load level has become unstable due to triaxially cracked
and crushed points resulting in a sudden loss of stiffness. It is for
this reason that a few inconsistencies in the deformed shapes can be
seen. Nevertheless, the deformed shapes of the vessel are a useful

guide as a failure indicator of the vessel.
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8.5. Conclusion

The application of the non-linear model has been illustrated
on various problems starting from simple beams to a complex pre-
stressed concrete reactor vessel. Results obtained on a bonded pre-
stressed concrete slab are in close agreement with those from the
experiment. Predicted results of bonded (with Ahmlink elements) and
perfectly bonded slabs do not differ substantially. The predicted
ultimate load from the perfectly bonded analysis is 1.4% higher than
the bonded analysis. Various cases of vessel analysis assuming
bonded and unbonded tendons show that the load carrying capacity of
bonded vessel is always higher than a similar unbonded vessel. Creep
analyses of bonded and unbonded vessels at normal operation show a
considerable redistribution of stresses due to non-uniform temperature
distribution through the wall and the cap. Ultimate analyses of the
bonded vessel at various stages of its life indicate that the overall

performance of 1-5 year old vessel is better than a 30 year old vessel.
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Table 8.1. Geometric and Material Data for Slab

Concrete
Ec = 27500.0 N/mm°
Ve = 0.17
6z = 39.0 N/mm’
@ = 5.9 N/mn°
€ecu = 0.0035
ﬂ , shear retention factor for cracked concrete
= 0.5
Integration rule for all solid elements
= 2x2x2
Steel
Prestressing wires :
diameter = 7.0 mm
Es = 200,000 N/mm2
H = strain hardening parameter = 20000.0 N/mm2
o, - 1340.0 N/mm’
Reinforcements :
diameter = 12.0 mm
ES = 200,000 N/mm2
H = 20000.0 N/mm®
o, = 297 N/mm®
Tolerance for convergence, Tol = 3.0 x 10_2
Pressure due to prestress = 1.89 N/mm2
Total pressure due to vertical load = 0.2186 N/mm2 (544 KN)
at failure

Data for bond linkage (Ahmlink) element (see Figure (8.11))

The following data is adopted for Ahmlink element in the form of
multi-linear curve. Total 15 points are taken on the curve and

thelr values are given overleaf :
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Curve points
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Time summary of slab analyses on PRIME 750

(a)
(b)
(c)
(d)
(e)

Perfectly bonded slab (11 load increments)

Bonded slab (11 load increments)

Unbonded slab (11 load increments)

Bonded slab (18 load increments)

Bonded slab (Newton Raphson method - no

iterations, 30 load increments)
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Table 8.2. HTGCR Vessel Data

Geometry

Internal height, H
Internal diameter, d
Wall thickness, tw
Top and bottom cap
thickness, D
Boiler diameter

Connecting duct diameter

Material

0"t, tensile strength

Ec, for standpipe region

Ve

cracked concrete
«c, coefficient of thermal

expansion for concrete

Liner

Liner thickness, tB
Es, elastic modulus
Vs, Poisson's ratio

o > uniaxial yield stress
AT, coefficient of thermal

expansion for steel

H, strain hardening parameter

¢~~c, concrete cylinder strength
Ec, initial modulus (short-term)
Ecu, concrete ultimate strain

ﬁ’ shear retention factor for

21946.0 mm
11125.0 mm
6630.0 mm

5182.0 mm
3048 mm
1118.0 mm

39.0 N/mm’
- 4.69 N/mm?
41400 N/mm
- 0.75 Ec

- 0.0035

- 0.17

= 0.5

= 9.4 x 10—6/degrees centigrade

19.0 mm
200,000 N/mm’
0.3

2
365.0 N/mm

5.5 x 10-6/degrees centigrade
0.1 Es
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. Prestressing Tendons

Es, elastic modulus
o~
. Diameter of prestressing

strand

127.0 mm

Guaranteed ultimate tensile strength (GUTS)
of each prestressing tendon, Fult

Transfer load = 0.75 F
ult
Prestress force due to circumferential

wire winding (see Figure (8.26)) pl

Pressure in all cavities (design pressure)
(main cavity, boilers and connecting

ducts)
Temperature at the core liner surface
Temperature at the outside

Temperature gradient

For details of temperature distribution in the

(8.27a) and (8.27b).

Details of Bond-linkage Elements

200,000 N/mm’

y » uniaxial yield stress = 734.15 N/mm2

9750.0 KN

= 7312.5 KN

- 18.589 N/mm°
= 12.39 N/mm°
- 10.395 N/mm°

= 5.68 N/mm°
= 60°C
= 25°C

= 35°C

vessel see Figure

The following bond-slip curve was adopted for linkage elements.

The bond-slip curve is for prestressing strand and is taken from

Edward and Picard's (90) experimental tests (see Chapter 2 for more

details).
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Curve Points %g?gmg§ress %;;?

1 0.0 0.0

2 0.4593 0.001334
3 0.8038 0.0024667
4 1.1483 0.003334
5 1.378 0.0046667
6 1.7225 0.006

7 2.2967 0.008866
8 2.6412 ' 0.01133
9 3.1005 © 0.014

10 3.6172 ~ 0.018

11 3.7895 0.02

12 4.0192 0.022

13 4.2488 0.025

14 4.3636 0.02733
15 4.4785 0.0303
16 4.4785 0.0333
17 4.4785 0.0366
18 4.4785 0.04

19 4.4785 0.0433
20 4.4785 0.0466
21 4.4785 0.05

22 4.4785 0.053

23 4.4785 0.075

Prestress Forces and Losses (see Figure (8.26))

Short-term losses (1-5 years)
(a) Vertical tendons - 7.26% on the top of the transfer load
(i.e. 0.75 GUTS)
(b) Circumferential wire winding (pressure) - 10% on the

values shown in Figure (8.26).
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Losses at 10 years :
(a) Vertical tendons - 12% on the top of the transfer load
(b) Circumferential wire winding - 15% on the values shown in

Figure (8.26)

Losses at 20 years :
(a) Vertical tendons - 17% on the top of the transfer load

(b) Wire winding - 23.3% on the values shown in Figure (8.26)

All the steel and concrete material properties should also be

reduced by 5%.

Losses at 30 years of vessel life :
(a) Vertical tendons - 20% on the top of the transfer load

(b) Wire winding - 30% on the values shown in Figure (8.26)

All the steel and concrete material properties should also be

reduced by 5%.

Time Summary of Vessel Analysis on Prime 750

CPU
Bonded vessel analysis 292 minutes
Perfectly bonded vessel anslysis 286 minutes
Unbonded vessel analysis 276 minutes i
An average analysis time per vessel : 284 minutes (4 hrs 40 mins) ‘

|
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CHAPTER 9

Conclusions and Recommendations

9.1. Conclusions

A generalised three-dimensional finite element analysis is presented for

the time dependent non-linear behaviour of complex structures such as
prestressed concrete reactor vessels. The analytical model has been
successfully applied on bonded prestressed concrete slab and bonded

reactor vessel.

The constitutive laws of concrete, steel and bond have been de-
veloped in this research. These constitutive laws can easily be applied
to model any prestressed and reinforced concrete structures with
reasonable accuracy. In addition, the constitutive laws of concrete
have been extended to include creep. In the proposed analytical model
the bond-slip behaviour is considered at the steel-concrete interface.
However, this model is flexible enough to analyse concrete structures
based on the concept of 'perfect bond' (rigid link) between the steel

and the concrete.

Various non-linear solution techniques have been implemented in
the finite element computer program NSARVE. Among them, the constant
stiffness method (initial stress method), because of numerical
stability, has shown to be suitable for the analysis of concrete

vessels up to failure.

Two types of experiments have been performed. The first one is
to establish a bond-slip behaviour of prestressing wires and also to
obtain bond coefficients for program NSARVE as an input. The second
experiment is to examine the behaviour of a bonded slab and also to
validate results obtained from the analytical model. The experimental
study of bond slip specimens indicates that the bond stress increases

initially with a very small slip and the bond-slip relationship is
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non-linear up to the maximum bond stress. The maximum bond stress
reaches at a slip varying from 0.019 mm to 0.065 mm in various
specimens. Beyond this, the bond stress is almost constant and is
equal to its maximum value. At some stages, a scatter in the

results is found. An average value of maximum bond stress 1.92 N/mm2
and an average slip modulus of 501.5 N/mmz/mm are obtained from all
the tests. Results obtained from the octagonal prestressed concrete
slab shows that the load-deflection curve at the centre of the slab
is linear up to 160 KN (0.064 N/mmz) and after that it becomes non-
linear due to extensive cracking. The slab finally failed at a

load of 544 KN (0.218 N/mmz). The deflected slopes along the two

centre lines of the slab show that the slab failed in flexure.

A comparative study of results shows that the bonded. prestressed
concrete slab behaved exactly as was predicted by the analysis.
The analytical ultimate load is 2.2% lower than the experimental
failure load. The predicted ultimate load of bonded slab using
Ahmlink elements is 1.4% lower than that using a perfect bond.
A study of the slab using purely incremental method (no iterations)
predicts the ultimate load 11% higher than the experimental failure

load. This method is approximate and always overestimates the loads.

Various cases of vessel analyses with bonded and unbonded tendons
suggest that the load carrying capacity of bonded vessel is always
higher than a similar unbonded vessel. A margin of safety against
failure (load factor) of 3.5 is found for the bonded vessel, while
this factor is 3.3 for unbonded vessel. Therefore a difference in
the margin of safety is by 6%. This suggests a very small increase
in the overall load carrying capacity of the bonded vessel, as opposed
to the unbonded vessel. Comparing crack patterns, load-displacement
curves and deflected shapes of these two types of vessels, they
indicate that the unbonded vessel is much more damaged than the bonded
vessel. Even at early stages of cracking, the damage to the unbonded
vessel is more in the form of ill-disposed cracking at critical zones.
This suggests that in comparison with the  bonded vessel, early
localised cracking at lower gas pressures in unbonded vessels may
cause nuclear hazards. The bonded vessel is also analysed assuming

a perfect bond between the tendon and the vessel concrete, the margin
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of safety for this case being 3.6, an increase of 3% on the vessel
when analysed with Ahmlink elements. This is due to the fact that

in perfectly bonded vessel, no slip is allowed between tendons and

concrete.

Three cases of vessel analyses (Ahmlink bonded, perfectly
bonded and unbonded) are also performed for 40 years of creep at
normal operational conditions. The difference in results is negligible.
The analyses show a considerable redistribution (relaxation) of
stresses owing to the non-uniform temperature distribution through the

wall and the cap. A steady state condition is reached after 10 years

of creep.

After obtaining confidence by examining various results, the
bonded vessel is then investigated for ultimate conditions at various
stages of its life. The times chosen for the ultimate load conditions
are 1-5 years, 10 years; 20 years and 30 years. The results suggest
that the overall performance of 1-5 years old vessel is better than
the vessel loaded at other ages. A detailed s%udy indicates severe
damage in older vessels and their deflections at failure are much too
large as opposed to 1-5 year old vessel. It is also found that the
failure of the 1-5 year old vessel occurred due to excessive displacement
of the top cap, while the failure of the 30 year old vessel is due to

excessive displacement of the wall.
It is concluded that greater faith can be put into the more

reliable performance of prestressed concrete pressure vessels when

tendons are bonded.
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9.2. Recommendations

A numerical analysis will only predict a true non-linear behaviour
provided material constitutive laws are well established. Many more
experiments are needed to obtain correct material properties under

variable conditions of stress and temperature.

Analytical model can be improved if more information on bond-
slip behaviour is available. More sophisticated experiments are needed
on large post-tensioned tendons for local bond-slip relations. Such
experimental results on large post-tensioned tendons will produce even
better results for vessels using the proposed analytical model. In the
current analysis, the large tendons have been simulated using the data

from small wires and strands.

Very little work is done on the multi-axial behaviour of concrete
under cyclic and impact loads. Material laws under these loading
conditions are essentially required to analyse the next generation
of vessels namely the containment vessels for pressurised water
reactors. This analytical model can be extended to include the

effects of the following :
(a) The impact and damage (perforation and scabbing) caused by
wind generated missiles and aircraft crashes on containment

vessels.

(b) The seismic loads on and response of the containment vessels

when cracked and uncracked.

(c) The pressure and containment vessel foundation soil-

structure interaction.

(d) The loss of coolant accident within the reactor containment

vessel.
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Al.1

APPENDIX Al

Solid Isoparametric Elements

The shape functions and their derivatives for 8, 20 and 32 noded

isoparametric solid elements are given in tabulated form as follows :

Al.1.1. &Noded Solid Element (refer to Figure (3.l1a)) TABLE Al

Node i Shape functions Derivatives

R B N N N

Nc(§.72.%) % an 3%

L |5 (=-9)0-p0-§) ~L =) (1-8) [5C-§)(1-%) -5 (-7)(1-8)
2 (F0+e)=m=8) | £U-A=5) -5 Q+E)I-5) | =L U+§)(1-7)
3 [ +R)a+M(I-1) L (emai-4) § U+U=1) =2 U+§)01+7)
4 lgu-f,)(wq)(l-&,') --'8-(\+’2)(I-Z) -'e-(\-ﬁ,)(l-'() ——é-(l-g)(l*-'[)
5 [FU-§0-7)(1+8) -%(l-r])(u-g) -%(l-f,)(h“;) ‘F(!-fﬂ(l-fz)
6 | )= (1¥E) | L (- ty) |- FU*E)(1+Y) g<!+§)cn-7)
T |50+ (1+5) 5 1+ (1+%) .é.(l-i-?,)(l'fl) ‘_e(Hg\(nrz)
8 -;-(‘-fn(nv)(uz) -%(|+7)(|+Z) é.(l-g.)(ug) .‘E(l-g)(\i-?)

A2




Al1.1.2. 20 -Noded Solid Element (refer to Figure (3.1b)) TABLE A2
Shape functions Derivatives

Node i . . . :

oce! Ni(§.7.4) aNi/ag aNi/an aN/ay

{ TT@ELNE-ST“LT«'3 wﬁ.'quﬁ_naVA»o+q+a+nu _\&_-m_:...ﬁﬁai.,,:: _\wctn:.-vx»?fniv
2| X 0-g)u-mU-%) A G | - 0-gha-y) -V (=610 -7)

3 | FU+§IU-n)-$){67p-4-2) g (1- -5 (26 -7-L - 1) BIFEI-8) (27-g +§ +1) 1 (1+6) (1= AL+ +1)
4 |5 (+§)0-p1)0-1) LO-7)0-8) -2 (148201417 =YaL-7) (1+6)

5 g+ RUE-5) (§+7 -4 -2) Ve rpU-0 (g4 -4 -1) | hpU+§)U-%)(27+5-( -1) YU+ em(35-§ -p +1)
G »:-ﬂ::é:..ﬁ - U-1)§ Va(r-€1)(1-%*) - Y4 (1-§H)(1+ M)

7 lgU- 9 -%) (-§+1-§-2) Vg e (1-%)(2g -0+ +1) | l(1-§)U-§)(R7-§-1-1) Vg (1-§)(1+)(2§-n+E+)
8 | & (-§)0-12)i-%) -Ya (1-pH(1-8) -J (1-6)01-%) -4 G-92)(1-¢)

g | 4 U-§)Uu-n0-E) - Vg (1 -£2)(1-7) ~Ya(1-§)(1-£2) -2 (1-§201-7)%

10| % G+reU-n (1-4%) Va C1=7)(1-%7) Y CL4g)Y 1 -F2) L (1+§)(1-7) ¥

i | 00+ 0-5%) U+ 0= | Va4 +8)0-1%) - a(re) U47)Y

12| £ -9 (i-§?) ~YaC14n) (1-%2) . Ve (1-§)01-%2) -l (-§)0+7)y

i3] (-0 - ) (-g-pey-2) Vg (\-7)(1+5)(2G+7-F+1) Va(-gd(1+1) (29 +-Y +1) Va(1-5)(1-m(2f-n-§~1)
14| S (-6 Q-7 (14%) -Ya (1= +8) § -YaO-gH)(1+%) Ya (1-§2)(A-1)

15 | L (1+8) G-I (145) (&-7+% - 2) g (1-7)(1+4)(2§-7+5-1) Ve Q1 +4)(1+§)(R7-¢-¥ +1) Ya(1-m(1+§)(2% +& -1-1)
{6 |4 (r -1 (1+1) Va (171 (148) = (1+§)(1+1) 7 Va(1+§)(1-92)

7 m:2:5::55+«~ +4 - 2) Vg (1+7)C1+8) (A& + N ¢4 -1) Ve +gdU+X)(a 46+ - 1) _\m¢+ﬂ:+¢~1»nt~+nt5
18] £ -E 1 +%) -6 (1+7)(148) Vo, (V-2 (14Y) Ve (1-§2)(147)

19 »a.A::é:&:-?ff& Vag(i+p) 1+ %) (Rg-n-¢ - 1) Ve(1-6)(1+)(an-g+§ - 1) VgC-6)U+P (2L -g 47)-1)
20|40 (1+%) ~Ya (-0 (14%) . ~ha(1-§) (1+ ) Y4 O-§101-n2)




(L-13(88-1) 31 YWe+ (4+1)(3e-1) (3-NY6- 3+ 1) b-1) -1 36)% (e (U-DBE-NGE-OY% |

(6loi=lt 3+ deraz) (b-0C8-1V¥%g | (Slo, 58— de-b) (Gr05-1¥9 [6l61+, 33l g- 5210+ 1)(b-1)" 6 [6/61 =4+ 1k+,3 73+ U-ND(B-DYE | 1Z
(:36-52-£3(3-1 (b)Y A€+ (-1 5-1)"6 _ L+ s+ G- (9-1)L+N(IE+N) (5-1NYg | O
Ca6- 2z -£)(b+)(B+)P % BN GELVNGI-IY% . (b1 (5e+1) G20 % (841)(G+1)(AE+1)(3-1)*T | 6}
(56— 22 -€)L-1)(8+1)Y% (5+ D UAE+1)(5-1)%- (L= (e +)GEI-1)Y% (3+ 1)(L-1) (2€+1)(2-1) Y55 | 8)
AN»?MTQS-_VG,:& (5-nCe+G3-1)%- (U=-1) (5 +1)G2-1)¥9%- (9-1)-M a8+ 1)5-1)"% | A
(€-5756)(3-1)(L+)"/g (3-1) (2e-1) (2~ (b+1)(AE-1(34-1) ¥Ifg- (3= 1){&+1)(3e-1)GA- Y5 | 9]
(£-52256) (L+1)(8+1)P96 (3+1) (3E-1)(5-1) Ve (b+1)(38~1)(24-1) V6 B+ 1) (&) (e~ 5-1)¥% | 6}
(3+1)CL-1)(e-%2-,36) V9% (5E-1) (5= B+ 1) PG~ CAg-1)(x-1)1(L-1) ¥9/6 (3+1)CL-NGEE-1) (1 %-1)196 | DI
(4-1)(3-1) (2-%2-,36) P95 (5€-1) (12-\)(B-1)P%- (U-1)(3E-1)(5-1) Y6~ (3-1)L-N(ae-1)5-N% | €]
(3-1)(be-1) Qhk-1YY3/¢ - (3-0)(8-1)(s-bz~,be)v e (5-1CE-1Gh-1) ¥~ (G- B-1)ue-NGa-DY | 2
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32

Yot (V- (1-37)(1-€ )(1+])

Y7 (:37) (141)

Yea (992-27-3)(1-§) (1+%)

Al1.1.3. (continued)
Node Shape functions Derivatives |
w N % 5 %

23 m\x&«._nmnv:...wox_-J:_...xv @\mﬂwsnﬂnm@wu:név:*«v ..w\.s.c..mﬂx:um.u:&«u m\mAA-lmnX_...wmv:LNV

24 m\%c*mx.:dx_..kvﬁm.s.vﬂpt 19/g+¢2) m\%m:.@?..wv:m +3§ 4y P2 19/0] W\m%_..,mv:...s?qwmle@WN J.G\uv m\%%:.mx T.%?«*uw»«.mn‘. .Npl.w\uv

25 | /640031 (1 +5) Yea -7 U=37)0144) Yeu (99t 27 -3) (1+£) (1 +4) Yea(1-7(1=37)01+§)

2¢ | Yeg(-1)0+3n 1+ 8)(14%) 4 (1-0%) (1+37) ( 1+) %6 (3-29-372)(1+53(14% ) Yea(-m2) (1+37)+0)

27 | YealHOUMUHO (61472412 19/) | Y+ DU (25435% s L 19/0) | Yo+ RIWY) (27437246452 19f0)| Ypg{I+R) (147 (24 +3¢ 48 %7 19/9)
28 w\TXT@CA: 3g)1e)(148) m\&f#dua_ +)(3-2 m_..mmn.rv w\xcnman::.wn:__.f&v m\mbn_lmﬂv»_+unu»-+<~v

29 | 4 (1-EDU-30004Ma1+E) Yea (I (141) (982§ -3) Ya(1- € (1-38) (1+1) Yea(1-§(1-36)(147)

20 | Lal-9)0e P+ (124n252-19/) | Yoo OrDUHD (2438272 £5419/g) | Feg(-§)1H) (24379244 - 19)a) I -+ (28 +35%+E%7219/0)
| 31 w\gm—ldnxxuﬂu:l@::&v ~9cq (1= (H+37)(1+Y) m\gﬁwinﬂrmﬂﬂz.lmv:*&v m\hbf..vw»v:...uN:_lmu
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Al.1.4. Derivative Transformation and the Jacobian Matrix

With the shape functions known, the global coordinates and dis-
placements at any point within the element can be expressed in terms of

the nodal values as :

h . . n n
U= ZNlli 5 Va2 Nives W=ZNiW; (AL.2)
2 L=t ’

where n is the number of nodes on element and Xi, Yi, Zi and Ui, Vi Wi

are the nodal coordinates and nodal displacements respectively.

To obtain the derivatives of shape functions with respect to global

coordinates, the following transformation is applied (Ref. 1)

P " oNe ]
3% X
/ . N
J ?;)_79 ? = ’:J.] . _E_Y_L > (A1.3)
NG S ="t
L 98 A..a—i J

where i1 is the current node number

or
N El
oX %
ON¢ oN¢
< g'Y"" ? = [J] 9 5;; > (Al.3a)
N N
| 9Z I
where [J] is a 3x3 Jacobian matrix and is given by :
¢ . 9§ 3§ %
Tl=lx 2t == (A1.4)
=Y avl 37
X vy 22
o 2% 28
detJ =|LT|= determinant of Jacobian (Al.4a)

A6



Therefore the strain-displacement matrix B; (Equation (3.10)) is fully
defined.

Al1.1.5. Nodal Forces due to Surface Pressure
In this section kinematically equivalent load is determined due to

the surface pressure applied on the faces of the solid elements. The

element load vector as given in Equation (3.13b) can be rewritten as :

/ Be = SS ‘)V\Tf, ds (A1.5)
T
in which Ps = [R ) PY: Pz_]
Eé - element shape function matrix (Al.5a)
dS - surface area vector "’

The surface area vector may be expanded for the face §==1

ds = dX x d¥ (AL.6)
and
-EES- % ]
' ; °7
dx 5E >d§ N = éﬁ? rd.)? (Al.6a)
2z 9z
|26 97
From Equations (Al1.6) and (Al.6a)
(ax ] [2X ] [ay 22 _ 2z 2¢ ]
% | | % 27 3% 39
ds = | 2¥ oY _ J2z ax 22 2
2} EX P_XJ 37 fde!d?‘ < 3¢, E’i} - %ﬁ >d'§d'7 (Al.6b)
oz o2 X Y _3Y_ 22X
%% 4 ™7 | °&%7 2527

Therefore, kinematically equivalent load of Equation (Al.5) for the

face where §=%ican be written as :

A7



9Z IY
+I+LT 3§ 9N & oM
gzj Sﬁ s (322022 2| ucay

- A _ Y 2%
2§37 9§ 37 |

Similar expressions can be derived for the faces where & = £1 and

(AL.7)

m = 1. The integral of Equation (Al.7) is carried out numerically.

Al.1.6. Nodal Loads not directly on Nodes (Patch Loads)

The treatment of these loads is similar to point loads except
that their values are now interpolated from the shape function values

evaluated at the point where load is applied. In principle, it can be

written as :

e T }
P= NE - (A1.8)

where f&: LA ’ PY, Pe ]T

3xi
h!- element shape function matrix (Al.8a)
-~ [
N= [Nil3, N2z, Ngly=----- - - —--Nn,I;J
1, 0, 0
l;== o,1, 0
0,0, 1
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Al.2.

Isoparametric Membrane Elements

The shape functions and their derivatives for 4, 8 and 12-noded iso-

parametric membrane elements are given in tabulated form as follows :

Al.2.1. 4 Noded Membrane Element (refer to Figure (3.2a)) TABLE A4
Ngde Shape functions Derivatives
: Ne(§, 1) INi/p¢, INiBp
g | Ya -9 0-9) -4 (1-9) -4 (1-§)
2 | YHO+HH0-7 Vg (1-m) - Ya(i+§)
3| laCU+g)(I+) YaCi+7) Vg (1+§)
4| Ja(i-§)(1+7) =4 (147) ba (1-%)
A1.2.2.. 8—died Membrane Element (refer to Figure (3.2b)) TABLE A5
Node Shape functions Derivatives
1 Ni(§,7) aNc/a& IN¢ /aq
{ | YaC-8d0-m(§-7-1) Vg (1-7)(2%+7) Vg (1-§)(2N +§)
2 | l{-§)(-7) -§(1-7) - l(1-8%)
3 | Jal+)u-m(E-7-1) | Va(i-7)(2g-7) Vu(148)(an-¢)
4 o (1-92)(1+§) a(i-n) = - 7(1+§) -
5 | leU+)a+mx(e+7-13 | o (+7(§+7) V(146)(2n48)
6 | lalt-g1)0+7Y) -§(1+7) Yo (1-§)
7 | YaQ-e0+mEgen-1)| /3 (1+7(2§-7) Va (1-€)(27-%)
8 ba(1-72)(1-§) -Ya(1-n2) -N01-%)
A1.2.3. 12 Noded Membrane Element (refer to Figure (3.3c)) TABLE A6
Node Shape functions Derivatives
1 Ne(§m) oN¢/ag Ne/on
{ | Ya(1-6)0-n)[ (&40 10/g] 9sa(1-p)[26-38= n +10fe] | Fn(I~Q)L27-37%. tho/s]
2 | Ysa(t-§)0-gH01-n) Y52 (1-0)(38™~2§ -1) =93 (1-%)C1-82)
3 | %a(I-mQ-§(1+§) Yo (1-T)(1-26~882) |-z (1-85) C1+g)
4 | Y(+Q)(-nLEtentofa] | g (- [2&+ 38+ vpt-tofe] | Fgr(1+Q[27-3% g ofg]
S | Yal1+90-23)01-7) 932 (1-9*) (+-7) Y32 (&) (3m2n-1)
6 | Yn(1+&0-23(14) 9= (1-1%) (1+7) Yoo (14631 -27 - 3n2)
T | Yl en[§intog] | Yn(pRerse’+ t-ta] | 9h(e)[27+39% gL wpe]
8 9/sz(l+7)(t-e.‘)(t+&) 3R (1+7) (1 ~2§ -3¢*) 932 (=& (1+¢)
8 | ¥=(eU-1-¢) 932 (1+7)(3¢&"- 3¢ ~1) 32 (1-e2)(1-¢)
0 | Y-+ P[5 =1ofg] | B, (14n)[25-36 1%iom] | Ym(-e)[27 +3n- L 82 lofg)
1| Ysll-82U-nY)(147) = Ys2(147) (1-n%) 32 (1-€)(i-2n - 3n2)
12 ] Ya(-G-n2y(1-p) | =932 (1-7)(1-72) Yn(1-§)(37%2n-))
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Al.2.4. The Strain-displacement Relations

With shape functions known, the global coordinates and displace-
ments inside the element are interpolated using Equations (Al.l) and
(Al.2) where, this time, n is the number of nodes on membrane elements.

Thickness may also be interpolated as :
n
t= ‘é.l Nete (A1.9)
where ti is the nodal thickness at node i.

Assume there is a point Q on the element with local coordinate system
X', Y', Z', as shown in Figure (3.2). U', V', W', are the local nodal
freedoms in this system. The local strain field at any point using the

plane stress condition may be written as :

au’
Ex'= 55?
1= OV (Al1.10)
EY EY, I 9 ,
\ 2U v
’/XY':—.. 3Y'+ 3%’

The local coordinate system X', Y', Z', is established as follows.

The X' axis is tangential to the local curvilinear Xi axis, the Z' axis
is normal t6 the plane of the element and the Y' axis is calculated such
that the X', Y', Z' forms a right-handed coordinate system. The matrix

algebra that follows calculates the direction cosines for this coordinate syste

Vector tangential to § on 7 axes in the plane of the element is written

as . Fax . -B—X- -
% 7
oY 2]
Re= <3¢ > s R = Jé% g (AL.11)
oz EL-
| 9% EY

- - -
Now form a vector normal to the plane of the above vectors

A10



Y 22 _ 3z 2Y ]
a§a7 ag,af;
RZ: Rf,X Rn = <a_§§_x__ai_a_z_
=8 RUT 05377 5 o ? (Al.1la)
2XaY __aY ax
%637 2% an |

The direction cosines are obtained by normalising the above vectors

(Z' <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>