
Greenwich Academic Literature Archive (GALA)
– the University of Greenwich open access repository

http://gala.gre.ac.uk

__

Citation:

Wade, Kevin Christopher (1987) SARK: a type-insensitive Runge-Kutta code. PhD thesis, Thames
Polytechnic.

__

Please note that the full text version provided on GALA is the final published version awarded

by the university. “I certify that this work has not been accepted in substance for any degree,

and is not concurrently being submitted for any degree other than that of (name of research

degree) being studied at the University of Greenwich. I also declare that this work is the result

of my own investigations except where otherwise identified by references and that I have not

plagiarised the work of others”.

Wade, Kevin Christopher (1987) SARK: a type-insensitive Runge-Kutta code. ##thesis _type## ,

##institution##

Available at: http://gala.gre.ac.uk/8709/

__

Contact: gala@gre.ac.uk

http://gala.gre.ac.uk/
mailto:gala@gre.ac.uk

SARK : A TYPE-INSENSITIVE RUNGE-KUTTA CODE

BY

KEVIN CHRISTOPHER! WADE
BSc (Hons)

Thesis submitted to the Council for National Academic Awards in
partial fulfilment of the requirements for the Degree of Doctor of
Philosophy.

Centre for Numerical Modelling and Process Analysis
School of Mathematics, Statistics and Computing

Thames Polytechnic
London

September 1987

TO MY PARENTS

ABSTRACT
A novel solution method based on Mono-implicit Runge-Kutta methods has
been fully developed and analysed for the numerical solution of stiff
systems of ordinary differential equations (ODE). These Backward
Runge-Kutta (BRK) methods have very desirable stability properties
which make them efficient for solving a certain class of ODE which are
not solved adequately by current methods.

These stability properties arise from applying a numerical method to
the standard test problem and analysing the resulting stability
function. This technique, however, fails to show the full potential of
a method. With this in mind a new graphical technique has been derived
that examies the methods performance on the standard test case in much
greater detail. This technique allows a detailed investigation of the
characteristics required for a numerical integration of highly
oscillatory problems.

Numerical ODE solvers are used extensively in engineering applications,
where both stiff and non-stiff systems are encountered, hence a single
code capable of integrating the two categories, undetected by the user,
would be invaluable. The BRK methods, combined with explicit
Runge-Kutta (ERK) methods, are incorporated into such a code. The code
automatically determines which integrator can currently solve the
problem most efficiently. A switch to the most efficient method is
then made. Both methods are closely linked to ensure that overheads
expended in the switching are minimal. Switching from ERK to BRK is
performed by an existing stiffness detection scheme whereas switching
from BRK to ERK requires a new numerical method to be devised. The
new methods, called extended BRK (EBRK) methods, are based on the BRK
methods but are chosen so as to possess stability properties akin to
the ERK methods. To make the code more flexible the switching of order
is also incorporated.

Numerical results from the type-insensitive code, SARK, indicate that
it performs better than the most widely used non-stiff solver and is
often more efficient than a specialized stiff solver.

ACKNOWLEDGEMENTS

I would like to express my deep gratitude to my supervisors Dr. Will

Richards and Dr. Martin Everett for their interest and support in my

work. In particular my appreciation is further extended to Dr.

Richards for introducing me to the project, and for his ongoing

assistance.

I also wish to thank Professor John Butcher, Dr. Jeff Cash, Dr. Graeme

Cooper and Dr. Roland England for their advice and many useful

discussions.

I am also grateful to the computer staff at Thames Polytechnic for

their continuous help in providing resources, and for their general

assistance whenever computer problems arose.

I also wish to thank my family for their support during my studies and

all my colleagues and friends at Thames Polytechnic for making my stay

there a most enjoyable one. In particular, I am extremely grateful to

my fiancee Priti Shah for her careful checking of this manuscript and

her constant encouragement.

Finally, I would like to thank the Science and Engineering Research

Council for their financial support in all the work reported in this

thesis.

NOMENCLATURE

Arg(q) Argument of complex q

E(q) General stability function of a Runge-Kutta method

Ee (q) Stability function of ERK method

Eb (q) Stability function of BRK method

eps Smallest machine representable number such that l+eps>l

exp(a) exponentional function, e a

h Step size

1 »J Superscripts for iteration loops

ji Subscripts for loop counts

J Jacobian matrix of the system under consideration

M Approximation to the iteration matrix

N Dimension of ODE system

p Order of the method

q step size, h, multiplied by complex x of scalar test problem

Ri,j Fade" i,j approximation

Re(q) Real part of complex q

r Residual vector

S(x) Stiffness ratio at position x

s Number of stages of the method

t,x Independent variables

xn x-value at nth step

y Dependent variable

yn Numerical solution at position x n

y(x n) Analytical solution at position x n

A Displacement vector

e Error vector

X Real or complex scalar

X^ General eigenvalues of Jacobian of system

9 General Angle

Eigenvector corresponding to X

|a| Modulus of complex a

llall Norm of a

CONTENTS PAGE

ABSTRACT

ACKNOWLEDGEMENTS

NOMENCLATURE

CHAPTER 1 : INTRODUCTION 1

1.1 The problem considered 1

1.2 Stability 4

1.3 Stiffness 6

1.4 Numerical integrators 7

1.4.1 Linear multistep methods 7

1.4.2 Runge-Kutta methods 9

1.5 Selection of an appropriate numerical method 11

1.6 Overview of the thesis 13

CHAPTER 2 : PREDICTING PERFORMANCE 17

2.1 Extension of regions of absolute stability 17

2.2 Application to highly oscillatory problems 24

2.3 Numerical results 31

2.4 Conclusions 34

CHAPTER 3 : BACKWARD RUNGE-KUTTA METHODS 51

3.1 Derivation of Backward Runge-Kutta methods 51

3.2 Order of Backward Runge-Kutta methods 52

3.3 Absolute stability regions of Backward

Runge-Kutta methods 53

3.4 Other stability properties of Backward

Runge-Kutta methods 53

3.5 Implementation details 61

3.6 Problems considered and numerical results 69

CONTENTS PAGE

CHAPTER 4 : ERROR CONTROL 37

4.1 Embedding 37

4.2 Inverse embedding 39

4.3 Richardson extrapolation 91

4.4 Implementation details 92

4.5 Numerical results 93

CHAPTER 5 : PROBLEMS ASSOCIATED WITH BACKWARD RUNGE-KUTTA

METHODS 102

5.1 Singular iteration matrix 102

5.1.1 Approximate factorisation 104

5.1.2 Application of approximate factorization 108

5.1.3 Computing to extra precision 112

5.1.4 Decrease order 113

5.2 Incorrectly calculated iteration matrix 114

CHAPTER 6 : TYPE-INSENSITIVE CODE 121

6.1 Motivation 122

6.2 Switching integrator 124

6.2.1 Switching from explicit method to

implicit method 124

6.2.2 Switching from implicit method to

explicit method 128

6.3 Switching order 132

6.3.1 Order reduction 133

6.3.2 Increasing order 134

6.4 General comments 135

CONTENTS PAGE

6.5 Numerical results 136

6.5.1 Integrating non-stiff problems 136

6.5.2 Integrating stiff problems 137

6.5.3 General results 138

CHAPTER 7 : NUMERICAL COMPARISIONS 165

7.1 The Problems considered 166

7.2 Non-stiff problems 169

7.2.1 Group A 169

7.2.2 Group B 169

7.2.3 Group C 169

7.2.4 Group D 170

7.2.5 Group E 170

7.2.6 Summary of non-stiff results 170

7.3 Stiff problems 171

7.3.1 Group A 171

7.3.2 Group B 171

7.3.3 Group C 172

7.3.4 Group D 172

7.3.5 Group E 173

7.3.6 Summary of stiff results 173

CHAPTER 8 : DISCUSSION AND CONCLUSIONS 200

LIST OF REFFERENCES 204

APPENDICES 209

Appendix A Non-stiff results from DETEST package 209

Appendix B Stiff results from DETEST package 222

Chapter 1 : INTRODUCTION

In this chapter the general problem to be solved will be defined and

sufficient conditions for the existence of a unique solution stated.

The general concept of stability and stiffness as applied to Ordinary

Differential Equations (ODEs) will be introduced. An outline of some

of the methods commonly used in the numerical solution of ODEs will be

discussed and finally a brief overview of the remainder of this thesis

will be presented.

1 . 1 The problem considered

This thesis is concerned with the numerical integration of the initial

value problem,

 =f 1 (x,y 1 ,...y N) Yi(a) = r\i
dx

(1.1)
dyN
 = f N(x,y 1 , . . .y N) yftU) = n N
dx

x > a

ie. a system of first order ODEs. Such systems may arise naturally or

from reducing a higher order equation to a system of first order

equations. Many engineering processes can be expressed mathematically

as ODEs, Bjurel et al.[1970], and hence the efficient and accurate

numerical solution of such systems plays an important role in industry.

By expressing f and y as vectors, (1.1) may be rewritten as

dy
 = f(x,y) (1.2)
dx

x > a , y(a) = n

Before a numerical solution to (1.2) is obtained it is natural to

determine conditions under which a unique solution does exist. For the

initial value problem (1.2) suppose that f(x,y) is continuous in a

region D where

D = { (x,y): a < x < b, lly« < » } (1.3)

then suppose there exists a finite Lipschitz constant, L, such that

Hf(x,y) - f(x,z)ll < Llly-zll (1.4)

for every pair of points (x,y) and (x,z) in D. Then there exists a

unique function y(x) which satisfies (1.2), Henrici[1962] . Clearly

these conditions are very demanding and can accordingly be weakened to

allow a unique solution in some interval |x-a|. Assume that f(x,y) is

continuous in some interval D where

D = { (x,y): |x-a| < «, lly-bll <P } (1.5)

then suppose there exists a finite constant L such that

llf(x,y) - f(x,z)ll < Llly-zll (1.6)

holds for every pair of points (x,y) and (x,z) in D and let

M = max Hf(x,y)ll (1.7)
(x,y)eD

and

7 = min(«,0/M) (1.8)

then there exists a unique solution y(x) of (1.2) in the interval

|x-a|<7. Repeated use of the above, over a sequence of intervals which

together cover the desired integration range, allows a unique solution

over the complete range to be proved.

In practice integration of (1.2) is performed by marching from x = a up

to some finite b in discrete steps, thus solutions are generated at a =

x 0 < Xj < . . . < XM = b. Such methods are known as discrete variable

methods. A general k-step class of such a method is given by,

h) n=0(l)M-k (1.9)

given starting values
- 2 -

yj. = Si(h) i=0(l)k-l

where Mh = b-a, h = x n+1 - x n here assumed constant and the «js are

constant. If *f is independent of y n +k then the method is explicit

otherwise it is implicit. Most of the common discrete variable methods

are encompassed in (1.9), eg. selecting

k = 1,

s i-i
*f =

and « 1 = 1

(where the constants depend upon the particular method and are defined

later) will produce an s-stage, one step (explicit) class of method

known as Runge-Kutta methods. The simplest of these being the Euler

method,

+ hk i

Generally a solution at y n n-i is produced by taking a sample of the

function at discrete points between x n and x n + t , producing a set of s

k-values. A linear combination of these k-values are then added to the

solution produced at xn .

The ability of a numerical method to generate a series of solution

values at a set of node points is, however, no guarantee that the

solution produced is a reasonable approximation to the true solution.

The error produced by the method must be investigated. Global

truncation error is defined by
*

e n = V< x n) - Vn (1.11)

where y(x n) denotes the true, but usually unknown, solution at x n .

Clearly as the step size of the numerical method is reduced the

solution produced by it should approach the true solution ie.

- 3 -

Max n e n +kll -» 0 as h » 0 (1.12)
o<n<M-k

A method which satisfies (1.12) is said to be convergent. From a

numerical point of view it is clearly inappropriate to control (1.11)

at each step, as the true solution is unknown. The quantity which is

usually controlled is the local truncation error, Tn+k , of the method.

This can be thought of as the error introduced by the formula at each

step assuming that no errors have been previously created, ie.

Tj = y(x n) - Sj(h) j=0(l)k-l (1.13)

k
Tn+k = E^y^n-Hi) ~ h* f (xn ,y(x n4. k) , . . . ,y(x n) ,h) n=0(l)M-k

=o

The question of 'how accurate is the numerical solution?' can, in part,

be answered by considering the order of accuracy of the local

truncation error. A method of order p is defined as having

Max HTn +k ll = 0(h p+1) (1.14)
n=0(l)M-k

and a method of order at least 1 is said to be consistent. Clearly a

'usable' numerical method must be consistent. Consistency, however,

does not imply convergence, Hall and Watt [1976].

1.2 Stability

Unfortunately the convergence of a method only deals with the behaviour

of the method as h tends to zero and in practice h must be non-zero.

Clearly any (stability) constraints of a method will depend upon the

problem being solved, thus some standard equation is required. The
i

equation usually considered is the one dimensional test equation,

y' = Xy y(0) = 1 (1.15)

where X may be complex. By applying a Runge-Kutta method to (1.15) a

stability function, E(q), is formed which will, in general, be a

rational polynominal in q=hx. The absolute stability region of a

- 4 -

numerical method is defined to be a region in the complex plane for

which E(q) is less than one in modulus. By ensuring that q remains in

this stability region then propogated errors will decay as the solution

proceeds. If instead of a single equation a linear system of N

equations is considered, ie.

y' = Jy y(o) = A (i.ie)

where J is a constant NxN matrix, A is given and J has eigenvalues

for i=l(l)N, then instead of q we must consider q^ = hX| for i = l(l)N.

We must ensure that for all q^ such that Re(q^) is less than zero, q^

lies within the region of absolute stability.

When encountering problems for which Re(Xj), for some i, is large and

negative, then clearly a finite stability region will restrict the step

size of the method. When solving such problems the corresponding q^

must always be included in the stability region of the method. Thus

the stability region must include some substantial portion of the

left-hand half plane. If the stability region of a method includes the

whole of the left-hand half plane then the method is said to be

A-stable. A method whose stability region is exactly the left-hand

half plane is said to be a precisely A-stable method.

No explicit k-step method can have this property and the highest

attainable order of an A-stable implicit Linear Multistep method is

two, Dalhquist[1963]. Clearly this stability property places a severe

restriction on the numerical method and in particular Linear Multistep

methods.

A less severe restriction is that of A(<x)-stability where <x is an angle

in as shown in Figure 1.1

 5

A-stability or A(<x)-stability examines the absolute stability region

ie. the rate at which the growth of the true solution to (1.15) is

modelled by the numerical method. By considering the rate at which the

solution grows relative to the exact solution a relative stability

region can also be defined. (Unfortunately the term relative stability

region is used to mean something quite different in the context of

linear multistep methods, Lambert[1973]). Wanner et al.[1978] refer to

this region as the order star of the method. The absolute stability

region and order star of the unique 1-stage 1st order Runge-Kutta

method (Euler) are shown in Figure 1.2.

As Re(q) * -« in (1.15) the ratio y(x n+1)/y(x n) -» 0, hence a numerical

method that is to realistically model this ratio must also produce this

behaviour. By applying a Runge-Kutta method to (1.15) and forming the

corresponding numerical ratio, Yn+i/Vn' tne L-stability of that method

can be assessed. A method is said to be L-stable, in addition to being

A-stable, if when applied to (1.15)

Limit * 0 (1.17)
Re(q)->-» y n

holds or L(a)-stable if the method is A(<x)-stable.

1.3 Stiffness

In many engineering applications the system of ODEs being integrated

possesses both fast and slow transients which must be followed

correctly. This phenomenon is known as stiffness and must be correctly

modelled by the numerical method. The first formal definition of

stiffness was given by Lambert[1973] . A linear system y 1 = Ay + o(x)

is said to be stiff when

- 6 -

i) Re(\i) < 0 i=l(l)N and

ii) S(x) = Max iRe)! / Min (Re) | » 1 (1.18)

where X^ , i = l(l)N are the eigenvalues of the NxN matrix A. This

definition can also be used for non-linear systems if the eigenvalues

of af/ay are considered. The system will then be stiff in an interval

I(x) if i) and ii) above are satisfied. The quantity S(x) defines the

(local) stiffness ratio of the problem.

This definition is acceptable if it is not taken too literally. It
*

should only be used as a guide, as stiffness is more complicated than

this and depends upon the solution method, the problem being solved and

the local accuracy requirements. An improved definition of stiffness is

that of Shampine[1975] , which states that a problem is stiff when the

step length is restricted for reasons of stability. But clearly no

numerical figures can be attributed to this definition and (1.18) is

still useful as the formal definition.

1 .4 Numerical integrators

The general class of k-step integration method (1.9) incorporates most

of- the commonly used methods with the Euler method being the simplest

and most basic. This thesis although restricted to Runge-Kutta

methods, will use other integrators for comparison purposes, and these

are described below along with a review of Runge-Kutta methods.

1.4.1 Linear Multistep methods

A class of methods, based upon past information, are Linear Multistep

methods, these have the general form,

(1.19)

- 7 -

If |3 k = 0 («fc * 0) then the method is explicit otherwise it is

implicit. When such a method is explicit then (1.19) can be solved

directly otherwise some iterative scheme must be employed. One class

of linear multistep methods commonly used for the numerical integration

of non-stiff problems are Adams methods. These methods are derived by

replacing the function in (1.2) by a polynomial and integrating this,

Shampine and Gordon[1975].

The Adams methods incorporated in the NAG library have explicit

predictors, chosen to maximize the stability region, and implicit

Adams-Moulton methods for the corrector in a PECE implementation. The

implicit method is solved by means of a simple functional iteration and

the error estimation is performed by Milne's device. The NAG

implementation incorporates methods of orders one to twelve.

The most commonly used methods for solving stiff systems are the

Backward Differentiation Formulae (BDF) popularized by Gear[1971].

These methods have the general form

k
(1.20)

Although these are k-step methods, they only require one function

evaluation per iteration at each step. The implicit equations are

solved by a Quasi-Newton method. The BDF methods, orders one to five,

are used in conjunction with starting values obtained by extrapolation

using a divided difference table. The major handicap with BDF methods

is that their stability properties deteriorate as the order is

increased. When applied to (1.15), BDF methods of order greater than

six are not A(0)-stable and hence they are of little value. Although

the number of function evaluations required is low their overheads are

- 8 -

high. Craigie[1975] describes in detail the complexity of a modern

version of Gear's method.

1.4.2 Runge-Kutta methods

The general form of an s-stage Runge-Kutta method is

= Vn (1.21)

k i x n + hb i- v n 1-1(1)8

The constants ajj and c^ characterise the particular method and

(1.22)

The coefficients can be expressed in terms of a matrix system, called

the Butcher matrix of the method. This is

's

1l

ls .
(1.23)

. a ss or

where the sxs matrix A is strictly lower triangular for an explicit

method, lower triangular for a semi-implicit (or semi-explicit) method

and full for a fully implicit method.

Due to their simplicity, explicit methods have been very popular and

high order methods have been derived. The minimum number of stages

required to solve the resulting non-linear order constraint equations

is shown in Table 1.1. A by the number of stages denotes that the

minimum number of stages is unproven but methods with this number of

stages have been derived.

As will be shown in section 2.2, no explicit Runge-Kutta method can

- 9 -

possess an infinite stability region and hence the step must be

severely restricted when solving problems with fast transients. For

this reason implicit Runge-Kutta (IRK) methods have become very

attractive, as they can be A-stable for high orders. Ehle[1968] proved

that an s-stage 2s order IRK method can be A-stable. However IRK

methods suffer from a severe practical disadvantage. If an s-stage

method is used to solve (1.2), then a system of sN implicit algebraic

equations have to be solved at each step. By using the Newton

iteration process this involves approximately s 3 N 3 multiplications for

the LU factorization of the iteration matrix and s 2 Nz multiplications

for the back solvers. This is clearly expensive, expecially for high

order methods.

An enormous improvement in computational efficiency can be achieved if

semi-implicit methods are used, Alt[1972], Norsett[1974],

Crouziex[1976] and Alexander[1977]. By using semi-implicit methods the

process at each step involves the solution of s systems of N algebraic

equations. In solving the algebraic equations an iteration matrix of

the form

I-na^af/ay (1.24)

must be evaluated, where the a^'s are the diagonal elements of the

Butcher matrix. In a semi-implicit method 8f/3y will be calculated,

and stored, and (1.24) evaluated for each different a^. But by

selecting all the ajj values the same (1.24) need be evaluated only

once, ie. the method has only one s-fold zero of the stability

function. Such methods are known as Diagonally Implicit Runge-Kutta

methods (DIRK), Alexander[1977]. However, a semi-implicit method can

have at most order s+1.

- 10 -

Cash[1975] derived a type of Runge-Kutta method that is a significant

departure from traditional methods. These methods are implicit in the

single unknown y n + t and not in the k values like IRK methods. The

general form of the s-stage method is ,

s
vn+t = v n + hECikj

i=i
r

^ = f(x n 4- hbj, y n * hEa^k^ i = l(l)r (1.25)
j = i

s
k i = f < x n+i + nb i> v n+i +

By being implicit in only y n+1 only one set of algebraic equations

needs to be solved at each step. These Mono-Implicit Runge-Kutta

(MIRK) methods, require only one LU factorization and s back

substitutions, Singhal[1980] . Two important class of methods are

included in MIRK methods, viz. explict Runge-Kutta, r=s, and Backward

Runge-Kutta, r=0. These Backward Runge-Kutta (BRK) methods will be

analysed in detail in this thesis.

1.5 Selection of an appropriate numerical method

When the numerical solution of (1.2) is required the user has a vast

bank of methods to select from. These range from low order to high

order, explicit or implicit methods of either single-step or multistep

or of one of the more unusual methods ie. Rosenbrock, Block implicit

Runge-Kutta, etc. The method chosen must be capable of integrating the

problem efficiently ie. accurately and within a reasonable CPU time.

The problem of selecting an integrator for the whole integration range

is two-fold, firstly if the incorrect method is used the integration

will be inefficient. Secondly the characteristics of the problem may,

and often do, change during the integration range.

- 11 -

Clearly no single numerical scheme (where scheme implies the complete

solution algorithm, ie. numerical integrator and if relevant the linear

equation solver) can possess the correct characteristics to enable it

to efficiently solve non-stiff and stiff ODEs.

A simple solution, is to always employ an implicit method with the

implicit equations being solved by a Newton type process. This will,

however, be inefficient for the non-stiff problems.

A better solution is to use a numerical scheme (integrator plus linear

equation solver) that monitors the characteristics of the problem and

can automatically detect changes in these characteristics and switch to

a scheme that is most appropriate for the problem at that particular

time. Codes that can automatically do this are often referred to as

type-insensitive.

There are two basic switching strategies;

i) incorporate two integrators in a code and switch between the two or

ii) employ only one basic implicit integrator and switch the iteration

process for solving the implicit equations.

Both methods have been investigated and production codes developed.

Petzold[1983] produced a code that switched between Adams and BDF

methods. As stated earlier the main drawback with BDF methods is their

order limitation for practical purposes, they can not be greater than

5. The overheads in linear multistep methods are high and so are the

overheads in switching.

The code of Norsett and Thomsen[1986] keeps the same numerical

- 12 -

integrator, an implicit Runge-Kutta method, and switches the implicit

equation solver. For the non-stiff case simple functional iteration is

used whereas Quasi-Newton is employed for the stiff case. This has the

disadvantage that some iterative scheme must always be employed, which

is expensive. The code is also restricted to a fixed order.

1-6 Overview of the thesis

This thesis is concerned with the development of numerical schemes for

the solution of initial value ODEs. A new graphical technique for

assessing the performance of potential methods is described in chapter

2, with particular attention to highly oscillatory problems.

Chapter 3 develops the theory behind Backward Runge-Kutta methods and

in particular their close coupling with explicit Runge-Kutta methods.

It also shows that they have far superior damping properties than the

most widely used stiff solvers. Numerical examples are presented,

without the hinderance of error control, that shows the potential of

the methods.

In chapter 4 the error control policies applicable to BRK methods are

explored and it is shown why the normal embedding method, commonly used

for explicit methods, cannot be employed in the BRK case. The error

control policy adopted is discussed and incorporated into the code and

compared with the BDF code implementation of the NAG library.

Most of the numerical integrators incorporated in codes suffer from

some inefficiencies when solving a certain type of problem. It is well

known that BDF methods are extremely inefficient for solving problems

which possess highly oscillatory solutions. Chapter 5 discusses the

- 13 -

class of problem for which BRK methods are inefficient.

Chapter 6 develops the strategies for switching between explicit and

Backward Runge-Kutta methods. Thus a type-insensitive Switching

Algorithm for Runge-Kutta methods (SARK) is devised. The switching of

order is also discussed and implemented in the final code. Numerical

examples are given that highlight the necessity for a code of this

type.

When developing any numerical code for the solution of DDEs it is

impossible to test the code on all systems of DDEs and hence a test

battery is required. The test battery that is commonly used is the

DETEST set of Enright and Pryce[1983]. The code developed in chapter

6, SARK, is compared with the BDF code over the stiff and non-stiff

problems of the set. As BDF methods are not designed to integrate

non-stiff systems the Adams methods, used in the NAG library, are also

tested and compared with SARK over the non-stiff set.

- 14 -

Order

Stages

Equations
to solve

1 2 4 8 17 37 85 200 486 1205 3047

Table 1.1 : Minimum number of stages for each order

IMAGINARY

Figure 1.1 : A(cc) -stability region

- 15 -

IMAGINARY

Figure 1.2a : Absolute stability region of Euler's method

11AQI MART

R6AU <q

Figure 1.2b : Relative stability region of Euler's method

- 16 -

Chapter 2 : PREDICTING PERFORMANCE

This chapter addresses the problem of assessing the potential

performance of a numerical method, over a wide range of problems. To

fully assess the performance of any method for solving initial value

problems, it must be fully implemented and applied to a large

collection of test problems. To compare a number of methods in this

way is clearly a lengthy process. Furthermore, minor changes in the

implementation strategy can lead to dramatic improvements or to severe

deterioration, making comparisons difficult to interpret. Consequently

a quick to use assessment of potential performance, which is

independent of algorithmic details, is extremely valuable. This can be

used as a sieve to make an initial selection of promising methods which

can then be implemented and fully tested on a batch of test problems.

A new graphical technique is devised that allows this by comparing the

numerical approximation with the exponential solution of the standard

test problem in much greater detail than existing techniques. This

method is extremely quick and easy to perform.

If the ODE being integrated is characterised by imaginary eigenvalues,

often giving rise to a highly oscillatory component, then the absence

of A-stability in a numerical method has prompted many authors to

dismiss it as being inadequate. This new technique introduced gives

more insight into this case and as a result this assumption is shown to

be invalid.

2.1 Extension of regions of absolute stability

The simple idea of a region of absolute stability has been extensively

used for assessing methods. The stability region gives some insight

into the stability characteristics of a numerical method when solving

- 17 -

systems of DDEs. Integrating with q (=hx) within the stable region is,

however, no guarantee that the solution produced will model

realistically the solution of the system. Indeed if Re(q) is greater

than zero, it could be disasterous to integrate with q within this

region.

Recall the standard test problem,

dy
 = Xy y(0)=l (2.1)
dx

which has the analytical solution

y(x) = exp(xx) (2.2)

If the analytical solution is examined at a series of node points xn =

nh for n = 0, 1, . . . then

- = exp(q) (2.3)
y(x n)

When the numerical method is applied to (2.1) with constant step h, the

corresponding numerical ratio is

= E(q) (2.4)

This ratio is the stability function of the method and is a numerical

approximation to (2.3). The region of absolute stability of the method

is defined as being the region(s) of the complex plane where propagated

errors decay as the solution proceeds. One way to identify the

stability region of a method is to find its boundary. It can easily be

verified that the boundary is generated from the stability function by

equating its modulus to unity, ie. |E(q)|=l. One such technique for

locating this boundary is the boundary locus method Lambert[1973].

Generally E(q) exp(q), but it is hoped that E(q) « exp(q) . The

absolute stability region gives only limited indication as to what
- 18 -

extent the numerical ratio is a good approximation to the analytical

one.

By expressing

q * a + ib (2.5)

in (2.3), the analytical ratio can be written as

 = exp(a+ib) = exp(a)x{cos(b) + isin(b)} (2.6)
Y(x n)

where e a is a measure of the damping of the component and b, the

argument of q, is its frequency. If a is less than zero the solution

will decay to zero whereas if a is greater than zero the solution grows

in amplitude. The stability function, E(q) should approximate both the

damping and the frequency of the component to produce realistic

results. It follows that we require the approximate relation between

the complex quantities ie.

E(q) « exp(a+ib) (2.7)

to be good in terms of both modulus and argument. This will ensure

that both damping and frequency are realistic. Therefore it is

necessary to consider two aspects of the approximation (2.7), viz. the

damping and the frequency.

Analysis of the damping characteristics of a method can be performed by

comparing the modulus of the stability function with the modulus of the

analytical ratio (2.6). Hence we require,

|E(q)| « lexp(a-i-ib) | = exp(a) (2.8)

By expressing E(q) as Rexp(ie)

|E(q)| = R (2.9)

Therefore from (2.8) and (2.9)

R * exp(a) (2.10)

- 19 -

is required. Thus numerical contours expressing the damping

characteristics of the method can be produced by plotting q such that

E(q) = R (2.11)

for various values of R. These can then be compared with the

analytical contours for which exp(a) = R. The latter, from (2.8) are

straight lines logarithmically spaced perpendicular to the real axis.

The ability of a numerical method to model realistically the frequency

of a component can be determined by comparing arg(E(q)) with

arg(exp(q)). Using (2.5) and expressing E(q) as Rexp(ie) then,

arg(exp(q)) = arg(exp(a+ib)) = b (2.12)

and

arg(E(q)) = arg(Rexp(ie)) = 0 (2.13)

Therefore the frequency of the numerical solution is 9 which should be

a satisfactory approximation to b. Hence numerical contours can be

produced and compared with the analytical solution in which the

contours are linearly spaced perpendicular to the imaginary axis.

For all Runge-Kutta methods E(q) is a rational polynominal of the form,

E(q) = N(q) / D(q) (2.14)

where N(q) and D(q) are polynomials in q and D(q) = 1 for an explicit

method. Substituting Rexp(ie) for E(q) in (2.14) yields an expression

of the form

CN(q) - Rexp(i0)D(q)] = 0 (2.15)

This polynorainal equation with complex coefficients can now be solved

for q to produce the contours. By taking a series of R values eg. R =

.25, .5, l., 2., 3. and for each value of R varying 0 in the range 0 <

0 < eg. 0 = 27TJ/100 for j =1(1)100 a series of contours of equal R

ie. equal |E(q)| can be generated. Similarly if 0 is fixed at a number

- 20 -

of convenient levels eg. 9 = -3*74, -w/2, -w/4, 0, and

for each fixed e solving (2.15) for (complex) q with R = O.lj for j =

1(1)100, contours of equal arg(E(q)) can be plotted. In each case a

polynomial in q must be solved which has complex coefficients. The NAG

subroutine C02ADF can be used for this. This technique can be thought

of as a logical extension of the boundary locus method.

To illustrate this contouring technique a collection of 4th order

Runge-Kutta methods, whose stability functions are Pads' approximations

are examined. The five approximations considered are:

R4>0 = 1 + q + q 2 /2 + q 3 /6 + q*/24

R3>1 = (1 + 3q/4 + q z /4 -K[3 /24)/(l - q/4)

R 2|2 = (1 + q/2 + q z /12)/(l - q/2 + q z /12) (2.16)

~ 3q/4 + q z /4 - q 3 /24)

These approximations, with the exception of R 2 2 , stem from infinite

families of methods typified by; the classical 4-stage 4th order

explicit method (R 4 0), Lobatto IIIc method (R 3 t), Chipmann[1971] and

a 4-stage 4th order backward method (R 0 .). The approximation is** »

defined uniquely from the 2-stage 4th order fully implicit method which

has Butcher matrix shown in Table 2.1.

The only 4th order Fade" approximation not in common use as a

Runge-Kutta method is the R3 j. This approximation can only be derived

from a fully implicit method and it possesses a finite stability region

and is hence of no practical value.

The modulus and argument plots for these five Pad£ approximations are

shown in Figures 2.1 to 2.5. As all the plots are symmetric about the

- 21 -

real axis, section 3.3, only the positive imaginary axis is displayed.

The contours for the modulus plots are presented at five different

levels of R, viz. R = 1/4, 1/2, 1.0, 2.0 and 3.0, each contour is

represented by a different symbol on the diagram. The argument plots

are shown for in intervals of again each contour level

is denoted by a different symbol. Both sets of analytical contours are

superimposed on to the corresponding plot and their value denoted by

the symbol located at one end of the contour. The normal region of

absolute stability can be observed by considering the contour R = 1 of

the modulus plot.

One other desirable stability property required by a numerical method

when solving stiff systems is L-stability (chapter 1). The modulus

plot has the added advantage of determining whether this property is

present in the method. To be L-stable the contours of Re(q) at -« must

be zero, hence the value of the contours should decrease as Re(q) tends

to -co.

Modulus and argument plots for the Pad£ R4 0 approximation are shown in

Figure 2.1. The modulus plot clearly indicates that the method is more

successful at producing the correct damping (amplification) for Re(q)

greater than zero than for Re(q) less than zero. This is due to the

zeros of the stability function being in the left-hand half plane with

one close to each of the axes. As q approaches any of the zeros the

approximation becomes highly inaccurate. From the argument plot it is
*

clear that the zero close to the imaginary axis will distort the

frequency in this region. Also computing with q at 4i will result in

the solution being underdamped, whereas with q at 2.5i, within the

absolute stability region, results in an overdamped solution.

- 22 -

Therefore the absurdity of the common assumption that computing with q

within the absolute stability region guarantees a realistic solution is

immediately clear from these plots.

The two plots generated by the R3>1 implicit method are shown in Figure

2.2. As this is a rational approximation there are now three zeros and

a pole, the pole being on the positive real axis. Again this

approximation is more successful at producing the correct damping for

Re(q) greater than zero than for Re(q) less than zero, providing that

Re(q) is kept away from the pole. The pole and zeros again produce

distortions in the two sets of contours, however as they are further

away from the imaginary axis the method is more successful for problems

with eigenvalues close to this axis. The argument plot highlights the

inability of the method to correctly represent the frequency as q

departs from the origin.

By considering only the modulus plot of the R 2 2 approximation, Figure

2.3, it appears that the method is almost ideal for problems with

purely imaginary eigenvalues. The analytical contour is followed

exactly on this axis. In other words the corresponding method is

precisely A-stable, however, the contours in the negative half-plane

indicate that it is not L-stable. The argument plot reveals that even

though the poles and zeros are well away from the imaginary axis, the

frequency will only be modelled realistically for small q. This

demonstrates that precise A-stability is not a particularly valuable

attribute for solving oscillatory problems.

The next two approximations, R 1>3 and R0(4 . are mirror images about the

imaginary axis of R 3>1 and R4(0 respectively with the zeros replaced by

- 23 -

the poles and vice versa. These are shown in Figures 2.4 and 2.5

respectively. From the modulus plot it is apparent that the

approximation is A-stable and that they are both L-stable. Both

approximations are more successful at producing the correct damping for

the Re(q) less than zero than for Re(q) greater than zero, providing

that the zero of R t ^ 3 at q = - 4 is avoided. The argument plots show

that being able to produce the correct damping for Re(q) less than zero

is not sufficient to produce realistic results. The step size of both

must be restricted to faithfully follow the frequency of the component.

2.2 Application to highly oscillatory problems

The ability of this contouring technique to predict the performance of

numerical methods can be demonstrated by considering a class of problem

in which the dominant eigenvalues of the Jacobian matrix, 3f/3y, are of

the general form a ± ib, where jb/a| is much greater than one. Such

problems frequently arise in engineering situations and will severely

tax any numerical method. This type of problem is often described as

highly oscillatory due to dominant eigenvalues of linear problems

giving rise to a solution of the form

exp(ax)sin(bx + c) (2.17)

c constant. This leads to the component having a frequency of b/2ir Hz.

Irrespective of whether the problem is linear, the stability

characteristics of the integrator are clearly of importance. It has

long been understood, Prothero and Robinson[1974], Jeltsh[1978],

Singhal[1980], Gear[1981], that A-stable methods must be employed for

such problems.

If only error propagation is considered, then A-stability appears

desirable if not essential. But the ability to produce the correct

- 24 -

damping and frequency is also of great importance. It is of no value

producing stable results that are physically unrealistic.

The modulus and argument plots clearly show that precisely A-stable

methods will need to restrict the step size to follow any high

frequency component, as indeed will all the methods. None of the 4th

order methods examined will allow a significantly larger step to be

used than another. Therefore the method that is "cheapest"

computationally must be employed, which is the explicit method. Lack

of A-stability will not hinder the method when solving problems with

imaginary eigenvalues.

These predictions can be analysed further by considering a variety of

Runge-Kutta methods applied to the highly oscillatory problems. Three

types of Runge-Kutta method, derived from the same coefficients, are

considered. These are outlined below:

(i) Explicit Runge-Kutta (ERK)

The general form of an s-stage ERK method is

kj = f(x n + hbj, y n hla-jiki) j = l(l)s (2.18)
i = i

and their stability functions are of the form

s
Ee (q) = 1 + E6 jq J (2.19)

j = 1

where the value of 6 j , j = l(l)s depends upon the chosen method and in

particuilar, 6j = 1/j! for any s-stage s order method, ie. s is less

than five. Clearly

Limit |E e (q) | = « (2.20)
Re(q) -> -«

- 25 -

and hence no ERK method can be A-stable.

(ii) Backward Runge-Kutta (BRK)

The general form of an s-stage BRK method is,

s
= Vn "I"

j = i
j- 1

kj = f(x n+1 - hbj, y n+1 - hEa-jiki) j=l(l)s (2.21)
i = i

Thus BRK methods can be considered as ERK methods integrating from

to x n with a step of -h, ie. Backward. Therefore any coefficients from

a ERK method can be used to form the corresponding Backward method.
%

Their stability functions, as derived in section 3.1, are of the form,

1 1
Eb (Q) = i = (2- 22)

(-q)J E(-q)

where the value of 6 j , j = 1(1)s are those of the corresponding ERK

method. A-S table BRK methods of order up to two, are known, with

higher order methods being A(<x)-stable with <x close to 90". Typical <x

values attainable are given in Table 2.2, along with the corresponding

<x values for the well known BDF methods.

(iii) Mixed Runge-Kutta (MRK)

These are derived by alternately using ERK and BRK methods. First the

ERK method is applied with step h/2 followed by the corresponding BRK

method with the same step. The order of the resulting method is

usually the same as the main ERK method but can be higher, (the

explicit method which generates the mixed method will be referred to as

the main method). For example coupling 1st order Euler with its

corresponding BRK method, Backward Euler, gives rise to the precisely

A-stable 2nd order Trapezoidal rule.

The stability function of a-Runge-Kutta method is generated by applying
- 26 -

the method to the standard test problem, (2.1), with constant step h.

Thus for MRK method, this is

Vn+K = Ee (q/2)y n (2.23)

for the first half step using the ERK method and for the second half

step using the corresponding BRK method,

y n+1 = Eb (q/2)y nH.fc (2.24)

Hence merging (2.23) and (2.24) and using the result of (2.22)

= Ee(q/2)E b (q/2)

E(q/2)
(2.25)

Ee (-q/2)

Thus the stability function of a MRK method has the form

E6j(-q/2)J

For a MRK method the imaginary axis always forms part of the boundary

of the region of absolute stability. This can be shown by considering

q = ib in (2.26). Hence

s
1 -i- £6j(ib/2)J

1 + E6j(-ib/2)J

Si s 2

S t S 2
E« z1 (-l)J(-b/2)J * 1E6

j=2 J j=l

(2.27,

- 27 -

= f (3-2

dx
y*

______ _ yZ _ y

- 33

-0.6265383

- 36 -

A ERK

CD MRK

AKQ E< a

-t- BRK

^ ERK
O MRK

1 rlAO I NARY

00

'

S *?
c

&.

-f-

