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ABSTRACT

BOND STRENGTH HISTORY IN PRESTRESSED CONCRETE REACTOR VESSELS

M. Ahmad

An attempt has been made to study bond strength history iti 
Prestressed Concrete Reactor Vessels (PCRV) which house the Advanced 
Gas-cooled Reactors.

Three-dimensional non-linear analytical model has been developed 
in which the effect of bond is included. A finite element computei 
program is written in which solid, membrane, line and bond-linkage 
elements have been used to represent vessel concrete, steel liner, pre- 
stressing tendons and bond (between steel and concrete) respectively. 
Concrete is assumed to be non-linear material in compression and linear 
brittle (tension cut-off) material in tension, and the steel as elasto- 
plastic material with strain hardening. Provision is also made for 
concrete cracking, crushing and visco-elastic creep.

Two experiments have been carried out during this research. The 
purpose of the first experiment was to determine bond coefficients 
required for the analysis. This was achieved by pull-out tests on 
prestressing specimens using 5 mm and 7 mm diameter prestressing wires. 
The second experiment was performed on an octagonal prestressed concrete 
slab representing a top cap of a reactor vessel. The experimental results 
obtained from this slab are corroborated with the analytical results.

A typical Prestressed Concrete Reactor Vessel with boilers and 
circulators housed within the vessel wall thickness has been analysed 
for bond strength under increasing gas pressure at suitable intervals 
of its 30 year life. A comparison is made between the unbonded and 
bonded vessels. All analytical results compare well with those obtained 
from the experiments and available published data.
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NOTATION

	denotes matrix or a vector 
J3 - strain-displacement matrix 

strain-displacement matrix at node i 
C - inverse of material matrix 
D - constitutive matrix
D* - constitutive matrix in crack coordinate system
DT - tangent constitutive matrix in global coordinate system
£i - vector of Cartesian strain components at point i
o*' - vector of Cartesian stress components at point i
£  - initial strain vector

- creep strain vector

- initial stress vector
" incremental strain/stress vectors
- stress vector in crack directions*^

£* - strain vector in crack directions
AC*, £fc** - incremental strain/stress vectors in crack directions

u

A6 - incremental thermal strains< »

{3 - shear interlocking factor
Ec - modulus of elasticity for concrete

- Poisson's ratios for concrete

- concrete cylinder compressive strength
- concrete limiting tensile strength
- vector of body forces per unit volume
- concrete crushing strain

- element stiffness matrix*^

K - global structural stiffness matrix
jCb - bond linkage stiffness matrix
L - length of the line elements
d - diameter of the line element
A,m,n - direction cosines relating local to global axes
NC - shape function of node i

N - element shape function matrix

f^ - vector of external element loads
+9

vector of surface pressure
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- global load vector

- strain transformation matrix

stress transformation matrix

- transformation matrix (relating local to global displacements 

	at nodes)

- element nodal displacement vector

U - global nodal displacement vector

Ui,\fr, Wt - displacements at node i

X,Y ; £ - global coordinate system

X',Y'Z' - local Cartesian coordinate system

X ;Y,Z - crack coordinate system

local curvilinear coordinates

- differential surface area

- differential volume

detJ _ determinant of Jacobian

;J - Jacobian matrix

EH , EV, E£ - bond slip moduli in horizontal, vertical and lateral directions

- incremental bond stress vector

- incremental slips

- bond stress vector

- bond linkage constitutive matrix
	 

- thickness of membrane element

- elastic material matrix for membrane element

l t - first stress invariant

Ji - second invariant of stress deviator tensor

mean stress

moduli of elasticity in three principal directions

£tu - uniaxial equivalent strain in ith direction

AEt'u - incremental uniaxial strain

<Nt - - principal stresses, 1=1,2,3

6t - principal strains, i=l,2,3

shear modulus
/

o - shear modulus for cracked concrete

<*" - equivalent stress

A6p - plastic strain increment

D_ - elastic material matrix for steel ~E
D - plastic material matrix for steel -p
Dep - elasto-plastic material matrix for steel
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CHAPTER 1

General Introduction

In recent years, many complex prestressed concrete structures have 

been designed and built. The complex nature of the geometric configura- 

tion and material behaviour of many of these structures has given rise 

to many new problems. A prestressed concrete reactor vessel is such a 

structure, the complex behaviour of which is directly associated with 

material anisotropicity and non-linearity, temperature, creep and 

shrinkage. Gas increasing pressure, load history and a cracking con- 

dition assume important roles in the vessel's short and long-term 

performance. Where the vessels have been bonded (grouted tendons), the 

ultimate load carrying capacity is influenced by the complex three- 

dimensional bond-slip phenomenon. This is the theme of the current 

research. Prior to the establishment of a case for a bonded vessel, it 

is essential to discuss this important phenomenon.

In the tension zone within the vessel concrete, bond-slip takes 

place at the steel-concrete interface prior to cracking. It contributes 

to further cracking under loads and consequently affects the ultimate 

load capacity. Bond-slip behaviour is non-linear in nature and is 

influenced by many factors such as the strength of the concrete, 

roughness of the steel surface and diameter of the steel. As soon as 

bond breaks, the steel and concrete separates and wider cracks appear, 

producing greater slip. During and after the crack formation, pre- 

stressing tendons carry most of the load and may deform plastically, 

thereby affecting the integrity of the vessel. In addition, the effect 

of temperature and creep also adds additional problems to bond-slip 

situations.

The bonded vessels under such conditions need to be investigated 

by sophisticated numerical techniques. In the present research, the 

finite element method is adopted in order to model the bond strength 

history of the vessels under increasing loads.

-12-



1.1. Bonded and Unbonded Tendons

Bonded and unbonded tendons and their choice for conventional pre- 

stressed concrete structures have always been the subject of much con- 

troversy. This is more so in the case of prestressed concrete pressure 

vessels. The proponents of the unbonded tendons suggest that the loss 

of prestress in tendons due to various sources such as high temperature, 

shrinkage and creep of concrete cannot be adequately assessed owing to 

the approximate nature of analyses and material models. On the other 

hand, unbonded tendons can be inspected and restressed, thus ensuring 

their load carrying capacity for both short and long-term conditions. 

The main disadvantage of unbonded tendons lies in the incorrect assess- 

ment of the structural reliability of their anchorages. Expensive 

equipment for inspecting tendons and recording of the losses are 

additional problems caused by the use of unbonded tendons. These are 

fully described by Bangash (47).

Vessels with bonded tendons provide reasonably good corrosion 

protection. In the bonded vessel, the prestress force is transferred 

from the steel to the concrete through the bond, thus minimising the 

influence of the structural reliability of the end anchorages. In 

principle, the grouted tendons in many ways behave like unstressed bonded 

reinforcement. It is unlikely that a sudden increase in cavity pressures 

would cause any explosive failure of the vessel. A vessel with bonded 

tendons has a well-disposed crack pattern. With bonded tendons, the 

vessel achieves high ductility, if and when a cavity pressure exceeds 

the prestressing force. The ductility of the vessel is extremely 

important, since it utilises the full strength capacity of tendons right 

up to the ultimate conditions. If any well-disposed small cracks exist, 

this ductile nature will enable the liner to span cracks without 

yielding. The biggest issue of a leaked liner will be avoided.

From the above brief discussion, the bonded vessel will perform 

better than the unbonded vessel, provided that correct assessment of the 

grouted prestressing tendons (analytical, experimental and site moni- 

toring) have been made on reliability of the grouted prestressing tendons

-13-



Little information is available on the behaviour of bonded vessels. 

It is intended that this investigation will give more understanding of 

the realistic behaviour of the vessel's short and long-term 

performance using bonded tendons. The techniques given in this research 

will encourage many engineers to use bonded tendons in future vessels 

for advanced gas-cooled reactors, pressurised water reactors, high 

temperature reactors, fast-breeder reactors, and even for the use of 

non-nuclear work.

1.2. Scope of the Present Research

The scope of the present research is to analyse bonded and 

perfectly bonded prestressed concrete reactor vessels. For comparative 

study, an unbonded vessel is also analysed. The vessel chosen for the 

analyses is of multicavity type, in which boilers and circulators are 

housed within the vessel wall and cap thickness.

The main investigation is based on bond between the prestressing 

tendons and the vessel concrete. An attempt has been made to carry out 

analytical study on bonded vessels. In order to corroborate results, 

experimental tests have been performed on an octagonal prestressed con- 

crete slab and pull-out specimens. Using parameters obtained from bond 

tests, the analyses have been carried out on the slab which represents 

the top cap of the concrete vessel for an advanced gas-cooled reactor 

(AGR). Realistic material models with regard to progressive cracking 

and compression of concrete, steel yielding and bond stress distribution 

have been developed for analysis, with and without the influence of 

temperature and creep effects. The following lines cover the programme 

of this research.

Chapter 2 gives a brief review on the analytical and experimental 

work of prestressed concrete reactor vessels and end slabs. This 

Chapter also reviews the subject of bond and local bonded-slip 

relations for prestressing strands and conventional steel. This is 

then followed by Chapter 3 which covers the finite elements developed

-14-



to model vessel components. Linear equations of these elements are 

given. Chapter 4 gives non-linear material constitutive relations for 

concrete (cracking and compressive behaviour), elasto-plastic relations 

for prestressing tendons and the liner, and a non-linear bond-slip 

relation for bond linkage elements. Equations for creep and thermal 

effects have also been given. Non-linear equations are solved using 

incremental/iterative techniques which are described in Chapter 5.

The above equations are used to develop a computer program which is 

described in detail in Chapter 6. Flow charts of various segments of 

the program are also given. This Chapter is supported by a User's 

Manual given in Appendix B.

Chapter 7 describes the experimental programme carried out during 

this research. The experimental programme was carried out first to 

understand the local bond-slip behaviour of prestressing wires, and 

second to test a bonded prestressed concrete slab representing the top 

cap of the vessel. Chapter 8 gives the comparative study of the 

analytical and experimental results.

-15-



CHAPTER 2

Literature Review

2.1. Introduction

In this Chapter, an attempt has been made to briefly review the 

state of the methods of analysis and experimentation of concrete reactor 

pressure vessels with particular emphasis on bond-and bond-slip relations. 

Wherever possible, bond-slip behaviour of conventional structures has been 

examined and an analogy is made for the possible bond-slip phenomenon of 

concrete pressure vessels.

2.2. Step-by-step Review

Several conferences have been held (144, 145a, 145b, 145c, 145d, 

145e) on various aspects of the analysis, design and construction of 

prestressed concrete reactor vessels. A comprehensive review is given by 

Bangash (21a) concerning the historical development, stress analyses and 

design of vessels, mostly with unbonded tendons. It is not intended here 

to repeat this work. However, certain cases relevant to this research 

have been critically re-examined in order to give a better understanding 

of the aim of the current research.

2.2.1. Methods of Analyses

Earlier finite element analyses of concrete pressure vessels have 

been performed assuming axial symmetry in which two-dimensional elements 

have been used. Rashid (14, 15) carried out linear and non-linear 

analyses using finite element and predicted deformation, cracking and 

yielding of steel of the Fort St. Vrain vessel. The analysis performed 

on this vessel, in which tendons were unbonded, is two-dimensional.

Three-dimensional non-linear analysis of a reactor vessel has been 

carried out by Sangy et al (22, 23) in which creep effects were

-16-



included in the finite element constitutive equations. A failure 

criterion containing the effect of first and second stress invariants 

was used. The failure surface in stress space is of cone shape. The 

non-linear effect of concrete in compression is taken into account by 

changing the shear moduli which is assumed to be a function of the 

second stress invariant. The initial stress method was used to solve 

the finite element equations.

Similarly, a non-linear analysis of a reactor vessel model was 

performed by Mohraz et al (11) using the lumped parameter method.

Phillips et al (19, 20) carried out a two-dimensional finite 

element analysis on a model vessel adopted already by Mohraz et al (11), 

in which a non-linear model of concrete in compression is described by 

changing the shear moduli and the bulk moduli. An octahedral shear 

stress law was used as failure criteria once the stress had reached the 

peak value. This law as appeared there is only applicable to a biaxial 

state of stress. Cracking was modelled by using tension cut-off.

Argyris et al (10, lOa) analysed prestressed concrete reactor 

vessels using an elasto-plastic material model. The failure criterion 

of Mohr-Coulomb was used as yield criterion. A tension cut off model 

was used in tension.

Bangash (21) analysed vessels using the hypo-elastic concept to 

model the compression side of the concrete. This concept was first 

introduced by Truesdell (137) and was later used by Coons and Evans (30) 

to model non-linear behaviour of plain concrete. Bangash (21a) has 

carried out ultimate analyses of several unbonded vessels in order to 

establish a factor of safety for these vessels. To achieve this 

objective, two types of analyses were performed. The first one was a 

three-dimensional non-linear finite element analysis in which the hypo- 

elastic material model was used. The second analysis was based on the 

limit state concept. Factors of safety from both analyses compared 

favourably.
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Long-term elastic analyses of reactor vessels have been carried 

out by many other investigators (71, 73, 74, 81, 83, 85, 132a)   

England et al (74) have used the rate of creep method in which thermal 

effects were also included. Two-dimensional finite element analyses 

were performed and the results obtained were fully corroborated. 

Kawamata et al (81) have used the rate of creep method to analyse a 

multicavity vessel. Elastic long-term stresses up to'40 years of the 

vessel's life were predicted in conjunction with their early method of 

"sliced substructure" (81a). This method is an approximation of the 

usual three-dimensional finite element method.

Smith et al (83) have carried out reactor vessel analysis using a 

visco-elastic creep model. The creep compliance function of concrete 

was expressed as the Dirchlet series with temperature coefficients. 

A comprehensive experimental work on cylindrical specimens was carried 

out under multiaxial loading and temperature. Results up to five years 

were obtained. With these results, a creep compliance function which is 

fitted to a five term Dirchlet series was obtained. This function 

was generalised for multiaxial creep strains. Three-dimensional iso- 

parametric finite element analyses, in which the creep model was inc- 

luded, form the basis of his modified program NONSAP. No information is 

available as to whether the researchers (81, 83, 85) considered any bond- 

slip phenomenon.

Takeda et al (18) have carried out inelastic analysis of a pre- 

stressed concrete multicavity reactor vessel. A l/20th scale model was 

selected. The concrete constitutive law in compression was modelled as 

an elasto-plastic material with Drucker-Prager's failure surface as 

yield criterion. Concrete in tension was considered to be a linear 

brittle material. The prestressing steel was also modelled as an 

elasto-plastic material. The vessel model was then analysed by two 

and three-dimensional finite elements. This analysis considers both 

cracking and crushing states of the vessel. Again, no consideration 

was given for the tendon bond-slip condition.
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Connor et al (17) have reported a non-linear numerical procedure 

for analysing prestressed concrete reactor vessels. Three-dimensional 

finite element analysis was adopted. The concrete in compression was 

modelled by a non-linear orthotropic model and for tension, a tension 

cut-off model was used. Steel (liner and prestressing cables) was 

treated as elasto-plastic material. Creep and temperature effects were 

also included. The stress contours and crack patterns are shown for 

the Fort St. Vrain vessel. Since the tendons are treated as unbonded, 

no consideration was given to the influence of bond on the load carrying 

capacity of the vessel.

Gallix et al (17) carried out a two-dimensional non-linear analysis 

for the multicavity reactor vessels. The vessel concrete was modelled 

by a non-linear orthotropic stress-strain constitute law and the steel 

liners and prestressing steel were modelled by an elasto-plastic material 

using Yon Mises yield criterion l/10th scale Hartlepool vessel and 

l/20th scale high temperature gas cooled reactor (HTGCR) were analysed.

A brief description of the comparative results for bonded and 

unbonded tendons has been given by Bangash (47) for a typical reactor 

vessel. No detailed analysis is available in this paper.

2.3. Model Techniques and Model Testing

In order to understand the vessel behaviour under overload conditions, 

several experimental investigations (13, 113, 113a, 113b, 114, 115, 116, 

117, 118, 119, 120, 121, 122, 123, 124) have been carried out on scaled 

models and isolated vessel components in the last decade or so. Some of 

these are reviewed here. Brading and Hills (113a) presented results of 

six models, two of which were reinforced slabs. The other four l/24th 

scale models had a span to depth ratio of 2.9. The main purposes of the 

tests were to provide information for the design of the Dungeness 'B' 

vessels. Only one model was pressurised to failure. Tests on the 

remainder were discontinued, mainly because of leakage in the liner.
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Cambell-Alien et al (13, 113b) have carried out two types of 

experiment. The first one had seven 263 mm diameter slabs with clear

span to depth ratios of 3.67 and 1.835. The hoop prestress, which
2 2 ranged between 2.35 N/iran and 24.10 N/mm consisted of straight tendons

either 5.1 mm or 7.0 mm diameter in unlined ducts. On the second type 

of experiment, a small number of discs and skirted slabs were loaded to 

failure. The prestress was applied by external bolts acting against 

either one or a series of octangonal stiff rings.

Morgan (114) indicated that about twelve models slightly more 

than 610 mm diameter were tested for checking the design of the Oldbury 

and Hinkley Point 'B 1 pressure vessels. No experimental details or 

results were reported. However, it was stated that shear failure did 

not take place in any of the models.

Sozen et al (116) at the University of Illinois have carried out 

25 tests on skirted prestressed concrete slabs. The span to depth

ratios in these investigations covered a range of 1.67 to 5, and the
2 amount of force required to restraint varied between 1.52 N/mm and

2 2.90 N/mm . It was reported that eight of these slabs failed in shear

and the remaining slabs either failed in flexure or the tests were dis- 

continued because of leakage in the pressure system. The reason for 

the high percentage of liner leakage was given as due to the usage of 

long length barrel and the lack of hoop forces to prevent the large 

displacement of the barrel stub.

Langah et al (119) reported a comprehensive description of the 

design of multicavity pressure vessels used for both the Hartlepool 

and Heysham nuclear power stations. Elastic analysis of the vessels 

was carried out using dynamic relaxation. The l/10th scale model of the 

Hartlepool model has been successfully tested for serviceability and
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ultimate conditions, and the data provided were extremely valuable for 

three-dimensional analyses. Various graphs were plotted between 

pressure deflection and pressure strain for cap and wall of the model 

at the design pressure and at 2.5 times the design pressure. Crack 

sizes for various internal pressures were given, together with a typical 

crack pattern at 2.5 times the design pressure.

Meerwald and Schwiers (115) reported a test on a l/20th scale

model of perforated prestressed concrete end slab with a span to depth
2 ratio of 3.1. The applied hoop prestress was about 10.30 N/mm . Failure

took place when the central core was forced out at a pressure of 

196 N/mm2 .

Langan and Garas (117) reported tests on more than twenty thick 

restrained circular slab models in order to study the shear failure 

mechanism. The variables investigated were the effects of bonded re- 

inforcement, lined and unlined penetrations, span to depth ratio and the
2 level of hoop prestress. The hoop prestress ranged from 2.482 N/mm to

2 6.206 N/mm which was provided by wire-winding. The vertical prestress
2 2 varied between 1.345 N/mm and 19.035 N/mm and was provided by the

high tensile bars.

Very few models with bonded tendons have been considered. It 

is necessary to look at conventional structures for more information on 

various aspects of bond-slip characteristics.
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2.4. Bond and Bond-slip 

2.4.1. General Introduction

Although a great deal of effort was made a few decades ago to 

understand the bond characteristics between steel and concrete, the 

subject is still open to doubt and critical discussion. The questions 

to various unknown variables affecting bond and bond-slip have not been 

answered. In concrete reactor vessels subject to multiaxial loading 

conditions, the accurate investigation of bond and bond-slip with and 

without the influence of creep and shrinkage is a dilemma. In the last 

few years, awareness of the importance of bond has increased greatly. 

This culminated in an international conference on bond in concrete   

(146) in which subjects ranged from bond between cement paste and 

aggregate, to that of plain and deformed bars and prestressing strands 

and concrete. The effect of cyclic, impact and sustained loading, 

thermal and corrosion have been included. Only simple structures were 

considered. Complicated structures, such as prestressed concrete 

reactor vessels, were excluded. Nevertheless, it has become even more 

important to review the most important research papers on bond relevant 

to the current research. This review is given below.

2.4.2. Nature of Bond

It is generally considered that bond between steel and concrete is 

due to a combination of adhesion and friction. Adhesion bond develops 

first and, after a small slip, it disappears. For relatively larger 

slips, frictional bond develops between steel and concrete sliding 

surfaces. The adhesion between steel and concrete is not significant. 

The bond of plain steel is mainly due to frictional resistance which 

depends on the roughness of the steel surface and any change in its 

lateral dimension along the embedded length. The bond between deformed 

bars and concrete is radically different from that of plain steel bars. 

It is due to the interlocking of the ribs and surrounding concrete. 

Adhesion and friction resistance also exists, but the great improvement
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of the bond is related to the bearing pressure of the concrete against 

the lugs. In the case of a plain bar, the failure usually occurs due 

to slip of the bar and the bar usually pulls out of the concrete. On 

the other hand, deformed bar failure is almost always associated with 

longitudinal splitting along the surface nearest the bar.

2.4.3. Bond Characteristics

Bond in pretensioned prestressed concrete is of two types : 

transfer bond (anchorage) and flexural bond. Transfer bond utilises 

a part of the available tensile strength of the steel to establish 

compressive forces in the concrete. Flexural bond results from external 

force applied on the structure. After cracking, the increase in steel 

stress above effective prestress causes flexural bond stress between 

steel and concrete. The two cases are shown in Figures (2.5).

Transfer bond exists near the ends of the member after the load 

in pretensioned steel (strand) has been transferred. The length over 

which this transfer is made is known as the prestress-transfer length 

(or anchorage length), and mainly depends on the amount of prestress 

and the surface conditions of the steel (strand). Three factors which 

contribute to bond performance are adhesion, friction and mechanical 

resistance between the steel and concrete. In the tensile zone, the 

reduction in tensile strain of the steel is generally not equal to the 

compressive strain of the concrete at the same point. There is, 

therefore, a relative movement between the steel and concrete. This 

indicates that the adhesion does not contribute much to the transfer of 

prestress. Friction assumes a greater role in prestress transfer. As 

soon as tension in the strand is released, the strand diameter tends 

to increase, resulting in radial pressure against the concrete, which 

in turn, produces high frictional resistance to slip in the transfer 

zone.

Flexural bond in prestressed concrete is of significant magnitude 

only if it is loaded up to its cracking stage. When the concrete cracks 

the bond stress in the immediate vicinity of cracks rises to some

-23-



limiting stress and slip occurs over a small portion of strand length 

adjacent to the cracks. The bond stress near these cracks is then 

reduced to a low value. With increasing load, the high bond stress 

generates a wave from the original cracks to the far ends. The bond 

stress remaining behind this wave is always lower than the maximum 

value at the peak of the bond stress wave. If the peak of high bond 

stress wave reaches the prestress transfer length zone, the increase in 

steel stress resulting from the bond-slip decreases the steel diameter, 

which reduces the frictional bond resistance in this region. Hence 

mechanical resistance in a transfer zone becomes important. This 

resistance is at a minimum for plain smooth wire and maximum in the 

case of strand.

In order to simulate the above two conditions in prestressed con- 

crete beams, there have been a number of experimental investigations of 

pull out and beam tension test specimens. Further empirical expressions 

were obtained from these tests which could be applied to practical 

structures.

In order to understand the bond characteristics of prestressing 

strand,.Dably (96) carried out a series of tests involving four pre- 

stressed concrete beams. Each was reinforced with H.11 mm (7/16") 

strands. The anchorage length was determined by measuring the concrete 

strains at the level of the strand. An anchorage length of 610 mm to 813 mm 

(24" to 32") was reported and high values for a larger concrete cover 

under the strand. Base (97) reported an anchorage length oc 228.6 mm to 

482.6 mm (9" to 19" of 5/16") strand. Ratz (98) conducted 200 tests on 

concentrically prestressed concrete prisms to study the concrete 

strength on anchorage length. Bond in this investigation was found to 

be the direct function of concrete strength for any type of wire and 

strand. An empirical formula was given in order to calculate the slip 

within the anchorage zone.

Dinsmore et al (99) performed 42 pull out tests and four pre- 

stressed beam tests in order to study the anchorage length required to 

transfer the prestressing force. Clean strands of 11.11 mm (7/16")
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diameter were used. The anchorage length to transfer the prestress 

force of 950.8 N/mm2 to 1143.74 N/mm2 (138 KSI to 166 KSI) range from 

228.6 mm to 914.4 mm (9" to 36"). Rehm (100) carried out tests on 

16 different types of prestressed steel using concentrically prestressed 

concrete beams. The general indication of results shows that the 

increase in concrete strength lead to a decrease in anchorage length. 

The release of stress, the time effect on anchorage length, was also 

studied. Kaar et al (101) performed the influence of the concrete 

strength on the anchorage length of a seven wire strand by testing 

36 concrete prisms. Preston (102) reported a comparative study of an 

anchorage length of clean and rusted 12.7 mm (5") strands. Results 

indicated that for major cases, the bond characteristics were almost 

identical. Hulsbos et al (103) studied the load capacity of pretensioned 

prestressed concrete beams with web reinforcement. They reported 

anchorage length of 11.11 : 

stress was 457.2 mm (18").

anchorage length of 11.11 mm (7/16") strand for 1067.95 N/mm2 (155 KSI)

Over et al (104) investigated the influence of the strand diameter 

on anchorage length with the aid of six square concrete prisms. The 

diameters investigated were 63 mm, 9.25 mm and 12.7 mm (1/4", 3/8" and 

i") and results indicated that anchorage length increased with the 

increase in strand diameter. Hanson (95) studied the influence of 

surface roughness on anchorage bond and flexural bond strength in 12 

prestressed concrete beams using 11.11 mm and 12.7 mm (7/16" and 3") 

strand. Clean as received, partially rusted and rusted strands were 

tested. Results show a 30% improvement in the anchorage length when 

using rusted strand. The flexural bond strength of the beams rusted 

was high than that for clean strand.

Evans and Robinson (94) tested pretensioned prestressed concrete 

beams by measuring the strain and slip distribution along the steel wire 

during loading by means of X-ray photography. Their findings indicate 

that bond stresses were only detected when cracking commenced, and 

as the crack opened, the values of bond stresses increased until a slip 

of 0.1 mm was reached. Thereafter, the band stresses began to decrease.
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Bond stresses found in this investigation are much higher than those 

normally obtained for wires. They concluded that the tangential 

friction was the main source of bond in cracked beams and the measured 

high bond stresses were due to this kind of friction.

Hanson and Kaar (95) carried out tests on rectangular pre- 

tensioned beams to study the flexural bond of strand. Strain in strands 

was measured by instrumenting with electrical resistance strain gauges

at spacings ranging from 300 mm to 500 mm. The results indicated
2 2 average flexural bond stresses ranging from 1.05 N/mm to 2.75 N/mm for

12.7 mm strand. Before cracking, the bond stresses were very small. 

After cracking, the maximum bond stress progressed from the cracks 

towards the beam ends as the load was increased. The conclusion was 

drawn that in pretensioned beams, failure in bond mainly depends on the 

anchorage length, i.e. the distance from the section of maximum steel 

stress to the beam end.

Stocker and Sozen (105) reported the results of 486 pull out and 

five beam tests using strands and plain wires with embedment length of 

25.0 mm. These tests were performed to provide information on the 

relationship between bond and slip and to study the effect of the 

various variables on the bond strength.These are (a) strand diameter, 

(b) concrete strength, (c) shrinkage, (d) settlement of concrete, (e) con- 

fining pressure, (f) concrete cover, (g) time effects. Some of the 

results from this investigation was reproduced and are shown in Figures 

2.1. and 2.2. Figure 2.1. shows a slight trend towards increasing bond 

stress due to an increase in strand diameter, but a study of all the test 

data indicated that this trend was not statistically significant. The 

bond strength was found to increase significantly with the concrete

strength (see Figure 2.2.). The unit bond force increased by approxi-
2 mately 10% per 7 N/mm of concrete strength. High bond strengths were

also obtained due to dry cured specimens, concrete cover and lateral 

pressure. The conclusion was drawn that initially bond stress of 

strand increases at a slip too small to be measured. After having 

reached a value of approximately 0.0025 mm, .the slip increased more
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rapidly. Beyond that point, the bond strength continued to increase at 

a small rate. Some tests on plain wire (the middle wire of the strand) 

showed that the bond strength of strand was higher than the bond 

strength of plain wire. Finally, the bond characteristics obtained in 

the pull out tests were used in calculating the anchorage length of a 

strand in a pretensioned beam. It was shown that the calculation based 

on the results of 25 mm embedded length of pull out tests using non- 

prestressed strand provided a reasonably safe estimate of the anchorage 

length.

More recently, Edward and Picard (90) reported bond pull out and 

tension tests on 12.7 mm strand in order to obtain the local bond 

stress-slip relationship. They used 38.1 mm embedded length with 

three concrete covers of 12.7 mm, 25.4 mm and 38.1 mm. The results 

obtained, plotted as bond stress-slip curves showing elasto-plastic 

type behaviour, are reproduced in Figure 2.4. The results indicated 

that the average maximum bond strength decreased when the concrete cover 

was increased. Also, some empirical expressions for crack widths and 

spacings were given.

Jeager (89) presented a state of the art of corrosion protection 

of prestressing tendons in prestressed concrete reactor vessels. The 

advantages and disadvantages of grouted and the non-grouted vessels 

were also given. Bangash (47) presented in detail certain arguments for 

and against the use of bonded and unbonded tendons in prestressed 

concrete reactor vessels. Two-dimensional finite element models were 

used to calculate bond stresses for bonded reactor vessels. On the 

basis of this calculation, various tendon types and their sizes for 

bonded and unbonded tendons were recommended.

Morris Schupack (107, 108, 109) carried out various tests on post- 

tensioned grouted tendons, mainly used in containment vessels. Grouting 

tests of a large 54 strand post-tensioning tendon (107) were performed. 

The tendon was embedded in a concrete beam and it was stressed at 76% 

of GUTS. After cutting the tendon at 31 days of grouting, the bond 

transfer length of 3.1 mm- to 3.7 mm was found. Mottock et al (110)
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carried out a comparative study of prestressed concrete beams with and 

without bonded tendons. The primary variables were the presence and 

absence of bond and the amount of bonded reinforcement. The results 

reported show that the unbonded post-tensioned beams with minimum re- 

commended reinforcement had serviceability characteristics, strength 

and ductility equal to, or better than, those of comparable bonded 

post-tensioned tendons.

Naus (112) studied the behaviour of grouted and non-grouted 

tendons in relation to prestressed concrete reactor vessel application. 

The various aspects of bond performance were studied experimentally. 

Flexural tests were performed on beams (dimensions of 3.05 mm length, 

0.15 m width and 0.31 m depth) prestressed with a 12.7 mm diameter 

seven wire prestressing strand. Prestressing load (0.5 to 0.7 GUTS) 

and loading rates of 0.074 KN/second to 74 KN/second were adopted in 

the tests. The beams were tested in flexure at a loading rate of 

0.074 KN/second. The results indicated that the grouted tendon beams 

have increased cracking and ultimate loads for the same level of pre- 

stressing and also improved crack control, i.e. more cracks with smaller 

widths. On the other hand, rates of loading did not indicate any 

significant effect on the ultimate load on either tendon system.

Experimental studies of bond between strands and concrete have 

been carried out by Javor and Lazar (147). Relationships between the 

compressive strength of concrete and the transfer length of a seven wire 

strand were obtained. The results obtained indicate that there is a 

relationship between the strand slip and transfer length and that the 

stress distribution in the strand over the transfer length is 

approximately linear.

None of the above experimental tests on bond, except those of 

Stocker and Sozen (105) and Edward and Picard (90) were carried out for 

local bond-slip relationships. The local bond-slip relationship of 

various steel bars (e.g. plain bar, deformed bar, prestressing strand 

and wire) is very important, since this indicates a local constitutive
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relation at the interface of steel and concrete. This relationship has 

an analogy with the stress-strain relationship of steel. Various 

difficulties were encountered in obtaining a local bond stress and slip 

on pull out and tension tests (Fig. 2.6.)- A large number of pull out and 

tension tests were carried out (94, 106a, 90, 91, 106b, 93, 106, 105) 

differing in the dimensions of the test specimen, measurement of bond 

stress and slip. A bond pull out test used by Edward and Picard is 

shown in Figure 2.3. Nilson (92) established the local bond-slip for 

deformed bars by indirectly calculating strains of steel and concrete. 

An extensive study of local bond-slip behaviour of plain and deformed 

reinforcing bar was made by Yannopoulous (91) under static and repeated 

loading. Bond-slip curves are reproduced in Figure 2.7. for plain bars 

(16.0 mm diameter).

2.4.4. A Case for Present Research

The above literature review indicates that not many reactor vessel 

analyses and experiments have been performed for bonded cases. Most of 

the analyses were performed on unbonded reactor vessels. In order to 

study the bonded reactor vessels, it is intended in the present research 

to carry out three-dimensional non-linear finite element analyses in 

which the effect of bond is included. For comparative purposes, an 

unbonded reactor vessel is also analysed. The review also indicates 

that significant work has been done for bond and bond-slip relationships 

for plain and deformed steel bars. Very little in comparison has been 

done on bonded prestressing wires and strands. For small or large 

tendons, it is rare to find any reference work on their bond with 

concrete. In order to study bond behaviour experimentally and to 

determine local bond-slip relationships, the following experiments have 

been carried out :

(a) Prestressed concrete bonded slab

(b) Pull out tests on prestressed concrete beams

These are fully described in Chapter 7.
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Figure 2.6 Types of Bond Tests
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CHAPTER 3

General Finite Element Analysis

3.1. Introduction

This Chapter discusses the general finite element analysis required 

for the bond strength investigation of prestressed concrete reactor 

vessels. Three-dimensional isoparametric solid elements were used to 

model the vessel concrete. Liner and prestressing tendons (bonded re- 

inforcements) were modelled by curved membrane and axial line elements 

respectively. The interaction between steel and concrete was modelled 

by specially developed bond- linkage elements. The displacement finite 

element method was used throughout. As the literature covering the 

finite element method is vast and comprehensive (1, 2, 3, 4), only the 

essential features to develop these elements are given. The displace- 

ment finite element method is presented first, followed by the expressions 

for the element stiffness matrices, loads, strains and stresses. 

Elastic (linear) material constitutive relationships are assumed in this 

Chapter.

3.2. The Displacement Finite Element Method

The displacement finite element method is adopted. Displacements 

at nodes are unknown variables. The displacement field within each 

element can be expressed as :

(3.D

- la)

where Qc - element nodal displacement vector /  »
U^ - .displacements at node i

N - element shape function matrix

N - shape function of node i
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- identity matrix of n x n

- number o£ nodes of an element

- denotes a matrix or a vector

When the displacements are known at all points within each element, the 

strain at any point within the element may be written as :

£= Z Belli = BUe (3.2)

(3.5)

where B - strain-displacement matrix for an element

- strain-displacement matrix at node i

In general, the stresses are calculated within the element using the 

following relationship :

(3.4)

where <>0 - initial stresses

60 - initial (thermal) strains

3) - elastic constitutive material matrix

When virtual displacements ; dU.e, are applied at the nodes, the sum of work 

done by the stresses, distributed body and surface forces over the 

element volume (vol) and surface area(3l is respectively given by :

(3.5)

where Fi - surface force per unit surface area
* %» A

IG - force per unit volume <w A

In order to maintain equilibrium within the element, a system of 

external nodal forces, 6«, must be applied, and the external work 

equated to the internal work :

-35-



(da*) & = Cciu')(jBdU,o£, - fNT ps as - f NT PG avoO __ (3.6)
vot S ~ >v£~ /"-^

Equation (3.6) is valid for any set of virtual displacements,dli e , 

and may be eliminated from both sides of Equation (3.6). Substitute 

Equations (3.2) and (3.4) to obtain :

(3 7 )

Equation (3.8) is the force-displacement relationship with stiffness 

transformation. In which :

(a) The element stiffness matrix, k e= fB TDBdvol (3.8a)
*S* ^ *^»

Vot

(b) The element body force, R=-\ NT fccW (3.8b)
^** 1 ^*» ^^

vot

(c) The element nodal force due to surface pressure ,jJ3=-j$J|cls (3.8c)
s

(d) The element nodal force due to initial stress, GT= \B(>duo£ (3.8d)r»   
voe

(e) The element nodal force due to initial strain, Fe^-Vjfoj^dvol (3.8e)~ """

Equation (3.8) is assembled to form a global stiffness matrix and load 

vector. The following force-displacement relationship for the entire 

structure is written as :

P = KU (3.9)

where - stiffness matrix of the structure
*^^

P - generalised force vector for the structure
/ w

Equation (3.9) is solved for the unknown nodal displacements, IJ.

The strains and stresses at any point within the element are calculated

using Equations (3.2) and (3.4) respectively.
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3.3. The Solid Isoparametric Elements

The solid isoparametric elements represent concrete of the pre- 

stressed concrete reactor vessels and are shown in Figures (3.la), 

(3.1b) and (3.1c). The essential features of these solid isoparametric 

elements in relation to the development of their stiffness matrices and 

load vectors are briefly given below.

3.3.1. Strain-displacement Relation

The strain displacement relation given earlier in Equation (3.3)

is now invoked. For the case of three-dimensional solid elements,

the B of node i is given below :

ax
0

o
9Ni
^Y

O

alt

O

ay
o
9NC.
ax

~S>£

O

0

0

32
O

9Ntay-

ax"

(3.10)

with
n&=?, (3.10a)

Appendix Al.1.4. gives full details of the coordinate trans- 

formations between Cartesian and curvilinear axes. The Jacobian matrix 

J, and derivatives of Equation (3.10) are obtained in terms of deri- 

vatives with respect to curvilinear coordinates. As there are three 

degrees of freedom at each node, the dimension of B matrices for the 

8, 20 and 32 noded elements is (6x24), (6x60) and (6x96) respectively. 

Although the 32 noded element is not used in this research, nevertheless 

it is included for future requirements.
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3.3.2. The Stress Calculation

The stress at any point within the element is given by Equation 

(3.4) and is now rewritten as :

2r= S < e - e.) + 3 **" C3.ii)

in which

,£ Y. ,&.! o, o,o3 T (3

where D - anisotropic material matrix for concrete (see~<*4

Equation (A2.1)

For isotropic cases, all ^'s and E's along three principal axes are 

the same respectively.

3.3.3. The Element Stiffness Matrix

The element stiffness matrix given in Equation (3.8a) is now 

rewritten as :

Ke = fBTDBdvol= f f ^DBdAJcl§d^dU5 -^ (3.12)

where and detJ are defined by Equations (A2.1), (3.10) and 

(A1.4a) respectively.

3.3.4. The Load Vectors

The various load vectors of Equation (2.8) are now rewritten as
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g +1 Jl *l T

-\ -I H "

B" =~ NT |^ds (3.13b)

(3.13c)

R!!= f f f BTJ> detJ"d|cMc^ (3.13d) 
-l -i _i ~"

where detJ = determinant of Jacobian

Further details of the calculation of the pressure load vector 

(Equation (3.13b)) are given in Appendix Al.1.5. The point load vector 

idea is also extended for the loads which are not acting directly at 

nodes. These loads are named as patch loads (see Appendix Al.1.6.).

The integrals of Equations (3.12), (3.13a), (3.13b), (3.13c) and 

(3.13d) are carried out using the Gauss quadrature formula (2).

3.4. The Membrane Isoparametric Elements

The membrane elements are used to model the steel liner in a 

prestressed concrete reactor vessel and are treated as thin shell 

elements. The elements are capable of transmitting only in plane 

actions and the strain in thickness direction is assumed constant 

(plane stress conditions are enforced) . These elements are compatible 

with the one face of the solid elements modelled for concrete. The 

element local, global and curvilinear coordinate systems are shown in 

Figures (3.2a), (3.2b), and (3.2c). Appendix A1.2. gives details of 

shape functions, their derivatives and B matrix. Details for these 

elements are given below.

3.4.1. The Strain-displacement Relations

As the element may be in any direction in the three-dimensional 

space, the strains refer to a local orthogonal Cartesian system 

(X 1 . Y 1 . Z'). The strain components which contribute to the strain
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energy are from Equation (A1.10).

3)C

3Y'

or S' = 8'U'
*^ /^» /^

After carrying out the transformation, the following may be written 

(see Appendix A1.2) :

'= (3.14a)

3*1

The B matrix in this case is slightly different. Full details are given 

in Appendix (A1.2). For node i the B matrix can be rewritten as 

(Equation (A1.23)).

Rx'x dVi

(3.15)dr

Further details about the strain-displacement matrix are given in 

Appendix Al.2.

3.4.2. The Stress Calculation

The local stresses at any point are written as

in which

£-' = DM e-fc"* 

= C ,£ y0' ,

(3.16)

(3.16a)
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For the plane stress case, the elastic material matrix is given by :

1 

(3.17)

Where ES and Vs are the modulus of elasticity and Poisson's ratio of steel

3.4.3. The Element Stiffness Matrix

The element stiffness matrix for this element is given by :

(3.18)
-i -I

In which I) Mof Equation (3.17) and B of Equation (3.15) are used. The 

numerical integration is again adopted for Equation (3.18).

3.5. The Line Elements

The line elements are used to model the vessel prestressing tendons 

and reinforcements (primary and secondary). The elements are only 

capable of transmitting axial stress and strain and are classified 

according to the following categories :

(a) Two node line element (Direct Approach)

(b) Two, three and four node elements (Isoparametric Approach)

(c) Isoparametric line element in the body of solid element (Body 

Element)

3.5.1. Two Node Line Element (Direct Approach)

This is the simplest element (Figure (3.3a)) in the series of 

line elements. The element is straight with length L, end nodes 1, 

2, cross-sectional area, A, and modulus of elasticity Es. The follow- 

ing displacement function is taken into consideration :
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U'= Go + CtiX' (3.19)

The stiffness matrix in global system can be written as :

Ke=TT K L T (3.20)

In which kt.is the element stiffness matrix in local system. This may 

be written as :

KL= .EsA * _ \ (3.20a)
Txi *- [-i

AndT is the transformation matrix

/>*
2*6

0/O,0

0, 0 > 
(3.20b)

where C^ , vnj ,^ are the direction cosines of element axis with respect 

to global axes. The explicit form of Equation (3.20) is given in 

Appendix Al, Equation (A1.25).

The local strain and stress are now written as :

£x'= 1. L^CU2 -U,)-i-wi l tv 2 -v 1 )-vn l CHx -v4 1n (3.21a)
L*

'-S)c (3.21b)

where , w^ and Ui , are the global nodal displacements of 

nodes 1 and 2 respectively. Es is the modulus of elasticity and£ Xothe 

initial strain.

3.5.2. Isoparametric Line Elements

The concept used in this case to develop the stiffness matrix is 

very similar to that for the solid and membrane elements developed in 

the previous sections. The shape functions, derivatives and the strain- 

displacement matrices for these elements are given in Appendix Al.3.2.
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The element stiffness matrix is then written as (Figures (3.3a), 

(3.3b) and (3.3c)) :

r+1 T NG T
Ke = [ BtsB A($) Lcl^IlBjEsBjLjUjA^j) (3.22)

-1 J-I

where

t=i V.J

where A^ - cross-sectional area at node i, n = number of nodes

on element

NG - number of integration points, N{.= shape function at 

node i

Ejjjjhave been defined earlier. Reference is made to Appendix Al.3.2. 

The strain and stress are calculated as follows :

£x'= BUe (3.23)

0*= Es£,x'. (3.24) 

where U5 is the global nodal displacement vector for the element.

3.5.3. Line Element in the Body of the Solid Element (refer to 

Figure (3.4))

The main use of this element is in modelling the reinforcement 

inside the concrete. The solid element, together with this element 

represents a composite element. An assumption made in deriving the 

8 matrix (Appendix A3.3) is that the steel has to lie in the directions 

of local curvilinear axis (^ , v? ) of the parent solid element. The 

stiffness matrix of this element may be written as :

r" 1 T 
K = \ B Es B AU) detJ d& (3.25)

' j 
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where B is defined by Equations (A1.36) and (A1.37) and detJ is defined 

by the determinant of Jacobian matrix.

3.6. The Three-dimensional Bond-linkage Element

The three-dimensional bond linkage element, the Ahmlink element, 

has been developed to model the interface relationship between steel and 

concrete. This element connects the line and the solid elements together 

and has two nodes as is shown in Figure (3.5). This element was first 

developed in a two-dimensional form by Scordelis (8) and was later used 

by others (9, 44). In this work, the element is extended to three 

dimensions. Physically, the element does not exist, but its mechanical 

action is represented by three orthogonal springs connected in the hori- 

zontal, vertical and lateral directions to steel and concrete elements. 

The horizontal spring represents the bond stiffness and acts as bond 

between the steel and concrete. The other two springs represent the 

vertical and the lateral adhesion between the steel and concrete. The 

procedure for the derivation of stiffness matrix and computation of 

stresses is given below :

Let X, Y, Z and X', Y', Z 1 , be the global and the local coordinate 

systems (Figure (3.5)) respectively. The direction cosines of the local 

axes (X 1 , Y', Z') with respect to global axes (X, Y, Z) are (1, m, n), 

(p, q, 0) and (r, s, t). Let P, Q be the line element nodes. The 

direction cosines in terms of nodal coordinates may be written as 

follows :
\fo 

in which L= V (X^-Xpf4- (Yq-Yp^ZQ-Zp) 7" (3.27)
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In the case of l=m=O and n=l, the direction cosines take the following 

values :

= 0 ; o,= l i t=o ; T=-l ; S=o (3.28)

With this definition for the direction cosines, the local X' is always 

tangential to line element with the other two directions being 

orthogonal to it.

and be the incremental slips in the horizontal, lateral 

and vertical directions of the steel element. The incremental relation- 

ship between the slip and the nodal displacements can then be written 

as :

or

0 0-i t t -n L , 

>-<% , (3-29)

(3.29a)

where T is the transformation matrix,Aji are the global element dis- 

placements.

The local incremental bond stress and bond-slip may be written as :

or

(3.30)

(3.30a)

where E , EV and Efc are the bond-slip moduli in the three directions.

These can be obtained by using an idealised bond-slip curve. These 

curves are shown in Chapter 2 and elsewhere in this thesis.

Here E h=
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whereA(5,4Sare the incremental bond stress and slip from a specified 

bond-slip curve.

Assuming bond stresses as average stresses along the length of the 

steel with length L, the incremental nodal force and the stress relation 

may be written in the following form :

e = TTcLL TT AO-be (3-31)
^*^ ^** w

where

Af e = C APu , A&S APJ , AP0J , 

diameter of steel embedded in concrete 

TtdL - surface area over which the linkage element is 

connected with the steel

Now the relationship between the incremental nodal forces and the 

incremental displacements by substituting Equation (3.29) and (3.30) 

in Equation (3.31) :

^ 
/NX 

where Kb = TTclL TTEuT (3.32b)
/ ^ 

Kb - bond- linkage stiffness matrix 
Tx6

The explicit form of Kb is given in Appendix (A1.5).

The stresses in terms of nodal displacements can be calculated by sub- 

stituting Equation (3.29a) in Equation (3.30a) as follows :

= ENTAIL* (3.33)
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XYZ - Global Cartesian System 
X'Y'Z 1 - Local Cartesian System

(a) 4 Noded Membrane Element

(b) 8 Noded Membrane Element
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(c) 12 Noded Membrane Element

Figure 3»2 Isoparametric Membrane Elements
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Figure 3.3 Isoparametric Line Elements
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Figure 3.^ Line Elements in the Body of Solid Element

-50-



Y 1

Global Axes (a) Bond Linkage Element

X'Y'Z 1 - Local Axes

Vertical Spring

oncrete

Lateral/Spring

Horizontal Spring

Steel Bar

(b) Direction Cosines

Vertical 
Spring

Lateral Spring

Steel

Concrete

Horizontal Spring(bond)

(c) Bond Representation..
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CHAPTER 4

Constitutive Relations for Concrete and Steel

4.1. Introduction

During the past two decades, considerable research and development 

effort has been devoted to the analytical modelling of concrete structures 

Different techniques have been developed in order to model linear and 

non-linear behaviour of concrete and steel. Despite all this effort, no 

one method has come out as yet to solve the complex nature of the multi- 

axial behaviour of concrete under compression, cracking in tension and 

related phenomena such as aggregate interlock, dowel action of steel 

(reinforcements and prestressed tendons), bond-slip between steel and 

concrete, temperature and creep. In this Chapter, an attempt has been 

made to present a unified approach by bringing together all these areas. 

In order to achieve this objective, this Chapter gives the non-linear 

constitutive relations of concrete (compression and tension cracking), 

elasto-plastic constitutive relations of steel (liner and prestressing 

tendons) and non-linear bond-slip relations at the steel-concrete inter- 

face. These relations are further extended by the inclusion of thermal

and creep effects.

4.2. Literature Review on Compression and Cracking of Concrete 

4.2.1. The Characteristic Behaviour of Concrete

The characteristic stages of reinforced concrete behaviour can be 

illustrated by a typical load-displacement relationship as shown in 

Figure 4.la. This highly non-linear relationship is roughly divided into 

three intervals : the "uncracked elastic stage", "crack propagation" 

and the "plastic" stage. The non-linear response is caused by two major 

material effects, i.e. "cracking" of concrete and "plasticity" of steel 

and the compression of concrete. Moreover, time-independent non- 

linearities arise from the non-linear behaviour of the individual
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constituents of reinforced concrete, for example, bond-slip between 

steel and concrete, aggregate interlock of a cracked concrete and dowel 

action of re:r.forcing steel. The time-dependent effects, such as 

creep, shrinkage and temperature change, also contribute to the non- 

linear response.

In all these areas, multi-dimensional stress-strain relations 

have been developed which adequately describe the basic characteristics 

of concrete materials subjected to monotonic and cyclic loading. These 

constitutive equations are the most fundamental relations required for 

any analysis of reinforced or prestressed concrete structures. Several 

approaches for defining the complicated stress-strain behaviour of 

concrete under various stress states can be divided into four main 

groups :

1. Representation of given stress-strain curves by using curve 

fitting methods, interpolation or mathematical functions.

2. Linear and non-linear elasticity theories.

3. Perfect and work hardening plasticity theory.

4. The endochronic theory of plasticity.

Looking at the mathematical representation of concrete in 

compression, the three models, namely hypoelastic (9, 31, 30, 40, 41, 42, 

44), plastic flow (10, 24, 27, 28, 38, 39, 51, 52, 111) and endochronic 

(63, 64) are widely accepted.

The hypoelastic models have been used in various forms. The 

earlier forms of hypoelastic models to represent the non-linear behaviour 

of concrete were based on the non-linear elasticity (9, 31, 44). In 

these models, the material constitutive matrix depends on the current 

state of stress, the increment of stress during loading calculated 

generally as :
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In numerical applications, the incremental relations of Equation (4.la) 

are combined with an equilibrium equation as :

where i is the point on the non-linear stress-strain curve

D = material matrix at stress level ov.,   

Initially the concrete is assumed isotropic. However, due to the 

dependence of material moduli (E and V) on different stress components, 

a stress induced anisotropy occurs. Many researchers later on took 

interest in the anisotropicity of concrete. A hypoelastic model of 

degree one is proposed by Coon and Evans (30) in which concrete moduli 

depends only on two stress invariants. Strains in this model are implied 

to be infinite at maximum stress. A similar concept of hypoelastic 

model is used by Bangash (21, 22) where non-linear behaviour of concrete 

was adequately modelled using orthotropic approach. Similar orthotropic 

models (17, 40, 41, 42) have been developed in which concrete moduli are 

calculated from a non-linear uniaxial stress-strain curve (34) in 

individual principal stress directions. The effect of biaxial or tri- 

axial stress ratios on the concrete moduli ha s been taken into 

consideration.

Non-linear incremental -.elastic models are proposed by Phillips et 

al (19, 20) in which the bulk modulus (K) is assumed constant and the 

tangential shear modulus (G) is assumed to be a function of the octa- 

hedral shear stress only. A similar approach has been adopted by Cedolin 

et al (29) who considers the bulk and shear moduli to depend on all the 

stress invariants. The proposed model is applicable to triaxial com- 

pressive states only.

Another triaxial model of non-linear type was proposed by Saugy 

et al (22, 23) in which the bulk modulus was considered as constant while 

the shear modulus was assumed, to vary as logarithmic function of the 

second stress invariant. This model has been used for three-dimensional
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analyses of prestressed concrete reactor vessels. This model is 

fully corroborated with experimental results.

Ottosen (36) uses a non-linear elasticity model in which secant 

values of modulus of elasticity (Es) and Poisson's ratio (V 3 ) are 

changed according to non-linearity index. The non-linearity index is 

determined by triaxial failure criterion proposed also by Ottosen (35). 

The model includes the effect of all three stress invariants, concrete 

dilatation near failure and the tensile state of stress. The failure 

criterion (35) contains all three stress invariants and it corresponds 

to a smooth convex failure surface with curved meridians, open in 

'negative direction of hydrostatic stress axis. The trace in the 

deviatoric plane changes from nearly triangular to more circular shape 

with increasing hydrostatic pressure. This failure criterion for 

concrete is known as "four parameter model".

In many other investigations the non-linear compressive behaviour 

of concrete is represented by the flow theory of plasticity (10, lOa, 

38, 39, 51, 52, 24, 27, 28, 18, 111). In these models the main effort 

has been to develop suitable yield criteria, flow rules and hardening 

and softening rules to get a good approximation of non-linear behaviour 

of concrete. Argyris et al (10, lOa) have used Mohr Coulomb and 

Drucker Prager yield criteria. William et al (24) have used a more 

refined concrete yield surface (five parameter model) in conjunction with 

the flow theory of plasticity. Chen et al (27, 28) in their elasto- 

plastic models, investigated the post-yield behaviour of concrete by 

including the hardening rules of plasticity. In all the elasto-plastic 

models of concrete the objection is that the flow rule of plasticity is 

not applicable to concrete.

Another concrete compressive model is proposed by Bazant and Bhatt 

(63) and is called the endochronic theory inelastic model. The theory 

of the model is very similar to plasticity model except that it does 

not have yield surface. The theory was first proposed for steel by 

Valanis (65). Important characteristics of concrete, such as dilation,
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softening and realistic failure stresses are simulated, and the model 
can be applied to general state of stress. All the inelastic concrete 
parameters were determined with only concrete compressive strength and 
are applicable to a particular type of concrete. A critical appraisal 
is given (66) of this model in which doubts have been expressed regarding 
the model's stability.

Baker (150, 151) suggested concrete failure criteria which was 
based on the fact that concrete has hetrogeneous system and the 
principal causes of cracking and failure are due to the differential 
stiffness between the aggregate, matrix and their interface, the bond 
interaction and the weakness in tension of the mortar matrix. He 
modelled the failure surface by using a tetrahedron (Figure 4.1b) in 
which the Poisson thrust ring, plastic flow and cracking effects are 
represented by the relative stiffness of the rods, which, in turn, 
depend on the changing behaviour of load. He developed expressions 
assuming that crack forms in the mortar pocket then eventually extends 
around the stone interfaces. It is an impressive contribution to 
improving the situation in which the Poisson 's ratio, V , and the 
Young's modulus, E, change rapidly as the failure approaches. The 
following two equations were proposed by Baker (150) :

°l * °» =, 1 + 4,52. for o^> 0-^05 (4.2a)

for <r- |=! a^>o^ (4.2b)

where o* , o-z , 05 are the principal stresses and 0£ is the uniaxial 
compressive strength of concrete.

A test case in the above equations proves what Vile (152) has 
established. It is interesting to note from the above that the triaxial 
compressive quadrant of stress space can be achieved by rewriting 
Equation (4.2a) and (4.2b) in the following form :
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<^ = 0^ + 3-5 05 (4.2c) 

*i = H0£  * 5 03 (4.2d)

When Equations (4.2c) and (4.2d) are plotted in stress space, as shown 

in Figures (4.1c) and (4.Id), the failure envelope agrees both in shape 

and magnitude as suggested by Hannant and Frederick (153). In the case 

of high triaxial compression, when (<^ +°i+«p> I6<% the constants in 

Baker's equations need to be adjusted.

The above experimental equations are flexible enough to accommodate 

all the experimental parameters of researchers mentioned earlier. Any 

new experiments to be carried out must be such to warrant the necessary 

accurate parameters required by Baker's equations. In this regard, 

efforts have been made by Chinn and Zimmermann (141) and Acroyd (154) 

and Newmann(138).

4.2.2. Concrete Cracking Models

In the finite element analysis of concrete structures, three 

different approaches have been employed for crack modelling :

(a) Smeared cracking model.

(b) Discrete cracking model.

(c) Fracture mechanics model.

The selection of any of the three models depends upon the purpose 

of the analysis. In the smeared cracking model, the cracked concrete 

is assumed to remain in continuum, i.e. the cracks are smeared out in a 

continuum fashion. Here, an assumption is made that after first cracking, 

concrete becomes orthotropic or transversely orthotropic and one of the 

material axes has oriented along the direction of cracking. In this 

approach, shear strength reserves due to concrete aggregate interlocking 

can be accounted for by retaining a positive shear modulus. Here the 

crack is not discrete, but the model considers an infinite number of 

parallel fissures across the finite element.
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An alternative to the above model is the introduction of "discrete 

cracks" (8). This is done by disconnecting the displacement at nodal 

points for adjoining elements. Here the difficulty is that the location 

and orientation of the cracks are not known in advance. Hence geo- 

metrical restrictions imposed by the preselected finite element mesh can 

hardly be avoided. To some extent, this can be rectified by redefining 

the element nodes. Such techniques are complex and time-consuming. 

For problems involving a few dominant cracks such as the diagonal tension 

crack in reinforced concrete beams, the discrete model offers a more 

realistic representation, i.e. this crack represents a strain dis- 

continuity. The success of fracture mechanics theory is based on the fact 

that concrete is a notch-sensitive material and the cracking criterion 

based on tensile strength can be handled without being unconservative. 

Bazant and Cedolin (148) have produced some results. At present this 

area is being very actively studied by several researchers (148, 149).

The cracking of concrete in tension has been studied by various 

investigators. The first such study using finite elements was made by 

Ngo and Scordelis (8). They treated both steel and concrete as linear 

elastic materials while incorporating linear elastic bond-linkage 

elements. Here cracks are predefined and are represented by separation 

of nodal points. Nilson (9) extended this work by introducing non-linear 

material behaviour. With crack propagation and hence continually 

redefinition of structural topology made this approach unpopular. 

Franklin (44) tried to overcome this problem by predefining the expected 

total length of a shear crack which he observed in various experiments 

of reinforced concrete beams. Two sides of a crack were initially held 

rigidly together by very stiff linkage elements. By varying the stiffness 

value of the linkage elements, the crack propagation was simulated 

without redefining the nodal points.

Cervarka (39) studied two-dimensional crack problems using iterative 

methods. The initial stress method (51) applicable to elasto-plastic 

problems is extended to cracking of reinforced concrete by Valliappan 

and Doolan (134). Schnobrich (135) suggested periodically updating the 

stiffness matrix. Cracking was considered as changing the material
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properties of concrete. This way of introducing crack allows some shear 

capacity to be retained in the cracked concrete. This allowance for 

shear corresponds to taking into account the concept of aggregate 

interlock across the crack surface. Suidan and Schnobrich (38) used 

the same general approach for three dimensional case. They keep small 

values of shear stiffness across the open cracks.

Lin and Scordelis (136) analyse reinforced concrete shells. 

Triangular layered elements are adopted in which steel is represented as 

smeared layer. A concept of "tension stiffening" is introduced in which 

open cracks have a decreasing (rather than zero) tensile strength after 

cracking. Using this concept, the effect of bond between steel and 

concrete is incorporated in their cracking analysis.

Based on the above mentioned study, three constitutive models 

selected for concrete in compression are :

1. Orthotropic model. 

2. Shear and bulk moduli model.

3. Endochronic theory model.*

*The endochronic theory model has been included later on in the computer 

program. It has been a part of the validation procedure, tested on 

simply supported beams only.

4.3. Formulation of an Orthotropic Concrete Constitutive Model 

4.3.1. Incremental Stress-strain Relations

Here an attempt has been made to give a three-dimensional non- 

linear stress-strain relationship developed for concrete using hypo- 

elastic orthotropic approach, which incorporates the equivalent uniaxial
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strain concept of Darwin and Pecknold (40, 41), the non-linear 

representation of Saenz (34), and the ultimate surface of Ottosen (35) 

in such a way as to represent the actual concrete behaviour. The 

concrete constitutive relations are then written in an incremental form 

in which material parameters are obtained from uniaxial stress-equivalent 

uniaxial strain relations.

The incremental stress-strain relations for general three- 

dimensional orthotropic material can be written as :

de, =

dE,

= -v 3l ffi - (4.3)

or in matrix form

de,

v =

J

EI t,
o o

-? o

o 
o

o 

o dr lx
(4.3a)

o o o o o
where E, , EZ , E3 and », 2 , V2 , and »3 , are moduli and Poisson's ratios. 

Due to symmetry, the following relations are defined :

(4-4)
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Also define equivalent Poisson's ratios :

(4.5)

Using Equations (4.4), Equation (4.3a) is written as

de

d£
? =

o o o

ooo
1

which, upon inversion and using relations of Equation (4.5), becomes

OOO

or

where ? = 1- V, - V^ - V3̂  - 1V

DT is the tangent material matrix

(4.6)

(4.7)

In the above orthotropic material matrix Df, it is required to 

determine three shear moduli defined above. At present, no experimental 

results are available to determine shear moduli under triaxial state of 

stress. It is assumed that no particular direction is favoured with
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regard to shear moduli and they remain invariant upon the rotation of 

material axes. DT is transformed to a new set of axes I 1 , 2', and 

3' and the constraint is imposed that the shear moduli remain invariant, 

the following values of shear moduli are obtained :

E, * E2 - Z^slt^.- UTt Vz + JF2 V3) 
J

(4.8)

= 4- f 
4 v * Gi 3 = 4- f E3

Equation (4.6) is the main incremental constitutive relation in 

which six independent material parameters, El, E2, E3, 1^1,^2, andV3 

are the function of current state of stress. These are determined from 

the uniaxial stress-equivalent uniaxial strain relations. The concept 

of equivalent uniaxial strain follows.

4.3.2. Equivalent Uniaxial Strain

According to this concept (41) , the degradation of stiffness and 

strength of plain concrete is described during load-history and also 

the actual triaxial stress-strain curves can be duplicated from uniaxial 

curves. In this way the variation of incremental moduli with respect 

to the variation of stress is determined using the uniaxial stress- 

strain curves. In a uniaxial case, the strain is always a function of 

stress in the direction of load. For the criaxial case, the strain in 

one direction is not only a function of stress in that direction, but 

also it is affected by the stresses in two orthogonal directions due 

to Poisson's effect (See Equation (4.3a)). The concept of uniaxial 

strain provides a method to separate the Poisson effect from the 

cumulative strain. The definition of equivalent uniaxial strain is 

written using Equation (4.3) by ignoring the Poisson effect, i.e.

(4 ' 9)

-63-



In matrix form, it is written as :

^

(4.9a)

and the total equivalent uniaxial strains for the load path are written 

by integrating Equation (4.9) along the load path as :

or

in which

f dn 
ta = J IT

all fc *- 
Uad tnct««vi«nbs

change in stress in the ith direction 

tangent modulus in the ith direction

(4.10)

It should be mentioned here that the concept of introducing 

and 6iu is purely fictitious (except in the uniaxial test) and they have 

significance as a measure on which to base the variation of material 

parameters. These also do not transform in the same manner as stresses 

and strains of Equation (4.3). The stresses in Equation (4.3) are 

defined in material principal axes of orthotropy. If these are assumed 

to follow the current principal axes of total stress, it indicates 

immediately that de^u. must be defined with respect to the current principal 

axes of orthotropy. This last statement implies a similarity between 

equivalent strain parameters in elasto-plastic analyses (d? p) and 

equivalent uniaxial strains (42). Since &; a are not transformable, they 

are assumed to be defined only in the current principal stress directions.

The general constitutive relationship using this concept can now 

be written as :

do: = F ( (4.11)
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in which the stress increment is a function of the strain increment 
during the current iteration and the state of stress accumulated to 
date. The above relationship is path-dependent, and has a strong 
resemblance with the hypo-elastic law proposed by Truesdell (137).

4.3.3. Equivalent Uniaxial Stress-strain Curve (Figure 4.2)

The concept of equivalent uniaxial strain is utilised now to define 
equivalent uniaxial stress-strain curves for plain concrete. In order 
to calculate parameters for tangent material matrix developed in 
Equations (4.6) and (4.7), it is necessary to write Saenz's relation 
(34) in terms of equivalent uniaxial strain given by Elwi and Murray (42)

where E0 = initial modulus of elasticity
fl* '

= secant modulus at maximum stress (4.12a) 
£tu = uniaxial strain in the ith direction 
O^o = maximum stress associated with direction i

which depends on the current principal stress ratios 
6cc = maximum strain associated with fltc

= 3-47 3I '5- 3-47 fr#) Xlcf 5 (4.12b) 

Off = stress at failure of descending branch of the

curve

= 0-850^-c (4.12c) 

6i = failure strain

Re = lie
e<f

The tangent elastic moduli are obtained by differentiating Equation (4-12j 
with respect to equivalent uniaxial strains as :

t= 1,2,3 (4.13) 

-65-



E .

where g _ £iu (4.14a)
K 6ic

Therefore the material moduli of Equations (4.14) are in general a 

function of accumulated equivalent uniaxial strains and current state 

of stress. Equations (4.1^ and (4.14) are applied to the whole stress- 

strain curve including the descending portion of the curve (see Figure 

(4.2)). If the ascending part of the uniaxial stress-strain curve is 

required, it can readily be obtained by setting R=o in Equations (4.12) 

and (4.14).

4.3.4. Poisson's Ratios

The incremental moduli can now be determined from Equation (4.14) 

provided the parameters described above are known for a particular ratio 

of the total stresses. Nevertheless, the incremental stress-strain 

relation cannot be achieved without evaluating Poisson's ratios. Poisson's 

ratio is determined from uniaxial compression data of the Kupfer et al 

tests (25) as a function of strain by a least square fit of a cubic 

polynomial. This results in the expression given by Elwi and Murray (42) :

V , V0 1 + 1-37.3 ()- 5.34 8-514

or Vo = f (4.15a) 

Three independent Poisson's ratios are postulated as :

, V/arV^, (4.15b)

with i = 1, 2, 3

where v>o = initial value of the Poisson's ratio

£u = ^ic f° r uniaxial test .

£ |u = strain in the direction of uniaxial loading
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It should be noted from Equation (4.7) that v may become negative for 

V^ greater than 0.5 which is not acceptable. Therefore a restriction on 

Equation (4.15) is imposed which is this when v<;>0.5, the yt - should 

be set to 0.5. This limit physically means that there is a zero 

incremental volume change as is the case in incompressible material. 

Kostovos and Newmann (138) noted that the point at which this limit is 

reached corresponds to the onset of unstable microcrack propagation. This 

causes concrete to dilate upon approaching the ultimate strength.

4.3.5. Failure Criteria of Concrete

The strength of concrete under multiaxial stress is a function 

of the state of stress and cannot be predicted by limitations of simple 

tensile, compressive and shearing stresses independently of each other. 

The strength of concrete can be adequately evaluated by considering the 

interaction of the various components of the state of stress.

4.3.5.1. Stress and Strain Invariants

A failure criterion of materials based on the state of stress is 

an invariant function of the state of stress. One method of representing 

such a function is to use the principal stresses, i.e.

f c*i,n,^ -° (4.16)

to show the general functional form of the failure criterion. Under 

multiaxial state of stress, this approach to establishing a failure 

function is difficult to pursue. This difficulty is due to supplying 

information on the basis of both a geometrical and a physical explanation 

of failure. It is therefore important to rewrite Equation (4.16) using 

three particular principal invariants which are more susceptible to 

geometrical and physical interpretations and which are independent of the 

properties of the materials. The Equation (4.16) is written as :

(4.16a)
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Various versions of Equation (4.16a) have been adopted and 'verified. 

The analytical versions of the failure envelope based on Equation- 

(4.16a) have been adopted by Sangy et al (22, 23), Willam and Warnke 

(29) and Ottosen (35) .

A failure criterion proposed by Ottosen (35) known as the "four 

parameter failure criterion" has been adopted. This failure surface 

contains all three stress invariants and has the following characteris- 

tics :

(a) The surface is smooth and convex with curved meridians.

(b) It is open in the negative direction of the hydrostatic axis.

(c) Trace in deviatoric plane changes from an almost triangular 

to circular shape with increasing hydrostatic pressure.

(d) The surface is in good agreement with experimental results 

over a wide range of stress state including those where 

tensile stresses occur.

Figures (4.3) and (4.4) show the surface in principal stress 

coordinate system in which the compressive meridian, fc (0=6o*, *i=fr».?*3) 

and the tensile meridian ,% (8 = 0° , <r,=>i < <r 3 ) are defined. The 

meridians are curved, smooth and convex and f increases with increasing 

hydrostatic pressure.

An analytical failure surface containing all the above characteris- 

tics is defined in the following form by Ottosen (35) :

A + bEi -l=o (4.17)

where I< = Gx4*Y + ** = first invariant of stress tensor (4.17a) 

Jz = second invariant of stress deviator tensor

s^s|-)+^ +TY«+*i (4.17b)
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J = C0536 = 1-5 JF -~= (4.17c)
JO*.

M3 = third invariant of stress deviator tensor

(4 . 17d)

Sx = 0-x

- i,/ 3 (4.17e)

- Ii/3

X = XQcosse) > o ; a and b are constant

(4.17f) 

X = kiCosC^-cos'C-kzCosaejfor Coss© ^ o

K.J, K^, a and b are material parameters to be determined

0^ = uniaxial compressive cylinder strength for concrete 

0^ = uniaxial tensile strength for concrete

V

Equation (4.17) defines the failure at a point if -f^-o and 

which also corresponds to a point inside the failure surface. A failure 

will not occur at a point under compressive hydrostatic pressure, i.e. 

three equal compressive stresses will never fail the material.

4.3.6. Determination of Four Parameters (a, b, K.., 1C)

The four material parameters are determined with the biaxial test

results of Kupfer et al (25) and triaxial results of Balmer (140) and

Richert et al (139) . The following three failure states were represented

1. Uniaxial compressive strength, <J£ .

2. Biaxial compressive strength, cr, =. <r z =-H60c. ^3=0 

(test results of Kupfer et al (25) .
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3. Uniaxial tensile strength, = k (J^.

Hereafter the method of least squares is adopted to obtain the best fit 

of the compressive meridian for §/r e ^-5-o to test the results of 

Balmer (140) and Richart et al (139). Figure (4.5) shows the process 

where compressive meridian passes through a point (where , 

= (-5, -4.)). With this procedure, the values of material parameters are 

determined as given in Table (4.1 and (4.2. From these Tables, it is 

clear that the material parameters show considerable dependence on
(9v

te= V°c but the failure stresses in compressive regime are only slightly 

affected.

4.3.7. O£c Value

It remains now to assess o^ c (i = 1, 2, 3) the peak stress for the 

calculation of tangent moduli (Equation (4.12)) for various principal 

stress ratios. Under uniaxial conditions, <jf c is equal to the compressive 

cylinder strength (o£ ) . However, under multiaxial stress conditions, the 

compressive strength of concrete increases. To obtain ^^ in three 

directions for principal stress ratio, a surface in stress space is used. 

First of all, current principal stresses are established (let these be 

<*ti >^fv ^f>3 where ^ i ? ^f i > *p 3 )  It is then assumed that of>, 

and o^ are held constant while the third principal stress is changed 

such that it reaches to the failure surface. This establishes that the 

ultimate stress is <%c . Similarly, o-, c and (^ are calculated by 

increasing their values while the other two stresses remain constant. 

This means that the principal stresses are substituted in failure 

surface (Equation (4.17)) and then one of the stresses (more compressive) 

is increased while the other two remain constant until Equation (4.17) 

is satisfied.
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4.4. Other Concrete Compressive Models

4.4.1. Shear and Bulk Moduli Model*

Constitutive relations for this model are given in Appendix AS. 

Most of this work is due to Sangy et al (22, 23).

4.4.2. Concrete Model Based on Endochronic Theory*

This type of model was initially developed for steel by Valanis 

(65) and has subsequently been modified by Bazant and Bhat (63) and is 

given in Appendix A6. Here constitutive equations are arranged in 

modified form by Ahmad to suite the three dimensional finite element 

analysis proposed in this research.

*Both these models have been included in the program NSARVE described 

elsewhere in this research.

4.5. Concrete Cracking and Crushing Criteria 

4.5.1. Assumptions

The cracking criterion is based on the concept of changing the 

material properties and allowing the effect of cracking by redistributing 

the stresses to the surrounding material. Maximum principal stress and 

strain criteria are used to define the cracks. When a principal stress 

(strain) in any direction exceeds a prescribed value (allowable 

limiting tensile strength, 0£ or tensile strain, £cr ), a "crack" forms 

perpendicular to the principal stress (strain) direction. Thus, for 

cracking :

n^^t (4.18) 

or (4.19)
&t^ ccr

where i = 1, 2, 3
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The model developed herein is applicable to general three- 

dimensional problems. On further loading, it is possible that new 

cracks will form at some angle to the first crack. It is assumed that 

further cracks are only allowed in orthogonal directions to the first 
crack.

Concrete in tension up to the point of cracking is linearly elastic 

material. However, the material becomes orthotropic as soon as it cracks, 

When a crack first occurs, it is assumed that direct tensile stresses can 

not be supported in the direction normal to the crack. Moreover, the 

material matrix in this direction is reduced to a small value (or zero) 

and also it is assumed that there is no interaction between this and 

other directions. The material parallel to the crack is still capable 

of carrying stresses which are given by the new material constitutive 
relationship.

The crack initiation (onset of cracking) is always defined using 

the maximum principal stress criterion. This is because for cyclic 

loading the crack may initiate upon unloading from compressive state in 

which a tensile stress at compressive strain may be reached as shown in 

Figure (4.6b). A crack is assumed to close when the strain normal to 

the crack is compressive and also it is less than the strain at which 

the crack was opened. Figures (4.6a) and (4.6b) show a uniaxial crack 

initiation, closing and reopening criteria for both cases where first 

load in tension and compression is applied. In both cases loading starts 

at point A. Crack is assumed to open at point at point B where stress 

suddenly drops to zero. Towards the CD direction, the crack remains open. 

Upon reverse loading at point E (at strain where zero stress was last 

reached) the crack closes. By further cyclic loading at points F and G 

the crack will be assumed to reopen and close. In reality, the strain 

values when the crack closes will be influenced by the relative movements 

parallel to the crack. This effect is not included in this study.
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4.5.2. Shear on Open and Closed Cracks

The surfaces of a typical cleavage crack in general will be rough 

and irregular. Due to the parallel differential movement of an open 

crack, it is possible that opposite faces will have aggregate interlock 

restraining this movement. For a widely opened crack, the opposite 

faces will completely separate and there is no interlocking effect. The 

most important effect of interlocking is that the shear stress along 

the crack will not be zero. Due to the lack of experimental information, 

the interlocking is taken into account by assuming that the shear stress 

along the crack is a linear function of shear strain, such that :

(4.20)

where G' = J3G (4.20a)

G = shear modulus of uncracked concrete

|3 = shear retention factor having values

T* = shear stress along the crack

shear strain along the crack

For an open crack, p= 0.5 was used in numerical calculations. For a 

closed crack, it is assumed that full shear stress develops along the 

crack, i.e.

T* = pG/* (4.20b) 

where j3 = 1.0 

For other ranges, Bangash (21) gives the value of |5 between 0.5 to 0.87.
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4.5.3. Concrete Model in Tension and Cracking

The constitutive relationships of uncracked concrete for the three- 

dimensional case is written as :

£ = DT AE

where BT is the tangent material matrix and can be written as :

D, 3 o

(4.21)

D32 D33 O

O 0

o o o o

o o

in which D,, to D^ are given by the values of Equation (4.6).

(4.21a)

As soon as crack occurs, orthotropic conditions are introduced and 

the incremental constitutive relations are written in the cracked material 

directions. The total normal stress across the crack is reduced to zero 

and also the shear terms ire introduced to account for any aggregate 

interlocking. Write the following in the crack coordinate system :

D (4.22a)

(4.22b)

tftft -

(4.22c) 

(4.22d) 

(4.22e) 

(4.22f)

The asterisk (*) refers to crack directions (see Figure (4.8b)).
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Upon cracking in direction '!', the concrete offers no resistance in 

this direction, i.e.

(4.23a) 

From Equations (4.22a) and (4.23a) :

£v - £ft Afc*. (4.23b)

Substitute Equation (4.23b) into Equations (4.22b) and (4.22c), and the 

following expressions are obtained :

(4.23c) 

Equations (4.23a) to (4.23g) can be written in matrix form for concrete 

cracked in direction '!' as :

If the concrete cracks in two directions (say in directions 'I 1 and '2'), 

then from Equations (4.22a) and (4.22b) :

(4.25a)

= o = D2 ,AE -^D 27.AS Y B23 A£ ' (4.25b)
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Substituting A&J in Equation (4.22c), the expression for 40*1 is 

obtained as :

°33- D3i f p '3
i V ^>M

Shear stresses are then given by :

(4.25d) 

(4.25e) 

(4.25f)

Similarly, for two open cracks in '2' and '3' directions, and '3' and 

'!' directions :

2-3 direction

(4.26a)

_ _^________ _ _ ia __ (4.26b)
L ^3^Pia.~ QjPzS ^33 ^* a "" ^2, °*3 -^

3-1 direction

(4.27a)

«r% t»»_ T> r«v - ^

Shear stresses for both cases are given by Equations (d.25d) to (4.25f)
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For all three directions cracked, the material matrix becomes null 

and concrete at this point carries no stress. Hence £' = 19,1 should 

be adopted in Equation (4.24).

Figures (4.7a), (4.7b) and (4.7c) show these types of crack for the 

three-dimensional concrete for which the constitutive relations are 

defined above. Figures (43a) and (4.8b) show the state of stress before 

and after cracking. Equation (4.24) with D*=LO} also applies if concrete 

crushes in compression.

4.5.3.1. Transformation of Cracked Material Matrix to Global Coordinates

As 3^ refers to a local (crack) coordinate system (Figure (4.8b)), 

it is necessary to transform it back into the global coordinate system 

for the calculation of stiffness matrix. This is performed as follows :

First of all, the strain and stress vectors between the two 

coordinate systems are related using the following relationship :

(4.28) 

and Afr* ^ T> ^ (4.29)*** 

where Tt and are 6x6 strain and stress transformation matrices and are 

given in Appendix A4 (Equations A4.3 and A4.4). From Equations (4.28) 

and (4.29), the following equations are obtained :

At = Te d£* (4.28a)

and A£ = TflT ' AO** (4.29a)

By observing the special relationship between Te and "Tj.., it can be easily 

shown that :

(4.30)
/^ 

and T^= Tj (4.30a)
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Therefore, the values of 4£ and A«- become/*» ^»

(4.31)x '

(4.32)

If it is argued that the energy computed in the two coordinate systems 

must be independent of the coordinate system, then :

(4.33)
^ ,,

Substituting Equations (4.21), (4.24) and (4.28) in the above expression, 

the following relationship is obtained :

(4.33a) 

(4.33b)

Hence ?T = lIST T £ (4.34)

Frequent transformations are required in finite element stress and strain

calculations related to two systems. Equations (4.28), (4.29), (4.31), 

(4.32) and (4.34) will always be called upon in the computer program dis- 

cussed elsewhere to solve constitutive equations for cracking.

4.6. Constitutive Model for Steel 

4.6.1. Introduction

Steel liner, prestressing tendons and reinforcements of prestressed 

concrete vessels are modelled as elasto-plastic materials. The theory 

describing their material behaviour is based on the incremental theory of 

plasticity (51, 52, 53, 54, 55, 56, 62). In this section, a brief dis- 

cussion is presented firstly on the elasto-plastic constitutive relations 

of steel for general three-dimensional cases, and secondly, these equations 

are specialised for steel liner "(pl ane stress case) and prestressed 

tendons (uniaxial case) .
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4.6.2. General Elasto-Plastic Constitutive Relations

There are three main items used in formulating the elasto-plastic 

constitutive relations for steel, and these are :

(a) A yield function

(b) A flow rule

(c) Post-yield surfaces (strain hardening)

During the loading, before elasto-plastic constitutive relations are 

applied, it is necessary that the yield function must be satisfied, i.e. 

the stress state must be on yield surface using :

(4.35)

where K depends on the plastic deformation and is characteristic of strain 

hardening.

<F - equivalent stress (4.36) 

For Von Mises yield criterion :

5^ = (3 Ji/ 2 (4.36a)

where J^ = ^ ( s x* + sf + s?r ) + ^ + T^ -v 

and Sx =

= mean stress (4.36d)

For a small increment of load, the incremental constitutive relation may 

be written as :

DT A£ (4.38) /%. ' 
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For elastic material, 3X.s Dp where DP is the elastic material matrix/>    
defined earlier. A£ = [ A£x , ASy , ,d/£*] T is the total mechanical 

strain increment.

This strain increment is decomposed into elastic and plastic components 

as :

AS = A£ e + A£ P (4.39)
^* *^ 1

The elastic strain increment may be written as (Hook's law) :

A^ =, gj A£ (4.39a) 

From Equations (4.39) and (4.39a) :

(440)
or A£= DE (A£-4£ P ) (4.40a)

which may be written as :

(4.40b)

with elastic stress increment as

(4.40c) 

and plastic stress increment as :

(4.40d)

If Equation (4.40d) is written as

where Dp - plastic material matrix
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Then from Equations (4.40a), (4.40b) and (4.41)

£ (4.42) 

= DT 46 (4.42a)
** x«

where DT =(D E -QO is the tangent material matrix or the elasto-plastic 

matrix.

Therefore the material constitutive relations in elastic and elasto- 

plastic ranges are fully defined by Equations (4.38) and (4.42a) 

respectively.

Next, the plastic strain increment (Equation 4.40d) and the plastic 

material matrix, Op (Equation 4.41) are determined in order to define the 

stress increment in the plastic region.

Assuming that the plastic strain increment is always normal to the 

plastic potential, GUc.fc) which is similar to yield function given in 

Equation (4.35), then :

(4.43)

The plastic strain increment is given by (flow rule) :

where A - proportionality constant and greater than zero

(4.44a)

If F = Q, the plastic strain increment is normal to the yield surface. 

For example :

l _ Act (4.44b)

I?
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Later on, special cases are given simply replacing b of 

Equation (4.44) by a of Equation (4.44a).

The consistency equation for plastic deformation dF = 0 is given by :

(4>45)

Define 4=--dK (4.45a)~ v

then jr- (4.45b)

or aT Acr -A A (4.45c)

Premultiply Equation (4.40) by £T DE substituting d£p from Equation 

(4.44), one obtains the following equation :

+ 25t-bA (4.45e) 

From Equations (4.45c) and (4.45e), an expression for A is obtained as :

(4.46) 
aTD6 bl

«**J

From Equations (4.44) and (4.46), the plastic strain increment is 

obtained :

And finally, the tangent material matrix of Equation (4.42) can be 

written as :

De b oil DP \ (4.49)
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Since the associated flow rule is adopted in this study, b in Equations

(4.46) to (4.49) should be replaced by a . By making A = 0, the rigid 

plastic conditions are achieved.

4.6.3. Hardening Phenomena

The hardening phenomena in metals can be modelled in many ways. 

There are three types of hardening models used in metal plasticity. The 

first model which is known as isotropic work hardening was proposed by 

Hill (55) and Hodge (57) . In this case, it is assumed that during plastic 

flow the yield surface expands uniformly without changing its shape and 

origin. The special case in this category is the ideal plastic where 

surface remains constant during the plastic flow. The second hardening 

model was proposed by Prager (58) and it was later proposed in different 

form by Ziegler (59) and is known as kinematic hardening. According to 

this model it is assumed that during plastic flow, the yield surface 

translated in stress space (K- plane) and there is no expansion of yield 

surface. This type of hardening model is useful in cyclic loading, where 

Bauschinger's effect is represented. The model proposed by Hodge (61), 

known as Combined Hardening, gave a better approximation to the actual 

material behaviour. This model assumes that during plastic flow the yield 

surface translates according to kinematic hardening and at the same time 

expands according to isotropic hardening. Haisler (62) gives more details 

on this model.

Since this study is not concerned with the cyclic loading, the 

isotropic hardening model is used. The ideal plasticity can be derived 

from the isotropic strain hardening model. The main thing which represents 

the hardening phenomena in the constitutive equation is the parameter A. 

For ideal plasticity, A is set to zero. For isotropic strain hardening 

material, it can be shown (52) that :

A = H (4.50) 

where H= strain hardening parameter (4.50a)

which is the slope of the equivalent stress versus equivalent plastic
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strain curve- If uniaxial stress strain curve is

available, then H can be calculated in the following manner :

where E = tangent modulus

Let E be the elastic modulus at zero stress. Then

.d£ 
d(T-

EEt

_l£ + f - J_ -»- i- 
d«- do- ~ E- H

(4.50b)

(4.50c) 

(4.50d)

Therefore, if the initial modulus and the stress-strain curve of the 

material is known, the strain hardening parameter, H, can be calculated. 

On the other hand, if it is a bi-linear stress strain curve,- then E is 

simply a post -yield modulus.

4.6.4. Elasto-plastic Constitutive Relations for Liner

The vessel liner is treated as two-dimensional material under plane 

stress condition. The elastic constitutive relations are defined in 

Chapter 3 (Equation (3.16)). This can be written in incremental form as :

or

where

and

At*

Vs

Vs 1

= E

i Vs o 

Vc 1 O

, tf*v?

(4.51)

(4.51a)

(4.51b)
o o - izr-s

Now the equations of the previous section are specialised as follows :
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4.6.4.1. Von Mises Yield Criterion

Equations (4.35) and (4.36) are rewritten in modified form as :

F = 0- - Oy = O

where

(4.52)

(4.52a)

(4.52b)

where = uniaxial yield stress of the liner

In Equation (4.49) b is replaced by a

where
a = 2£«

Therefore, Equation (4.38) may be written as :

(4.53)

(4.54) 
Alt = Dep AE - ^ «=^<TY

The post-yield stress calculation is performed in two ways. The first is 

the ideal plasticity case where H in Equation (4.49) is set to zero. 

The second is the strain hardening case where H in Equation (4.50) is 

calculated from bi-linear stress-strain curve as shown in Figure (4.9 ). 

The strain hardening parameter, H, in terms of initial and post yield 

moduli is given by Equation (4.50d).
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4.6.5. Elasto-plastic Constitutive Relations for Prestressed and 

Reinforced Steel

Prestressed tendons and reinforcements are assumed to transmit 

only axial stress and strain. Therefore, their material behaviour is 

described by a uniaxial stress-strain curve (Figure (4.9 )). From 

Chapter 3 (Equation (3.24)), the incremental stress-strain relation is 

given by :

Afr- = D£ A£ -"""' (4.55)
^* ^* *^ 

'*» IXI NT,

where A£ = ^

(4.56) 

DE=ES - initial modulus of tendon or reinforcement
/> *  **

4.6.5.1. Von Mises Yield Criterion

For this case, Equations (4.35) and (4.36) are modified :

F= <F -<*, (4.57)

where <F =  0"x (4.57a)

fry = uniaxial yield stress of tendon or reinforcement

Equation (4.49) for associated flow rule and isotropic strain hardening 

can be modified to include :

(4.57b)

By substituting a and Pe from the above, Equation (4.49) assumes the 

following simplified form :

n Dep =.
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The stress increment becomes :

(4.59) 
if (f ^^

For strain hardening, Equation (4.50) is invoked. 

4.7. Bond and Bond-slip Constitutive Relations

The mechanism of bond and bond-slip is given in detail in Chapter 2 

(section 2.4.)- In this section, the local bond and bond-slip con- 

stitutive relations governing the interface behaviour are given. The 

stress transfer by bond between steel and concrete is difficult to 

model realistically because of the several variables affecting the bond 

problem. The bond spring stiffness (Chapter 3, Equation (3.30)) along 

the length of the steel is determined as :

, . , ..(4 ' 60)

where E, = slope of the local bond slip curve at any point on the

curve (tangent modulus) 

= incremental local bond stress 

= incremental local slip

In order to model various types of interface characteristics, an 

experimental bond-slip curve idealised as shown in Figure (4.10a) is used 

The non-linear curve is idealised by a series of bond stress and slip 

points joined linearly. The slope (E, ) at point i of the bond slip 

curve is given as :

_ fec'+i - _ (4.61) "   ~     ~ "~

and the other two spring coefficients in vertical and lateral directions 

of the steel are taken as :

(4.6
£ h -
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where <* is a multiplication factor which was taken between 10 to 10 . 

This means that the vertical and lateral springs are rigidly connected 

between steel and concrete. Once the incremental moduli EH- , Ev/ t 

and Egj are known, the incremental bond stresses are calculated using 

the constitutive relations of Chapter 3 (Equation (3.30)) as :

[  > (4.63)

or = Ebt - (4.63a)

The element nodal force vector given by Equation (3.31) can be rewritten 

as :

(4.64)

and the element stiffness matrix (Equation (3.32b))

Kb = JldLT T Ebl TT (4.65)

where T is the transformation matrix given in Equation (3.29).

The constitutive relations (4.63) are valid between points 0 and 

A (Figure (4.10a)); thereafter the bond stress increment becomes zero 

(region AB), i.e. the slip occurs at constant bond stress. The bond is 

assumed to fail at point B (Figure (4.10a)) when maximum allowed slip 

has been reached. At this point, the total bond stress is released. 

This creates a non-equilibrium state which is corrected by performing 

equilibrium iterations (e.g. by the initial stress method).

Now a scheme is suggested to calculate a correct bond stress 

from a specified bond-slip curve (see Figure (4.10b)). Let Sr be the 

total slip reached at any point in the calculation. This slip lies 

between the points i-1 and i an the specified curve. Bond stresses are
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calculated which are compatible with the total slip (Sr) by linear 

interpolation as :

* °bt-i * &<St- s t") (4 . 66) 

where 0 = slope of the specified curve at point i-1

(4.67,

Let the total bond stress calculated using constitutive equation (4.63) 

be 0^ t - . The difference (6^-0^) is treated as initial stress and is 

corrected by performing equilibrium iterations.

4.8. Constitutive Relations using Creep and Thermal Effects

Concrete exhibits time-dependent strains due to creep . 

and shrinkage . which profoundly affect the behaviour of concrete as a 

structural material. The literature covering concrete creep is com- 

prehensive (67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 84, 126, 

127, 128, 129, 130). It is not intended to review this literature in 

greater depth. However, a brief discussion on the results obtained by 

various researchers (70, 72, 76, 77, 126, 127, 128, 129, 130) is given.

Creep in concrete represents the dimensional change in the material 

under the influence of sustained mechanical loading. Quite small loads 

will cause the concrete to deform. The phenomenon of creep occurs at 

elevated and at ambient temperatures. The rate of creep is increased 

at elevated temperatures. Various experimental tests (126, 127, 128) 

have been conducted to identify the effect of temperature on concrete 

creep. England and Ross (126) presented results of sealed and unsealed 

cylinders up to the temperature of 140°C and a testing duration of 60 days. 

The results on sealed cylinders show that the creep at 80°C and 140°C 

was about 3.5 and 4.2 times the value at 20°C. Nasser and Neville (127) 

reported their observations from experimental tests at temperatures

ranging from 21.1°C to 96.1°C with stress/strength ratios from 0.35 to
2 0.7. The concrete was cured at 41.34 N/mm (6000 psi) and tested after
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24 hours of casting. They found that the pronounced maximum for the 

creep rate at a temperature of about 71°C. This creep rate was based 

on creep measurements made during a period from 21 to 91 days after 

loading. Hannant (128) conducted creep tests on sealed 104.775 mm (4 1/8") 

by 305 mm (12") cylinders of an approximately 62 N/mm2 (9000 psi) lime- 

stone aggregate after curing them 5 months in water and an additional 

month in a sealed and saturated condition. Results showed a nearly 

linear increase of specific creep with a range of 27°C to 77°C for

loading periods of two years. The creep at 77°C was approximately 4 to
2 4.8 times that at 27°C. Up to stresses of 12.78 N/mm (2000 psi) creep

remained proportional to stress. Poisson's ratios of creep determined 

on sealed specimens were similar in magnitude to its elastic value.

In order to understand the influence of creep, a typical deformation 

Vs time curve is shown in Figure (4.11). A concrete specimen loaded 

under uniaxial compression gives an immediate elastic deformation. If 

this load is sustained, additional deformation due to creep occurs. The 

rate of the deformation decreases with time (Figure (4.11)). If this load 

is removed, there is an immediate recovery of deformation and following 

this, a recovery of creep deformation (delayed recovery) rate occurs, 

which rapidly decreases with time as shown in Figure (4.11)). At the
 

end of this, a residual deformation is left which is "greater than the 

initial elastic deformation. Figure (4.12) shows time-dependent strain 

curve for ambient and elevated temperatures between time t. and t^. 

The creep recovery strain occurs immediately after the instantaneous 

elastic strain which is extensive at first, but reduces after a short 

period of time. The creep recovery is essentially independent of 

temperature (127).

At a low level of stress, a concept of specific creep is introduced. 

Specific creep or creep strain per unit of stress is a useful indicator 

of creep effects. It is also sometimes useful to normalise creep strain 

data with respect to stress and temperature. This quantity is known as 

specific thermal creep.
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Various methods of creep analysis have been used over the last 

fifty years. Among those available, they may be classified into two 

main categories.

(a) Direct methods.

(b) Iterative or step-by-step methods.

The direct methods allow the calculation of creep effects in a 

single time step. The effective modulus (130) and steady state (70) 

methods are examples of this category. Other direct methods, in refined 

form, have been presented by England (72, 76).

In the iterative methods, the period of time (over which creep is 

sought) is divided into a number of steps and separate calculations are 

carried out for each step. An assumption is made that stress is constant 

during each time step while strain is being calculated. The accuracy and 

stability of the solution depends on the length of the time step chosen 

and successive calculations depend on those in previous time steps. The 

iterative type of methods of creep solution are :

1. Method of superposition (129).

2. Rate of creep (130)

3. Strain hardening.

. Rate of flow method (77)

The constitutive relation for concrete under uniaxial stress is 

established based on the rate of flow method. The total time-dependent 

strain in concrete may be written as :

£( 0 = 6e (±)+ £f(0 -*-s d (t) 

f J^a-t)dt4. § Jd (i-T)dT (4.68)
ar

where &(-0= total strain ; fcf(t) = irreversible or flow component

of creep strain
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where £ e (-t) = elastic strain ; reversible or delayed

elastic component of creep strain

JfU) = specific flow (flow strain per unit of stress) 

JdCt) delayed elastic strain per unit of stress 

t = age of concrete 

f = time under load

Components of strain are shown in Figure (4.13). Creep compliance for 

concrete may be written as (E is assumed constant with time t) :

(4.69)

A parameter is introduced at this stage known as pseudo time, t', 

which itself is specific flow component and this may be used in place of 

actual time, t, together with the representation of a non-ageing visco- 

elastic material. The pseudo time concept transforms the age-dependent 

creep relationship in real time to the simpler non-ageing Maxwell law in 

pseudo time. The time transformation eases the analytical or numerical 

computation which leads to a solution without changing the basic creep 

equation. Now, with this transformation, J~ (69) may be written as :

(4.70) 

and also the delayed elastic strain :

-RfV-'T'J. ^
(4.71)

If we represent the constitutive model in the pseudo time axis by 

a Maxwell fluid unit (model 1 in Figure (4.14)) and connect it in series 

with a Kelvin solid unit (model 2 in Figure (4.14)) to make it what is 

known as Burger's model (Figure (4.14)), in this model the dashpot and 

the Kelvin unit correspond to flow and delayed elastic components 

respectively. Equation (4.69) may then be written as :

(4.72)
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Appendix A7 gives formulations for creep strains under raultiaxial stress 

and kinematically equivalent loads due to changes in creep and thermal 

strains.
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Table 4.1. .Four Material Parameters (k = 0£

k

0.08

0.10

0.12

a

1.8076

1.2759

0.9218

b

4.0962

3.1962

2.5969

k !

14.4863

11.7365

9.9110

k 2

0.9914

.0.9801

0.9647

Table 4.2. Values of Function (k = ot /o- c )
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Load Steel Yielding or 
Crushing of Concrete

Displacement

Figure Load - Displacement Diagram for Reinforced 
Concrete
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Figure Jf.1b Tetrahedral Model ( Baker - 150 )

Figure Failure Surface in Compression Quadrant 
of Stress Space

From Ref.(153)

Baker's Equations

Figure Jf.1d Failure Surface on Deviatoric Plane
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Non-linear Curve

LI

Esec=   ^ = Secant modulus at ultimate stress

E;L 

= Maximum stress

= Maximum strain at

= 3-47

Typical Compressive Stress-Uniaxial Equivalent Strain Curve



= OA = 11/13 

P = A3 = J2J2

Figure A-.3 Haig-Westergaard Coordinate System

= Tensile meridian

= Compressive meridian

Figure Failure Surface in Deviatoric Plane 
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Compressive 
meridian-^-

Tensile 
meridian

\/

7

6

^^
to

-8-7 - -<  -3 -Z-1

(Uniaxial compressive 
strength)

Test results - Balmer( 1^+0) - o (corapressive)

Richart et al (139) -   (compressive)

+ (Tensile)

Kupfer et al (25) - D (Tensile)

Figure Determination of Material Parameters
- Failure Stresses)
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(b)

Figure 4^. State of Stress 
Before Cracking

Figure *f.8b State of Stress 
After Cracking
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