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ABSTRACT
A novel solution method based on Mono-implicit Runge-Kutta methods has 
been fully developed and analysed for the numerical solution of stiff 
systems of ordinary differential equations (ODE). These Backward 
Runge-Kutta (BRK) methods have very desirable stability properties 
which make them efficient for solving a certain class of ODE which are 
not solved adequately by current methods.

These stability properties arise from applying a numerical method to 
the standard test problem and analysing the resulting stability 
function. This technique, however, fails to show the full potential of 
a method. With this in mind a new graphical technique has been derived 
that examies the methods performance on the standard test case in much 
greater detail. This technique allows a detailed investigation of the 
characteristics required for a numerical integration of highly 
oscillatory problems.

Numerical ODE solvers are used extensively in engineering applications, 
where both stiff and non-stiff systems are encountered, hence a single 
code capable of integrating the two categories, undetected by the user, 
would be invaluable. The BRK methods, combined with explicit 
Runge-Kutta (ERK) methods, are incorporated into such a code. The code 
automatically determines which integrator can currently solve the 
problem most efficiently. A switch to the most efficient method is 
then made. Both methods are closely linked to ensure that overheads 
expended in the switching are minimal. Switching from ERK to BRK is 
performed by an existing stiffness detection scheme whereas switching 
from BRK to ERK requires a new numerical method to be devised. The 
new methods, called extended BRK (EBRK) methods, are based on the BRK 
methods but are chosen so as to possess stability properties akin to 
the ERK methods. To make the code more flexible the switching of order 
is also incorporated.

Numerical results from the type-insensitive code, SARK, indicate that 
it performs better than the most widely used non-stiff solver and is 
often more efficient than a specialized stiff solver.
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NOMENCLATURE

Arg(q) Argument of complex q

E(q) General stability function of a Runge-Kutta method

Ee (q) Stability function of ERK method

Eb (q) Stability function of BRK method

eps Smallest machine representable number such that l+eps>l

exp(a) exponentional function, e a

h Step size

1 »J Superscripts for iteration loops

ji Subscripts for loop counts

J Jacobian matrix of the system under consideration

M Approximation to the iteration matrix

N Dimension of ODE system

p Order of the method

q step size, h, multiplied by complex x of scalar test problem

Ri,j Fade" i,j approximation

Re(q) Real part of complex q

r Residual vector

S(x) Stiffness ratio at position x

s Number of stages of the method

t,x Independent variables

xn x-value at nth step

y Dependent variable

yn Numerical solution at position x n

y(x n ) Analytical solution at position x n

A Displacement vector

e Error vector



X Real or complex scalar

X^ General eigenvalues of Jacobian of system

9 General Angle

Eigenvector corresponding to X

|a| Modulus of complex a 

llall Norm of a
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Chapter 1 : INTRODUCTION

In this chapter the general problem to be solved will be defined and 

sufficient conditions for the existence of a unique solution stated. 

The general concept of stability and stiffness as applied to Ordinary 

Differential Equations (ODEs) will be introduced. An outline of some 

of the methods commonly used in the numerical solution of ODEs will be 

discussed and finally a brief overview of the remainder of this thesis 

will be presented.

1 . 1 The problem considered

This thesis is concerned with the numerical integration of the initial

value problem,

   =f 1 (x,y 1 ,...y N ) Yi(a) = r\i 
dx

(1.1) 
dyN
   = f N(x,y 1 , . . .y N) yftU) = n N 
dx

x > a

ie. a system of first order ODEs. Such systems may arise naturally or 

from reducing a higher order equation to a system of first order 

equations. Many engineering processes can be expressed mathematically 

as ODEs, Bjurel et al.[1970], and hence the efficient and accurate 

numerical solution of such systems plays an important role in industry. 

By expressing f and y as vectors, (1.1) may be rewritten as

dy
  = f(x,y) (1.2) 
dx

x > a , y(a) = n

Before a numerical solution to (1.2) is obtained it is natural to 

determine conditions under which a unique solution does exist. For the



initial value problem (1.2) suppose that f(x,y) is continuous in a 

region D where

D = { (x,y): a < x < b, lly« < » } (1.3) 

then suppose there exists a finite Lipschitz constant, L, such that

Hf(x,y) - f(x,z)ll < Llly-zll (1.4)

for every pair of points (x,y) and (x,z) in D. Then there exists a 

unique function y(x) which satisfies (1.2), Henrici[1962] . Clearly 

these conditions are very demanding and can accordingly be weakened to 

allow a unique solution in some interval |x-a|. Assume that f(x,y) is 

continuous in some interval D where

D = { (x,y): |x-a| < «, lly-bll <P } (1.5) 

then suppose there exists a finite constant L such that

llf(x,y) - f(x,z)ll < Llly-zll (1.6) 

holds for every pair of points (x,y) and (x,z) in D and let

M = max Hf(x,y)ll (1.7) 
(x,y)eD

and

7 = min(«,0/M) (1.8)

then there exists a unique solution y(x) of (1.2) in the interval 

|x-a|<7. Repeated use of the above, over a sequence of intervals which 

together cover the desired integration range, allows a unique solution 

over the complete range to be proved.

In practice integration of (1.2) is performed by marching from x = a up 

to some finite b in discrete steps, thus solutions are generated at a = 

x 0 < Xj < . . . < XM = b. Such methods are known as discrete variable 

methods. A general k-step class of such a method is given by,

h ) n=0(l)M-k (1.9)

given starting values
- 2 -



yj. = Si(h) i=0(l)k-l

where Mh = b-a, h = x n+1 - x n here assumed constant and the «js are 

constant. If *f is independent of y n +k then the method is explicit 

otherwise it is implicit. Most of the common discrete variable methods 

are encompassed in (1.9), eg. selecting 

k = 1,

s i-i 
*f =

and « 1 = 1

(where the constants depend upon the particular method and are defined 

later) will produce an s-stage, one step (explicit) class of method 

known as Runge-Kutta methods. The simplest of these being the Euler 

method,

+ hk i

Generally a solution at y n n-i is produced by taking a sample of the 

function at discrete points between x n and x n + t , producing a set of s 

k-values. A linear combination of these k-values are then added to the 

solution produced at xn .

The ability of a numerical method to generate a series of solution 

values at a set of node points is, however, no guarantee that the 

solution produced is a reasonable approximation to the true solution. 

The error produced by the method must be investigated. Global 

truncation error is defined by
*

e n = V< x n) - Vn (1.11) 

where y(x n ) denotes the true, but usually unknown, solution at x n . 

Clearly as the step size of the numerical method is reduced the 

solution produced by it should approach the true solution ie.

- 3 -



Max n e n +kll -» 0 as h  » 0 (1.12) 
o<n<M-k

A method which satisfies (1.12) is said to be convergent. From a 

numerical point of view it is clearly inappropriate to control (1.11) 

at each step, as the true solution is unknown. The quantity which is 

usually controlled is the local truncation error, Tn+k , of the method. 

This can be thought of as the error introduced by the formula at each 

step assuming that no errors have been previously created, ie. 

Tj = y(x n ) - Sj(h) j=0(l)k-l (1.13)

k 
Tn+k = E^y^n-Hi) ~ h* f (xn ,y(x n4. k ) , . . . ,y(x n ) ,h) n=0(l)M-k

=o

The question of 'how accurate is the numerical solution?' can, in part, 

be answered by considering the order of accuracy of the local 

truncation error. A method of order p is defined as having

Max HTn +k ll = 0(h p+1 ) (1.14) 
n=0(l)M-k

and a method of order at least 1 is said to be consistent. Clearly a 

'usable' numerical method must be consistent. Consistency, however, 

does not imply convergence, Hall and Watt [1976].

1.2 Stability

Unfortunately the convergence of a method only deals with the behaviour 

of the method as h tends to zero and in practice h must be non-zero. 

Clearly any (stability) constraints of a method will depend upon the 

problem being solved, thus some standard equation is required. The
i

equation usually considered is the one dimensional test equation,

y' = Xy y(0) = 1 (1.15) 

where X may be complex. By applying a Runge-Kutta method to (1.15) a 

stability function, E(q), is formed which will, in general, be a 

rational polynominal in q=hx. The absolute stability region of a

- 4 -



numerical method is defined to be a region in the complex plane for 

which E(q) is less than one in modulus. By ensuring that q remains in 

this stability region then propogated errors will decay as the solution 

proceeds. If instead of a single equation a linear system of N 

equations is considered, ie.

y' = Jy y(o) = A (i.ie)

where J is a constant NxN matrix, A is given and J has eigenvalues 

for i=l(l)N, then instead of q we must consider q^ = hX| for i = l(l)N. 

We must ensure that for all q^ such that Re(q^) is less than zero, q^ 

lies within the region of absolute stability.

When encountering problems for which Re(Xj), for some i, is large and 

negative, then clearly a finite stability region will restrict the step 

size of the method. When solving such problems the corresponding q^ 

must always be included in the stability region of the method. Thus 

the stability region must include some substantial portion of the 

left-hand half plane. If the stability region of a method includes the 

whole of the left-hand half plane then the method is said to be 

A-stable. A method whose stability region is exactly the left-hand 

half plane is said to be a precisely A-stable method.

No explicit k-step method can have this property and the highest 

attainable order of an A-stable implicit Linear Multistep method is 

two, Dalhquist[1963]. Clearly this stability property places a severe 

restriction on the numerical method and in particular Linear Multistep 

methods.

A less severe restriction is that of A(<x)-stability where <x is an angle 

in as shown in Figure 1.1

  5  



A-stability or A(<x)-stability examines the absolute stability region 

ie. the rate at which the growth of the true solution to (1.15) is 

modelled by the numerical method. By considering the rate at which the 

solution grows relative to the exact solution a relative stability 

region can also be defined. (Unfortunately the term relative stability 

region is used to mean something quite different in the context of 

linear multistep methods, Lambert[1973]). Wanner et al.[1978] refer to 

this region as the order star of the method. The absolute stability 

region and order star of the unique 1-stage 1st order Runge-Kutta 

method (Euler) are shown in Figure 1.2.

As Re(q)  * -« in (1.15) the ratio y(x n+1 )/y(x n ) -» 0, hence a numerical 

method that is to realistically model this ratio must also produce this

behaviour. By applying a Runge-Kutta method to (1.15) and forming the 

corresponding numerical ratio, Yn+i/Vn' tne L-stability of that method 

can be assessed. A method is said to be L-stable, in addition to being 

A-stable, if when applied to (1.15)

Limit      * 0 (1.17) 
Re(q)->-» y n

holds or L(a)-stable if the method is A(<x)-stable.

1.3 Stiffness

In many engineering applications the system of ODEs being integrated 

possesses both fast and slow transients which must be followed 

correctly. This phenomenon is known as stiffness and must be correctly 

modelled by the numerical method. The first formal definition of 

stiffness was given by Lambert[1973] . A linear system y 1 = Ay + o(x) 

is said to be stiff when

- 6 -



i) Re(\i) < 0 i=l(l)N and

ii) S(x) = Max iRe)! / Min (Re) | » 1 (1.18)

where X^ , i = l(l)N are the eigenvalues of the NxN matrix A. This 

definition can also be used for non-linear systems if the eigenvalues 

of af/ay are considered. The system will then be stiff in an interval 

I(x) if i) and ii) above are satisfied. The quantity S(x) defines the 

(local) stiffness ratio of the problem.

This definition is acceptable if it is not taken too literally. It
*

should only be used as a guide, as stiffness is more complicated than 

this and depends upon the solution method, the problem being solved and 

the local accuracy requirements. An improved definition of stiffness is 

that of Shampine[1975] , which states that a problem is stiff when the 

step length is restricted for reasons of stability. But clearly no 

numerical figures can be attributed to this definition and (1.18) is 

still useful as the formal definition.

1 .4 Numerical integrators

The general class of k-step integration method (1.9) incorporates most 

of- the commonly used methods with the Euler method being the simplest 

and most basic. This thesis although restricted to Runge-Kutta 

methods, will use other integrators for comparison purposes, and these 

are described below along with a review of Runge-Kutta methods.

1.4.1 Linear Multistep methods

A class of methods, based upon past information, are Linear Multistep

methods, these have the general form,

(1.19) 

- 7 -



If |3 k = 0 («fc * 0) then the method is explicit otherwise it is 

implicit. When such a method is explicit then (1.19) can be solved 

directly otherwise some iterative scheme must be employed. One class 

of linear multistep methods commonly used for the numerical integration 

of non-stiff problems are Adams methods. These methods are derived by 

replacing the function in (1.2) by a polynomial and integrating this, 

Shampine and Gordon[1975].

The Adams methods incorporated in the NAG library have explicit 

predictors, chosen to maximize the stability region, and implicit 

Adams-Moulton methods for the corrector in a PECE implementation. The 

implicit method is solved by means of a simple functional iteration and 

the error estimation is performed by Milne's device. The NAG 

implementation incorporates methods of orders one to twelve.

The most commonly used methods for solving stiff systems are the 

Backward Differentiation Formulae (BDF) popularized by Gear[1971]. 

These methods have the general form

k
(1.20)

Although these are k-step methods, they only require one function 

evaluation per iteration at each step. The implicit equations are 

solved by a Quasi-Newton method. The BDF methods, orders one to five, 

are used in conjunction with starting values obtained by extrapolation 

using a divided difference table. The major handicap with BDF methods 

is that their stability properties deteriorate as the order is 

increased. When applied to (1.15), BDF methods of order greater than 

six are not A(0)-stable and hence they are of little value. Although 

the number of function evaluations required is low their overheads are

- 8 -



high. Craigie[1975] describes in detail the complexity of a modern

version of Gear's method.

1.4.2 Runge-Kutta methods

The general form of an s-stage Runge-Kutta method is

= Vn (1.21)

k i x n + hb i- v n 1-1(1)8

The constants ajj and c^ characterise the particular method and

(1.22)

The coefficients can be expressed in terms of a matrix system, called 

the Butcher matrix of the method. This is

's

1l

ls .
(1.23)

. a ss or

where the sxs matrix A is strictly lower triangular for an explicit 

method, lower triangular for a semi-implicit (or semi-explicit) method 

and full for a fully implicit method.

Due to their simplicity, explicit methods have been very popular and 

high order methods have been derived. The minimum number of stages 

required to solve the resulting non-linear order constraint equations 

is shown in Table 1.1. A by the number of stages denotes that the 

minimum number of stages is unproven but methods with this number of 

stages have been derived.

As will be shown in section 2.2, no explicit Runge-Kutta method can

- 9 -



possess an infinite stability region and hence the step must be 

severely restricted when solving problems with fast transients. For 

this reason implicit Runge-Kutta (IRK) methods have become very 

attractive, as they can be A-stable for high orders. Ehle[1968] proved 

that an s-stage 2s order IRK method can be A-stable. However IRK 

methods suffer from a severe practical disadvantage. If an s-stage 

method is used to solve (1.2), then a system of sN implicit algebraic 

equations have to be solved at each step. By using the Newton 

iteration process this involves approximately s 3 N 3 multiplications for 

the LU factorization of the iteration matrix and s 2 Nz multiplications 

for the back solvers. This is clearly expensive, expecially for high 

order methods.

An enormous improvement in computational efficiency can be achieved if 

semi-implicit methods are used, Alt[1972], Norsett[1974], 

Crouziex[1976] and Alexander[1977]. By using semi-implicit methods the 

process at each step involves the solution of s systems of N algebraic 

equations. In solving the algebraic equations an iteration matrix of 

the form

I-na^af/ay (1.24) 

must be evaluated, where the a^'s are the diagonal elements of the 

Butcher matrix. In a semi-implicit method 8f/3y will be calculated, 

and stored, and (1.24) evaluated for each different a^. But by 

selecting all the ajj values the same (1.24) need be evaluated only 

once, ie. the method has only one s-fold zero of the stability 

function. Such methods are known as Diagonally Implicit Runge-Kutta 

methods (DIRK), Alexander[1977]. However, a semi-implicit method can 

have at most order s+1.

- 10 -



Cash[1975] derived a type of Runge-Kutta method that is a significant 

departure from traditional methods. These methods are implicit in the 

single unknown y n + t and not in the k values like IRK methods. The 

general form of the s-stage method is ,

s
vn+t = v n + hECikj 

i=i
r 

^ = f(x n 4- hbj, y n * hEa^k^ i = l(l)r (1.25)
j = i

s
k i = f < x n+i + nb i> v n+i +

By being implicit in only y n+1 only one set of algebraic equations 

needs to be solved at each step. These Mono-Implicit Runge-Kutta 

(MIRK) methods, require only one LU factorization and s back 

substitutions, Singhal[1980] . Two important class of methods are 

included in MIRK methods, viz. explict Runge-Kutta, r=s, and Backward 

Runge-Kutta, r=0. These Backward Runge-Kutta (BRK) methods will be 

analysed in detail in this thesis.

1.5 Selection of an appropriate numerical method

When the numerical solution of (1.2) is required the user has a vast 

bank of methods to select from. These range from low order to high 

order, explicit or implicit methods of either single-step or multistep 

or of one of the more unusual methods ie. Rosenbrock, Block implicit 

Runge-Kutta, etc. The method chosen must be capable of integrating the 

problem efficiently ie. accurately and within a reasonable CPU time.

The problem of selecting an integrator for the whole integration range 

is two-fold, firstly if the incorrect method is used the integration 

will be inefficient. Secondly the characteristics of the problem may, 

and often do, change during the integration range.

- 11 -



Clearly no single numerical scheme (where scheme implies the complete 

solution algorithm, ie. numerical integrator and if relevant the linear 

equation solver) can possess the correct characteristics to enable it 

to efficiently solve non-stiff and stiff ODEs.

A simple solution, is to always employ an implicit method with the 

implicit equations being solved by a Newton type process. This will, 

however, be inefficient for the non-stiff problems.

A better solution is to use a numerical scheme (integrator plus linear 

equation solver) that monitors the characteristics of the problem and 

can automatically detect changes in these characteristics and switch to 

a scheme that is most appropriate for the problem at that particular 

time. Codes that can automatically do this are often referred to as 

type-insensitive.

There are two basic switching strategies;

i) incorporate two integrators in a code and switch between the two or 

ii) employ only one basic implicit integrator and switch the iteration 

process for solving the implicit equations.

Both methods have been investigated and production codes developed. 

Petzold[1983] produced a code that switched between Adams and BDF 

methods. As stated earlier the main drawback with BDF methods is their 

order limitation for practical purposes, they can not be greater than 

5. The overheads in linear multistep methods are high and so are the 

overheads in switching.

The code of Norsett and Thomsen[1986] keeps the same numerical

- 12 -



integrator, an implicit Runge-Kutta method, and switches the implicit 

equation solver. For the non-stiff case simple functional iteration is 

used whereas Quasi-Newton is employed for the stiff case. This has the 

disadvantage that some iterative scheme must always be employed, which 

is expensive. The code is also restricted to a fixed order.

1-6 Overview of the thesis

This thesis is concerned with the development of numerical schemes for 

the solution of initial value ODEs. A new graphical technique for 

assessing the performance of potential methods is described in chapter 

2, with particular attention to highly oscillatory problems.

Chapter 3 develops the theory behind Backward Runge-Kutta methods and 

in particular their close coupling with explicit Runge-Kutta methods. 

It also shows that they have far superior damping properties than the 

most widely used stiff solvers. Numerical examples are presented, 

without the hinderance of error control, that shows the potential of 

the methods.

In chapter 4 the error control policies applicable to BRK methods are 

explored and it is shown why the normal embedding method, commonly used 

for explicit methods, cannot be employed in the BRK case. The error 

control policy adopted is discussed and incorporated into the code and 

compared with the BDF code implementation of the NAG library.

Most of the numerical integrators incorporated in codes suffer from 

some inefficiencies when solving a certain type of problem. It is well 

known that BDF methods are extremely inefficient for solving problems 

which possess highly oscillatory solutions. Chapter 5 discusses the

- 13 -



class of problem for which BRK methods are inefficient.

Chapter 6 develops the strategies for switching between explicit and 

Backward Runge-Kutta methods. Thus a type-insensitive Switching 

Algorithm for Runge-Kutta methods (SARK) is devised. The switching of 

order is also discussed and implemented in the final code. Numerical 

examples are given that highlight the necessity for a code of this 

type.

When developing any numerical code for the solution of DDEs it is 

impossible to test the code on all systems of DDEs and hence a test 

battery is required. The test battery that is commonly used is the 

DETEST set of Enright and Pryce[1983]. The code developed in chapter 

6, SARK, is compared with the BDF code over the stiff and non-stiff 

problems of the set. As BDF methods are not designed to integrate 

non-stiff systems the Adams methods, used in the NAG library, are also 

tested and compared with SARK over the non-stiff set.

- 14 -



Order 

Stages

Equations 
to solve

1 2 4 8 17 37 85 200 486 1205 3047

Table 1.1 : Minimum number of stages for each order

IMAGINARY

Figure 1.1 : A(cc) -stability region
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IMAGINARY

Figure 1.2a : Absolute stability region of Euler's method

11AQI MART

R6AU <q

Figure 1.2b : Relative stability region of Euler's method
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Chapter 2 : PREDICTING PERFORMANCE

This chapter addresses the problem of assessing the potential 

performance of a numerical method, over a wide range of problems. To 

fully assess the performance of any method for solving initial value 

problems, it must be fully implemented and applied to a large 

collection of test problems. To compare a number of methods in this 

way is clearly a lengthy process. Furthermore, minor changes in the 

implementation strategy can lead to dramatic improvements or to severe 

deterioration, making comparisons difficult to interpret. Consequently 

a quick to use assessment of potential performance, which is 

independent of algorithmic details, is extremely valuable. This can be 

used as a sieve to make an initial selection of promising methods which 

can then be implemented and fully tested on a batch of test problems. 

A new graphical technique is devised that allows this by comparing the 

numerical approximation with the exponential solution of the standard 

test problem in much greater detail than existing techniques. This 

method is extremely quick and easy to perform.

If the ODE being integrated is characterised by imaginary eigenvalues, 

often giving rise to a highly oscillatory component, then the absence 

of A-stability in a numerical method has prompted many authors to 

dismiss it as being inadequate. This new technique introduced gives 

more insight into this case and as a result this assumption is shown to 

be invalid.

2.1 Extension of regions of absolute stability

The simple idea of a region of absolute stability has been extensively 

used for assessing methods. The stability region gives some insight 

into the stability characteristics of a numerical method when solving
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systems of DDEs. Integrating with q (=hx) within the stable region is, 

however, no guarantee that the solution produced will model 

realistically the solution of the system. Indeed if Re(q) is greater 

than zero, it could be disasterous to integrate with q within this 

region.

Recall the standard test problem,

dy
  = Xy y(0)=l (2.1)
dx

which has the analytical solution

y(x) = exp(xx) (2.2) 

If the analytical solution is examined at a series of node points xn = 

nh for n = 0, 1, . . . then

- = exp(q) (2.3)
y(x n )

When the numerical method is applied to (2.1) with constant step h, the 

corresponding numerical ratio is

= E(q) (2.4)

This ratio is the stability function of the method and is a numerical 

approximation to (2.3). The region of absolute stability of the method 

is defined as being the region(s) of the complex plane where propagated 

errors decay as the solution proceeds. One way to identify the 

stability region of a method is to find its boundary. It can easily be 

verified that the boundary is generated from the stability function by 

equating its modulus to unity, ie. |E(q)|=l. One such technique for 

locating this boundary is the boundary locus method Lambert[1973].

Generally E(q) exp(q), but it is hoped that E(q) « exp(q) . The

absolute stability region gives only limited indication as to what
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extent the numerical ratio is a good approximation to the analytical 

one.

By expressing

q * a + ib (2.5) 

in (2.3), the analytical ratio can be written as

  = exp(a+ib) = exp(a)x{cos(b) + isin(b)} (2.6)
Y(x n )

where e a is a measure of the damping of the component and b, the 

argument of q, is its frequency. If a is less than zero the solution 

will decay to zero whereas if a is greater than zero the solution grows 

in amplitude. The stability function, E(q) should approximate both the 

damping and the frequency of the component to produce realistic 

results. It follows that we require the approximate relation between 

the complex quantities ie.

E(q) « exp(a+ib) (2.7) 

to be good in terms of both modulus and argument. This will ensure 

that both damping and frequency are realistic. Therefore it is 

necessary to consider two aspects of the approximation (2.7), viz. the 

damping and the frequency.

Analysis of the damping characteristics of a method can be performed by 

comparing the modulus of the stability function with the modulus of the 

analytical ratio (2.6). Hence we require,

|E(q)| « lexp(a-i-ib) | = exp(a) (2.8) 

By expressing E(q) as Rexp(ie)

|E(q)| = R (2.9) 

Therefore from (2.8) and (2.9)

R * exp(a) (2.10)
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is required. Thus numerical contours expressing the damping 

characteristics of the method can be produced by plotting q such that

E(q) = R (2.11) 

for various values of R. These can then be compared with the 

analytical contours for which exp(a) = R. The latter, from (2.8) are 

straight lines logarithmically spaced perpendicular to the real axis.

The ability of a numerical method to model realistically the frequency 

of a component can be determined by comparing arg(E(q)) with 

arg(exp(q)). Using (2.5) and expressing E(q) as Rexp(ie) then,

arg(exp(q)) = arg(exp(a+ib)) = b (2.12) 

and

arg(E(q)) = arg(Rexp(ie)) = 0 (2.13) 

Therefore the frequency of the numerical solution is 9 which should be 

a satisfactory approximation to b. Hence numerical contours can be 

produced and compared with the analytical solution in which the 

contours are linearly spaced perpendicular to the imaginary axis.

For all Runge-Kutta methods E(q) is a rational polynominal of the form,

E(q) = N(q) / D(q) (2.14) 

where N(q) and D(q) are polynomials in q and D(q) = 1 for an explicit 

method. Substituting Rexp(ie) for E(q) in (2.14) yields an expression 

of the form

CN(q) - Rexp(i0)D(q)] = 0 (2.15) 

This polynorainal equation with complex coefficients can now be solved 

for q to produce the contours. By taking a series of R values eg. R = 

.25, .5, l., 2., 3. and for each value of R varying 0 in the range 0 < 

0 < eg. 0 = 27TJ/100 for j =1(1)100 a series of contours of equal R 

ie. equal |E(q)| can be generated. Similarly if 0 is fixed at a number
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of convenient levels eg. 9 = -3*74, -w/2, -w/4, 0, and 

for each fixed e solving (2.15) for (complex) q with R = O.lj for j = 

1(1)100, contours of equal arg(E(q)) can be plotted. In each case a 

polynomial in q must be solved which has complex coefficients. The NAG 

subroutine C02ADF can be used for this. This technique can be thought 

of as a logical extension of the boundary locus method.

To illustrate this contouring technique a collection of 4th order 

Runge-Kutta methods, whose stability functions are Pads' approximations 

are examined. The five approximations considered are: 

R4>0 = 1 + q + q 2 /2 + q 3 /6 + q*/24 

R3>1 = (1 + 3q/4 + q z /4 -K[ 3 /24)/(l - q/4) 

R 2|2 = (1 + q/2 + q z /12)/(l - q/2 + q z /12) (2.16)

~ 3q/4 + q z /4 - q 3 /24)

These approximations, with the exception of R 2 2 , stem from infinite 

families of methods typified by; the classical 4-stage 4th order 

explicit method (R 4 0 ), Lobatto IIIc method (R 3 t ), Chipmann[1971] and

a 4-stage 4th order backward method (R 0 .). The approximation is** » 

defined uniquely from the 2-stage 4th order fully implicit method which 

has Butcher matrix shown in Table 2.1.

The only 4th order Fade" approximation not in common use as a 

Runge-Kutta method is the R3 j. This approximation can only be derived 

from a fully implicit method and it possesses a finite stability region 

and is hence of no practical value.

The modulus and argument plots for these five Pad£ approximations are 

shown in Figures 2.1 to 2.5. As all the plots are symmetric about the
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real axis, section 3.3, only the positive imaginary axis is displayed. 

The contours for the modulus plots are presented at five different 

levels of R, viz. R = 1/4, 1/2, 1.0, 2.0 and 3.0, each contour is 

represented by a different symbol on the diagram. The argument plots 

are shown for in intervals of again each contour level 

is denoted by a different symbol. Both sets of analytical contours are 

superimposed on to the corresponding plot and their value denoted by 

the symbol located at one end of the contour. The normal region of 

absolute stability can be observed by considering the contour R = 1 of 

the modulus plot.

One other desirable stability property required by a numerical method 

when solving stiff systems is L-stability (chapter 1). The modulus 

plot has the added advantage of determining whether this property is 

present in the method. To be L-stable the contours of Re(q) at -« must 

be zero, hence the value of the contours should decrease as Re(q) tends 

to -co.

Modulus and argument plots for the Pad£ R4 0 approximation are shown in 

Figure 2.1. The modulus plot clearly indicates that the method is more 

successful at producing the correct damping (amplification) for Re(q) 

greater than zero than for Re(q) less than zero. This is due to the 

zeros of the stability function being in the left-hand half plane with 

one close to each of the axes. As q approaches any of the zeros the 

approximation becomes highly inaccurate. From the argument plot it is
*

clear that the zero close to the imaginary axis will distort the 

frequency in this region. Also computing with q at 4i will result in 

the solution being underdamped, whereas with q at 2.5i, within the 

absolute stability region, results in an overdamped solution.
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Therefore the absurdity of the common assumption that computing with q 

within the absolute stability region guarantees a realistic solution is 

immediately clear from these plots.

The two plots generated by the R3>1 implicit method are shown in Figure 

2.2. As this is a rational approximation there are now three zeros and 

a pole, the pole being on the positive real axis. Again this 

approximation is more successful at producing the correct damping for 

Re(q) greater than zero than for Re(q) less than zero, providing that 

Re(q) is kept away from the pole. The pole and zeros again produce 

distortions in the two sets of contours, however as they are further 

away from the imaginary axis the method is more successful for problems 

with eigenvalues close to this axis. The argument plot highlights the 

inability of the method to correctly represent the frequency as q 

departs from the origin.

By considering only the modulus plot of the R 2 2 approximation, Figure 

2.3, it appears that the method is almost ideal for problems with 

purely imaginary eigenvalues. The analytical contour is followed 

exactly on this axis. In other words the corresponding method is 

precisely A-stable, however, the contours in the negative half-plane 

indicate that it is not L-stable. The argument plot reveals that even 

though the poles and zeros are well away from the imaginary axis, the 

frequency will only be modelled realistically for small q. This 

demonstrates that precise A-stability is not a particularly valuable 

attribute for solving oscillatory problems.

The next two approximations, R 1>3 and R0(4 . are mirror images about the 

imaginary axis of R 3>1 and R4(0 respectively with the zeros replaced by
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the poles and vice versa. These are shown in Figures 2.4 and 2.5 

respectively. From the modulus plot it is apparent that the 

approximation is A-stable and that they are both L-stable. Both 

approximations are more successful at producing the correct damping for 

the Re(q) less than zero than for Re(q) greater than zero, providing 

that the zero of R t ^ 3 at q = - 4 is avoided. The argument plots show 

that being able to produce the correct damping for Re(q) less than zero 

is not sufficient to produce realistic results. The step size of both 

must be restricted to faithfully follow the frequency of the component.

2.2 Application to highly oscillatory problems

The ability of this contouring technique to predict the performance of 

numerical methods can be demonstrated by considering a class of problem 

in which the dominant eigenvalues of the Jacobian matrix, 3f/3y, are of 

the general form a ± ib, where jb/a| is much greater than one. Such 

problems frequently arise in engineering situations and will severely 

tax any numerical method. This type of problem is often described as 

highly oscillatory due to dominant eigenvalues of linear problems 

giving rise to a solution of the form

exp(ax)sin(bx + c) (2.17) 

c constant. This leads to the component having a frequency of b/2ir Hz. 

Irrespective of whether the problem is linear, the stability 

characteristics of the integrator are clearly of importance. It has 

long been understood, Prothero and Robinson[1974], Jeltsh[1978], 

Singhal[1980], Gear[1981], that A-stable methods must be employed for 

such problems.

If only error propagation is considered, then A-stability appears 

desirable if not essential. But the ability to produce the correct
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damping and frequency is also of great importance. It is of no value 

producing stable results that are physically unrealistic.

The modulus and argument plots clearly show that precisely A-stable 

methods will need to restrict the step size to follow any high 

frequency component, as indeed will all the methods. None of the 4th 

order methods examined will allow a significantly larger step to be 

used than another. Therefore the method that is "cheapest" 

computationally must be employed, which is the explicit method. Lack 

of A-stability will not hinder the method when solving problems with 

imaginary eigenvalues.

These predictions can be analysed further by considering a variety of

Runge-Kutta methods applied to the highly oscillatory problems. Three

types of Runge-Kutta method, derived from the same coefficients, are

considered. These are outlined below:

(i) Explicit Runge-Kutta (ERK)

The general form of an s-stage ERK method is

kj = f(x n + hbj, y n hla-jiki) j = l(l)s (2.18)
i = i

and their stability functions are of the form

s
Ee (q) = 1 + E6 jq J (2.19) 

j = 1

where the value of 6 j , j = l(l)s depends upon the chosen method and in 

particuilar, 6j = 1/j! for any s-stage s order method, ie. s is less 

than five. Clearly

Limit |E e (q) | = « (2.20) 
Re(q) -> -«
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and hence no ERK method can be A-stable. 

(ii) Backward Runge-Kutta (BRK) 

The general form of an s-stage BRK method is,

s
= Vn "I"

j = i
j- 1

kj = f(x n+1 - hbj, y n+1 - hEa-jiki) j=l(l)s (2.21)
i = i

Thus BRK methods can be considered as ERK methods integrating from 

to x n with a step of -h, ie. Backward. Therefore any coefficients from

a ERK method can be used to form the corresponding Backward method.
% 

Their stability functions, as derived in section 3.1, are of the form,

1 1
Eb (Q) =     i      =      (2- 22 )

(-q)J E(-q)

where the value of 6 j , j = 1(1 )s are those of the corresponding ERK 

method. A-S table BRK methods of order up to two, are known, with 

higher order methods being A(<x)-stable with <x close to 90". Typical <x 

values attainable are given in Table 2.2, along with the corresponding 

<x values for the well known BDF methods. 

(iii) Mixed Runge-Kutta (MRK)

These are derived by alternately using ERK and BRK methods. First the 

ERK method is applied with step h/2 followed by the corresponding BRK 

method with the same step. The order of the resulting method is 

usually the same as the main ERK method but can be higher, (the 

explicit method which generates the mixed method will be referred to as 

the main method). For example coupling 1st order Euler with its 

corresponding BRK method, Backward Euler, gives rise to the precisely 

A-stable 2nd order Trapezoidal rule.

The stability function of a-Runge-Kutta method is generated by applying
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the method to the standard test problem, (2.1), with constant step h. 

Thus for MRK method, this is

Vn+K = Ee (q/2)y n (2.23) 

for the first half step using the ERK method and for the second half 

step using the corresponding BRK method,

y n+1 = Eb (q/2)y nH.fc (2.24)

Hence merging (2.23) and (2.24) and using the result of (2.22)

= Ee(q/2)E b (q/2) 

E(q/2)
(2.25)

Ee (-q/2) 

Thus the stability function of a MRK method has the form

E6j(-q/2)J

For a MRK method the imaginary axis always forms part of the boundary 

of the region of absolute stability. This can be shown by considering 

q = ib in (2.26). Hence

s
1 -i- £6j(ib/2)J 

1 + E6j(-ib/2)J

Si s 2

S t S 2
E« z1 (-l)J(-b/2)J * 1E6

j=2 J j=l

(2.27,
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