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PREFACE

The aim of the thesis was to develop a technique for dynamic grid adaption based on
the LPE method of Catherall (1991) that can be used on 1D, 2D and 3D problems in
a form that can be attached to computational fluid dynamics (CFD) packages with the
minimum of additional coding. To this end the adaptive technique was implemented
to run on real flow problems within the commercial CFD code PHOENICS (Spalding
1989), on a single problem with the research code PHYSICA (Cross et al 1995),and

independently on a range of simple test functions.

Most, though not all of the successful work on structured grid adaption has been
achieved working with inviscid codes that are tolerant of high degrees of grid
distorsion, and involve problems with distinctive flow features such as very strong
shocks which make the task of finding something to move the grid to much easier.
PHOENICS 1is a viscous code that is not quite so tolerant of poor grid quality and
some of the problems looked at dont have such clearly defined features. This makes

the tasks addressed by the current work much harder.

A major requirement of this adaptive technique is that, as it is being developed for use
with but independent of CFD packages, there should be the minimum of information
transfer between and disruption to the flow solver. This is a great constriction on the
development of the technique, as the information that can be reliably passed between
the adaption tool and the solver consists of the grid coordinates and the values of
solved variables. Grid cells cannot reliably be added, so adaption must take place by
redistribution not refinement. Grid cell renumbering may not be possible, so boundary
conditions must always apply to the same group of cells, regardless of how much the
mesh distorts. In addition there is no allowance for any prior knowledge of the
original problem domain. All of the features of a particular geometry can only be
calculated from the shape and point distribution in the initial grid. Finally, the benefits
of variations in grid density with the adapted grid must be able to outweigh the errors

due to grid distortion when solved over by the CFD code.



The main aim, the development of the adaptive technique, has been achieved.
However, some important features of the technique have not been fully tested. The
most important of these is adaption in three dimensions. Testing in three dimensions
was difficult because of the lack of suitable cases with reliable data, and the difficulty

of comparing results from fixed and from adapted meshes.

Another feature that needs more work concerns weight functions. Many different
forms were found in literature and several of them were implemented in the course
of the development of the technique. Unfortunately there was not enough time to fully

explore the differences, if any, between them.

Within the range of grid quality that can be tolerated by the solver the adaptive grid
can be an effective tool in improving accuracy, given that there is some strong
gradient or flow feature in the problem domain, and that the starting grid is neither

too coarse to pick up the feature nor too fine to render grid redistribution unnecessary.
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ABSTRACT

This thesis describes the development and implementation of a dynamic adaptive grid
method for general two and three dimensional static and transient fluid flow problems
solved over structured grids. The technique automatically manipulates the location of
grid points within the domain of interest to concentrate cells in regions of high
solution activity, thus aiming to improve the accuracy of the overall simulation for a
given number of initial grid cells. To achieve this aim the Laplace Poisson
Equidistribution equation is used. Furthermore, the work also covers different types
and treatment of weight functions needed to represent areas of high solution activity
and a range of techmiques necessary to make the use of adaptive grids practical,
including geometry modelling and grid quality control. The technique is implemented
on simple functions and within the commercial CFD code PHOENICS, on fluid flow
problems ranging from convection driven flows to shock capturing. The ability of the
technique to be used for general grid manipulation is demonstrated by using it to
couple PHOENICS with a stress code in the simulation of a deflecting beam in a
uniform flow. In addition, a novel technique to adapt grids to solution phenomena

using neural nets is demonstrated.
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CHAPTER 1: INTRODUCTION

1.1 Introduction to Grid Adaption and CFD

The aim of this chapter is to introduce the concept of grid adaption, to briefly explain
the different techniques found in literature, and to describe the Laplace Poisson

Equidistribution algorithm used in the current work.

Computational fluid dynamics (CFD) encompasses the simulation of physical
phenomena through the use of mathematical equations. It exists because it allows
physical behaviour to be determined in situations and geometries that could not
otherwise be measured or explored analytically, and it allows rapid modifications to
be made to geometrical designs in the virtual world of the computer that would take

much longer if modifying ’real’ models.

Many systems of mathematical equations used in computational fluid dynamics
involve the solution of partial differential equations on discrete elements or cells that
define the physical domain. These cells form a grid, and its shape and resolution has
a profound effect upon the accuracy of the simulation. The finer the grid, the higher
the resolution and accuracy, but the higher the computational cost in time for the

computation of the solution and in memory used to store information for each element.

In addition the length scales of various phenomena may vary dramatically across the
physical domain. If, for instance, a shock wave is being modelled then the required
grid resolution to accurately fit the shock will be very high. If the grid is uniformly
distributed, then either an extremely large number of cells will be required or the
phenomena will be dissipated or lost. An extreme example is given by Quirk (1991)
for the case of a detonation wave in solid explosives where for the required grid
resolution within the reaction zone the cell thickness should be in the order of 0.002
mm in a sample which may measure 100 mm in length by 100 mm in diameter. If the
location of such phenomena is known beforehand, then the generation of the

computational grid can be modified to produce a higher resolution in the important









False diffusion has little effect when the grid is aligned with the fluid flow and when
the ratio of convection to diffusion is low. Otherwise false diffusion can be reduced
by using complex discretisation schemes on the conservation equations, such as
SUCCA (Carey et al. 1993), or CUPID (Patel et al. 1988), or by using grid adaption.
Grid adaption by redistribution can align the grid cells with the local flow direction.
Grid adaption by both redistribution and refinement can also reduce the local grid cell

size where false diffusion is worst.

1.3 Grid Quality

Grid quality is difficult to measure because it depends so much upon the problem and
the capability of the CFD solver which is used to solve it. The basic requirements of

a good structured grid are that it:

e Accurately defines the geometry of the problem, including internal and

external boundaries.

» Allows a solution to be generated to the required level of accuracy for the

minimum use of resources. This can involve variation in grid density.

The degree to which the grid can be skewed to accommodate boundaries and increased
density in regions of high solution error is governed by the way in which grid
properties contribute towards error. The two main grid properties that contribute

towards grid error are:

» Orthogonality. An orthogonal system is defined by Thompson et al. (1985)
as one where a vector normal to a coordinate surface is parallel to the tangent
of a coordinate line that crosses that surface. These two vectors are known as
the contravariant and covariant base vectors respectively and are important in
the derivation of the metric tensors used to transform grid coordinates from
physical to curvilinear space (see appendix A). Structured grid orthogonality

is based on the arrangement of grid nodes.



» Smoothness, defined as the rate of change of the angles between grid cells

and the rate of change of grid cell volume.

The general requirements for grid quality given by Jacquotte (1991) are orthogonality
the grid lines close to the boundaries, angles between lines not exceeding 45°,
deviation of lines from one cell to the next of not more than 10 to 15°, and a rate of

change of volume not greater than 30%.

Grid cell aspect ratio can contribute to grid quality problems, particularly when

combined with poor smoothness and orthogonality.

Though there is much literature available on mesh optimisation, with or without grid
adaption, (Lehtiméki 1995, Knupp 1992, Jacquotte 1992, 1991, Chawner and Anderson
1991, Lu and Eiseman 1991, Lee et al. 1990 and Thompson et al. 1985), research on
the actual contributions of grid properties of solution error have been limited (Huang
and Prosperetti 1994, Lee and Tsuei 1992b, Shirayama 1991). The most interesting of
these papers is possibly Huang and Prosperetti (1994) who determine formulae for the
truncation error due to the diffusion term in the Navier Stokes equations, and then use
the formula to test the influence of grid angle, smoothness and boundary
orthogonality. Their main conclusions are that grid angle is only significant when very
small, the importance of grid smoothness is related to the shape of solution, with very
regular solutions needing smoother grids, and that orthogonality is less important than
grid density. In other words orthogonality can be disadvantageous when it reduces the

local grid concentration.
1.3.1 Measuring Grid Quality

Grid skewness is very similar to grid orthogonality and can be measured relatively
easily using the technique described in Lehtimiki (1995). Here skewness is defined
as the amount of deformation of the individual grid cells. In two dimensions it is
calculated for each grid cell by using the areas of both pairs of triangles which are

formed by splitting it along either of its two diagonals.



If the areas of the triangles are ¢,, and ¢,, for the diagonal from ij to i+1,j+1; t,, and
t,, for the diagonal from i+1,j to i,j+1; and the maximum lengths of the edges of the
cell in each curvilinear direction are ¢, and e, (figure 1.4) then the skewness p can be
calculated using equation 1.1.

max{min{t11 ,tn}‘,mm{z,‘?_1 ,t22}}

(1.1)

©
i

€16,

ij+l
i+1,j+1

22

12

i+1,j
ij e,

Figure 1.4 Definition of Terms in Equation 1.1

A value of 1 for the skewness p indicates a quadrilateral cell. As the cell becomes

more skewed p decreases. If the cell becomes folded then p becomes negative.

In the system described in figure 1.5 the orthogonality o of the point r;; can be

determined using the formula given in Lehtimiki (1995):-

0 =%[(8 rm,j's rij+l)2 +(8 rij10 ri+lJ)2 +(d rz'—l,;"8 ri,j—l)z +(d Tijon 0 ri-lJ)z] (1.2)

Where

r...—r..
Sr =t W (1.3)
r...-r, l
i+1ly iy
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Figure 1.5 Grid Orthogonality
1.4 Techniques

This section presents examples of the range of adaption techniques found in the

literature. Features which are common to all adaption techniques are briefly discussed

first.

All adaption techniques consist of a method to determine where in the physical
domain extra computational resources are required. The value calculated by this
method is commonly known as the weight. The weight is usually some function that
relates to solution error which may be some measure of the truncation error using a
second coarse mesh, or more simply based on the gradients of chosen solution
variables. The weight may also be linked to geometrical properties of the grid to assist
in grid generation. The principal aim of adaption techniques is to evenly distribute the
weight over the domain so as to evenly distribute and minimise the overall solution

error by avoiding large peaks and troughs.

A fuller description of methods used to calculate the weight is presented in chapter

2.

In the case of refinement more grid cells are added in regions where the weight
exceeds some predefined tolerance. In redistribution techniques the grid cell spacing
is, depending on the technique used, inversely proportional to the weight distribution.

This is driven by the equidistribution equation, which in one dimension is



(1.4)

wAXx =constant

Where w is the weight, and Ax is the grid point spacing.

A second feature common to all adaption techniques is that the final grid itself will
be able to provide information on the shape of the solution through the distribution
of its cells. An example of this can be seen in figures 1.1 and 1.2 above where the
calculated position of pressure waves around the aerofoil can be clearly seen in the

grid.

1.4.1 Mesh Redistribution Methods

Mesh redistribution methods involve the movement of nodes in, or the recalculation
of the original grid with the same number of cells, so as to give a better grid

distribution for the problem.

The main problem in redistribution techniques is balancing the demands of
equidistribution of error against grid quality. Errors due to grid quality will increase

and overtake the error modelled by the weight function if the grid is stretched too far.

Grid quality can be measured in terms of orthogonality or skewness, which can be
looked on as a function of the internal angles of the cell, and smoothness, which is
the rate of change of cell size. Maintaining grid quality also means avoiding grid line
cross over and cells which are too small or large. There is some published work
concerned with optimising grid quality alone. Examples include Lehtimiki (1995),
Huang and Prosperetti (1994), Lu and Eiseman (1991), Saoub and Vandromme (1991),
and Shirayama (1991).

The main advantages of grid redistribution techniques include

» Continuous response to solution behaviour.



» Fixed storage requirements, though allowances may need to be made to store

old grids.

» Easier to implement, particularly for three dimensional grids. The flow solver

may not need to have any knowledge of adaptivity.

 Alignment of grid with the direction of local flow and physical phenomena

such as shock waves can help to reduce numerical diffusion

Disadvantages include

* Loss of grid quality. Computational effort and coding complexity may have

to be tied up with monitoring quality.

» Maintenance of internal and external grid boundaries and grid features. This
is more straightforward where the grid is regenerated using known geometrical
information about the physical domain, but less so when grid points are moved

only.

* Disruption to flow solver. If adaption takes place dynamically, that is during
the course of a single run of the flow solver, then the stored values for the
solved variables in each cell become invalid once the grid has moved.
Dannenhoffer (1991) assumes that as the movement in each adaption will be
small that the solution carried forward to the new grid will be a good guess to
the new solution. The alternative is to interpolate the solution between grids,
which may be expensive if the grid is large and particularly for three

dimensional grids.



1.4.1.1 Equidistribution

The equidistribution equation on its own is the simplest method of grid adaption, as

well as being the basis for grid movement in other techniques.

There are a range of methods based on the equidistribution equation. The method used
by Patel, Pericleous and Baldwin (1995) involves equidistribution along lines. Each
grid line is treated separately, and cell distribution is based on the arc length. Equation

(1.4) 1s rewritten as

As=_c- (1.5)

3

where As is the arc length. This is modified to allow for zero values of weight giving

Asnz( ¢ }Aso 1.6)
W+C |

where As, is the new arc length, As,, the original arc length and ¢, some predefined

function that is fixed for each line. After all of the new arc lengths are calculated they
are scaled to fit within the limits of the original grid line. Additional terms may be

added to control the amount of movement in each adaption.

Equidistribution on its own may be very fast, but additional steps, such as Laplace
smoothing, may be needed in the adaption algorithm to enhance grid quality. Such
steps may also help to link the movement between neighbouring grid lines that may

otherwise lead to highly skewed grids.

Examples of equidistribution techniques in literature include Adams and Conlisk
(1995), Patel et al. (1995), Lin and Wu (1993), Lee and Tsuei (1992a), (1992b), Shyy
(1992), (1991a), (1991b), (1990), (1986), Harvey et al. (1991), Chang and Shyy
(1991), Chao and Liu (1991), Pao and Abdol-Hamid (1991), Bockelie et al. (1990),
Lawal (1990), Mattheij and Smooke (1989), Seibert et al. (1989), Anderson (1987a),

10



Eiseman (1987), Eiseman and Bockelie (1987), Coyle et al. (1986), Sanz-Serna and
Christie (1986), Dwyer (1985) (1984), Rai and Anderson (1982).

1.4.1.2 Poisson Equation

A common method for structured grid generation involves the solution of the Poisson
equation, where the Laplace equation common in elliptic grid generators is equated

to some control function. The basic form of the equation is

V=0, i=1,3 (1.7)

where Q, is a control function and &; are the system of coordinates that define
curvilinear space. This equation is commonly inverted to make the physical

coordinates the dependent variables, and thus takes the form

Z Z gijrgi{;i*'zk Pkgkkr k:O i,j,k CyCliC (1-8)
L]

where g7 is the contravariant metric tensor, r is the general space coordinate, and P,
is the transformed control function. The value of the control function is used to control
the shape of the grid and the concentration of grid cells. A control function of zero
means that the equation defaults to the Laplace equation and the resulting grid is equi-
spaced. A full description of the use of control functions can be found in Thompson

et al. (1985).

This method can be easily modified to allow for adaption by modifying the control
function term to include an adaptive term that is related to solution activity. By
including and weighting both the term to generate the original grid and the term to
adapt the grid the amount of adaption can be controlled. If the weighting on the terms
is allowed to vary during the run, then the original grid can be recovered by reducing
the weight on the adaptive term (Roache et al. 1991). The adaptive form of the

Poisson equation can be written as

11



Y X girgy+ X [(1-¢,)P,+c,W,]g"r. =0 (1.9)
i J k

where c,, controls the amount of adaption, and W, is some adaptive weight function.

The Poisson equation is widely used for grid adaption on both two and three
dimensional grids (Hall and Zingg 1995, Kwon and Jeong 1995, Shen et al. 1993,
Catherall 1991, Dannenhoffer 1991, Hsu and Lee 1991, Anderson 1990, 1987a, 1987b,
Tu and Thompson 1990, Noack and Anderson 1989, Kim and Thompson 1988,
Matsuno and Dwyer 1988, Thompson 1985, Holcomb 1984).

1.4.1.4 Spring Analogy

This method is in more common usage for finite element problems, and in particular
mixed fluid and structure interactive problems where the mesh may deform about an
elastic structure (Farhat and Lin 1990, Lesoinne and Farhat 1995). In such problems
the stress solver required to modify the grid may already be available. The grid can
be looked at as a pseudo structural problem with each node connected to its
neighbours by a spring. For grid adaption a force is applied to each node in the mesh
relating to the value of some function. For moving mesh type problems a range of
nodes are given an initial displacement and the system allowed to reach a new
equilibrium. The problem can also be looked at as the minimisation of the energy in

the system of springs as depicted in figure 1.6.

Figure 1.6 Tension spring analogy
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To prevent excessive grid skewness a torsion spring concept (figure 1.7) may be used
about each node (Catherall 1991, Harvey et al. 1991, Nakahashi and Diewert 1987,
1986, 1985).

)
¥

A

Figure 1.7 Torsion Spring Analogy
An advantage of this approach is that as it only depends upon a system of nodes and
links the same technique can be used for both structured and unstructured grids

(Farhat and Lin 1990).

Other examples of the use of the spring analogy in literature include Hu (1998) at the
University of Greenwich, Ramakrishnan and Singh (1994), Harvey et al. (1993),
Davies and Venkatapathy (1992), Palmerio (1992), Niederdrenk (1991), Gnoffo
(1983). It is also being used in ongoing work at the University of Greenwich in

coupling structural and CFD codes (Slone 1997).

1.4.1.4 Variational Technique

The variational technique involves the evaluation and minimisation of grid properties
and solution error, commonly using Euler-Lagrange equations from the calculus of
variations. The properties commonly checked for include cell volume or area,
smoothness and orthogonality. The final solved for equation is a weighted combination

of the above properties.

The integral form of the three terms for orthogonality, smoothness, and solution

behaviour used by Kim (1987) and others are:-
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Smoothness

3
_ VENdx (1.10)
Iy fffi)zjl(vci V&)

Orthogonality

3
_ IRV x (1.11)
1, fffl{_:l(vé \44 ) g>d

Solution behaviour

Iw=fffw2(x)\/§dx (1.12)

The main advantage of variational techniques is that the individual terms reflect
physically significant quantities that are easy for the user to understand. However the
final equations may be more costly to evaluate whilst not producing significantly

different results from, say, Poisson based schemes (Kim 1987).

Other examples of the use of variational techniques are included in Brackbill (1993),
Castillo (1991), Desbois (1991), Hsu and Tu (1987), Jacquotte and Coussement
(1992), Palmerio (1992), Saouab and Vandromme (1991), Singh, Kumar and Tiwari
(1991), Jeng and Liou (1989), Giannakopoulos and Engel (1988), Kim and Thompson
(1988), and Brackbill and Saltzman (1982).

1.4.1.5 Mapping Techniques

Mapping techniques involve the adaption of the grid in some form of transformed or
parametric space which is then mapped back to the physical domain. The parametric
space may be much simpler than the physical domain and may even be uniform. This
allows the use of simpler adaption equations, that will in turn probably behave better
than on a skewed mesh. In addition the grid shape and grid quality can be closely

controlled as the grid points are mapped back to the physical domain.

14



The main strength of mapping techniques is in handling complex geometry, where it

is much easier to maintain high grid quality and prevent grid cross over.

The weaknesses of these techniques include the time taken for transfer of data from
parametric space to real Space, and the need to know a lot of information about the
initial grid. It may be necessary to completely regenerate the original grid, so the
technique may only be practical when a new grid can be generated rapidly, as in the

case of Allen (1995) where transfinite interpolation is used to generate the grid.

Examples of the use of monitor surface include Allen (1995), Hagmeijer (1994),
Brackbill (1993), Benson and McRae (1991), Pao and Abdol-Hamid (1991), Bockelie

| et al. (1990), Arina (1989), (1988), Eiseman (1987), (1985a), (1985b), and Eiseman
and Bockelie (1987).

1.4.1.6 Others

Greenburg (1983) used a linear unimolecular chemical kinetic analogy to determine

grid point movement.

Another technique is presented by Petzold (1987) who uses a one dimensional moving

grid scheme to minimise the time rate of change when modelling moving fronts.
1.4.2 Grid Refinement

In grid refinement extra cells are used to resolve the solution in flagged, commonly
rectangular, regions within the original grid. Regions are flagged where some sort of
solution error indicator exceeds a defined tolerance level. The solution error indicator

may be very similar in form to those used for weights in mesh redistribution.

For structured grids there are two principal techniques, grid embedding or grid

division.
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In grid division (figure 1.8) the grid is held in a complex data structure such as a quad
tree or oct tree for three dimensions. Flagged cells spawn sub cells in a level below
them in the grid hierarchy that are formed by subdividing the region covered by the
original cell. Starting from an initial grid that is already refined it may be possible to
coarsen regions where solution activity is small. A common restriction on this kind
of grid is that neighbouring cells can only be one level different. The grid may be

solved in a partly unstructured way.

Figure 1.8 Top level, initial, and adapted grids
The two main problems with this kind of adaption are due to the restrictive data

structure involved, which must be built into the underlying flow solver from an early
stage, and due to the problem of dealing with discretisation and conservation at

hanging nodes.
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Examples of grid division techniques are included in Davies and Dannenhoffer (1994),
De Zeeuw (1992), Dannenhoffer (1991), (1987), (1985), Carey et al. (1988), and
Carey (1987).

Grid embedding (figure 1.9) involves the use of a new separate grid to cover the
flagged region. The embedded grid is solved as a separate problem, with boundary
conditions coming from the original grid, possibly in the form of single layer of
surrounding cells known as halo cells. The solution computed on the embedded grid
is either stored in its own right or transferred back to the initial grid. The initial grid
may have embedded regions either be blocked or blanked out, or solve for those
regions using data interpolated back. The overall data structure of the grid may be
invisible to the underlying flow solver (Quirk 1991) allowing the choice of solver to
be much more flexible than would be the case using grid division. At the same time
the problems of hanging nodes are greatly reduced as no grid solved for contains
them. They only contribute to the definition of the boundary conditions, the
calculation of which is invisible to the underlying solver. There is also more flexibility
over the type and number of cells in the refined region, allowing very high resolution
to be achieved instantly to model rapidly changing length scales in the solution, if

required.
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* Grid geometry maintained. Subdivision of grid cells does not require

knowledge of the geometry of the whole domain.

The main disadvantages of grid refinement include

* Data structures and storage. The storage requirement will be constantly
varying, demanding some outside limit of space, or the use of some form of

dynamic memory allocation.

* Visualisation of results. This is tied in with the implementation, but may be

especially awkward if the solution is transient.

* Discrete reaction to phenomena. Cells are only subdivided or embedded at
set threshold values of the error indicator. The subdivisions or embedded cells

are of fixed sizes.

1.4.3 Hybrid Grids

Hybrid adaption techniques combine grid refinement and redistribution (figure 1.8).
Hybrid methods potentially offer very fast and efficient adaption to solution
phenomena, though at the same time need both the data structures required by
refinement methods and the controls needed to maintain geometry and grid quality
required for redistribution methods. Because both methods of adaption are available
the actual amount of movement that occurs due to redistribution may only need to be
small, so that the problems with excessively skewed grids may be avoided. When the
grid is refined by halving the flagged grid cells a modest reduction in cell size through
redistribution will reduce the number of refinement levels necessary to achieve the

desired accuracy.
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1.4.5 Unstructured Grids and Finite Elements

Though much is applicable to any adaptive grid method, the current work is solely
concerned with structured grids, though it could be easily extended to rectangular
elements, or “pseudo’ structured grids, so the coverage of adaption for unstructured
grids is by necessity very light. Adaption for unstructured grids is arguably more
common than for structured, and there are numerous papers available on unstructured
grid adaption. No attempt has been made to produce an exhaustive review of

unstructured grid adaption techniques.

Unstructured grid techniques usually have the advantage of fast grid generation,
particularly for triangular elements. They may also have a more flexible number of
grid nodes. These factors make the easiest method of adaption refinement by simply
adding or redistributing grid nodes to important areas, then recalculating the grid.
Transfer of data between grids may be more awkward. What has been classed as grid
redistribution, where the grid nodes retain their connectivity between applications of
the adaption algorithm, is much more rare, with the main examples being in finite

element problems where the grid may be moving anyway.

A few examples of adaption in unstructured meshes include Franca and Haghighi

(1994), Palmerio (1992), Sweby (1988), Carey (1987), and Oden et al. (1986).

1.5 The Laplace-Poisson-Equidistribution Equation

The Laplace-Poisson-Equidistribution, or LPE, equation is the adaptive method
implemented in this thesis. It is based on the Poisson equation used for grid generation
and adaption (see 1.4.1.2). As suggested by its name it includes three principal terms,
a Laplace smoothing term, a Poisson term that promotes the original grid distribution
and an Equidistribution term that drives the grid adaption. The terms are weighted by

the user to control how much or how little adaption takes place. The LPE equation can

be written in the form
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A (L) + A (P)+A(E)=0 (1.13)

Where A, Ap, Az are the weights on the equations, and (L), (P), (E) represent the
Laplace, Poisson, and Equidistribution equations respectively. A full mathematical

description of the terms is given in chapter 2.

The Laplace term is more commonly encountered in elliptical grid generators where
it is used to produce an evenly spaced grid. No account is made of solution activity
and when applied to a pre-generated grid it will produce the most orthogonal grid
point distribution possible. The one characteristic which may not be so useful is a
tendency for grid points to gather around convex and away from concave surfaces
(Thompson 1987). However, this characteristic may be of advantage when developing
grids over aerofoils, where the curve of the aerofoil surface will attract grid points to
its leading edge, a potential area of high solution activity. The popularity of aerofoils
as test cases in the open literature suggests that the negative side of the use of the

terms in the Laplace equation may not commonly be encountered.

The Poisson term includes control functions that will recreate the original grid if the
weights on the other two terms are set to zero. This term may be important if the
original grid is skewed for any special reason, as, in the absence of a strong weight

to drive the grid, the Laplace term will smooth it.

The Equidistribution term used encourages an even distribution of solution activity
across all grid points, to the exclusion of all considerations of grid smoothness. The
end result of applying the Equidistribution term alone is a potentially highly skewed
and unusable grid. Coupled with the other terms it emphasises areas of high solution

activity in the final grid.

The Laplace-Poisson-Equidistribution equation was first used by Catherall (1991) for
two dimensional cases. The two dimensional form was implemented and the three

dimensional form was developed by the author as part of an MSc thesis (Bennett

1992).
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1.6 Requirements of the Adaptive Grid Algorithm

The main aim of the thesis is the development of an adaptive algorithm based on the
LPE equation that is three dimensional, code independent and contains all of the tools
needed to dynamically adapt structured grids. The LPE equation is used because it
contains terms that maintain grid quality as well as adapt the grid to solution

phenomena.

A particular feature of the technique described in this thesis is that it assumes that
there is no prior knowledge of the grid or the physical domain that it encompasses.
This is important in making the algorithm independent of other codes. This means that
all geometrical information used to maintain the physical geometry during'adaption

must be generated within the algorithm, using the initial grid only.

Additional methods which are needed to make the adaptive algorithm work include

tools for

» Maintenance of geometry by modelling lines and surfaces using cubic splines
and bicubic patches respectively. The splines and patches need to be generated
using the original grid and points need to be mapped back onto them using a

location algorithm and interpolation to recover point parameters.
» Recovering control functions needed to recreate the original grid from it.

* Interpolating data between previous and new adapted grids. The principal

method used in the current work is Shepard’s interpolation (Shen et al. 1993).

 Determining weight functions. A range of methods for calculating weights
which reflect different aspects of solution behaviour have been implemented.
In addition techniques have been developed to smooth and modify the Weight

function to improve the adapted grid.

23



» Maintaining the integrity of grid cells by checking for grid overlaps.

» Displaying the behaviour of the adaption algorithm. A measure of movement
in terms of a percentage of distortion of the original grid is used to show how
much adaption has taken place. In addition properties relating to the adaption

are stored and displayed using a CFD code post processor.

» Accessing solution variables and the grid within the underlying CFD code.

This is code specific.

The algorithm is not restricted to the whole grid and can instead be used individually
on a number of subdomains; this extends its applicabilty to block structured type

meshes.

1.7 Structure of Thesis
The mathematics of the LPE equation are described in chapter 2.
Chapter 3 describes the additional tools needed to make adaption viable.

Chapter 4 describes general issues which affect the implementation of adaption outside
the algorithms described in chapters 2 and 3. Examples of its implementation are also
described within the commercial fluid dynamics code PHOENICS (Spalding 1989) and
the research code PHYSICA (Cross et al 1995).

Chapters 5 and 6 are used to present results produced using adaption within

PHOENICS and in an independent implementation in two and three dimensions

respectively.

Chapter 7 describes how the current grid adaption method can be used to interface

between a fluids code and a stress code to allow the modelling of fluid structure

interaction.
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Chapter 8 describes a first attempt on an alternative method of grid adaption using

neural nets.

Chapter 9 contains possible future work and conclusions.
1.8 Closure

This chapter has introduced CFD, grid quality, the concept of grid adaption and the
range of techniques used in literature to achieve it. In addition the Laplace-Poisson-
Equidistribution equation has been introduced and the range of techniques needed to

make it work listed.

In summary grid adaption is concerned with manipulating the distribution and shape
of the cells that define the solution domain to achieve the best possible grid for the

simulation.
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CHAPTER 2: MAIN ALGORITHM

2.1 Introduction

The purpose of this chapter is to show the derivation and discretisation of the full LPE

equation. The weight term used to determine grid movement is also discussed.

Only the discretisation of two dimensional form of the LPE equation will be presented
in full in this chapter, though the full three dimensional partial differential equations
will be listed. The discretisation of the one and three dimensional forms is given in
appendix A.

2.2 Computational Molecule

The differential equations that make up the LPE algorithm are solved by using finite

difference approximation.

The basic finite difference approximations, using central difference formulae are

;i iy 2.1)
0g, 2
r. .
__iz(rh1 =2r 4T, ) (2.2)
a&lz J oJ J
iy _(Fivjo = Trger) ~(Tiaja ~Tea ) (23)
0§,0¢&, 4

The numbering convention used for the following equations is shown in figure 2.1.
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Figure 2.1 Computational Molecule

2.3 Metric Tensors

The transformation of the curvilinear grid into cartesian space is governed by the

contravariant metric tensors.

A derivation of the metric tensors in three dimensions is given in Appendix A. Here,

the three distinct metric tensors (noting g’° = g*’) are simply listed.

11_1 . 24
g =2 ) 24
gzz_l(r r ) (2.5)

g _ﬁ, -_gl

p_ 1 . 2

g7 =2 ) (2:6)

Where r;; is the gradient of the line &, = constant, and g is the Jacobian. The Jacobian

cancels out of the full equations
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r, 7, ==X )5~ %) + 0079 (2.13)

2.4 Derivation of Laplace Term

The Laplace term is used in the LPE equation to promote orthogonality in the adapted

grid.

The Laplace system in three dimensions is

V2E =0 i=1,3 (2.14)

When modified to make the x, y and z co-ordinates the dependent variables It takes

the following form

3 3
Y Y gijrf,,é:o (2.15)

Where r represents the co-ordinate direction being solved for, either x, y or z.

In two dimensions this simply reduces to

8" e, +87 1y v 287y =0 (2.16)

Discretised, using equations 2.1, 2.2 and 2.3, this becomes

12

gu(rE—ZrP+rW) +822(rN—2rP+rS) +87.[(rEN—rWN) —(rES—rWS)]:O 2.17)

Separating the terms in equation 2.17 leads to the algebraic equation

aPLrP=aELrE+a‘f,rw+a,\[,‘rN+aSLrS+sL (2.18)
With the source term s~ formed by using the corner coefficients
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(2.19)

L_ L L L L
S —aNWrNW+aNErNE +aSWrSW+aSErSE

where
a;=a£‘+a;+a;+a;‘ (2.20)
aézayﬁ:g“ (2.21)
ay=ay =g* (2.22)
L_aL_8" 2.23
ang = Qsw = —— (2.23)
2
L_1_~-g" 2.24
an=aSE= 2 (‘ )

2.5 Derivation of Poisson Term
The Poisson term is used to promote the original grid distribution in the adaption.

The Poisson equation has been discussed in section 1.3.1.2. The three dimensional

form shown in equation 1.4 is repeated here.

Vg, =P, i=1,3 (2.25)

Where P, represents a control function used to modify grid point locations.

The Poisson equation modified to make x, y and z co-ordinates the dependent variables

takes the form

3 3 3 .
DIDIEAIEDIE S AL (2.26)
i=1j=1 =1
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In two dimensions this reduces to

8" 1, Pury )+ 87 (rg, + Pari ) +28 7 =0 227
Discretised, equation 2.27 becomes
Wir -2r, +r. ) +8%2(r,-2r,+ )+g12 (r—Fu) =(Feoo=Toc)
8 \Tp=alp*Ty)+8 \Iy=£&lp*Ty 7[ v~ Twn) T Ugs WS]
(2.28)
11 22
+g7(r5-rW)Pl+§2__(rN-rS)P2=0

The full details of the transformation of the control function are not important in the
current work as they are extracted directly from the original grid using equation 2.28.

They are found by forming simultaneous equations using the initial grid values.

Separating the terms in equation 2.28 leads to the algebraic equation

P P P P P
Ap Tp=Qg Tp+ayly,+ay Ty +as rg+s’ (2.29)

As the only differences to the Laplace equation are the control functions all terms that

do not contain them are the same

af=at (2.30)

Only the source term is different

22

11
sP=sL+igz_Pl(rE—rw)+gTP2(rN—rS) (2.31)

2.6 Derivation of Equidistribution Term
The equidistribution term is used to apply a weight to alter the grid distribution.

The equidistribution term is derived from the basic equidistribution equation (1.1) in

each of the three co-ordinate directions, which can be written in the form
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0S.
Wiszi = constant i=1,3 (2.32)

Where W, is the weight function and S; is the arc length along the i varying line.

The three equations in the system are differentiated to remove the constant, multiplied

by the term g"r;; and combined to give

3 i

Y gir Wi | BRIt R |, (2.33)
E, i -

i=1 W

2 2 2
Mg, * Ve, T

The multiplier puts the equidistribution term into the same form as the second term

in the Poisson term as shown in equation 2.26.

In two dimensions this reduces to

WL, x, . x ., + Wil. x.x. ., +
g 11 rg 2’;i + él §,§2| yil y§|§| + g22 rg éi + éz gziz yizygz{;z - O (2.34)
1 WI xil + y}';l 2 W] _x§2 + yé;

Where WI and WJ are the weight functions in the x and y coordinate directions

respectively.

The discretisation of the equidistribution equation can be simplified by first seeing that
the denominator of the second term in the brackets is identical to vector dot products
used to evaluate the metric tensors, which is calculated elsewhere and can be

substituted in 2.34.

T, T =X +Ye (2.35)

Equation 2.34 discretised gives

32



33

(r.-r )[ WI .- WI 1 -
11 VE "W E w (x -X ()’E yW)
T TV ) G| e et 0
(2.36)
- Wi, -WJ
0y (Fy=Tg) N s |, 1 (xy,-x5) (xo-2x,+x) + (Yy=Ys) (Je-2y.+7)
2 2WI, (%2[@2) T VW prAs) T VN pTrs
Where r is the variable being solved for.
Separating the terms in equation 2.36 leads to the algebraic equation
aprp,=ag Ty vapr, tayrytasre+s’t (2.37)
where
aF-af+afralial (2.38)
n(r.-r 2
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2.7 The LPE Equation

The LPE equation is formed by combining the Laplace, Poisson and Equidistribution
terms together (equations 2.17, 2.29 and 2.37) into one equation with the user

controlled constants AL, A¥, AE, to weight each term respectively.
g p Yy

This leads to the algebraic system

LPE LPE LPE LPE LPE
ap rp=ag rp+ay rytay ry+ag ro+str (2.42)

where, using equation 2.30 to remove the Poisson coefficients

LPE LPE LPE LPE LPE
dp =4 +ay +ay *tda4g (2’43)

alPP = q PP (AL +APYa )l +AEaf (2.44)
a;PE:aLPEz(KL+)\‘P)aA§-+KEa1$ (2.45)
GLPE _)LgL  APgP  \EgE (2.46)

2.8 Calculation of Weight Functions in the Equidistribution Term
The weight function W, used in equation 2.32 drives the grid adaption. When the value
of the weight functions at a point is higher than its neighbours, those neighbours will
move towards it.

The requirements of the weight function in the current work are

» That its value should represent some measure of solution behaviour or error

that varies significantly across the domain.

« That it should not go to zero, so as to avoid division by zero in equation
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2.34.

 That it should be calculated from a normalised variable so that its behaviour

can be predictable making the choice of the user controlled functions easier.

The typical form for most weight functions is

W=a0 +E akMk (2.47)
k

where a is a constant and M, is some function of the solution variables, commonly
some combination of the first and second derivatives of a chosen variable along grid

lines. Another form for weight equations is

24y Sin.

‘”’W’=(a+|¢:|)%f

where ¢ is the solution variable and n is a constant.(Nakahashi (1987), Eiseman

(1987)). .

The most common weight function used is based on the gradient of the chosen
variable. The gradient is probably the easiest measure of solution activity. With no
extra terms the weight should lead to a constant gradient in the solution over each
interval in the grid. This can be seen by substituting W=¢_ in the equidistribution
equation 1.1, which gives ¢ e<Ax. Unfortunately, this form risks the weight on a point
becoming zero, and the associated problems of division by zero in the LPE equations.
Adaption to ¢, forces the grid to align perpendicular to the gradient of ¢ (Matsuno
and Dwyer 1988).

The gradient as a weight function can be found in Jeng and Liou (1993), Lin and Wu
(1993), Dannenhoffer (1991), Niederdrenk (1991), Lawal (1990), Tu and Thompson
(1990), Arina (1989), Anderson (1987a), Hsu and Tu (1987) and Thompson et al.
(1985). Ramakrishnan and Singh (1994), Benson and McRae (1991), and Chao and

Liu (1991) use a combination of the normalised gradients of a range of variables.
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Jeng and Liou (1992b) combine the gradient with a term for the arc length so that as

the weight term goes to zero the grid distribution will go towards the predefined value.

1
Wi=E+al¢x

!

(2.49)

where AS, is the initial grid spacing.

2.8.1 Implemented Weight Functions

In the current work a number of different methods have been implemented, though
only a few have been seriously tested. Which one is used depends upon the type of
problem and the choice of variable. In all cases the chosen variable is interpolated
onto the grid nodes from the cell centres using a series of simple linear interpolations
and then non-dimensionalised to allow the user defined weight parameters to be

independent of the magnitude of the chosen variable.

2.8.1.1 a+a0

This is the simplest weight function. There is no variation in the weights calculated
at a point in different directions. This form has been used for grid generation for
coastal configurations, using depth as the dependent variable (Kim and Thompson
1990), and using relative pressure for three dimensional grids over wings (Roache et
al. 1991), (Kim and Thompson 1990), (Tu and Thompson 1990). In the current work
it is used on the magnitude of velocity for convection problems such as the driven
cavity flow (section 5.3.2) where there are no strong gradients and solution error is

driven by the advection scheme.

2.8.1.2 a+a,0 +a,0,,

The term ¢ takes account of the curvature of the solution. The inclusion of the
second derivative helps to concentrate grid points about solution extrema, but may

cause grid cells to oscillate if the solution is very irregular. Terms involving the
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second derivative ¢ are highly desirable as they are good indicators of solution
activity, but unfortunately tend to be unstable. Examples of the use of this term in
literature include Shyy (1992), (1991a), (1991b), (1990), Harvey (1991), Acharya and
Moukalled (1990), Acharya and Patankar (1985), Thompson et al. (1985), (1986), and
Brackbill and Saltzman (1982).

2.8.1.3 a,+a,p +ak

This is similar to the previous method, but with an improved approximation to the

solution curvature, k, where

0|
k= - (2.50)

Including this extra term allows for solution extrema and also for areas where the
solution is locally stationary. As the gradient goes to zero, so k will increase. In such
areas the solution activity may be high, even though the gradient tends to zero. This
is the main weight function used in the current work. The default constants used are
a,=1, a,=1, a;=0.01, as in Catherall (1991). Higher values of a; tend to destabilise the
solution, though it may not have much effect set at this level. Examples of this weight
function in literature include Kwon and Jeong (1995), Eiseman (1985a), Haase et al.

(1985), Thompson (1985), and Noack and Anderson (1990).

2.8.1.4 a+a,0}

This form helps to contrast high and low gradients. It has been used by Roache et al.

(1991), Holcomb (1984), and Thompson (1935).

2.8.1.5 (aq+a,l0, """

Putting a,=1, a,=1 and n=1 and substituting into the equidistribution equation 1.1

gives do’+dx’=constant, which implies equal arc lengths along the solution curve, and
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for higher n is related to the truncation error (Nakahashi (1987), Catherall (1991),
Hagmeijer (1994)).

2.8.1.6 a+a,N(9,)

V(¢,.) can be related to the truncation error in second order accurate solutions to first
order differential equations, where truncation error is proportional to the second

derivative multiplied by the grid spacing squared (Catherall (1991)).

2.8.1.7 (1+al¢x2)%(1+a2¢xx2 ”

This form is an alternative way of using the second derivative ¢,, to (2.8.1.2) used by

Matsuno and Dwyer (1988).
2.8.2 Choice of Weight Constants
For the majority of the test cases the constants are chosen empirically.

Trial runs and user experience are important, but as long as there is a strong gradient
to push the grid adaption a ratio of one to one for the first neutral constant to the main
movement term will generally behave sensibly. Higher values can either be used to

maintain grid quality or to encourage adaption.

Making the second term in functions 2.8.1.2 and 2.8.1.3 high will increase the effect
of local gradients, but if too high will emphasise minor perturbations within the
solution which may be as much a feature of the local grid shape as the actual solution.

This can cause distorted cells in relatively quiet parts of the grid where little

movement is expected.

An alternative is to set a given ratio size R for the smallest to the largest step size in
each coordinate direction to determine the constants in the weight equation.

(Niederdrenk (1991), Nakahashi and Deiwert (1985), (1986), (1987)).
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Using the relationship

) X..0wW

in _ " x max (2.51)

o x_ w

ax X min

and starting from the basic equidistribution equation 1.1

Ox w_=constant (2.52)

it is possible to determine the constant a, in the weight equation

w=1+a_|f| (2.53)

by using

R-1

a = (2.54)
lf:t min | _R |f;c max l

The weight along each family of grid lines is calculated using the same value a. Then

a is updated at each call to the weight calculation routines

This method has the advantage of replacing two or three abstract numbers with one

that has a physical relationship to the problem.

2.8.3 Weight Function Modifications
The weight function is optionally smoothed to reduce small perturbations and extend
the influence of major solution phenomena by fitting the weight values to curves in

the direction of action of each weight, defined by simple power laws, between major

peaks and troughs.

In areas where the weight function is smooth small perturbations may kill the grid as

it starts to kink towards the minor variations.

It has been shown (Bennett 1992) that smoothing of the weight function may improve
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results by smearing the effect of high gradients over a larger number of cells.

In the current implementation there is an option to make the final weight value at a
grid point equal to the average of the values calculated from one of the above

equations on the point and the two neighbouring points.
2.8.3.1 Smoothing by Local Averaging

In order to spread the effect of solution phenomena an attempt has been made to

extend the simple smoothing or smudging’ operation carried out previously.

The available options are to smooth just the weight functions in each of their
respective directions, as before, using

(W_ +2W.+W_) (2.55)

Wine w -
4

Or to smooth the non-dimensionalised dependent variable, ¢, using

new _ (nU;+U_;+U,  ;+ U+ U ) (2.56)
Y (n+4)
in the 2D case, or,
U - (n Ui,j,k + Ui-lj,k + Ui+lj,k + Uij-l,k + Uij+1,k + Uij,k-l + Uij,k+l) (2.57)
ij.k (n + 6)

in the 3D case.

One, the other or both can be used. This smoothing step can be repeated many times.
The factor n used when smoothing the variable is controlled by the user.

In practice the smoothing step has on occasion only made an impact when the

smoothing operation has been repeated 10, 20 or more times, when it begins to make
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an impact on the time taken by the adaptive module to run. Smoothing by local
averaging is used by Hall and Zingg (1995), Hagmeijer (1994), Benson and McRae
(1991), Jeng and Liou (1989), and Seibert et al. (1989). Hall and Zingg (1995) also
use weight clipping, whereby extreme weight values are reduced to an average of their

neighbours.
2.8.3.2 Exponential Smoothing

Another option available is to use an inverse exponential function to smooth each
weight function along the grid lines in the co-ordinate direction in which it operates.

This allows solution phenomena to affect weight values some distance away.

The solution equation can be expressed as

i+
2

Wi =W,ea Y, We ™ (2.58)
k=i-= k#i

where n is the number of points in that co-ordinate direction, a is a weight controlled
by the user, and x;-x, is the distance between the main point and the one producing an

additional influence.

The contribution to the weight value from points whose index are beyond the limits
of the grid are calculated as if the grid was surrounded by mirror images. This has
been done to ensure that points in the centre of the grid do not have larger weights

than at the boundary solely because they are closer to more points.
This method is loosely based on the weight function used by Lee and Tsuei (1992a).

The smoothing produced by this method allows more emphasis to be put onto the
equidistribution term in the main algorithm. This term is powerful yet very sensitive
to minor variations in local weights and can lead to very distorted grids. The

smoothing function helps to prevent this.
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2.8.3.3 Power Law Smoothing

In an attempt to increase the range over which major solution phenomena have an
effect and to smooth out small local perturbations the weight functions can be
recalculated by fitting them along grid lines to a series of simple curves between local
function maxima and minima. The curves are calculated by using a power law or

exponential.

-

Weight

3 b—

Fitted

Original Weight

L . | |
0 2 4 6

Distance

Figure 2.2 Weight function before and after fitting in 'real’ case

Figure 2.2 shows how the smoothing function works in practise, the dotted line
showing the final weight used in the LPE equation for a supersonic wedge cascade

case where there are a series of reflected shocks that cross the grid line of interest.
For the purposes of this technique local break points are also defined as being at the

centre of regions where the variation of the weight function is less than a given

tolerance.
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~~

function

Figure 2.3 Break point at centre of 'flat’ region in function
This function generates smooth weight gradients leading from areas of low activity to
regions of high activity, which in turn leads to smooth variation in the grid spacing.
Its use makes other smoothing unnecessary. The smoothness of the new weight

functions allows more extreme parameters to be used within the main algorithm.

As the driving force behind grid point movement is the local gradient of the weight'
function the use of the power law enables the user to either promote the movement
of grid points out of regions of low activity by using a power of less than one, or to
concentrate on major phenomena by using a high power. Grid points will tend towards
being distributed according to the power law, as the algorithm is driven by

equidistribution.

As each weight function relates directly to one family of grid lines in the structured
grid, this process of smoothing along grid lines is straightforward. The same technique
may not be so applicable to unstructured grids unless weight surfaces could be built
up. Such a technique might be very powerful, though could be complex, especially for

three dimensional grids.

For power law smoothing of the x direction weight function along a grid line which

varies predominately in the x direction the equation used to calculate the new weight

value w, " 1s
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. X~ %, (2.59)

where w,, w,; are the first and last weight values, x;, x,, x; are the first, last and current
x displacements, and a is a user controlled parameter that can control the grid
variation. As the weight values are linked to physical dimensions not curvilinear

space, x displacements are used not arc lengths.

Function
Figure 2.4 Limits of power curve

For completeness the exponential fit has also been implemented, though the power law
is cheaper and more straightforward to use to fit the function variation. The equivalent

equation to 2.59 above is

{(m(wx,)-ln(w,/))(i":’):l (2.60)
"=w_e t

w =
X; x]

2.9 Closure

This chapter has presented the full discretisation of the LPE equation in one, two and
three dimensions using central difference formulae. In addition the formulation of the
weight function used in the equidistribution term to drive grid adaption is presented.
All adaption methods depend on a weight function that models solution behaviour.
The range and treatment of these functions varies greatly between different cases and
different methods. The novel technique presented here to impose a smooth function
over the weight distribution using a power law or exponential curve is a fast method

to produce a smooth grid.
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In the full implementation of the LPE equation only its three dimensional form is
coded. Two and one dimensional problems are dealt with by cancelling the extra terms

and using the appropriate forms of the metric tensors.

The final discretised equations are solved using a point by point scheme with
relaxation. Their format would however allow the implementation of a tri diagonal
matrix algorithm or similar fast solver instead. As the algorithm is designed to be
attached to a full CFD code it may be possible to use the solvers within that code

instead.
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CHAPTER 3: ADDITIONAL TOOLS

3.1

3.2

Introduction

The purpose of this chapter is to introduce and describe the additional tools needed
to support grid adaption. These tools are used to manipulate the data from the grid and
the solution before using the LPE algorithm, and to manipulate the data emanating
from the LPE algorithm. They are used to refine the main algorithm. Each tool
represents a necessary part of the grid adaption process. A modular structure ensures
that the methods each tool uses might be replaced if better techniques become

available or the criteria upon which they have been chosen change.

The bulk of this chapter describes surface and curve fitting algorithms used to
maintain the geometry of body fitted coordinate grids whilst allowing grid nodes to
move on grid boundaries. Other tools described cover interpolation techniques used
to transfer data from grid cell centres to grid nodes and between grids, a method to

prevent grid crossover and movement limiting.

Surface and Curve Fitting

Though it is easy to allow grid points to move on square boundaries by just ignoring
components of the calculated movement vector, movement along curved and angled
surfaces and lines can only be allowed if equations to recreate them are known or can

be calculated.

Allowing grid points to move on boundaries can be a crucial part of the adaptive
process, as often the boundary regions are the most important parts of the grid. In any
case leaving the grid fixed in such places whilst allowing movement to take place in
adjacent nodes can lead to dangerously skewed cells. In addition intelligent use of
fixed curves and surfaces can be used to maintain important features of the original

grid. In cases such as the RAE 2822 aerofoil (section 5.3.1) fixed curves are used to
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allow movement along grid lines parallel to the aerofoil surface so as to maintain the

initial skewed distribution of grid cells.

As the current work is designed to be independent of CFD codes and in particular grid
generators, no prior knowledge can be assumed about the grid geometry. All
information about geometry has to be computed using the original grid point locations.
Equations for all curves and surfaces designated by the user as important have to be
developed using assumptions based on the location of the grid points that lie on them

in the original grid.

In the current work user defined surfaces and curves are modelled using bicubic
patches and cubic splines respectively. Each curve and surface is broken up into a
series of segments or patches and a parametric cubic equation is developed for each

one, using the location of the grid points to calculate the coefficients.

The technique used to model surfaces is based on the work of Agbormbai (1991).

As the current work is concerned with structured grids only, curves are defined as grid
lines with two indices fixed and one varying, and surfaces as areas with one index

fixed and two varying.

In the code which accompanies the current work the user can define any number of
curves and surfaces within the grid. These will be maintained regardless of the local
grid movement and with the restriction that interior points cannot move beyond the
original surface boundaries. A feature of the current work is the automatic
manipulation of user defined surfaces to preserve important geometrical features such

as peaks and troughs, and discontinuities.

This section describes how the parametric equations for the curves and surfaces are
developed, and how they are used to recreate the geometry after grid movement has

taken place.
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3.2.1 Curve Fitting

In the structured grid a curve is defined as a number of connected grid points with
only one index varying. A curve is modelled by representing it as a series of cubic

splines covering individual segments or patches of up to four points (figure 3.1).

Y

Figure 3.1 Curve split into segments

The coefficients of the cubic splines are obtained by using the original position of the
grid points that define the curve. Each segment that defines the curve is treated

individually and simply by using parametrised space (figure 3.2).

0 1/3 2/3 1
Physical Space Parametric Space

Figure 3.2 Parametrised Space

Each segment is defined by the following three equations:-
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_ 3 2 3.1
x(u)=a_u*+au*+a_u-+a_ (3.1)

y(u)=a,u’+a,u’+a u+a, (3.2)

z(u)=a_ u’+a

2
Jutraua, (33)

The curve has an associated axis which 1s implied by the index of its grid points
which are allowed to vary. This should also correspond to the direction in which it
stretches most. During adaption each point that lies on the curve is allowed to move
freely along this axis up to the limits of the curve. Each point is then mapped back
onto the curve by using this component of its position vector to determine the segment
it lies in and a parameter to be fed back into equations 3.1-3.3. As one component of
the position vector is known prior to mapping only two of the above equations will
be needed. For example for the curve from X;;, to X, ., only the coefficients to

equations 3.2 and 3.3 are calculated.
The values that need to be stored to fit a curve are the component of the original grid

coordinates that relates to the index which varies to allow parameter recovery and two

sets of four coefficients for each segment which relate to the two parametric equations.
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3.2.1.1 Derivation of Cubic Coefficients
The generalised parametric equation Z(u) can be written as
Z(u)=au’+a,u’+au+a,

1 (3.4)

=[uu? u 1]

Assuming that in parametrised space the points in the segment lie at intervals of 1/3
between 0 and 1, then the coefficients of the spline can be calculated by building up

four equations for the four unknowns, given by

ZMilo 0 o 1]l

2(3)| 10.037 0.111 0.333 1 || 4, (3.5)
a
a

z(2) 10296 0.444 0.667 1

L

Inverting the main matrix to solve for the unknown coefficients gives,

-

| |45 135 -135 45|/
a,|| 9 -225 18 -45|2(3) (3.6)
a,[-55 9 -45 1 ||z02)
3
a

JLr oo o0 gl

Though this system will work best for a regular grid it will still give good results for
an irregular grid if the calculation of the parameter is accurate enough. Using this
system does however prevent the need to invert a four by four matrix for each set of
coefficients for every segment. Though this would not necessarily be too great an
overhead just for curve fitting, especially as the process only has to take place once
for each initial grid, for surface fitting each matrix is 16 by 16. Inversion of such large

matrices for each surface patch is not practical.
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3.2.1.2 ’Light’ Segments

As segments may occur at the end of curves which have fewer than four points the
full cubic equation cannot be generated unless extra points are interpolated into the
region, or overlapping segments are used which do not guarantee continuity in the line
model. Instead simpler forms of the above equations can be used to generate the
coefficients for the quadratic and linear equations that can be generated from three
point and two point segments. These coefficients are treated exactly the same way as
for the full cubic equation when the curve is recovered, just with the higher order

terms set to zero.

3.2.1.2.1 Three Point Segment

The three point segment shown in figure 3.3 is parametrised using a quadratic spline

with coefficients calculated in the same manner as for the cubic spline above.

Y

Z(u) =aw+au+a,

u=0

Figure 3.3 Three Point Segment

The parametric function Z(u) is written:-
- 2
Z(u)=a,u’+a,u +a,

a, 3.7)
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Assuming the three points occur at the parameter values 0, 1/2 and 1 it is possible to

solve for the three constants a;;_, 4, as given by

ZO) 10 o0 1]
zZ(2) {0.25 0.5 1} a, (3.8)
Z(1) 1 1 1 a,
a, |2 -4 27|2(0)
a, —{-3 4 1} Z(3) (3.9
a, 1 0 0 Z(1)

3.2.1.2.2 Two Point Segment

Y

Z(u) =au +a,

u=0

Figure 3.4 Two point segment

The two point segment shown in figure 3.4 1s parametrised using the linear equation.

Z(u)=au+a, (3.10)

Where,

a,=Z(1)-Z(0)

o =Z(0) (3.11)
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3.2.1.3 Curve Recovery

Curve recovery is the mapping of a point back onto a curve after it has been moved
in one direction by manipulating the remaining two components of its position vector.
To map the point back onto the curve firstly its location relative to the cells in the
original grid must be found so that the patch in which it lies can be determined and
then secondly a parameter has to be recovered by comparing its position to- the

original grid.

The coordinates of the original curve are stored and the patch positions are known

implicitly.

The location of the point is determined by using a simple binary search pattern,
comparing the directional component that relates to the index of the curve which
varies to the equivalent components of the original points that define the curve. The
point is compared to the half way point of a domain whose limits are initially defined
by the start and end points of the curve and then by the centre point and whichever

limit is on the other side of it until it can only lie in one cell.

The parameter is determined by assuming that it varies in a linear profile between the
original points of the patch, and by knowing that those points occur at equal intervals

between O and 1.

L

]

X X, X
P

|
I -
X

1 i+l N

Figure 3.5

In figure 3.5 the parameter v of the point X, that lies between the original grid points

X, and X,,, in a patch of N points where i varies from 1,N is found by using
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S B B (3.12)
N(xm_xi) N

Note that the points at the ends of the curve are not allowed to move at all.

3.2.2 Surface Fitting
A surface is modelled as a series of individual patches covering up to four by four
points. Each patch is modelled using a bicubic equation that contains sixteen

coefficients, calculated using the location of the original sixteen points.

Figure 3.6 shows a grid broken into patches

Y

X

Figure 3.6 Surface split into nine patches

As for curve modelling each patch is fitted in parametric space (figure 3.7).
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Physical Space Parametric Space
Figure 3.7 Patch in Parametric Space

The generalised parametric bicubic equation can be written in the form

Ay @y g3 Gy |[ 5]
v
a. a, a, a 2
Z(u,v)=[u®u?u 1] S | (3.13)
Ay Ay 33 Ay ||V
1
_a41 Ay Qg3 a44_ -

A point is mapped back on the surface after adaption by calculating a new value for
the component of its position vector that matches the index of the surface that does
not vary. This is achieved by calculating parameters to pass into the bicubic equation

using the position of the new point relative to the position of the points in the original

grid.

Only one set of coefficients need to be generated for each surface patch, as only one

direction component is effected.
3.2.2.1 Derivation of Bicubic Coefficients

The sixteen unknown coefficients can be found by using the location of the sixteen

points within the patch. If equation 3.13 is written in the form
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Z(u,v)=[P][C] (3.14)

where [P] is the parameter matrix,

2 3 2 3 2
, UV, uvs, uv,u , v, v ,v,l]

(3.15)

[P]z[u3v3, uvi udv, ud , um3, u? utv, u

And [C] is the coefficient matrix, written as:-

— T
[C] ~_[all’ alZ’ a13’ al4’ a21’ a22’ a23’ a24’ a3l’ a32’ a33’ a34’ a41’ a42’ a43’ a44]

(3.16)

Then, assuming each point in the patch occurs at intervals of 1/3 between 0 and 1 it

is possible to build up the system

2]-[Pc] @17

Where [Z] is given by
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Z(0,0)
Z(0,2)
Z(0,2)
Z(0,1)
Z(3,0)
243
Z(L,2

3°3
z])- Z(3:1) (3.18)
z(2,0)
2.4
2 2
2(35
Z(2,1)
Z(1,0)
z(1,l)
z(1,%)
Z(1,1)

And the coefficients can be found by taking the inverse of [P]

CRONG 619)

The assumption of the position of the original points in parametric space is important
to avoid having to invert a 16 by 16 array for each patch. Instead one standard
inverted array can be used and it is assumed that the parameters can be accurately
estimated. The parameter matrix [P] in table 3.1 and its inverse [P]’ in table 3.2 are

given on the following page.
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7]-

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0370 0.1111 0.3333 1.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2963 0.4444 0.6667 1.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000
0.0000 0.0000 0.0000 0.0370 0.0000 0.0000 0.0000 0.1111 0.0000 0.0000 0.0000 0.3333 0.0000 0.0000 0.0000 1.0000
0.0014 0.0041 0.0123 0.0370 0.0041 0.0123 0.0370 0.1111 0.0123 0.0370 0.1111 0.3333 0.0370 0.1111 0.3333 1.0000
0.0110 0.0165 0.0247 0.0370 0.0329 0.0494 0.0741 0.1111 0.0988 0.1481 0.2222 0.3333 0.2963 0.4444 0.6667 1.0000
0.0370 0.0370 0.0370 0.0370 0.1111 0.1111 0.1111 0.1111 0.3333 0.3333 0.3333 0.3333 1.0000 1.0000 1.0000 1.0000
0.0000 0.0000 0.0000 0.2963 0.0000 0.0000 0.0000 0.4444 0.0000 0.0000 0.0000 0.6667 0.0000 0.0000 0.0000 1.0000
0.0110 0.0329 0.0988 0.2963 0.0165 0.0494 0.1481 0.4444 0.0247 0.0741 0.2222 0.6667 0.0370 0.1111 0.3333 1.0000
0.0878 0.1317 0.1977 0.2963 0.1317 0.1975 0.2963 0.4444 0.1975 0.2963 0.4444 0.6667 0.2963 0.4444 0.6667 1.0000
0.2963 0.2963 0.2963 0.2963 0.4444 0.4444 0.4444 0.4444 0.6667 0.6667 0.6667 0.6667 1.0000 1.0000 1.0000 1.0000
0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000
0.0370 0.1111 0.3333 1.0000 0.0370 0.1111 0.3333 1.0000 0.0370 0.1111 0.3333 1.0000 0.0370 0.1111 0.3333 1.0000
0.2963 0.4444 0.6667 1.0000 0.2963 0.4444 0.6667 1.0000 0.2963 0.4444 0.6667 1.0000 0.2963 0.4444 0.6667 1.0000

1
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 |

Table 3.1 Parameter Matrix

(pyi- | 900

9.00

| 1.00

20.25 -60.75 60.75 -20.25 -60.75 182.25 -182.25 60.75 60.75 -182.25 182.25 -60.75 -20.25 60.75 -60.75
-40.50 101.25 -81.00 20.25 121.50 -303.75 243.00 -60.75 -121.50 303.75 -243.00 60.75 40.50 -101.25 81.00
2475 -40.50 2025 -4.50 -74.25 121.50 -60.75 13.50 74.25 -121.50 60.75 -13.50 -24.75 40.50 -20.25
-4.50 0.00 000 0.00 1350 0.00 0.00 000 -13.50 0.00 000 0.00 450 0.00 0.00
-40.50 121.50 -121.50 40.50 101.25 -303.75 303.75 -101.25 -81.00 243.00 -243.00 81.00 20.25 -60.75 60.75 -20.25
81.00 -202.50 162.00 -40.50 -202.50 506.25 -405.00 101.25 162.00 -405.00 324.00 -81.00 -40.50 101.25 -81.00
-49.50 81.00 -40.50 9.00 123.75 -202.50 101.25 -22.50 -99.00 162.00 -81.00 18.00 24.75 -40.50 20.25

0.00 0.00 0.00 -2250 0.00 0.00 0.00 18.00 0.00 000 0.00 -450 0.00 0.00

2475 -7425 7425 -24.75 -40.50 121.50 -121.50 40.50 20.25 -60.75 60.75 -20.25 -4.50 13.50 -13.50
-49.50 123.75 -99.00 24.75 81.00 -202.50 162.00 -40.50 -40.50 10125 -81.00 20.25 9.00 -22.50 18.00
30.25 -49.50 2475 -550 -49.50 81.00 -40.50 9.00 24.75 -40.50 20.25 -450 -5.50 9.00 -4.50
-5.50 0.00 000 0.00 9.00 0.00 0.00 0.00 -450 0.00 000 000 100 0.00 0.00
-450 1350 -13.50 4.50 0.00 0.00 0.00 0.00 0.00 0.00 000 000 000 0.00 0.00

-22.50 18.00 -4.50 0.00 0.00 0.00 0.00 0.00 0.00 000 0.00 0.00 0.00 0.00

-550 9.00 -450 1.00 0.00 0.00 0.00 0.00 0.00 0.00 000 0.00 000 0.00 0.00

0.00 000 000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 000 0.00 0.00

20.25 W

-20.25

4.50
0.00

20.25
-4.50
0.00
4.50
-4.50
1.00
0.00
0.00
0.00
0.00
0.00

Table 3.2 Inverted Parameter Matrix




3.2.2.2 ’Light’ Patches

There is no guarantee that any defined surface will split into patches of exactly four
points by four points, so a method must be developed to deal with the other cases
which may occur at its end. The options are to use a modified form of the inverted
matrix in table 3.2 or to interpolate extra points using the data available to get a ’full’

patch.

Using a full patch which overlaps the previous patch does not guarantee continuity and
may cause problems when it comes to locating the position of points which may move

into this region relative to the points.

A modified form of the matrix had been used in previous work (Agbormbai 1991) but
involves the storage of a number of matrices for use in specific cases which are rare.
For surface definition there are eight extra special cases and each matrix for storing
surfaces is 16 by 16. This when coded gives a considerable overhead to storage

requirements and is a potential source of error.

For simplicity simple interpolation is used to create the correct number of artificial’
points to define a normal patch in the current work. The accuracy of the parametric
equation can only depend upon the information that is available when its coefficients
are calculated. What inefficiency this method may introduce is balanced by the fact

that the coefficients only have to be generated once for a particular surface.

Simple linear interpolation is used to generate extra points where there are just two
known points in a particular direction, and a quadratic spline is used where there are

three.
3.2.2.3 Surface Recovery

Surface recovery is the process by which a point on a surface is moved back to the

surface after adaption. To allow the point to move back the patch on the original grid
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in which it lies is found then two parameters are estimated based on its position within

the patch.
It is assumed that the patch locations are given implicitly by the layout of the grid.

The task of locating the point is simplified by the knowledge that it must lie in the
same subsurface that it was in before adaption, as movement beyond those limits is
not permitted. The patch location is found using a binary search method, dividing the
original surface into successive quarters and testing the relative position of the point

each time until there is only one patch it can lie in.

The cell in the patch in which the point lies is found using the same method. If the
cell lies on the boundary of the patch then the point is tested against the lines that
define the edge of the cell to check that it is within the patch. If it is not, then the

point is tested against the neighbouring patch in the appropriate direction.

The parameters for the patch equation are calculated by using bilinear interpolation
over the cell in which the point lies, the parameter values being known at the corner

points. The equations to recover the parameters u and v are,

a

u(x,y)=[x 1][ " 2“{] (3.20)
a a

u3 u4

av3

a 02
v(x,y)=[x 1]{ 8 M{J (3.21)
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u=0, v=1

u=0, v=0

2 y=1,v=0

Figure 3.8 2D Interpolation Problem

Taking the general case in figure 3.8 where the parameters vary between O and 1
formulae for the coefficients can be built up by inverting the matrix that can be

assembled up with the information available,

xlyl xI ylI 1 —a ] ”0“
ul

x2y2 x2 y2 1||a, |1 3.22)
x3y3 x3 y3 1|4, ‘1’
xdy4 x4 y4 1 |[Twe] V-

1 110, 11
xlyl xI ylI 1 a, | o
x2y2 x2 y2 1|ja, _|o (3.23)
x3y3 x3 y3 1[4, }
xdy4 x4 y4 1 [T " -

The result of the interpolation can be scaled to account for the range of values of the

parameters that the cell covers.
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3.2.3 Surface and Curve Breaking

Surface and curve breaking refers to the process by which user defined surfaces and
curves are automatically broken into smaller units around important geometrical
features such as turning points and discontinuities (figures 3.9-3.11). These are places
where the location of a single point may be vital to the local geometry, and where a
patch or spline may not be able to adequately model the shape. Points at the end of
curves and the edges of surfaces do not move. These important geometry defining

locations will always be maintained.

Moved Points

Figure 3.9 Problems at Discontinuity Figure 3.10 Problems at turning points

One Patch Over Turning Point

Patch 2

N

Two Separate Patches

Figure 3.11 How surface breaking can help

The process has the advantage of reducing the complexity of any curve or surface that
a patch has to model and therefore it may reduce possible errors although the number

of light patches may be increased.
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The process is essentially the same for both curves and surfaces.

Curves and surfaces are broken up at turning points by using the direction of the slope
and at discontinuities by using its rate of change. The slope is monitored by using the
first and second derivatives of the components of the grid point position vector that
relate to the fixed indices of the grid relative to the components that vary. The

derivatives are calculated using second order central difference formula.

In the code that accompanies the current work the user can switch the different
methods of cutting on and off and set the tolerances used to determine where it takes
place. No cut is allowed within one patch distance of another. If a conflict occurs then
the tolerance used is increased and the checking routine run again. Cutting also takes

place if at any point the gradient becomes infinite.

Simple examples of surface breaking are given in figures 3.12-3.15.

Figure 3.12 Surface with turning point

Figure 3.13 Surface with turning point after cutting
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Figure 3.14 Surface with discontinuity

Figure 3.15 Surface with discontinuity after cutting

3.3

Interpolation

Interpolation routines are used to give the value at a point of a function from a
discrete set of data at known locations. Interpolation is an important part of grid
adaption, as the value of any data that vary over a grid may be required at any point
within its limits, either to allow the solution to be transferred between old and new
grids, or transfer data from cell centres to cell vertices. The type of interpolation that
is used depends upon the characteristics of each problem. In every case, the

interpolation technique must be efficient in time and the use of resources.

Interpolation within curve and surface fitting for calculating the parameters in the
cubic and bicubic splines has already been described (3.2.1.3 and 3.2.2.3). In both
cases the parameters are known to vary over a fixed range between known grid points
over each line or surface. The location of the new grid point is known with respect
to the known data as the patch in which it lies has to be calculated. Its position will

however vary between the extremes of the patch and any interpolation scheme must
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give accurate results over the whole range of the patch. For curves, the new point
must lie between two known data points thus the problem is one dimensional, so a
simple linear variation is assumed. For surfaces the new point must lie between four
known data points thus the problem is two dimensional, and a bilinear equation is
used. The bilinear equation requires the inversion of a four by four matrix, which is
made possible by knowing the range over which the parameters vary and can be
manipulated to give an algebraic equation which just requires the location of the

original grid points.

The adaption algorithm relies upon knowing data at grid points and the current work
has been implemented within a finite volume CFD code. Interpolation is needed to
transfer data from the cell centres, the nominal variable position within the control
volume, and the grid points. In this case the interpolation technique used must be three
dimensional, but may also be used for two or one dimensional data. The interpolation
point is never close to any known data location and will tend to lie equidistant from
the known data. Its location relative to the known data is known implicitly from its

index. Multiple one dimensional interpolation is used for this problem.

To allow multiple iterations of the adaption algorithm it is necessary to transfer data
between successive grids. As the adaption algorithm only relies upon the values at grid
points it is only necessary to transfer the data at those points. The new grid point is
likely to be close to the previous point, but the location is not known implicitly,

therefore Shepard’s interpolation (section 3.3.2) can be used to give the new data.

After each adaption the grid and therefore the solution moves, so it may be necessary
to interpolate the solution from the old grid to the new. Whatever happens adaption
may give a kick to the solution. The simplest option is to assume that the grid has not
moved significantly and that the previous solution is a good guess for the new grid
(Danenhoffer 1991). Alternatively the solution can be transferred using the same
reasoning as for the transfer of data between grid points assuming that cell values lie

at the cell centres. Shepard’s interpolation can be used to give the new data. The only
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additional step is the calculation of the location of the cell centres of the old and new

grid.

One other approach to interpolating data between grids for steady state calculations
which is not discussed here is to use a pseudo time step to convert the grid movement
into a velocity, which is then used with the transformation metrics to give the new

values of the flow variables. This approach is covered by Benson and McRae (1991).

3.3.1 Multiple One Dimensional Linear Interpolation

Multiple one dimensional linear interpolation is used to calculate data at grid points
from known values at cell centres. This technique is a combination of successive one
dimensional linear interpolations used to reduce the three dimensional problem first
to a two dimensional problem then finally to a one dimensional problem which will

give the answer (figure 3.16).

/A
A Al
el A
7 J
Z
X

Figure 3.16 Multiple One Dimensional Interpolation

The technique uses eight surrounding cells which touch at the point, and eight cell
corners as the location of the data (figure 3.17). The initial eight points are reduced

to four by interpolating four pairs in one dimension, then to two by interpolation in

another.
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Figure 3.17 Point Definition
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Boundaries are dealt with by assuming mirror conditions.

This technique is easy to implement and can be easily reduced to fewer dimensions.
Though it suffers some drawbacks in that it relies upon the interpolation of
interpolated data, which may increase numerical errors, it is fast. The end result is
used to give an indication of solution behaviour and absolute accuracy is not a prime

requirement.
3.3.2 Shepard’s Interpolation for Transfer of Data between Grids

Shepard’s interpolation is a distance weighted scheme. Its principal advantages are that
the location of the point at which a new value is required relative to the grid does not

have to be calculated, and that it is safe, in that it will not produce extreme values.

Shen et al. (1993) discuss Shepard’s method for interpolation of scattered data, and

a modification of it for use on solution-adaptive grids.

For the function f with values f, at nodes (x,,y,) for k = 1..N, the basic method is

expressed as

N
Y W(x,y)0Q(x,y)
F(x,y)=*=1 ~ (3.27)

W, (x,y)
1

™M =

k

With
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W, = — Q,(x,y) =1, (3.28)
k
This becomes
i (x,y)=(x,,y,)for some k
N
E 'fi (3.29)
F(x,y)z‘ kzld;:
otherwise
N
y 1
k=1de

. Where d, is the distance from the function point (x,,y,) to (x,y)

1
dy=((x-x)+ -3+ 2P (3.30)

Setting u=2 was recommended in Shen et al. (1993) and means that the square root

need no longer be evaluated.

Though this is not the form recommended in the paper for solution adaptive grids it
is easy to adapt this method to allow it to be used by carefully controlling the number
of data points used to evaluate the new point. In the current work the default number
of points used is three in each coordinate direction up to the limits imposed by

boundaries around the original point. The new point is unlikely to have moved out of

this region.
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3.3.3 Comparison of Shepard’s and Multiple 1D Interpolation

The accuracy of Shepard’s and Multiple 1D Interpolation are compared by using them
to calculate values on an offset 2D grid based on a known function. The original grid

is a uniform square with 21x21 points and the function is given in equation 3.31

sin(r)

r (3.31)

function =

r=20V ((x-0.5)+(y-0.5))

The offset grid was shifted by a fixed value up to half a cell length in X and Y from
the original grid and contained 20x20 points so that it did not overlap the dimensions
of the original grid. The total error is calculated by adding up the sums of the
differences between the correct and interpolated values divided by the correct values.

The total error against the shift is given in figure 3.18.

16 1

14

12 1
Dy 1 1
=)
5
= 0.8 1 Shepard Interpolation
o

0.6 1
L ) [ Multiple 1D Interpolation

04

0.2 1

0 (S T )
0 0.25 0.5
Shift

Figure 3.18 Interpolation error against shift

A plot of the correct function along the centre of the grid with the interpolated values

for comparison is given in figure 3.19.
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algorithm closer to the code. The multiple 1D technique appears to be much faster and

at least as accurate.

Jacquotte and Coussement (1992) cover a range of different interpolation techniques,
with a particular emphasis on their use in grid adaption and recovery of values at cell
vertices from cell centres. They suggest the following approximations of linear

interpolation, using the areas or volumes of the surrounding cells as a weight:-

Zi=1,4 A"_lq)i
Ei=1,4 Ai_l

0, = (3.32)

For areas, or

Ei:l,S Vi_lq)i
Zi:l,S V"—l

0, = (3.33)

For volumes.

Or alternatively the following approximation to L*- least square minimisation:-

Zi=1,4 Aiq)i
Zi=1,4 Ai

(3.34)

Prr =

For areas, or

- Ei=1,3 Viq)i
Ei:l,S Vi

(3.35)

For volumes.
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The following expressions are given to determine the values at boundary points, based
on linear interpolation, where N is a point that butts onto cell 1 and 4, and P is at the

corner of cell 1 (figure 3.20).

Figure 3.20 Boundary Interpolation

_(A71+24;7)0,-4;"0,+ (24,7 + A 0,- A9,

E: !"1

(3.36)

N

(A7 4247424574 24.)0,-4;70,-4570,-4,70,

E = 4
3 1,

(3.37)

P

Jacquotte and Coussement (1992) do not give other routines, but using the same

techniques it would not be difficult to develop them.
Further techniques, including a cell search algorithm, given in the same paper could

be adapted to interpolating new values for successive adaptions, or evaluations of new

values in PHOENICS.

3.4  Cell Integrity Control

A method is necessary to control minimum cell size, as the LPE equation which drives
the grid adaption does not prevent cells from collapsing in its current form. Collapsed

grid cells invalidate the grid and cause the solution to diverge or give unpredictable
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results. In the current work a series of geometrical tests are used to prevent grid lines
from crossing over after each iteration of the LPE equation. An alternative option
might be to solve the LPE equation using some form of whole field solver or
tridiagonal matrix algorithm, with suitable modifications to the source term rather than
the point by point solution used here. It is possible to weight the LPE equation such
that a corrupted grid is extremely unlikely, but this may prevent effective grid

movement.

The method used to check against grid cross over involves checking if the calculated
movement vector applied to an original grid point overshoots either of its
neighbouring points in one dimension, any line linking any two neighbouring, adjacent
points in two dimensions, or any surface defined by four neighbouring, adjacent points

in three dimensions (figure 3.21).

ij+l i*1j+1k+1

i-1 i oo i+l

ij 141

Figure 3.21 1D Movement, 2D Movement and 3D Movement

The points against which the moved point is checked are modified using a clearance
vector. The clearance vector is evaluated by determining the smallest cell clearance
in each coordinate direction and multiplying by a user defined ratio. Cell clearance in
each co-ordinate direction is calculated as the physical distance between points along

the corresponding grid lines in computational space (figure 3.22).
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3.4.1 2D Grids

The movement vector is checked against the eight lines by using the equation of each

line relative to the original position of the point checked.

X

Figure 3.24 Problem Definition

The equation of the line in figure 3.24 is simply,

ax+by+c=0 (3.38)
Where,
a=y,=Y,
b=x,-x, (3.39)

€=x,¥,-%,),

If the coordinates were normalised the distance of the point from the line would be,

staxP+byP+c (3.40)

However, the distance is not important, only the side on which the new point lies, and
all that is important from equation 3.40 is the sign of the result. If the sign of the

distance s, is different from c in equation 3.39, then the point has moved too far and

must be scaled back.

76



If the grid point does overlap then its movement vector is scaled back by finding the
intersection of a line from the original grid point position to its new position and the
line it crosses. This is achieved by writing the grid movement line in the form of a

parametric equation, relative to its original position, which gives,

X =xpl (3.41)
y=ypt
The correct parameter at the intersection is,
f=___¢ (3.42)
ax,+by,

3.4.2 3D Grids

The easiest entity to check the movement vector against in 3D is a plane defined by
three points. Each four point face 1234 (figure 3.25) is divided into four such planes
12C, 23C, 34C, 14C, (figure 3.26) by finding a centre point C. C is defined by taking

the average of the position vectors of the four known points.

- 4
Figure 3.25 Face Definition Figure 3.26 Splitting of Face

The point is checked against all four planes for all 24 faces, though this only takes
place if a grid overlap is likely. This is achieved by calculating the equations of the
planes relative to the original position of the point, allowing for the minimum cell

clearance.
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The equation of an arbitary plane JKL (figure 3.27), is,

ax+by+cz+d=0 (3.43)

Figure 3.27 Plane Definition

As a vector from point J to any other which lies on the plane must be perpendicular
to a vector normal to the plane’s surface, the vector product of JK and JL, the

equation can be found using the expression

JP-{JKxJL)=0 (3.44)

Which can be written as the determinant of the matrix,

X=Xy, Y=Y, 27%

X=Xy Y=Yy Z¢=%,=0 (3.45)

Xp=Xp Y=Yy 217%

which gives,
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a=0y,-y,)(z, -z,)-(2,-2,)(y,-y,)
b=(2y-2,)(x,-x,) - (x,-x))(2,-2,) (3.46)
c=(xx-x )y -¥,))-g-y,)(x,-x))

d=-(ax, +by, +cz,)

In the same manner as for the two dimensional problem the distance of the point from

the surface is found using

sp=ax,+by,+cz,+d (3.47)

If the sign of the distance s, is different from the constant d then the point is the
wrong side of the plane and the magnitude of the movement must be reduced. This
is achieved by determining the intersection of a line from the original grid point to its

new calculated position and the plane.

If the line is expressed in its parametric form

y :ypt (348)

Then the correct parameter at the intersection 1is,

fe -d

= (3.49)
ax,+by,+cz,
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3.5 Movement Limitation

In the current work a filter is used to screen the grid point movements calculated with
the adaption algorithm. Using different values for each co-ordinate direction the
movements in each direction can be restricted to a user defined range. The range is

determined using scaling factors calculated for the original grid.

Movement greater in magnitude than the upper limit can either be reduced to the

upper limit, or to zero. Movement less than the lower limit goes to zero.

This filter is useful in some cases to prevent any movement in one or more directions.
It is also useful in situations when the relative speed of some grid points is too fast,
as can be the case when the solution is sensitive, or when frequent grid movement is

imposed to allow the solution to recover faster between adaptions.

3.6 Cylindrical Polar type Grids

There is a class of two dimensional, axisymmetric, BFC style grids that are generated
by distorting polar coordinate grids. These grids are typically used to model bodies of
revolution such as flow over a rocket with a circular cross section or pipe flow
problems. An example of a polar coordinate grid and the BFC equivalent in

PHOENICS (Spalding 1989) is shown in figures 3.28 and 3.29.
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Figure 3.28 Polar Grid Figure 3.29 BFC Polar Grid

These meshes provide a problem for dynamic adaption. To move points in a purely
two dimensional manner invalidates the back surface of the grid. To treat the grid as
a purely 3D case creates problems as the front and back surfaces would have to be
fitted using the surface modelling technique (section 3.2) and the grid is only one cell
thick, so that the partial differential equations depend upon mirror image boundary

. conditions and identical movement on both faces cannot be guaranteed.

In the current work this problem is resolved by adapting the upright face of the grid
only and then rotating it to resolve the back, slanted face (figure 3.30). The point from
and the angle through which the front surface is rotated is calculated from the original

grid. The movement of the front face is calculated exactly as if it was a 2D problem.
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Figure 3.30 Rotating Planes

3.7 Closure

This chapter has described the remainder of the tools not covered in chapter 2 needed
to make dynamic grid adaption practical. There are other methods, not part of the
present algorithm, available for most of the techniques available here, particularly for
curve and surface modelling. Other methods include using gradients to determine

parameters, Bézier curves and Coons patches.
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CHAPTER 4: ASPECTS OF IMPLEMENTATION
4.1 Introduction

This chapter concerns issues which affect the implementation of grid adaption outside
of the main algorithm discussed in chapters 2 and 3. These include the organisation
and control of the adaption algorithm and the interface between the adaption code and

the CFD code to which it is attached.

The aim of this thesis is to create general purpose grid adaption code that is as
independent as possible from the calling CFD code. The adaption algorithm needs to
be treated as far as possible as a black box which reads grid and variable data in and
sends new grid data out with the minimum of communication. Ideally the user should
not have to be an expert in grid adaption, and should therefore be able to use default

adaption parameters with a chance of getting a reasonable adapted grid.

Adaption takes place over defined regions within the problem domain. Each region is
treated independently. This allows the adaption module to be potentially used for

multiblock problems.

The adaption module has been implemented in the commercial CFD code PHOENICS
(Spalding 1989), the in house multi physics code PHYSICA (Cross et al. 1995) and
independently, to run over simple example problems. These implementations are

described in this chapter.

More detailed descriptions of the structure and tasks carried out in the adaption
module, with specific references to the PHOENICS implementation, are given in
appendices B and C.

4.2 Adaption Organisation

The Adaption code is organised into two modules which concern all tasks which only
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need to take place once, and those which take place many times respectively. The
tasks in the first module, which is known as the adaption initialisation module, cover
the determination and calculation of grid geometry. The tasks in the second module,
known as the adaption calculation module, cover the main adaption algorithm.
Adaption control is split between these two modules to reduce their dependence on

each other.

The adaption initialisation module is called only once for each problem. The adaption
calculation module is called at intervals in the execution of the calling CFD code

solver defined through its sweep or iteration number.

Independence of the adaption modules from the calling CFD code is primarily
achieved through the use of an independent data structure and a separate solver for the
LPE equations. As far as possible all work done by the adaption modules is done in
their own space, with all information necessary for adaption outside of the flow
variables solved by the CFD code held outside it. All necessary grid data is read in
once in adaption initialisation and modified internally at each call to the adaption

calculation module.
4.2.1 Adaption Initialisation

Adaption initialisation concerns the definition of regions of the main problem domain
over which adaption needs to take place and features within those subregions that are
needed to maintain their geometry. Features include surfaces and curves which are
defined using bicubic patches and cubic splines respectively, as described in section
3.2 and blanks. Blanks are subregions where no movement is permitted through the
main adaption algorithm. They allow for obstructions without breaking variable data
between two separate regions and the implementation of any grid movement that
needs to take place independently of the main algorithm such as the fluid stress

interaction discussed in chapter 7.
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Adaption Control

Grid Structure Grid Geometry

1

Gnid Coordinates

Figure 4.1 Data flow in adaption initialisation

This module generates grid data files that contain the coordinates of the regions to be
adapted, parametric data to allow the recovery of defined surfaces and curves, and
control function data to enable the original grid distribution to influence the main

adaption algorithm as described in section 2.5.

The original grid is used to generate all data used in the adaption module. This allows
it to be independent of grid generation software, but means that the definition of
geometrical features in the adapted grid can only ever be as good as in the original

grid.
4.2.1.1 Initialisation Control

Adaption initialisation is controlled though the use of a single input file that defines
multiple adaption regions, surfaces, curves and blanks on the original grid. Control
over surface and curve fitting is included in the form of tolerances that influence

surface and curve cutting (section 3.2.3).
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4.2.2 Adaption Calculation

Adaption calculation consists of all parts of the adaption algorithm not covered by the
adaption initialisation module. This is principally the genération of a new grid based
on the grid coordinates and geometry of the old grid and a given data set, and 1s

described in figure 4.2.

Adapt Control

Variable Data

Grid Coordinates

Grid Geometry

New Grid \

Grid Structure

Figure 4.2 Data flow for adaption execution

The tasks in the adaption calculation module are split into three parts, calculation

initialisation, main calculation and bookkeeping.
4.2.2.1 Calculation Initialisation

Calculation initialisation involves the reading of an adaption control file and checking

it against the flow problem definition.

4.2.2.2 Main Calculation

The main calculation concerns the generation of a new grid. The main tasks are

summarised in figure 4.3.
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Calculate adaption data set

STEP 2

Calculate weight function
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Optional Interpolation

STEP 3 Of adaption data set
Calculate grid movement for multiple iterations
vector of solver
A
STEP 4

Fit vector to curves
and surfaces

/
STEP S

Apply remaining movement

New grid

Figure 4.3 Main Calculation Process Flow

The adaption data set generated in step 1 used for adaption can be a function of many
flow variables and external data sets. Smoothing can also be carried out on it prior to

the calculation of the weight function (section 2.8.3).

The weight functions in step 2 are described in section 2.8. The weight functions may

be smoothed using techniques described in section 2.8.3.

The grid movement vector in step 3 is calculated using the LPE algorithm described

in chapter 2.
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In step 4 grid movement vectors are first applied to all geometric curves and surfaces
defined in the adaption domain as described in sections 3.2.1.3 and 3.2.2.3
respectively. Movement is checked to prevent grid overlapping using the technique

described in section 3.4.
In step 5 the remaining grid movement vectors are applied.

It is possible to loop between steps 2 and 5 through interpolation of the adaption data
set between the old and new grids. This allows a relaxation to be used in the scheme

used to solve the adaption algorithm.

4.2.2.3 Bookkeeping

Bookkeeping involves the calculation of total grid movement, removal of extra

adaption files and forcing the calling code to dump a final grid file.
4.2.2.4 Adaption Calculation Control

The primary calculation control is through a file that controls when the adaption
module is called and all parameters that influence the main algorithm, the weight
function and the interface between the module and the calling code on a region by

region basis.

This control is supplemented by a number of automatic tools which cover scaling of
internal tolerances to the grid and flow data, and monitoring of grid and flow solver
convergence. The adaption data set used to generate the weight function is
‘nondimensionalised to allow for consistent adaption parameters to be used over a wide

range of flow problems with little modification.
4.3 Interface between CFD Code and Adaption Modules

The interface primarily concerns CFD code specific coding in the adaption modules.
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It is split into three areas covering the calling of the adaption module and its control,

data transfer, and several miscellaneous tasks.

The interface also covers the interpolation of the old solution onto the new grid to
reduce the impact of rapid grid movement on the solution process. Implementation of
interpolation within the adaption module is not desirable from the software
engineering point of view as it requires much more data transfer than is needed by
adaption alone. This leads to reduced data protection and more CFD code specific
code. An alternative is to treat the flow problem as transient and to rely on grid
velocity terms within the CFD code, if available, to conserve the flow variables. Tools

to carry out interpolation are discussed in section 3.3.2.
4.3.1 Calling the Adaption Modules

The adaption initialisation module can be called any time after the initial grid is
generated and before the solver of the calling CFD code is started. Its activation is
controlled through either a command coded into the calling CFD code or through a

switch in the adaption initialisation control file.

The adaption calculation module is called at the end of each iteration or sweep of the
solver in the calling CFD code. Its activation is controlled through either a command
coded into the calling CFD code or a switch in the adaption calculation control file,
and by information passed through to the module from the CFD code. This
information includes the current sweep number and any flags indicating the
convergence or failure of the CFD code solver to allow the adaption module to
execute bookkeeping. The sweep number is used to determine activation of the
adaption module by being checked against criteria defined in the adaption calculation

control file. The first call to the module always activates calculation initialisation.

89



4.3.2 Data Transfer

In adaption initialisation data transfer consists of reading the original grid in from the

calling CFD code together with any pointers required to interpret the data.

In adaption calculation data transfer consists of reading in flow variable data and
pointers and passing out the adapted grid. In addition it may be desirable to write |
adaption data back to the CFD code for visualisation purposes in post processing.
Such data covers grid movement, grid quality measures and the weight function. This
requires specific storage space to be set aside in the problem definition in the calling

CFD code and access to pointers to that storage from within the adaption module.

Another aspect of data transfer are the filters that are needed inside the adaption
module to translate data into the local adaption format. In the adaption modules all
work is done on grid nodes. If flow variable data is held in cell centres, or cell faces
in the case of velocity components on staggered grids, then it needs to be interpolated

to grid nodes. This is achieved using linear interpolation as described in section 3.3.1.

4.3.3 Miscellaneous Tasks

The interface can also contain the following components:-

. Code to force recalculation of internal CFD code geometrical constants after
adaption has taken place.

. Code to force a dump of final adapted grid to file. It may also be advantageous
to dump general data output files at other points in the solution process to
provide more information about the course of the adapted solution.

. Code to output information at run time about adaption. This may involve
output of a measurement of movement, or, if some form of run time graphical
user interface (GUI) is available, a display of parts of the moving grid.

. Code to output macro files linked to flow visualisation tools to automatically

mark out areas of adaption.
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4.4 Implementation Examples

The CFD flow solvers to which adaption is most likely to be applied use iterative
schemes to solve complex systems of partial differential equations that represent the
physics of ’real’ problems. The general format of a CFD code that uses an iterative

solver with adaption is shown in figure 4.4.

)

CFD Adaption
Initialisation § Initialisation
Start Sweep
T
i
Y
Execute
Solver
T
i
L §
End Sweep Adaption
Calculation
Reset Geometry
End

Figure 4.4 Flow chart for adaption in a general iterative CFD code

4.4.1 PHOENICS Implementation

PHOENICS (Spalding 1989) is a well established general purpose finite volume code
used to simulate fluid flow, heat transfer and related phenomena. It has the ability to
use cartesian, polar co-ordinate and curvilinear (body fitted co-ordinate ,or BFC) grids.
BFC grids can be significantly non orthogonal and are therefore the only ones
considered for adaption by grid movement. A non orthogonal solver is available if the

grid is poor, though its use involves a higher computational cost than the standard

solver.
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PHOENICS uses a staggered grid for the calculation of the components of flow

velocity at cell boundaries. Other flow variables are calculated at cell centres.

The majority of the test cases in the current work beyond those concerned with fitting
the grid to simple functions have been run using PHOENICS versions 1.6, 2.0 and 2.1.
Most of the development of the adaption algorithm has been achieved with

PHOENICS as the calling CFD code.

PHOENICS is divided into two main programs, a preprocessor called SATELLITE
and a solver called EARTH. The adaption initialisation module is linked to

SATELLITE and the calculation module is linked to EARTH.

The data interface is simplified by using the same format for data storage within the
adaption modules as within PHOENICS. Interpolation of variable data between old
and adapted grids is implemented but does not completely prevent the disruption to

the solver that the grid movement causes.

For convenience the two adaption control files can be incorporated into the

PHOENICS control file Q1 as comments.

PHOENICS has a run time GUI. This has been manipulated to plot grid data to the

screen to allow visualisation of the grid movement.

4.4.2 PHYSICA Implementation

PHYSICA (Cross et al 1995) is a multiphysics unstructured code under development
at the University of Greenwich. It is designed to be a framework for multi physics
continuum mechanics modelling and involves the use of finite volume techniques to
solve coupled flow and stress problems. A single test case has been run on a grid that

can be treated as structured for the purposes of adaption (section 5.3.2).

PHYSICA stores flow variables at cell centres and uses Rhie and Chow (1983)
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interpolation to determine convective fluxes at cell boundaries. This is an important
difference from PHOENICS. As PHYSICA is also able to solve over irregular shaped
cells it is generally less sensitive to grid quality than PHOENICS.

PHYSICA consists of one main executable to carry out all tasks that are split between
SATELLITE and EARTH in PHOENICS so that the structure of the code is the same
as that given in figure 4.4. The adaption modules are accessed through PHYSICA

using the built in user module.

The two main problems in transferring the adaption modules from PHOENICS to
PHYSICA are the interface and the need to use a structured style grid in any sub
regions where adaption is applied if the current code is to be reused. Implementation
of an unstructured adaptive grid technique using the same method is beyond the scope
of this thesis, though the neural net adaption technique discussed in chapter 8 is

unstructured.

As the adaption technique is designed for structured grids it is necessary to define the
grid in PHYSICA using nodes that are in structured form. This means that hexahedral
elements only can be used in regions of adaption and that they be organised in the
same manner as a structured grid. Extra information is required on the dimensions of

the ’structured’ part of the grid as this is not stored naturally in PHYSICA.
4.4.3 Independent Implementation

The independent implementation is used to adapt grids to fixed functions of a type
often used to demonstrate features of grid adaption (Biswas et al 1993, Bennett 1991,
Dvinsky 1991, Acharya and Moukalled 1990, Anderson 1990, 1987, 1987, Arney and
Flaherty 1990, 1986, Lee and Loellbach 1989, Carey et al 1988, Matsuno and Dwyer
1988, Holcomb and Hindman 1984, Greenburg 1983, and Brackbill and Saltzman

1982).

The implementation is split into two separate parts, an initialisation program and a
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calculation program. The implementation depends mainly upon the adaption modules
already implemented within PHOENICS with additional code to generate the grids
used in the initialisation phase. In the calculation phase the main flow solver is
replaced with simple routines to generate the variables used for adaption. As there is
no need to leave the adaption module during run time the data files used to store
temporary information are redundant. However the grid is output at regular intervals
in a format suitable for viewing using PHOENICS visualisation software, or using a

built in GUL

4.5 Closure
This chapter has described general issues in the organisation and implementation of
adaption. The adaption algorithm has been implemented successfully in the CFD codes
PHOENICS, PHYSICA and independently, though with some limitations in

PHYSICA.

A more detailed discussion of the implementation in PHOENICS is given in

appenicies B and C.

94



CHAPTER 5: 2D VERIFICATION TESTS
5.1 Introduction

The aim of this chapter is to present examples of the use of the adaptive algorithm on
a range of two dimensional cases including both simple mathematical functions and

complex heat and fluid flow problems.

The improvements in results due to the use of dynamically adapted grids can be
measured by comparing results obtained using coarse meshes, coarse meshes with
adaption, fine meshes and experimental results or high quality numerical results. In
the more complex cases such as the 10 degree supersonic intake different grid

resolutions are not available but the adapted grid is shown to offer improved results.

The choice of the initial mesh has to be careful. If the initial number of cells is too
small then though the mesh will move well the resolution of the grid will not have
improved enough to significantly better the results. If the number of cells is too high

then little movement will take place and adaption will not improve the results

5.2 Static Cases

The following cases were generated using the independent implementation of the
adaptive code. In each case the grids were adapted against a static function to
demonstrate how the LPE method will work in particular circumstances. Most of the

grids are compared with published results.

With some weights the LPE equation may be unstable in that the grid will converge
up to a point then diverge. In these cases the adaption has been stopped at the point
where the grid starts to diverge. Otherwise the problems have been run to

convergence. Most of the movement occurs in the first five or ten iterations of the

adaption solver.
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As all grids in the following section are initially uniform, the Poisson weight in the
LPE equation is set to zero. This is because the Poisson control functions which shape

the grid will all be zero and the Poisson term will be the same as the Laplace term.

In most of the following cases the functions involve an instantaneous change in value
at certain positions in the grid and no change elsewhere. To propagate the effects of
the functions out into the rest of the grid and prevent unpredictable results where a
point is on the border of the function smoothing is used on either the variable used
internally to calculate the weight functions in the LPE equation, or on the weight

functions themselves.

It is important to realise that there is not one single solution to each problem. It
depends upon what the user wants. To demonstrate this several results are produced

for the first three cases.

5.2.1 Attraction to a Line

Xit

This problem is used to demonstrate basic grid movement. The grid is attracted to the

centre line by using the simple step function,

0 x<0.5 (5.1)
1 x20.5

This problem is very similar to the attraction to a line case used in Divinsky (1991).
A 10x10 grid is used, covering a unit square domain.

The problem is run with three separate sets of parameters to demonstrate their effect

upon the final grid. In all cases the weight function used is
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Attraction to a Line
A | Ag | Power Law | Number of | Total X Total Y
Factor Moves move % move %
Case 1A 1 1 2 20 63.4 0
Case 1B 1 3 3 16 133.5 0
Case 1C 1 10 3 20 165.8 0

Where A, is the weight on the Laplace term in the LPE equation, and A; is the weight
on the Equidistribution term. The power law factor governs the slope of the curve of
the weight distribution (See 2.10.3.3). Movement is based on the sum of the
movement of the individual points compared with the sum of the initial distances
between all individual points and their neighbours in the appropriate coordinate

direction in the original grid.

Figure 5.1 Case 1A Figure 5.2 Case 1B
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Figure 5.3 Case 1C

Movement is uniform across domain in all cases

The equidistribution term controls how much clustering occurs around the line. The

power law controls the change in distribution of cells towards the centre line. The

three cases have an increasing equidistribution weight.

5.2.2 Angled ’Shock’ Like Function

This problem is used to demonstrate how the LPE algorithm will adapt a grid to a

stylised ’shock’ like function that has a similar shape to those which occur within

numerical models of transonic and supersonic flows. The function is a graded, angled

step, where

¢:<

0 0.5(y+14)<x<24

05(7-x)+025y  0.5(y+10)<x<0.5(y +14) (5.3)

1 0<x<0.5(y +10)

This function is used by Anderson (1987a) (figure 5.8, figure 5.9) (1990) (figure 5.10)

A 24x24 grid is used. The domain measures 24x24 units, each cell initially being a

unit square.
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(figure 5.9) grid adaption schemes and shows that the Poisson scheme is better.

The function is used here to compare the influence of power law fitting to control how
much clustering occurs around the shock and how far its effect can be propagated
towards the boundaries of the domain. Figures 5.4 through 5.6 show a steadily
decreasing power law producing less clustering around the shock like function, but
more movement at the grid boundaries. In all three of these cases the grids are smooth
with a gradual change in cell size towards the function. Figure 5.7 shows the results
without power law fitting. The clustering within the step is much higher than in the
other cases, and its influence has been propagated through the entire domain but the
change in grid size is much more sudden. This result is close to Anderson (1987a)
(figure 5.9) but shows much more movement away from the step. The overall

movement in this case is much less than in the other three cases.

5.2.3 Sine Wave

The purpose of this test is to demonstrate how the LPE equation can move a grid to
a generalised curved function. The function is a graduated step in the shape of a sine

wave.

-

0 0<y<11+4sin(mx/12)

¢=J 0.5(y-114sin(wx/12) 11 +4sin(mx/12)<y<13 +4sin(mt x/12) (5-3)

|1 13 +4sin(x/12)<y<24

This function is used by Anderson (1987a) (figure 5.14, figure 5.15)

A 24x24 grid is used. The domain measures 24x24 units, each cell initially being a

unit square.

In all cases the weight function used is
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constraining the horizontal movement of the grid points.

5.2.4 Hat Function

This function shows how the LPE algorithm can move a grid to two competing

phenomena. The function used is

-

0
0 =10.5

1

\

y<x

y2x, x2+y*>03

y=x, x?+y?<0.3

(5.7)

The function is based on that used by Anderson (1987a) (figure 5.17) to show strength

of his Poisson scheme, especially where the function shape switches between straight

and circular.

A 40x40 grid is used over a unit square.

In this case the weight function used is

w=1 +(1)S+O.OI_M)“|_3
(Lo,
Hat Function
A | Az | Power Law | Number of | Total X Total Y
Factor Moves move % move %
Case 4 1 1 No Power 15 21.7 21.8

Law
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Figure 5.16 Case 4 Figure 5.17 Anderson 1987a Poisson Scheme

The grid is distorted within the semi circle or hat, as cells are drawn out from this
region towards its boundaries. It would work better if there were more cells in this

region initially. The grid at the points where the semi circle and the line meet have

retained good orthogonality.

3.2.5 Pill Box

A circular function is a frequently used test case for adaption. The form used here is
the graded step found in Anderson (1990) (see figure 5.21) and (1987b) (figure 5.19
and figure 5.20). Divinsky (1991) attracts the grid to a circle (figure 5.22), and
Brackbill and Saltzman (1982) solve a partial differential equation with a circular

shaped solution.

The function used is

105















5.3 Two Dimensional Flow Examples

The following cases were run using PHOENICS versions 1.6, 2.0 and 2.13 on PC’s
and Sun UNIX workstations. Case 5.3.2, which features driven cavity flow, was also

run using PHYSICA version 2.
5.3.1 RAE2822 Aerofoil

The RAE2822 aerofoil test case is widely used for validation of compressible CFD

methods as experimental data for pressure over the surface is readily available.

The case considered here is case 9, where a free stream Mach number of 0.730
generates a weak shock on the upper surface of the aerofoil at an angle of incidence

of 3.19 degrees.

5.3.1.1 Boundary Conditions
The angle of incidence of the aerofoil is corrected to 2.79 degrees to allow for
sidewall effects in the wind tunnel. The free stream flow has a Reynolds number of

6.5 million. The grid for the problem is shown in figures 5.26 and 5.27, and consists

of 253x29 cells wrapped around the shape of the aerofoil to form an O grid.
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before adaption starts and for 500 iterations afterwards.

The under relaxation needed for the solution of the pressure distribution with adaption
has to be increased from that used for the standard case. In this case the solution tends

to need time to settle after the grid is modified and can diverge without relaxation.

5.3.1.2 Adaption Parameters

Two adaption domains are used in the problem area, one covering the upper surface
from about 0.2 chord to the trailing edge, and the other the lower surface from about
0.1 chord to the trailing edge. The overall grid is very large with a wide variation in
grid cell size and there is little point in trying to adapt it all. The distance away from
the aerofoil surface that the domains should stretch is governed by the range of the
perturbations in the flow caused by the aerofoil and the rate at which the cell spacing
increases. Movement is limited to the points sliding along grid lines parallel to the
aerofoil surface. There are no strong gradients to pull distant points on lines normal

to the aerofoil towards the aerofoil.

Figure 5.28 Domain Choices

The high concentration of grid cells near the surface of the aerofoil must be artificially
maintained as there is no strong gradient in the flow to force the grid cells to remain

there. Whatever gradient there is for movement will be aligned with the shock wave,
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if present, and therefore at a steep angle to the aerofoil surface. The Laplace term will
then dominate the adaption equations and will try to force the cells away from the
surface. This artificial control is achieved by extensive use of the curve fitting routines
in the domains to be adapted. This will mean that near the surface of the aerofoil the

grid points will only be allowed to move over the grid lines defined by the initial grid.

The high variation in pressure in a small area at the leading edge of the aerofoil,
coupled with a highly skewed local grid prevents effective grid adaption here. Any
adaption domains defined for the grid must start far enough away from the leading
edge of the aerofoil to negate any influence it may have. The main area of interest as
‘regards grid adaption is the weak shock wave on the upper surface of the grid, so the

adaption domains can be tailored to fit.

At the trailing edge of the aerofoil the grid is also skewed. There are also potential
problems dealing with the grid cut and the point where the grid cells collapse. Though
there should be no strong gradients here to influence adaption elsewhere, the effective
limit to the adaptive domains is where the grid lines perpendicular to the aerofoil

surface start to slope.

The extent of the domains is also influenced by the region in the grid above and
below the trailing edge where the cell size changes rapidly and the cells themselves
have a very high aspect ratio. In these regions use of adaption can easily lead to grid

lines kinking and even overlapping due to minor perturbations in the flow.

The extensive use of curve fitting helps to maintain grid smoothness.The fixed curve

patches are displayed in figure 5.29.
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Figure 5.29 Fixed curves in the adaption domains

The most important part of the grid contains the aerofoil boundary layer cells and this
is the region for which experimental data is available. It was found in early runs that
the movement of the grid nodes right on the boundary was more prone to fluctuations
than in the rest of the flow and more importantly tended to lag behind the movement
of the points away from the surface. Preventing any movement at the surface was
undesirable as it left the boundary layer grid cells highly skewed as they leaned
towards the computed shock. To maintain the orthogonality of the boundary layer cells
the movement of the boundary nodes was set to that of the nodes on the adjacent grid

line inside.

The adaption parameters are

First call Last call Frequency Internal Relaxation
(sweep number) | (sweep number) (sweeps) Iterations
1000 1900 100 10 0.8

The constants used for adaption are given in the following table.
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LPE Equation | Variable Weight Function

Domain 1 A | Ap | Ag | Pressure 1+¢,+0.01k
Upper Surface ; , 5 x> power law smoothing

Domain 2 M | Ap | Az | Pressure 1+¢,+0.01%
Lower Surface ) L |5 x> power law smoothing

The grid is moved to pressure in both domains, with a higher weight on the
equidistribution term on the upper domain. There is not a particularly strong gradient
in either domain and it is weaker in the lower domain. To have the same parameters
for the lower domain, domain 2, causes problems as minor pressure perturbations have
more effect. To maximise the effect of the pressure gradient power law smoothing is
used for the weight term, with the weights assumed to increase at a rate proportional
to the distance cubed up to the local maximum. This use of smoothing allows high
values to be used for the equidistribution term, allowing faster grid movement whilst

keeping the LPE equation stable.

5.3.1.3 RAE2822 Aerofoil Case 9 Results

The grid has moved to concentrate grid cells both above and below the aerofoil. The
grid concentration on the upper surface has occurred downstream of the location given

in the experimental results.

Figure 5.33 shows that though there is little difference in the accuracy of the solution
on the underneath of the aerofoil, the shock on the upper surface is picked out much
more clearly and is of the same magnitude as the experimental results. The calculated
shock occurs downstream of the experimental shock, though it is in the centre of the
smeared shock predicted by PHOENICS on the original grid. The adaption has
changed the PHOENICS results and shown the potential to give better results, but also
possible limitations with PHOENICS.
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5.3.2.1 Boundary Conditions

A wall moving at 1 ms" creates a circulation in a square domain measuring 1x1m.
The problem is dependent on the Reynolds number, and the results presented are for

a Reynolds number of 1000.

1ms 4

—l

- im
L»X

Figure 5.35 Driven Cavity Definition

The problem was run on 40x40 and 60x60 uniformly distributed and adapted grids in
both PHOENICS and PHYSICA. For comparison of the effects of adaption the same
case is also presented on a finer 80x80 uniform grid without adaption in PHOENICS.

The results were similar enough between PHYSICA and PHOENICS for the 60x60
uniform case (figure 5.38) to make running the 80x80 PHYSICA case unnecessary.

The PHOENICS cases were run for 2500 sweeps. The PHYSICA cases were run until

convergence was reached as defined by the default set up file.

With a very fine grid (250x250 cells) PHOENICS reproduced the Ghia results for a
Reynolds number of 1000 exactly.

5.3.2.2 Adaption Parameters

One domain is used that covers the whole problem area. Curve patches are set up

along all of the boundaries of the adaption domain except the top, moving, wall to
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allow boundary points to move.

The adaption parameters are

First call Last call Frequency Internal | Relaxation
(sweep (sweep (sweeps) Iterations
number) number)
PHOENICS 300 600 100 8 1.0
PHYSICA 80 400 40 10 0.9
LPE Equation Variable Weight Function
A | A | Az | Magnitude 1+¢
PHOENICS | 0 3 of Velocity x’ power law smoothing

PHYSICA 1 0 3

Magnitude of velocity is used to drive the grid as there are no other strong gradients
that exist throughout the whole domain. The form of weight function here is used as
the only strong gradients within the flow except at the moving wall itself which lie
at the edges of the main eddy produced by the moving wall. Moving the grid to these

gradients will pull cells away from where the flow is greatest and needs most

resolution.

To prevent the flow at the boundary layer dominating all movement, the magnitude
of ¢ is limited to a maximum of 0.6. All values above 0.6 are treated as 0.6, giving

a high constant weight across the top of the domain which resists movement but lacks

the change in weight which drives the grid.

The weight for the Poisson term was set to zero as for a uniform grid the control

functions will be zero and the Poisson term will collapse to the same as the Laplace

term.
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The different parameters used for PHYSICA and PHOENICS came about because of
the different response from PHYSICA to adaption.

5.3.2.3 Driven Cavity Results

The PHOENICS run using adaption clocked 4045 seconds on a Sun SPARC 5
workstation for 5000 sweeps, against 6734 seconds for the fine grid and 3834 seconds

for the coarse grid.

Figures 5.36 and 5.37 show that the grid cells have concentrated on and are more

aligned to the main eddy in the cavity in both PHYSICA and PHOENICS.

Figures 5.38 and 5.39 plot the component of flow velocity parallel with the moving
lid on the centre line of the box for all the flow cases run with the Ghia results
(1982). They show that significant improvements are offered by adaption within
PHOENICS over the plain 60x60 grid for Re=1000 and even over the 80x80 grid,
though the improved results at the most important features, the moving wall and the

main eddy, are balanced by a mild loss of accuracy elsewhere.

The PHYSICA results show a less marked improvement over the static grid results
than for PHOENICS, though with less loss of accuracy away from the low velocity
peak. There is less movement overall in the PHYSICA adapted grid.

Figure 5.40 presents the grid cell spacing along the centre line for the PHOENICS
adapted grid alongside the grid density for the 60x60 and 80x80 grids. It shows that
grid density peaks at the moving lid boundary condition and at the centre of the main

eddy about 0.18 above the base of the cavity at the expense of neighbouring regions.
Figures 5.41-44 present the velocity vectors for the flow field with the different grids.

The eddy appears to be better defined in the adapted grids than the unadapted grids.
The eddy in the adapted PHYSICA results is particularly well defined.
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Figures 5.45-46 present records for the rate of convergence of pressure on the 60x60
grids in PHYSICA and PHOENICS, measured using the residuals or errors in the
governing equations during the solution procedure. The magnitude of change for each
record are not comparable between the different cases as the way the residuals are
calculated in PHYSICA and PHOENICS is different. The PHOENICS test cases were
considered to have converged when the sum of the absolute values of the residuals
reduced below 1.e-4. Using this criteria the adapted grid converges faster than the

unadapted grid despite the large disruption to the curve caused by adaption.

The PHYSICA cases also use a tolerance value of le-4 to determine convergence.
Here the adapted case does not converge faster. The effect of adaption on the residual

error 1S also much less than in the PHOENICS cases.

Adaption parameters for PHYSICA will be different than those from PHOENICS

because of a number of reasons. These include:-
* Reduced sensitivity of PHYSICA to grid quality. This is because it uses Rhie
and Chow (1983) interpolation against the staggered grid used in PHOENICS.
e Calculation of adaption data set. In PHYSICA the data set used to calculate
the weight function is stored at the cell centre and calculated prior to entry to
the adaption module, where it is interpolated to grid nodes. In PHOENICS the
data set is calculated directly at grid nodes by interpolating and combining
individual velocity components from cell faces.
* Calculation of velocity at cell centres IN PHYSICA as opposed to cell faces
in PHOENICS means that velocities at boundary conditions are potentially
better defined in PHYSICA as in PHOENICS they will be further away. In
PHYSICA this may lead to a steeper velocity gradient at the moving lid which
will influence the way in which the adaption algorithm operates over the

remainder of the domain, reducing the effect of the eddy in the
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Figure 5.46 Rates of Pressure Convergence for PHYSICA with and without Adaption

5.3.3 10 Degree Supersonic Wedge Intake

This is a 2D supersonic case with two obstructions, a 10° ramp and a lip, that define

an idealised jet engine intake.

The flow out from the duct formed by the two obstructions is subsonic. A strong
shock wave is formed at the mouth of the duct where the flow decelerates. This case
is used to demonstrate both shock capturing and geometry maintaining features of the

adaptive algorithm.

5.3.3.1 Boundary conditions

The free stream mach number is 2.0 and the pressure at the duct outlet is constrained

to a value calculated using a duct outlet mach number of 0.664.

The computational domain is made up of 128x99 cells, with obstructions set up to
represent the lip and the ramp. The geometry is shown in figure 5.47. The curved
surface of the leading edge of the lip is modelled by using a high local concentration

of distorted cells.
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Ramp

Duct

Lip

Figure 5.47 Initial Problem

5.3.3.2 Adaption Parameters

Two domains are used. Their positions are shown in figure 5.48 This case involves
capturing the two shock waves that dominate the flow. The sole reason for using two
domains is to pick up the leading edge shock more clearly, as it is so weak in

comparison to the bow wave.

%

doml

dom2

Figure 5.48 Adaption Domains

There is no pressure gradient above the ramp and sufficiently far in front or behind
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the entrance of the intake, so any effort in adapting the grid is wasted here.

An allowance is made for the lip by using a ’blank’ patch. This is set up to cover the
obstruction and a boundary layer of one cell and will block out uncontrolled
movement in this region and retain its geometry. At the curved leading edge the local
grid distribution is irregular and has to be maintained to retain the integrity of the
obstruction. Careful use of curve patches is used to maintain the local grid. The

geometry protecting curve and blank patches are shown in figure 5.49

currl

curlub
curlua

(j: blank0l

curll

Figure 5.49 Geometry Patches

It is necessary to initialise the variable chosen for adaption in the area within the
obstruction, as the adaptive code will read the relevant values from PHOENICS
regardless of whether they are solved for or not, and will normalise all values between

the limits it reads.

The adaption routines are called at

First call Last call Frequency Internal Relaxation
(sweep number) | (sweep number) (sweeps) Iterations
10 120 10 1 1.0

The first domain uses the parameters
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LPE Equation Variable Weight Function

A Ap Ag Pressure 1+6,+40.01%
0.05 Weighted exponential
2 0 3 :
smoothing
whereas the second domain uses the parameters
LPE Equation Variable Weight Function
M Ap Ag Pressure 1+1¢,+0.01%

0.05 Weighted exponential

smoothing

The pressure change in the first domain is much smaller than in the second, therefore
the equidistribution weight is increased to emphasise the effect of the gradient that is

available.

The different schemes available for manipulating the weight function were tested and
the one that seemed to work the best was exponential smoothing. Because there is
such a sfrong discontinuity in the flow care must be taken to prevent the grid from

overlapping in the shock.
3.3.3.3 10 Degree Supersonic Wedge Intake Results

Figures 5.50 and 5.51 show that the resultant grid moves well and shows the shapes
of the shock waves clearly, though there are still some problems at the leading edge
of the lip where the lack of a strong gradient or any other confinement allow the
Laplace term to push the grid out, causing some skewed cells at the start and end of
this region. These appear to have little effect on the results however. The geometry

of the obstructions is maintained.

The pressure contour plots show that the point at which the main shock wave connects
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to the lower surface of the ramp appears to have moved back to the lowest point of
the ramp. The contours are noticeably tighter for the weak leading shock and around

the front edge of the lip.

The most striking difference between the results on the unadapted and adapted results
come however on the plots (Figures 5.54, 5.55 and 5.56) taken on lines of grid cells
at the centre of the duct and at the upper and lower surface. There may be some
discrepancy as to the exact comparison as the adapted grid lines will be in different
positions from the original, but what all show is that the pressure on the adapted grid
rapidly settles to the value of the outlet pressure condition whereas the standard grid
does not. The spike where the prediction overshoots though still present is smaller and

the oscillations much reduced.
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5.3.4 Laval Nozzle

The De Laval nozzle case concerns transonic flow in a convergent-divergent nozzle

with the exit conditions modified to set up a standing shock wave in the divergent part

of the nozzle.

The adaptive grid will allow better resolution of the shock through increasing the local

grid concentration and therefore reducing the change in pressure over individual cells.

5.3.4.1 Boundary Conditions

The inlet Mach number is 0.5. To create the standing shock wave the outlet pressure
is set to 0.75 of the stagnation pressure, taken from tables for the design conditions

as 7.83e5. The position of the shock can be calculated analytically at 60% chord

(Patel, Pericleous and Baldwin 1995).
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The geometry is set up with the throat situated at one-third of the length of the duct
and uses symmetry. The adapted case was run with 60x5 cells. In addition the same

case was run without adaption, and also with a finer mesh of 100x7 cells.

The problem is run to convergence.

~ 5.3.4.2 Adaption Parameters

One domain was used covering the whole problem area. To retain the character of the
original grid the grid cells were only allowed to move in the axial direction, sliding
along the original grid lines. These lines were maintained by defining curve patches

along all axial grid lines.

The main adaption parameters are

First call Last call Frequency Internal Relaxation
(sweep number) | (sweep number) (sweeps) Iterations
50 350 50
LPE Equation Variable Weight Function
A Ap e Pressure 14+2¢,+0.02k

5 1 5 x> power law smoothing

There is a strong gradient to move the grid to but too great a loss in grid orthogonality
and smoothness can quickly lead to the loss of the solution, so care has to be taken

to keep movement smooth.

5.3.4.3 Laval Nozzle Results

This case has previously been used to demonstrate adaption by Patel et al. (1995) and

it is identical except for the method of adaption.
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The solution converged after 1285 sweeps in a time of 100 seconds running on a
Pentium P100 computer, compared to times of 61 seconds for the unadapted solution
to converge at 1117 sweeps, and 231 seconds for the fine grid to converge at 1759

sweeps.

Figure 5.57 shows the fine, adapted and unadapted grids. Figure 5.58 shows the final
axial grid density of the three cases. Figure 5.59 shows the axial pressure, which is

uniform perpendicular to the axis.

The final adapted grid shows how a relatively small movement can have a beneficial
effect upon the results, which are better than for the same sized unadapted grid. Figure
5.59 shows that for the adapted grid the pressure change is much steeper than for the

unadapted grid and starts in the same area as the fine grid.
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Figure 5.57 Laval nozzle grids
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5.3.5 Supersonic Flow Through A Wedge Cascade

This case consists of a completely supersonic flow through a wedge cascade. There
is a shock wave from the leading edge which is cancelled by its reflection at the
upstream corner of the cascade, giving a uniform parallel flow between the comners,
a weak expansion wave off the downstream corner, and two compression waves at the
trailing edge. Numerical smearing means that the initial shock wave is not completely

cancelled and reflects down the narrow part of the flow domain.

The adaptive algorithm is used to better resolve the shocks throughout the model.

5.3.5.1 Boundary Conditions

The cascade has a chord of four units, with the leading ramp, at 18.5°, measuring two

units, and the parallel section and trailing ramp measuring one each.

The adapted case was run with a grid measuring 112x30 cells. For comparison the
same case was run without adaption and also with a finer mesh of 168x45 cells, this
being the fineness of grid suggested by Palacio et al (1990) required for the solution

to become grid independent.

The Mach number at the inlet at the low end of the domain is set to 3.0. The outlet

has a fixed pressure calculated from gas-dynamic theory.

Cyclic boundary conditions are applied upstream and downstream of the cascade.

The flow is isentropic.

All three cases were run for 1000 sweeps, which was sufficient for all of them to

converge.

This case is based on the PHOENICS library case 523 and Palacio et al (1990).
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5.3.5.2 Adaption Parameters

One adaption patch was used to cover the whole domain. The strong shock wave on

the leading ramp makes the adaption easier, as the pressure gradients here are strong.

The adaption parameters used are given in the following tables

First call Last call Frequency Internal Relaxation
(sweep number) | (sweep number) (sweeps) Iterations
50 500 50 5 1.0
LPE Equation Variable Weight Function
AL Ap Ag Pressure 1+1¢,+0.01k

2 .
0 1 i x°~ power law smoothing

The Poisson termm was used in preference to the Laplace term to balance the
equidistribution weight as the Laplace term causes the grid lines over the ramps to

bow out away from the constriction.

The power law smoothing allows the effect of the shock waves on adaption to be

propagated out into the grid.

Grid nodes were allowed to slide along the upper and lower boundaries using curve
patches. The automatic curve breaking feature was used to break the lower curve patch

into five, covering each section of the domain.

5.3.5.3 Wedge Cascade Results

The use of adaption involved an additional overhead of about 25% in CPU time, 1000
sweeps of the coarse grid taking 991 seconds running on a Sun SPARC 5 workstation

- against 1230 seconds for the adapted grid and 1862 seconds for the fine grid.
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Figure 5.60 shows the fine, adapted and unadapted grids. Figure 5.61 shows the
pressure contours for the three cases. Figure 5.62 shows the pressure over the lower

surface of the wedge.

The final adapted grid clearly shows the location of the primary shock, its reflection,
and the weak expansion waves from the upstream corner of the cascade, as the cells
contract and align themselves with this important flow phenomena. The grid cells also

concentrate at the downstream corner of the cascade.

The main drawback of the adapted grid is that the shock wave on the leading edge
pulls grid nodes away from the first ramp, something which accounts for the
difference in the pressure distribution over this surface as calculated by the different
methods. It can be seen from the plots of the pressure contours for the three runs that
the adapted grid produces much sharper gradients over its shocks than the other two
cases. However, the reflection of the first shock wave now concentrates slightly
downstream of the upstream corner on the lower surface, rather than being smeared
across it, which accounts for the increase in magnitude of the shock waves inside the

parallel section and the difference in the position of the main pressure peak in figure

5.62.
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In figure 5.62 non dimensionalised units are used for pressure and distance. The

pressure is expressed as P/P, where P, is the stagnation pressure.

5.4 Closure

This chapter has successfully demonstrated the use of the adaptive algorithm on a
range of two dimensional test cases. However it is necessary to tailor the algorithm
using the weight function and relaxation to get the best results in each case. There
must also be some sort of solution feature that can be used to produce a weight. The
cases which generate the most movement are those which involve strong shock waves,
such as the 10 Degree Supersonic Wedge Intake (5.3.3), though the low speed driven

cavity case (5.3.2) also behaves well with its strong eddy.
Large grid distortion through adaption is not always necessary to get the best results,

and may instead cause instability in the solution. The Laval nozzle case (5.3.4) shows

how a low level of smooth movement can produce an improved solution.
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CHAPTER 6: 3D VERIFICATION TESTS

6.1 Introduction

The aim of this chapter is to present examples of the use of the adaptive algorithm on
a range of three dimensional cases including both simple mathematical functions and

complex fluid flow.

There are difficulties in presenting large three dimensional cases as well as comparing
them to results produced elsewhere. For this reason only three cases are presented

here.
6.2 Three Dimensional Test Function

The following case was run independently of PHOENICS, adapting the grid to a

prescribed mathematical function.

6.2.1 Circular Function
This is a test case that was used by Matsuno and Dwyer (1988). who used the same
function to show how their method worked in one, two and three dimensions. The

function is circular and similar to the pill box case in section 5.2.5.

Two separate sets of results are produced to show the effect of the method of weight

smoothing using a power law (section 2.10.3.3).

6.2.1.1 Boundary Conditions

The function the grid is adapted to is

o=[1 +sign(r—rc){1—e(‘“"z*”z)}]/2 (6.1)

Where
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r=((x-0.5)+(y-0.5)2+(z-0.5))7

sign(r-r,)=1 r2r,
sign(r-r_)=-1 r<r,
1
p=—st|r-r]
(2a)7

a=500, r =025

Contours of the function through the centre of the domain are shown in figure 6.1.

The case is solved on a 30x30x30 cell uniform grid over a unit cube.

Figure 6.1 Contours of test function

6.2.1.2 Adaption Parameters

The grid is adapted over the whole domain. The points on the domain boundaries are
allowed to slide but show little or no movement due to the circular shape of the

function. In both cases the grids are moved ten times, with a relaxation factor of 0.9.

In case 1 the parameters used are
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LPE Equation Variable Weight Function

A Ap Ag Prescribed 1+6,+0.01k

2 0 1

In case 2, with weight smoothing, the parameters are

LPE Equation Variable Weight Function

AL Ap Ag Prescribed 1+¢,+0.01k

2 .
3 0 5 x“ power law smoothing

In the second case surfaces have been set up over the three grid planes that pass
through the centre of the grid. This is necessary to enforce some symmetry on the
grid, as the weight smoothing algorithm fits modified weights to an asymmetric curve
based on which point it determines that the location of the peak of the function lies.
In the case of a semicirclular or similar function a point at its peak could move to
either side unless it is constrained to the centre. Otherwise neighbouring points at right
angles to the function may move in different directions, giving a badly skewed mesh.
As the majority of real flow cases are not symmetric in this way and the cells are still
éoncentrated at the areas deemed important this is not a major problem. This
asymmetry can be shown in the figures 6.2 and 6.3 which present the function and the

weight at the end of the run for the two cases.

The use of power law smoothing allows the grid to remain stable with a much higher

weight on the Equidistribution term in the LPE equation. This allows the grid to move

faster.
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6.2.1.3 Results

Figures 6.4 through 6.9 show different views of the final grids produced by the
parameters used in the two cases. Figures 6.10 through 6.12 show the same views of

the grid produced by Matsuno and Dwyer (1988).

The results from case 1 are similar to those produced by Matsuno and Dwyer (1988)
with coarser cells adjacent to the fine region and little influence on the parts of the
grid farthest from the function contours. For case 2, in comparison, the influence of
the function has been propagated throughout the grid and the most coarse cells are
those farthest away from the function contours. The exceptions are the eight corners
where the weight is not propagated because it is based on grid lines which do not
cross the function. Case 2 has a smooth variation in cell size from the fine region to

the far parts of the grid, though there is some asymmetry, as mentioned earlier.

The grid from Matsuno and Dwyer (1988) took 38 iterations to converge.
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- 6.3.1 3D Skewed Wedge Cascade

This case consists of isentropic supersonic flow over a double ramp.

This case is a modified version of the two dimensional wedge cascade (see case
5.3.4), stretched out into a third dimension with the central section skewed at a small
angle to give angled ramps. The leading angled ramp in turn will produce an angled

shock wave.

This case is used to demonstrate the ability of the adaptive code to use surface patches

in the same way as the curve patches demonstrated in Chapter 5.

6.3.1.1 Boundary Conditions

The geometry of the problem in the first Y-plane is identical to the two dimensional

case (5.3.4), with the centre section swept back at an angle of 13.5°. The geometry is

shown in figure 6.13.

Figure 6.13 Wedge geometry

Cyclic boundary conditions are applied upstream and downstream of the problem. The

velocity at the inlet, which lies at the low end of the domain is calculated based on
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a Mach number of 3.0. The outlet, which lies at the high end of the domain, has a

fixed pressure calculated from gas-dynamic theory.

The domain is defined by 10 by 6 by 28 cells in the i, j, k planes respectively.

The problem was run over 500 sweeps, though this was probably unnecessary as it

converges fairly quickly.

6.3.1.2 Adaption Parameters

One adaption patch is used to cover the whole problem domain, with surface patches
set up on the north, south, west and east faces. The automatic surface breaking
routines cut the west surface that covers the ramps into five sections to allow its
geometry to be maintained. The breaks are marked in figure 6.19. In addition curve
patches are set up along the four edges that run from low to high on the domain. In
other words the grid at the inlet and outlet conditions and on the lines which define

the geometry of the west face are fixed.

The other adaption parameters are described in the following tables.

First call Last call Frequency Internal Relaxation
(sweep number) | (sweep number) (sweeps) Iterations
20 200 20 5 0.9
LPE Equation Variable Weight Function
A Ap Ag Pressure 1+, +0.01%

| ) 5 x* power law smoothing

The problem converges quickly which allows frequent adaption. There is a series of

definite changes in pressure throughout the domain which makes the adaption easier.

154



6.3.1.3 3D Skewed Wedge Cascade Results

The total movement in each of the three coordinate directions x, y and z was 30.3%,
1.5%, and 11.5% respectively, with the grid fairly well converged. The adaption
involved an overhead of approximately 60% for the fifty iterations of the adaptive
solver carried out. The adaptive algorithm is more expensive for three dimensional
problems than for two dimensions as the number of terms in the solved equations is
related to n’ as opposed to n’. The adaption overhead could be reduced by using less

iterations with terms in the LPE equation optimised to make the grid move faster.

Figures 6.14 and 6.15 show the Y-planes of the original and adapted grid. The adapted
grid has picked up the main shock on the front ramp, its reflection onto or near the
start of the constriction, the second reflection from the start of the constriction and the
start of an expansion wave near the end of the constriction. Grid points have moved

on all surfaces and the problem geometry has been maintained

The adapted grid has moved to become more orthogonal than the original. Most of the
east west lines are considerably straighter than in the original grid. This orthogonality
has had an effect upon the smoothness of the west surface over the ramp where the
grid, movement has been restricted, as can be seen in figure 6.19, though this should

not be large enough to damage the results.

Figures 6.16 and 6.17 show pressure contours in the Y-plane going through the centres
of the six cells of the original and adapted grid. Throughout the grid the pressure

contours are tighter and the features they describe are better defined.

Figure 6.18 shows surfaces of constant pressure at the same value for the original and
adapted grid. The shock wave is resolved over a much shorter distance which must

improve the accuracy of the simulation.

Figure 6.19 shows where the bottom surface is cut into five sections by the surface

cutting algorithm (3.2.3).
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Figure 6.14 Y-planes of original grid
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6.3.2 3D Driven Cavity Flow

This case is a three dimensional version of case 5.3.2. It has been used as a test case

in literature (Guj and Stella 1993).

6.3.2.1 Boundary Conditions

This problem consists of a 1x1x1m cube with a lid moving at 1ms™ from west to east.
The fluid has a Reynold’s number of 1000. As in case 5.3.2 the case is restarted from

a run with a Reynolds number of 400, which was in turn restarted from a run with a

Reynolds number of 100.

The cube is split into 60x60x30 uniform cells. 60x60 cells are the minimum used in
case 5.3.2 to produce reasonable results. Only 30 cells are used on the Z-plane to

prevent the problem from becoming prohibitively large.

161



The case is run for 5000 sweeps.
6.3.2.2 Adaption Parameters

One domain was used to cover the whole grid. Surfaces were set up on all boundaries
except the top moving wall. Curve patches were set up along the edges of the grid
except those that butted onto the moving wall. This allows all grid points to move

except for those which define the main boundary condition on the top wall.

The adaption parameters used are

First call Last call Frequency Internal Relaxation
(sweep number) | (sweep number) (sweeps) Iterations
200 2000 200 5 0.9
LPE Equation Variable Weight Function
A Ap Ag Magnitude 1+2¢
{ 0 ) of Velocity x> power law smoothing

¢ was limited to a maximum of 0.6 to avoid the velocity at the moving wall

swamping other flow features in the domain.

6.3.2.3 3D Driven Cavity Results

Figures 6.20 through 6.24 show different planes of the final grid. The grid is shown
at intervals of 6 planes in the X and Y directions and 3 in the Z direction, being

divided up into 61x61x31 planes in all.

Figures 6.25 and 6.26 show plots of vectors indicating the local strength and direction
of flow for the unadapted and adapted grids respectively. Figures 6.27 and 6.28 show

surfaces representing the shape of the flow at a constant magnitude of 0.3 for the
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unadapted and adapted grids respectively.

The flow is faster and more developed with the adapted grid, particularly at the low

and high walls, suggesting that numerical dissipation has been reduced.

The grid has moved to concentrate in the area covered by the main eddy and smoothly

varying across the domain.
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6.4 Closure

This chapter demonstrates that the LPE algorithm is fully three dimensional. It does
not however fully prove that the adapted results are superior to the unadapted, though
experience from the two dimensional cases suggest that they should be. One aspect
of the adaption algorithm that works well is the surface fitting method (3.2.3) which

is used to maintain the boundaries of the skewed wedge (6.3.1).

There are problems in comparing unadapted and adapted results in that the position
of the final adapted grid cells may be so far from the original that any direct
comparison through a slice of the domain will only be possible with a lot of

interpolation.
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CHAPTER 7: FLUID STRUCTURE INTERACTION

7.1 Introduction

The adaptive grid technique is not limited to deforming the grid to a solution. It can
also be used to modify the grid sensibly to allow for deforming internal and external
boundaries. An example of this is fluid structure interaction, where the pressure
exerted by a fluid is allowed to deform an object in the flow. The adaptive grid tools
can then be used to both adapt to the local solution and to maintain a good quality
grid around the object. Such problems occur for instance in the study of aerofoil
flutter (Allen 1995, Sengupta et al. 1991), nuclear reactor safety (Donea et al. 1982),
and buildings in wind (Slone et al. 1997).

Most techniques currently used for this kind of problem combine finite element codes
for both fluid and structural modelling. (Donea et al. 1982, Hamdan and Dowling
1995, SenGupta et al. 1991), though Farhat (1995) uses a finite volume unstructured
grid solver for the fluid simulation. This enables both sides of the problem to be

treated in the same way.

Traditionally fluid structure interaction has been modelled by passing data between a
stress simulation code to a fluid simulation code and the current work is no exception,
though there is ongoing work at the University of Greenwich concerned with
developing a fully coupled finite element code (Slone 1997). Though there are
disadvantages and time penalties involved in using separate codes these are
outweighed at the current time by the opportunity to use a mature and capable code
for the fluid simulation code, PHOENICS and an in house stress code FET (Slone
1997).

FET stands for Finite Element Transient. It is designed to solve the system

Md+Cd+Kd=F (7.1)
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Where d is displacement, M is the mass matrix, C is the damping matrix, K is the
stiffness matrix and F is the transient load vector. The three terms on the left hand

side relate to inertia, numerical damping and stiffness respectively.

In previous work FET has been used both to modify the structure and the surrounding
grid. The surrounding grid is moved by using the spring analogy to connect grid nodes
with springs with a low Young’s modulus. In the current work it is only used on the

structure under load.

For the purposes of the current work FET is treated solely as a black box. The only
information needed is how to import and export data. FET reads data files in the
neutral .ANL format used by the commercial code FEMGEN. The data files take the

form of node locations, adjacency information and boundary conditions.
7.2 Algorithm

The algorithm is transient. The adaption module is called at the start of each time step
before the PHOENICS sweeps begin. The stress code is called from within the
adaptive module and run independently with data taken from PHOENICS, transient,
but over one time step only. The time steps for the stress code and the flow code are
matched. The restart facilities available within FET are used to allow the case to be

restarted at all except the first time step.

Running the fluids code transient allows the effect of the velocity of the structure to
be added into the flow simulation by the use of convection terms due to the change
in volume of the cells adjacent to the deforming structure. These terms are calculated
automatically within PHOENICS when the appropriate flags are set. Additionally the
adaptive grid technique may behave poorly when coping with very large grid
deformation over one move. The length of the time step can be used as a lever to

control how much deformation takes place at each call to the structural solver.
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The deformation of the structure is calculated by using the pressure on the surface of
the obstruction calculated by the flow solver. In the finite element approximation the
pressure over the face of each element is assumed to be constant and the load on each
node in the boundary is calculated as a function of the pressure on the neighbouring

elements. This function is internal to the structural code FET.

The stress code is called from within the adaption module and the resulting grid
deformation passed through to the adaptive grid solver. The stress modified nodes are
moved in the adaption domain and then the grid is moved around them, keeping them
fixed. The adaptive grid solver can either be used to just carry out Laplace smoothing
of the grid, or to adapt to other flow features. One option may be to develop a
function to produce an artificial variable to drive the grid to better maintain its form

about the obstruction.
7.3 Implementation

The details of the implementation cover how the two codes are coupled together and
in particular how the data files for the structural solver FET are prepared from data
available in PHOENICS. This section also covers the necessary modifications to the

adaption pre processor S_ADAPT and processor G_ADAPT.

By hiding the stress code inside the adaption module no further modifications are

made to PHOENICS EARTH beyond those required by the main adaption routines.

This version is limited to two dimensional problems. This greatly simplifies the input
files to the stress code as the obstruction can be looked at as four sided elements with

no depth. The third, inactive dimension in PHOENICS is ignored.

7.3.1 S_ADAPT Modifications

The only modification to S_ADAPT, the satellite adaption coding, is the addition of

an extra adaptive patch type, STRESS, which activates the stress coding in ground and
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sets up a blank, or no movement region up inside the adaptive domain. The additional
routine WRITANL, used to determine the input files for the stress code could be

incorporated into S_ADAPT at a future date.
7.3.2 WRITANL

The role of the program WRITANL is to write out an input file for the stress code
FET in the neutral .ANL file format used by the commercial finite element software
FEMGEN, using a PHOENICS grid file and a user controlled data file ANLIN.DAT.
The file includes the specification of all the boundary conditions for the stress code,
though with all loading set to zero. In addition WRITANL produces an inform file,
INF, which contains the number of nodes and elements in the stress model and a
restart flag, and a file FE.INP which contains the i,j,k locations of cells in the
PHOENICS grid from which the value of pressure needs to be extracted to complete

the definition of the loaded boundary conditions for the stress model.

O0.INF
ANLIN.DAT ’\ /
GRID |=— | \
FE.INP

Figure 7.1 Preparation of Data Files for FET

The format of ANLIN.DAT is local to WRITANL, though it has the same patch style
layout as the other adaption files. It incorporates patches defining the whole domain
of the stress model, material properties, fixed boundaries and pressure loaded

boundaries.
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7.3.3 G_ADAPT Modifications

The stress module is called during the adaption cycle before the adaptive solver is

used. The only modification to the main adaption coding is this call.

Between the main adaption coding and the stress code is an interface which takes the
original stress input file 0.ANL produced by WRITANL and the data file FE.INP and
writes out the final stress input file 1.ANL, including the pressure values in the
specification of the boundary conditions taken from PHOENICS at the point in the

solution cycle where the adaption module is called.

The stress patch is tied to an individual adaption domain. The modified grid is passed
back to PHOENICS and through the rest of the adaption coding through the domain.

The stress module is invisible to the rest of the code.

Figure 7.2 Interaction between G_ADAPT and FET
7.3.4 FET Operation

FET reads in the data files 1.INF, 1.ANL, and SCRIPT, and outputs the result files
1.STR, 1.DIS and 1.NEU.

SCRIPT contains data controlling the operation of the solver, including the length of
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the time step.

1.STR is a restart file, which holds the modified nodal positions, strains and stresses,
1.DIS holds the nodal displacement, and 1.NEU is a neutral file used by the package
FEMVIEW to visualise the results produced by the stress code.

=\

1.ANL —_— — 1.DIS

SCRIPT / \ 1.NEU

Figure 7.3 Input and Output Files for FET

7.4 Example Case

A simple case of a flexible block structure in an air flow has been run to demonstrate

the technique.

—> |/
——> ||

[LPPr

Figure 7.4 Example stress case
The block has a fixed base and deflects under the pressure load from the flow.
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7.4.1 Boundary conditions

20m

RUBBER

2.5m BLOCK

NO SLIP

—12m —

' |///////f////7//f/////

0.1m

50m

Figure 7.5 Grid Dimensions

There is a constant inlet velocity of 20 m/s, and the fluid is assumed to be air at 300K
and 1 atmosphere pressure. The simulation is run over twenty time steps of five
seconds each. The flow solver is run for fifty outer iterations every time step. A no
slip boundary condition is placed after the obstruction, helping to create a large

recirculation behind it.

The block has the material properties of rubber. It has a Young’s modulus of 4x10°
Nm?, a Poisson’s ratio of 0.475, and a density of 1130 kgm™. Rubber was chosen
because its properties give enough flexibility to the block to give a large deflection

in a low speed flow without collapsing. It measures 0.1x2.5m.

A large domain is used to allow the full eddy to develop after the obstruction, and to

prevent the free boundary at the top of the domain from influencing the results.
The main grid is rigged to provide a fine, regular mesh directly over and around the

obstruction. Away from the obstruction the grid becomes increasingly coarse to

minimise the computational resources required for the run.
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Figure 7.17 Displacement of leading corner of obstruction against time

The grid becomes increasingly skewed at the trailing edge as time passed but no lines
overlap. The adaptive grid solver does move points to fit the grid better to the
obstruction, but the well documented behaviour of the Laplace term in attracting
points to convex surfaces and away from concave surfaces here helps to reduce the

concentration of cells on the leading edge of the obstruction.

The cells above the obstruction become skewed though they remain aligned with the

local flow.

The behaviour of the grid could possibly be improved by using an artificial
geometrical or stress based variable instead of or in addition to that used for adaption.
The artificial variable could involve attraction to the boundary of the obstruction, or
something based on giving a slope that will push cells in the direction of the major

movement of the obstruction.
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7.5 Closure

The aim of the work presented in this chapter is to demonstrate that the adaptive grid
technique can be used for fluid structure interaction problems, not necessarily to prove
that the method is superior to other methods, though the ability to use a powerful fluid
dynamics code such as PHOENICS is an advantage.

The use of the adaptive grid technique could also be extended to other problems
requiring moving grids, including structures or boundaries with prescribed movement,

such as vibrating aerofoils (Allen 1995), or pulsing blood vessels and other organs (Xu

et al. 1993).

The work is currently restricted to 2D problems with only one structure being
deformed. As PHOENICS, FET and the adaptive grid technique are all 3D capable
codes and there is no reason why the work cannot be stretched to 3D with multiple
structures. It would also be straightforward to allow other forms of loading such as
temperature or fixed loads to be added into the simulation of the deformation of the
structure, as these modes are already allowed for in FET. The codes are on the whole
kept very separate. Greater integration would involve removing the input and output
files used by FET and incorporating the information passed to and from it into routine

calls PHOENICS and adaption data files.
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CHAPTER 8: NEURAL NETS

8.1 Introduction

The aim of this chapter is to briefly introduce a new technique for grid adaption. This
technique involves the use of a self organising neural net, or SONN. This chapter is
based on work published in Patel, Bennett, Zhao and Knight (1995) and Zhao et al
(1996).

Neural nets commonly consist of one or more layers of artificial neurones or
processing elements (PE’s) that can be trained to resolve certain types of problems by
being given answers to known problems. In the training phase the links or synapses
between different PE’s are weighted to affect how they respond to given stimulus.
These weights determine if a given stimulus will cause a PE to activate and represent

the knowledge held in the net.

Neural nets have been a popular tool for some time and a range of different neural net
techniques have been used in areas such as pattern recognition and financial
modelling. A few papers have begun to appear dealing with the use of neural nets for
grid generation (Hartle 1995, Khan et al 1993), but the level of success has been low.
These papers revolve around the use of a back propagation network to recognise and

fit grids to a range of known geometries.

A big advantage in the use of neural nets is that it is possible to state problems with
a limited understanding of the underlying mathematics. The learning process, involved
in working with known answers, allows the neural net to develop and refine an
internal model to allow it to then be used against similar but unsolved problems. This
capability may be of great importance with adaptive grids in that the user may be able

to deal with simple terms to control the grid movement without having to be an

expert.

The SONN is a new technique that has been developed to deal with grid adaption in
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The PE’s in each group share a common system energy, known as the information
potential (IP). The self organisation process involves the evening out of IP over the
network by allowing information to flow between neighbouring groups with different
information levels. The IP is defined as the density of the information in a group of

PE’s, and is a combination of state variables and inputs.

The IP is expressed as the product of a state control function F and an input control

function F,.

IP=F,F, (8.1)

For each group the input control function F is

L
F=—Y Q (8.2)
N]=1

Where the neural group has N PE’s and Q; is the value of the input function on each

PE.

In one dimension the state control function Fj is

FIP- 1X,-X, | 83

Q 4 Q2

N A
N N

X 1 X 2

Figure 8.2 One Dimensional Neuron Group

For the one dimensional case the IP is analogous to the equidistribution equation (1.1),
with the weight function w related to the input control function F), and the grid cell

clearance AS effectively the same as the state control function Fj.
(8.4)

wAx =constant
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In two dimensions the state control function is linked to the area of the cell. Other

grid properties, such as orthogonality, aspect ratio, or skewness, could be used instead.

NlIx X
ﬁ%zﬁ;‘

j=1

(8.5)

N Xl
+
YN Yl

J Ti

Figure 8.3 State control function Fj

The neural net is stable if the flow of information is small or non-existent. If there is
a disturbance in one part of the net its effect is propagated and dissipated by the

adjustment of state variables until a new equilibrium is reached.

The equilibrium of the system of N neuron groups is defined as

N-1
E= E (p,,, _IP:')2 (8.6)
i=1

The learning process finishes when the equilibrium is less than some defined tolerance

or when a given number of self organising steps or epochs have been exceeded.

The flow of IP, the ’learning process’ takes place over a series of epochs and is

controlled by the modification of the state variables of the PE’s. The state variable §

at iteration ¢ is determined from

S=S_ +AS, 8.7)

Where
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oE
AS =-N——| +aAS (8.8
t T‘ aS t-1 )

t

E is the equilibrium, defined in equation 8.6, N is the learning rate, and o is the
momentum term. Both the learning rate and the momentum term are small and

positive. Their value is controlled by the user.

No known solutions or expected output data are used to train the SONN. It organises
itself based on input data alone and the user is only interested in its final arrangement.
There is no separate processing phase. The only part of the operation of the SONN

that is of interest at this time is the training phase.

8.3 Implementation

The SONN is controlled by the user file CONFIG.SNN. It takes data from the file
MESH.DAT and outputs a modified version of MESH.DAT call NEW_MESH.DAT.

Cor (o —fimmer ]

Figure 8.4 SONN call structure

CONFIG.SNN controls the learning rate, the momentum term, convergence criteria

and a maximum size ratio between the smallest and largest cells.

MESH.DAT contains data on the location and degrees of freedom for all grid nodes,
the definition of the grid cells, and the initial value of the input function at each node.
NEW_MESH.DAT has the same format as MESH.DAT but does not contain input

function values. The format of these two files is unstructured.

8.4 Neural Net Adaption inside PHOENICS

As a way of demonstrating the use of neural nets adaption with a flow solver the
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SONN was used to adapt a grid taken from a problem for which PHOENICS

calculated results are available.

In the current work the SONN is essentially a static adaption technique. The reasons
for this are that the SONN is a third party code (Zhao et al. 1996) written in C++,
whilst PHOENICS and the adaption routines are written in FORTRAN, and that the
data structures used by the SONN, being inherently unstructured, are very different
from PHOENICS. Given time both problems could be resolved, with the SONN
software either rewritten or linked directly to the FORTRAN code, though the
implementation would not be platform independent. There is no reason why it could

not become dynamic in future.

To give the illusion of dynamic adaption the SONN is run in batch mode with the
PHOENICS solver EARTH.

The SONN alone works on information input onto each PE, or grid node. To allow
its use to be stretched to practical problems coupled with a flow solver it is necessary
to recover useful data on the grid nodes to drive the grid movement. This is the same
problem as for the LPE adaption method discussed in this thesis, and the same
techniques have been used to solve it. For this reason a preprocessor, NEUPHI, was
written to prepare data for the SONN which interpolates cell centred PHOENICS data
onto the grid nodes and then applies a weight function. It is worth noting that the raw
interpolated data alone would only be useful for a minority of flow problems. Though
arguably different neural net techniques could be used to determine the best treatment

of the solution data for adaption, at this stage the choice and treatment of the weight

function is in the hands of the user.

NEUPHI generates the SONN input file MESH.DAT using the input file NEU.IN. As

well as generating the input function it also determines the degrees of freedom of all

grid nodes and the nodes which form each grid cell.

A post processor, NEUXYZ, was written to recover a new PHOENICS grid from data

193



output from the SONN in the file NEW_MESH.DAT. EARTH always picks up the
grid file XYZ at the start of each run. NEUXYZ renames the old XYZ file to give a
history of the adaption, then writes a new file XYZ.

The final structure of the adaption routine is

NEU. IN >

Y
CONF 1G . SNN —)
Y

NEW_MESH DAT

Figure 8.5 Structure of SONN adaption
8.5 Example - X-Y Convection in a Skewed Flow

The choice of example case is limited by the current inability of the neural net to deal
with awkward geometry, there being no method to maintain geometry except for

fixing the movement of specific grid nodes in one or more directions.

The example case chosen here is a simple diffusion problem solved on a uniform
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mesh with an angled flow and different concentrations of a contaminant C which is
used to drive the adaption. Four different variations of the case are run, three with the

flow entering the domain at different angles and one with the addition of a wall as a

boundary condition.

For the purposes of comparison the same problem was also adapted using the LPE

method.

8.5.1 Boundary Conditions

The problems are solved over a 30x30 cell square uniform grid of unit dimensions.
The problems are set up with four inlets placed at regular intervals over the west and
south faces of the domain and outlets on the north and east faces. The inlet velocity
is uniform over all the inlets. The value of the contaminant C at the inlets alternates

between O and 1 and is shown in figure 8.6.

C=0 s e

C=0 | =1
Figure 8.6 Boundary conditions

The problems were run for 500 sweeps.

The four cases are run with the inlet flow at 11°, 22° and 45°. A fourth case is also
run with a wall instead of an outlet on the north face and the inlet flow at 45°, forcing
the flow to bend over. These changes to the inlet conditions and the outlet were the

only differences between the four cases.

8.5.2 Adaption Parameters
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All four cases were treated with the same adaption parameters

The whole problem domain was adapted by both methods, with points on all

boundaries allowed to slide.

The SONN was run with 200 epochs, a learning rate of 0.1 and a momentum term of
0.8. The SONN moved the grid using the gradient of the contaminant C as the input

control function. The gradient was formed by taking the sums of the gradients along

the different grid lines smoothed using an x* power law.

For the LPE method the parameters were

First call Last call Frequency Internal Relaxation
(sweep number) | (sweep number) (sweeps) Iterations
10 100 10 1 1.0
LPE Equation Variable Weight Function
A Ap Ag Contaminant 1+¢,+0.01k
: 0 5 C Exponential smoothing
8.5.3 Results

Due to the batch mode operation of the SONN it is not possible to directly compare
the time spent in adaption by the different techniques, but the SONN is not

prohibitively expensive.

More user control was required than was first expected to deal with the weight
function used to adapt the grid with the SONN. Together with the additional control
needed for geometrical control the initial hopes of the SONN being very easy to use

may not be justified, though it has not been developed far enough at the current time.
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8.6 Closure

The greater experience gained with the use of the LPE adaption algorithm enables a
better final grid to be produced, but the SONN has potential. With suitable
modifications to the state control functions any chosen grid properties could be

improved.

A current limitation of the SONN is that there are no terms controlling grid
orthogonality. Though it 1s very hard for grid cross over to occur it is quite possible
that the grid becomes so skewed that the underlying flow code, in this case

PHOENICS, will diverge.

A useful part of the work on the SONN has been the recurrence of problems thrown
up by the LPE adaption method with the response to solution phenomena. Oscillations,
exaggerated response to minor perturbations and lack of response can be countered

with the careful use of weight function smoothing, as for the LPE method.

Between each epoch interpolation of the weight function occurs and over many epochs
important flow perturbations can be smoothed out and lessen the impact of adaption.
The maximum number of epochs carried out each time the SONN is called must be

carefully chosen.

Development of a neural net based grid adaption method is continuing at the

University of Greenwich as part of a new PhD program (Hu 1998).
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CHAPTER 9: CONCLUSIONS AND FUTURE WORK

9.1 General Conclusions

The aim of producing a general, code independent, three dimensional dynamic grid
adaption algorithm has been successful. Validation tests presented in chapters five and
six show that the LPE technique can improve the presentation and accuracy of a range
of flow problems and compares well with other adaptive techniques in literature.
Chapter seven shows how the technique can be used as a general tool for controlling

all kinds of grid movement.

The work has thrown up a range of points that relate to all adaptive grid methods, as

has been found with the work on neural net grid adaption using the SONN method.

* Some knowledge of how the adaptive algorithm works is necessary to get
most out of it. Though a lot of work has gone into making the algorithm safe,
including monitoring the solution residuals to check for divergence, the time
spent choosing and testing the right adaption parameters may make adaption

uneconomic.

» There must be some property of the flow that provides a strong gradient or

easily identifiable phenomena to drive grid adaption.

e Grid adaption is not guaranteed to move phenomena that occur out of place

in a coarse grid to their correct positions.

» The initial resolution of the grid covering the problem domain is critical. It
must be fine enough to pick up the phenomena that the adaptive algorithm is

designed to enhance. In contrast too fine a grid and adaption will not make any

difference.

e Tolerance to grid quality in the underlying CFD code is crucial. It is quite
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possible to get grids that appear reasonable but cause the code to fail.

» The grid movement needed to improve the solution accuracy may be less
than anticipated (e.g. the Laval nozzle case 5.3.3). Excessive movement may
outweigh the benefits of grid alignment and density on accuracy because of the
associated loss of grid quality. Because of this the visual impact on the grid
of adaption, which is a very useful and important side effect, may lead to

unrealistic hopes about the quality of the final results.

» The grid at each stage of adaption can only ever be as good as the data
available at the time when adaption takes place. It is not possible to get the
best grid for the final solution at the first pass of the adaptive grid solver.
Indeed, if a grid moves too fast to a temporary solution that has a solution
feature in the wrong position it may never be possible to recover its correct
position as the grid in that area may be too coarse. As several passes of the
adaptive solver should be used in the running of a particular problem so that
the grid evolves with the solution, the main aim of the adaption algorithm
should be to make the grid a little better at each call, not necessarily the best

possible.

The ideal adaption algorithm would involve very small movements at every iteration
of the flow solver after a certain level of convergence has already been achieved. In
practice this must be balanced against the requirements of time and disruption to the

flow solver due to solution interpolation and the need to recompute geometrical data.

9.1.1 Additional Tools

An important part of the work has been the development of a range of tools to model
and maintain grid geometry and to manipulate the behaviour of the LPE algorithm.

These tools are modular and are not tied to the LPE algorithm in particular.

Curve and surface modelling using cubic splines and bicubic patches and breaking at
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important geometrical features works well and are useful where complex geometry
must be maintained, as in the 10 degree supersonic wedge intake case (5.3.5), or
where important features of the grid need to be maintained, such as the boundary layer

cells in the RAE2822 aerofoil case (5.3.1).

There are weaknesses in the technique. The grid overlapping algorithm is not perfect
but will behave on a reasonable grid with reasonable movement. Shepard’s
interpolation to transfer data between grids is safe, easy to implement and can be fast

but may not be particularly accurate.

9.1.2 The Weight Function

A strength of the current work is the treatment of the weight function which drives
grid point movement in the adaption algorithm. To stretch the technique from heat
conduction problems and convective flow to transonic and supersonic cases with
strong shock waves demands a range of tools to manipulate the variables used to
generate the weight function and to manipulate the function itself, the most important

being power law smoothing.

The aim of the weight function is to indicate where there should be a higher
concentration of grid cells. Though its calculation depends upon some solution
behaviour it need not be tied too closely to that behaviour to generate the best possible
grid. Properties such as smoothness and orthogonality may be lost if the grid is moved
exactly to the variation of some solution data. With this in mind the novel technique
of weight function smoothing using power laws to influence the range of effect of
phenomena and grid smoothness has been developed. The technique is fast and
instantly produces a smoothly varying function to adapt the grid to, avoiding regions
adjacent to high weight values with a low grid density. The closest techniques
presented in literature may be the monitor surface used by Eiseman (1987) and

adaption in parametric space discussed in section 1.2.1.5.

9.2 Future Work
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The main aim of this thesis is to show that the LPE algorithm, with a range of extra
tools, can be used to improve the performance of CFD codes over a wide range of
CFD problems. This aim has been achieved, but there is always room for
improvement. A lot of work has gone into making the technique safe and usable, but

this is still an area where more work is needed.

9.2.1 Transient Cases

The only transient case presented in the current work is the example case used to
demonstrate the coupling of stress and fluid flow (7.4). Transient cases are currently
wholly dependent on the underlying flow code, in this case PHOENICS, and the
response of the code to grid movement has not always been predictable. More work

is needed to show that the LPE algorithm is truly useful for transient flow problems.

There may also be problems dealing with a very rapidly varying solution where high
gradient regions may move to areas of the grid already coarsened in previous time
steps which may now be unable to accurately resolve the solution enough to attract
grid nodes back. This will limit the maximum timestep available for the problem. This
is an area where mesh refinement may work better, as the underlying mesh will
always be the same. There are some problems, such as the modelling of detonation
waves, where mesh movement schemes alone may be unable to achieve the length
scales needed to accurately resolve the problem and some sort of grid refinement

scheme would have to be used as well, or instead of grid redistribution.

9.2.2 Three Dimensional Cases

The LPE algorithm is fully three dimensional, and its use for three dimensional
problems has been demonstrated in chapter 6. However, the problems in chapter 6
only show that it works. No validation has been presented since it is much more
difficult to compare the adapted and non adapted solutions for three dimensional
problems than for two dimensional problems. More work is needed to stretch the

limits of the algorithms performance and prove its value. Suitable three dimensional
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cases are also needed for validation.

9.2.3 New Solvers

The LPE method as implemented here uses the simplest and most reliable of solvers,
a relaxed point by point iteration scheme. It would however be possible to use some
form of matrix algorithm such as the TDMA scheme to increase the speed of
operation and convergence of the adapted grid. Such schemes may help to improve
the coupling of the response of grid points at different extremes of the adaptive
domain, and in problems such as the coupling of stress and fluid flow (7.4) will allow

the grid to sort itself out quickly.

Such schemes are beyond the scope of the thesis as they cannot show that the
algorithm works any more than the current scheme does, but maybe more important
in developing the usefulness of the algorithm as a genuine CFD tool. An example of
where they may be useful is in improving the computation time of three dimensional

problems.

9.2.4 Linking with Other Codes

The LPE algorithm presented in this thesis is designed to be code independent.
Though it has been developed as an attachment to PHOENICS, only a handful of
routines depend directly upon it. It would be straightforward to transfer the algorithm
to any other flow code using a structured grid or even an unstructured code using

rectangular or cuboid elements.

It may also be possible to make the algorithm unstructured though this would mean
that a different scheme would have to be used to discretise the LPE equation, and the
powerful weight smoothing techniques used in structured grids would have to be
heavily modified or discarded. A possible way of using function based weight
smoothing would be to generate some kind of smooth weight surface for two

dimensional problems or hypercube for three.
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9.2.5 Refinement and Multiblock Implementation

Hybrid schemes coupling refinement and movement are very powerful. The problem
lies in finding a fluid code that is capable of dealing with hybrid grids. One option
would be to use the multiblock version of PHOENICS.

Multiblock facilities in PHOENICS have been available from version 2.1 onwards.
Adaption within individual blocks in the grid is straightforward and requires no
modification to the current implementation of the LPE method as it is based on
individual domains within the problem area. The extension to the whole problem
domain and in particular the crossover region between coarse and embedded fine
meshes is not straightforward. Alternative options for dealing with embedded fine

grids include:

* Moving all points over the coarsest grid covering the whole domain,
including the region covered by fine grid. This is possible as there will be a
direct correspondence between points in the fine mesh and the coarse. Points
in the parts of the coarse grid covered by the fine grid would have a function
value taken from the fine grid. After the adaption of the coarse grid the
unmoved grid points in the fine grid could either be modified by interpolation

or by adaption with the previously moved points fixed.

 defining a new method to deal with boundary regions between separate

adaption domains. Fine regions could be blocked out of coarse grids.

Use of the knowledge gained through manipulation of the weight function could be
used also to determine regions in an initial single domain that could benefit from
refinement based on some initial solution. As dynamic allocation of memory is very
limited in FORTRAN based PHOENICS it may only be possible to implement this

method as a static option. It would only be possible to modify the grid between runs.

Unfortunately it was not possible to have full access to the multiblock version of
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PHOENICS during the course of this thesis.

9.2.6 Automation of Parameter Choice

In the current method the user controls not only the choice of the adapted regions but
also up to 15 adaption parameters. Knowledge of the technique is needed to get the
most out of it. Any techniques that can be used to reduce this number of parameters

will greatly increase the usability of the algorithm.

It would be possible to automatically break the problem domain down into areas that
need adaption by using some measure of solution error or the first and second
derivatives of a range of solution variables. This would be similar to the measures
used to flag areas to be refined in grid refinement techniques (1.4.2). Such data could
also be used to determine which variable or variables are used to drive grid adaption

and their treatment.

Such a technique would be very powerful in that it would make the use of adaption
safer and lessen the need for the user to be an expert in adaptive grids. It may not be
easy to implement, though the pattern matching abilities of some kinds of neural nets

may be a good starting point.
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APPENDIX A: THE LPE EQUATION IN ONE AND THREE DIMENSIONS

A.1 Introduction

The purpose of this appendix is to expand the discretisation of the LPE equation from
two dimensions, as presented in chapter 2, into one and three dimensions. This
appendix also shows part of the derivation of the metric tensors that define the

transformation from physical to curvilinear space.

A.2 Calculation of Metric Tensors

The contravariant metric tensors are defined as the dot products of the contravariant

base vectors V&, _, ;.

gU=V§i'V§j (A.1)

The contravariant base vector VE is defined as being the normal to the surface where

€ is constant.

The contravariant base vectors can be calculated using the relationship

\% .=__1_r Xr, ij,k cyclic (A.2)

] \/g— —g} .

where ry; is the gradient of the line &, = constant.

dx . dy ., 0z

= k A3
.,_.gi agi.l._*- a&il-*- a&l_ ( )

Using the vector identity

AxB)-(CxD)=(A-OB-D)-A-D)(B-O (A4)

The metric tensors g’ are (noting g7 = g’).
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The jacobian g cancels out in the full equations.

A full derivation of the metric tensors is given in Thompson et al. (1985).

The six vector dot products are evaluated using central difference formula as follows

p
. Ox ay az . 0x ay az
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Using the terminology E,W for i+1,i-1; N,S for j+1,j-1; and H,L for k+1,k-1 gives

r 1, = (O3 O -2 (A7)

r 1, =30 O3 + 2y 2] (A18)

L'L = —}((XH ~x)*+ Oy -yt + 2y - zL)Z) (A.19)
I L = %((XE =X )ty ~X5) + g =Yy = Vo) + (2~ 22y - 29) (A.20)
LT = %((xE =Xy = %) + O =Y 0y =) + (2 =242 - 2)) (A.21)
rr = 7::((x,v ~x) (X, =X ) + Oy = Y)Oy =¥ + 2y - 2925 - 2,)) (A.22)

The tensors as used in the discretisation of the main equations then become

g =@, r) )=, 1) (A.23)

a.5



8=, 1) )
8=l ) ) )
8= T r) - r) @ )

87 ) ) r ) )

A.3 Derivation of Laplace Term

The Laplace system in three dimensions is (equation 2.15)

3 3
D3 gre; =0

i=1j=1

(A.24)

(A.25)

(A.26)

(A.27)

(A.28)

(A.29)

Discretised, using central difference formula (equations 2.1, 2.2 and 2.3), this becomes

gl(rp-2r,+r,)+8%(ry-2r,+r) +g>(ry-2r,+r))

13

g" 3
+T[(”EN"'WN)“(rES‘rws)]+—2'[(rE _rEL)_(rWH_rWL)]

g%
+T[(r1v ~Fgy) = (Fy =T )]:0

Separating the terms in equation A.30 leads to the algebraic equation

L L Ly varr +air.+rapr, +at L
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The source term s* is

L L
L L L L L

(A.32)
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a;=a5+a$+a;+asL+aé+af (A.33)
ag=ay=g" (A.34)
alf; =aSL =g» (A.35)
T (A.37)
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2
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2
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23
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A.4 Derivation of Poisson Term

The Poisson equation in three dimensions is (equation 2.27)

3 3 3
Z E gur§i§j+ E g M PkrgkzO (A43)
i=1j=1 k=1

The first term in the equation is identical to the Laplace equation and breaks down in

the same way.

The finite difference approximation to the second term of the Poisson equation is

3
r.—-r Y, —r r,—-r
Z gkkPkr{;k - gll ( E W) P1 +822 ( N S) P2+g33 ( H L) P3 (A.44)
& > 5 >

Separating the terms in equations A.30 and A .44 leads to the algebraic equation

a:rP:abfrE+av5rw+a15r,v+aspr5+a;57’H+aLPrL+sP (A45)
where
af=at (A.46)
re=7r ry=t r,-r
srestagnp, W) — w) , gap, 0 1) — ) gmp, Un s L (A.47)
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A.5 Derivation of Equidistribution Term

The equidistribution equation as used in the LPE system is

W éi + xgix§i§i +y§iy§i§i * Zglzg.él — 0 (A'48)
Wi

2

3
E gi re
=1 X 4tz

The discretisation of the equidistribution equation is simplified by first seeing that the
denominator of the second term in the brackets is identical to vector dot products used

to evaluate the metric tensors, which is calculated elsewhere and can be substituted

in A.48.

_.2 2 2
Lf, 'IE' =x5i +y51_ +ZE,' (A.49)
Discretised, equation A.48 gives
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Where r is the variable being solved for.
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Separating the terms in equation A.50 leads to the algebraic equation
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A.6 The LPE Equation

The discretised LPE equation is represented by the combination of the algebriac
systems given for each of the three terms in equations A.31, A.45 and A.51

LPE  _ LPE LPE LPE LPE LPE LPE LPE A.57
ap Frp=Qg Tp+ay Fyt+ay ry+ag Fe+tQy rytap 1 +S ( )

Where, with the terms modified by a user controlled weight A¥, A, AF for the Laplace,

Poisson and Equidistribution terms respectively,

LPE LPE LPE LPE LPE LPE LPE

arF=aF <A+ M) at+ AEaf (A.59)
ayF =ag"F = (M + ) ay +AEaf (A.60)
ar=aTF (M W) ak +AEaf (A.61)

sEPE<AEs Ly APs P+ AESE (A.62)

A.7 The LPE Equation in One Dimension

For the one dimensional system &, the metric tensor disappears as here is a one to one

correspondence between physical and curvilinear space.

All other components are set or forced to zero. There are no significant dot products,

and the metric tensor goes to 1, as the jacobian g cancels out.

The full form of the LPE equation in one dimension is

LPE _ _ LPE LPE LPE
ap Fp=Qg TIp+Qy Fy+s (A.63)

where
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ag

S

where the Laplace terms are

The Poisson terms are
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APPENDIX B: SOFTWARE STRUCTURE

B.1 Introduction

This Appendix is divided up into sections covering adaption files, the adaption
initialisation module S_ADAPT, the adaption calculation module G_ADAPT, and the
PHOENICS file structure which influences their development. The following adaption

components are all discussed in relation to their implementation within PHOENICS.

B.2 PHOENICS Components

The structure of PHOENICS is shown in figure B.1.
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Figure B.1 Main Programs and Data Files within Phoenics



The main programs of PHOENICS include:-

SATELLITE which is the pre processor that interprets the user controlled file
Q1 and sets up the data files EARDAT and XYZ which define the problem
within EARTH.

EARTH is the solution processor. It contains a range of iterative solvers to
resolve the problem defined in the files EARDAT and XYZ and produces the
results files RESULT and PHI

PHOTON is an interactive post processor which uses the data within PHI and

XYZ to produce a graphical representation of the solution.

AUTOPLOT is an interactive post processor which uses data from the

PHOENICS solution as well as tables to produce and compare line plots.

The main files designed to alow user control and pass information between the

different programs of PHOENICS include:-

Q1 contains the definition of the case to be solved. The problem is defined
using the PHOENICS input language PIL. It is possible to define the grid
within the Q1 file but an outside grid may be read in instead by specifying a
grid file within Q1 (<GRID>).

XYZ contains the location of the grid points that define the problem in a
defined format. This file is only used for BFC problems. In other cases the
grid data are passed to EARTH with EARDAT. EARTH only reads the file

named XYZ but the same file with different names can be produced.

EARDAT contains all the data that define the problem in a form readable by
the processor EARTH.
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PHI is a result file containing the values within the grid cells of all variables
solved for. Its two main uses are firstly to allow the solution to be visualised
using the auxiliary PHOENICS programs PHOTON and AUTOPLOT and
secondly to allow the problem to be restarted from previous results.

Simulations run in EARTH can also be restarted using a PHI file.

RESULT is a line printer type results file that contains a range of information
including all initial settings, selected cell values of variables, information on

convergence, timing and simple ascii plots.

B.3 Adaption Files

A range of adaption data files exist alongside the two adaption modules S_ADAPT
and G_ADAPT. These files are used to control the behaviour of the algorithm, pass

data between the two modules, and provide the user with information on its

performance.

Summaries of the file interaction within the modified SATELLITE and EARTH are

given in figures B.2 and B.3 respectively.

DATA.ADP
PATCHADP é CONTROLADP
- GRID.ADP
S_ADAPT

—\

SATELUTE

<GRID> /

\\\: —

Figure B.2 Main Adaption Files within PHOENICS Satellite
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DATA.ADP
GRIDn.ADP
CONTROL.ADP I
GRID.ADP >: l
ADAPTADP —_
————
G_ADAPT
Q1 S—

EARTH

EARDAT

T PHI

O N—
N\

RESULT

Figure B.3 Main Adaption Files within PHOENICS Earth

The principal user input files are:-

PATCH.ADP contains the physical definition of the adaption regions,

surfaces, curves and blanks in the form of named patches.

ADAPT.ADP contains the weights for the LPE equation, the choice of the

weight function and the frequency of adaption within the defined adaption

regions.

The files transferring data between the two adaption modules are:-

b.4



DATA.ADP contains and links the adaption regions, surfaces, curves and
blanks and all the data required to fit those surfaces and curves for use in the

adaption ground.

CONTROL.ADP contains the control functions required by a poisson grid

generator to recreate the grids covered by the adaption regions.

GRIDn.ADP contains the latest grids covered by the adaption regions. A new,
numbered, grid file is dumped at each call from PHOENICS EARTH to the
adaption module G_ADAPT. The grid data used for adaption are always read
from the latest grid file GRIDn.ADP. The first grid file is GRID.ADP.

B.4 S_ADAPT

A single argument in the Q1 file allows access to S_ADAPT. the Q1 file is also used
to pass an argument through to EARTH to allow access to G_ADAPT in EARDAT.

The only other link within S_ADAPT to PHOENICS is to the grid data, which is
loaded into local arrays within S_ADAPT for processing each adaption region. Though
this duplicates information held within the adaptive satellite it allows simpler and

faster access within the adaptive routines and reduces dependence on PHOENICS.

The Q1 file can also be used to hold the adaption input files. In PHOENICS version
2.0 and later the Q1 file is used to hold macro files to display the results of the
problem within the visualiser PHOTON by including the text as comments in a section
marked at its beginning and end by key words. Any text in the Q1 file that begins in
the third column or later is treated as a comment. In the same manner the adaption
input‘files PATCH.ADP and ADAPT.ADP can be included in the Q1 file. During the
execution of SATELLITE the Q1 file is read and éll of its commands are held in a
stack within memory. Though the Q1 file may remain open it can be accessed by the
adaptive routines without disrupting SATELLITE. Within S_ADAPT it is scanned for

a comment beginning with an exclamation mark followed by the key word PATCH.
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The adaption set up information follows. If the keyword is not found then the external

file PATCH.ADP will be opened instead.
B.4.1 Tasks in S_ADAPT

The main tasks carried out within the adaption code, S_ADAPT, lying within the

modified satellite are:-

* Input of major physical features of adaption, though not equation choice and
constants as these may be changed more frequently. The physical features are
the regions within the grid that will be adapted, curves and surfaces within
those regions that must be maintained, and blocks within which the grid is not
allowed to move to account for complex geometry, described here as ’blanks’.
All features are named, and the first three letters of each name define the

feature.

» Checking of regions defined within the adaption input file PATCH.ADP
against each other and the main boundaries of the problem for overlaps.
Overlaps with other regions are flagged but otherwise ignored. Overlaps with

main boundaries are flagged and the regions deleted.

* Linking of surfaces, curves, and blanks to specific regions and checking of
overlaps with other patches of the same type. Note that patches which extend

outside regions are ignored.

« Division of curves and surfaces into sub curves and sub surfaces around
important geometrical features (see section 3.2.3) using user defined criteria.
These criteria are more fully explained in the previous chapter but include the
options of whether to cut the surfaces or curves atA discontinuities and/or

turning points and at what tolerances of discontinuities or turning points they

are cut.
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* Division of sub curves and sub surfaces into patches, which are given
implicitly by the cell dimensions which they cover, and the modelling of those
patches by the use of cubic splines in the case of curves and bicubic patches
in the case of surfaces to allow their recovery after the grid points which

initially define them are allowed to move (see sections 3.2.1.1 and 3.2.2.1)

* Output of the adaption data file DATA.ADP.

* Calculation of the control functions required to generate the original grid
using a Poisson grid generator to enable the Poisson term in the LPE equation

to be used. This information is output to the file CONTROL.ADP.

* Output to the file GRID.ADP of the parts of the grid which define the
adaptive regions. This is done to firstly reduce the dependence of the adaption
routines on the underlying code, PHOENICS, so that the main adaption routine
is always reading the grid from independent files then putting the results into
PHOENICS, and secondly to keep a record of the grids in the regions after
each time that they are called. Having the grid files in a format private to the

adaption routines allows fast and easy access to the grid coordinates.

* Output of the adaption information files ADAPT.USE and SATLOG.ADP.

 Output of the adaption control file PLOT.ADP.

B.S G_ADAPT

The role of the adaption module G_ADAPT is to modify selected adaption regions in
the main grid to improve the accuracy of the solution by using the solution at

controlled points during the run of the solver.

G_ADAPT is split into three parts, a preliminary phase, involving the processing of

adaption input files, a processing phase, in which the main algorithm is run, and a
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bookkeeping phase, where extra adaption files are deleted and the total movement of

the grid calculated.

The adaption routines are first activated at sweep number two to run the preliminary
phase. Sweep two is chosen instead of sweep one because if the case is being restarted
from results files dumped by a previous run then the default first sweep number is
two. Other activations are controlled using parameters in the adaption input file
ADAPT.ADP. The bookkeeping phase is activated when the last sweep of PHOENICS

takes place.

The adaption module runs over each defined adaption region in turn. Each region is
treated as an individual problem with no link to the remainder of the regions. This
allows the storage requirements of the adaption module to be limited to the size of the
largest defined region rather than the whole simulation. Many internal iterations of the
adaptive algorithm are possible for each region and can be used to increase the
movement of the grid at each call to the adaptive routines. This also allows the use
of relaxation to improve the performance of the solver. A check of the percentage
movement at each iteration allows movement to be switched off for that region if the
grid converges or begins to diverge. The number of iterations is limited by the need
to interpolate the variable needed to move the grid between iterations (see 3.3). The
interpolation procedure involves some smoothing of the variable so at each call the

impact of the major flow features which drive the grid will be dissipated.

Towards the aim of making the adaption module independent of PHOENICS all
working is done in memory independent of PHOENICS.

One call is made to the adaptive code at the end of each sweep, whether for the
preparatory phase, the main phase or the bookkeeping phase. This is done to keep the

adaptive code as separate as possible from PHOENICS without seriously affecting its

performance.

b.8



B.5.1 Communication between Adaption Module and EARTH

The majority of the data on the problem within EARTH is held in a single, large one
dimensional real array called the F array. A number of functions and common blocks
are provided within EARTH to access the required parts of the array. The adaption
module accesses the F array using functions written as part of the module, though

based on known PHOENICS functions.

Communication is deliberately limited to enable the adaption module to be as
independent as possible from PHOENICS so that it may easily be bolted onto an

alternative structured CFD code.

Communication between G_ADAPT and EARTH occurs through the argument list
passed to it when called from EARTH, the reading of the adaption variable from the
F array, the writing of sections of modified grid to the F array, the writing of
information on adaption to prepared locations in the F array for the purposes its
graphical display, and the access to other variables and the grid stored in the F array
for the purposes of interpolation between the grids pre and post adaption. The grid

sections are read into the adaption module from the adaption grid file GRIDn.ADP.

The arguments passed to the adaption module when it is called incorporate the sweep
and step number and the last sweep and step number, the limits of the problem
domain and the current iz slab. The limits of the domain and the iz slab number are

used in the access of the F array.

The adaption module also uses the PHOENICS routines BGEOM, DUMP and
DUMPXYZ. BGEOM is used internally by EARTH to calculate geometric properties
for the grid, such as volume, and by the adaption module to reset those properties
following grid movement. DUMP and DUMPXYZ are used to output PHOENICS data
files PHI and XYZ respectively.
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B.5.2 Tasks in G_ADAPT

This section covers the tasks carried out within the adaption module G_ADAPT within
PHOENICS EARTH. The tasks are between the preliminary phase, the main phase
and the bookkeeping, or final phase, and into the main adaption algorithm and a
number of secondary functions that mainly involve communication between the

module and PHOENICS, and between the module and the user.

B.5.2.1 Preparatory Phase in G_ADAPT

The tasks in the preparatory phase include the initialisation of adaption data at the
start of run time using data in ADAPT.ADP. The code is also checked by carrying out
one pass without the calculated grid movement passed through to PHOENICS
EARTH. This phase could be incorporated into the satellite adaption module
S_ADAPT, but it is computationally cheap compared to the total run time and to the
run time of PHOENICS SATELLITE, and allows more flexibility in using adaption.

B.5.2.2 Processing Phase in G_ADAPT

The main tasks in the main phase of the adaption routine include:-

» Extraction of the adaption variable. This involves the interpolation and
manipulation of a chosen variable from cell centres to give a normalised value
on grid nodes within the region being adapted. This variable is used to

generate the weight components.

» Calculation of different weight components for each coordinate direction by

using an arbitrary function on the adaption variable.

» Calculation of movement vectors over adaption region using a point by point

Jacobi solver on the LPE equation, calculating all movement on the original

grid before updating it.
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» Checking of movement vectors to maintain surfaces and lines, and prevent

grid crossover.

» Interpolation of the adaption variable between the old and new grids to allow

multiple internal iterations of the adaption solver.

The secondary tasks include:-

* Placing modified grid back into PHOENICS after adaption. and the

reactivation of the routines within PHOENICS that calculate grid constants.
 Calculation and output of temporary grid movement information.

* Extraction and interpolation of variables from the old to the modified grid

and the writing of these variables back into PHOENICS.

* Placing of information on adaption into PHOENICS arrays to allow the data
to be displayed graphically using PHOTON and AUTOPLOT. The data may
optionally include the total grid movement in each coordinate direction, the
calculated weight function for each direction and the normalised and
interpolated variable used for adaption. This variable may be a composite of
a number of PHOENICS variables and there may not be a directly
corresponding PHOENICS variable stored (see section 4.8).

e Output of PHOENICS result file PHI and grid file XYZ at the beginning of
each call to the adaption module and at the end of the run. These dumps are
optional. Each file has a name which is controlled from within the adaption
module and incorporates the sweep number when it is dumped. The name also
incorporates the step number if the problem is transient. The files are dumped

using the PHOENICS routines DUMP for the PHI file and DUMPXY?Z for the
XYZ file.
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B.5.2.3 Bookkeeping Phase in G_ADAPT

The tasks in the bookkeeping phase include :-

« Calculation of final grid movement by comparing the initial and final grids

held in the files GRIDn.ADP.

e Output of a PHOENICS XYZ grid file. Other file dumps are optional, the

grid file dump at the end of the run is forced.
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APPENDIX C: PSEUDO CODE FOR ADAPTIVE MODULES

C.1 Introduction

This appendix contains pseudo code to show the structure of the adaption initialisation

module S_ADAPT and the adaption calculation module G_ADAPT as implemented
in the pre processor SATELLITE and solver EARTH of the CFD code PHOENICS.

C.2 SATELLITE Adaption S_ADAPT

One call 1s made to S_ADAPT from PHOENICS when adaption is activated. The
main role of S_ADAPT is to recover geometrical data on chosen adaption regions
within the problem domain. This data consists of control functions for the Poisson
equation (section 2.5) which can be used to generate the local mesh, and coefficients

of parametric equations which are used to model user defined curves and surfaces.

C.2.1 MAIN

read
sort

loop

region definition patches

region definition patches PATCHSORT
through regions

output regions limits to plot file
get region grid

calculate scale factors for error output and minimum cell

clearance

term)

output grid to grid file
determine number of and sort blanks in region
determine number of and sort surfaces and curves in region
loop through surfaces and curves
cut surfaces and determine coefficients SURFSORT
extract surface grid
end loop

determine control functions to regenerate grid (Poisson

end loop

end
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C.2.1.1 PATCHSORT sort region patches

check regions do not overlap and are within grid
link surfaces and curves to regions
link blanks to regions

end

C.2.1.2 SURFSORT Cutting Surfaces and Determining Coefficients
determine direction of surface

break surface into subsurfaces SURFCUT
calculate patch coefficients

end

C.2.1.2.1 SURFCUT Breaking Surfaces

determine maximum gradients and second derivatives

find turning poilnts

if turning points are within 1 patch distance then
multiply turning point tolerance by two
repeat find turning points step

end if

find discontinuities

determine subsurface limits

end

C.3 EARTH Adaption G_ADAPT

G_ADAPT is split into three main parts, STARTADAPT, ADAPT and
BOOKADAPT, which are concerned with setting up adaption data within PHOENICS
EARTH, adapting the grid and bookkeeping at the end of the run respectively. The
adaptive module can be called at the end of each sweep for steady state problems and
additionally at the start of each time step for transient problems. The first and last
parts, STARTADAPT and BOOKADAPT are only called once each at the second
sweep and final sweep of the run respectively for steady state problems. The second
sweep is used because the numbering conventions used within PHOENICS may mean
that the run starts at sweep number two. For transient problems STARTADAPT is
called at the start of the first time step. ADAPT can be called at any sweep between
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the calls to STARTADAPT and BOOKADAPT.

STARTADAPT reads in adaption data from external adaption files, sets up temporary

run time files and tests the adaption code.

BOOKADAPT deletes the temporary run time files and determines a measure for the

total movement.

ADAPT modifies selected regions of the problem domain to given parameters and

constraints.

Cc.3.1. MAIN
if sweep equals 2 then

initialise adaption routines STARTADAPT
else if sweep equals last

dump results files

book keeping BOOKADAPT
else

dump results files

run adaption routine ADAPT
end if
end

C.3.1.1 STARTADAPT Initialise Adaption Routines

delete o0ld adaption grid files
read input file and write direct access adaption parameter file

read screen plot file and write direct access plot file
open log file
run adaption routine with no movement allowed ADAPT

end

C.3.1.2 BOOKADAPT Book Keeping
delete adaption parameter and screen output files
determine total movement measure

end
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C.3.1.3 ADAPT Adaption Routine
open adaption files
loop over regions
read region parameters
get region grid from most recent grid file
get control functions for region
get adaption variable normalised at cell vertices GETVAR
loop over internal iterations
calculate adaption weights GETWEIGHT
calculate grid movement GETMOVE
if polar type grid then
modify to get correct shape
end if
interpolate adaption variable from old to new grid
end loop
determine cell angles, if required
interpolate solution from old to new grid
write grid to CFD code
write grid to file
end loop
reset geometry information in underlying code
close adaption files

end

C.3.1.3.1 GETVAR Get Adaption Variable

get variable at cell centres from PHOENICS
interpolate variable to cell vertices
normalise variable

end

C.3.1.3.2 GETWEIGHT Calculate Adaption Weights

use chosen weight routine
apply local averaging smoothing to weights, if required

~apply power law smoothing to weights, if required

apply exponential smoothing to weights, 1f required

end
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C.3.1.3.3 GETMOVE Calculate Grid Movement

calculate raw movement from LPE equation

use blank patch data to set movement in chosen regions to zero
cut movement to chosen fraction of minimum cell clearance

set movement at edges to movement one cell in, if required
fit surfaces and curves

apply movement to grid

calculate percentage change in grid
end
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