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ABSTRACT

This thesis is concerned firstly with the classification and evaluation of 

various numerical schemes that are available for computing solutions for 

fluid-flow problems, and secondly, with the development of an improved 

numerical discretisation scheme of the finite-volume type for solving 

steady-state differential equations for recirculating flows with and without 

sources.

In an effort to evaluate the performance of the various numerical 

schemes available, some standard test cases were used. The relative 

merits of the schemes were assessed by means of one-dimensional 

laminar flows and two-dimensional laminar and turbulent flows, with and 

without sources. Furthermore. Taylor series expansion analysis was 

also utilised to examine the limitations that were present.

The outcome of this first part of the work was a set of conclusions, 

concerning the accuracy of the numerous schemes tested, vis-a-vis their 

stability, ease of implementation, and computational costs. It is hoped 

that these conclusions can be used by 'computational fluid-dynamics' 

practitioners in deciding on an optimum choice of scheme for their 

particular problem.

From the understanding gained during the first part of the study, and in 

an effort to combine the attributes of a successful discretisation scheme, 

eg positive coefficients. conservation and the elimination of 

'false-diffusion', a new flow-oriented finite-volume numerical scheme was
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devised and applied to several test cases in order to evaluate its 

performance.

The novel approach in formulating the new CUPID* scheme (for Corner 

UPw^nDing) underlines the idea of focussing attention at the 

control-volume corners rather than at the control-volume cell-faces. In 

two-dimensions, this leads to an eight neighbour influence for the central 

grid point value, depending on the flow-directions at the corners of the 

control-volume. In the formulation of the new scheme, false-diffusion 

is considered from a pragmatic perspective, with emphasis on physics 

rather than on strict mathematical considerations such as the order of 

discretisation, etc.

The accuracy of the UPSTREAM scheme (for JJPwind in STREAMIines) 

indicates that although it is formally only first-order accurate, it 

considerably reduces 'false-diffusion'. Scalar transport calculations 

(without sources) show that the UPSTREAM scheme predicts bounded 

solutions which are more accurate than the upwind-difference scheme 

and the unbounded skew-upstream-difference scheme. Furthermore, 

for laminar and turbulent flow calculations, improved results are obtained 

when compared with the performances of the other schemes.

# The up-to-date name of the scheme is CUPID; however, in what 

follows the old name, UPSTREAM (Patei, Markatos & Cross (1985b)L will 

be used throughout.
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The advantage of the UPSTREAM-difference scheme is that all the 

influence coefficients are always positive and thus the coefficient matrices 

are suitable for iterative solution procedures. Finally, the stability and 

convergence characteristics are similar to those of the upwind-difference 

scheme, eg converged solutions are guaranteed. What cannot be 

guaranteed, however, is the conservatism of the scheme and it is 

recommended that future work should be directed towards improving that 

disadvantage.
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CHAPTER 1

1. INTRODUCTION

1. 1 Background

The numerical modelling of fluid-flow problems involves phenomena such

as convection and diffusion of momentum, heat and mass which are of

major importance in various engineering fields.

Examples of some of these fields are: 

The Aerospace field:

modelling aircraft wings with respect to drag and lift; and 

modelling missiles with respect to their overall design, etc,

The Medical field:

# modelling of airflow through the human body; and

# modelling of the temperature in the human torso, etc.

The Power field:

# modelling of nuclear reactor cores in critical regions (ie 

nuclear burnout) ; and

# modelling of various engines (eg rocket, car) , etc.



The General field

# Modelling of any situation involving flows created due to various 

types of gradients and the presence of velocities (eg movement 

oi smoke in enclosures due to a fire source, movement of ice 

in lakes, etc).

In recent years, a lot of interest and thought has been directed towards 

the understanding ot transport phenomena and their numerical modelling, 

with regard to accuracy and overall representation.

In general, fluid-flow phenomena are approximated by simple interpolation 

formulae, based on the vast experience .gathered from the past, either 

by intuition or experiments. However, when more complex phenomena 

are considered, these interpolation methods may deteriorate in terms of 

accurate representation of the problem.

Since the knowledge of fluid-flow phenomena is based on the 

conservation laws of physics. usually expressed in terms of 

partial-differential equations, classical methods only serve to provide 

practical solutions to limited problems of importance.

However, the introduction of the computer into the engineering practice, 

has resulted in the rapid growth of a completely new field, formally 

termed 'computational fluid dynamics', which has led to the development 

of new mathematical methods for solving the equations of fluid-flow (ie 

the Navier-Stokes equations) . Nevertheless, there still exist a few 

deficiencies in these new mathematical methods which need to be



resolved carefully, before they become fully reliable, accurate and 

cost-effective.

The detailed study reported in this thesis, is mainly concerned with the 

overall improvement of accuracy and efficiency of the 'control-volume' 

type of numerical solution procedures, used for the partial-differential 

equations that govern fluid-flow phenomena. The control-volume 

method (CVM) is of practical interest to engineers of all fields.

In general, if the computational cost is of no objection, then the 

available methods can perform very well. However, since expensive 

numerical methods are of limited practical importance, the aim of any 

new or improved method should be to combine acceptable accuracy with 

cost. Hence, the aim of the present study is (a) to evaluate the 

cost-effective numerical methods, from the considerable number available 

today; and. (b) to suggest, if possible, new directions in devising such 

efficient methods.

The important negative aspect of most available methods of discretisation 

is 'false-diffusion', present because of non-aligned flows and grids. 

The 'false-diffusion' problem usually occurs because simplifying 

assumptions are made to approximate complex aspects.

The basic assumption leading to 'false-diffusion' is that the flow is 

treated as locally unidirectional, so as to apply easily the approximating 

methods in each of the coordinate directions. This approximation 

provides easy extension of one-dimensional considerations to 

multi-dimensional problems, but involves numerical errors for practical



grid sizes.

The alternative is to model the flow by tracing the local streamlines; that 

would reduce 'false-diffusion', but at the expense of introducing possible 

instabilities.

The ultimate theme of this thesis is to devise, in principle, a numerical 

scheme that reduces 'false-diffusion' without the expense of extensive 

grid refinement, and without any inherent instabilities. This proves a 

daunting task; however, if tackled in an orderly, step-by-step method, it 

would provide valuable information, assisting the practitioner to choose a 

scheme best suited to his particular problems.

1. 2 Literature Survey

During the past decade or so, a vast amount of literature has appeared 

on solution techniques for incompressible flow problems, and it is not 

surprising that modern fluid-dynamics is greatly contributing to the 

current development of the finite-difference/control-volume methods, 

which are of importance to numerical analysts.

Attention is here focussed on the role of convection and diffusion on 

transport in flows of practical interest, which may be single- or 

multiphase, and multidimensional. Only steady-state problems are 

considered, so as to keep the nature of the survey within reasonable 

bounds. However, important contributions which rely on transient 

problems will also be referred to.
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1.21 Classification

The relevant fluid-flow partial-differential equations can be discretised in 

many ways. In what follows, we shall outline the most common 

methods available and providing critical comments on their performance.

1.21.1 Finite-difference methods

The finite-difference method operates directly on the differential equation 

to obtain a set of algebraic equations. The relevant approximations are 

derived via truncated Taylor-series expansions, where the assumption is 

made that the expansion depends on a polynomial in only one of the 

coordinate directions, so that the higher derivatives are rendered 

unimportant. This method of approximation, ie Taylor-series expansion, 

is fairly simple and straightforward, but allows only little flexibility and 

provides less insight into the proper physical meaning of the terms 

involved.

1.21.2 Control-volume methods

The control-volume method operates on the integral of the 

partial-differential equation, over a control-volume enclosing each 

discrete grid-point. Algebraic equations are then obtained by 

representing the variation of the dependent variable between grid points 

via piecewise profiles. This method of approximation is easy to 

understand and lends itself directly to the importance of physical



interpretation; ie the conservation principle is enforced by the very nature 

of the method. Furthermore, there is complete freedom of choice in 

the assumption of profiles for different dependent variables. It is this 

method that was chosen for carrying out the present study.

1.21.3 Finite-Element Methods

The finite-element method approximates the distribution of the dependent 

variable within elements that are defined by mesh lines. The algebraic 

set of equations are then constructed by ensuring continuity of the 

dependent variable between elements, together with the satisfaction of 

some weighted residual or functional of the differential equation over 

each element.

1. 21. 4 Other methods

Other methods, which are not discussed here in any detail, include:

# finite-analytic methods;

# spline methods;

# flux-correction methods; and

# flux-corrected transport methods.

The above methods, although useful in some applications, have not 

reached as yet the level of sophistication of the ones described above, 

and they do not appear to lend themselves for easy generalisation.

-6-



Therefore, attention is now turned to surveying the two most developed 

methods at present, eg the finite-difference and control-volume methods.

1. 22 Finite-Difference and Control-Volume Methods - A Survey

Locally one-dimensional schemes

Over the years a vast amount of literature has appeared with regard to 

the formulation and application of numerical schemes. In general, the 

selection of a particular numerical scheme, from the great number 

available, depends on its accuracy, stability, consistency with physical 

laws (ie the conservation principles), computational cost (ie efficiency) 

and the level of programming (ie the actual coding of the procedure) 

required by the scheme.

The solution of the convection-diffusion equation, which forms a sub-set 

of the fluid-dynamics modelling problems, has posed serious difficulties 

to the numerical analyst. It is the main aim of the present section to 

classify some of the numerical schemes. with regard to their 

introduction, improvements and applications already reported by various 

authors.

The earliest numerical scheme used by numerical analysts was the 

standard central-difference scheme. It is the straightforward way to 

discretise the convection term, leading to a second-order scheme 

derived from the Taylor-series analysis. The earliest attempts to obtain 

a numerical solution of elliptic equations was that by Thorn (1933), who

-7-



was interested in the prediction of the steady, laminar-flow of fluid over 

a circular cylinder. The resulting algebraic equations were solved by 

an interative technique with successive-substitution. However, this 

approximation does not lead to diagonal dominant matrices for cell Peclet 

numbers greater than 2. This was reported by Thorn (1933). together 

with quite accurate predictions for flow Reynolds numbers of the order of 

50. For cell Peclet numbers greater than 2. the central-difference 

scheme formulation can. and often does, lead to oscillations (ie 

'wiggles') in the numerical solution.

The appearance of wiggles is a sign of not conforming to the physical 

law being approximated. Since iterative solution procedures are 

preferred for cost effectiveness (ie to avoid the storage of large 

coefficient matrices) . very inaccurate and sometimes no solution at all 

(ie divergence) are predicted. Thorn and Apelt (1961) reported 

increasing difficulties, also reported by Kawaguti (1961) and Simuni 

(1964). for higher Reynolds numbers. To obtain accurate solutions by 

the use of central-difference schemes, one needs to use very fine grids 

so that the cell Peclet numbers are restricted to below 2; this is a very 

serious restriction due to the power of present day computers and the 

excessive cost it implies. The effect of very fine grids is that the 

importance of the convection term diminishes to a level where it is 

negligible, in other words, the flow is diffusion dominated. A way 

around the need for fine grids is to use under-relaxation to control the 

instability as reported by Thorn and Apelt (1961). Nevertheless, many 

authors have perservered to obtain solutions to various problems using 

the central-difference scheme and its variants (ie the higher-order 

central-difference scheme) .

-8-



Burgraff (1966) made use of the under-relaxation technique of Thorn and 

Apelt (1961) to predict the flow-field in a square cavity, obtaining 

solutions for Reynolds numbers as high as 400. However, Burgraff's 

(1966) work revealed the serious shortcoming of the technique, since 

higher computing times were required to compensate for the instability at 

higher Reynolds numbers.

Among other authors to use and/or report about the central-difference 

scheme, are the following: Blowers (1971). Spalding (1972) de Vahl 

Davis and Mallinson (1976). Raithby (1976a). Chien (1977). Leschziner 

(1977.1980). Lillington and Shepard (1978). Atkins, Maskell and Patrick 

(1980). Stabley. Raithby and Strong (1980). and Barrett (1982).

However, it is the author's opinion that there is a basic weakness in the 

central-difference formulation, in that convection is by its very nature a 

non-symmetrical phenomenon. while central-differencing implies 

otherwise.

It is clear that the aim of the numerical practitioner is to formulate an 

unconditionally stable numerical scheme for the solution of higher 

Reynolds number flows. The development of numerical schemes to 

improve the above mentioned instabilities, can be credited to Courant. 

Isaacson and Rees (1952) for their efforts to develop a solution 

procedure for hyperbolic equations (ie for supersonic flows), where links 

with characteristic methods are demonstrated, together with the use of 

the term 'upstream'. It was shown that when the convection term was 

replaced by an approximation which took into account the local direction 

of the flow (eg the above mentioned assymetry of convection) . this

-9-



greatly Improved the stability of the iterative solution procedure. The 

consequences of the 'upstream'-direction influence generate diagonal 

dominant matrices, leading to the stability of the iterative solution 

procedure. Such numerical schemes, which take into account the local 

direction of the flow are termed 'upwind-differencing' schemes.

The upwind-difference scheme also suggested by Spalding (1966). was 

incorporated into a solution procedure for solving laminar flow problems 

by Runchal and Wolfshtein (1966). The laminar flow problems being 

considered were the impingement of a jet. and the flow in a square 

cavity. The application of the upwind-difference scheme were later 

reported by Wolfshtein (1967). Pun and Spalding (1967) and Runchal. 

Spalding and Wolfshtein (1967). These efforts were also collectively 

reported in detail by Gosman. Pun. Runchal and Spalding (1969). A 

similar numerical scheme was. independently, reported by Greenspan 

(1967).

Numerous applications of the upwind-difference scheme have been 

reported and some of these are listed below for completeness: 

Wolfshtein (1968), Dennis and Chang (1969). Blowers (1971). Runchal 

(1972). Markatos (1974). de Vahl Davis and Mallinson (1976), Raithby 

(1976a). Griffiths (1977). Atias, Wolfshtein and Israeli (1977), Chow 

and Tien (1978), Atkins. Maskell and Patrick (1980). Kellogg, Shubin 

and Stephens (1980). Markatos and Pericleous (1984). and many more.

However, the accuracy of the first-order accurate upwind-difference 

scheme has caused a major controversy among the members of the 

computational fluid dynamics community. Although the expected

-10-



superiority of the upwind-difference scheme over the second-order 

central-difference scheme has been demonstrated and confirmed in 

numerous publications, see for example: Runchal (1972). Raithby and 

Torrance (1974). Castro (1978). Patel. Markatos and Cross (1985a). 

Patel and Markatos (1986a) and many others, there still exists room to 

improve the upwind-difference scheme for flows where there is a 

grid-to-flow angle present. These inaccuracies arise in the presence 

of non-aligned grids to the flow direction as reported by Raithby 

U976a). de Vahl Davis and Mallinson (1976). Leschziner (1980) and 

Patel and Markatos (1986a). Indeed, the well known smearing effect of 

the upwind-difference scheme is clearly illustrated by Raithby (,1976b) 

among others, where the transport of a scalar in a uniform flow-field is 

considered at various angles to the grid lines. The smearing effect, 

when present In multi-dimensional problems, is termed 'false-diffusion' 

[Patankar (1980)1. The conditions which give rise to false-diffusion 

were first determined by Wolfshtein (1968), who obtained an expression 

with the aid of numerical calculations of uniform flow over a square mesh 

at infinite Peciet number. Later, de Vahl Davis and Maitinson (1976). 

and Leschziner (1980). reported similar expressions via analytic means.

The false-diffusion expression, a function of the flow-to-grid skewness 

angle is only applicable to locally one-dimensional differential schemes. 

The actual cause of false-diffusion and the form of the expression is not 

difficult to perceive, since from the physical point of view it is clear that, 

in circumstances where the grids do not follow the flow, the upwinding 

technique should follow the streamlines/characteristics, and not the grid 

lines. However, mathematically, it can be argued that the error is one 

of trying to construct a solution procedure of complex multi-dimensional

-11-



transport phenomena by super-positioning of solutions, which are in 

essence of the one-dimensional transport equation.

Nevertheless, although the upwind-difference scheme has taken a lot of 

criticism, it still provides realistic and plausible solutions for most 

practical problems of importance, if sufficient care is taken to ensure the 

grid-independence of its predictions. The latter, however, can lead to 

high costs and. therefore, there still exists room to improve this 

scheme. This has already been recognised by many practitioners of 

numerical analysis, and indeed, modified versions of the scheme have 

been reported by, for example. Spalding (1972), Raithby and Torrance 

(1974) and Patankar (1980). These modified, but still locally 

one-dimensional, versions of the upwind-difference scheme respond to 

the cell Peclet numbers and not to the local skewness of the flow to the 

grid lines.

A step forward to improving the upwind-difference scheme was proposed 

by Spalding (1972). The proposed scheme termed the 

'hybrid-difference' scheme is a combination of both the central- and 

upwind-difference schemes. The term 'hybrid' arises from the blending 

of the advantages of the two numerical scheme to achieve an improved 

scheme. The hybrid-difference schemes utilises the central-difference 

scheme for mesh Peclet numbers less than |2| and the 

upwind-difference scheme otherwise. However, this scheme still poses 

a restriction on the Peclet number over which the false-diffusion error 

will be present. Therefore, care must be taken to distribute the grids 

so as to utilise the central-difference scheme. This would again prove 

expensive and does little to alleviate the problem of false-diffusion.

-12-



Thus, the hybrid-difference scheme will only produce accurate results for 

the entire range of cell Peclet numbers when the grid is aligned to the 

flow.

The hybrid-difference scheme has been utilised by many authors and 

reported by the following: Markatos (1974.1978), Leschziner (1980), 

Leschziner and Rodi (1981), Man, Humphrey and Launder (1981) and 

others. The paper by Leschziner (1980) is an excellent comparative 

study, using five different flow configurations, and showed that the 

hybrid-difference scheme was the least accurate of the other schemes 

compared.

The locally-exact-difference scheme, first formulated by Alien and 

Southwell (1955) and later reintroduced by ll'in (1969). Spalding (1972) 

and Raithby and Torrance (1974). utilises the analytic solution of the 

one-dimensional convection-diffusion equation. The influence 

coefficients for the scheme involve the evaluation of exponential 

functions, which is expensive. Of course, for one-dimensional 

problems, the scheme is guaranteed to produce the exact solution for all 

Peclet numbers without any false-diffusion. However, the scheme 

suffers from false diffusion in multi-dimensional flow calculations since it 

still neglects the grid-to-flow skewness (see for example: Patel and 

Markatos (1986a)). Modifications of the locally-exact-difference 

scheme have been reported by Dennis (1960,1973), Allan (1962). 

Briggs (1975) and Chien (1977). among others.

Only one of the modified versions of the locally-exact-difference scheme 

is considered here, this being the power-difference scheme of Patankar

-13-



(1980). The power-difference scheme is aimed at reducing the 

computational cost of evaluating the above mentioned exponential 

functions. In the scheme proposed by Patankar (1980), the exponential 

function is replaced by a fifth-order power law. (Various ranges of 

mesh Peclet numbers exist within which a different approximation is 

used). This greatly reduces the time required to evaluate the 

exponential function in the first instance. The scheme has not been 

extensively used since its results are very similar to the hybrid- and 

upwind-difference schemes, and since it does not cure the smearing 

when grid-to-flow skewness exists.

The idea of upwinding was further extended by Leonard (1977) who 

considered the contribution of an extra upstream grid node in 

approximating the convection term. The scheme combines the merits of 

upwind-differencing with those of higher-order quadratic interpolation, but 

still without explicit reference to the actual flow angle. The scheme, 

referred to here by the shorter name quadratic-upstream-difference 

scheme, is claimed to reduce false-diffusion, erroneously to the author's 

opinion. The scheme, as reported by many authors, see for example: 

Han r Humphrey and Launder (1981). Pollard and Siu (1982) and Patel 

and Markatos (1985a). suffers from oscillations since the influence 

coefticients may become negative, infringing the transportive criteria, 

thus making it unbounded.

Indeed, a lot of comvergence problems have been encountered by users 

of the quadratic-upstream-difference scheme, for example: Leschziner 

(1980) and Pollard and Siu (1982). show that the scheme gives rise to 

unbounded solutions with the amplitude of the oscillations being small.
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This is attributed to the central coefficient becoming infrequently zero for 

infinite mesh Peclet number. Man. Humphrey and Launder (1981). 

among others, concluded from their results of both laminar and turbulent 

flow calculations in a square cavity with a moving lid, that the extra 

computational cost per grid point required by the scheme over that for 

the upwind- and hybrid-difference schemes, for a converged solution, is 

more than compensated for by the greater accuracy, when the flow is 

aligned with the grid. However, when this is not possible, very fine 

grids are required to overcome the problems of convergence that may be 

encountered. Apart from these disadvantages, the scheme also 

requires special practices at boundaries together with some modification 

of the influence coefficients, for example: Han, Humphrey and Launder 

(1981) reported that modified influence coefficients were achieved by 

using pseudo sources to give a stable scheme. All these diminish the 

practicality and generality of the scheme.

Extensions of the quadratlc-upstream-difference scheme are reported by 

Leonard, Leschziner and McQuirk (1978) and Pollard and Siu (1982). 

The latter authors reported two modified versions of the 

quadratlc-upstream-dttterence scheme which were termed the extended 

and extended-revised versions. The scheme is first reformulated to 

ensure always positive influence coefficients, in the absence of sources, 

to conform to the boundedness property. This leads to the extended 

version of the quadratlc-upstream-difference scheme. The scheme 

performs well, see Pollard and Siu (1982) and Patel and Markatos 

(1986a), in the absence of sources and when the flow is mainly along 

one of the coordinate directions. However, since sources cannot be 

neglected in real problems, its applicability is still limited.

-15-



The aforementioned deficiencies in the quadratic-upstream-difference 

scheme-extended are rectified by further linearisation of the sources 

according to the practice of Patankar (1980). This leads to the 

revised-extended version of the scheme as reported by Pollard and Siu 

(1982). Unfortunately, no other reported applications of the scheme 

have been traced to date, except that by Pollard and Siu (1982) and 

Patel and Markatos (1986a). The modified schemes although accurate, 

prove expensive, and do not explicitly take into account the flow angle, 

ie they do not address directly the problem of 'false diffusion'.

It Is the author's opinion that the 'way-ahead' is to look towards flow 

oriented schemes, which directly take into account the grid-to-flow 

angle, ie to apply the approximation along the local streamlines.

The earliest reported flow-oriented schemes were those by Le Favre 

(1970) and Zuber (1972). who introduced schemes with explicit 

grid-to-flow angle dependence. However. the schemes were 

non-conservative and thus not fully suitable for general use. Later. 

Ralthby (1976b) formulated what was termed the 

skew-upstream-difference scheme, which was non-conservative. The 

skew-upwind-difference scheme of Raithby (1976b). although formally 

only first-order accurate, yields a significant reduction in skewness errors 

by partially simulating an upwind discretisation coordinate system. In 

this case, skewness errors are entirely absent, that is. the scheme 

tends to simulate the locally multi-dimensionality of the flow. 

Applications of Raithby's (1976b) scheme have been reported by Militzer. 

Nicoll and Alpay (1977), Castro (1978). Leschziner (1980) and 

Lillington (1980.1981). although the difficulty of the scheme to converge
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always, for complex fluid-flow problems, and the possibility of 'wiggles' 

or 'oscillations' still exist. Furthermore, the scheme is complex in its 

implemention in generally available fluid-flow software.

Variations of the skew-upstream-difference scheme have been reported by 

Lillington (1981) termed as the 'vector-upstream-difference scheme' and 

Hassan, Rice and Kirn (1983) reported the 'mass-flow-weighted 

skew-upwind difference scheme'. The former is modified by 

representing the source differently to the original scheme of Raithby 

(1976b) and the latter reformulated the coefficients to ensure always 

positive influence coefficients. Both the above modified schemes have 

been used for complex flow problems by the above authors, but no 

mention of the difficulties of programming matter were stressed upon.

1. 23 Finite-Element Methods - A Survey

A great deal of effort has been devoted recently to the application of 

finite-element methods in fluid-dynamics. Along with this development 

has come the realisation that the normal Galerkin method, the 

finite-element counterpart of the central-difference scheme, is not always 

suitable. This is because convection operators are non-symmetric and 

Galerkin method application leads to occasional spurious oscillations in 

the results, for flows at high Peclet numbers (Gresho and Lee (1979)). 

A similar situation was encountered by the control-volume practitioners in 

the 1960s, and was then overcome by the introduction of the upwinding 

schemes. Indeed, some of the finite-element methods are also subject 

to the same criticisms as the conventional upwind finite-difference
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methods.

Convection dominated phenomena have proven to be one of the most 

difficult types of problems to be successfully dealt with by numerical 

methods. Although the Galerkin method has proved satisfactory in 

applications to linear and non-linear symmetric operators, its applications 

to non-symmetric operators often gives rise to 'wiggles'. These 

'wiggles' can be eliminated only by severe mesh refinement.

An excellent review of the applications of finite-element methods to 

fluid-flow problems is given by Gallaher et al (1978) and Glowinskl 

(1982). Detailed background and general information on developments 

of the method is easily obtained from standard finite-element text books 

(eg Zienkiewicz (1977)). Therefore, the reader should refer to the 

above books for detailed information with regard to the background and 

applications of finite-element methods.

What follows is a summary of most of the earlier and later finite-element 

techniques that are now commonly used by fluid-dynamics practitioners.

To overcome the problems encountered by the Galerkin finite-element 

method for convection-diffusion problems. several upwind type 

finite-element methods have been reported (for example see: Hughes et 

al (1979) and Heinrich et al (1977)). The extended methods for 

two-dimensional flow problems were reported by Heinrich et al (1977).

In general. all such upwinded-finite-element methods suffer from 

numerical/'false diffusion' similar to that experienced by the conventional
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upwind-difference finite-difference methods.

The flow-oriented schemes were the next step to improve the 

finite-element methods. This was reported by Hughes and Brooks 

(1979) where a 'streamline-upwind scheme' similar to the 

skew-upstream-difference scheme of Raithby U976b) was proposed, 

although the solutions were not always bounded. This clearly shows 

that the finite-element methods also suffer from the same deficiencies as 

those of the finite-difference/volume methods.

Superficially, it is easy to conclude that the finite-element methods are 

advantageous over the finite-volume methods since the former can handle 

complex shapes of calculation domains due to the great flexbility in the 

element shapes that can be utilised. However, conservation is not 

usually satisfied over the whole calculation domain. which is a 

disadvantage on all situations where the overall balance of the fluxes are 

important.

A further disadvantage of the finite-element methods is that the 

coefficient matrix is not always regular; thus, computing requirements 

tend to become demanding and always greater than the finite-volume 

methods.

Recently, due to the advent of grid generation techniques, finite-volume 

methods have been utilised to calculate flow-fields for complex 

geometries using 'body-fitted grids' [Malin. Rosten, Spalding and Tatcheil 

(1985)1 and, in general, the computing costs are far less than those 

required by the finite-element methods.
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1.3 Closure

This chapter has presented a classification of the numerical techniques 

used for solving fluid-flow problems, together with a literature survey for 

finite-difference/control-volume methods and finite-element methods.
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CHAPTER 2

2. DIFFERENTIAL EQUATIONS AND FINITE-VOLUME EQUATIONS

2. 1 Introduction

This chapter describes the general mathematical framework (ie the 

Navier-Stokes equations) employed in the calculations of the laminar 

turbulent flows. The partial-differential equations presented here 

express the physical laws of conservation of mass, momentum, enthalpy 

and other conserved fluid properties. Both laminar and turbulent flows 

are modelled by the same set of equations, which is achieved by 

prescribing 'effective' exchange coefficients for the relevant variables. 

The equations are given in cartesian tensor notation form for the general 

time-dependent problem.

2. 2 Conservation Equations

2.21 The partial-differential equations

The equations listed in this section are equally applicable to both laminar 

and turbulent flows.

For multi-dimensional flows, the time-dependent equations for the 

conservation of mass, momentum and any conserved scalar property can 

be expressed in cartesian tensor form as follows [(eg Bradshaw 

(1976)1:
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ft (pu J> = ° (2.21-1);

t (PUL) * ^T {pu J u i- - T L

where:

= 0 (2.21-2a);

au
(2.2i-2b):

and

6 Lj = 0

= 1 L=j

Conservation of scalar property

(2.21-2c).

at (puict) ~ J<t>-J } ~ S4> = ° (2.21-3a);

where 3$ is the source/sink term for 0. and J^ j stands for the diffusion 

fluxes, which are of the following form:

(2.21-3b)

where ovb is the Prandtl number.
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2. 22 The time-averaged form of the equations

The exact time-dependent equations apply to both laminar and turbulent 

flows. In theory, it should be possible to solve these equations for 

turbulent flows directly; however, in practice, their solution is not 

possible at present, or in the foreseeable future [(eg Launder and 

Spalding (1972)3. Simulation of turbulent flows is obtained from the 

equations presented above by means of the following substitution:

<t> = <t> + <j>' (2.22-1);

where <j> is the time-averaged value and the prime. ('). denotes the 

fluctuating part of <t>. The introduction of equations (2.22-1) into the 

equations of Section 2.21 yields the relevant forms of the time-averaged 

equations. These are listed in Appendix A2.1.

2. 23 The general equations to be solved

A review of the relevant partial-differential equations of interest, listed 

above, indicates that they are similar in their structure for all conserved 

properties and can be represented by a single general equation, which 

for steady-state phenomena is as follows:

Polar

13 d ^ dp (-   (rv*) «    (u«» = ~ - Crteff.«,
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(re ff.<t> > = 84, (2.23-la)

Cartesian

<2 ' 23- lb);

where reff $. r and S^ are deduced from the parent equations (see 

Appendix A2. 1).

The terms on the left-hand side of equation (2.23-1) represent the 

transport of <t> by convection and the terms on the right-hand side, 

except 84), represent the diffusion of 0; 3$ is the source expression 

which includes real sources/sinks and terms that do not neatly fit into 

the convection or the diffusion terms.

2. 3 Discretisation Procedure

In Section 2.2 above, the partial-differential equations which govern 

steady-state flow were presented. The task of this sub-section is to 

present briefly the numerical procedure which has been used to solve the 

relevant equations.

The aim is to employ numerical methods, of the finite-volume type. 

The domain of interest is subdivided into a finite-number of 

control-volumes, by using a finite-volume grid. The grid points are 

surrounded by non-overlapping 'control-volumes' which when taken 

together completely fill the domain of interest.
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The finite-volume algebraic equations, at each grid point, are obtained 

by integrating the differential equations over each control-volume. 

Integration enables interpolation assumptions for the variables of values 

and gradients between grid nodes.

The above discretisation method provides a set of algebraic equations 

which are non-linear (by means of their coefficients being functions of 

the dependent variables) and strongly coupled. This necessitates the 

use of iterative solution procedures (iteration as opposed to direct matrix 

inversion) .

2. 31 Finite-domain equations

In this section, the finite-volume algebraic representations for the general 

equations (2.23-1) are derived.

2. 32 Finite-volume grid and variable locations

The domain of interest is sub-divided into finite-volumes by orthogonal 

intersecting grid-lines which are distributed parallel to the coordinate 

axes.

The points of intersection are called grid points or nodes, and represent 

the locations where every scalar is evaluated.

Figure 2.32-1 represents a typical grid arrangement, together with the
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locations of storing and computing the dependent variables in the 

finite-volume grid. All scalar variables (eg. P. k. e. T. H, etc) are 

stored at the grid points whereas the velocity components (eg, u, v) are 

stored midway between two adjacent grid points. This approach [Harlow 

and Welch (1965)] is conventional and termed as the 'staggered-grid' 

arrangement is adopted here. Its advantages are:

* the velocities are available directly for flux evaluations at the 

control-volume faces; and.

* the pressures are stored on either side of velocities, which 

enables pressure gradients (which drive the velocities) to be 

evaluated easily. The '!_' shapes, in Figure 2.32-1 depict the 

manner in which the dependent variables are grouped; in other 

words, the triad of points inside the L's refer to the same 

storage location.

2. 33 General- and boundary-control-volumes

Each dependent variables is defined within a control-volume, over which 

the integration is performed. Since there are three different locations 

for the dependent variables in Figure 2.32-1 there exists three distinct 

types of control-volumes. These are depicted in Figure 2.33-1. The 

shaded areas A. B and C refer to the control-volumes for the u. 4> and 

v variables, respectively.

Each dependent variable has a different representation for near-boundary
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control-volumes. These are depicted in Figure 2.33-2. The shaded 

areas A'. B' and C' refer to the near-boundary control-volumes for the 

u, 4> and v variables, respectively.

This arrangement is utilised so that at the near-boundary control-volume 

faces, the velocity components and the boundary grid points coincide 

with the boundary value.

2. 4 Derivation of Finite-Volume Equations

With reference to the general equation (2.23-1). attention Is focussed 

here on the derivation of the finite-volume, algebraic equations relating 

<t>p to its surrounding neighbours. The notation is depicted in Figure 

2.4-1. The differential equation is integrated over the control-volume 

and each term will be discussed in turn.

2. 41 The diffusion term

Integration of the equation over a typical control-volume P. Figure 

2.4-1. for the diffusion term yields the following expression:

r r -<?!?
xw rs

= [De + DW + Dn + Ds ]<t>p
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where the D's stand for the diffusion expression, evaluated at various 

locations around the point P.

For example:

Ae
De = rd> e = ( ~ ) T2- (2.41-lb); 

8 ^e 6xe 8xe

which is the total flux due to diffusion across the east face of the P 

control-volume.

2.42 The source term

Integration of the source term. 3$. over a typical control-volume P. 

together with the linearisation procedure of Patankar (1980) yields the 

following expression:

xe rn

Jf r S^ dxdr = 3$ rp AX Ar (2. 42-1 a);

w rs
= Sa + Sb 4>p (2. 42-1 b).

The restriction on 85. one of the linearisation coefficients is that it must 

be negative so as to ensure numerical stability [see Patankar (1980)].
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2. 43 The convection term

It is the intention of the present study to evaluate a number of possible 

approximate representations for the convective fluxes across a 

control-volume face, since numerous numerical schemes have been 

reported for this purpose, and none appears entirely satisfactory. 

The integration of the convection term of equation (2.23-la) over a 

typical control-volume, leads to the following expression:

xe rn
J ( r fr ( PvnJ)) + t* ( Pu<t>)} = E cnb«>nb (2.43-la); 

xw rs

where the C's denote mass fluxes and nb. the neighbouring values 

involved in the calculation. The expression of Ce . say. is:

(pp+pp) 
Ce = pe ueAe = -~   ue Ae (2.43-lb).

In general the expression utilised for the approximation at the 

control-volume faces of the dependent variable of interest is important. 

This is the subject of a later chapter.

2. 44 The overall finite-volume equations

Finally, the overall finite-volume representation can be obtained by 

substituting expressions (2.41-1). (2.42-1) and (2.43-1) into equation 

(2.23-1).
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This representation is given below in a compact form:

Ap<j>p = E Anb 4>nb + S (2.44-1);

where An fc denotes the neighbouring grid-point value contributions to 4>p 

due to the influences of convection and diffusion [Patankar (1980)].

2. 5 Convergence Criteria and Physical Constraints

Since the differential equations are approximated by finite-volume 

equations (2.44-1). it is very important to retain within the discretisation 

procedure, the relevant information from the original partial-differential 

equations. It is on this basis that the finite-volume equations should be 

constructed.

2. 51 Information in analytical solutions

(i) The conservation property

The volume integral (in vector notation) of the differential equation for a 

region (R) bounded by a surface OR) is given by:

{pu<t> - rgrad (4>)) n dSR = J S dR (2.51.1-1) 

SR R

where n is the unit normal vector (positive outwards) to the surface.
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The conservation requirement preserves the integral conservation relations 

of the continuity equation.

(H) The boundedness property

Within a region (R). the maximum principle [Forsythe and Wasow 

(1960)1 implies for S=0. that the solution of a differential equation 

cannot assume either a negative minimum or a positive maximum. This 

implies that the solution must be bounded in the region (R), by the 

values on the surface OR).

That is:

mln (^) < <t> < max (<t>) (2.51.2-1)< <t> < max (<t>sR )

(iii) The transportive property

The transportive property implies that the effect of a perturbation, in the 

absence of sources, does not interfere with the solution (Roach and 

Mueller (1970), Roach (1972)1 in regions of strongly convective flows.

2. 52 Information In discretlsed equations

(I) The conservation property

For the discretised procedure to satisfy the conservation property, the 

integral conservation expression (2.51.1-1) must be satisfied both within
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each control-volume, locally, and over the whole region of interest, 

globally.

Therefore, to meet the requirements of global conservation, flux 

continuity at control-volume faces must be enforced. This is clear from 

expression (2.51.1-1). when written for each control-volume in turn, 

and summed over the domain of interest. To achieve this, the fluxes 

must be continuous at the control-volume faces (ie. reciprocity), thus 

ensuring appropriate cancellations within the domain of interest, leaving 

only the exterior surface integral.

(ii) Boundedness property

The boundedness property for the discretised equations is ensured when 

equation (2.44-1) in the absence of sources, satisfies the following 

expression:

Ap > E Anb ; Anb » 0 (2.52.2-1); 

thus ensuring mass conservation and system boundedness.

For example, consider one-dimensional flow, for which the following 

algebraic equation is valid:

Ap4>p = Ag4)e + Aw<J>w (2.52.2-2a) 

The diagonal dominance of this system is ensured by requiring that:
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<2.52,2-2b>

It follows that:

= |Ap| > lAgl + |A^y| <2.52,2-2c) 

and hence.

IAE I + lAyvl = lAe+Ayyl (2.52.2-2d) 

which implies.

= <t>p < max(4^.4^} (2.52.2-2e).

It is to be observed that 0p lies within the range of its neighbouring 

values, implying physically realistic solutions (ie. no over/under-shoots) . 

It follows that If the numerical scheme in matrix form is diagonally 

dominant, then all coefficients (A^b^ . have the same sign.

Effects of non-dlagonally dominant systems can be illustrated by the 

following simple example:

(2.52.2-2f);

where the coefficient of <J>|_EFT Is negative and that of BRIGHT Is positive. 

This system has the potential for over/under-shoots.
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(ill) Transportlve property

For discretised equations, the links of a grid point with neighbours lying 

outside the domain of interest should not feature in the calculation of the 

value at that grid point. Failure to satisfy this rule, would lead to 

non-positive coefficients, thus violating the boundedness property.

2. 53 Grid-to-flow skewness

In general, flows which are inclined to the grid (eg. recirculations) have 

to be treated by the differencing scheme so as to take into account the 

local direction of the flow. This idea is discussed in detail in a later 

chapter.

2.6 Closure

This chapter has presented, in brief, the mathematical formulation of 

flow and heat/mass transfer phenomena that are considered in this 

thesis.

The partial-differential equations for continuity, momentum and a general 

scalar property, $. have been introduced and discussed.

Furthermore, the finite-volume representation of the partial-differential 

equations has been derived, in a general context, together with the 

introduction of such properties of the original differential equations as

-34-



conservation, boundedness and transportive principles that have to be 

satisified also by the finite-volume equations.

-35-



CHAPTER 3

3. SOLUTION PROCEDURE FOR THE FINITE-VOLUME EQUATIONS

3. 1 Introduction

In the previous chapter the partial-differential equations, relevant to the 

present study, were set out together with the general form of the 

finite-volume equations. The task in this chapter is to present briefly, 

the solution procedure that is used to solve the set of finite-volume 

equations.

Patankar and Spalding (1972) described a three-dimensional calculation 

procedure for parabolic flows; for example, a flow in a duct is calculated 

by marching in the predominant direction of flow. This idea was 

Incorporated into a three-dimensional computational structure [Caretto. 

Gosman. Patankar. Potter and Spalding (1972); Patankar (1975)1.

The particular technique by which the velocity and pressure links are 

handled has been given the name SIMPLE (for Semi-jmplicit Nrtethod for 

Pressure Linked Equations; although the method is actually fully-implicit; 

semi-implicit was used only for euphony).

Later the NEAT (fvJearly D<act Adjustment of Terms) method of Spalding 

(1976) was also incorporated within the SIMPLE method. The method 

is. despite its name, a fully-implicit solution procedure for solving the 

relevant system of equations by cycles of guess-and-correct operations 

on a line-by-line basis, that utilises the tri-diagonal matrix algorithm
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known as TDMA or Thomas algorithm [Smith (1969); Roach (1976) 

Conte and de Boor (1980)].

3.11 The SIMPLE algorithm

A brief description of the SIMPLE solution procedure is presented here 

for completeness, but the reader is referred to Patankar and Spalding 

(1972). and Patankar (1980) for full details.

The algorithm

The momentum equations are solved using a 'guessed' pressure field.

The continuity equation is not directly solved, but is manipulated instead 

to yield an equation for 'pressure-corrections' that are used to correct 

pressures and velocities.

Operations

The following are the formal steps of the solution algorithm [Pun and 

Spaiding (1977)]:

1. Guess the pressure field.

2. Solve the momentum equations on the first line, for u* and v* 

using the TDMA procedure, where the 'starred' velocities 

denote the solution based on the guessed pressure field.
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3. The 'starred' velocities do not. in general, satisfy continuity. 

Substitution of these velocities in the continuity equation yields 

therefore mass errors.

4. The pressure-correction equation is solved, having as its 

source term, the mass errors evaluated in Step 3.

5. The pressure-corrections are applied to correct the velocities 

and pressure, in such a way so as to eliminate the continuity 

errors.

6. Steps (2) to (5) are repeated until convergence to a preset 

tolerance has been obtained.

7. Advance to the next line and repeat Steps (2) to (6).

8. Continue until a domain sweep is completed, (a domain sweep 

consists of visiting every line in the domain).

9. Perform as many sweeps as required for convergence. This 

leads to a converged solution within a preset tolerance.

The above solution procedure is also applicable to three-dimensional 

problems, where 'line' is replaced by 'slab', eg. groups of cells having 

the same z-coordinate.
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3. 12 The NEAT algorithm

The NEAT algorithm, is a line-by-line technique which uses the TDMA as 

its basic unit of operation.

in two-dimensional problems, equation (2.44-1) is solved for all 

4>-variables along a grid-line, where the neighbouring <j>-values used are 

the best estimates available. It is this assumption that enables the 

TDMA procedure to be used. NEAT performs an additional 'block 

correction' between lines, so as to accelerate convergence.

Rearranging equation (2.44-1) gives, for the TDMA procedure, the 

following set of equations (for a constant x-line):

Ap4>p = AM4N + AS4>s + SLUMP (3.12-la)

where SLUMP is given by:

SLUMP = S + A£0E + AwcfrW (3.12-lb).

The TDMA procedure is then applied to equation (3. 12-la) as described 

in Appendix A3. 1 .

The above solution is embodied in the computer code 2/E/FIX 

(2-Dlmensional Elliptic FIXed grid) used in the present study [Pun and 

Spalding (1977)].
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3. 2 Sources of Inaccuracy in Solution Procedures

There are two sources of error which, in general, influence the overall 

accuracy of the solutions obtained by numerical solution procedures, 

such as the one described above.

They are identified as:

(a) errors and uncertainties in physical/mathematical modelling, 

eg. turbulence differential-equation models [Patel. Cross. 

Markatos & Mace (1986)1. two-phase flow iterations, etc; and

(b) errors due to numerical approximations. and computer 

round-off.

Only the first part of the second source of errors. eg. 

numerical-approximation errors, is of importance in this study and it is 

therefore the only one discussed below.

3. 21 Numerical approximation errors

These errors arise because the continuous nature of the equations is 

replaced by a discrete representation (ie. by interpolation formulae). 

These errors are mainly due to the fact that steep gradients which are. 

in general. present in the final solution may not be accurately 

approximated by the numerical formulae used. In case of unwise 

choice of numerical formulae, accurate representations can only be
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achieved by the use of very fine grid distributions; this, however, leads 

to the increase of the computer round-off errors that may affect seriously 

the final outcome.

Furthermore, very fine-grid solutions are too expensive to use. in terms 

of computer resources. One way out of these difficulties is the use of 

better approximations that will improve the accuracy for coarser grids. 

Further discussion on numerical errors is provided in Chapter 5.

3.22 Convergence

The degree of accuracy of the final solution is also dependent on the 

convergence criterion imposed on a given solution procedure. 

Therefore, precise definition of 'converge' is required.

A 'converged' solution in the present study is deemed to be obtained by 

satisfying the following two specific requirements, concerning the error 

levels:

(a) the sum of absolute residual errors in the solution of any 

variable must be low ie. <10~6 ; and

(b) the absolute (volume) continuity errors must be less than 0.1% 

of a typical volume-flow rate.

In general, the latter requirement was satisfied before the former.
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3. 23 Relaxation practice

Due to the non-linear nature and the strong coupling between the 

differential equations, the iterative procedure may necessitate relaxation, 

in order to converge. When the iteration-to-iteration variation in values 

is large, there is a possibility of divergence and to combat this, it is 

advisable to employ some sort of under-relaxation.

The conventional practice was followed, eg:

^present = a*new + d~a)<t>old (3.23-1);

where 4>new ' s tne 4>~value evaluated at the current iteration; $013 is the 

4>-value from the previous iteration, ^present is tne resulting 4>-value at 

the present iteration after being relaxed, and a is the relaxation 

parameter.

3. 3 Closure

This chapter has presented, briefly, the solution procedure by which the 

algebraic equations, derived in Chapter 2. can be solved. The 

procedure used is the SIMPLE algorithm together with the NEAT 

adjustment.

The solution procedure is flexible and general, and may be applied to 

calculate numerous flow situations of practical interest.
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Finally, the accuracy of the numerical solution procedure and constraints 

of convergence were identified.
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CHAPTER 4

4. NUMERICAL SCHEMES

4. 1 Introduction

In this chapter, the numerical schemes for convection considered for this 

Investigation are introduced. The diffusion term is approximated by the 

central-difference scheme, which is. in general, a good approximation, 

since it is third order [Leonard. Leschziner and McGuirk (1978)].

On the contrary, convection, which is by its nature a non-symmetrical 

phenomenon, may Introduce considerable inaccuracy when approximated 

by numerical schemes.

In what follows, thirteen numerical schemes (ie. interpolation techniques) 

for the convection term are described [Patel. Markatos and Cross 

(1985a). Patel and Markatos (1986a)J. with the aim of evaluating and 

comparing their accuracy and practicality of implementation.

4. 11 Diffusion terms

For a general grid. Figure (4.11-1). the integrated diffusion term, in 

two dimensions, is given by:

- <r
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where approximations for the quantities in brackets are sought.

4.11.1 Central-differencing scheme

The central-difference scheme, which is used for the diffusion term 

approximation, assumes in the present study a piecewise linear profile 

between two grid points, as it is usually used to approximate the 

4>-gradient. Therefore the terms in expression (4.11-1) are replaced 

by:

6 W

oxe oxw
(4>w-<J>p)aw

rn , rs
(4.11 .1-1 )

4. 12 Convection term

Integration of the convection term, over a typical control-volume. Figure 

(4. 11-1). yields:

(pu<j>) e ae- (pu0) w aw+ (pv0) n an- (pv<j>) s as (4.12-1).

The objective of the present study is to Investigate various forms of 

approximating the <j>-value used at the control-volume faces (ie. ct>e , <t>w , 

<t> n . 4>s ) . and suggest new ones. The velocities at the faces do not 

need any averaging since when solving for any scalar $ they are already 

located at the cell faces.
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4. 12. 1 Central-difference scheme

The central-difference scheme assumes a linear profile to evaluate the 

convected face values as follows:

<t>e ~ p ^^E + ^^

2 ((t>w * ^

1 (4.12.1-1)
<t>n = 2 (4>N

1
2

The influence coefficients

The overall A coefficients of equation (2.44-1) which concern

contributions of both convection and diffusion are. for the

central-difference scheme, as follows:

= Oe - mod ( ) + f-Ce .Ol

Ayy = Dyy - mod t^T") "*"

(4.12.1-2);

AN = Dn - mod (r") + ff-Cn .Ol

cs 
AS = Ds ~ moc^ ^o~^ "*" f^s- 0 !

where the D terms are defined by equation (2.41-lb) and the C terms 

are defined by equation (2.43-lb). and
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IA,BJ = max (A and B).

This is a convenient way of presenting the various schemes and will be 

used for all of them, in what follows.

4.12.2 Upwind-difference scheme

The upwind-difference scheme, first suggested by Courant. Issacson and 

Rees (1952) assumes the upwind-0 value to be convected through the 

faces, instead of the average of two neighbours values of the convected 

property. This leads to the following aproximation for the convected 

<j>-values at the faces:

= 4>R

ue <0

4>w =

= <t>p uw<0

(4.12.2-1 )

vn<°

= <t>S

= 4>p vs <0

The influence coefficients

The influence coefficients for the upwind-differencing scheme are:
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AE = CDe .De-Ce l 

AW =
(4.12.2-2) 

AN = lDn .Dn -Cn l

AS = [DS .DS +CS J 

4.12.3 Hybrid-difference scheme

The hybrid-difference scheme, introduced by Spalding (1972) combines 

the advantages of both the central-difference scheme and 

upwind-difference scheme. It leads to the following expressions for the 

convected face values:

4>e = 4>P 

= (<t>p+<t>E> m

<t>w =

= I (<t>p+<t>w> mw<2Dw

(4.12.3-1) 

= 4>p

= 

(<t>p-«-Os) ms <2Ds

where m's are the absolute values of the mass-flow rates through each 

face denoted by the lower-case subscripts.
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The Influence coefficients

The influence coefficients for the hybrid-difference scheme are:

= IO.De-Ce/2.-Ce l

AW =
(4.12.3-2) 

AN = [O.Dn -Cn/2.-Cn l

AS = [O.DS +CS /2.CS 1

4.12.4 Locally-exact-difference scheme

The locally-exact-difference scheme, traced back to the paper by Alien 

and Southwell (1955) and later rediscovered by Spalding (1972) and 

others, makes use of the one-dimensional analytical solution for the 

convection-diffusion equation (without sources) to approximate the 

convected values across the faces.

Since the analytical solution for the one-dimensional convection-diffusion 

equation is an exponential function, the face values according to this 

scheme are approximated as follows:

exp(Pw)-l

* exp(P)-l

exp(Pe )-l 
+ exp(P)-l

(4.12.4-1 ) 

exp(Pn )-l 

exp(P)-l

exp(Ps )-l
* eXp(P)-r
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where P Is the Peclet number and Pe . Pw etc are the mesh Peclet 

numbers.

The influence coefficients

The influence coefficients for the locally-exact difference scheme are:

AE =
exp(Pe )-l

exp(Pw )-1

(4.12.4-2)

exp(Pn )-l

Po

For details see Appendix A4. 1

4.12.5 Power-difference scheme

The power-difference scheme. an extension of the 

locally-exact-dlfference scheme, makes use of a fifth order power law to 

approximate the exponential functions that occur in the 

locally-exact-difference scheme [Patankar (1980)1. The convected value 

at the faces is approximated as follows:

U+/3e )(}>UpS tream ~ ^e^downstream (4.12.5-1 a)
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where:

(4.12.5-1b)

The influence coefficients

AE = DefO^elPell + t-Ce .OJ

(4.12.5-2)
AN = Dn io.0nipn ii + i-cn ,oj

Ps |I + [CSr 01

4.12.6 Leonard-difference scheme

The Leonard-difference scheme [Barratt (1982)] uses two upstream 

grid-point values to approximate the first-derivative (convection term) by 

the following expressions:

(4.12.6-1)

ax p 2Ax 6AX

The influence coefficients

The influence coefficients for the Leonard-difference scheme are
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= 6De - l2Ce .01

AW = 60* + 1-2CV01

AN = 6Dn - [2Cn ,OJ

AS = 6DS + l-2Cs .01

(4.12.6-2) 
AEE = ICee-°l

ANN =

ASS = - icss .oj

4.12.7 Leonard-upwind-difference scheme

The Leonard-upwind-difference scheme [Barratt (1982)] approximates the 

<t>-value at the faces by using three upstream values, and leads to the 

following expressions:

_ - 18<Eyy

ax 6Ax

(4.12.7-1 )

6AX
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The Influence coefficients

The influence coefficients for the Leonard-upwind-difference scheme are:

= 6De - [18Ce ,0]| : AEE = I-9Cee .OJ 

AW = 60* + 1-18CVOJ : AWW = - [-9CW01

AN = 6Dn - [18Cn .Ol : ANN = I-9Cnn .01

(4.12.7-2) 
AS = 6DS + l-18Cs.01 : ASS = - I[-9CSS .OJ

AEEE = - l-2ceee .oi :

ANNN = - t2cnnn ,oj : ASSS = i[2csss .oi

4.12.8 Leonard-superupwind-difference scheme

The Leonard-superupwind-difference scheme [Barratt (1982)] is devised 

to reproduce the exact solution at the nodal points close to the 

boundaries. To achieve this, the Leonard-difference scheme and the 

Leonard-upwind-difference scheme are used in conjunction with a 

weighting parameter evaluated from the exact solution. According to 

this scheme, the first derivatives are approximated by:

LJDS LUDS
= X + (1-X) <) (4.12.8-1) 

ax ax ax p

where A is a weighting parameter. For details, see Appendix A4. 2.
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The influence coefficients

The influence coefficients for the Leonard-superupwind-difference scheme 

are evaluated from those of equations (4.12.6-2) and (4.12.7-2). 

Their combination is of the form:

LDS LUDS 
Anb = ^Anb "*" (1~^) (4.12.8-2).

4.12.9 Quadratic upstream-difference scheme

The quadratic-upstream-difference scheme. proposed by Leonard 

(1979). is claimed to combine the accuracy of quadratic interpolation 

with the stability of upstream weighting. This scheme can be 

interpreted as a pure upwind scheme which is. however, augmented by 

gradient/curvature-type correction terms. This allows the ^ value, for 

example, to respond to the transport processes which occur only in 

directions normal to that considered. In other words, it allows the 

coupling of the component flows through one-dimensional approximations, 

which, however, include only corner nodes when the curvature-type 

corrections are made. According to this scheme, the 0-values 

convected through the control-volume faces are expressed, (see Figure 

4. 12. 9-1) . as follows:
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(4.12.9-1) 

^ = o

(4.12.9-2) 
AS = MS" <Ds+3Cs/8) + Mg 4- (Ds -«-3Cs/4+Cn/8)
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rfalse - 4 P sln ( 4 +e) IVI A sin 2e (5.3-lc);
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