
Greenwich Academic Literature Archive (GALA)
– the University of Greenwich open access repository

http://gala.gre.ac.uk

__

Citation:

Randle Bennett, Christopher (1999) Dynamic grid adaption using the LPE equation. PhD thesis,
University of Greenwich.

__

Please note that the full text version provided on GALA is the final published version awarded

by the university. “I certify that this work has not been accepted in substance for any degree,

and is not concurrently being submitted for any degree other than that of (name of research

degree) being studied at the University of Greenwich. I also declare that this work is the result

of my own investigations except where otherwise identified by references and that I have not

plagiarised the work of others”.

Randle Bennett, Christopher (1999) Dynamic grid adaption using the LPE equation. ##thesis _type## ,

##institution##

Available at: http://gala.gre.ac.uk/8699/

__

Contact: gala@gre.ac.uk

http://gala.gre.ac.uk/
mailto:gala@gre.ac.uk

1479407
N\ oc-e 3> o'2_

A THESIS

entitled

DYNAMIC GRID ADAPTION USING

THE LPE EQUATION

by

Christopher Randle Bennett BEng. MSc.

submitted in partial fulfilment of the

requirements for the award of the

Degree of Doctor of Philosophy

i

School of Mathematics, Statistics and Scientific Computing,

Faculty of Technology,

University of Greenwich,

London.

MARCH 1999

PREFACE

The aim of the thesis was to develop a technique for dynamic grid adaption based on

the LPE method of Catherall (1991) that can be used on ID, 2D and 3D problems in

a form that can be attached to computational fluid dynamics (CFD) packages with the

minimum of additional coding. To this end the adaptive technique was implemented

to run on real flow problems within the commercial CFD code PHOENICS (Spalding

1989), on a single problem with the research code PHYSICA (Cross et al 1995),and

independently on a range of simple test functions.

Most, though not all of the successful work on structured grid adaption has been

achieved working with inviscid codes that are tolerant of high degrees of grid

distorsion, and involve problems with distinctive flow features such as very strong

shocks which make the task of finding something to move the grid to much easier.

PHOENICS is a viscous code that is not quite so tolerant of poor grid quality and

some of the problems looked at dont have such clearly defined features. This makes

the tasks addressed by the current work much harder.

A major requirement of this adaptive technique is that, as it is being developed for use

with but independent of CFD packages, there should be the minimum of information

transfer between and disruption to the flow solver. This is a great constriction on the

development of the technique, as the information that can be reliably passed between

the adaption tool and the solver consists of the grid coordinates and the values of

solved variables. Grid cells cannot reliably be added, so adaption must take place by

redistribution not refinement. Grid cell renumbering may not be possible, so boundary

conditions must always apply to the same group of cells, regardless of how much the

mesh distorts. In addition there is no allowance for any prior knowledge of the

original problem domain. All of the features of a particular geometry can only be

calculated from the shape and point distribution in the initial grid. Finally, the benefits

of variations in grid density with the adapted grid must be able to outweigh the errors

due to grid distortion when solved over by the CFD code.

The main aim, the development of the adaptive technique, has been achieved.

However, some important features of the technique have not been fully tested. The

most important of these is adaption in three dimensions. Testing in three dimensions

was difficult because of the lack of suitable cases with reliable data, and the difficulty

of comparing results from fixed and from adapted meshes.

Another feature that needs more work concerns weight functions. Many different

forms were found in literature and several of them were implemented in the course

of the development of the technique. Unfortunately there was not enough time to fully

explore the differences, if any, between them.

Within the range of grid quality that can be tolerated by the solver the adaptive grid

can be an effective tool in improving accuracy, given that there is some strong

gradient or flow feature in the problem domain, and that the starting grid is neither

too coarse to pick up the feature nor too fine to render grid redistribution unnecessary.

11

ABSTRACT

This thesis describes the development and implementation of a dynamic adaptive grid

method for general two and three dimensional static and transient fluid flow problems

solved over structured grids. The technique automatically manipulates the location of

grid points within the domain of interest to concentrate cells in regions of high

solution activity, thus aiming to improve the accuracy of the overall simulation for a

given number of initial grid cells. To achieve this aim the Laplace Poisson

Equidistribution equation is used. Furthermore, the work also covers different types

and treatment of weight functions needed to represent areas of high solution activity

and a range of techniques necessary to make the use of adaptive grids practical,

including geometry modelling and grid quality control. The technique is implemented

on simple functions and within the commercial CFD code PHOENICS, on fluid flow

problems ranging from convection driven flows to shock capturing. The ability of the

technique to be used for general grid manipulation is demonstrated by using it to

couple PHOENICS with a stress code in the simulation of a deflecting beam in a

uniform flow. In addition, a novel technique to adapt grids to solution phenomena

using neural nets is demonstrated.

in

ACKNOWLEDGEMENTS

I would like to thank my main supervisor, Dr. Mayur Patel, and my second supervisor,

Professor Koulis Pericleous, for their time, ideas, and encouragement. On the technical

side of things other people who deserve thanks include Steve Rickman of BAe, Jun

Zhao for neural networks stuff, Avril Sloane for the FET code used in the fluid

structure interaction stuff and Nick Croft for being an all round clever so and so.

There must be others as well, but this could go on too long.

The most important part of any research is the funding, and all the sources need

listing. I was lucky enough to have an EPSRC CASE award to cover me for the first

three years of the PhD. Sponsorship, ideas and test cases came from the aerodynamics

department at British Aerospace Military Aircraft Division down at Farnborough. With

the kind efforts of Steve Rickman of BAe and the accounts department of the

University of Greenwich the last sponsorship cheque was only a year late, even with

the University's habit of holding on to the money a little longer than I would have

liked. In this my fourth year the University has funded me through a bursary and

through teaching for most of the year, with my Father covering the holes in the

funding in the middle.

Finally I would like to thank my family and friends for their support and

encouragement, and especially Lorna for reminding me there is a life outside the

computer labs and 'encouraging' me to get on and finish so that I can experience a

little more of it.

Free time? What is that?

CONTENTS

Chapter 1: INTRODUCTION

1.1 Introduction to Grid Adaption and CFD 1

1.2 False Diffusion 3

1.3 Grid Quality 4

1.3.1 Measuring Grid Quality 5

1.4 Techniques 7

1.4.1 Mesh Redistribution Methods 8

1.4.1.1 Equidistribution 10

1.4.1.2 Poisson Equation 11

1.4.1.3 Spring Analogy 12

1.4.1.4 Variational Technique 13

1.4.1.5 Mapping Techniques 14

1.4.1.6 Others 15

1.4.2 Grid Refinement 15

1.4.3 Hybrid Grids 19

1.4.4 Other Methods 20

1.4.5 Unstructured Grids and Finite Elements 21

1.5 The Laplace-Poisson-Equidistribution equation 21

1.5 Requirements of the Adaptive Grid Algorithm 23

1.6 Structure of Thesis 24

1.7 Closure 25

Chapter 2: MAIN ALGORITHM

2.1 Introduction 26

2.2 Computational Molecule 26

2.3 Metric Tensors 27

2.4 Derivation of Laplace Term 29

2.5 Derivation of Poisson Term 30

2.6 Derivation of Equidistribution Term 31

2.7 The LPE Equation 33

2.8 Calculation of Weight Functions in the Equidistribution Term 34

v

2.8.1 Implemented weight Functions 36

2.8.1.1 a1 +a2(j) 36

2.8.1.2 a^aA+a^ 36

2.8.1.3 a1+a2(|) x+a3/: 37

2.8.1.4 a+a 2 37

2.8.1.5 fli+flj^l - .. 37

2.8.1.6 aj+a^J 38

2.8.1.7 l+fll+a* 38

2.8.2 Choice of Weight Constants 38

2.8.3 Weight Function Modifications 39

2.8.3.1 Smoothing by Local Averaging 40

2.8.3.2 Exponential Smoothing 41

2.8.3.3 Power Law Smoothing 42

2.9 Closure 44

Chapter 3: ADDITIONAL TOOLS

3.1 Introduction 46

3.2 Surface and Curve Fitting 46

3.2.1 Curve Fitting 48

3.2.1.1 Derivation of Cubic Coefficients 50

3.2.1.2 'Light' Segments 51

3.2.1.2.1 Three Point Segment 51

3.2.1.2.2 Two Point Segment 52

3.2.1.3 Curve Recovery 53

3.2.2 Surface Fitting 54

3.2.2.1 Derivation of Bicubic Coefficients 55

3.2.2.2 'Light' Patches 59

3.2.2.3 Surface Recovery 59

3.2.3 Surface and Curve Breaking 62

3.3 Interpolation 64

3.3.1 Multiple One Dimensional Linear Interpolation .. 66

VI

3.3.2 Shepard's Interpolation for Transfer of

Data between Grids 68

3.3.3 Comparison of Shepard's and Multiple ID Interpolation 70

3.3.4 Volume and Area Weighting 71

3.4 Cell Integrity Control.. 73

3.4.12D Grids 76

3.4.2 3D Grids 77

3.5 Movement Limitation 80

3.6 Cylindrical Polar type Grids 80

3.7 Closure 82

Chapter 4: SOFTWARE IMPLEMENTATION

4.1 Introduction 83

4.2 Adaption Organisation 83

4.2.1 Adaption Initialisation 84

4.2.1.1 Initialisation Control 85

4.2.2 Adaption Calculation 86

4.2.2.1 Calculation Initialisation 86

4.2.2.2 Main Calculation 86

4.2.2.3 Bookkeeping 88

4.2.2.4 Adaption Calculation Control 88

4.3 Interface between CFD Code and Adaption Modules .. 88

4.3.1 Calling the Adaption Modules 89

4.3.2 Data Transfer 90

4.3.3 Miscellaneous Tasks 90

4.4 Implementation Examples 91

4.4.1 PHOENICS Implementation 91

4.4.2 PHYSICA Implementation 92

4.4.3 Independent Implementation 93

4.5 Closure 94

Chapter 5: 2D VERIFICATION TESTS

5.1 Introduction 95

5.2 Static Cases 95

vn

5.2.1 Attraction to a Line 96

5.2.2 Angled 'Shock' Like Function 98

5.2.3 Sine Wave 101

5.2.4 Hat Function 104

5.2.5 Pill Box 105

5.2.6 Parabola 107

5.2.7 Parabola with Line 108

5.3 Two Dimensional Flow Examples 110

5.3.1 RAE2822 Aerofoil 110

5.3.1.1 Boundary Conditions 110

5.3.1.2 Adaption Parameters 112

5.3.1.3 RAE2822 Aerofoil Case 9 Results 115

5.3.2 Driven Cavity Flow 118

5.3.2.1 Boundary Conditions 119

5.3.2.2 Adaption Parameters 119

5.3.2.3 Driven Cavity Results 121

5.3.3 10 Degree Supersonic Wedge Intake 128

5.3.3.1 Boundary Conditions 128

5.3.3.2 Adaption Parameters 129

5.3.3.3 10 Degree Supersonic Wedge Intake Results 131

5.3.4 Laval Nozzle 136

5.3.4.1 Boundary Conditions 136

5.3.4.2 Adaption Parameters 137

5.3.4.3 Laval Nozzle Results 137

5.3.5 Supersonic Flow Through A Wedge Cascade .. 140

5.3.5.1 Boundary Conditions 140

5.3.5.2 Adaption Parameters 141

5.3.5.3 Wedge Cascade Results 141

5.4 Closure 145

Chapter 6: 3D VERIFICATION TESTS

6.1 Introduction 146

6.2 Three Dimensional Test Function 146

vin

6.2.1 Circular Function 146

6.2.1.1 Boundary Conditions 146

6.2.1.2 Adaption Parameters 147

6.2.1.3 Results 150

6.3 Three Dimensional Flow Examples 152

6.3.1 3D Skewed Wedge Cascade 153

6.3.1.1 Boundary Conditions 153

6.3.1.2 Adaption Parameters 154

6.3.1.3 3D Skewed Wedge Cascade Results .. 155

6.3.2 3D Driven Cavity Flow 161

6.3.2.1 Boundary Conditions 161

6.3.2.2 Adaption Parameters 162

6.3.2.3 3D Driven Cavity Results 162

6.4 Closure 172

Chapter 7: FLUID STRUCTURE INTERACTION

7.1 Introduction 173

7.2 Algorithm 174

7.3 Implementation 175

7.3.1 S_ADAPT Modifications 175

7.3.2 WRITANL 176

7.3.3 G_ADAPT Modifications 177

7.3.4 FET Operation 177

7.4 Example Case 178

7.4.1 Boundary conditions 179

7.4.2 Adaption Parameters 180

7.4.3 Results 181

7.5 Closure 187

Chapter 8: NEURAL NETS

8.1 Introduction 188

8.2 SONN Algorithm 189

8.3 Implementation 192

8.4 Neural Net Adaption inside PHOENICS 192

IX

8.5 Example - X-Y Convection in a Skewed Flow 194

8.5.1 Boundary Conditions 195

8.5.2 Adaption Parameters 195

8.5.3 Results 196

8.6 Closure 201

Chapter 9: CONCLUSIONS AND FUTURE WORK

9.1 General Conclusions 202

9.1.1 Additional Tools 203

9.1.2 The Weight Function 204

9.2 Future Work 205

9.2.1 Transient Cases 205

9.2.2 Three Dimensional Cases 205

9.2.3 New Solvers 206

9.2.4 Linking with Other Codes 206

9.2.5 Refinement and Multiblock Implementation .. 207

9.2.6 Automation of Parameter Choice 208

REFERENCES 209

APPENDIX A: THE LPE EQUATION IN ONE AND THREE DIMENSIONS

A.I Introduction a.l

A.2 Calculation of Metric Tensors a.l

A.3 Derivation of Laplace Term a.6

A.4 Derivation of Poisson Term a.7

A.5 Derivation of Equidistribution Term a.8

A.6 The LPE Equation a. 10

A.7 The LPE Equation in One Dimension a. 11

APPENDIX B: SOFTWARE STRUCTURE

B.I Introduction b.l

B.2 PHOENICS Components b.l

B.3 Adaption Files b.3

B.4 S_ADAPT b.5

B.4.1 Tasks in S_ADAPT b.6

B.5 G_ADAPT b.7

B.5.1 Communication between Adaption Module and EARTH b.9

B.5.2 Tasks in G_ADAPT b.10

B.5.2.1 Preparatory Phase in G_ADAPT .. b.10

B.5.2.2 Processing Phase in G_ADAPT .. b.10

B.5.2.3 Bookkeeping Phase in G_ADAPT .. b.12

APPENDIX C: PSEUDO CODE FOR ADAPTIVE MODULES

C.I Introduction c.l

C.2 SATELLITE Adaption S_ADAPT c.l

C.3 EARTH Adaption G_ADAPT c.2

XI

SYMBOL KEY

9 Angle

XL,XP,XE .. Weights on the Laplace, Poisson, and Equidistribution terms of

	the LPE equation respectively

^ Curvilinear coordinate

<|) Adaption Variable

a Equation constant

gij Modified form of contravariant metric tensor

glj Contravariant metric tensor

g Jacobian

Solution curvature

P Control function

p,q,r general space coordinates

S Source term

s Arc length

u,v Parametric values

WI, WJ, WK .. Weight function values in X, Y, Z coordinate directions

	respectively

w Weight function

Z Parametric equation

Subscripts x , ^ refer to partial differentiation with respect to x, £,. Double subscripts,

such as (j)^ refer to the second derivative of (j) with respect to x.

xn

CHAPTER 1: INTRODUCTION

1.1 Introduction to Grid Adaption and CFD

The aim of this chapter is to introduce the concept of grid adaption, to briefly explain

the different techniques found in literature, and to describe the Laplace Poisson

Equidistribution algorithm used in the current work.

Computational fluid dynamics (CFD) encompasses the simulation of physical

phenomena through the use of mathematical equations. It exists because it allows

physical behaviour to be determined in situations and geometries that could not

otherwise be measured or explored analytically, and it allows rapid modifications to

be made to geometrical designs in the virtual world of the computer that would take

much longer if modifying 'real' models.

Many systems of mathematical equations used in computational fluid dynamics

involve the solution of partial differential equations on discrete elements or cells that

define the physical domain. These cells form a grid, and its shape and resolution has

a profound effect upon the accuracy of the simulation. The finer the grid, the higher

the resolution and accuracy, but the higher the computational cost in time for the

computation of the solution and in memory used to store information for each element.

In addition the length scales of various phenomena may vary dramatically across the

physical domain. If, for instance, a shock wave is being modelled then the required

grid resolution to accurately fit the shock will be very high. If the grid is uniformly

distributed, then either an extremely large number of cells will be required or the

phenomena will be dissipated or lost. An extreme example is given by Quirk (1991)

for the case of a detonation wave in solid explosives where for the required grid

resolution within the reaction zone the cell thickness should be in the order of 0.002

mm in a sample which may measure 100 mm in length by 100 mm in diameter. If the

location of such phenomena is known beforehand, then the generation of the

computational grid can be modified to produce a higher resolution in the important

1

regions. If their positions are not known, their shapes complex, or in transient cases

their position moves, the only way to accurately and efficiently model them is to use

a grid that dynamically adapts to them.

The two techniques used for dynamic grid adaption are grid refinement (figure 1.1),

which involves the addition and possible subtraction of grid nodes to the original grid,

and redistribution (figure 1.2), where the positions of the original grid nodes are

modified. Refinement provides the least cost in computational resources for a

prescribed level of accuracy. Redistribution provides the best accuracy for a proscribed

level of cost. The two techniques are not mutually exclusive. The current work is

concerned with redistribution.

\

Figure 1.1 Refinement (Dannenhoffer 1991) Figure 1.2 Redistribution (Dannenhoffer 1991)

Another approach to see why grid adaption can be useful is to consider truncation

error due to the Taylor expansion which can be used to discretise partial differential

equations. The Taylor expansion creates solvable algebraic expressions for the first

and second order derivatives that consist of terms involving discrete points and a

truncation error which is a function of the distance between the discrete points and the

change in value over the points. The truncation error is least when either the distance

between the points or the change in value is small. By clustering points where the rate

of change is high and reducing the number of points where the rate of change is low

a dynamically adapting grid can achieve a constant level of truncation error over the

whole domain thus minimising the total error.

The type of grid covered in the current work is the structured, body fitted coordinate

grid, or BFC for short. The BFC grid is formed by the intersection of families of

curvilinear lines that coincide with the shape of the physical domain at its boundaries

(figure 1.3). It can be viewed as a regular, rectangular grid that has been pulled and

stretched until it fits the dimensions of the physical domain. A few other examples of

grid include cartesian, where the grid is formed by the intersection of three sets of

mutually perpendicular parallel planes; polar coordinate, where the grid is formed by

planes intersecting an axis, perpendicular to the axis, and in concentric cylindrical

surfaces around the axis; and unstructured, where elements may in theory have any

number of sides and the grid connectivity is controlled by the use of adjacency tables.

Figure 1.3 Example BFC grid

1.2 False Diffusion

False diffusion is a major source of error in CFD techniques. It results from the

treatment of fluid flow between neighbouring cells in multidimensional grids as one

dimensional in the basic discretisation of the conservation equations used to model the

fluid. When the local grid is misaligned with the direction of fluid flow the

contributions from convection from the neighbouring cells are of poor accuracy. The

error can be seen as an artificial diffusion term. A much fuller description of false

diffusion is given by Patankar (1980).

False diffusion has little effect when the grid is aligned with the fluid flow and when

the ratio of convection to diffusion is low. Otherwise false diffusion can be reduced

by using complex discretisation schemes on the conservation equations, such as

SUCCA (Carey et al. 1993), or CUPID (Patel et al. 1988), or by using grid adaption.

Grid adaption by redistribution can align the grid cells with the local flow direction.

Grid adaption by both redistribution and refinement can also reduce the local grid cell

size where false diffusion is worst.

1.3 Grid Quality

Grid quality is difficult to measure because it depends so much upon the problem and

the capability of the CFD solver which is used to solve it. The basic requirements of

a good structured grid are that it:

 Accurately defines the geometry of the problem, including internal and

external boundaries.

 Allows a solution to be generated to the required level of accuracy for the

minimum use of resources. This can involve variation in grid density.

The degree to which the grid can be skewed to accommodate boundaries and increased

density in regions of high solution error is governed by the way in which grid

properties contribute towards error. The two main grid properties that contribute

towards grid error are:

 Orthogonality. An orthogonal system is defined by Thompson et al. (1985)

as one where a vector normal to a coordinate surface is parallel to the tangent

of a coordinate line that crosses that surface. These two vectors are known as

the contravariant and covariant base vectors respectively and are important in

the derivation of the metric tensors used to transform grid coordinates from

physical to curvilinear space (see appendix A). Structured grid orthogonality

is based on the arrangement of grid nodes.

 Smoothness, defined as the rate of change of the angles between grid cells

and the rate of change of grid cell volume.

The general requirements for grid quality given by Jacquotte (1991) are orthogonality

the grid lines close to the boundaries, angles between lines not exceeding 45°,

deviation of lines from one cell to the next of not more than 10 to 15°, and a rate of

change of volume not greater than 30%.

Grid cell aspect ratio can contribute to grid quality problems, particularly when

combined with poor smoothness and orthogonality.

Though there is much literature available on mesh optimisation, with or without grid

adaption, (Lehtimaki 1995, Knupp 1992, Jacquotte 1992, 1991, Chawner and Anderson

1991, Lu and Eiseman 1991, Lee et al. 1990 and Thompson et al. 1985), research on

the actual contributions of grid properties of solution error have been limited (Huang

and Prosperetti 1994, Lee and Tsuei 1992b, Shirayama 1991). The most interesting of

these papers is possibly Huang and Prosperetti (1994) who determine formulae for the

truncation error due to the diffusion term in the Navier Stokes equations, and then use

the formula to test the influence of grid angle, smoothness and boundary

orthogonality. Their main conclusions are that grid angle is only significant when very

small, the importance of grid smoothness is related to the shape of solution, with very

regular solutions needing smoother grids, and that orthogonality is less important than

grid density. In other words orthogonality can be disadvantageous when it reduces the

local grid concentration.

1.3.1 Measuring Grid Quality

Grid skewness is very similar to grid orthogonality and can be measured relatively

easily using the technique described in Lehtimaki (1995). Here skewness is defined

as the amount of deformation of the individual grid cells. In two dimensions it is

calculated for each grid cell by using the areas of both pairs of triangles which are

formed by splitting it along either of its two diagonals.

If the areas of the triangles are tn and t12 for the diagonal from ij to i+l,j+l; t21 and

t22 for the diagonal from i+lj to i,j+l', and the maximum lengths of the edges of the

cell in each curvilinear direction are e} and e2 (figure 1.4) then the skewness p can be

calculated using equation 1.1.

p=2. (1.1)

Figure 1.4 Definition of Terms in Equation 1.1

A value of 1 for the skewness p indicates a quadrilateral cell. As the cell becomes

more skewed p decreases. If the cell becomes folded then p becomes negative.

In the system described in figure 1.5 the orthogonality o of the point r,-. can be

determined using the formula given in Lehtimaki (1995):-

Where

r. .. - r.. 8r. ..= l+lj IJ
r. .-r..

(1.3)

Figure 1.5 Grid Orthogonality

1.4 Techniques

This section presents examples of the range of adaption techniques found in the

literature. Features which are common to all adaption techniques are briefly discussed

first.

All adaption techniques consist of a method to determine where in the physical

domain extra computational resources are required. The value calculated by this

method is commonly known as the weight. The weight is usually some function that

relates to solution error which may be some measure of the truncation error using a

second coarse mesh, or more simply based on the gradients of chosen solution

variables. The weight may also be linked to geometrical properties of the grid to assist

in grid generation. The principal aim of adaption techniques is to evenly distribute the

weight over the domain so as to evenly distribute and minimise the overall solution

error by avoiding large peaks and troughs.

A fuller description of methods used to calculate the weight is presented in chapter

2.

In the case of refinement more grid cells are added in regions where the weight

exceeds some predefined tolerance. In redistribution techniques the grid cell spacing

is, depending on the technique used, inversely proportional to the weight distribution.

This is driven by the equidistribution equation, which in one dimension is

w Ax = constant (1.4)

Where w is the weight, and Ax is the grid point spacing.

A second feature common to all adaption techniques is that the final grid itself will

be able to provide information on the shape of the solution through the distribution

of its cells. An example of this can be seen in figures 1.1 and 1.2 above where the

calculated position of pressure waves around the aerofoil can be clearly seen in the

grid.

1.4.1 Mesh Redistribution Methods

Mesh redistribution methods involve the movement of nodes in, or the recalculation

of the original grid with the same number of cells, so as to give a better grid

distribution for the problem.

The main problem in redistribution techniques is balancing the demands of

equidistribution of error against grid quality. Errors due to grid quality will increase

and overtake the error modelled by the weight function if the grid is stretched too far.

Grid quality can be measured in terms of orthogonality or skewness, which can be

looked on as a function of the internal angles of the cell, and smoothness, which is

the rate of change of cell size. Maintaining grid quality also means avoiding grid line

cross over and cells which are too small or large. There is some published work

concerned with optimising grid quality alone. Examples include Lehtimaki (1995),

Huang and Prosperetti (1994), Lu and Eiseman (1991), Saoub and Vandromme (1991),

and Shirayama (1991).

The main advantages of grid redistribution techniques include

 Continuous response to solution behaviour.

8

 Fixed storage requirements, though allowances may need to be made to store

old grids.

 Easier to implement, particularly for three dimensional grids. The flow solver

may not need to have any knowledge of adaptivity.

 Alignment of grid with the direction of local flow and physical phenomena

such as shock waves can help to reduce numerical diffusion

Disadvantages include

 Loss of grid quality. Computational effort and coding complexity may have

to be tied up with monitoring quality.

 Maintenance of internal and external grid boundaries and grid features. This

is more straightforward where the grid is regenerated using known geometrical

information about the physical domain, but less so when grid points are moved

only.

 Disruption to flow solver. If adaption takes place dynamically, that is during

the course of a single run of the flow solver, then the stored values for the

solved variables in each cell become invalid once the grid has moved.

Dannenhoffer (1991) assumes that as the movement in each adaption will be

small that the solution carried forward to the new grid will be a good guess to

the new solution. The alternative is to interpolate the solution between grids,

which may be expensive if the grid is large and particularly for three

dimensional grids.

1.4.1.1 Equidistribution

The equidistribution equation on its own is the simplest method of grid adaption, as

well as being the basis for grid movement in other techniques.

There are a range of methods based on the equidistribution equation. The method used

by Patel, Pericleous and Baldwin (1995) involves equidistribution along lines. Each

grid line is treated separately, and cell distribution is based on the arc length. Equation

(1.4) is rewritten as

(1.5)

where As is the arc length. This is modified to allow for zero values of weight giving

(1.6)

where Asn is the new arc length, the original arc length and some predefined

function that is fixed for each line. After all of the new arc lengths are calculated they

are scaled to fit within the limits of the original grid line. Additional terms may be

added to control the amount of movement in each adaption.

Equidistribution on its own may be very fast, but additional steps, such as Laplace

smoothing, may be needed in the adaption algorithm to enhance grid quality. Such

steps may also help to link the movement between neighbouring grid lines that may

otherwise lead to highly skewed grids.

Examples of equidistribution techniques in literature include Adams and Conlisk

(1995), Patel et al. (1995), Lin and Wu (1993), Lee and Tsuei (1992a), (1992b), Shyy

(1992), (1991a), (1991b), (1990), (1986), Harvey et al. (1991), Chang and Shyy

(1991), Chao and Liu (1991), Pao and Abdol-Hamid (1991), Bockelie et al. (1990),

Lawal (1990), Mattheij and Smooke (1989), Seibert et al. (1989), Anderson (1987a),

10

Eiseman (1987), Eiseman and Bockelie (1987), Coyle et al. (1986), Sanz-Serna and

Christie (1986), Dwyer (1985) (1984), Rai and Anderson (1982).

1.4.1.2 Poisson Equation

A common method for structured grid generation involves the solution of the Poisson

equation, where the Laplace equation common in elliptic grid generators is equated

to some control function. The basic form of the equation is

= < (1-7)

where is a control function and ^, are the system of coordinates that define

curvilinear space. This equation is commonly inverted to make the physical

coordinates the dependent variables, and thus takes the form

E E %? +E % = 0 d-8)

where is the contravariant metric tensor, is the general space coordinate, and

is the transformed control function. The value of the control function is used to control

the shape of the grid and the concentration of grid cells. A control function of zero

means that the equation defaults to the Laplace equation and the resulting grid is equi-

spaced. A full description of the use of control functions can be found in Thompson

et al. (1985).

This method can be easily modified to allow for adaption by modifying the control

function term to include an adaptive term that is related to solution activity. By

including and weighting both the term to generate the original grid and the term to

adapt the grid the amount of adaption can be controlled. If the weighting on the terms

is allowed to vary during the run, then the original grid can be recovered by reducing

the weight on the adaptive term (Roache et al. 1991). The adaptive form of the

Poisson equation can be written as

11

., ., 6 + =0 u (1-9)

where controls the amount of adaption, and is some adaptive weight function.

The Poisson equation is widely used for grid adaption on both two and three

dimensional grids (Hall and Zingg 1995, Kwon and Jeong 1995, Shen et al. 1993,

Catherall 1991,Dannenhoffer 1991,Hsu and Lee 1991, Anderson 1990, 1987a, 1987b,

Tu and Thompson 1990, Noack and Anderson 1989, Kim and Thompson 1988,

Matsuno and Dwyer 1988, Thompson 1985, Holcomb 1984).

1.4.1.4 Spring Analogy

This method is in more common usage for finite element problems, and in particular

mixed fluid and structure interactive problems where the mesh may deform about an

elastic structure (Farhat and Lin 1990, Lesoinne and Farhat 1995). In such problems

the stress solver required to modify the grid may already be available. The grid can

be looked at as a pseudo structural problem with each node connected to its

neighbours by a spring. For grid adaption a force is applied to each node in the mesh

relating to the value of some function. For moving mesh type problems a range of

nodes are given an initial displacement and the system allowed to reach a new

equilibrium. The problem can also be looked at as the minimisation of the energy in

the system of springs as depicted in figure 1.6.

Figure 1.6 Tension spring analogy

12

To prevent excessive grid skewness a torsion spring concept (figure 1.7) may be used

about each node (Catherall 1991, Harvey et al. 1991, Nakahashi and Diewert 1987,

1986, 1985).

Figure 1.7 Torsion Spring Analogy

An advantage of this approach is that as it only depends upon a system of nodes and

links the same technique can be used for both structured and unstructured grids

(Farhat and Lin 1990).

Other examples of the use of the spring analogy in literature include Hu (1998) at the

University of Greenwich, Ramakrishnan and Singh (1994), Harvey et al. (1993),

Davies and Venkatapathy (1992), Palmerio (1992), Niederdrenk (1991), Gnoffo

(1983). It is also being used in ongoing work at the University of Greenwich in

coupling structural and CFD codes (Slone 1997).

1.4.1.4 Variational Technique

The variational technique involves the evaluation and minimisation of grid properties

and solution error, commonly using Euler-Lagrange equations from the calculus of

variations. The properties commonly checked for include cell volume or area,

smoothness and orthogonality. The final solved for equation is a weighted combination

of the above properties.

The integral form of the three terms for orthogonality, smoothness, and solution

behaviour used by Kim (1987) and others are:-

13

Smoothness

3

= JJ/E

Orthogonality

3

JJ/E (LID

Solution behaviour

The main advantage of variational techniques is that the individual terms reflect

physically significant quantities that are easy for the user to understand. However the

final equations may be more costly to evaluate whilst not producing significantly

different results from, say, Poisson based schemes (Kim 1987).

Other examples of the use of variational techniques are included in Brackbill (1993),

Castillo (1991), Desbois (1991), Hsu and Tu (1987), Jacquotte and Coussement

(1992), Palmerio (1992), Saouab and Vandromme (1991), Singh, Kumar and Tiwari

(1991), Jeng and Liou (1989), Giannakopoulos and Engel (1988), Kim and Thompson

(1988), and Brackbill and Saltzman (1982).

1.4.1.5 Mapping Techniques

Mapping techniques involve the adaption of the grid in some form of transformed or

parametric space which is then mapped back to the physical domain. The parametric

space may be much simpler than the physical domain and may even be uniform. This

allows the use of simpler adaption equations, that will in turn probably behave better

than on a skewed mesh. In addition the grid shape and grid quality can be closely

controlled as the grid points are mapped back to the physical domain.

14

The main strength of mapping techniques is in handling complex geometry, where it

is much easier to maintain high grid quality and prevent grid cross over.

The weaknesses of these techniques include the time taken for transfer of data from

parametric space to real space, and the need to know a lot of information about the

initial grid. It may be necessary to completely regenerate the original grid, so the

technique may only be practical when a new grid can be generated rapidly, as in the

case of Alien (1995) where transfinite interpolation is used to generate the grid.

Examples of the use of monitor surface include Alien (1995), Hagmeijer (1994),

Brackbill (1993), Benson and McRae (1991), Pao and Abdol-Hamid (1991), Bockelie

et al. (1990), Arina (1989), (1988), Eiseman (1987), (1985a), (1985b), and Eiseman

and Bockelie (1987).

1.4.1.6 Others

Greenburg (1983) used a linear unimolecular chemical kinetic analogy to determine

grid point movement.

Another technique is presented by Petzold (1987) who uses a one dimensional moving

grid scheme to minimise the time rate of change when modelling moving fronts.

1.4.2 Grid Refinement

In grid refinement extra cells are used to resolve the solution in flagged, commonly

rectangular, regions within the original grid. Regions are flagged where some sort of

solution error indicator exceeds a defined tolerance level. The solution error indicator

may be very similar in form to those used for weights in mesh redistribution.

For structured grids there are two principal techniques, grid embedding or grid

division.

15

In grid division (figure 1.8) the grid is held in a complex data structure such as a quad

tree or oct tree for three dimensions. Flagged cells spawn sub cells in a level below

them in the grid hierarchy that are formed by subdividing the region covered by the

original cell. Starting from an initial grid that is already refined it may be possible to

coarsen regions where solution activity is small. A common restriction on this kind

of grid is that neighbouring cells can only be one level different. The grid may be

solved in a partly unstructured way.

Figure 1.8 Top level, initial, and adapted grids
The two main problems with this kind of adaption are due to the restrictive data

structure involved, which must be built into the underlying flow solver from an early

stage, and due to the problem of dealing with discretisation and conservation at

hanging nodes.

16

Examples of grid division techniques are included in Davies and Dannenhoffer (1994),

De Zeeuw (1992), Dannenhoffer (1991), (1987), (1985), Carey et al. (1988), and

Carey (1987).

Grid embedding (figure 1.9) involves the use of a new separate grid to cover the

flagged region. The embedded grid is solved as a separate problem, with boundary

conditions coming from the original grid, possibly in the form of single layer of

surrounding cells known as halo cells. The solution computed on the embedded grid

is either stored in its own right or transferred back to the initial grid. The initial grid

may have embedded regions either be blocked or blanked out, or solve for those

regions using data interpolated back. The overall data structure of the grid may be

invisible to the underlying flow solver (Quirk 1991) allowing the choice of solver to

be much more flexible than would be the case using grid division. At the same time

the problems of hanging nodes are greatly reduced as no grid solved for contains

them. They only contribute to the definition of the boundary conditions, the

calculation of which is invisible to the underlying solver. There is also more flexibility

over the type and number of cells in the refined region, allowing very high resolution

to be achieved instantly to model rapidly changing length scales in the solution, if

required.

17

Figure 1.9 Initial and embedded grids

Grid embedding is close to multigrid and multiblock methods. The separation of the

solution procedure for the different embedded regions may allow the process to be

easily parallelised. Though the data structure may be much simpler than for grid

division, data storage for the whole problem may be difficult, especially if the position

of the embedded regions is to be modified.

Examples of grid embedding techniques are included in Pascau and Caspar (1995),

Wu (1995), Blom and Verwer (1994a), (1994b), (1994c), Quirk (1991), Thompson and

Ferziger (1989), Berger (1986), and Berger and Colella (1986).

The main advantages of grid refinement techniques include

 Grid quality maintained. If only rectangular regions are refined the quality

of the final grid will be no worse than that of the original. In techniques such

as Local Uniform Grid Refinement (Blom and Verwer 1994a, 1994b, 1994c)

the grid is always regular, and the underlying solver can take advantage of

this.

18

 Grid geometry maintained. Subdivision of grid cells does not require

knowledge of the geometry of the whole domain.

The main disadvantages of grid refinement include

 Data structures and storage. The storage requirement will be constantly

varying, demanding some outside limit of space, or the use of some form of

dynamic memory allocation.

 Visualisation of results. This is tied in with the implementation, but may be

especially awkward if the solution is transient.

 Discrete reaction to phenomena. Cells are only subdivided or embedded at

set threshold values of the error indicator. The subdivisions or embedded cells

are of fixed sizes.

1.4.3 Hybrid Grids

Hybrid adaption techniques combine grid refinement and redistribution (figure 1.8).

Hybrid methods potentially offer very fast and efficient adaption to solution

phenomena, though at the same time need both the data structures required by

refinement methods and the controls needed to maintain geometry and grid quality

required for redistribution methods. Because both methods of adaption are available

the actual amount of movement that occurs due to redistribution may only need to be

small, so that the problems with excessively skewed grids may be avoided. When the

grid is refined by halving the flagged grid cells a modest reduction in cell size through

redistribution will reduce the number of refinement levels necessary to achieve the

desired accuracy.

19

Figure 1.10 Hybrid grid adaption (Lee and Tsuei 1993)

The two choices are refine then redistribute, used by Acharya and Moukalled (1990)

or redistribute then refine used by Lee and Yeh (1993). Both techniques have their

advantages. The choice may depend on the type of grid refinement available.

Acharya and Moukalled (1990) use a modified grid embedding technique where the

refined structured grid is generated using weighting based on solution behaviour. The

unusual aspect of their work is that the refined region does not have to have a regular

shape and as a result the embedded grid may be very skewed, particularly at its

boundaries.

Examples of refinement followed by redistribution in literature can be found in

Moukalled and Acharya (1991), and Acharya and Moukalled (1990).

Examples of redistribution followed by refinement in literature can be found in Arney

and Flaherty (1990), Biswas et al. (1993), Lee and Yeh (1993), Lee and Tsuei (1993),

and Szmelter et al. (1992). Seibert et al. (1989) adapt on the allowable grid then

coarsen the resulting grid by removing grid points.

1.4.4 Other Methods

Mavriplis (1992) discusses adaption of spectral elements. Beyond redistribution and

refinement the order of the equations for the cells in question may also be increased.

20

1.4.5 Unstructured Grids and Finite Elements

Though much is applicable to any adaptive grid method, the current work is solely

concerned with structured grids, though it could be easily extended to rectangular

elements, or 'pseudo' structured grids, so the coverage of adaption for unstructured

grids is by necessity very light. Adaption for unstructured grids is arguably more

common than for structured, and there are numerous papers available on unstructured

grid adaption. No attempt has been made to produce an exhaustive review of

unstructured grid adaption techniques.

Unstructured grid techniques usually have the advantage of fast grid generation,

particularly for triangular elements. They may also have a more flexible number of

grid nodes. These factors make the easiest method of adaption refinement by simply

adding or redistributing grid nodes to important areas, then recalculating the grid.

Transfer of data between grids may be more awkward. What has been classed as grid

redistribution, where the grid nodes retain their connectivity between applications of

the adaption algorithm, is much more rare, with the main examples being in finite

element problems where the grid may be moving anyway.

A few examples of adaption in unstructured meshes include Franca and Haghighi

(1994), Palmerio (1992), Sweby (1988), Carey (1987), and Oden et al. (1986).

1.5 The Laplace-Poisson-Equidistribution Equation

The Laplace-Poisson-Equidistribution, or LPE, equation is the adaptive method

implemented in this thesis. It is based on the Poisson equation used for grid generation

and adaption (see 1.4.1.2). As suggested by its name it includes three principal terms,

a Laplace smoothing term, a Poisson term that promotes the original grid distribution

and an Equidistribution term that drives the grid adaption. The terms are weighted by

the user to control how much or how little adaption takes place. The LPE equation can

be written in the form

21

(1-13)

Where XP, XE are the weights on the equations, and represent the

Laplace, Poisson, and Equidistribution equations respectively. A full mathematical

description of the terms is given in chapter 2.

The Laplace term is more commonly encountered in elliptical grid generators where

it is used to produce an evenly spaced grid. No account is made of solution activity

and when applied to a pre-generated grid it will produce the most orthogonal grid

point distribution possible. The one characteristic which may not be so useful is a

tendency for grid points to gather around convex and away from concave surfaces

(Thompson 1987). However, this characteristic may be of advantage when developing

grids over aerofoils, where the curve of the aerofoil surface will attract grid points to

its leading edge, a potential area of high solution activity. The popularity of aerofoils

as test cases in the open literature suggests that the negative side of the use of the

terms in the Laplace equation may not commonly be encountered.

The Poisson term includes control functions that will recreate the original grid if the

weights on the other two terms are set to zero. This term may be important if the

original grid is skewed for any special reason, as, in the absence of a strong weight

to drive the grid, the Laplace term will smooth it.

The Equidistribution term used encourages an even distribution of solution activity

across all grid points, to the exclusion of all considerations of grid smoothness. The

end result of applying the Equidistribution term alone is a potentially highly skewed

and unusable grid. Coupled with the other terms it emphasises areas of high solution

activity in the final grid.

The Laplace-Poisson-Equidistribution equation was first used by Catherall (1991) for

two dimensional cases. The two dimensional form was implemented and the three

dimensional form was developed by the author as part of an MSc thesis (Bennett

1992).

22

1.6 Requirements of the Adaptive Grid Algorithm

The main aim of the thesis is the development of an adaptive algorithm based on the

LPE equation that is three dimensional, code independent and contains all of the tools

needed to dynamically adapt structured grids. The LPE equation is used because it

contains terms that maintain grid quality as well as adapt the grid to solution

phenomena.

A particular feature of the technique described in this thesis is that it assumes that

there is no prior knowledge of the grid or the physical domain that it encompasses.

This is important in making the algorithm independent of other codes. This means that

all geometrical information used to maintain the physical geometry during adaption

must be generated within the algorithm, using the initial grid only.

Additional methods which are needed to make the adaptive algorithm work include

tools for

 Maintenance of geometry by modelling lines and surfaces using cubic splines

and bicubic patches respectively. The splines and patches need to be generated

using the original grid and points need to be mapped back onto them using a

location algorithm and interpolation to recover point parameters.

 Recovering control functions needed to recreate the original grid from it,

 Interpolating data between previous and new adapted grids. The principal

method used in the current work is Shepard's interpolation (Shen et al. 1993).

 Determining weight functions. A range of methods for calculating weights

which reflect different aspects of solution behaviour have been implemented.

In addition techniques have been developed to smooth and modify the weight

function to improve the adapted grid.

23

 Maintaining the integrity of grid cells by checking for grid overlaps.

 Displaying the behaviour of the adaption algorithm. A measure of movement

in terms of a percentage of distortion of the original grid is used to show how

much adaption has taken place. In addition properties relating to the adaption

are stored and displayed using a CFD code post processor.

 Accessing solution variables and the grid within the underlying CFD code.

This is code specific.

The algorithm is not restricted to the whole grid and can instead be used individually

on a number of subdomains; this extends its applicabilty to block structured type

meshes.

1.7 Structure of Thesis

The mathematics of the LPE equation are described in chapter 2.

Chapter 3 describes the additional tools needed to make adaption viable.

Chapter 4 describes general issues which affect the implementation of adaption outside

the algorithms described in chapters 2 and 3. Examples of its implementation are also

described within the commercial fluid dynamics code PHOENICS (Spalding 1989) and

the research code PHYSICA (Cross et al 1995).

Chapters 5 and 6 are used to present results produced using adaption within

PHOENICS and in an independent implementation in two and three dimensions

respectively.

Chapter 7 describes how the current grid adaption method can be used to interface

between a fluids code and a stress code to allow the modelling of fluid structure

interaction.

24

Chapter 8 describes a first attempt on an alternative method of grid adaption using

neural nets.

Chapter 9 contains possible future work and conclusions.

1.8 Closure

This chapter has introduced CFD, grid quality, the concept of grid adaption and the

range of techniques used in literature to achieve it. In addition the Laplace-Poisson-

Equidistribution equation has been introduced and the range of techniques needed to

make it work listed.

In summary grid adaption is concerned with manipulating the distribution and shape

of the cells that define the solution domain to achieve the best possible grid for the

simulation.

25

CHAPTER 2: MAIN ALGORITHM

2.1 Introduction

The purpose of this chapter is to show the derivation and discretisation of the full LPE

equation. The weight term used to determine grid movement is also discussed.

Only the discretisation of two dimensional form of the LPE equation will be presented

in full in this chapter, though the full three dimensional partial differential equations

will be listed. The discretisation of the one and three dimensional forms is given in

appendix A.

2.2 Computational Molecule

The differential equations that make up the LPE algorithm are solved by using finite

difference approximation.

The basic finite difference approximations, using central difference formulae are

2
.-2r. .+r. . . (2.2)-

(2.3)

The numbering convention used for the following equations is shown in figure 2.1.

26

ijjc-l

Figure 2.1 Computational Molecule

2.3 Metric Tensors

The transformation of the curvilinear grid into cartesian space is governed by the

contravariant metric tensors.

A derivation of the metric tensors in three dimensions is given in Appendix A. Here,

the three distinct metric tensors (noting are simply listed.

(2.4)

-V (2.5)

1 (2.6)

Where is the gradient of the line ̂ = constant, and is the Jacobian. The Jacobian

cancels out of the full equations

27

. 3y . (2.7)

The three dot products, (V^ r^J, are

\ /

/ V

(2.8)

S2 Sz

/
. dx

(2.9)

S>l S>2 35, 35,)
(2.10)

Using the terminology £,Wfor gives

(2.11)

(2.12)

28

2.4 Derivation of Laplace Term

The Laplace term is used in the LPE equation to promote orthogonality in the adapted

grid.

The Laplace system in three dimensions is

V2 ^. = 0 i = l,3 (2.14)

When modified to make the and co-ordinates the dependent variables It takes

the following form

«'= 1.7 =

Where represents the co-ordinate direction being solved for, either or z.

In two dimensions this simply reduces to

,,=0 (2.16)

Discretised, using equations 2.1, 2.2 and 2.3, this becomes

(2.17)

Separating the terms in equation 2.17 leads to the algebraic equation

p

With the source term / formed by using the comer coefficients

29

where

L L

(2'21>

(2.23)

(2.24)

The Poisson term is used to promote the original grid distribution in the adaption.

The Poisson equation has been discussed in section 1.3.1.2. The three dimensional

form shown in equation 1.4 is repeated here.

?. i = l,3 (2.25)

Where represents a control function used to modify grid point locations.

The Poisson equation modified to make and co-ordinates the dependent variables

takes the form

333
je**P,rt =0 (2.26)

30

In two dimensions this reduces to

r = 0 (2>27)

Discretised, equation 2.27 becomes

12

(2.28)
all

_£ _)P + _ _ = 0 u

The full details of the transformation of the control function are not important in the

current work as they are extracted directly from the original grid using equation 2.28.

They are found by forming simultaneous equations using the initial grid values.

Separating the terms in equation 2.28 leads to the algebraic equation

As the only differences to the Laplace equation are the control functions all terms that

do not contain them are the same

(2-30)

Only the source term is different

(2.31)

The equidistribution term is used to apply a weight to alter the grid distribution.

The equidistribution term is derived from the basic equidistribution equation (1.1) in

each of the three co-ordinate directions, which can be written in the form

31

(2.32)

Where W,- is the weight function and 51, is the arc length along the / varying line.

The three equations in the system are differentiated to remove the constant, multiplied

by the term and combined to give

3

i = l

5. H77" (2.33)

The multiplier puts the equidistribution term into the same form as the second term

in the Poisson term as shown in equation 2.26.

In two dimensions this reduces to

*%
w/t
"W

\ /
^22

2 2 2 2

V

(2.34)

Where W7 and W7 are the weight functions in the x and y coordinate directions

respectively.

The discretisation of the equidistribution equation can be simplified by first seeing that

the denominator of the second term in the brackets is identical to vector dot products

used to evaluate the metric tensors, which is calculated elsewhere and can be

substituted in 2.34.

=r2 4- v 2 ^^ =Ac

Equation 2.34 discretised gives

32

/-» \

22 V./W /f/

(2.36)

Where is the variable being solved for.

Separating the terms in equation 2.36 leads to the algebraic equation

C, f

where

(2.38)

4
*»! ^1

(2.39)

=<2c = (2.40)

(1

y ^2 *52

(2.41)

33

The LPE equation is formed by combining the Laplace, Poisson and Equidistribution

terms together (equations 2.17, 2.29 and 2.37) into one equation with the user

controlled constants A,L , Xp, XE, to weight each term respectively.

This leads to the algebraic system

LPE LPE LPE LPE LPE TPE

where, using equation 2.30 to remove the Poisson coefficients

The weight function used in equation 2.32 drives the grid adaption. When the value

of the weight functions at a point is higher than its neighbours, those neighbours will

move towards it.

The requirements of the weight function in the current work are

 That its value should represent some measure of solution behaviour or error

that varies significantly across the domain.

 That it should not go to zero, so as to avoid division by zero in equation

2.34.

 That it should be calculated from a normalised variable so that its behaviour

can be predictable making the choice of the user controlled functions easier.

The typical form for most weight functions is

2.M. (2.47)

where a is a constant and is some function of the solution variables, commonly

some combination of the first and second derivatives of a chosen variable along grid

lines. Another form for weight equations is

where (j) is the solution variable and is a constant.(Nakahashi (1987), Eiseman

(1987))..

The most common weight function used is based on the gradient of the chosen

variable. The gradient is probably the easiest measure of solution activity. With no

extra terms the weight should lead to a constant gradient in the solution over each

interval in the grid. This can be seen by substituting in the equidistribution

equation 1.1, which gives (j^Ax. Unfortunately, this form risks the weight on a point

becoming zero, and the associated problems of division by zero in the LPE equations.

Adaption to forces the grid to align perpendicular to the gradient of (j) (Matsuno

and Dwyer 1988).

The gradient as a weight function can be found in Jeng and Liou (1993), Lin and Wu

(1993), Dannenhoffer (1991), Niederdrenk (1991), Lawal (1990), Tu and Thompson

(1990), Arina (1989), Anderson (1987a), Hsu and Tu (1987) and Thompson et al.

(1985). Ramakrishnan and Singh (1994), Benson and McRae (1991), and Chao and

Liu (1991) use a combination of the normalised gradients of a range of variables.

35

Jeng and Liou (1992b) combine the gradient with a term for the arc length so that as

the weight term goes to zero the grid distribution will go towards the predefined value.

(2.49)

where ASj is the initial grid spacing.

In the current work a number of different methods have been implemented, though

only a few have been seriously tested. Which one is used depends upon the type of

problem and the choice of variable. In all cases the chosen variable is interpolated

onto the grid nodes from the cell centres using a series of simple linear interpolations

and then non-dimensionalised to allow the user defined weight parameters to be

independent of the magnitude of the chosen variable.

This is the simplest weight function. There is no variation in the weights calculated

at a point in different directions. This form has been used for grid generation for

coastal configurations, using depth as the dependent variable (Kim and Thompson

1990), and using relative pressure for three dimensional grids over wings (Roache et

al. 1991), (Kim and Thompson 1990), (Tu and Thompson 1990). In the current work

it is used on the magnitude of velocity for convection problems such as the driven

cavity flow (section 5.3.2) where there are no strong gradients and solution error is

driven by the advection scheme.

The term (j)^ takes account of the curvature of the solution. The inclusion of the

second derivative helps to concentrate grid points about solution extrema, but may

cause grid cells to oscillate if the solution is very irregular. Terms involving the

36

second derivative 0^ are highly desirable as they are good indicators of solution

activity, but unfortunately tend to be unstable. Examples of the use of this term in

literature include Shyy (1992), (1991a), (1991b), (1990), Harvey (1991), Acharya and

Moukalled (1990), Acharya and Patankar (1985), Thompson et al. (1985), (1986), and

Brackbill and Saltzman (1982).

a1+a2<J) x+a3fc

This is similar to the previous method, but with an improved approximation to the

solution curvature, where

xx
(2.50)

Including this extra term allows for solution extrema and also for areas where the

solution is locally stationary. As the gradient goes to zero, so will increase. In such

areas the solution activity may be high, even though the gradient tends to zero. This

is the main weight function used in the current work. The default constants used are

a7=l, a5=0.01, as in Catherall (1991). Higher values of tend to destabilise the

solution, though it may not have much effect set at this level. Examples of this weight

function in literature include Kwon and Jeong (1995), Eiseman (1985a), Haase et al.

(1985), Thompson (1985), and Noack and Anderson (1990).

a,+a2(J) 2
x

This form helps to contrast high and low gradients. It has been used by Roache et al.

(1991), Holcomb (1984), and Thompson (1985).

(a1+a2l(j) xnl)

Putting a7=l, and n=l and substituting into the equidistribution equation 1.1

gives which implies equal arc lengths along the solution curve, and

for higher n is related to the truncation error (Nakahashi (1987), Catherall (1991),

Hagmeijer (1994)).

a1+a2V((|) xx)

j can be related to the truncation error in second order accurate solutions to first

order differential equations, where truncation error is proportional to the second

derivative multiplied by the grid spacing squared (Catherall (1991)).

2V/I/-I , A 2\VZ2.8.1.7 (l+ai<|)xT(l+a2(j> xx2)

This form is an alternative way of using the second derivative <(>, to (2.8.1.2) used by

Matsuno and Dwyer (1988).

For the majority of the test cases the constants are chosen empirically.

Trial runs and user experience are important, but as long as there is a strong gradient

to push the grid adaption a ratio of one to one for the first neutral constant to the main

movement term will generally behave sensibly. Higher values can either be used to

maintain grid quality or to encourage adaption.

Making the second term in functions 2.8.1.2 and 2.8.1.3 high will increase the effect

of local gradients, but if too high will emphasise minor perturbations within the

solution which may be as much a feature of the local grid shape as the actual solution.

This can cause distorted cells in relatively quiet parts of the grid where little

movement is expected.

An alternative is to set a given ratio size for the smallest to the largest step size in

each coordinate direction to determine the constants in the weight equation.

(Niederdrenk (1991), Nakahashi and Deiwert (1985), (1986), (1987)).

Using the relationship

*min max (2.51)

wmax mm

and starting from the basic equidistribution equation 1 . 1

(2.52)

it is possible to determine the constant in the weight equation

(2.53)

by using

(2.54)
min I I max

The weight along each family of grid lines is calculated using the same value Then

is updated at each call to the weight calculation routines

This method has the advantage of replacing two or three abstract numbers with one

that has a physical relationship to the problem.

The weight function is optionally smoothed to reduce small perturbations and extend

the influence of major solution phenomena by fitting the weight values to curves in

the direction of action of each weight, defined by simple power laws, between major

peaks and troughs.

In areas where the weight function is smooth small perturbations may kill the grid as

it starts to kink towards the minor variations.

It has been shown (Bennett 1992) that smoothing of the weight function may improve

39

results by smearing the effect of high gradients over a larger number of cells.

In the current implementation there is an option to make the final weight value at a

grid point equal to the average of the values calculated from one of the above

equations on the point and the two neighbouring points.

2.8.3.1

In order to spread the effect of solution phenomena an attempt has been made to

extend the simple smoothing or 'smudging' operation carried out previously.

The available options are to smooth just the weight functions in each of their

respective directions, as before, using

Or to smooth the non-dimensionalised dependent variable, (j), using

(2.56)
(/i +4)

in the 2D case, or,

) (2.57)

in the 3D case.

One, the other or both can be used. This smoothing step can be repeated many times.

The factor used when smoothing the variable is controlled by the user.

In practice the smoothing step has on occasion only made an impact when the

smoothing operation has been repeated 10, 20 or more times, when it begins to make

an impact on the time taken by the adaptive module to run. Smoothing by local

averaging is used by Hall and Zingg (1995), Hagmeijer (1994), Benson and McRae

(1991), Jeng and Liou (1989), and Seibert et al. (1989). Hall and Zingg (1995) also

use weight clipping, whereby extreme weight values are reduced to an average of their

neighbours.

2.8.3.2

Another option available is to use an inverse exponential function to smooth each

weight function along the grid lines in the co-ordinate direction in which it operates.

This allows solution phenomena to affect weight values some distance away.

The solution equation can be expressed as

(2.58)
I -

where is the number of points in that co-ordinate direction, a is a weight controlled

by the user, and is the distance between the main point and the one producing an

additional influence.

The contribution to the weight value from points whose index are beyond the limits

of the grid are calculated as if the grid was surrounded by mirror images. This has

been done to ensure that points in the centre of the grid do not have larger weights

than at the boundary solely because they are closer to more points.

This method is loosely based on the weight function used by Lee and Tsuei (1992a).

The smoothing produced by this method allows more emphasis to be put onto the

equidistribution term in the main algorithm. This term is powerful yet very sensitive

to minor variations in local weights and can lead to very distorted grids. The

smoothing function helps to prevent this.

41

2.8.3.3

In an attempt to increase the range over which major solution phenomena have an

effect and to smooth out small local perturbations the weight functions can be

recalculated by fitting them along grid lines to a series of simple curves between local

function maxima and minima. The curves are calculated by using a power law or

exponential.

Weight

3

Distance

2.2 Weight function before and after fitting in 'real' case

Figure 2.2 shows how the smoothing function works in practise, the dotted line

showing the final weight used in the LPE equation for a supersonic wedge cascade

case where there are a series of reflected shocks that cross the grid line of interest.

For the purposes of this technique local break points are also defined as being at the

centre of regions where the variation of the weight function is less than a given

tolerance.

42

w

2.3 Break point at centre of 'flat' region in function

This function generates smooth weight gradients leading from areas of low activity to

regions of high activity, which in turn leads to smooth variation in the grid spacing.

Its use makes other smoothing unnecessary. The smoothness of the new weight

functions allows more extreme parameters to be used within the main algorithm.

As the driving force behind grid point movement is the local gradient of the weight

function the use of the power law enables the user to either promote the movement

of grid points out of regions of low activity by using a power of less than one, or to

concentrate on major phenomena by using a high power. Grid points will tend towards

being distributed according to the power law, as the algorithm is driven by

equidistribution.

As each weight function relates directly to one family of grid lines in the structured

grid, this process of smoothing along grid lines is straightforward. The same technique

may not be so applicable to unstructured grids unless weight surfaces could be built

up. Such a technique might be very powerful, though could be complex, especially for

three dimensional grids.

For power law smoothing of the direction weight function along a grid line which

varies predominately in the direction the equation used to calculate the new weight

value is

X
» = (w -wr)

V V
1 "V (2.59)

where w^ wx/ are the first and last weight values, are the first, last and current

displacements, and a is a user controlled parameter that can control the grid

variation. As the weight values are linked to physical dimensions not curvilinear

space, displacements are used not arc lengths.

X

Fit

Function
Limits of power curve

For completeness the exponential fit has also been implemented, though the power law

is cheaper and more straightforward to use to fit the function variation. The equivalent

equation to 2.59 above is

X. X,

X.-X, (2.60)

This chapter has presented the full discretisation of the LPE equation in one, two and

three dimensions using central difference formulae. In addition the formulation of the

weight function used in the equidistribution term to drive grid adaption is presented.

All adaption methods depend on a weight function that models solution behaviour.

The range and treatment of these functions varies greatly between different cases and

different methods. The novel technique presented here to impose a smooth function

over the weight distribution using a power law or exponential curve is a fast method

to produce a smooth grid.

In the full implementation of the LPE equation only its three dimensional form is

coded. Two and one dimensional problems are dealt with by cancelling the extra terms

and using the appropriate forms of the metric tensors.

The final discretised equations are solved using a point by point scheme with

relaxation. Their format would however allow the implementation of a tri diagonal

matrix algorithm or similar fast solver instead. As the algorithm is designed to be

attached to a full CFD code it may be possible to use the solvers within that code

instead.

45

The purpose of this chapter is to introduce and describe the additional tools needed

to support grid adaption. These tools are used to manipulate the data from the grid and

the solution before using the LPE algorithm, and to manipulate the data emanating

from the LPE algorithm. They are used to refine the main algorithm. Each tool

represents a necessary part of the grid adaption process. A modular structure ensures

that the methods each tool uses might be replaced if better techniques become

available or the criteria upon which they have been chosen change.

The bulk of this chapter describes surface and curve fitting algorithms used to

maintain the geometry of body fitted coordinate grids whilst allowing grid nodes to

move on grid boundaries. Other tools described cover interpolation techniques used

to transfer data from grid cell centres to grid nodes and between grids, a method to

prevent grid crossover and movement limiting.

Though it is easy to allow grid points to move on square boundaries by just ignoring

components of the calculated movement vector, movement along curved and angled

surfaces and lines can only be allowed if equations to recreate them are known or can

be calculated.

Allowing grid points to move on boundaries can be a crucial part of the adaptive

process, as often the boundary regions are the most important parts of the grid. In any

case leaving the grid fixed in such places whilst allowing movement to take place in

adjacent nodes can lead to dangerously skewed cells. In addition intelligent use of

fixed curves and surfaces can be used to maintain important features of the original

grid. In cases such as the RAE 2822 aerofoil (section 5.3.1) fixed curves are used to

46

allow movement along grid lines parallel to the aerofoil surface so as to maintain the

initial skewed distribution of grid cells.

As the current work is designed to be independent of CFD codes and in particular grid

generators, no prior knowledge can be assumed about the grid geometry. All

information about geometry has to be computed using the original grid point locations.

Equations for all curves and surfaces designated by the user as important have to be

developed using assumptions based on the location of the grid points that lie on them

in the original grid.

In the current work user defined surfaces and curves are modelled using bicubic

patches and cubic splines respectively. Each curve and surface is broken up into a

series of segments or patches and a parametric cubic equation is developed for each

one, using the location of the grid points to calculate the coefficients.

The technique used to model surfaces is based on the work of Agbormbai (1991).

As the current work is concerned with structured grids only, curves are defined as grid

lines with two indices fixed and one varying, and surfaces as areas with one index

fixed and two varying.

In the code which accompanies the current work the user can define any number of

curves and surfaces within the grid. These will be maintained regardless of the local

grid movement and with the restriction that interior points cannot move beyond the

original surface boundaries. A feature of the current work is the automatic

manipulation of user defined surfaces to preserve important geometrical features such

as peaks and troughs, and discontinuities.

This section describes how the parametric equations for the curves and surfaces are

developed, and how they are used to recreate the geometry after grid movement has

taken place.

In the structured grid a curve is defined as a number of connected grid points with

only one index varying. A curve is modelled by representing it as a series of cubic

splines covering individual segments or patches of up to four points (figure 3.1).

Curve split into segments

The coefficients of the cubic splines are obtained by using the original position of the

grid points that define the curve. Each segment that defines the curve is treated

individually and simply by using parametrised space (figure 3.2).

u

Physical Space

3.2 Parametrised Space

o 1/3 2/3 i

Parametric Space

Each segment is defined by the following three equations:-

(3.1)

(3.2)

The curve has an associated axis which is implied by the index of its grid points

which are allowed to vary. This should also correspond to the direction in which it

stretches most. During adaption each point that lies on the curve is allowed to move

freely along this axis up to the limits of the curve. Each point is then mapped back

onto the curve by using this component of its position vector to determine the segment

it lies in and a parameter to be fed back into equations 3.1-3.3. As one component of

the position vector is known prior to mapping only two of the above equations will

be needed. For example for the curve from Xijk to X i+njk only the coefficients to

equations 3.2 and 3.3 are calculated.

The values that need to be stored to fit a curve are the component of the original grid

coordinates that relates to the index which varies to allow parameter recovery and two

sets of four coefficients for each segment which relate to the two parametric equations.

49

The generalised parametric equation can be written as

l]
(3.4)

Assuming that in parametrised space the points in the segment lie at intervals of 1/3

between 0 and 1, then the coefficients of the spline can be calculated by building up

four equations for the four unknowns, given by

Z(0)

0.037 0.333 1 (3.5)

Inverting the main matrix to solve for the unknown coefficients gives,

Z(0)

(3.6)

Though this system will work best for a regular grid it will still give good results for

an irregular grid if the calculation of the parameter is accurate enough. Using this

system does however prevent the need to invert a four by four matrix for each set of

coefficients for every segment. Though this would not necessarily be too great an

overhead just for curve fitting, especially as the process only has to take place once

for each initial grid, for surface fitting each matrix is 16 by 16. Inversion of such large

matrices for each surface patch is not practical.

50

As segments may occur at the end of curves which have fewer than four points the

full cubic equation cannot be generated unless extra points are interpolated into the

region, or overlapping segments are used which do not guarantee continuity in the line

model. Instead simpler forms of the above equations can be used to generate the

coefficients for the quadratic and linear equations that can be generated from three

point and two point segments. These coefficients are treated exactly the same way as

for the full cubic equation when the curve is recovered, just with the higher order

terms set to zero.

The three point segment shown in figure 3.3 is parametrised using a quadratic spline

with coefficients calculated in the same manner as for the cubic spline above.

u=l

Z(u) =

u=0.5
u=0

X

3.3 Three Point Segment

The parametric function Z(u) is written:-

l]

Assuming the three points occur at the parameter values 0, 1/2 and 1 it is possible to

solve for the three constants aii=13, as given by

(3.8)

2
-3 (3.9)

u=0

u=l

Two point segment

Z(u) = 3jU + a2

X

The two point segment shown in figure 3.4 is parametrised using the linear equation.

(3.10)

Where,

a=Z(0)

52

Curve recovery is the mapping of a point back onto a curve after it has been moved

in one direction by manipulating the remaining two components of its position vector.

To map the point back onto the curve firstly its location relative to the cells in the

original grid must be found so that the patch in which it lies can be determined and

then secondly a parameter has to be recovered by comparing its position to-the

original grid.

The coordinates of the original curve are stored and the patch positions are known

implicitly.

The location of the point is determined by using a simple binary search pattern,

comparing the directional component that relates to the index of the curve which

varies to the equivalent components of the original points that define the curve. The

point is compared to the half way point of a domain whose limits are initially defined

by the start and end points of the curve and then by the centre point and whichever

limit is on the other side of it until it can only lie in one cell.

The parameter is determined by assuming that it varies in a linear profile between the

original points of the patch, and by knowing that those points occur at equal intervals

between 0 and 1.

In figure 3.5 the parameter v of the point that lies between the original grid points

Xj and Xi+1 in a patch of points where varies from l,Af is found by using

V =.
W

(3.12)

Note that the points at the ends of the curve are not allowed to move at all.

3.2.2

A surface is modelled as a series of individual patches covering up to four by four

points. Each patch is modelled using a bicubic equation that contains sixteen

coefficients, calculated using the location of the original sixteen points.

Figure 3.6 shows a grid broken into patches

/ ,-

X

Surface split into nine patches

As for curve modelling each patch is fitted in parametric space (figure 3.7).

54

u
Physical Space

3.7 Patch in Parametric Space

The generalised parametric bicubic equation can be written in the form

Z(K,V)=[W 3 M 2 l]
fl33

(3.13)

A point is mapped back on the surface after adaption by calculating a new value for

the component of its position vector that matches the index of the surface that does

not vary. This is achieved by calculating parameters to pass into the bicubic equation

using the position of the new point relative to the position of the points in the original

grid.

Only one set of coefficients need to be generated for each surface patch, as only one

direction component is effected.

The sixteen unknown coefficients can be found by using the location of the sixteen

points within the patch. If equation 3.13 is written in the form

55

where is the parameter matrix,

[PJ=[K3V 3,

(3.15)

And is the coefficient matrix, written as:-

[C]=[nn,

(3.16)

Then, assuming each point in the patch occurs at intervals of 1/3 between 0 and 1 it

is possible to build up the system

[Z]=[P][C] <

Where is given by

56

l

(3.18)

And the coefficients can be found by taking the inverse of

The assumption of the position of the original points in parametric space is important

to avoid having to invert a 16 by 16 array for each patch. Instead one standard

inverted array can be used and it is assumed that the parameters can be accurately

estimated. The parameter matrix in table 3.1 and its inverse in table 3.2 are

given on the following page.

57

w-

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0370 0.1111 0.3333 1.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2963 0.4444 0.6667 1.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000
0.0000 0.0000 0.0000 0.0370 0.0000 0.0000 0.0000 0.1111 0.0000 0.0000 0.0000 0.3333 0.0000 0.0000 0.0000 1.0000
0.0014 0.0041 0.0123 0.0370 0.0041 0.0123 0.0370 0.1111 0.0123 0.0370 0.1111 0.3333 0.0370 0.1111 0.3333 1.0000
0.0110 0.0165 0.0247 0.0370 0.0329 0.0494 0.0741 0.1111 0.0988 0.1481 0.2222 0.3333 0.2963 0.4444 0.6667 1.0000
0.0370 0.0370 0.0370 0.0370 0.1111 0.1111 0.1111 0.1111 0.3333 0.3333 0.3333 0.3333 1.0000 1.0000 1.0000 1.0000
0.0000 0.0000 0.0000 0.2963 0.0000 0.0000 0.0000 0.4444 0.0000 0.0000 0.0000 0.6667 0.0000 0.0000 0.0000 1.0000
0.0110 0.0329 0.0988 0.2963 0.0165 0.0494 0.1481 0.4444 0.0247 0.0741 0.2222 0.6667 0.0370 0.1111 0.3333 1.0000
0.0878 0.1317 0.1977 0.2963 0.1317 0.1975 0.2963 0.4444 0.1975 0.2963 0.4444 0.6667 0.2963 0.4444 0.6667 1.0000
0.2963 0.2963 0.2963 0.2963 0.4444 0.4444 0.4444 0.4444 0.6667 0.6667 0.6667 0.6667 1.0000 1.0000 1.0000 1.0000
0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000
0.0370 0.1111 0.3333 1.0000 0.0370 0.1111 0.3333 1.0000 0.0370 0.1111 0.3333 1.0000 0.0370 0.1111 0.3333 1.0000
0.2963 0.4444 0.6667 1.0000 0.2963 0.4444 0.6667 1.0000 0.2963 0.4444 0.6667 1.0000 0.2963 0.4444 0.6667 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

*

Parameter Matrix

[/>]-'=

20.25 -60.75
-40.50 101.25
24.75 -40.50
-4.50 0.00
-40.50 121.50
81.00 -202.50
-49.50 81.00
9.00 0.00
24.75 -74.25
-49.50 123.75
30.25 -49.50
-5.50 0.00
-4.50 13.50
9.00 -22.50
-5.50 9.00
1.00 0.00

60.75
-81.00
20.25
0.00

-121.50
162.00
-40.50
0.00

74.25
-99.00
24.75
0.00

-13.50
18.00
-4.50
0.00

-20.25 -60.75
20.25 121.50
-4.50 -74.25
0.00 13.50
40.50 101.25
-40.50 -202.50
9.00 123.75
0.00 -22.50

-24.75 -40.50
24.75 81.00
-5.50 -49.50
0.00 9.00
4.50 0.00
-4.50 0.00
1.00 0.00
0.00 0.00

182.25 -182.25
-303.75 243.00
121.50 -60.75
0.00 0.00

-303.75 303.75
506.25 -405.00
-202.50 101.25

0.00 0.00
121.50 -121.50
-202.50 162.00
81.00 -40.50
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00

60.75
-60.75
13.50
0.00

-101.25
101.25
-22.50
0.00
40.50
-40.50
9.00
0.00
0.00
0.00
0.00
0.00

60.75
-121.50
74.25
-13.50
-81.00
162.00
-99.00
18.00
20.25
-40.50
24.75
-4.50
0.00
0.00
0.00
0.00

-182.25 182.25
303.75 -243.00
-121.50 60.75

0.00 0.00
243.00 -243.00
-405.00 324.00
162.00 -81.00
0.00 0.00

-60.75 60.75
101.25 -81.00
-40.50 20.25
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00

-60.75 -20.25
60.75 40.50
-13.50 -24.75
0.00 4.50
81.00 20.25
-81.00 -40.50
18.00 24.75
0.00 -4.50

-20.25 -4.50
20.25 9.00
-4.50 -5.50
0.00 1.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00

60.75
-101.25
40.50
0.00

-60.75
101.25
-40.50
0.00
13.50
-22.50
9.00
0.00
0.00
0.00
0.00
0.00

-60.75 20.25
81.00 -20.25
-20.25 4.50
0.00 0.00
60.75 -20.25
-81.00 20.25
20.25 -4.50
0.00 0.00

-13.50 4.50
18.00 -4.50
-4.50 1.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00

Inverted Parameter Matrix

3.2.2.2

There is no guarantee that any defined surface will split into patches of exactly four

points by four points, so a method must be developed to deal with the other cases

which may occur at its end. The options are to use a modified form of the inverted

matrix in table 3.2 or to interpolate extra points using the data available to get a 'full'

patch.

Using a full patch which overlaps the previous patch does not guarantee continuity and

may cause problems when it comes to locating the position of points which may move

into this region relative to the points.

A modified form of the matrix had been used in previous work (Agbormbai 1991) but

involves the storage of a number of matrices for use in specific cases which are rare.

For surface definition there are eight extra special cases and each matrix for storing

surfaces is 16 by 16. This when coded gives a considerable overhead to storage

requirements and is a potential source of error.

For simplicity simple interpolation is used to create the correct number of 'artificial'

points to define a normal patch in the current work. The accuracy of the parametric

equation can only depend upon the information that is available when its coefficients

are calculated. What inefficiency this method may introduce is balanced by the fact

that the coefficients only have to be generated once for a particular surface.

Simple linear interpolation is used to generate extra points where there are just two

known points in a particular direction, and a quadratic spline is used where there are

three.

3.2.2.3

Surface recovery is the process by which a point on a surface is moved back to the

surface after adaption. To allow the point to move back the patch on the original grid

59

in which it lies is found then two parameters are estimated based on its position within

the patch.

It is assumed that the patch locations are given implicitly by the layout of the grid.

The task of locating the point is simplified by the knowledge that it must lie in the

same subsurface that it was in before adaption, as movement beyond those limits is

not permitted. The patch location is found using a binary search method, dividing the

original surface into successive quarters and testing the relative position of the point

each time until there is only one patch it can lie in.

The cell in the patch in which the point lies is found using the same method. If the

cell lies on the boundary of the patch then the point is tested against the lines that

define the edge of the cell to check that it is within the patch. If it is not, then the

point is tested against the neighbouring patch in the appropriate direction.

The parameters for the patch equation are calculated by using bilinear interpolation

over the cell in which the point lies, the parameter values being known at the corner

points. The equations to recover the parameters and v are,

(3.20)

l]
7

(3.21)

60

u=0, v=0

u-1, v=l

2 u=l, v=0

2D Interpolation Problem

Taking the general case in figure 3.8 where the parameters vary between 0 and 1

formulae for the coefficients can be built up by inverting the matrix that can be

assembled up with the information available,

(3.22)

xlyl xl yl 1

x2y2 x2 y2 1

x3y3 x3 y3 1

x4y4 x4 y4 1 _v

0
0
1
1

(3.23)

The result of the interpolation can be scaled to account for the range of values of the

parameters that the cell covers.

61

Surface and curve breaking refers to the process by which user defined surfaces and

curves are automatically broken into smaller units around important geometrical

features such as turning points and discontinuities (figures 3.9-3.11). These are places

where the location of a single point may be vital to the local geometry, and where a

patch or spline may not be able to adequately model the shape. Points at the end of

curves and the edges of surfaces do not move. These important geometry defining

locations will always be maintained.

Spline Moved Points
Spline

Figure 3.9 Problems at Discontinuity Figure 3.10 Problems at turning points

One Patch Over Turning Point

Two Separate Patches

Figure 3.11 How surface breaking can help

The process has the advantage of reducing the complexity of any curve or surface that

a patch has to model and therefore it may reduce possible errors although the number

of light patches may be increased.

62

The process is essentially the same for both curves and surfaces.

Curves and surfaces are broken up at turning points by using the direction of the slope

and at discontinuities by using its rate of change. The slope is monitored by using the

first and second derivatives of the components of the grid point position vector that

relate to the fixed indices of the grid relative to the components that vary. The

derivatives are calculated using second order central difference formula.

In the code that accompanies the current work the user can switch the different

methods of cutting on and off and set the tolerances used to determine where it takes

place. No cut is allowed within one patch distance of another. If a conflict occurs then

the tolerance used is increased and the checking routine run again. Cutting also takes

place if at any point the gradient becomes infinite.

Simple examples of surface breaking are given in figures 3.12-3.15.

Surface with turning point

Surface with turning point after cutting

63

Surface with discontinuity

Surface with discontinuity after cutting

Interpolation routines are used to give the value at a point of a function from a

discrete set of data at known locations. Interpolation is an important part of grid

adaption, as the value of any data that vary over a grid may be required at any point

within its limits, either to allow the solution to be transferred between old and new

grids, or transfer data from cell centres to cell vertices. The type of interpolation that

is used depends upon the characteristics of each problem. In every case, the

interpolation technique must be efficient in time and the use of resources.

Interpolation within curve and surface fitting for calculating the parameters in the

cubic and bicubic splines has already been described (3.2.1.3 and 3.2.2.3). In both

cases the parameters are known to vary over a fixed range between known grid points

over each line or surface. The location of the new grid point is known with respect

to the known data as the patch in which it lies has to be calculated. Its position will

however vary between the extremes of the patch and any interpolation scheme must

64

give accurate results over the whole range of the patch. For curves, the new point

must lie between two known data points thus the problem is one dimensional, so a

simple linear variation is assumed. For surfaces the new point must lie between four

known data points thus the problem is two dimensional, and a bilinear equation is

used. The bilinear equation requires the inversion of a four by four matrix, which is

made possible by knowing the range over which the parameters vary and can be

manipulated to give an algebraic equation which just requires the location of the

original grid points.

The adaption algorithm relies upon knowing data at grid points and the current work

has been implemented within a finite volume CFD code. Interpolation is needed to

transfer data from the cell centres, the nominal variable position within the control

volume, and the grid points. In this case the interpolation technique used must be three

dimensional, but may also be used for two or one dimensional data. The interpolation

point is never close to any known data location and will tend to lie equidistant from

the known data. Its location relative to the known data is known implicitly from its

index. Multiple one dimensional interpolation is used for this problem.

To allow multiple iterations of the adaption algorithm it is necessary to transfer data

between successive grids. As the adaption algorithm only relies upon the values at grid

points it is only necessary to transfer the data at those points. The new grid point is

likely to be close to the previous point, but the location is not known implicitly,

therefore Shepard's interpolation (section 3.3.2) can be used to give the new data.

After each adaption the grid and therefore the solution moves, so it may be necessary

to interpolate the solution from the old grid to the new. Whatever happens adaption

may give a kick to the solution. The simplest option is to assume that the grid has not

moved significantly and that the previous solution is a good guess for the new grid

(Danenhoffer 1991). Alternatively the solution can be transferred using the same

reasoning as for the transfer of data between grid points assuming that cell values lie

at the cell centres. Shepard's interpolation can be used to give the new data. The only

65

additional step is the calculation of the location of the cell centres of the old and new

grid.

One other approach to interpolating data between grids for steady state calculations

which is not discussed here is to use a pseudo time step to convert the grid movement

into a velocity, which is then used with the transformation metrics to give the new

values of the flow variables. This approach is covered by Benson and McRae (1991).

Multiple one dimensional linear interpolation is used to calculate data at grid points

from known values at cell centres. This technique is a combination of successive one

dimensional linear interpolations used to reduce the three dimensional problem first

to a two dimensional problem then finally to a one dimensional problem which will

give the answer (figure 3.16).

X

Multiple One Dimensional Interpolation

The technique uses eight surrounding cells which touch at the point, and eight cell

corners as the location of the data (figure 3.17). The initial eight points are reduced

to four by interpolating four pairs in one dimension, then to two by interpolation in

another.

66

Point Definition

The first step is,

And,

Followed by,

(z7 -zs)

(3.24)

(3.25)

67

<h =(K 4. ((|>2468 * 1357) (v -jc) (3.26)9p 1357 TT i^ r 1^ 135?;

Boundaries are dealt with by assuming mirror conditions.

This technique is easy to implement and can be easily reduced to fewer dimensions.

Though it suffers some drawbacks in that it relies upon the interpolation of

interpolated data, which may increase numerical errors, it is fast. The end result is

used to give an indication of solution behaviour and absolute accuracy is not a prime

requirement.

3.3.2

Shepard's interpolation is a distance weighted scheme. Its principal advantages are that

the location of the point at which a new value is required relative to the grid does not

have to be calculated, and that it is safe, in that it will not produce extreme values.

Shen et al. (1993) discuss Shepard's method for interpolation of scattered data, and

a modification of it for use on solution-adaptive grids.

For the function f with values at nodes (xk,yk) for k = 1..N, the basic method is

expressed as

(3.27)

£

With

68

(3.28)

This becomes

A
(3.29)

Where ̂ is the distance from the function point to

i
T

Setting was recommended in Shen et al. (1993) and means that the square root

need no longer be evaluated.

Though this is not the form recommended in the paper for solution adaptive grids it

is easy to adapt this method to allow it to be used by carefully controlling the number

of data points used to evaluate the new point. In the current work the default number

of points used is three in each coordinate direction up to the limits imposed by

boundaries around the original point. The new point is unlikely to have moved out of

this region.

69

The accuracy of Shepard's and Multiple ID Interpolation are compared by using them

to calculate values on an offset 2D grid based on a known function. The original grid

is a uniform square with 21x21 points and the function is given in equation 3.31

= sin(r)

(3.31)

r =

The offset grid was shifted by a fixed value up to half a cell length in X and Y from

the original grid and contained 20x20 points so that it did not overlap the dimensions

of the original grid. The total error is calculated by adding up the sums of the

differences between the correct and interpolated values divided by the correct values.

The total error against the shift is given in figure 3.18.

guj

1.2

1

0 0.25
Shift

0.5

Interpolation error against shift

A plot of the correct function along the centre of the grid with the interpolated values

for comparison is given in figure 3.19.

-0.2C -

-0.4C J

Correct and Interpolated Function Values

These graphs show that the linear interpolation scheme is more accurate. It is also in

the order of five times faster than the Shepard's scheme for this grid.

Shepard's interpolation is used in the main algorithm to interpolate values to points

whose relative location to known function values is not accurately known. Multiple

ID interpolation requires that the interpolation point can be accurately located in the

grid as the new value depends on its direct known function neighbours and is therefore

used where they are inherent to the problem. Both schemes are robust and smooth the

given function.

Volume and area weighting techniques, though not used in the current work were

investigated as an alternative, particularly to the multiple ID interpolation discussed

in section 3.3.1. All of the following techniques weigh the influence of the

surrounding cells on a point by using a function of the areas or volumes of those cells.

The main restriction on the use of these techniques is the time spent on calculating

those areas and volumes. If these values can be extracted from the underlying CFD

code these methods might be more attractive, though that would tie the adaption

71

algorithm closer to the code. The multiple ID technique appears to be much faster and

at least as accurate.

Jacquotte and Coussement (1992) cover a range of different interpolation techniques,

with a particular emphasis on their use in grid adaption and recovery of values at cell

vertices from cell centres. They suggest the following approximations of linear

interpolation, using the areas or volumes of the surrounding cells as a weight:-

For areas, or

For volumes.

Or alternatively the following approximation to L2- least square minimisation:-

For areas, or

"^ y.<b.

For volumes.

72

The following expressions are given to determine the values at boundary points, based

on linear interpolation, where N is a point that butts onto cell 1 and 4, and P is at the

corner of cell 1 (figure 3.20).

Boundary Interpolation

(3.36)

Jacquotte and Coussement (1992) do not give other routines, but using the same

techniques it would not be difficult to develop them.

Further techniques, including a cell search algorithm, given in the same paper could

be adapted to interpolating new values for successive adaptions, or evaluations of new

values in PHOENICS.

A method is necessary to control minimum cell size, as the LPE equation which drives

the grid adaption does not prevent cells from collapsing in its current form. Collapsed

grid cells invalidate the grid and cause the solution to diverge or give unpredictable

73

results. In the current work a series of geometrical tests are used to prevent grid lines

from crossing over after each iteration of the LPE equation. An alternative option

might be to solve the LPE equation using some form of whole field solver or

tridiagonal matrix algorithm, with suitable modifications to the source term rather than

the point by point solution used here. It is possible to weight the LPE equation such

that a corrupted grid is extremely unlikely, but this may prevent effective grid

movement.

The method used to check against grid cross over involves checking if the calculated

movement vector applied to an original grid point overshoots either of its

neighbouring points in one dimension, any line linking any two neighbouring, adjacent

points in two dimensions, or any surface defined by four neighbouring, adjacent points

in three dimensions (figure 3.21).

i-l

ID Movement, 2D Movement and 3D Movement

The points against which the moved point is checked are modified using a clearance

vector. The clearance vector is evaluated by determining the smallest cell clearance

in each coordinate direction and multiplying by a user defined ratio. Cell clearance in

each co-ordinate direction is calculated as the physical distance between points along

the corresponding grid lines in computational space (figure 3.22).

3.22 Possible Movement in 2D

If the movement vector added to the clearance vector goes past a line that connects

any two surrounding points in 2D, or any face connecting four points in 3D then the

vector is scaled back until it coincides with the line or surface (figure 3.23).

3.23 Position Correction

Each grid node location is updated after its movement vector has been checked. The

movement vector is checked against the updated grid with information from the

movement of the preceding grid nodes.

To reduce the possible amount of work, the length of the movement vector is first

checked against the distance from the moving point to all of its neighbouring points

to test for the chance of an overlap.

The geometrical tests were based on methods in Bowyer and Woodwark (1983).

75

The movement vector is checked against the eight lines by using the equation of each

line relative to the original position of the point checked.

ax + by + c = 0

Problem Definition

The equation of the line in figure 3.24 is simply,

Where,

-JL
A - v v C3 39)

If the coordinates were normalised the distance of the point from the line would be,

(3.40)

However, the distance is not important, only the side on which the new point lies, and

all that is important from equation 3.40 is the sign of the result. If the sign of the

distance is different from in equation 3.39, then the point has moved too far and

must be scaled back.

76

If the grid point does overlap then its movement vector is scaled back by finding the

intersection of a line from the original grid point position to its new position and the

line it crosses. This is achieved by writing the grid movement line in the form of a

parametric equation, relative to its original position, which gives,

(3.41)

The correct parameter at the intersection is,

~~
-c

(3.42)

The easiest entity to check the movement vector against in 3D is a plane defined by

three points. Each four point face (figure 3.25) is divided into four such planes

(figure 3.26) by finding a centre point C. C is defined by taking

the average of the position vectors of the four known points.

3.25 Face Definition Splitting of Face

The point is checked against all four planes for all 24 faces, though this only takes

place if a grid overlap is likely. This is achieved by calculating the equations of the

planes relative to the original position of the point, allowing for the minimum cell

clearance.

The equation of an arbitary plane (figure 3.27), is,

K

3.27 Plane Definition

As a vector from point / to any other which lies on the plane must be perpendicular

to a vector normal to the plane's surface, the vector product of and the

equation can be found using the expression

-o (3.44)

Which can be written as the determinant of the matrix,

which gives,

= -^)

In the same manner as for the two dimensional problem the distance of the point from

the surface is found using

(3.47)

If the sign of the distance is different from the constant then the point is the

wrong side of the plane and the magnitude of the movement must be reduced. This

is achieved by determining the intersection of a line from the original grid point to its

new calculated position and the plane.

If the line is expressed in its parametric form

(3.48)

Then the correct parameter at the intersection is,

79

In the current work a filter is used to screen the grid point movements calculated with

the adaption algorithm. Using different values for each co-ordinate direction the

movements in each direction can be restricted to a user defined range. The range is

determined using scaling factors calculated for the original grid.

Movement greater in magnitude than the upper limit can either be reduced to the

upper limit, or to zero. Movement less than the lower limit goes to zero.

This filter is useful in some cases to prevent any movement in one or more directions.

It is also useful in situations when the relative speed of some grid points is too fast,

as can be the case when the solution is sensitive, or when frequent grid movement is

imposed to allow the solution to recover faster between adaptions.

There is a class of two dimensional, axisymmetric, BFC style grids that are generated

by distorting polar coordinate grids. These grids are typically used to model bodies of

revolution such as flow over a rocket with a circular cross section or pipe flow

problems. An example of a polar coordinate grid and the BFC equivalent in

PHOENICS (Spalding 1989) is shown in figures 3.28 and 3.29.

3.28 Polar Grid BFC Polar Grid

These meshes provide a problem for dynamic adaption. To move points in a purely

two dimensional manner invalidates the back surface of the grid. To treat the grid as

a purely 3D case creates problems as the front and back surfaces would have to be

fitted using the surface modelling technique (section 3.2) and the grid is only one cell

thick, so that the partial differential equations depend upon mirror image boundary

conditions and identical movement on both faces cannot be guaranteed.

In the current work this problem is resolved by adapting the upright face of the grid

only and then rotating it to resolve the back, slanted face (figure 3.30). The point from

and the angle through which the front surface is rotated is calculated from the original

grid. The movement of the front face is calculated exactly as if it was a 2D problem.

81

Rotating Planes

3.7

This chapter has described the remainder of the tools not covered in chapter 2 needed

to make dynamic grid adaption practical. There are other methods, not part of the

present algorithm, available for most of the techniques available here, particularly for

curve and surface modelling. Other methods include using gradients to determine

parameters, Bezier curves and Coons patches.

82

This chapter concerns issues which affect the implementation of grid adaption outside

of the main algorithm discussed in chapters 2 and 3. These include the organisation

and control of the adaption algorithm and the interface between the adaption code and

the CFD code to which it is attached.

The aim of this thesis is to create general purpose grid adaption code that is as

independent as possible from the calling CFD code. The adaption algorithm needs to

be treated as far as possible as a black box which reads grid and variable data in and

sends new grid data out with the minimum of communication. Ideally the user should

not have to be an expert in grid adaption, and should therefore be able to use default

adaption parameters with a chance of getting a reasonable adapted grid.

Adaption takes place over defined regions within the problem domain. Each region is

treated independently. This allows the adaption module to be potentially used for

multiblock problems.

The adaption module has been implemented in the commercial CFD code PHOENICS

(Spalding 1989), the in house multi physics code PHYSICA (Cross et al. 1995) and

independently, to run over simple example problems. These implementations are

described in this chapter.

More detailed descriptions of the structure and tasks carried out in the adaption

module, with specific references to the PHOENICS implementation, are given in

appendices B and C.

The Adaption code is organised into two modules which concern all tasks which only

83

need to take place once, and those which take place many times respectively. The

tasks in the first module, which is known as the adaption initialisation module, cover

the determination and calculation of grid geometry. The tasks in the second module,

known as the adaption calculation module, cover the main adaption algorithm.

Adaption control is split between these two modules to reduce their dependence on

each other.

The adaption initialisation module is called only once for each problem. The adaption

calculation module is called at intervals in the execution of the calling CFD code

solver defined through its sweep or iteration number.

Independence of the adaption modules from the calling CFD code is primarily

achieved through the use of an independent data structure and a separate solver for the

LPE equations. As far as possible all work done by the adaption modules is done in

their own space, with all information necessary for adaption outside of the flow

variables solved by the CFD code held outside it. All necessary grid data is read in

once in adaption initialisation and modified internally at each call to the adaption

calculation module.

Adaption initialisation concerns the definition of regions of the main problem domain

over which adaption needs to take place and features within those subregions that are

needed to maintain their geometry. Features include surfaces and curves which are

defined using bicubic patches and cubic splines respectively, as described in section

3.2 and blanks. Blanks are subregions where no movement is permitted through the

main adaption algorithm. They allow for obstructions without breaking variable data

between two separate regions and the implementation of any grid movement that

needs to take place independently of the main algorithm such as the fluid stress

interaction discussed in chapter 7.

Grid Structure

Gnd Coordinates

Adaption Control

Grid Geometry

Data flow in adaption initialisation

This module generates grid data files that contain the coordinates of the regions to be

adapted, parametric data to allow the recovery of defined surfaces and curves, and

control function data to enable the original grid distribution to influence the main

adaption algorithm as described in section 2.5.

The original grid is used to generate all data used in the adaption module. This allows

it to be independent of grid generation software, but means that the definition of

geometrical features in the adapted grid can only ever be as good as in the original

grid.

Adaption initialisation is controlled though the use of a single input file that defines

multiple adaption regions, surfaces, curves and blanks on the original grid. Control

over surface and curve fitting is included in the form of tolerances that influence

surface and curve cutting (section 3.2.3).

85

Adaption calculation consists of all parts of the adaption algorithm not covered by the

adaption initialisation module. This is principally the generation of a new grid based

on the grid coordinates and geometry of the old grid and a given data set, and is

described in figure 4.2.

Adapt Control

Grid Coordinates

Grid Structure

Grid Geometry

Data flow for adaption execution

The tasks in the adaption calculation module are split into three parts, calculation

initialisation, main calculation and bookkeeping.

Calculation initialisation involves the reading of an adaption control file and checking

it against the flow problem definition.

The main calculation concerns the generation of a new grid. The main tasks are

summarised in figure 4.3.

86

Variable Data

STEP 1

Calculate adaption data set

STEP 2

Calculate weight function

STEP 3
Calculate grid movement

vector

Optional Interpolation
Of adaption data set
for multiple iterations

of so I ver

STEP 4

Fit vector to curves
and surfaces

STEP 5

Apply remaining movement

New gr i d

Main Calculation Process Flow

The adaption data set generated in step 1 used for adaption can be a function of many

flow variables and external data sets. Smoothing can also be carried out on it prior to

the calculation of the weight function (section 2.8.3).

The weight functions in step 2 are described in section 2.8. The weight functions may

be smoothed using techniques described in section 2.8.3.

The grid movement vector in step 3 is calculated using the LPE algorithm described

in chapter 2.

In step 4 grid movement vectors are first applied to all geometric curves and surfaces

defined in the adaption domain as described in sections 3.2.1.3 and 3.2.2.3

respectively. Movement is checked to prevent grid overlapping using the technique

described in section 3.4.

In step 5 the remaining grid movement vectors are applied.

It is possible to loop between steps 2 and 5 through interpolation of the adaption data

set between the old and new grids. This allows a relaxation to be used in the scheme

used to solve the adaption algorithm.

Bookkeeping involves the calculation of total grid movement, removal of extra

adaption files and forcing the calling code to dump a final grid file.

The primary calculation control is through a file that controls when the adaption

module is called and all parameters that influence the main algorithm, the weight

function and the interface between the module and the calling code on a region by

region basis.

This control is supplemented by a number of automatic tools which cover scaling of

internal tolerances to the grid and flow data, and monitoring of grid and flow solver

convergence. The adaption data set used to generate the weight function is

nondimensionalised to allow for consistent adaption parameters to be used over a wide

range of flow problems with little modification.

The interface primarily concerns CFD code specific coding in the adaption modules.

It is split into three areas covering the calling of the adaption module and its control,

data transfer, and several miscellaneous tasks.

The interface also covers the interpolation of the old solution onto the new grid to

reduce the impact of rapid grid movement on the solution process. Implementation of

interpolation within the adaption module is not desirable from the software

engineering point of view as it requires much more data transfer than is needed by

adaption alone. This leads to reduced data protection and more CFD code specific

code. An alternative is to treat the flow problem as transient and to rely on grid

velocity terms within the CFD code, if available, to conserve the flow variables. Tools

to carry out interpolation are discussed in section 3.3.2.

The adaption initialisation module can be called any time after the initial grid is

generated and before the solver of the calling CFD code is started. Its activation is

controlled through either a command coded into the calling CFD code or through a

switch in the adaption initialisation control file.

The adaption calculation module is called at the end of each iteration or sweep of the

solver in the calling CFD code. Its activation is controlled through either a command

coded into the calling CFD code or a switch in the adaption calculation control file,

and by information passed through to the module from the CFD code. This

information includes the current sweep number and any flags indicating the

convergence or failure of the CFD code solver to allow the adaption module to

execute bookkeeping. The sweep number is used to determine activation of the

adaption module by being checked against criteria defined in the adaption calculation

control file. The first call to the module always activates calculation initialisation.

89

In adaption initialisation data transfer consists of reading the original grid in from the

calling CFD code together with any pointers required to interpret the data.

In adaption calculation data transfer consists of reading in flow variable data and

pointers and passing out the adapted grid. In addition it may be desirable to write

adaption data back to the CFD code for visualisation purposes in post processing.

Such data covers grid movement, grid quality measures and the weight function. This

requires specific storage space to be set aside in the problem definition in the calling

CFD code and access to pointers to that storage from within the adaption module.

Another aspect of data transfer are the filters that are needed inside the adaption

module to translate data into the local adaption format. In the adaption modules all

work is done on grid nodes. If flow variable data is held in cell centres, or cell faces

in the case of velocity components on staggered grids, then it needs to be interpolated

to grid nodes. This is achieved using linear interpolation as described in section 3.3.1.

The interface can also contain the following components :-

 Code to force recalculation of internal CFD code geometrical constants after

adaption has taken place.

 Code to force a dump of final adapted grid to file. It may also be advantageous

to dump general data output files at other points in the solution process to

provide more information about the course of the adapted solution.

 Code to output information at run time about adaption. This may involve

output of a measurement of movement, or, if some form of run time graphical

user interface (GUI) is available, a display of parts of the moving grid.

 Code to output macro files linked to flow visualisation tools to automatically

mark out areas of adaption.

90

The CFD flow solvers to which adaption is most likely to be applied use iterative

schemes to solve complex systems of partial differential equations that represent the

physics of 'real' problems. The general format of a CFD code that uses an iterative

solver with adaption is shown in figure 4.4.

Flow chart for adaption in a general iterative CFD code

PHOENICS (Spalding 1989) is a well established general purpose finite volume code

used to simulate fluid flow, heat transfer and related phenomena. It has the ability to

use cartesian, polar co-ordinate and curvilinear (body fitted co-ordinate ,or BFC) grids.

BFC grids can be significantly non orthogonal and are therefore the only ones

considered for adaption by grid movement. A non orthogonal solver is available if the

grid is poor, though its use involves a higher computational cost than the standard

solver.

91

PHOENICS uses a staggered grid for the calculation of the components of flow

velocity at cell boundaries. Other flow variables are calculated at cell centres.

The majority of the test cases in the current work beyond those concerned with fitting

the grid to simple functions have been run using PHOENICS versions 1.6, 2.0 and 2.1.

Most of the development of the adaption algorithm has been achieved with

PHOENICS as the calling CFD code.

PHOENICS is divided into two main programs, a preprocessor called SATELLITE

and a solver called EARTH. The adaption initialisation module is linked to

SATELLITE and the calculation module is linked to EARTH.

The data interface is simplified by using the same format for data storage within the

adaption modules as within PHOENICS. Interpolation of variable data between old

and adapted grids is implemented but does not completely prevent the disruption to

the solver that the grid movement causes.

For convenience the two adaption control files can be incorporated into the

PHOENICS control file Ql as comments.

PHOENICS has a run time GUI. This has been manipulated to plot grid data to the

screen to allow visualisation of the grid movement.

PHYSIC A (Cross et al 1995) is a multiphysics unstructured code under development

at the University of Greenwich. It is designed to be a framework for multi physics

continuum mechanics modelling and involves the use of finite volume techniques to

solve coupled flow and stress problems. A single test case has been run on a grid that

can be treated as structured for the purposes of adaption (section 5.3.2).

PHYSICA stores flow variables at cell centres and uses Rhie and Chow (1983)

92

interpolation to determine convective fluxes at cell boundaries. This is an important

difference from PHOENICS. As PHYSIC A is also able to solve over irregular shaped

cells it is generally less sensitive to grid quality than PHOENICS.

PHYSICA consists of one main executable to carry out all tasks that are split between

SATELLITE and EARTH in PHOENICS so that the structure of the code is the same

as that given in figure 4.4. The adaption modules are accessed through PHYSICA

using the built in user module.

The two main problems in transferring the adaption modules from PHOENICS to

PHYSICA are the interface and the need to use a structured style grid in any sub

regions where adaption is applied if the current code is to be reused. Implementation

of an unstructured adaptive grid technique using the same method is beyond the scope

of this thesis, though the neural net adaption technique discussed in chapter 8 is

unstructured.

As the adaption technique is designed for structured grids it is necessary to define the

grid in PHYSICA using nodes that are in structured form. This means that hexahedral

elements only can be used in regions of adaption and that they be organised in the

same manner as a structured grid. Extra information is required on the dimensions of

the 'structured' part of the grid as this is not stored naturally in PHYSICA.

The independent implementation is used to adapt grids to fixed functions of a type

often used to demonstrate features of grid adaption (Biswas et al 1993, Bennett 1991,

Dvinsky 1991, Acharya and Moukalled 1990, Anderson 1990, 1987, 1987, Arney and

Flaherty 1990, 1986, Lee and Loellbach 1989, Carey et al 1988, Matsuno and Dwyer

1988, Holcomb and Hindman 1984, Greenburg 1983, and Brackbill and Saltzman

1982).

The implementation is split into two separate parts, an initialisation program and a

93

calculation program. The implementation depends mainly upon the adaption modules

already implemented within PHOENICS with additional code to generate the grids

used in the initialisation phase. In the calculation phase the main flow solver is

replaced with simple routines to generate the variables used for adaption. As there is

no need to leave the adaption module during run time the data files used to store

temporary information are redundant. However the grid is output at regular intervals

in a format suitable for viewing using PHOENICS visualisation software, or using a

built in GUI.

This chapter has described general issues in the organisation and implementation of

adaption. The adaption algorithm has been implemented successfully in the CFD codes

PHOENICS, PHYSIC A and independently, though with some limitations in

PHYSICA.

A more detailed discussion of the implementation in PHOENICS is given in

appenicies B and C.

94

The aim of this chapter is to present examples of the use of the adaptive algorithm on

a range of two dimensional cases including both simple mathematical functions and

complex heat and fluid flow problems.

The improvements in results due to the use of dynamically adapted grids can be

measured by comparing results obtained using coarse meshes, coarse meshes with

adaption, fine meshes and experimental results or high quality numerical results. In

the more complex cases such as the 10 degree supersonic intake different grid

resolutions are not available but the adapted grid is shown to offer improved results.

The choice of the initial mesh has to be careful. If the initial number of cells is too

small then though the mesh will move well the resolution of the grid will not have

improved enough to significantly better the results. If the number of cells is too high

then little movement will take place and adaption will not improve the results

5.2

The following cases were generated using the independent implementation of the

adaptive code. In each case the grids were adapted against a static function to

demonstrate how the LPE method will work in particular circumstances. Most of the

grids are compared with published results.

With some weights the LPE equation may be unstable in that the grid will converge

up to a point then diverge. In these cases the adaption has been stopped at the point

where the grid starts to diverge. Otherwise the problems have been run to

convergence. Most of the movement occurs in the first five or ten iterations of the

adaption solver.

95

As all grids in the following section are initially uniform, the Poisson weight in the

LPE equation is set to zero. This is because the Poisson control functions which shape

the grid will all be zero and the Poisson term will be the same as the Laplace term.

In most of the following cases the functions involve an instantaneous change in value

at certain positions in the grid and no change elsewhere. To propagate the effects of

the functions out into the rest of the grid and prevent unpredictable results where a

point is on the border of the function smoothing is used on either the variable used

internally to calculate the weight functions in the LPE equation, or on the weight

functions themselves.

It is important to realise that there is not one single solution to each problem. It

depends upon what the user wants. To demonstrate this several results are produced

for the first three cases.

This problem is used to demonstrate basic grid movement. The grid is attracted to the

centre line by using the simple step function,

(5.1)

*>0.5

This problem is very similar to the attraction to a line case used in Divinsky (1991).

A 10x10 grid is used, covering a unit square domain.

The problem is run with three separate sets of parameters to demonstrate their effect

upon the final grid. In all cases the weight function used is

xit

96

0.01 (5.2)

Attraction to a Line

Case 1A

Case IB

Case 1C

^L

1

1

1

^E

1

3

10

Power Law

Factor

2

3

3

Number of

Moves

20

16

20

Total X

move %

63.4

133.5

165.8

Total Y

move %

0

0

0

Where is the weight on the Laplace term in the LPE equation, and A,E is the weight

on the Equidistribution term. The power law factor governs the slope of the curve of

the weight distribution (See 2.10.3.3). Movement is based on the sum of the

movement of the individual points compared with the sum of the initial distances

between all individual points and their neighbours in the appropriate coordinate

direction in the original grid.

Case 1A 5.2 Case IB

97

5.3 Case 1C

Movement is uniform across domain in all cases

The equidistribution term controls how much clustering occurs around the line. The

power law controls the change in distribution of cells towards the centre line. The

three cases have an increasing equidistribution weight.

5.2.2

This problem is used to demonstrate how the LPE algorithm will adapt a grid to a

stylised 'shock' like function that has a similar shape to those which occur within

numerical models of transonic and supersonic flows. The function is a graded, angled

step, where

0 0.5(3; +14)<*<24

0.5(7 10)<jt<0.5(;y

1 0<x<0.5(;y

(5.3)

This function is used by Anderson (1987a) (figure 5.8, figure 5.9) (1990) (figure 5.10)

A 24x24 grid is used. The domain measures 24x24 units, each cell initially being a

unit square.

98

The problem is run with four power law factors to demonstrate its effect upon the

final grid. In all cases the weight function used is

= l+5(j> +0.05
3
T

The weight parameters are designed to accentuate the gradients of the function.

Angled 'Shock' Like Function

Case 2A

Case 2B

Case 2C

Case 2D

^L

1

1

1

1

A,E

2

2

2

2

Power Law

Factor

3

2

1.5

No Power

Law

Number of

Moves

50

50

50

40

Total X

move %

102.0

102.9

98.7

69.7

Total Y

move %

21.6

24.5

25.6

9.6

Case 2A 5.5 Case 2B

99

Case 2C 5.7 Case 2D

772ZZ

5.8 Anderson 1987aEquidistribution Anderson 1987a Poisson

Anderson 1990 Poisson

Anderson (1987a) used this case to compare equidistribution (figure 5.8) and Poisson

100

(figure 5.9) grid adaption schemes and shows that the Poisson scheme is better.

The function is used here to compare the influence of power law fitting to control how

much clustering occurs around the shock and how far its effect can be propagated

towards the boundaries of the domain. Figures 5.4 through 5.6 show a steadily

decreasing power law producing less clustering around the shock like function, but

more movement at the grid boundaries. In all three of these cases the grids are smooth

with a gradual change in cell size towards the function. Figure 5.7 shows the results

without power law fitting. The clustering within the step is much higher than in the

other cases, and its influence has been propagated through the entire domain but the

change in grid size is much more sudden. This result is close to Anderson (1987a)

(figure 5.9) but shows much more movement away from the step. The overall

movement in this case is much less than in the other three cases.

5.2.3

The purpose of this test is to demonstrate how the LPE equation can move a grid to

a generalised curved function. The function is a graduated step in the shape of a sine

wave.

0 0<y<ll+4sin(7l;t/12)

0.5(y-114sin(7tjc/12) 11 +4sin(7i;t/12)<y<13 +4sin(7ix/12)

1 13+4sin(7tJt/12)<y'<24

This function is used by Anderson (1987a) (figure 5.14, figure 5.15)

A 24x24 grid is used. The domain measures 24x24 units, each cell initially being a

unit square.

In all cases the weight function used is

101

3
2\T

(5.6)

Sine Wave

Case 3A

Case 3B

Case 3C

^L

1

1

1

^E

2

3

2

Power Law

Factor

2

3

No Power

Law

Number of

Moves

30

10

20

Total X

move %

18.6

15.2

12.5

Total Y

move %

15.2

40.1

39.3

Case 3A Case 3B

102

Case 3C

Anderson 1987a
Equidistribution

Anderson 1987a Poisson

As for the angled shock Anderson (1987a) used this case to demonstrate the

shortcomings of equidistribution alone for adaption (figure 5.14) against the Poisson

scheme (figure 5.15).

Case 3B shows that a final grid can be reached more quickly with an increased

equidistribution term, though at the cost of some instability in the solution.

Case 3C shows a good fit of the grid to the step, though points are pulled away from

the areas in the concave part of the function, leaving the area light in cells. This is

less of a problem in the first two cases where the power law weight smoothing has

spread the impact of the function. This distribution could also be improved by

103

constraining the horizontal movement of the grid points.

This function shows how the LPE algorithm can move a grid to two competing

phenomena. The function used is

0.5 jc 2 + v

1

The function is based on that used by Anderson (1987a) (figure 5.17) to show strength

of his Poisson scheme, especially where the function shape switches between straight

and circular.

A 40x40 grid is used over a unit square.

In this case the weight function used is

0.01 ss
(5.8)

Hat Function

Case 4

V

1

AE

1

Power Law

Factor

No Power

Law

Number of

Moves

15

Total X

move %

21.7

Total Y

move %

21.8

104

Case 4 5.17 Anderson 1987a Poisson Scheme

The grid is distorted within the semi circle or hat, as cells are drawn out from this

region towards its boundaries. It would work better if there were more cells in this

region initially. The grid at the points where the semi circle and the line meet have

retained good orthogonality.

5.2.5

A circular function is a frequently used test case for adaption. The form used here is

the graded step found in Anderson (1990) (see figure 5.21) and (1987b) (figure 5.19

and figure 5.20). Divinsky (1991) attracts the grid to a circle (figure 5.22), and

Brackbill and Saltzman (1982) solve a partial differential equation with a circular

shaped solution.

The function used is

105

0.35<r

1.75-5r 0.15<r<0.35

0<r<0.15

Where the subscript refers to the value at the centre of the grid.

A 30x30 grid is used over a unit square domain.

(5.9)

The weight function used is

0.01 (5.10)

Pill Box

Case 5

V

2

^E

1

Power Law

Factor

No Power

Law

Number of

Moves

20

Total X

move %

15.8

Total Y

move %

15.8

Case 5

106

Anderson 1987b Poisson with
Area Control

Anderson 1987b
Equidistribution

Anderson 1990 Poisson 5.22 Divinsky 1991
Harmonic Map

This function is based on that used by Divinsky (1991) (figure 5.24) where grid is

attracted to the same parabolic line used here to define the function.

The function used is a parabola shaped step

A 21x21 grid is used, covering a unit square.

The weight function used is

+0.01 (5.12)

Parabola

Case 6

V

1

^E

1

Number of

Smoothing Steps

5

Number of

Moves

17

Total X

move %

50.5

Total Y

move %

23.7

In this and the following case power law fitting of the weight function is not used.

Instead the variable used to calculate the weights is smoothed by setting its value at

each point to the weighted average at the point and its neighbours (see 2.10.3.1). This

process is repeated five times to further even out the function.

5.23 Case 6

5.2.7

Divinsky 1991 Harmonic Map

This problem is designed to show how the LPE Algorithm can adapt a grid to two

overlapping features. The function used is a parabola shaped step based on that used -

by Divinsky (1991) (figure 5.26) where the grid is attracted to a line and the parabola.

108

0.5

0.5

1

A 21x21 grid is used, covering a unit square.

>»3(;t-0.5)2 ,

,

The weight function used is

0.01 ss

1 +

(5.13)

(5.14)

Parabola with Line

Case 7

\

1

^E

1

Number of

Smoothing Steps

5

Number of

Moves

25

Total X

move %

33.4

Total Y

move %

28.1

5.25 Case 7 Divinsky 1991 Harmonic Map

109

5.3

The following cases were run using PHOENICS versions 1.6, 2.0 and 2.13 on PC's

and Sun UNIX workstations. Case 5.3.2, which features driven cavity flow, was also

run using PHYSICA version 2.

The RAE2822 aerofoil test case is widely used for validation of compressible CFD

methods as experimental data for pressure over the surface is readily available.

The case considered here is case 9, where a free stream Mach number of 0.730

generates a weak shock on the upper surface of the aerofoil at an angle of incidence

of 3.19 degrees.

The angle of incidence of the aerofoil is corrected to 2.79 degrees to allow for

sidewall effects in the wind tunnel. The free stream flow has a Reynolds number of

6.5 million. The grid for the problem is shown in figures 5.26 and 5.27, and consists

of 253x29 cells wrapped around the shape of the aerofoil to form an O grid.

110

5.27a Initial Grid

Initial Grid - Detail Around Aerofoil

The standard case is run until convergence. The adapted case is run for 1000 iterations

111

before adaption starts and for 500 iterations afterwards.

The under relaxation needed for the solution of the pressure distribution with adaption

has to be increased from that used for the standard case. In this case the solution tends

to need time to settle after the grid is modified and can diverge without relaxation.

Two adaption domains are used in the problem area, one covering the upper surface

from about 0.2 chord to the trailing edge, and the other the lower surface from about

0.1 chord to the trailing edge. The overall grid is very large with a wide variation in

grid cell size and there is little point in trying to adapt it all. The distance away from

the aerofoil surface that the domains should stretch is governed by the range of the

perturbations in the flow caused by the aerofoil and the rate at which the cell spacing

increases. Movement is limited to the points sliding along grid lines parallel to the

aerofoil surface. There are no strong gradients to pull distant points on lines normal

to the aerofoil towards the aerofoil.

5.28 Domain Choices

The high concentration of grid cells near the surface of the aerofoil must be artificially

maintained as there is no strong gradient in the flow to force the grid cells to remain

there. Whatever gradient there is for movement will be aligned with the shock wave,

112

if present, and therefore at a steep angle to the aerofoil surface. The Laplace term will

then dominate the adaption equations and will try to force the cells away from the

surface. This artificial control is achieved by extensive use of the curve fitting routines

in the domains to be adapted. This will mean that near the surface of the aerofoil the

grid points will only be allowed to move over the grid lines defined by the initial grid.

The high variation in pressure in a small area at the leading edge of the aerofoil,

coupled with a highly skewed local grid prevents effective grid adaption here. Any

adaption domains defined for the grid must start far enough away from the leading

edge of the aerofoil to negate any influence it may have. The main area of interest as

regards grid adaption is the weak shock wave on the upper surface of the grid, so the

adaption domains can be tailored to fit.

At the trailing edge of the aerofoil the grid is also skewed. There are also potential

problems dealing with the grid cut and the point where the grid cells collapse. Though

there should be no strong gradients here to influence adaption elsewhere, the effective

limit to the adaptive domains is where the grid lines perpendicular to the aerofoil

surface start to slope.

The extent of the domains is also influenced by the region in the grid above and

below the trailing edge where the cell size changes rapidly and the cells themselves

have a very high aspect ratio. In these regions use of adaption can easily lead to grid

lines kinking and even overlapping due to minor perturbations in the flow.

The extensive use of curve fitting helps to maintain grid smoothness.The fixed curve

patches are displayed in figure 5.29.

113

Fixed curves in the adaption domains

The most important part of the grid contains the aerofoil boundary layer cells and this

is the region for which experimental data is available. It was found in early runs that

the movement of the grid nodes right on the boundary was more prone to fluctuations

than in the rest of the flow and more importantly tended to lag behind the movement

of the points away from the surface. Preventing any movement at the surface was

undesirable as it left the boundary layer grid cells highly skewed as they leaned

towards the computed shock. To maintain the orthogonality of the boundary layer cells

the movement of the boundary nodes was set to that of the nodes on the adjacent grid

line inside.

The adaption parameters are

First call

(sweep number)

1000

Last call

(sweep number)

1900

Frequency

(sweeps)

100

Internal

Iterations

10

Relaxation

0.8

The constants used for adaption are given in the following table.

114

Domain 1

Upper Surface

Domain 2

Lower Surface

LPE Equation

^L

1

V

1

A.p

2

A/p

1

^E

5

^E

2

Variable

Pressure

Pressure

Weight Function

l-H> x+0.01fc

x3 power law smoothing

l+<j> x+0.01&

x3 power law smoothing

The grid is moved to pressure in both domains, with a higher weight on the

equidistribution term on the upper domain. There is not a particularly strong gradient

in either domain and it is weaker in the lower domain. To have the same parameters

for the lower domain, domain 2, causes problems as minor pressure perturbations have

more effect. To maximise the effect of the pressure gradient power law smoothing is

used for the weight term, with the weights assumed to increase at a rate proportional

to the distance cubed up to the local maximum. This use of smoothing allows high

values to be used for the equidistribution term, allowing faster grid movement whilst

keeping the LPE equation stable.

The grid has moved to concentrate grid cells both above and below the aerofoil. The

grid concentration on the upper surface has occurred downstream of the location given

in the experimental results.

Figure 5.33 shows that though there is little difference in the accuracy of the solution

on the underneath of the aerofoil, the shock on the upper surface is picked out much

more clearly and is of the same magnitude as the experimental results. The calculated

shock occurs downstream of the experimental shock, though it is in the centre of the

smeared shock predicted by PHOENICS on the original grid. The adaption has

changed the PHOENICS results and shown the potential to give better results, but also

possible limitations with PHOENICS.

115

Figure 5.34, showing surface pressure coefficients for standard, globally refined and

adapted refined grids generated by Dannenhoffer (1985) is included to show that the

apparent change in position of the shock wave due to adaption is not limited to the

current work alone.

Adapted Grid

116

. -&E+4

.4E+-9

.1EH-4

.7E+4

.3E+4

.4E4-3

. 6E+3

. 9E+3

.9E+3

. 6E+3

. 3E+3

.3E+4

.7E4-4

. 1E4-4

-2. 9E + 4

Initial Grid 5.32 Adapted Grid

Surface Pressure Plots

117

Surface Pressure calculated with Adapted Grid by
Dannenhoffer (1985)

5.3.2

The driven cavity problem is widely used as a test of numerical methods (Ghia 1982)

and has also been used as an example in literature covering grid adaption (Lin and Wu

1993, Mavriplis 1992, Moukalled and Acharya 1991, Shen and Reed 1993, Thompson

and Ferziger 1989).

The dominant source of error in this case is the hybrid advection scheme used within

the finite volume solver. The accuracy of this scheme depends upon the local

Reynolds number which is proportional to the local velocity and the cell spacing.

Reducing cell spacing and aligning the grid to local flow conditions through adaption

will improve results calculated on coarse grids.

This case is used to demonstrate adaption within PHYSICA as well as for

PHOENICS.

118

A wall moving at 1 ms'1 creates a circulation in a square domain measuring Ixlm.

The problem is dependent on the Reynolds number, and the results presented are for

a Reynolds number of 1000.

t.

5.35

The problem was run on 40x40 and 60x60 uniformly distributed and adapted grids in
both PHOENICS and PHYSICA. For comparison of the effects of adaption the same

case is also presented on a finer 80x80 uniform grid without adaption in PHOENICS.
The results were similar enough between PHYSICA and PHOENICS for the 60x60

uniform case (figure 5.38) to make running the 80x80 PHYSICA case unnecessary.

The PHOENICS cases were run for 2500 sweeps. The PHYSICA cases were run until

convergence was reached as defined by the default set up file.

With a very fine grid (250x250 cells) PHOENICS reproduced the Ghia results for a

Reynolds number of 1000 exactly.

5.3.2.2

One domain is used that covers the whole problem area. Curve patches are set up

along all of the boundaries of the adaption domain except the top, moving, wall to

119

allow boundary points to move.

The adaption parameters are

PHOENICS

PHYSICA

First call

(sweep

number)

300

80

Last call

(sweep

number)

600

400

Frequency

(sweeps)

100

40

Internal

Iterations

8

10

Relaxation

1.0

0.9

PHOENICS

PHYSICA

LPE Equation

\

1

1

Ap

0

0

^E

3

3

Variable

Magnitude

of Velocity

Weight Function

1+(|>

x3 power law smoothing

Magnitude of velocity is used to drive the grid as there are no other strong gradients

that exist throughout the whole domain. The form of weight function here is used as

the only strong gradients within the flow except at the moving wall itself which lie

at the edges of the main eddy produced by the moving wall. Moving the grid to these

gradients will pull cells away from where the flow is greatest and needs most

resolution.

To prevent the flow at the boundary layer dominating all movement, the magnitude

of <}) is limited to a maximum of 0.6. All values above 0.6 are treated as 0.6, giving

a high constant weight across the top of the domain which resists movement but lacks

the change in weight which drives the grid.

The weight for the Poisson term was set to zero as for a uniform grid the control

functions will be zero and the Poisson term will collapse to the same as the Laplace

term.

120

The different parameters used for PHYSICA and PHOENICS came about because of

the different response from PHYSICA to adaption.

5.3.2.3

The PHOENICS run using adaption clocked 4045 seconds on a Sun SPARC 5

workstation for 5000 sweeps, against 6734 seconds for the fine grid and 3834 seconds

for the coarse grid.

Figures 5.36 and 5.37 show that the grid cells have concentrated on and are more

aligned to the main eddy in the cavity in both PHYSICA and PHOENICS.

Figures 5.38 and 5.39 plot the component of flow velocity parallel with the moving

lid on the centre line of the box for all the flow cases run with the Ghia results

(1982). They show that significant improvements are offered by adaption within

PHOENICS over the plain 60x60 grid for Re=1000 and even over the 80x80 grid,

though the improved results at the most important features, the moving wall and the

main eddy, are balanced by a mild loss of accuracy elsewhere.

The PHYSICA results show a less marked improvement over the static grid results

than for PHOENICS, though with less loss of accuracy away from the low velocity

peak. There is less movement overall in the PHYSICA adapted grid.

Figure 5.40 presents the grid cell spacing along the centre line for the PHOENICS

adapted grid alongside the grid density for the 60x60 and 80x80 grids. It shows that

grid density peaks at the moving lid boundary condition and at the centre of the main

eddy about 0.18 above the base of the cavity at the expense of neighbouring regions.

Figures 5.41-44 present the velocity vectors for the flow field with the different grids.

The eddy appears to be better defined in the adapted grids than the unadapted grids.

The eddy in the adapted PHYSICA results is particularly well defined.

121

Figures 5.45-46 present records for the rate of convergence of pressure on the 60x60

grids in PHYSICA and PHOENICS, measured using the residuals or errors in the

governing equations during the solution procedure. The magnitude of change for each

record are not comparable between the different cases as the way the residuals are

calculated in PHYSICA and PHOENICS is different. The PHOENICS test cases were

considered to have converged when the sum of the absolute values of the residuals

reduced below l.e-4. Using this criteria the adapted grid converges faster than the

unadapted grid despite the large disruption to the curve caused by adaption.

The PHYSICA cases also use a tolerance value of le-4 to determine convergence.

Here the adapted case does not converge faster. The effect of adaption on the residual

error is also much less than in the PHOENICS cases.

Adaption parameters for PHYSICA will be different than those from PHOENICS

because of a number of reasons. These include:-

 Reduced sensitivity of PHYSICA to grid quality. This is because it uses Rhie

and Chow (1983) interpolation against the staggered grid used in PHOENICS.

 Calculation of adaption data set. In PHYSICA the data set used to calculate

the weight function is stored at the cell centre and calculated prior to entry to

the adaption module, where it is interpolated to grid nodes. In PHOENICS the

data set is calculated directly at grid nodes by interpolating and combining

individual velocity components from cell faces.

 Calculation of velocity at cell centres IN PHYSICA as opposed to cell faces

in PHOENICS means that velocities at boundary conditions are potentially

better defined in PHYSICA as in PHOENICS they will be further away. In

PHYSICA this may lead to a steeper velocity gradient at the moving lid which

will influence the way in which the adaption algorithm operates over the

remainder of the domain, reducing the effect of the eddy in the

122

Grid adapted in PHOENICS 60x60 Cells

5.37 Grid adapted in PHYSICA 60x60 Cells

123

1.0

0.5

0.0

-0.5

o o o

PHOENICS Adapted grid 60x60 cells
PHOENICS Unadapted grid 60x60 cells
PHOENICS Unadapted grid 80x80 cells
Ghia results
PHYSICA Adapted grid 60x60 cells
PHYSICA Unadapted grid 60x60 cells

0.0 0.2 0.4 0.6 0.8 1 .0

U Component of Velocity on Centre Line (Velocity against Distance)

0.00

-0.05

-0.10

-0.15

-0.20

-0.25

-0.30

-0.35

-0.40

PHOENICS Adapted grid 60x60 cells
PHOENICS Unadapted grid 60x60 cells
PHOENICS Unadapted grid 80x80 cells

o o o Ghia results
.._._. PHYSICA Adapted grid 60x60 cells

PHYSICA Unadapted grid 60x60 cells

J_ J_ _L J_ _L _L

0.00 0.05 0.10 0.15 0 .20 0.25 0.30 0.35 0 .40

Detail of figure 5.38, U Component of Velocity on Centre Line (Velocity
against Distance)

124

o.oia

0.016

0.014

0.012

0.010

o.a 0 .6 i .0

Cell Spacing along Centre Line after adaption in PHOENICS

Velocity Vectors on Basic Grid calculated in PHOENICS

125

5

c

IT 111 I 11

i

The PE's in each group share a common system energy, known as the information

potential (IP). The self organisation process involves the evening out of IP over the

network by allowing information to flow between neighbouring groups with different

information levels. The IP is defined as the density of the information in a group of

PE's, and is a combination of state variables and inputs.

The IP is expressed as the product of a state control function Fs and an input control

function Fl.

For each group the input control function Fl is

1 N
F =- '" Q.

1 NL.i J
}=1

(8.1)

(8.2)

Where the neural group has N PE's and Qj is the value of the input function on each

PE.

In one dimension the state control function Fs is

$ $
Figure 8.2 One Dimensional Neuron Group

For the one dimensional case the IP is analogous to the equidistribution equation (1.1),

with the weight function w related to the input control function Fl , and the grid cell

clearance t:S effectively the same as the state control function Fs·

w = constant (8.4)

190

In two dimensions the state control function is linked to the area of the cell. Other

grid properties, such as orthogonality, aspect ratio, or skewness, could be used instead.

(8.5)

3

Figure 8.3 State control function Fs

The neural net is stable if the flow of information is small or non-existent. If there is

a disturbance in one part of the net its effect is propagated and dissipated by the

adjustment of state variables until a new equilibrium is reached.

The equilibrium of the system of N neuron groups is defined as

N-l
E= L (lPhI -lPi)2

i=l

(8.6)

The learning process finishes when the equilibrium is less than some defined tolerance

or when a given number of self organising steps or epochs have been exceeded.

The flow of IP, the 'learning process' takes place over a senes of epochs and is

controlled by the modification of the state variables of the PE's. The state variable S

at iteration t is detennined from

(8.7)

Where

191

dE
I

I 'I dS -
I

(S.S)

E is the equilibrium, defined in equation 8.6, 11 is the learning rate, and a is the

momentum term. Both the learning rate and the momentum term are small and

positive. Their value is controlled by the user.

No known solutions or expected output data are used to train the SONN. It organises

itself based on input data alone and the user is only interested in its final arrangement.

There is no separate processing phase. The only part of the operation of the SONN

that is of interest at this time is the training phase.

8.3 Implementation

The SONN is controlled by the user file CONFIG.SNN. It takes data from the file

MESH.OAT and outputs a modified version of MESH.OAT call NEW _MESH.DAT.

1 CONF IG SNN

MESH. OAT 1----8 1 NEW_MESH OAT

Figure S.4 SONN call structure

CONFIG.SNN controls the learning rate, the momentum term, convergence criteria

and a maximum size ratio between the smallest and largest cells.

MESH.OAT contains data on the location and degrees of freedom for all grid nodes,

the definition of the grid cells, and the initial value of the input function at each node.

NEW _MESH.OAT has the same format as MESH.DAT but does not contain input

function values. The format of these two files is unstructured.

8.4 Neural Net Adaption inside PHOENICS

As a way of demonstrating the use of neural nets adaption with a flow solver the

192

SONN was used to adapt a grid taken from a problem for which PHOENICS

calculated results are available.

In the current work the SONN is essentially a static adaption technique. The reasons

for this are that the SONN is a third party code (Zhao et al. 1996) written in C++,

whilst PHOENICS and the adaption routines are written in FORTRAN, and that the

data structures used by the SONN, being inherently unstructured, are very different

from PHOENICS. Given time both problems could be resolved, with the SONN

software either rewritten or linked directly to the FORTRAN code, though the

implementation would not be platform independent. There is no reason why it could

not become dynamic in future.

To give the illusion of dynamic adaption the SONN is run in batch mode with the

PHOENICS solver EARTH.

The SONN alone works on information input onto each PE, or grid node. To allow

its use to be stretched to practical problems coupled with a flow solver it is necessary

to recover useful data on the grid nodes to drive the grid movement. This is the same

problem as for the LPE adaption method discussed in this thesis, and the same

techniques have been used to solve it. For this reason a preprocessor, NEUPHI, was

written to prepare data for the SONN which interpolates cell centred PHOENICS data

onto the grid nodes and then applies a weight function. It is worth noting that the raw

interpolated data alone would only be useful for a minority of flow problems. Though

arguably different neural net techniques could be used to determine the best treatment

of the solution data for adaption, at this stage the choice and treatment of the weight

function is in the hands of the user.

NEUPHI generates the SONN input file MESH.DAT using the input file NEU.IN. As

well as generating the input function it also determines the degrees of freedom of all

grid nodes and the nodes which form each grid cell.

A post processor, NEUXYZ, was written to recover a new PHOENICS grid from data

193

output from the SONN in the file NEW _MESH.DAT. EARTH always picks up the

grid file XYZ at the start of each run. NEUXYZ renames the old XYZ file to give a

history of the adaption, then writes a new file XYZ.

The final structure of the adaption routine is

XYZ ,
PHI ,

NEU. IN I-,CEUPHI :> ,
MESH. OAT ,

CONFIG.SNN 1-'0"" ,
NEW_MESH DAT ,

Figure 8.5 Structure of SONN adaption

8.5 Example - X-Y Convection in a Skewed Flow

The choice of example case is limited by the current inability of the neural net to deal

with awkward geometry, there being no method to maintain geometry except for

fixing the movement of specific grid nodes in one or more directions.

The example case chosen here is a simple diffusion problem solved on a uniform

194

mesh with an angled flow and different concentrations of a contaminant C which is

used to drive the adaption. Four different variations of the case are run, three with the

flow entering the domain at different angles and one with the addition of a wall as a

boundary condition.

For the purposes of comparison the same problem was also adapted using the LPE

method.

8.5.1 Boundary Conditions

The problems are solved over a 30x30 cell square uniform grid of unit dimensions.

The problems are set up with four inlets placed at regular intervals over the west and

south faces of the domain and outlets on the north and east faces. The inlet velocity

is uniform over all the inlets. The value of the contaminant C at the inlets alternates

between 0 and 1 and is shown in figure 8.6.

c=o

c=o I C=1

/
/

/

Figure 8.6 Boundary conditions

The problems were run for 500 sweeps.

/

The four cases are run with the inlet flow at 11 0, 22° and 45°. A fourth case is also

run with a wall instead of an outlet on the north face and the inlet flow at 45°, forcing

the flow to bend over. These changes to the inlet conditions and the outlet were the

only differences between the four cases.

8.5.2 Adaption Parameters

195

\

dx

+k

-

-L

EN- rWN">-(rES- rWS^Y^\(rEH- rE^-(rWH- rWL^}

N ~

8

J

LPE LPE LPE LPE LPE LPE LPE ipp (\

LPE LPE LPE LPE LPE LPE LPE

