
Greenwich Academic Literature Archive (GALA)
– the University of Greenwich open access repository

http://gala.gre.ac.uk

__

Citation:

Naqvi, Waseem Hadder (1995) Active database behaviour: the REFLEX approach. PhD thesis,
University of Greenwich.

__

Please note that the full text version provided on GALA is the final published version awarded

by the university. “I certify that this work has not been accepted in substance for any degree,

and is not concurrently being submitted for any degree other than that of (name of research

degree) being studied at the University of Greenwich. I also declare that this work is the result

of my own investigations except where otherwise identified by references and that I have not

plagiarised the work of others”.

Naqvi, Waseem Hadder (1995) Active database behaviour: the REFLEX approach . ##thesis _type## ,

##institution##

Available at: http://gala.gre.ac.uk/8688/

__

Contact: gala@gre.ac.uk

http://gala.gre.ac.uk/
mailto:gala@gre.ac.uk

1491406

Active Database Behaviour

The REFLEX Approach

Waseem Hadder Naqvi
,>:C '-<-
r£s» C
uj 8

A thesis submitted in partial fulfilment of the

requirements of the University of Greenwich for the

degree of Doctor of Philosophy

June 1995

University of Greenwich

London

Acknowledgements

I would like to express my thanks to a number of people who, during the course of this

research, have strived to make the process more humane.

Firstly, Mohamed T. Ibrahim, my Supervisor and Director of Studies, for his advice

and guidance during the past years but above all for his friendship. Professor Brian

Knight who, even though involved in the latter stages of this research, proved an

invaluable source of advice and guidance. Yasser Ades of course must get a mention,

as he has never reconciled the fact that I was not researching in semantic analysis. Dr.

Ala Al-Zobaidie for his encouragement and advice throughout the years. A special

thank you to Malcolm Hudson for his endless support, friendship and belief.

I would sincerely like to thank David Marsh and Geoff Cooper, my present employers

at the Computer Services Centre, University of Greenwich, for allowing me the time

to complete this thesis.

I would like to thank my colleagues Colin Hughes, Diane Can, Steve Panyioutou,

Ahmed Alyamani, Robert Leslie, Dr. Sati McKenzie, Dr. Don Cowell and Dr. Garret

Kearney, for their friendship and for the useful discussions during the course of this

research.

I would like to thank my father Sayed Akthar Ali Naqvi, Shaheen, and my friends and

colleagues for their support and encouragement over the years. Especially Farah for

her patience in draft reading the thesis and Faraaz for not allowing me to work on

weekends thus preserving some sanity and for the use of his computer.

I would also like to acknowledge the numerous people that I have met in the course of

this research for both making the process interesting and for providing motivation.

Abstract

Modern day and new generation applications have more demanding requirements than

traditional database management systems (DBMS) are able to support. Two of these

requirements, timely responses to the change of database state and application domain

knowledge stored within the database, are embodied within active database technology.

Currently, there are a number of research prototype active database systems throughout

the world. In order for an organisation to use any such prototype system, it may have

to forsake existing products and resources and embark on substantial reinvestment in

the new database products and associated resources and retraining costs. This approach

would clearly be unfavourable as it is expensive both in terms of time and money.

A more suitable approach would be to allow active behaviour to be added onto their

existing systems. This scenario is addressed within this research. It investigates how

best active behaviour can be augmented to existing DBMSs, so as to preserve the

investments in an organisations resources, by examining the following issues, (i.) what

form the knowledge model should take, (ii.) should rules and events be modelled as

first class objects, (iii.) how will the triggering events be specified, (iv.) how will the

database state be tested, (v.) how will resultant actions be executed, and (vi.) how the

user will interact with the system.

Various design decisions were taken, which were investigated by implementation of a

series of working prototypes, on the ONTOS DBMS platform. The resultant REFLEX

model was successfully ported and adapted onto a second POET platform. The porting

process uncovered some interesting issues regarding preconceived ideas about the

portability of open systems.

- n -

Contents

Acknowledgements i

Abstract ii

1. Introduction .. 1

1.1. Motivations and Contribution of the Research 1

1.1.1. Research Aims 5

1.2. Research Methodology 6

1.3. Structure of the thesis 7

1.4. Summary 9

2. Knowledge within Databases 10

2.1. Introduction 10

2.2. Current Database Systems 12

2.3. Semantic Data Model 15

2.4. Object Data Model 16

2.4.1. Object-Oriented Databases 17

2.4.1.1. Object Identifier 18

2.4.1.2. Impedance Mismatch 20

2.5. Active Databases 21

2.6. Summary 26

3. Review of Active Databases 28

3.1. Introduction .. 28

3.2. Issues of Active Databases 29

3.2.1 Underlying Architecture 29

3.2.2. Events ... 31

- iii -

3.2.3. Analysis and Design of Rules 33

3.2.4. Rule Termination 34

3.2.5. Transactions and Coupling States 35

3.2.6. Rule Contention 38

3.2.7. Knowledge Coupling 39

3.2.8. Knowledge Representation 40

3.3. Literature Review 41

3.3.1. POSTGRES 41

3.3.1.1. Rule System 42

3.3.1.2. Summary 44

3.3.2. STARBURST 45

3.3.2.1. Production Rules 46

3.3.2.2. Alert 47

3.3.2.3. Summary 48

3.3.3. HiPAC .. 48

3.3.3.1. Knowledge Model 49

3.3.3.2. Architecture 50

3.3.3.3. Summary 50

3.3.4. ADAM .. 51

3.3.4.1. The Knowledge Model 51

3.3.4.2. Summary 53

3.3.5. ODE .. 53

3.3.5.1. Event-Action (EA) Model 54

3.3.5.2. Summary 56

3.3.6. Event/Trigger Mechanism (ETM) 57

3.3.6.1. Summary 58

3.4. Comparison of Approaches 58

3.5. Summary .. 61

4. The REFLEX Approach 62

4.1. Introduction 62

- iv -

4.2. Underlying Technology 63

4.3. Loose Coupling 64

4.4. Knowledge Model 67

4.5. Execution Model 68

4.5.1. Rule Contention 68

4.5.2. Rule Termination 69

4.6. Employing Activity 69

4.7. Knowledge Integrity 70

4.7.1. Non-Destructive Knowledge 71

4.8. Summary 71

5. The REFLEX Knowledge Model 73

5.1. Introduction 73

5.2. Knowledge Model 74

5.3. The Extended Knowledge Model 76

5.3.1. Related Knowledge Models 76

5.3.2. Scope of the Condition Clause 77

5.3.3. Situation Redundancy 79

5.3.4. EECA Coupling Modes and their Semantics 82

5.4. Rules as First-Class Objects 84

5.4.1. Rule Attributes 85

5.5. Event Representation 89

5.5.1. Events as Application System Attributes 90

5.5.2. Events as First-Class Objects 92

5.5.3. Complex events as first-class objects 93

5.5.4. Event Representation Method Employed 95

5.5.4.1. Heuristic Analysis 96

5.6. Event Specification 97

5.6.1. Related Work 99

5.6.2. Semantics of an Event 101

5.6.2.1. Event Chronology 101

- v -

5.6.2.2. Internal Event Intervals 101

5.6.2.3. Validity 103

5.7. Detectable Events 104

5.8. English ESL - An Event Algebra 106

5.8.1. ESL Syntax 106

5.8.2. Operational Semantics 109

5.8.2.1. AND 110

5.8.2.2. OR Ill

5.8.2.3. PRECEDES Ill

5.8.2.4. SUCCEEDS 112

5.8.2.5. WITHIN 112

5.8.2.6. BETWEEN 113

5.8.2.7. NOT 113

5.8.2.8. EVERY 114

5.8.2.9. DELAY 114

5.9. Event Parameters 115

5.10. Condition Specification 116

5.11. Action Specification 117

5.12. Example EECA Rules 119

5.13. Summary 120

6. Design Architecture and Implementation 122

6.1. Introduction 122

6.2. Object Databases 123

6.2.1. ONTOS 124

6.2.2. POET 126

6.3. REFLEX Architecture 127

6.4. Components of the Model 129

6.4.1. Transparent Interface Manager (TIM) 129

6.4.1.1. The Active Object Class 132

6.4.1.2. Transaction Free Functions 133

- vi -

6.4.2. Event Manager (EM) 134

6.4.2.1 Event Monitoring 135

6.4.2.2. Temporal Log 136

6.4.3. Knowledge Management Kernel (KMK) 137

6.4.3.1. EM-KMK-KSM Interface 138

6.4.3.2. KMK-CEM-ES Interface 138

6.4.4. Knowledge Selection Module (KSM) 140

6.4.5. Condition Evaluation Module 143

6.4.6. Execution Supervisor 145

6.5. Distribution and Parallelism 146

6.5.1. Possible Solutions 147

6.5.2. Remote Procedure Call 148

6.5.2.1. Implementation Details 149

6.6. Performance 150

6.7. User Interface 151

6.7.1. Related Work 151

6.7.2. Vis Design Approach 152

6.7.3. Visual Experience 153

6.8. Demonstrate Portability and Adaptability 156

6.8.1. The Porting Process 158

6.8.2. The Adaption Process 161

6.8.3. Extra Functionality 162

6.8.4. Component Integration 163

6.8.5. Testing 163

6.8.6. What was learned in the Porting Process 164

6.9. Summary 165

7. Evolution and Experience of REFLEX 166

7.1. Introduction 166

7.2. The REFLEX Prototypes 167

7.3. Using the Rules System 171

- vii -

7.3.1. Constituent Parts of a Rule 173

7.3.1.1. Declaration of Complex Events 173

7.3.1.2. Specification of Rule Condition 173

7.3.1.3. Event-Condition (EC) Coupling Mode 174

7.3.1.4. Action Clause Specification 174

7.3.2. Creation and Declaration of Events 175

7.3.3. Definition of External Conditions and Actions 176

7.4. Example Applications 176

7.4.1. Air Traffic Control System 177

7.4.1.1. Traditional Approach 177

7.4.1.2. Active Approach 178

7.4.2. Student Records System 186

7.4.2.1. Traditionally 186

7.4.2.2. Active Approach 187

7.5. Functionality of Prototype 193

7.6. Summary 194

8. Conclusions and Future Work 195

8.1. Introduction 195

8.2. Summary of Research 196

8.2.1. Loose coupling 197

8.2.2. Extended EGA (EECA) 197

8.2.3. Events as first-class objects 198

8.2.4. REFLEX Model Optimisation 198

8.2.5. English ESL 198

8.2.6. VIS 199

8.2.7. Concurrency 199

8.2.8. Reflections on the Second Platform Implementation: POET

.................................... 200

8.2.9. Novel Active Applications 201

8.2.9.1. Cortextual Parser 201

- viii -

8.2.9.2. Dynamic Active Schema Integration Model (DASIM)

.............................. 202

8.3. Future Directions 202

8.3.1. Real data trials 202

8.3.2. Temporal extensions 202

8.3.3. Optimisation and parallelism 203

8.3.4. Petri net compiler 203

8.3.5. VIS Extensions 203

8.3.6. Analysis and Design of Rules 204

8.4. Conclusions and Contributions 204

9. Bibliographic References 206

Appendices

A. Author's Related Publications Al

1. Active Distribution by Stealth A4

2. EECA: An Active Knowledge Model A12

3. REFLEX Active Database Model: Application of Petri-Nets .. A23

4. Rule and Knowledge Management in an Active Database System A31

5. Applied Active Databases for Evolving Image Processing Algorithms

... A41

B. Example Application Runs A52

1. Air Traffic Control System A53

2. Student Records System A71

2.1. Vis Interaction A71

2.2. Text Based Event Invocation A76

- ix -

C. REFLEX Petri Nets A82

D. OMT Graphical Notation A89

- x -

List of Figures

Figure 2.1 Passive Database System 23

Figure 2.2 Active Database System 25

Figure 3.1 Coupling Modes 37

Figure 4.1 Layered access to the host DBMS 64

Figure 4.2 Knowledgebase system approach 65

Figure 4.3 REFLEX active database approach 65

Figure 5.1 REFLEX Logical Knowledge Model 75

Figure 5.2 EECA Knowledge Model 80

Figure 5.3 Partial Rule Composition Hierarchy 84

Figure 5.4 Events as System Attributes 90

Figure 5.5 Event as Attribute: all Rules in the system are processed 91

Figure 5.6 Event maintains list of rules which it may affect 92

Figure 5.7 Events as complex objects 94

Figure 5.8 Complex Event levels of indirection 94

Figure 5.9 Complex event occurrence point in time 98

Figure 5.10 Event occurrence interval 102

Figure 5.11 Referential integrity check 102

Figure 6.1 ONTOS DB distributed database 124

Figure 6.2 ONTOS base class hierarchy 125

Figure 6.3 REFLEX Architecture 128

Figure 6.4 Active Object Class 130

Figure 6.5 REFLEX example transaction event raise wrapper 130

Figure 6.6 Signal Generating Transaction Class 131

Figure 6.7 Active Signalling Inheritance Hierarchy for ONTOS 132

Figure 6.8 AObject Definition Code 133

Figure 6.9 REFLEX transaction function call for the ONTOS DBMS 134

Figure 6.10 Event Signal Generators 135

Figure 6.11 Event Manager - internal event raise code segment 136

- xi -

Figure 6.12

Figure 6.13

Figure 6.14

Figure 6.15

Figure 6.16

Figure 6.17

Figure 6.18

Figure 6.19

Figure 6.20

Figure 6.21

Figure 6.22

Figure 6.23

Figure 7.1

Figure 7.2

Figure 7.3

Figure 7.4

Figure 7.5

Figure 7.6

Figure 7.7

Figure 7.8

Figure 7.9

Figure 7.10

Figure 7.11

Figure 7.12

Figure 7.13

Figure 7.14

Figure 7.15

Figure 7.16

Figure 7.17

Figure 7.18

Figure C.I

Concurrent Execution KSM & CEM 139

KSM - testEventSpec 140

KSM - semantic testing of logical operators 142

KSM - preserving validity constraints 143

CEM - Four types of condition clause 143

Execution Module - Multiple Action/Fail-Action clauses 145

Existing Sequential Model 146

RFC Concurrency Model 148

Vis Main Menu 154

EECA Rule, Amend Rule Screen 155

Dynamic Event Maintenance 156

POET Compiling Process 159

Program fragment to capture rule details 172

Program fragment to capture event details 174

Program fragment to define external actions and conditions ... 175

Air Traffic Control Simulation 177

ATCS: Creating a new aircraft 179

ATCS: Declaring a new rule 180

ATCS: Trace when a rule is triggered 181

ATCS: Declaring a new event dynamically 182

ATCS: Amending an existing ESL statement for a rule 183

ATCS: Triggering a complex event specification 184

ATCS: Read events being raised 185

Student Records System Schema 186

SRS: Creating a new rule 187

SRS: Creating a new rule action 189

SRS: Creating a new rule fail action 189

SRS: Displaying an existing rule 190

SRS: Triggering and executing a rule action 191

SRS: Triggering a rule and executing a rule fail action 191

Petri-net extensions A83

- xn -

Figure C.2 Petri-net: Event Manager/ Knowledge Management Kernel . . . A84

Figure C.3 Petri-net: Knowledge Selection Module A87

Figure C.4 Petri-net: Major REFLEX Systems A88

Figure D.I OMT Graphical Notation A90

List of Tables

Table 3.1 POSTGRES detectable events 43

Table 3.2 Features of Current Active Database Systems 60

Table 5.1 Rule Object Attributes 89

Table 6.1 Object database feature list 164

Table 7.1 History of Prototypes 167

- xin -

Chapter 1

Introduction

The contents of this thesis report the results of an investigation into how existing

commercial organisational database management systems can be extended with the

ability to utilise an active knowledge management system, by considering the following

issues, what form the knowledge model should take, should rules and events be

modeled as first class objects, how will the triggering events be specified, how will the

database state be tested, how will resultant actions be executed, and how the user will

interact with the system. The research has concentrated on augmenting an object

oriented (OO) database system with active behaviour. The main objectives are to

identify, represent and extend an existing database with active behaviour, allowing the

encoding of domain knowledge within the host database management system in an

efficient manner.

1.1. Motivations and Contribution of the Research

A database stores information about some pan of the real world, sometimes referred

to as the miniworld or the universe of discourse (UoD). Many applications such as

process control, computerised stock/securities trading and network management require

timely responses to critical situations, as observed by Dittrich et al. [Dittrich 86].

Chapter L Introduction

These applications are not well served by passive database management systems

(DBMS), where actions are performed on the database by user or program requests,

since these databases are simple repositories of data without any knowledge of what the

data is to be used for. For the purpose of this research we shall refer to these databases

as traditional databases. The data once entered into a database of this kind, may cause

the system to be in a semanncally inconsistent state i.e. the internal database state may

not truly represent the external real world. For example in a Students Record System,

on the death of a student it is meaningless to have the student still enrolled at the

university. This situation may be rectified by an application which has knowledge as

to how to reset the internal state of the database to the external real world state, by

polling the database at the prescribed period. The interval between polling periods may

be large, after which the relevance of the data may be in doubt. The interval between

the polling of the database may be reduced causing the database to be polled more

frequently. This approach causes increased overhead as the database is serving polling

requests rather than serving its intent. A frequently used alternative strategy is to

augment the code, within the application, which updates the database with additional

logic to test any repercussions of the data entered. This has severe consequences for

system maintenance since the code required to maintain the semantic integrity would

have to be duplicated among the many programs which access a particular item of data.

Even if the system was implemented using a modular approach, the code is still

replicated using cut and paste techniques, each of which need to be changed to reflect

any new knowledge. The code redundancy has to be maintained which leads to large

maintenance costs.

A solution to the problem of code redundancy is to model this domain knowledge

within the database. However, several authors have drawn a distinction between

knowledge and data [Freundlich 90, Ibrahim 95, Luger 89, Ringland 87]; knowledge

being represented in various forms. Today, many commercial database systems provide

this support for knowledge in the form of integrity constraints, which are a mechanism

to help preserve the semantic integrity of the database system. They allow some

Chapter 1. Introduction

knowledge to be attached to the system. This support by means of integrity constraints

is realised by a simple collection of triggers (current DBMSs which support triggers

include ORACLE, INGRES, and Sybase). However, there is much more domain

knowledge that an application designer would like to support, for which trigger

mechanisms are inadequate. For example, as pointer out by Stonebraker et al.

[Stonebraker 89], one might want to insist that a specific employee, Nigel, has the

same salary as another employee, John. This rule would be difficult to enforce in

application logic because it would require the application to see all updates to the salary

field, in order to fire application logic to enforce the rule at the correct time. A better

solution would be to enforce the rule inside the DBMS.

In active database systems, the data, knowledge and parts of the processing logic

(relating to events and conditions that require action) are under the control of an active

database management system (ADBMS).

An apt definition for active databases is that provided by Medeiros and Pfeffer

[Medeiros 90], they state:

"Active databases differ from conventional databases as they are

enhanced with active behaviour, i.e. behaviour exhibited automatically

by the system in response to events generated internally or externally

without user intervention".

Active databases respond automatically to any given events, but how is this knowledge

encoded within the system? According to McCarthy and Dayal [McCarthy 89], the user

may provide knowledge in the form of Event-Condition-Action (ECA) production

rules. The ECA rules are akin to the production rules found in expert systems with the

addition of an event clause. The rules are made up of three parts, (i.) an event clause

(ii.) a condition clause and (iii.) an action clause. Once these rules have been defined,

the system, on the change of database state, or other external events, evaluates the

Chapter 1. Introduction

condition(s) of any triggered rule. If the condition has been satisfied, it then without

user intervention, executes the action clause of the rule. It does not need to wait for

either user or program invocation as with a passive system.

Since active databases can respond to a given situation almost as it occurs, they would

be of great use in situations where any changes to the data are of paramount importance

and that the changed database state is acted upon immediately as severe penalties may

be incurred as time elapses, i.e. real-time. Examples of real-time databases could be

air-traffic control systems, computer aided manufacturing systems and many process

control applications.

Some other more typical day-to-day examples could be administrative systems such as

university Student Record Systems (SRS) or company Payroll applications. These

applications are prone to change for example, in an SRS the business rules are

continually changing from semester to semester, as new courses (or at least course

offerings) are initiated. The entry requirements for these courses may change from one

session to the next and more importantly, so do the assessment criteria.

Active databases introduce further problems of activity or knowledge design, akin to

the problems of expert systems design. In many cases the semantics of the problem

domain are simply not well known. For example, in the case of an SRS, in terms of

the assessment criteria, what are the conditions that must apply so that a student can

'pass'! Who knows? Are they the same as last year? Are they formally recorded

somewhere? Are they built into some system whereby the students grades are entered,

and depending on the total marks, the student is awarded a degree or not? Or are they

simply in the head of some administrator? To answer these questions one must apply

some knowledge elicitation (KE) techniques.

Chapter 1. Introduction________________________________5

1.1.1. Research Aims

Not only are active databases and the requirement to encode more domain knowledge

in a centralized database an extremely interesting research area, but they are becoming

increasingly important practically.

Previously, the related research work in this area was undertaken by either the creation

of new DBMSs or by the substantial re-engineering of existing DBMSs. For a

commercial organisation that requires that its knowledge is integrated within its DBMS

systems, the above mentioned approaches are not suitable in terms of capital, time and

confidence in a new system, especially when the system is of strategic importance, as

is a DBMS. A favourable approach would be to allow their existing system to be

augmented with active behaviour. This approach would allow a known DBMS (to the

organisation) to become active, and thus result in cost savings in both resources and

training. Since the staff would be familiar with the host database, these skills would be

preserved. Corporations make substantial investments in applications software, which

do not become evident until a few years later. This situation is made more acute when

corporations intent on preserving their production systems (which very quickly, even

in these days of supposedly open systems, become dinosaurs or legacy systems [Brodie

93]), discover that they are tied to a particular platform. Hence they cannot migrate to

a different platform even if they wish to.

This was the prime motivation for this research, raising the question as to whether

active functionality can be bolted-on to existing commercial databases and if so, how

best it could be accomplished. This facility, which subscribes to the notions of open

systems and the inherent portability that they offer, differs from the work of existing

active database research, where the researchers have concentrated on building systems

from scratch or at least where they have had access to the source code of their host

system.

Chapter 1. Introduction

This research attempts to ascertain how best an active database should be structured and

managed so that it coexists and adapts to its host DBMS and allows the domain

knowledge to be represented explicitly in an object DBMS.

In order to achieve the main goal of the research, a number of pertinent issues must be

considered, the answers to which can be found in chapters five and six:

i. what form should the knowledge model take?

ii. should events be modeled as first-class objects, or attributes of rules?

What about composite events, should they be modeled as first-class

objects?

iii. how should triggering event(s) be specified and evaluated?

iv. how are conditions on the state of the database to be specified and

evaluated efficiently?

v. how will a user interact with the active database system, i.e. issues of

human-computer interaction (HCI) require consideration ?

These questions and further questions are addressed throughout this thesis, and help to

define a best/optimal active model. The results or findings of the research are the

REFLEX active database model and are embodied in the various REFLEX active

database prototypes.

1.2. Research Methodology

The problem domain was critically investigated with respect to related work and is

Chapter 1. Introduction________________________________7

described later in chapter three, the theoretical solutions to the problems or issues in

question were formed and are reported in chapter four. The primary question involved

the manner of augmenting an existing commercial database with active functionality.

In order to prove the theory, it was necessary to construct a prototype, embodying the

proposed solutions. During the building and execution of the prototype, further

questions and issues were raised. These were then tackled theoretically and the best

solutions were implemented in further prototypes, repeating the cycle.

This method was adopted since a pure theoretical analysis can often miss out some

features because they may be obvious or minimal, but, could be a crucial part of any

model. The building of a prototype helped to realise the specific goal and provided

useful feedback into the research investigation.

The use of standard examples during the design and testing phase of the prototype

implementation and during the writing of this thesis allowed the train of thought a

degree of coherency. The examples were i) an administrative system, a students records

system (SRS) and ii) real-time, an air traffic control system (ATCS). Both of the

example scenarios are fully described in the appendices.

The notation employed in this thesis for the representation of objects is that of

Rumbaugh et al.'s Object Modelling Technique (OMT) [Rumbaugh 91] and for the

readers convenience a diagramming key can be found in Appendix D.

1.3. Structure of the thesis

The thesis has been divided into a further seven chapters describing key areas of

research and ends with the final chapter containing the conclusions that can be drawn

from the work and in particular addresses the aims expressed earlier in this chapter.

Chapter 1. Introduction________________________________8

The remainder of the thesis is laid out as follows:

 Chapter 2: Knowledge within Databases

This chapter highlights why knowledge is required within databases with

respect to the three major forms of knowledge encoding i.e. structural,

behavioural and explicit. It then goes on to investigate what approaches

have been taken to add this knowledge, culminating in the tenet of

active databases.

 Chapter 3: Review of Active Databases

Chapter three introduces the issues relating to active databases and then

goes on to survey the young but active field. The survey is structured

so that each active database prototype is individually reviewed in detail

and then the reviews summarised and tabulated at the end of the

chapter.

 Chapter 4: The REFLEX Approach

This chapter examines the issues involved in active database

management as highlighted in chapter three, and the approaches adopted

by REFLEX in their resolution.

 Chapter 5: The REFLEX Knowledge Model

This chapter describes the EECA knowledge model of REFLEX,

including its rule and event representations. These are followed by the

event semantics of the model, and its event specification language called

the English ESL. The condition and action specifications are also

introduced with respect to their semantics.

 Chapter 6: Design Architecture and Implementation

This chapter looks at the design decisions and implementation of the

Chapter 1. Introduction

REFLEX active database model following the semantics as described in

the preceding chapters.

Chapter 7: Evolution and Experience of REFLEX

Chapter seven reviews the various prototypes, their findings and

shortcomings. It then goes onto describe the practical interaction and

use of the resultant system, followed by worked example applications.

Chapter 8: Conclusions and Future Work

The final chapter evaluates the work presented in this thesis and assesses

whether or not it has achieved the aims expressed in this introduction.

Particular consideration is given to comparing the resultant system with

those surveyed in chapter three. Final comments will be addressed to

pointers for future work that results from work performed for this

research including using the working prototype as a tool to gather real

data from active applications.

1.4. Summary

This chapter has served to introduce the research domain, that of active databases and

the major goal of how best active functionality can be augmented onto existing

commercial databases. Motivations for this research goal were addressed such as, the

desire for an organisation to preserve its investment in its software and human

resources. A number of sub-goals were highlighted such as what form should the

knowledge representation take, how should the test of the internal condition be

declared.

Chapter 2

Knowledge within Databases

Many authors, Mylopoulos [Mylopoulos 90] and Elmasri and Navathe [Elmasri 94],

have asserted that there is a desire to move ever more domain knowledge from

applications and to maintain that knowledge within databases. Since the aim of this

research is to provide active knowledge management to an object-oriented database

system, this chapter reviews previous approaches that have been taken to allow more

domain knowledge to be maintained within the database and then introduces the tenet

followed by active databases.

2.1. Introduction

During the late 1960's a major software development problem raised its head. Systems

were being implemented, where the constituent applications which served an

organisations' different functional units (such as Sales or Accounts) maintained their

own data and file structures. As a result, major problems with data redundancy arose.

In answer to this problem in 1961 the first concept of the generalized database, was

envisaged by Bachman [Fry 76]. Bachman designed an Integrated Data Store for

General Electric, where the data was removed from the individual application programs

and stored centrally. This meant that the integrity of the data was increased i.e. it could

- 10-

Chapter 2. Knowledge within Databases_____________________U

be relied upon as there was only ever one copy of the data (in response to the problems

caused by data redundancy1). The concept later evolved through standardisation, e.g.

the ANSI/SPARC layered model [Tsichritzis 78], to the modern day Data Base

Management Systems which have the initial goal of application-data independence and

further goals of multiple user views and system catalogs to store the database

description (schema).

Since the focus of this research is to allow more knowledge to be represented within

a database, what exactly is knowledge? Knowledge is one of those words that everyone

knows the meaning of, yet finds it hard to define. Freundlich [Freundlich 90] has

demonstrated that knowledge has many meanings, for example the following terms

data, facts and information, are generally used synonymously with knowledge.

There is much knowledge about a domain that requires representing in a database

system. Two primitive kinds of knowledge are known as a priori and a posteriori

[Luger 89]. The term a priori is Latin for 'that which proceeds'. This sort of

knowledge is independent and free from the senses. An example of a priori knowledge

could be a statement such as 'all triangles in a plane have 180 degrees'. The opposite

of a priori is a posteriori knowledge, which is derived from the senses. For example,

if you saw someone with blue eyes, you would believe their eyes were blue. Later if

you saw them remove blue contact lenses to reveal brown eyes, your knowledge would

be revised. This chapter looks at both the a priori and a posteriori knowledge that must

be encoded.

This chapter is structured as follows: Section 2.2 looks at current database systems and

the knowledge that they support i.e. structural, behavioural, metadata and integrity

constraints. Section 2.3 examines the Semantic Data model followed in section 2.4 by

the Object Data Model. Section 2.5 introduces the active data model and finally section

'Redundancy could however still be designed in, if deemed necessary for
reasons such as efficiency

Chapter 2. Knowledge within Databases______________________12

2.6 summaries the chapter.

2.2. Current Database Systems

As commented on by many authors [Fry 76, Bowers 93, Elmasri 94], the database

concept was contrived to achieve data independence and promote data sharing by

removing the data from the application programs and storing it centrally. Hence the

data, in the form of facts i.e. without meaning, was stored centrally. Knowledge as to

the data's use was distributed amongst the many application program. Many authors

have distinguished the differences between knowledge and data, such as Wiederhold

[Wiederhold 84], where he exemplifies this distinction by means of an example citing

the following assertions (i.) Mr. Lee's age is 43, data, (ii.) middle age ranges from 35

to 50, knowledge, (iii.) people of middle age are careful, knowledge and (iv.) Mr Lee

has never had an accident, data. Problems with respect to knowledge redundancy were

occurring, as described by Kim [Kim 95], which were analogous to the problems of

data redundancy, namely inconsistency and maintainability. This scenario could be

exemplified by considering the effect of modifying the underlying data-structure by the

addition of a new attribute, this would cause severe maintenance problems as the many

programs that use the data-structure would also need to be modified. Deductive

database systems (DDS) and knowledge base systems (KBS) have both tried to allow

more knowledge to be represented in their respective systems. The DDS approach has

concentrated on deriving new knowledge from that which is represented explicitly [Bell

90]. Whereas the KBS approach has strived to represent knowledge declaratively,

without regard to its use so that it may be shared by many applications, this could be

analogous to data independence.

As domain knowledge, such as structural knowledge, is moved from the application

programs into the database, new demands are placed on the database. The modelling

allowed by these databases must be extended to allow richer modelling primitives,

Chapter 2. Knowledge within Databases

which would allow the knowledge to be expressed correctly in a form that closely

represents the real world. Shortcomings as described by Schek [Schek 91], were

discovered in the relational model which is essentially record-oriented, where

functional dependencies are enforced by using the concept of a key to tuples in a table,

but what if the Universe of Discourse (UoD) does not map directly into tables? Hull

and King cite in their survey [Hull 87], the attempts that were made to rectify this

situation by developing newer data models which were progressively semantically

richer. These new Semantic Data Models (SDMs) provide relationships, inheritance,

objects (dynamic or behavioural properties) and integrity constraints. Traditional data

models which were not afforded these rich modelling constructs turned to integrity

constraints, to overcome their shortfall. As surveyed by Peckham and Maryanski

[Peckham 88], in some models the integrity constraints became part of the model itself,

i.e. the structural constraints. Even so, these constraints are not sufficient to model the

complexity of the UoD, this is overcome by the semantics being embedded in the user

programs.

The range of structural constraints were increased with the SDM which provides

explicit abstract relationships, that were already provided by the Artificial Intelligence

(AI) community, such as generalisation, aggregation, classification and association, as

recognised by Smith and Smith [Smith 1977]. These hierarchies can themselves lead

to problems, such as what is the outcome of a database update at these higher levels.

For example, in the case of a student which inherits from a person superclass, if the

person is updated, how will the subclass be affected? Clearly, semantics are required

for such operations. These hierarchies can also be materialised by the relational

databases, but the semantics of the generalisation and classification must be embedded

in the user programs. This is unlike a SDM, where these relationships are provided as

primitives of the system, allowing the system to maintain itself. This leads to a

fundamental distinction between both approaches; in relational systems the programs

can handle the hierarchy, in SDM the programs also know what to do with the

hierarchy but more importantly, they know that it exists. Chakravarthy et al.

Chapter 2. Knowledge within Databases_____________________14

[Chakravarthy 90a] exemplify this distinction by examining integrity constraints and

their use in relational systems to validate any given constraint. They take as an example

the VALIDPROC procedure in DB2. Here the relational system knows how to enforce

the constraint but is unaware of the constraint itself. Being hard-wired into a program

the constraint cannot be used for any other purpose such as query optimisation.

Knowledge, maybe explicit or implicit. KBS strive to be make knowledge explicit.

Freundlich noted in [Freundlich 90]

"Explicit means open to direct manipulation. Within the programming

context, this means removing the knowledge from the procedural setting

in which it is usually embedded in conventional programming and

representing it in a declarative form."

The explicit representation has many advantages namely, understandability, modularity,

maintainability and extensibility. A simple data structure differs from a formal

knowledge representation scheme by the possibility of being interpreted, i.e. the ability

to draw inferences, allowing information to be obtained which is implicit in the

knowledge base. Thus, unlike relational databases, the data available in a knowledge

base system is not only the data explicitly stored but also the data that can be inferred

from this knowledge. For example, if Colin is a student, the system can automatically

infer that Colin is a person from the semantics of the generalisation abstraction, without

it being explicitly declared. From this point of view, SDMs can be seen as rudimentary

KBS where primitives are provided to represent explicitly a set of abstract

relationships.

The structural features of the UoD are focused on by SDM's. For example, a student

can be seen as a classification and a specialization of a higher abstraction of person,

i.e. a student is a role that a person may take. More recently, object databases have

emerged, where all information (both structural and behavioural) concerned with an

object is gathered together. From the above example, a student is able to attend

lectures, which defines what the student may do i.e. its behaviour. Hence, an object

Chapter 2. Knowledge wirhin Databases_____________________15

is characterised by the actions it may undertake (its interface). The user has no interest

in how the action (or method) is performed, simply how it is invoked by the sending

of messages.

There are many SDMs of which SDM [Hammer 81], TAXIS [Mylopoulos 90] and IFO

[Abiteboul 87] are well-known examples. They are sometimes referred to as

structurally object oriented models [Dittrich 86] since they are characterised by their

structural, relational and attributive features.

The following sections describe the prominent models, semantic and object with respect

to their encoding of domain knowledge, and then goes on to investigate the different

kinds of knowledge, with a view as to how they may be represented.

2.3. Semantic Data Model

Semantic data models provide a high level of abstraction for modelling data. This is

analogous to the trend in programming languages where low-level languages evolved

to ALGOL-like languages which were able to provide richer, more convenient

programming abstractions; which according to Hull and King [Hull 87], buffer the user

from low-level machine considerations. This allows the data to be modelled more akin

to the real world. Semantic data models were primarily introduced as schema design

aids, but are increasingly being developed into full-fledged database management

systems. Semantic data models attempt to explicitly capture a rich set of relations

among real world entities.

As described by Nierstrasz [Nierstrasz 89], the major abstractions for modelling this

real world knowledge provided with the SDMs are classification where a collection of

entities or objects are considered or taxonomised as a higher level class; generalisation

which allows a higher level class to be synthesised from many similar objects. Its

Chapter 2. Knowledge within Databases_____________________16

inverse is specialisation where classes are further refined into more specialized classes.

The aggregation concept allows composite objects to be constructed from component

objects. These abstractions as pointed out by Hull and King [Hull 87] allow more

semantics to be represented explicitly. As stated earlier, the system itself can maintain

abstractions such as generalization and can thus, remove the burden of maintaining

these structural abstractions from the user to the database.

There are some SDMs which have addressed the dynamic aspects of the UoD, for

example TAXIS [Mylopoulos 86], SHM+ [Brodie 84] and the event model [King 84],

TAXIS manipulates its transactions, exceptions and exception handlers as detached

entities, which results in their ability to be arranged in hierarchies and have attributes.

The transactions are described in terms of the entities involved, i.e. its parameters, the

type constraints on the participant entities and the set of sub actions that comprise the

definition of the transaction. Since the transactions are parameterised by the entities

involved, transactions can be specialised along with the entities.

This section examined SDMs in terms of the knowledge the represent, further reviews

of the SDMs can be found in the literature. Hull and King [Hull 87] present various

models with respect to a common example. Whereas Peckham and Maryanski

[Peckham 88] compare the SDMs and their support of relationships, the abstractions

they represent, and their approach (if any exists) to dynamic modelling. Albano

[Albano 89] presents a comparison of advanced SDMs, such as TAXIS.

The following section discusses object-oriented databases and how real world domain

knowledge is represented within them.

2.4. Object Data Model

Since the target host for this research is an object-oriented (OO) database, this section

Chapter 2. Knowledge within Databases_____________________17

considers the types of knowledge that OO systems encode. Object-orientation is said

to model concepts from the real world in a direct and natural manner, similar to SDMs.

It accomplishes this by modelling an object in terms of its structural entity, its related

knowledge of being i.e. its behavioural characteristics, and the events that trigger

operations that change the state of the objects.

In the case of systems modelling, Mylopoulos [Mylopoulos 90] states that a notation

can be said to be object oriented, "when it encourages a direct and natural

correspondence between components of notation instances and objects of application".

Following from this statement the relational data model cannot be considered to be

object oriented since an entity in the process of normalisation can be split between

different tables.

Even though the paradigm is becoming widespread, there is not a common

understanding of what an object is. Programming languages, design methodologies,

user interfaces, databases, and operating systems have all been described as being

object-oriented. Even though it appears that object-orientation is common to all of these

diverse areas, it soon becomes evident that the same term is being used in different

ways in each domain. The Laguana Beech Experiment [Stonebraker 89a] exemplified

this, as a group of leading database researchers found that there was little common

understanding of the term even between themselves.

2.4.1. Object-Oriented Databases

A promising way forward is that of object-oriented database management systems

(OODBMSs). Being OO they encourage a direct mapping between concepts in the real

world and their computer representation, embodying both the structural and

behavioural features of the UoD. OODBMS provide features required by newer

applications, such as: richer data modelling constructs since conventional relational

Chapter 2. Knowledge wirhin Databases_____________________18

systems cannot support complex data types (such as arrays, objects, classes) and inter-

object reference i.e. more implicit knowledge. This would prevent the flattening of

objects so that they fit the data model; long transactions as opposed to the short

transactions for conventional database systems which assume that transactions last for

only a short duration and thus lock very little data. The transactions for the new

applications are much longer in length and thus a new form of locking is required;

version support; performance since relational databases are value based, and thus are

very expensive, in terms of time. In order to retrieve a required record, the values of

the attributes must be searched for before the record can be retrieved. Modern

applications require almost immediate response i.e. a fetch object in a CAD package.

It can be difficult to find a set of characteristics that can be held for any database that

claims to be OO because there is a lack of formal definition. This is further exasperated

by systems which claim to have object features but have different development paths.

For instance there are systems that have been built by enhancing OO programming

languages e.g. Gemstone [Copeland 84] and ADAM [Paton 89], relational DBs e.g.

POSTGRES [Stonebraker 90], from semantic data models e.g. SIM [Jagannathan 88].

Not all OODBMSs found in the literature share exactly the same features. For the

purposes of this research an OODBMS is deemed to have standard DBMS functions,

as described by Zdonik and Maier [Zdonik 90], i.e. persistence, transactions and object

features i.e. abstraction, object identity and hierarchies.

A prime feature that distinguishes an object database from a relational database is in

its concept of an Object Identifier and will be discussed in the following section.

2.4.1.1. Object Identifier

An object has a system defined surrogate number as its identifier. This object identifier

(OID), is used to reference the object. Identification has been addressed independently

by both programming languages and databases. In the former, the object is identified

Chapter 2. Knowledge within Databases_____________________19

by memory reference (or by user defined labels to the memory locations). Khoshafian

[Khoshafian 86] has identified that this mixes the concept of addressability (i.e. how

to access an object in a given environment) and identity that is internal to the object and

which should be independent of how it is accessed. Conversely, conventional database

systems such as the relational systems reference tuples by the values of their attributes,

identified by key or primary attributes. For example, a personnel relation may have the

tuples keyed or referenced on the name and telephone number of a person. But if a

person changes their telephone number, it is more difficult to locate the record.

Additionally, if the person changes their name (by deed-poll for instance), the record

is even more difficult to locate as the key has changed. Khosafian cites this as a major

problem for referential integrity of relational systems and causing constraints to be

placed such as: the primary attributes are not permitted to change even though they are

descriptive properties of the object; extra primary attributes have to be used even

though they are not required, for example, if the name and age are required for a

person, one should not need to include the National Insurance number simply for the

sake of providing a unique identifier.

Thus with both (programming languages with memory references and relational

databases using primary attributes or values) of the above approaches, identity is mixed

with addressability. Object identifiers are excellent for promoting referential integrity

as a given object always has the same OID, regardless of the values of its attributes.

Object identifiers enhance the efficiency of a system by providing logical pointers to

the required objects, and thereby avoiding expensive join operations. The pointers in

object oriented databases and the pointers in hierarchical databases are similar except

that the pointers in hierarchal databases are physical. The object identifier is not

reusable or modifiable, hence it is impossible to change the value of the surrogate

number or when an object is deleted its surrogate cannot be reused by a new object.

Chapter 2. Knowledge within Databases _____________________ 20

2.4.1.2. Impedance Mismatch

Object-oriented databases provide rich modelling features of the UoD, and also help

solve the impedance mismatch problem, as described by Copeland and Maier

[Copeland 84]. This metaphor originates from the field of electrical engineering, and

refers to the fact that an impedance mismatch in an electrical circuit will prevent the

maximum possible power transfer from being achieved. Zdonik and Maier [Zdonik 90]

have commented that their are two aspects of this impedance mismatch: i. conventional

programming languages (COBOL, Pascal, C) and DML query languages (SQL,

QUEL) differ in terms of the descriptions of their data structures. The type systems of

most programming languages do not support the relational structures directly, thus

requiring complex mappings. Such mappings lead to a loss of information at the

interface of programming language and database, similar to the case with electrical

circuits. Another consideration is that since programming languages do not understand

database structures, type correctness cannot be checked for ii. Programming languages

are procedural whilst query languages are declarative in nature. The units of data

transfer between the database and the program are smaller than the collection relations,

leading to much inefficiency. This leads to unnatural and complex programming.

For example, suppose a database exists consisting of an EMPLOYEE and a

DEPARTMENT table. In the program, one may be tempted to layout structures that

will hold rows retrieved from each table:

struct employee { struct dept {

char name[20]; char name[10];

date birthdate; struct employee*

struct dept* department; depthead;

This scheme could produce a number of problems. First, the C+ + structures represent

the connections between employees and departments using pointers, while the database

Chapter 2. Knowledge within Databases_________________21

system (if it is relational) will handle these connections via foreign keys, which will be

stored as strings. Next the employee structure includes a member of type date, which

could be a class for which the user may have built methods that allow the program to

easily perform sorting or compression operations on calendar dates. If the internal

storage format of the date as handled by the database is different, further conversion

functions which transfer data from one format to the other need to be built. With an

object-oriented system, this mismatch simply does not occur because the representation

in the database and in working memory is identical. All referenced objects are also

loaded, with the pointers properly 'wired1 or swizzled2 between the two

representations.

A survey of the concepts of object-oriented technology can be found in [Nierstrasz 89,

Stonebraker 90] and many others. For this reason, the basic fundamentals will be

assumed as known. The following section introduces the approach followed in active

databases.

2.5. Active Databases

The systems of today which utilise database technology, may not suffer from the

problems of the original systems of the 1960's, i.e. data redundancy, they do however,

have similar problems. For example consider a scenario where a new system to manage

a 'Supply and Distribution Warehouse' is developed. It is based on a central database,

and has a number of application programs, each for a different sub-system, e.g. sales,

accounts. Each application program would access the database and expect a certain data

structure. If however, the data structure or system schema was amended e.g. an

attribute was changed, then a major maintenance task would have to be undertaken to

resolve the problem of redundancy within the application programs, with the possible

2Swizzling is a term used by Carey [Carey 91] which refers to the process of
moving an in-memory object to and from its disk representation.

Chapter 2. Knowledge wirhin Databases_____________________22

attendant problems this may cause, e.g. replication of knowledge, effort and possible

inconsistencies.

Even though data independence is a central tenet to database theory, where the data

held in the database is managed independently of any application program that utilises

it, this still does not mean that the data is truly independent. Is the data model or

schema really stable? If in the example of the above paragraph where an existing

attribute of a table is changed or even deleted, the application programs that use that

particular table and which expect the attribute to be of a certain form, will have to

undergo maintenance amendments. Does this mean that the application is independent

of the data? Clearly, the logical data model is not as independent as would be desired.

Active databases which attempt to resolve the problem of application logic

redundancy3, have been defined by Dittrich and Dayal as:

"a database is said to be an active database if it supports the storage and

maintenance of domain knowledge (or general application logic)

alongside the data, and the knowledge is triggered (or activated) on the

raising of events" [Dittrich 91].

The systems encapsulate an enterprise's domain knowledge within the database. Thus

providing a Data and Application Logic Base System. The domain knowledge is

centralized in one place, i.e. within the database management system itself, as opposed

to being scattered across many application programs as discussed above. This approach

attempts to resolve the problems of data independence since if the data model is

amended, any application program changes are simply made to the logic within the

database and not to the many application programs which contain the replicated access

code. The domain knowledge or application logic may be represented in many forms,

3 Logic required to perform certain tasks is embedded within all application
programs that require the task to be performed, providing maintenance problems.

Chapter 2. Knowledge within Databases 23

but in most active prototype systems the general form is that of modified production

rules.

10 Mars Bars
Please

How many Mars
Bars in Stock

-o
DBMS

13 Mars Bars

Order 1000
Mars Bars

INVENTORY

Mars Bars
23-10=13

Figure 2.1 Passive Database System

Another major problem that database solutions do not presently address, is that of

timeliness of data. This is best illustrated by means of an example, again we will use

the warehouse scenario. If a customer purchases an item, it ultimately leaves the

warehouse, and hence the number of items on hand is decreased by the number of

items sold or distributed. At the end of the working day (or week or polling period),

Chapter 2. Knowledge wirhin Databases_____________________24

an application program is run against the database which will evaluate which items

require reordering, and will place them in a reorder request list. This case is illustrated

in figure 2.1 with an example where a customer purchases 10 confectionary bars, after

a period a query is run against the database to determine if the quantity-on-hand is

below any reorder level, if so then the reorder quantity (1000 in this case) is reordered.

This means that during the wait for the system to check which items are not currently

stocked, the item may not have been reordered in time and hence caused a loss of

business. This timeliness, for a village retailer may not be important, but for a

Currency Trading System, where every split second is worth millions of pounds, could

be critical. The interval between polling periods may, however, be reduced causing the

database to be polled more frequently. This approach however, causes the database to

test its state continually rather than carry out its intended application even in todays

technologically advanced world since the major bottleneck is I/O rather than processor

bound, for which parallel technologies could improve the situation. Instead of

continually polling the database, another popular approach is to add logic, in the

application code which updates the database, to test if any specific state has been

reached. Maintenance for the overall database system becomes problematic as there is

duplication of code to test the semantic integrity of the data amongst the many

application programs. The redundant code has to be maintained which leads to excess

cost.

The timeliness of data, is maintained in the active database by the use of the event

paradigm. A database is said to become active (or is woken-up), on certain events

being raised unlike traditional or passive databases which only perform actions when

explicitly requested to do so, either by the user or by application programs. This is

illustrated by the example in figure 2.2, where on the customer purchasing the

confectionary bars, the database is activated and its knowledge is triggered. The

database then processes the logic and places the reorder request automatically and most

importantly, on time.

Chapter 2. Knowledge within Databases 25

10 Mars Bars
Please

.O

DBMS

Order 1000
Mars Bars

INVENTORY

Mars Bars
23-10= 13

Rules
when quantity in stock
becomes < 20,
order 1000 items

Figure 2.2 Active Database System

Active databases maintain knowledge which is triggered on the occurrence of events,

this knowledge is generally structured using the Event-Condition-Action (EGA) [Dayal

88, Dayal 89] knowledge model, which is composed of a production rule tuple of the

antecedent-consequent type. If the antecedents or left-hand side of the rule is satisfied

then the consequents or right-hand side of the rule will be actioned. The production

rule must also take into consideration the specification of the triggering event(s).

Chapter 2. Knowledge within Databases_____________________26

McCarthy and Dayal have proposed the format of an EGA rule [McCarthy 89]:

Event ON event-clause

Condition IF condition-clause holds

Action THEN execute action

Not only does the condition or a database state or condition have to be ascertained but

also an event has to be raised first. The event-clause/condition-clause combination are

collectively known as the 'situation' and the THEN (or action) part is sometimes

known as the 'reaction' [Dittrich 91]. The situation and reactions must be specified.

2.6. Summary

This chapter provided motivation for trying to encode knowledge with a database

system and then reviewed the methods currently used to encode the intensional UoD

as opposed to the extension. A discussion of the distinction between knowledge and

data was made, which concurred with the views expressed by Freundlich [Freundlich

90], such as "Knowledge can be embodied in a program as a procedure or as a data

structure. This distinction corresponds to the philosophical difference between knowing

how to and knowing that".

Current database systems were discussed with respect to the desire to encode more

domain knowledge within the database systems. Following, newer models were

progressively introduced initially, the Semantic Data Model (SDM) which is

semantically richer providing features such as generalisation, aggregation and

association and thus allowed greater facilities to encode more intentional knowledge.

The Object Data Model followed, which like the SDM provides rich semantic

modelling i.e. classification, generalisation, aggregation and association, but also but

promotes behavioural modelling and hence affords features such as reusability and

Chapter 2, Knowledge within Databases______________________27

extensibility. These models are relevant to the research because they illustrate how

intensional knowledge is represented within the schemas. However, the object data

model is important because it is the underlying data model for this research's active

data model and prototype.

The field of active databases were later introduced illustrating the two main problems

that they attempt to resolve which were, i) the problems associated with application

logic redundancy and ii) the timeliness of the data. The EGA knowledge model was

overviewed. The various forms of encoding different types of knowledge were

discussed throughout the chapter, illustrating the varied research aims being pursued.

The following chapter introduces issues for active databases and a literature survey.

Chapter 3

Review of Active Databases

This chapter introduces the issues within active database systems research and discusses

the pertinent design issues involved. A survey of current research in the area is presented

which examines how the issues are tackled by the different research prototypes.

3.1. Introduction

Active databases, the domain of this research, was introduced in the previous chapter

together with other forms of knowledge representation systems. This chapter introduces

the issues concerning active database research. However, before the issues can be

discussed, a view of a canonical active database architecture may prove useful. According

to McCarthy and Dayal [McCarthy 89] an active database must manage knowledge,

generally in the form of productions rules, and respond to the occurrence of any specified

events. In order to execute this task active databases have some form of the following

components: a rule or knowledge manager, an event detector, a rule evaluator, a condition

evaluator and an execution module.

The remainder of the chapter is structured as follows, the issues concerning active

databases are introduced such as, whether the underlying technology affects the feasibility

of such a system and events and their representation. Section 3.3. provides a survey into

-28-

Chapter 3. Review of Active Databases_______________________29

the current state of the art active databases. It is followed by a comparison of the various

models, and an evaluation of their features.

3.2. Issues of Active Databases

This section serves to highlight some of the issues and raises some questions regarding

active database theory. The questions are open, and are initially introduced and then only

later examined in the literature review section, by observing how the related active

database prototypes attempt to provide solutions. The solutions provided by this research

to the questions below and further questions are examined in chapter four which overview

this research's active database model called REFLEX, and then chapters five and six

discuss the knowledge model and the active models design and implementation,

respectively.

3.2.1 Underlying Architecture

An initial premise for this research was to extend a database with active functionality, with

a concern being whether the underlying architecture affected the feasibility of the active

database system. In answer to this concern, it was ascertained that the ability to support

activity was unrelated to the underlying architecture (e.g. relational, hierarchical, network

or object-oriented), i.e. not affected by the technology. Since, activity or automatic appli-

cation defined reactions on predefined triggering events is not the exclusive domain of any

one database technology. To put this into perspective, the old CODASYL network data

model of 1972, had procedures definable for entities. The CODASYL data model had the

keyword ON, which was followed by a database operation or an error trap. If the event

occurs, the procedure is called. It was not however, sophisticated enough to evaluate a

condition as well as an event.

Chapter 3. Review of Active Databases________________________30

Newer databases such as IBM's Starburst [Lohman 91] & University of California's

POSTGRES [Stonebraker 87] are both based on the relational theory. Rules and their

extensions have been added to both the above systems and have proved to be successful.

The rules, in the case of Starburst, act upon whole relations in one operation.

Research efforts such as HiPAC [Chakravarthy 89] and ADAM [Paton 89], provide

active extensions to object-oriented database theory. Object-oriented databases seem to

encompass rule extensions with greater ease than the other older technologies, such as the

traditional relational model. This may be because they have more semantic facilities such

as classification, inheritance and encapsulation, which allow additional functionality to be

added to higher order classes. Alternatively, perhaps this may be because of their relative

youth since they are not restricted to a certain data model or that they serve a large user

base. Since object-oriented databases are still research prototypes1 they can thus tackle

the new theories as they emerge.

The above illustrated that the concerns raised were unfounded i.e. the underlying

technology would not affect the feasibility of an active database system, as they have been

constructed on various technologies. The later literature review highlights the underlying

technology of each database.

A fundamental component for active database systems is the event. The issues concerning

events will be introduced in the following section.

'Even commercial offerings, such as ONTOS, are still essentially used in research
laboratories and not in mainstream applications.

Chapter 3. Review of A ctive Databases_______________________3J_

3.2.2. Events

An event is a happening or occurrence of something of interest and hence must be

detected in order to activate the database. Once the event is detected, if it affects a rule

it may bring the rule into context so that its condition clause may be tested.

Detectable events have been categorised [Chakravarthy 89], in three broad groups:

 internal to the database

these could be updates, reads on the database; or transaction points such

as the start of a transaction or its committal. These are generally

equivalent to the data manipulation language (DML) commands available

i.e. UPDATE, SELECT.

 temporally based

events based on clock e.g. at specific points in time, relative or periodic.

To allow the detection of temporal events, a clock input to the Event

Manager, provides the triggering event. Examples of temporal events

could be absolute at 5pm, periodic every 5 minutes, or relative after 5

hours.

 externally defined by user applications.

these are events which are external to the host database system and are

either user or application defined. Examples of such events are those

raised by a radar detecting an aircraft within its airspace, and are detected

by the application program making an event raise call to the Event

Manager.

Events which may cause a rule to be brought into context could be primitive i.e. a single

atomic event, or complex i.e. where a number of primitive events are allowed, joined

together using a logical algebra e.g. conjunction, disjunction, etc. Simple or primitive

Chapter 3. Review of Active Databases_______________________32

events are relatively easy to understand. They are said to occur instantaneously, at a

specific point in time, unlike conditions which hold over certain intervals or periods of

time. Complex events blur the definition of an event because they are composed of many

primitive events combined in an algebra (English ESL in the case of REFLEX), and hence

do not occur in an instance but over an interval2, similar to conditions except that

conditions relate to database states i.e. the values of data objects; whilst, with respect to

active databases, events may3 or may not do so.

This research categorises complex events into two groups, homogeneous or

heterogeneous. The ability to support heterogeneous events affords considerable flexibility

and power over the support of homogeneous events alone, and thus can be used to

determine the intended use of a given research prototype.

Homogeneous events can be defined, in the case of this research, as

"a complex event which is composed of primitive events of the same

category i.e. internal, temporal or external".

Example homogeneous events:

(a) UPDATE PERSON AND UPDATE STUDENT

(b) ON DATE 16/3/95 OR ON DATE 30/10/93

Similarly heterogeneous events can be defined as

"a complex event which is composed of primitive events which span the

various categories i. e. internal, temporal or external".

2A complex event occurs at the point of occurrence of the last valid primitive
event. This is described later in the chapter five, section on Event Specification.

3In some systems, events can be seen as conditions. For example, this is the case
with logic and especially temporal logics [Kowalski 86, Knight 88].

Chapter 3. Review of Active Databases________________________33

Example heterogeneous events

(a) UPDATE STUDENT AND DAY IS SUNDAY

(b) EVENT RADAR-PULSE AND UPDATE AIRCRAFT

The literature review will look at the different active database research prototypes and

how the above issues are tackled i.e. whether the database allows primitive or complex

homogeneous/heterogeneous events, and also the following such as: how long after the

occurrence of an event can the event still be used in the evaluation of a rule's event

specification clause, i.e. is the event valid. If it is used against a rule's specification, is it

still available for a different rule's event specification clause. The number of rules the event

(or events) affects or brings into context within the different research prototypes i.e. a

single rule, or many, is examined.

3.2.3. Analysis and Design of Rules

The extracting of rules from an enterprise and the subsequent design of the rules in the

database, requires careful attention. In addition to traditional database design, Activity

Design also takes place where the business rules of a domain are extracted and the rules

are designed for the domain. This latter area is more difficult than the former. This is

because, each rule may cause a change of database state, and since the rules may inter-

relate, each fired rule causes further changes of state, i.e. the database may continually

generate events and on actioning the events generate further events. Thus the cyclic

process may go on forever and not allow the database to stop.

A typical example could be the following, where on making a change to a students record,

its status is checked which forces a change in a table, which in turn forces a change in the

primary table.

Chapter 3. Review of Active Databases_______________________34

Rule 1 ON UPDATE STUDENT

IF select name

from STUDENT

where grade Average < 30;

THEN update STUDENTUNIT profile="FAIL"

Rule 2 ON UPDATE STUDENTUNIT

IF select name

from STUDENTUNIT

where profile = "FAIL";

THEN update STUDENT profile-'TAIL"

The above example illustrates a situation where on the STUDENT table being updated,

Rule 1 is triggered. This then performs an update on the STUDENTUNIT table, which

triggers Rule 2, and vice-versa. Hence, the database will continuously serve the two rules

cyclically forever i.e. the rules will not terminate.

3.2.4. Rule Termination

The firing of a rule may then lead to subsequent firing of further rules, which may trigger

themselves indefinitely i.e. infinite loops. This may prove disastrous for a database system

for example, control could be lost between sets of interacting rules, rules could fill both

main memory or disk by continually performing inserts on a table, causing the system to

crash. At best a disaster could be nothing more than the system simply slowing down, as

a result of serving its rule invocations. This situation must be avoided or at least

controlled, but how can the system be brought back under control? In answer to this

concern, a number of strategies exist. The design of rules should be examined to ensure

that no cyclic interactions are possible, Aiken et al. [Aiken 92] propose application of

static analysis algorithms. These algorithms may be used to provide information about

three properties of rule behaviour to a database rule programmer. The properties are:

Chapter 3. Review of Active Databases_______________________35

i. Termination

Can the termination of rule processing be guaranteed after a change in

database state?

ii. Confluence

Similar to the law of commutation where the order of the execution of

rules may or may not affect the final resultant state of the database. For

example, if multiple rules are triggered, does the final database state

depend on which is executed first? If it does not, the rule set is said to be

confluent.

iii. Observable Determinism

If the action of a rule is visible to the environment i.e. it may perform a

rollback or modify some data, then it is said to be observable. Similar to

confluence, if the order of execution of non-prioritized rules does not

cause a change in the order observable actions, the rule set is said to be

observably deterministic.

A more common approach that is adopted by many systems, is to monitor the run-time

invocations to prevent infinite loops by counting the rule executions and comparing

against a pre-defmed system limit. A further approach is to detect the occurrence of the

same rule again but with the same set of activators i.e. given situation.

3.2.5. Transactions and Coupling States

Multiuser and multiprocess database systems can operate concurrently because they

support the concept of transactions. A transaction is an atomic unit of processing, which

is performed in its entirety or not at all [Bell 92, Gray 93]. To facilitate transaction

management and specifically recovery management (where a transaction fails, recover to

the previous state), the following operations need to be tracked:

 Transaction Start

Marks the beginning of transaction execution

Chapter 3. Review of Active Databases________________________36

 Transaction Commit

Signals the successful end of a transaction so that any changes executed

within the transaction can be safely committed to the database.

 Transaction Abort

Signals the transaction has ended unsuccessfully, so that any changes

applied within the transaction must be undone.

In active databases, by their very nature, processes4 are interrupted by the raising of events

and the possible invocation of knowledge processing. These interruptions, themselves self-

contained transactions, can be declared to occur relative to the interrupted transaction, by

the specification of coupling modes. Coupling modes, originated in the HiPAC project

[Chakravarthy 89], as described by Dayal [Dayal 89] define how events, conditions and

actions relate to the database transactions. Coupling modes allow the designer to specify

whether a rule's conditions or actions should execute in the triggering transaction or a

separate transaction. These coupling modes are not available in other active database

prototypes i.e. Starburst [Lohman 91] or POSTGRES [Stonebraker 91b], where the rules

conditions and actions are executed in the same transaction as the triggering event, and

hence are not as flexible.

For an ECA rule the coupling anchors available to a transaction are the Event-Condition

(E-C) and the Condition-Action (C-A). In the former, the coupling modes of immediate,

deferred or decoupled are offered to the evaluation of the condition on an event being

raised. For example, if a process is executing against a database, figure 3.1, and an event

occurs, if the event affects a rule the rule's event specification must first be evaluated

(assuming the occurring event has a higher priority than the executing process). If the

event specification of a rule is satisfied i.e. the event raised causes a rule to be brought

into context, then the condition clause of the rule must be evaluated. The rules designer

can determine whether the evaluation of the condition clause is to be performed with

4For simplicity, a uni-processor architecture machine is assumed

Chapter 3. Review of Active Databases_______________________ 37

respect to the interrupted transaction in one of three modes (i.) immediately and control

returned to the original process after the evaluation has completed, figure 3.1 (a), or (ii.)

whether the evaluation be deferred until the original process has completed, figure 3.1 (b)

or (iii.) whether the two processes be decoupled and performed in parallel, figure 3.1 (c).

Process

I Event Occurs

Evaluate Condition Coupling Options

(a) immediate

(b) deferred

(c) decoupled

Figure 3.1 Coupling Modes

For the case of the Condition-Action coupling, again the modes of immediate, deferred

and decoupled are offered, for the execution of the action clause with respect to the

execution of the condition.

Splitting the coupling modes into the two anchor types either E-C or C-A causes extra

problems as the number of permutations increases. For example, if coupling modes of

immediate/deferred are offered on an event, the condition clause relative to the parent

transaction will be immediately evaluated and if it is satisfied, the original operation is

Chapter 3. Review of Active Databases________________________38

continued until it is at point of committal then the deferred action clause is executed.

Obviously a contradictory but perfectly valid situation, since why test the state of the

database immediately but then defer any action. For example, from the Air Traffic Control

scenario, if the movement of an aircraft is detected by the Radar, the system interrupts its

current task and evaluates whether the aircraft is in danger of collision, if so, the system

continues its prior interrupted task, and when completed it then takes the deferred action

to prevent a disaster.

Interrelationships between the primary or host operation and triggering transactions may

exist for example, what if a triggered (host) transaction is at a point of committal, and the

deferred (triggering) action fails, does the primary operation abort or commit? The same

problem would be cited in a case of decoupled/decoupled transactions. Where both on an

event, the condition of the rule is evaluated in a separated spawned process and if it is

satisfied, the action clause is also executed in a separate new transaction. In these cases

a causality constraint or some sort of dependency between the host and interrupting

transaction may be supported, to indicate what will happen in the case above i.e. the

interrupting transaction may only commit if the host transaction commits. For example,

if the user is entering data about a particular aircraft, this may cause an interrupting rule

to be fired where the action is decoupled which inserts information into a log. If the user

then aborts the data entry for some reason, i.e. the wrong aircraft number was used,

should the decoupled entry to the log also abort.

3.2.6. Rule Contention

If many rules are triggered by the same event, they are said to be brought into context. A

rule whose situation (patterns of both event specification and condition clause) is satisfied

is said to be activated or instantiated. Multiple activated rules may be on the agenda at the

same time. In this case, the inference engine must, generally, select one rule for firing. This

selection may be based on a number of alternative strategies. The rules may be fired in

order of retrieval, or based on priority. Another approach may allow the rules to execute

Chapter 3. Re view of A dive Databases________________________39

concurrently. At this point active databases are very different to conventional memory

based knowledgebases or expert systems since the rules may have coupling modes.

The selection strategy is made more complex when the issue of coupling modes is

considered. If rules have different coupling modes, the priority assigned to a rule, should

take into account the urgency of situation evaluation. For example, lower priority rules

should not be afforded an immediate coupling mode since this would cause a conflict,

since higher priority rules would be evaluated first.

For how long after the detection of the situation is a rule able to fire. An apt analogy for

this scenario may be considered as in neurophysiology, the study of the nervous system.

Where an individual cell or neuron emits an electrical signal when stimulated. No amount

of further stimulation can cause the neuron to fire again for a short time period. This

phenomenon was reported by Brownston et al. in their work on OPS5 and is called

refraction [Brownston 85]. That is, if the same rule kept firing on the same fact over and

over again, the system would never accomplish any useful work. The refraction of a

system is generally kept to a minimum, i.e. a rule only fires once given a situation

occurring. This may however be left to the rule designers discretion.

3.2.7. Knowledge Coupling

As well as transactions which have coupling modes between triggered and triggering

transactions, the degree of coupling between an active database and its underlying data

model, is important since it is a measure of the portability and adaptability of an active

data model. This measure allows the determination of whether the active features of a

model can be applied to different data models, or whether they are restricted to a single

database. As the literature review will illustrate, most prototypes are tightly coupled to

their underlying data model.

Chapter 3. Review of Active Databases_______________________40

3.2.8. Knowledge Representation

Since active databases attempt to encode domain knowledge within a database system,

two primitives of this knowledge i.e. rules and events, must be represented. There are

many representation strategies that may be followed, they may be

i. Hard-Wired

The rules may be hard-wired into the application system code, as in Ode

[Gehani 92a], This is advantageous for the application programmer, since

the rules may be coded in. This however, has disadvantages such as, the

declaration of rules requires a application language programmer and the

rules must be declared prior to compile time. This means they cannot be

modified or added to without re-compilation,

ii. Metadata

This is the general method for representing rules in relational system such

as POSTGRES [Stonebraker 91b], Starburst [Lohman 91], Ariel [Hanson

92] and now in commercial offerings. Rules are defined as metadata in the

schema, together with tables, integrity constraints, view. Operations are

provided to add, drop or modify rules,

iii. First-Class Objects

In object-oriented environments, rules may be represented as first-class

objects, as with HiPAC [Chakravarthy 89] and ADAM [Diaz 91b]. This

means that the rules are instances of a rule class, and hence like other

objects they can have attributes and can be subject to the standard

database manipulation and security features.

The following section provides a survey of the current state of the art active database

systems, and will investigate the knowledge representation mechanisms employed as well

as previously mentioned issues.

Chapter 3. Review of Active Databases________________________4J_

3.3. Literature Review

Active databases are a current popular area of research. As such, there is much work in

the area. In this section the state-of-the-art active databases are reviewed, by considering

the following framework:

 underlying model

 their knowledge model

 support for existing applications

 support for new non-traditional applications

 what makes it novel

Particular emphasis is placed on the knowledge models of respective active databases,

since this is a major area of interest in this research. After the major salient features of the

alternative active databases have been discussed, the differences are highlighted in table

3.2.

3.3.1. POSTGRES

POSTGRES [Stonebraker 87], a progression from relational INGRES, started its

development life in 1986, at the University of California. Stonebraker and Kemnitz

[Stonebraker 91 b] report that the motivation for the project was the recognition that the

next-generation applications required two further dimensions from the original dimension

of data, those of object management and knowledge management. Hence, POSTGRES,

an extended relational system, attempts to add the concepts of object abstraction and

closer coupling between the knowledge base and a relational DBMS.

Chapter 3. Review of Active Databases_______________________42

One of the prime aims of this review is to concentrate on the knowledge model that

POSTGRES promotes and not cover the details, these are readily available [Stonebraker

89b, Stonebraker 91 b], except where the details are deemed necessary for the prime aim.

POSTGRES has increased structural knowledge by the provision of classes (or

relations/types), which may inherit from other types, which provides some degree of

semantic richness. However, the inclusion of methods i.e. functions internal to an object

as found in object-oriented/class based systems, in the database are not allowed. This is

because it is language neutral i.e. it is not bound to a particular programming language,

and so cannot allow methods to be attached without becoming biased towards a

programming language. It does however, provide three different kinds of functions: C

functions, operators and POSTQUEL functions.

In addition to POSTGRES's four major constructs i.e. classes; inheritance, types and

functions, it also provides knowledge management by means of two rules systems. These

will be reviewed in the following section.

3.3.1.1. Rule System

As stated by Stonebraker and Kemnitz [Stonebraker 91b], the design of the POSTGRES

rules system was governed by the desire to construct one general purpose rules system,

which would be able to perform all of the following: view management, triggers, integrity

constraints, referential integrity, protection and version control. This aim is at odds with

other systems such as Starburst [Lohman 91], where the creation of views is handled by

the extension of the query language using Starburst's extended Normal Form (XFN). The

view is defined and stored in the data dictionary, i.e. views are not covered by the rules

system and different structures are required for different functionality.

There are two implementations of the POSTGRES rules system. One through record level

processing which is a part of the run-time system. This is called when individual records

are accessed etc. The second implementation is through a query rewrite module. This

Chapter 3. Review of Active Databases 43

code exists between the query optimizer and the parser. It converts a user command to

an alternate form prior to optimization. POSTGRES does not however, provide an

automatic rule method chooser, so the user must decide on which is the best method of

rule system for a given rule.

The record level rules system is implemented as an extension to POSTGRES's query

language POSTQUEL. An extra clause, the ON clause, has been added which allows the

triggering event to be declared.

The rule system has the following syntax:

ON event (TO) object

WHERE POSTQUEL condition-qualification

THEN DO [INSTEAD] POSTQUEL command(s)

From the above query, the first line is the event declaration clause. The triggering event

is related to an object. The events POSTGRES can detect are illustrated in table 3.1.

Event Types

Internal

Temporal

External

Events

retrieve, replace,
new (i.e. replace

old (i.e.

delete, append
or append) or
delete or replace)

time ()
date () functions

not supported

Table 3.1 POSTGRES detectable events

The object referenced in the clause is the name of a class or class column (attribute). The

optional keyword INSTEAD indicates that the POSTQUEL commands are to be executed

instead of the action which caused the rule to activate. If the keyword INSTEAD is not

present, then both the action and user event are executed. The POSTQUEL commands

for the rules system, are the same as the normal POSTQUEL commands but with two

additional changes:

Chapter 3. Review of Active Databases_______________________44

i. the keywords new or current can appear instead of the name of the class

preceding any attribute,

ii. refuse (target-list) is added as a new POSTQUEL command.

Rules may additionally specify actions to be taken as a result of user updates. As can be

observed from the valid events listed above, POSTGRES allows events to be retrievals

as well as updates.

3.3.1.2. Summary

POSTGRES being a post-INGRES system, does try to provide a superset of facilities

provided by INGRES, i.e. support for inheritance, and abstract data types. It has not

however succeeded in this goal since basic query operators, such as union, intersection

and other set functions have not been implemented. This fact restricts the applications that

can be implemented on POSTGRES and hence, it has essentially been used by academic

institutions as an research/exploration tool for future database requirements, i.e. object

management and rule management.

In terms of its knowledge management facilities, it allows more structural knowledge to

be encoded within the data structures, similar to Sematic Data Models as surveyed by Hull

and King [Hull 87], such as classification and aggregation facilities to compose complex

objects. For explicit knowledge representation, it provides two implementations of rules

systems which may be seen as complimentary, i.e. one is tuple or record based, the other

a crude form of set-processing which is realized by a converter module which sits between

the parser and query optimizer. It does not however, have any conflict resolution

strategies except simply that rules are fired in sequential order of occurrence.

The successor to POSTGRES is being specified and designed. It has, imaginatively, been

designated POSTGRES II [Stonebraker 9la].

Chapter 3. Review of Active Databases_______________________45

3.3.2. STARBURST

The Starburst project [Lohman 91] at the IBM Almaden Research Centre in San Jose,

California was initiated in 1985 to redress the problems faced by conventional database

management systems. Its goal was to build from scratch an extensible DBMS prototype

that would both

i. allow the DBMS to have the functionality to serve the new application

requirements efficiently

ii. to provide a test-bed for IBM's own ongoing research in DBMS

technology.

The impetus for the Starburst project arose during the early 1980's when a version of

System R was adapted to create a distributed relational DBMS prototype, called R*

[Lindsay 80]. This did not prove successful and Lohman et al. [Lohman 91] reported the

following:

" The lesson was clear: extensibility cannot be retrofitted; it must be a

fundamental goal and permeate every aspect of the design".

The research team, by basing Starburst on the relational model and on extensions of a

standard database access language, could exploit much of the proven relational DBMS

technology and its theoretical foundations. It also facilitated porting existing applications

to Starburst. Starburst was designed with a common relational data model with

domain-specific extensions, as new areas are researched.

For the purposes of this survey, only the active database extensions made to Starburst will

be considered.

In Starburst's approach to active extensions, user defined rules respond to aggregate or

cumulative changes to the database. This, according to the Starburst research team,

matches more closely the set-oriented paradigm of relational systems and leads to cleaner

more natural semantics, because typically many rules may be triggered at any given point

Chapter 3. Review of Active Databases_______________________46

[Lohman 91]. Other systems such as HiPAC [Chakravarthy 89] and POSTGRES

[Stonebraker 91b] differ in that their rules respond to operations on a single row i.e. a

single record (although POSTGRES does support a minimal rules system which is set-

oriented).

Starburst is made active by two rule systems: a relationally oriented production rule

system and an object-oriented system, called Alert, that monitors objects and invocation

of methods. Both are described in turn.

3.3.2.1. Production Rules

As other rules systems, Starburst's rules have trigger, condition and action clauses. The

trigger clause may specify one of the SQL operations INSERT, DELETE or UPDATE

as events on the trigger table, identified by the keyword ON. The rule's condition clause,

signified by the EF keyword, is any SQL query. If the query is satisfied, Starburst executes

the action clause, which is any sequence of database commands, preceded by the keyword

THEN. Actions may suppress changes to the database by terminating the current

transaction or perform further updates which may trigger further rules to fire. A user may

temporarily DE-ACTIVATE defined rules and RE-ACTIVATE them later. The rules may

refer to transition tables which contain changes made to the tables since the beginning of

the transaction.

An example rule to support referential integrity between Department and the Employee

tables, where each table has the DeptNo attribute, could be:

CREATE RULE delete_department

ON Department

WHEN DELETED

IF 'SELECT *

FROM Employee

WHERE DeptNo IN

Chapter 3. Review of Active Databases ______________________47

(SELECT DeptNo

FROM deletedDepartment AS (DELETEDQ))1 ,

THEN 'ROLLBACK WORK1 ;

The above rule would rollback (or abort the transaction), where a department was deleted

which still has employees attached to it.

The rule processor is invoked at transaction completion. Rules may also contain PRE-

CEDES and FOLLOWS clauses to specify a partial order for rule processing. Starburst's

production rules are fully integrated with Starburst. And hence, the rules are stored in the

system catalogs as metadata.

3.3.2.2. Alert

Starburst also has another method of encoding rules within the database system, called

Alert. This method differs from the Startburst Production rules system in that even though

both systems are based on SQL, as reported by Schreier et al. [Schreier 91] the

production rules system can only refer to events that refer to built in operations: update,

insert and delete, whereas Alert rules may monitor user-defined operations, \\kepay on

views. Hence, Alert rules are at a higher level of abstraction than with the production rules

system. Unlike the production system, the Alert rules must be explicitly activated

[Lohman91].

The Alert system is based on SQL views, where queries (termed active queries) are

conducted over active tables (which are append-only views). The Alert rule is declared

using the CREATE RULE statement (which may be read as create view), followed by the

SELECT clause contains the rule's actions (which may be user-defined functions) and the

FROM and WHERE clauses express the rule's condition.

An example Alert rule could be:

CREATE RULE userl condition AS

Chapter 3. Review of Active Databases_______________________48

SELECT empName, expenseAmount

FROM activeTable_Journal

WHERE methodDescription-expenseClaim'

and expenseAmount > 2000

Whenever the methodDescription is called, the rule is activated, and the rule fired if the

expense amount is greater than 2000.

3.3.2.3. Summary

Both of Starburst rule systems support temporary tables which are only available during

the current transaction. The rule triggers are deferred until the end of the transaction

commit time.

In terms of support for existing applications, even though Starburst is an extended

relational system, it is only a development prototyping system, that may one day produce

a future DBMS or at least define its features. Hence, it does not really try to support the

existing applications but to investigate what facilities are required by the new applications.

3.3.3. HiPAC

The HiPAC (High Performance ACtive database management system) research project

[Chakravarthy 89] began its development in 1986 at the Xerox AIT, although its

underlying PROBE object-oriented data model began its life in 1984 [Manola 86]. Since

HiPAC is an object-oriented DBMS, the rules in HiPAC, as all other forms of data, are

treated as objects. There is a rule object class, and every rule is an instance of this class.

The project originally addressed two critical problems in time constrained data manage-

ment: handling of time constraints and avoidance of wasteful polling i.e. active database

management These goals were further augmented by a goal of contingency plans i.e.

Chapter 3. Review of Active Databases________________________49

alternate actions that can be invoked whenever the system determines that it cannot

complete a task in time.

HiPAC has developed knowledge and execution models. The knowledge model provides

primitives for defining timing constraints, situation-action rules. The execution model

allows various coupling modes between transactions, situation-evaluations and actions.

These are examined in detail below.

3.3.3.1. Knowledge Model

The primary objective for HiPAC was to develop a knowledge model that provides

primitives for defining situation-action rules.

The HiPAC knowledge model is built on the PROBE data model [Manola 86]. In

PROBE, the real-world objects are modeled as entities. The attributes, relationships and

operations are modeled as functions. The necessary extensions for HiPAC are: rule

objects, specific temporal constructs for expressing events, and execution model primi-

tives. The rules themselves are modeled as first class objects i.e. they are instances of a

rule class.

The HiPAC project [Dayal 88] in its knowledge model originated the

Event-Condition-Action (ECA) rules. These ECA rules have been used as the basis for

many other active database systems i.e. Starburst [Lohman 91, Schreier 91], Ode [Gehani

92a], Adam [Diaz 91b]. HiPAC also introduced coupling modes, which specify when the

condition (EC) or action (CA) is evaluated relative to the transaction, and supports

immediate, separate, and deferred modes. HiPAC, supports complex events (i.e.

collection of primitive events) as triggers for its ECA rules. It also, unlike the Starburst

production rules system, allows rule actions to be defined by the application (external

events), and allows rule actions to contain requests to applications i.e. applications to

define and signal their own events.

Chapter 3. Review of Active Databases_______________________50

The condition clause is a collection of object-oriented DML (Data Manipulation

Language) query.

The execution model consists of a nested transaction model, and sub-transactions for

condition evaluation and action execution, and parent transaction based on coupling

modes.

3.3.3.2. Architecture

HiPAC was implemented on an object-oriented database with nested transactions. The

object database being the PROBE data model. PROBE is intrinsic to HiPAC. The

Knowledge model was implemented as part of transaction manager. The transaction

manager noted the triggering event for the rule. When a rule is created, the situation part

of the rule is passed to the condition monitor. The execution model is executed in the

transaction manager. The underlying data model had to support the semantics of rule

object class including detecting events, determining which rules to fire on events,

scheduling condition evaluation and action execution according to coupling modes.

3.3.3.3. Summary

In summary, the HiPAC database research project, in its attempt to find solutions to

problems of the handling of time constraints and active database management, contributed

both the EGA model, and the EC/CA coupling modes.

It should be noted that HiPAC is an in-mahi-memory database. Hence it does not have

the same problems of real large disc-based database systems which have to access

terabytes of data. It can use technology that is available in the Expert System domain,

such as the Rete match algorithm [Forgy 82]. This situation was asserted by Dittrich and

Dayal [Dittrich 91], who reported that disk based active database systems cannot take

advantage of these AI solutions since they were not designed for the large database

Chapter 3. Review of Active Databases________________________5J_

domain and do not scale up. Instead the use of query optimization techniques are used for

the recognise part of the recognise-act cycle of AI systems.

3.3.4. ADAM

ADAM (Aberdeen DAta Model) [Paton 89] is an object-oriented database implemented

in PROLOG, to which rule processing has been added [Diaz 91a, 91b]. Being

implemented in Prolog, frames [Minsky 75] were chosen as the rule representation

method, but Paton and Diaz [Paton 91] assert that the frames were extended to objects

by the enforcing of encapsulation and addition of methods. Within frame systems, as

described by Kingston et al. in their work of CRL a frame system [Kingston 87], demons

are used to represent both behaviour and derived values where event-triggered demons

can be invoked on the update of a frame. In contrast methods in object-oriented systems

are called explicitly.

3.3.4.1. The Knowledge Model

As stated by Diaz et al. [Diaz 91b], in terms of providing rule processing, "The focus is

on providing a uniform approach". Hence ADAM models all components of the

knowledge model uniformly as objects, including rules and events.

The structure of a rule is mainly described by the event that triggers the rule, the condition

to be checked and the action to be performed [Diaz 91]. A rule can only specify a single,

simple event in its event specification clause. Hence the relationship between an event and

a rule is 1 :M, that is, an event may affect many rules, but a rule may only be triggered by

a single primitive event.

The rules, being modeled as first-class objects, have familiar attributes and methods

required for their E-C-A description. They also have two further attributes is-it-enabled

and disabled-far which specify the status of the rule. The attribute is-it-enabled describes

Chapter 3. Review of Active Databases________________________52

the status at the level of the whole class appearing as the active-class value, whereas the

disabled-for attribute describes the status for specific instances of the class.

An example ADAM rule could be as follows, where an integrity constraint that maintains

that students are below the age of seventy.

new ([OID, [
event([3@db_event]),
active_class([student]),
is_it_enabled([true]),
disabled_for([l@student, 23@student]),
condition ([(

current_arguments([StudentAge]),
StudentAge > 70

action ([(
current_object(TheStudent),
current_arguments([StudentAge]),
get_cname(StudentName) => TheStudent,
writeln ([The student ', StudentName,

'with age ', StudentAge,
'exceeds the expected age']),

fail

=> integrity_rule.

ADAM as described by Paton and Diaz [Paton 90] supports metaclasses, which allow the

run-time creation of classes. Hence objects are considered to be metaclasses, classes or

instances. When the system is compiled, the metaclass called meta-class already exists.

All subsequent classes are created by sending messages to metaclasses i.e. meta-class,

such as ticw for a new class, put_slot andpntjnethod which create the new attributes and

methods respectfully.

Chapter 3. Review of Active Databases

3.3.4.2. Summary

ADAM'S rule processing facility is influenced by the HiPAC research project, where

active facility is implemented upon an object-oriented database using EGA rules. ADAM

does however benefit from being implemented in an interpreted Prolog environment, the

major benefit being extensibility. Since the environment allows the creation of new

classes, objects at run-time.

ADAM is limited in that its rules may only have one primitive event specified against them

similar to Starburst and POSTGRES. The events may be generated from a number of

generators, some of which may be in external applications as in HiPAC, but the events

must be based in methods of the application classes. ADAM does not address the issues

of rule contention, optimization or transactions.

3.3.5. ODE

Ode [Agrawal 89] is an object-oriented database system, developed at AT&T Bell

Laboratories. The database is defined, queried and manipulated using the database pro-

gramming language O++, which is an extension to the object-oriented programming

language C++ [Stroustrap 86].

The constraint and trigger mechanisms in Ode make it an active database [Gehani 91].

Even though providing integrity constraint facilities is not a new issue, Ode provides

facilities for object-oriented databases that can be used to specify complex and

higher-level integrity constraints. The purpose of constraints is to ensure data consistency

while that of triggers is to perform actions when some conditions are satisfied.

Ode supports two kinds of constraints: hard and soft. Hard constraints are checked after

each object access while soft constraints are checked just prior to a transaction commit.

Three kinds of triggers are supported: once-only, timed and perpetual. Triggers, unlike

constraints, must be activated explicitly.

Chapter 3. Review of Active Databases_______________________54

Constraints and triggers have been implemented independently since they are conceptually

and semantically different.

3.3.5.1. Event-Action (EA) Model

Unlike most other active database system, which use the EGA model, Ode has proposed

an Event-Action (EA) [Gehani 92a] model. The EA model allows the condition clause to

be folded mio the event specification. This has the advantage of reducing the number of

coupling modes between the event and action (the complexity of the condition clause

coupling modes have been eliminated). It does however, limit the functionality of the

overall system for a number of reasons.

The first and most obvious disadvantage is that in order to test the event clause, which

includes the condition statement (i.e. a mask), the evaluation of the clause is sought with

undue inefficiency. This is caused by the evaluation of conditional statements even if they

were not brought into context by the triggering event i.e. the event specification alone

was not satisfied. The result of the event clause is not known until the conditional part of

the specification is also tested. This can be exemplified by the following example:

UPDATE student,, AND UPDATE profilee2 AND (Student.name = "Fred")mask

If either of the events el or e2 occur, the above rule clause will be tested. The rule cannot

fire however, until the entire clause is satisfied. What happens if one of the events never

occurs? The following scenarios may take place, either

 the condition mask is not evaluated until the final event occurs. But then

the entire event part of the clause must be satisfied before the condition

mask may be tested This is no different from the conventional EGA

model where the condition is a separate clause, which may only be tested

once the event clause has been satisfied. Their approach simply removes

the possibility of an EC coupling mode, other than the implicit immediate.

Chapter 3. Review of Active Databases________________________55

 the condition mask is evaluated before all of the required events have

occurred, in this example assuming that one of events may never occur,

but for what gain. This will be inefficient as the result may never be used,

and in fact the side-effects of evaluating a non-requisite query could be

unknown.

The rationale given for the EA model, as described by Gehani et al. [Gehani 92b], with

its combined event and condition clause, is that ODE is essentially a programming

environment and the EA model with its less complicated coupling modes facilitates the

programming goals of efficiency and optimisation.

Another subtle disadvantage of the EA model, which is common with other active models,

is the inability to handle external condition clauses. If the condition part of the clause is

based on the state of the external environment i.e. readings from a thermometer, rather

than that of the internal state of the database, this may be difficult to extract from the

integrated event and condition clause that Ode proposes. For Ode to handle the condition

based on the external environment, dummy updates are required to the database in order

for the internal condition evaluation to take place, i.e. an application program will read

the thermometer and update a thermometer table, which may cause any rules on the table

to be tested.

To complement the reduction of the EGA model to the EA model, Gehani et al. [Gehani

92a] have also illustrated a further coupling mode in addition to immediate, deferred,

separated (decoupled). The fourth mode is in effect an expansion of the separate mode

and is broken into two as follows: separate dependent and separate independent.

The EA rules are specified within the program code for the objects to which they apply.

The format for a trigger could be using the following template:

class name {

Chapter 3. Review of Active Databases_______________________56

trigger:
trigger-list

Where the trigger-list is a list of triggers each of which is specified as

trigger-name(parameters): [perpetual] event ==> trigger-action

The trigger must be explicitly activated by calling its name as in method invocation, if the

keyword perpetual is used, the trigger remains available until explicitly deactivated.

An example Ode rule to enforce the constraint that students must be under seventy could

be:

class student {

int StudentAge

trigger:
Tl():perpetual before create(i) && i.StudentAge > 70

==> tabort;

};

Ode has the ability to recognise complex events, for which Gehani et al. have proposed

an event specification language [Gehani 92a, 92b]. The language provides the primitives

for the combination of events using the logical combinations i.e. conjunction and

disjunction.

3.3.5.2. Summary

Ode is an attempt to provide a default persistent store to C++, as reported by Agrawal

and Gehani [Agrawal 89]. Later this goal was extended to support active behaviour

[Gehani 92a]. Attempting to extended a programming language with persistence and

Chapter 3. Review of Active Databases_______________________57

activity meant that many of the goals were based at the programming language i.e.

optimisation and efficiency and not the normal database goals of integrity and flexibility,

as acknowledged by Gehani [Gehani 92b]. Because of the desire to simply the

programmability, the EGA model was reduced to the EA model. Ode does however

provide an event specification language, which although specified using finite automata

does lack in semantics of operation, as highlighted by Widom [Widom 93].

3.3.6. Event/Trigger Mechanism (ETM)

At the University of Karlsruhe, the Event/Trigger Mechanism [Dittrich 86, Kotz 88] was

designed to enforce complexity constraints in design databases (DDES). The ETM was

motivated from ideas derived from exception handling in programming languages.

The goal of the project was to enforce consistency constraints by triggering checking at

arbitrary times and to execute user-definable reactions to consistency violations. This is

similar to exception handling mechanisms from programming languages and interrupt

mechanisms from hardware.

The ETM has several parts i.e. consistency constraints, events, actions and triggers. The

consistency constraints were explicitly inserted into the database, and then explicitly

checked using a CHECK [constraint name] call and finally deleted using the REMOVE

keyword. Events are system attributes and are defined using the EVENT keyword. This

will assign the event a unique system-wide identifier. Events are generally raised explicitly,

because as stated by Dittrich et al. [Dittrich 86] "this approach is feasible as we can

assume that most of the knowledge on what event should be meaningfully raised, at what

time, rests with the user or with the application program (and frequently nowhere else)".

Actions are host language or DML statements. Triggers are the mechanism for pairing the

event to the action and have the following format:

TRIGGER <trigger name> =

ON <event name>

Chapter 3. Review of Active Databases________________________58

DO <action name>

After a trigger has been defined it must be explicitly activated, and later deactivated.

ETM was later implemented on top of Damascus, a prototype design database system.

Damascus is a development database system, upon which to test ideas i.e. prototyping.

Hence the system source code was available to amend. The resultant functionality of the

system was limited in terms of its transaction coupling mode to that of immediate only.

3.3.6.1. Summary

The ETM provided the fundamentals for active database management, even though the

majority of all rule invocation was explicit. It has two complementary concepts, those of

consistency constraints and triggers. The consistency constraints had to be checked

explicitly. The triggers, although they could be triggered by a single event, the event itself

had to be explicitly raised.

3.4. Comparison of Approaches

Only HiPAC, Ode and ETM support external events. The need for temporal events was

recognised by HiPAC and Ode which both proposed absolute and relative events.

POSTGRES, on the other hand, supports a few specific temporal events (e.g. time and

date). POSTGRES and Starburst support only disjunction of events whereas HiPAC

provides three event constructors: disjunction, sequence and closure allowing a regular

event expression to be expressed.

Starburst supports only the deferred coupling mode, while POSTGRES, ADAM, ETM,

Sybase [Sybase 90] and InterBase [Interbase 90] support immediate coupling mode only.

HiPAC supports a general execution model [Hsu 88] which includes immediate, deferred

and detached modes. The detached mode includes causally-dependent and causally-

independent modes. In causally-dependent mode there is a commit dependency between

Chapter 3. Review of Active Databases________________________59

the triggering transaction and the rules triggered by that transaction. All allow cascaded

execution of rules. Again, all of the systems, except Sybase, support multiple rules to be

associated with a relation. Sybase allows only three rules per relation, one each for

INSERT, DELETE, and MODIFY events. All of the systems, except HiPAC, prioritize

potentially executable rules activated by an event. ETM, POSTGRES and InterBase order

rules in the order specified by the user when rules are defined. HiPAC interleaves multiple

rule execution (i.e. provide concurrent rule execution) using an extended nested

transaction model, even so it allows the serialization order to be specified. Starburst

assumes a conflict resolution scheme similar to the ones used in expert systems. Starburst

uses an incrementally computed context for execution of rules which were triggered by

an event.

Chapter 3. Review of Active Databases 60

Table 3.2 Features of Current Active Database Systems

Chapter 3. Review of Active Databases 61

3.5. Summary

Newer applications require timely responses, otherwise their information becomes

out-of-date. The traditional passive databases could not furnish the time requirements,

without causing unmanageable redundancy of code or undesired polling of the database.

Active databases fill this niche. Their ability to allow the database to hold both the data

and the knowledge required by an enterprise leads to elegant handling of both.

This chapter introduced the issues concerning active databases. It then went on to survey

state-of-the-art active database systems and discovered that there remains a void that

requires attention i.e. more powerful facilities are required such as the ability to specify

many actions for a given situation, increasing the expressiveness of rules (i.e. more

complex triggering event specification language) and further efficiencies to be gained by

distribution and parallelism.

The following chapter addresses these issues and this research forwards the REFLEX

Active Data Model as a solution. It attempts to be a more comprehensive data model, but

still remain portable and adaptive.

Chapter 4

The REFLEX Approach

The previous chapter introduced the important issues concerning active database

technology and raised some questions. It went on to review several prominent research

prototype active database systems, with a view as to how they addressed the earlier

questions. This chapter examines the issues raised and provides considerations and

justifications for the approach taken within the active database model forwarded by this

research.

4.1. Introduction

The main objective of this research is to investigate how best to augment an existing

database management system with active functionality, in order to preserve legacy

systems and the investment therein. With this in mind the major aims are that the

resultant system should be portable, adaptive, flexible and efficient, i.e. the system

should be available on more than one platform and that it should accommodate or adapt

to new databases so that its additional functionality is transparent to the host database.

The active database model introduced by this research is called REFLEX. It was so

named since one of its design goals, as described in chapter one, is to enable a host

database to respond to a given situation reflexively.

-62-

Chapter 4. The REFLEX Approach________________________63_

This chapter addresses some the issues introduced in the previous chapter, and explains

how the REFLEX active data model differs from related work. The chapter proceeds

as follows, section 4.2 introduces the underlying technology used by REFLEX. This

is followed by a section on the loose coupling model that REFLEX introduces to allow

it to adapt to new underlying host databases. Section 4.4 and 4.5. describe the

knowledge and execution models respectively. REFLEXs self-active features are

discussed in Section 4.6, and knowledge integrity in section 4.7. Finally, section 4.8

summaries the chapter.

4.2. Underlying Technology

Since the answer to the issue as to whether the underlying technology would affect an

active databases feasibility, was that it does not, the next question for this research was

what underlying technology to use. Related research like Starburst [Lohman 91] or

POSTGRES [Stonebraker 87] both attempt to extend the domain of relational

technology. Whereas the HiPAC [Chakravarthy 89] and ADAM [Paton 89] systems

provides activity for object-oriented databases.

Having an aim of being portable, REFLEX should in theory be implementable on any

given platform and underlying technology (i.e. relational or object-oriented), but this

research limits the scope to a single technology. The portability between platforms is

examined by multiple implementations, and discussed later in chapter six. The choice

of object-oriented databases as the underlying technology was made because of the

inherent reuse of base classes i.e. additional active functionality may be added by

specializing a base class into an active subclass. This will be discussed in greater depth

in chapter six. Further motivation is that object technology may be the next

evolutionary step for relational systems as highlighted by many authors, such as Schek

and Scholl [Schek 91], and Kirn [Kim93].

Chapter 4. The REFLEX Approach 64

4.3. Loose Coupling

As a major tenet arising from the design goals to be both adaptive and portable, the

system should be loosely-coupled to the underlying database and model. By loose

coupling it is meant that the active extension is added to the host database via a defined

interface layer, figure 4.1. The active extension is not given access to the internal code

of the host, but must call services as required. This approach is unlike other active

database prototypes described in the literature i.e. POSTGRES, Starburst, HiPAC,

Ode, ADAM, which are tightly coupled or entwined to their underlying database

management system code. Hence REFLEX is loosely-coupled since the active

knowledge extension is a distinct layer on top of a given host database management

system, allowing it to be 'bolted-on' to a DBMS.

Applications

i

'

k t

r)

. i

Active
application

access
r l

L

r

REFLEX
Active Database Extension
i

i

t

^

k j

r \

k

r

^Jl'^ , : '.. <
t

\

\ t

r 1

i i

> \

t

r

t

\

i i

Existing
or non-active

access

r i

k

'

HOST DBMS

Figure 4.1 Layered access to the host DBMS

This loose-coupling is achieved by having a code wedge (like those found in interrupt

service routines, ISRs), which is inserted between an application and the DBMS. It

intercepts calls to the DBMS, and invokes some of its own processing logic before

Chapter 4. The REFLEX Approach 65

allowing the call to go through. If the call has no significance to REFLEX, then the

call is allowed through, unhindered. The module that performs this task of actually

making the physical contact with the underlying host database system is called the

Transparent Interface Manager (TIM), and is discussed later in chapter 6. Another

analogy could be that TIM is very similar to a gateway as described by Brodie [Brodie

93], where access to a resource is routed via a filtering layer.

Knowledgebase
Interface
Manager

Expert
System DBMS

DATABASE

Figure 4.2 Knowleclgebase system approach

The approach taken by REFLEX is unlike that of knowledge base systems (KBS),

figure 4.2., where the component parts are distinct and consist of an expert system and

a database coupled together by a third part, the common data channel [Beynon-Davis

91]. For KBS the communication between the expert system and the database is via

Chapter 4. The REFLEX Approach 66

messages of some kind routed or administered by the knowledgebase manager.

Knowledge-based systems traditionally assume that the data needed resides in main

memory. The KBS approach means that the knowledge-data coupling is weak or loose

since the knowledge is held and maintained by the expert system and the data is held

Non-active
Applications Active Applications

j k

REFLEX

HOST DBMS

DATA
+

RULE
BASE

Figure 4.3 REFLEX active database approach

by the in-working-memory DBMS. Within the REFLEX model where knowledge

coresides with data in the same database, even though the active knowledge extension

is bolted-on to a host database, its knowledge facilities are tightly coupled, figure 4.3.

This seems to be a paradox since the REFLEX extension is loosely-coupled w.r.t. host

DBMS but tightly-coupled w.r.t. knowledge management, this affords a powerful

solution to the problem of knowledge maintenance within a database and at reduced

Chapter 4. The REFLEX Approach________________________67

overall system cost and satisfies the aim of portability.

It is this feature that should allow an organisation to utilise the advanced concept of

active databases whilst still preserving its investments in technology and resources

(training etc.), by continuing to use its existing database management system.

The engineering benefit of having a layered approach dictates that it may be

implemented for any database and not just the one it was developed for. This satisfies

its portability criteria enabling the system to be compiled for a different platform i.e.

hardware, operating system and DBMS. Another more important goal is that of

adaptability. This is where REFLEX adapts to its host DBMS in a transparent manner,

allowing the system and its applications to function as before. This feature is

investigated in depth later in chapter 6 (Design Architecture and Implementation).

4.4. Knowledge Model

Both events and rules are modeled as first-class objects within REFLEX, as is the case

with ADAM [Diaz 91b]. Except that ADAM only allows an event to affect one rule

and a rule can only be triggered by one single primitive event. REFLEX like systems

such as HiPAC [Chakravarthy 89] and Ode [Gehani 92a], provides support for

complex or composite heterogeneous events in addition to primitive events, allowing

the user the flexibility of defining either a simple or composite event for a given rule.

REFLEX promotes the Extended EGA (EECA) knowledge model, which is an

extension of the EGA [McCarthy 89] model. The EEC A knowledge model addresses

the problems associated with scope of the condition clause and situation redundancy.

The constituent parts of the knowledge model are discussed in depth in the following

chapter.

Chapter 4. The REFLEX Approach________________________68_

4.5. Execution Model

Like HiPAC, the coupling anchors afforded by REFLEX between the host transaction

and the interrupting transaction are immediate, deferred or decoupled for the evaluation

of the condition. REFLEX promotes an extended knowledge model for which the same

modes are available for the execution of the multiple EECA action clauses.

4.5.1. Rule Contention

In order to comply with the portability design goal, the rule contention scheme for the

knowledge management extension should be consistent on as many platforms as

possible. In order for the rule contention strategy to be available on all platforms

implies that the lowest common denominator be extracted from all possible platforms

and implemented in REFLEX. Some platforms may be single-tasking, multi-tasking,

uni-processor, or multiprocessor. The lowest common denominator would necessarily

mean single-tasking/single-processor. Contention strategies for these systems (single-

tasking) have generally meant rule priority mechanisms i.e. where the rule whose

condition is satisfied first is allowed to execute and if two or more rules are satisfied

then the rule with the highest priority will execute. This approach is satisfactory but

may handicap the system when operating in an environment which supports multi-

tasking, since it cannot take advantage of more than one processor. For this reason,

REFLEX has a tiered or stepped approach. Where the user is presented with an

interface which supports the multi-processing system, i.e. the user may set a priority

level for the rule, but may also set a high 'trap' priority which instructs the system to

execute in parallel.

Chapter 4. The REFLEX Approach________________________69

4.5.2. Rule Termination

A problem for active databases is that of cyclic firing of rules where on the firing of

a rule, a further event is raised which may indirectly cause the initial rule to be again

fired. REFLEX attempts to prevent this situation from occurring by two methods (i.)

prevention and (ii.) detection. The first preventive method attempts to minimize the

correspondence of rules to only a few related rules. These rules are grouped into

cohesive rule sets which reduce the scope of the rules to one scenario. Hence the rules

should be more easily analyzed and the interrelationships minimized. The second more

crude method is that of dynamic detection where on the firing of a rule, its firing count

is stored against a situation. Once the maximum number of allowable firings have

occurred for a given situation, the rule can no longer fire for that situation. The

maximum number can be set by the user, but the system provides a default of 30.

4.6. Employing Activity

An active database provides a fast reaction to any changes within the database's state

or the applications environment i.e. imparting active capability into the application

domain. REFLEX, unlike any of the other active database research prototypes, employs

the active capability itself i.e. it is self-active. The knowledge base (KB) as well as the

application database are stored within the REFLEX system. Thus the maintenance of

the KB can also be subject to the notion of activity. As an example, the rule's state is

monitored actively by the REFLEX system. Rules have three components: events,

conditions and actions. The clauses for each of these components are compiled,

translated or recompiled at the point of rule creation or on rule modification. The re-

compilation process being automatically triggered on a rule change.

The goal of REFLEX was to provide activity to a host database. Since a motivation

was to allow the application domain knowledge to be centralized within the database,

Chapter 4. The REFLEX Approach_________________________70

and hence reduce maintenance overheads, why not allow REFLEX itself to utilise the

activity to maintain itself. This self-activity feature was actively pursued in designing

the system.

4.7. Knowledge Integrity

It may be a good goal striving to promote more knowledge within a database, but this

knowledge should be audited to ensure that the system is reliable in its knowledge

inferencing. REFLEX provides many features for the specification and testing of the

knowledge entered.

As with expert systems which make inferences, the user needs to know that the

inferences made are correct, given the known information. This is generally achieved

by having an explanatory interface, which explains the rationale for the firing of certain

rules.

Most expert systems are main memory based and have a finite number of rules

(exceptions are systems such as XCON [Luger 89], built on OPS5 [McDermott 81],

which according to Soloway et al. has a large and increasingly unmanageable set of

rules [Soloway 87]). Active databases have knowledge, generally represented as

production rules, but are based on large databases. This knowledge must exist for a

long time, possibly indefinitely. A user may wish to know why a particular action took

place last year, what were the conditions etc.? This then leads to the difference between

manual and computer based systems. In a manual system, if a customer notified a

company of a change of address, the piece of paper holding the new address is

generally placed in the customers file or folder. The following year if the customer

again moves, a piece of paper is again deposited in the file. The same scenario using

a typical computer based system would mean that on receiving the customer's new

address, it is entered over the customer's old address, destroying the previous

Chapter 4. The REFLEX Approach_________________77

information by updating the record. A destructive update. Some systems, however, can

be designed to handle more than one address, but how many? A lot of work is

currently being undertaken into this field of temporal databases, for example the

General Temporal Model by Knight [Knight 92a] and Ling and Bell's Temporal Model

[Ling 92], where the data is not destroyed on every update. Akin to the old fashioned

manual system. This approach is followed in REFLEX in order to maintain the

knowledge base.

4.7.1. Non-Destructive Knowledge

REFLEX introduces the concept of Non-Destructive Knowledge i.e. declared

knowledge is not lost. For example, if a rule has been declared, and it has not been

used, it may be subject to change or amendment. But if the rule has been fired, or

linked, it may no-longer be subject to change. It is in effect, locked. This concept

allows us to audit our knowledgebase and evaluate why certain events occurred. It also

allows the provision of knowledge versioning. If a change in the rule's definition is

required, a new rule must be declared, which the old rule references. The rules, even

if deactivated, still maintain references to objects that they referred to, thus providing

a browsing system of the previous database knowledge state.

4.8. Summary

The research described in this chapter will provide an adaptive active data model for

an existing database system. Therefore if an organisation has invested in technology

and the training of its staff, the product of this research will allow the organisation to

keep both. The existing databases may still be used, but the knowledge dimension, may

simply be bolted-on as a certain application requires. Providing a very flexible

cost-effective solution.

Chapter 4. The REFLEX Approach________________________72

The following chapter reviews the REFLEX knowledge model. The adaptability and

flexibility of REFLEX is reviewed in chapter six.

Chapter 5

The REFLEX Knowledge Model

Active databases have the ability to manage knowledge. This knowledge must be

structured or modeled so as the semantics of rule operation are known. An active

database is essentially an event-driven knowledgebase system. The events and their

detection are therefore of central concern. This chapter describes the Extended EGA

(EECA) knowledge model promoted by this research, including its handling of the

problems associated with situation redundancy, the rule and event representation

methods employed, and the event specification language known as English ESL.

5.1. Introduction

Before the Knowledge Model employed by REFLEX can be discussed, it would be best

to define exactly what a knowledge model is. For the purposes of this research a

knowledge model defines how the inherent knowledge within a system can be

structured, represented, managed and utilised.

REFLEX'S knowledge model determines the way the knowledge is defined and main-

tained. The knowledge model also defines the method by which events are modeled and

handled. The execution model, which is a part of REFLEX'S knowledge model,

Chapter 5. Tfie REFLEX Knowledge Model____________________74

implements the various available transaction coupling modes between the condition and

action clauses of the rules.

This chapter is structured as follows: Section 5.2 presents an overview of the

knowledge model and its components. This is followed by the new Extended EGA

knowledge model which this research promotes. Within REFLEX, the rule is the

primary method of knowledge representation employed. Section 5.4, describes how the

rules are modeled as first-class objects. Events and their representation within the

system are described in section 5.5. These are followed by the event specification and

their semantics. Sections 5.8 and 5.9 declare the detectable events and how complex

events are constructed by means of using the English ESL algebra.

5.2. Knowledge Model

REFLEX's Knowledge Model is based on similar lines to the EGA model [McCarthy

89], although it has been extended into the EEC A model [Naqvi 94d] which will be

discussed in the following section. The knowledge is represented as production rules

[Williams 87] or simply rules. The production rule is a single condition-action pair and

defines a single chunk of problem solving knowledge. The rule is brought into context

on the occurrence of an event(s). At this point the condition part of the rule, which is

a pattern that determines when the rule may be applied to a problem instance, is

evaluated. If the condition is satisfied then the action part, which is the definition of

the problem solving step, is executed.

The knowledge model can be defined as follows, figure 5.1. Rules apply to objects and

an object may have many rules which apply to it. Rules can be assigned to classes or

to individual instances of objects.

The rules may have one or more events defined, that may trigger them. This implies

Chapter 5. The REFLEX Knowledge Model

that if more than one event can be defined against a rule, then the system (REFLEX)

allows both primitive and complex event specifications.

Knowledge
Manager

Events Rules Objects

Figure 5.1 REFLEX Logical Knowledge Model

According to Dayal [Dayal 89], within any system there is almost certainly a point of

control and this requirement becomes even more important with active or event driven

systems. The REFLEX active database system has a kernel or control module, known

as the Knowledge Management Kernel, to oversee the system and manage the

scheduling tasks that are inherent in an asynchronous system. Within REFLEX, any

application domain may have one and only one kernel, which is also modelled as an

object.

The rules themselves belong to sets [Naqvi 93d]. A rule set is a mechanism used to

group related rules together, primarily used to allow the analysis and auditing of rules

and their interactions.

Chapter 5. Hie REFLEX Knowledge Model___________________76

5.3. The Extended Knowledge Model

REFLEX was initially designed around the EGA model, and was proven using

prototypes. These are described in chapter six. Applications (which are described in

the appendices), were built to test the prototypes. These investigations highlighted

several omissions of the standard EGA model, such as the replication of rules, and the

creation of negative rules. These findings led to the Extended EGA (EECA) model

which REFLEX now supports. This section discusses this EECA Knowledge Model.

5.3.1. Related Knowledge Models

A survey of active database systems and their knowledge models appeared in chapter

three. In this section for the convenience of the reader, a precis is provided of some

of the important knowledge models.

Most of the active database research prototypes use the Event-Condition-Action (EGA)

model developed within the HiPAC project. This EGA model is now a dominant

knowledge model used within the active database community e.g. it is used by

StarBurst, POSTGRES, ADAM, etc.

Gehani, Jagadish and Shmueli propose an Event-Action (EA) model [Gehani 92a] for

the Ode object database system, which combines both the event and condition clauses

of the EGA model into the event specification. The rationale for this approach was

based on the fact that Ode is an extension to C + + , an object-oriented programming

language. The aims of the extension are to provide persistence to C+ + objects and

database facilities such as transactions, recovery and security measures. As such, it is

constrained by normal programming language development goals, many of which are

at odds with those of database development i.e. database environments provide data

independence and longevity of data, whereas programming languages provide

Chapter 5. The REFLEX Knowledge Model____________________77

optimised static object code and take a short-term in-memory view of data. Gehani et

al. [Gehani 92a] report that the EGA model provides too many coupling-modes which

are difficult to maintain within a programming environment, and further state "the E-A

model is easier to explain and has simpler semantics than the E-C-A model". Although

the EA model does away with many of the coupling modes, as the event and condition

clauses are now one, the current research has found the approach restrictive because

in order to satisfy an event specification both the event and condition masks need to be

evaluated, as discussed in chapter three.

The REFLEX EECA model addresses these problems, of situation redundancy

(identical declarations of both the event and condition clauses), and the scope of the

condition clause.

5.3.2. Scope of the Condition Clause

Most of the current active database prototypes allow the condition clause to be declared

using some sort of Data Manipulation Language (DML) query. This form of condition

declaration is recognised as useful, as it allows the user or designer to use a familiar

interaction protocol. However, it is also limiting as it forces the designer to initiate

unnecessary access to the database, thus adversely affecting the performance of the

overall system. For example, for a large office complex management system, if the fire

alarm sounded how would the active database know if it was a test or a real fire

emergency, since the fire station should only be called on a real fire.

ON Event Alarm

IF select room

from rooms

where status = fire;

THEN call fire department

Chapter 5. The REFLEX Knowledge Model___________________78

The room information is probably held in the Alarm Control Box somewhere in the

building. But how did the database acquire the room information in order to test its

state? Since other active databases test internal conditions only, for the room

information to be tested, an update to the database must be applied so that the data is

in the database, i.e. the above form of the condition clause addresses only one aspect

of the total environment, that is the internal state of the database.

REFLEX however, with its EEC A knowledge model, allows the calling of user defined

condition modules. This provides support for changes in the environment which may

require a complex condition statement which cannot be handled by the DML language,

or the condition requires access to external or application specific parameters, possibly

user initiation, which have no bearing onto the internal state of the database. For the

above example, the following rule could be declared:

ON Event Alarm

IF call getAlarmStatus

THEN call fire department

The database calls the external getAlarmStatus routine, and thus avoids internal

database updates to test the environment. The external condition module is recognised

as it is preceded by the call keyword. This approach was taken to distinguish external

conditions from internal object SQL statements signified by the SELECT keyword and

to distinguish from the conditions specified in the proprietary language of the host

DBMS, which are entered as normal without any specific pre-keyword. The external

condition module simply returns a boolean TRUE if the condition statement is satisfied

or FALSE otherwise.

This extension allows all the sections of the EECA tuple to independently access either

internal or external factors of the environment i.e. the external events, conditions and

actions.

Chapter 5. The REFLEX Knowledge Model 79

5.3.3. Situation Redundancy

There may be situations (both events and conditions) which are common to many rules,

but each with alternate actions i.e. the same situation in the environment triggers these

rules. An example scenario could be in an office environment where there is a

stipulation that working temperatures are to be within a defined range. If the room

temperature is greater than the maximum working temperature a number of activities

take place, (i.) for system security the system should be backed up, (ii.) the

maintenance department must be informed and (iii.) the room should be evacuated.

These three actions, under the EGA model require these rules as follows:

i. ON

IF

THEN

UPDATE room_details

temperature > maxTemperature

AND airConditioning = "ON"

run backup

11. ON

IF

THEN

UPDATE room_details

temperature > maxTemperature

AND airConditioning = "ON"

call maintenanceDepartment (Room No)

iii. ON

IF

THEN

UPDATE room_details

temperature > maxTemperature

AND airConditioning = "ON"

call initiateEvacuateRoom (Room No)

If events are raised which bring into context many rules, the event specification clauses

of these rules must be evaluated. After the event specification clause has been evaluated

and satisfied, the condition clause must also be evaluated. If the situation of the rules,

are the same, then it is implied that there has been multiple or redundant evaluation of

Chapter 5. The REFLEX Knowledge Model____________________80

event and condition clauses from many rules, causing the overall system to be

inefficient.

The proposed EECA model alleviates the problems associated with redundant situation

declaration by allowing a rule to have multiple actions, each within their own

transaction. Thus on the occurrence of a given situation, the rules' many possible

actions may be executed. The multiple action clauses also implies that a rule must have

multiple Condition-Action coupling modes. For the above example, an EECA rule

could be declared as:

ON UPDATE room_details

IF temperature > maxTemperature

AND airConditioning = "ON"

THEN run backup

call maintenanceDepartment (Room No)

call initiateEvacuateRoom (Room No)

There are occasions where it is easier to state a negative condition rather than a normal

condition, as it may be far more efficient to evaluate. The EECA model accommodates

this situation by using a construct that is similar to an else statement in conventional

block structured programming languages. For this case the EECA model proposes Fail

Actions. These are actions that may be executed if the condition clause of the rule fails

(or does not hold). Multiple fail action clauses as well as multiple action clauses are

also permitted within the EECA model, along with their respective Condition-Fail-

Action coupling modes.

Chapter 5. The REFLEX Knowledge Model 81

Knowledge
Manager

Events Rule

I
Action

Action

Objects

1
Fail Action

Action

Figure 5.2 EECA Knowledge Model

A rule in the REFLEX Knowledge Model, figure 5.2, is represented as:

ON

IF

THEN

ELSE

event specification

condition holdsi) internal: NULL
OSQL
host DBMS prop, language

ii) external

multiple action clauses
execute action 1

execute action n
multiple fail-action clauses

execute fail action 1

execute fail action n

Chapter 5. The REFLEX Knowledge Model____________________82

The Action and Fail-Action clauses are mutually exclusive, just as with the THEN-

ELSE structure. The clauses may contain requests to abort the parent transaction,

undertake some DML query or call some external module.

5.3.4. EECA Coupling Modes and their Semantics

As described earlier, one part of the EGA triple defines how and when the subsequent part

is actioned. This is termed the coupling between the two parts. In order to evaluate the

condition, the event-condition coupling mode defines whether the condition clause is to

be evaluated immediately, or deferred until the end of the host transaction or whether it

should be evaluated within a separately spawned decoupled transaction.

With REFLEX's EECA model, there may be multiple action and/or fail-action clauses. In

order for some autonomy to be maintained within the action clauses, each clause will

require its own condition-action coupling mode. To these coupling modes, the complex

issues of dependence need to be addressed, i.e. is the committal of the parent transaction

dependent on that of its child?

Since flexibility was seen as an important goal for the REFLEX system, the onus for

dependence between the parent and sub-transactions has been passed to the designer of

the application system. The EECA model requires that all the action statements (including

fail actions) for each of the rules have a dependency flag that signifies whether the action

is dependent or independent of its initiating transaction. Hence the action clause is

effectively an object or tuple (with arity 3), as is demonstrated below:

Action clause (execute action 1, coupling mode, dependency flag)

(execute action n, coupling mode, dependency flag)

Chapter 5. The REFLEX Knowledge Model_______________83

The same is true for the fail-action clause.

Fail Action clause (execute fail action 1, coupling mode, dependency flag)

(execute fail action n, coupling mode, dependency flag)

It may be noted that the EC coupling modes for the condition clause remain unchanged

from those for the EC A model i.e. the condition clause can have one of the following

coupling modes: immediate, deferred or decoupled.

For a given situation, where there may be many actions, an EECA rule could be declared

using multiple action clauses but only if the EC coupling modes for the situation are also

the same. If the EC coupling modes are different, then different rules need be declared.

e.g.

Rl ON UPDATE student

IF student.name = "Joe"

THEN

EC Coupling Mode immediate

R2 ON UPDATE student

IF student.name = "Joe"

THEN

EC Coupling Mode deferred

In the example above, two separate rules need to be declared since the EC coupling mode

for the same situation is different This design decision was taken so that the rule

declaration was not over complicated with many excess coupling modes for situations

which would hardly ever arise.

Chapter 5. The REFLEX Knowledge Model

For the Condition-Action coupling the three modes (of immediate, deferred and

decoupled), are offered the option to be dependent or independent of the parent

transaction.

5.4. Rules as First-Class Objects

In some systems such as Starburst [Lohman 91] rules are modeled as extensions to SQL

and are stored within the system catalogs. This approach aids an organisation to

migrate to an active database system, since SQL is extended with rule declaration

facilities and hence allows a lower learning curve. However, it does not allow extra

information about the rule to be maintained.

Rule

N urn
Priority

English ESL Clause

Knowledge
Management

Kernel

Object Exempt
Object

Event

Figure 5.3 Partial Rule Composition Hierarchy

In the knowledge model embodied in REFLEX, rules are modelled zs first-class objects

Chapter 5. The REFLEX Knowledge Model___________________85

(objects in their own right), as in HiPAC [Chakravarthy 89] and ADAM [Diaz 91a,

Diaz 91b]. This approach allows the rules to be handled in the same uniform manner

as the other objects in the database and it has a number of advantages, the most

important being that maintenance of the knowledgebase is simpler as the underlying

DBMS maintains the rules as well as the data. Another important advantage is that the

rules, which are objects of a Rule class, can be created during run-time at will. As soon

as they are created they are immediately available for processing. If the rules were

hard-coded into the application programs, they would have to be declared prior to

compile-time.

The illustration in figure 5.3 shows, within REFLEX, a Rule as a first-class object.

Some of its attributes can be seen but more importantly so can a portion of the complex

object composition hierarchy. It is precisely this ability of aggregating objects into

more complex objects which affords the object model more representation power over

other systems such as the Relational Data Model. This allows the rule to be represented

in a more natural and real-world manner since the rule encompasses not just the event,

condition and action clauses but further attributes such as coupling modes and

collections. These collections aid REFLEX by allowing the rules system to be efficient

since a rule maintains links to the other objects which it is interested in, such as the

central control object, the Knowledge Management Kernel (KMK). This link is a

simple one since each rule is attached to exactly one and only one KMK. Links to the

other objects can be multiple for example, a rule maintains a list of the events which

affect it, and of the objects it rules upon.

5.4.1. Rule Attributes

The structure of the rules in REFLEX have the following main attributes, summarised

in table 5.1:

Chapter 5. The REFLEX Knowledge Model____________________86

 Knowledge Management Kernel (KMK)

Each active application system must have only one central control point,

the KMK. Each rule in a given application has a link to the KMK.

 Objects

The rule maintains a list of all classes that it applies against, and to

individual objects.

 Exemptions

The object instances can also hold exemptions from certain rules as

required. For example, in the case of a Student Records System, there

will be a rule stating that students may register onto a course. In the

case of a student who has been suspended, he/she will be exempt from

the rule which allows registration. The registration rule will be at a class

level i.e. on all students, and the exemption in this case, will be at an

instance level, on a particular object.

 Event Algebra Specification

The rule maintains the logical complex event in terms of an English

ESL declaration. This specifies how the various component events are

related together to form the logical complex event, using the event

specification language introduced by this research.

 Events

A list of the events that are specified in the English ESL clause, are

maintained, primarily for efficiency and good house-keeping i.e. if an

object refers to another object, then that object should maintain a

reverse reference.

 EC coupling mode

Chapter 5. 77?? REFLEX Knowledge Model____________________87

There are different coupling modes between the event specification

being satisfied and the condition clause being tested. The modes of

immediate, deferred and decoupled are available.

 Condition clause

The test of the state of the environment, either internal or external to the

database is specified and stored in this attribute.

 Action clause

A list of action clause objects is maintained, in a part-of relationship.

The action clause objects have attributes to specify the action

specification in a manner similar to the condition clause. The object also

maintains the Condition-Action coupling modes of immediate, deferred

and decoupled, and the dependency between the triggered transaction

and the triggering transaction.

 Fail-Action clause

As for the Action clause above. These clauses are triggered if the

condition clause fails.

 Set Membership

Each rule is a member of a set of related rules. This allows the

interactions between rules to be monitored and minimized.

 Rule Priority

Each rule has a defined priority. This is used during conflict resolution,

where the rule with the highest priority is selected to action.

 isTrap

This is a special flag which signifies that the rule has a special high

Chapter 5. The REFLEX Knowledge Model

maximum priority status. Rules with this status are selected for

concurrent evaluation of both their event and condition clauses.

 isActive

A flag which may be set to indicate whether a rule is enabled or not.

 isTerminated

A rule may no longer be available for being enabled. It is effectively

dead, but its records are kept for auditing purposes.

 New Rule

As part of the knowledge auditing, once a rule has been terminated, a

link is maintained to the new succeeding rule.

Old Rule

As with New Rule, a link is kept to any previous incarnation of the

current rule.

Chapter 5. Ttie REFLEX Knowledge Model 89

Rule

Attribute

Knowledge Management Kernel

Objects

Exemption

Events

Event Algebra specification

EC coupling

Condition clause

Action clause

Fail-Action clause

Set Membership

Rule Priority

isTrap

isActive

isTerminated

New Rule

Old Rule

Description

Link to the nucleus of the system

List of objects a rule can act upon
class and instances

List of exemption instances of the
rule

List of applicable events

English ESL - Complex Event
Specification

Event-Condition Coupling mode

State Predicate Specification

Link to multiple Action clauses

Link to multiple Fail-Action
clauses

Which Set the rule belongs to

Priority

Is the priority a trap

Rule Enabled or not

Rule is Terminated

Link to new version of rule

Link to old version of rule

Table 5.1 Rule Object Attributes

The following sections describe the event representation employed within the REFLEX

model.

5.5. Event Representation

As highlighted by authors such as Eswaran [Eswaran 76], Dittrich et al. [Dittrich 86],

Chapter 5. 77?? REFLEX Knowledge Model 90

events may trigger actions within a database. These events must be modeled and

represented in an active database system. There are various ways of representing events

within these systems. These are explained and investigated in this section, followed by

the rationale for the chosen method of representation within REFLEX.

5.5.1. Events as Application System Attributes

HiPAC, according to Chakravarthy et al. [Chakravarthy 89] and Ode, as illustrated by

Gehani, Jagadish and Shmueli [Gehani 92a], model events as application system

attributes. The events are hard-wired into the system and their names are encoded into

some name or attribute table, figure 5.4. This is the simplest and most conventional

method of representing events within a system. It is however, a static method as events

must be setup and declared within the source code at compile time. This provides fast

execution and interpretation of events but, is an inflexible approach. What can a user

or developer do once it is realized that a new event is required which does not exist in

// Database Internal Events

#define REF NullEvent
#define REF_Write
^define REF_Update
^define REF Read
/^define REF_Delete
^define REF_LockWnte
Idefine REF_LockRead
^define REF Lock

0
1
2
3
4
5
6
7

#define REF_SysClosure 10

^define REF_TransStart 20
^define REF_TransStartAfter 21
#define REF_TransCoininit 22
^define REF_TransComniitAfter 23

#deftneREF ...

0-60 RESERVED for system

// Null Event Not used
// Write to Database
// Overwrite data
// Read from Database
// Delete from Database
// Lock item for write
// Lock item for read
// Lock item

// SYSTEM Routine Closure

// TransStart
// TransStart After
// TransCommit
// TransCommit After

Figure 5.4 Events as System Attributes

Chapter 5. The REFLEX Knowledge Model 91

the system? New events may be added but the process is expensive, since, to add the

new event, the underlying active database system code must be modified, and

recompiled by an active database system programmer. These modifications are very

costly in both monetary and system time dimensions. It may be infeasible to recompile

a live database system since side effects may be unknown.

Another problem is that of operational efficiency, i.e. how long does it take to decide

whether the occurrence of an event is of use to the system or not.

Event UPDATE

Rules

R00001

System Trap

Process Rule
Event Specification Clause

K15052

Union Levy

R79988

Remove Employee

Figure 5.5 Event as Attribute: all Rules in the system are processed

Since the event is a flag in the application system, it does not normally hold any usage

or reference knowledge (although this may also be represented). When an event is

raised, the Knowledge Manager is given the event flag by the event detector. Since the

event does not have reference information, figure 5.5, it must then process every rule

in the system to establish whether the event affects it or not. This is a very expensive

process. Operationally, indexes can be maintained, but these would be the

responsibility of the DBMS and they would be external to the event.

To reduce the search space, the events can also be provided with knowledge of which

Chapter 5. The REFLEX Knowledge Model 92

grouping of rules they may affect. This can be modeled by allowing each rule to be a

member of a set. This approach implies that a rule can appear in any number of sets

that an event affects, and that each individual event maintains a list of sets to which it

may apply. To handle this scenario more powerful representation methods than

application system attributes must be employed, such as, modelling events as first-class

objects, the subject of the following section.

5.5.2. Events as First-Class Objects

Events may be modeled as first-class objects, as in ADAM [Diaz 91b]. This provides

a uniform approach, as all components within the system are modeled in the same way,

and hence the underlying system can maintain all of the components i.e. events may

be created, deleted and modified as other data objects.

(Event) \

UPDATE

Rules Affected

Figure 5.6

R10035

RI 5052

R80331

(Rule)
R10035

Matrimonial Age

f (Rule)
R15052

(Rule)
R80331

Spouse Pension

ESL: UPDATE Employee

Event maintains list of rules which it may affect

Modelling events as first-class objects, on first analysis, may cause severe degradation

Chapter 5. The REFLEX Knowledge Model___________________93

of service. This is because, on an event being raised, the event object is usually

retrieved from the database, before its raise method can be called. Inherently, it seems

to be plagued with intolerable overheads i.e. the time taken to seek the record in the

host database, to retrieve it into working memory and finally to call its raise method.

This overhead can be countered by the utilization of the event object, which has access

to standard object modelling techniques, the most important being the complex object

facility. Each event can maintain a list of rules to which it may apply, figure 5.6. On

the raising of any event, the Knowledge Selection Module (discussed in chapter six),

has immediate access to the rules which are brought into context by the particular

event. Hence, the system is much faster at sorting through its knowledgebase, on an

occurrence of an event.

This feature becomes much more evident as the size of the knowledge base grows.

5.5.3. Complex events as first-class objects

Not only can primitive events be represented as first-class objects, but so can composite

(complex) events, figure 5.7. This can lead to a scenario where the same composite

event can be used as the event specification to more than one rule.

This approach does at first glance look rather elegant as an event is simply sub-typed

into simple or complex, but it does cause several problems. Such as:

 The complex event must be evaluated, before any referenced rules are

brought into context for their condition clause evaluation

 If the same complex event occurs in many rules, can the part-satisfied

event specification clause be monitored for all the rules? The event

Chapter 5. 77?? REFLEX Knowledge Model 94

specification may be at different stages for different rules. These stages

need to be tracked, which would be cumbersome and complex and lead

to an increase in the overall overhead of the system, for very little gain.

Primitive Event

Target

Event

Name
Description
Rule List

Figure 5. 7 Events as complex objects

Complex Event

Event Specification

To model complex events as first-class objects introduces an extra level of indirection.

Complex events can be seen as logical events made up of a number of primitive events,

combined using an algebra. Whether the algebra declaration appears in the Complex

Event object or in the Rule object is immaterial, albeit the complex event object

conforms to a uniformity goal. The algebra still has to be parsed, the component

primitive events satisfied. The Rule object is effectively the triggering complex event.

Chapter 5. The REFLEX Knowledge Model 95

Rule

Complex Event Algchra

List of Primitive Events
Primitive Event

(a) Logical Complex Event

Rule

Complex Event Complex Event

Complex Event Algebra

List of Primitive Events

(b) Complex Event Object

Primitive Event

Figure 5.8 Complex Event levels of indirection

Figure 5.8 illustrates the extra level of indirection introduced by modelling complex

events as first-class objects.

5.5.4. Event Representation Method Employed

REFLEX has adopted the method of modelling primitive events as first-class objects

[Naqvi 92, 93a, 94d]. This decision was taken, as discussed earlier, because of design

and operational concerns such as uniformity, maintainability and efficiency. If an event

is represented as a first-class object, it can then be maintained in the same uniform

manner as all other objects within a given database system.

This approach has allowed REFLEX not only to maintain the events in the system, but

it also enables the developer to create events at will, at run-time. This feature is unique

Chapter 5. The REFLEX Knowledge Model___________________96

to REFLEX and Adam [Diaz 91b]. But for Adam it could be argued that this ability

of being able to declare events at run-time has been supported because of a side-effect

of their development environment rather than actually being designed in, i.e. the

environment is Prolog which is essentially interpreted at run-time, rather than C + +

which is more mainstream and compiled.

The second goal of efficiency is served by the fact that REFLEX events can maintain

lists of the actual rules that they may affect. This allows only the affected rules to be

retrieved, without any wasteful searching. This is again unique to REFLEX. This is

borne out by other systems such as Sentinel [Chakravarthy 93] and Samos [Gatziu 93],

which model complex events as first-class objects, both of which report increased run-

time overhead of modelling events as objects.

This may be illustrated by way of the following analysis.

5.5.4.1. Heuristic Analysis

To exemplify the concept that modelling events as first-class objects can improve

system efficiency the following simple analysis is provided.

If a system has 1000 rules, it is likely that it may have approximately between 1 and

100 events of interest. Lets assume the system has 50 events. We can further assume

that on average an event may affect up to 20 rules1 .

If events are to be modeled as system attributes, then on the occurrence of an event,

all 1000 rules will have to be accessed to establish whether the event affects them or

! It is worth noting that from the panel discussion at the RIDE-ADS'94
workshop [Widom 94], the expert panellists stated that applications that were "anything
remotely complex e.g. more than 7 rules", would not be supported by active databases
in the near future.

___________________97

not.

If on the other hand, events are modeled as first class objects, and maintain references

to the rules that they affect, only 20 of the 1000 rules need to be accessed. This can be

exemplified as:

 =

20 =0.02

As can be seen from the above, only 2% of the rules needed processing, using the

approach of modelling events as first-class object. Modelling events as system

attributes, and using a centralized search for affected rules, causes an over processing

of rules by 98% i.e.

1 - 0.02 - 0.98

It was decided not to represent complex events as first-class objects since the only real

benefit would be the ability to declare a complex event which would bring many rules

into context. This situation is handled by REFLEX'S EEC A model and its ability to

support situation redundancy. The complex event is a logical concept represented as

an event specification for a rule in REFLEX'S English ESL, discussed in the following

section.

5.6. Event Specification

The ability to respond to an event automatically is paramount in active database

technology, for it is the event that activates or [Yamamoto

41]. It is one thing to respond to an event such as a clock tick, but totally different

___________________98

when complex events are specified. These events occur over time and hence have a

history. This section introduces the event specification language, known as English

ESL, forwarded by this research. The language is compared to other languages

proposed by related research.

What exactly is an event? An event is generally considered as something that occurs

instantaneously, at a point in time. This definition is simplistic and provocative as there

has been much research into the definition of time i.e. is time modeled as a set of

points, as enunciated by McDermott [McDermott 82] in his temporal logic, or as

intervals such as the theory put forward by Alien in his Interval Logic [Alien 81, 84],

or a combination, such as the General Temporal Model of Knight and Ma [Knight

92a]. It is beyond the scope of this work to investigate the nature of time. Even so,

time is an important consideration when the occurrence of events needs to be charted.

Once again, an event can be considered a point in time since points in time for which

some reaction is required, are of interest. These points must be specified in some way,

such as the beginning or end of a database transaction, or explicitly, such as at 5pm.

But what of the case where complex events require specification and detection.

Component Events

Complex Event
occurrence point

Figure 5.9 Complex event occurrence point in time

In this case, the point in time for the occurrence of the complex event is the point at

which the last component event has occurred. This can be seen in figure 5.9 where the

complex event , can be seen to occur at the point of

occurrence of the final requisite event,

____________________99

The specification and representation of events are the subject of the following sections.

5.6.1. Related Work

There has been much work on event specification languages such as the logical model

by Beeri and Milo [Been 91], Sentinel [Chakravarthy 91] and SAMOS [Gatziu 93], but

the most widely cited work has been that embodied in Ode [Gehani 92a, 92b].

As enunciated in chapter three, instead of the typical E-C-A knowledge model, Ode has

folded the event and condition clauses into one, resulting in an Event-Action (EA)

model. This may seem natural as events are after all, a type of condition (they simply

occur instantaneously as opposed to holding over time). But this approach at an

implementation level can cause inefficiency, as described in chapter three.

The event specification language proposed by Ode, allows the declaration of complex

events. Being based on the EA model, the declaration combines both the event clause

and the condition mask in one. It allows internal (database and transaction), temporal

(absolute, periodic) and logical events to be specified.

The event specification languages of the aforementioned systems, although there are

some differences, are quite similar to those promoted by REFLEX but they differ in

two important ways:

 Detection and verification of event specifications.

The method used for the event detection is different, Sentinel uses an

event graph, Ode uses a form of finite automaton and Samos a Petri

Net. REFLEX uses an enhanced labelled Petri Net [Naqvi 93b] for its

event detection and also for its system verification. These can be found

in appendix C.

5. ___________________100

 Declaration language.

REFLEX promotes a simple to use, easy to comprehend end-user

language, English ESL, whereas the other systems are still declaring

their complex event specifications using more mathematical and logic

oriented declarations. For example, the WITHIN validation of an

ordered conjunction (as described in section 5.8.2.5) is specified as

follows:

REFLEX

e, PRECEDES e^ WITHIN t MINUTES

SAMOS [Gatziu 93]

(El ; E2 IN [occ_point(El)+01:00])

Ode [Gehani 92b]

sequence (El, E2) (WITHIN not supported)

A more general purpose approach is Kowalski's event calculus [Kowalski 86], which

was developed as a theory for reasoning about events in a logic-programming

framework and seems to be an appropriate foundation for a temporal event algebra

[Kowalski 92]. It is based on the situation calculus of McCarthy [McCarthy 63, 69],

but focuses on the concept of an event as highlighted in semantic network

representation of case semantics. It does not however, seem to apply well to the

domain of event occurrences in the form that are of interest to active databases, since

it really looks at state changes as events. This can be explained because within an active

database the specification and detection of an event is critical as it is the occurrence of

the event, which then activates the database, and allows any testing of its state. The

state of the database is a secondary concern. Hence Kowalski's event calculus does not

seem appropriate as a foundation for an active event algebra.

5. ___________________101

5.6.2. Semantics of an Event

This section explains the concepts and operations of events within the REFLEX

knowledge model.

5.6.2.1. Event Chronology

The or specification clause of the rule allows both (simple) or

(compound) events to be specified. The complex event clause is expressed

using an event algebra, which expresses the temporal relationship between the

component events. Since complex events are composed of a number of primitive

events, which each occur at different instances in time, these occurrences must be

recorded. In effect the events have chronologies or histories which must be referred to

in order to satisfy the event clause. This is the primary purpose of the

[Naqvi 93b] to be discussed in chapter six, in which each occurrence of an event is

recorded. Most active database systems that are capable of specifying complex events,

such as HiPAC, Ode, Sentinel etc, provide support for some type of event chronology.

5.6.2.2. Internal Event Intervals

The temporal model employed within REFLEX is one in which an event is regarded

as occurring at an instant in time. Emphasis is laid on the point of occurrence. This

view is restrictive for some types of events i.e. internal. For some scenarios it may be

important to specify a point of occurrence for a primitive event just before or after it

actually takes place. For example, if a new customer wishes to purchase an item, the

customer details would be captured, and just before committal of the details a new

customer number would be assigned to the customer. If the number was assigned to

soon, the customer may have changed his/her mind and decided against the purchase,

and caused a customer number to be issued by mistake, which would then be lost.

Hence, a facility is required to issue the customer number i.e. just before

___ ____________102

committing to the database.

Actual
Event

Before After
5, Event occurrence interval

Hence events being point based have a form of with all internal events

having a before/after granularity. All internal events generate a signal just before the

event actually takes place and again just after it has taken place, as illustrated in figure

5.10. This means that the temporal system is discrete, i.e. there is a "next" point for

every point.

The semantics of the event specification of internal events are that each event is

preceded by either a or statement. If no mention is made, then is

assumed.

ON before delete department
IF select e.Name

from employee e, department d
where d.DepartmentNo = Event Dept.

and e.DepartmentNo =
d.DepartmentNo;

THEN Abort

Figure 5.11 Referential integrity check

This allows an application designer to trap various conditions, and preserve constraints.

For example, if a DELETE Department operation was being undertaken, just before

the actual delete was committed to the database, a referential integrity check could be

performed to ensure that no employees were currently recorded as working for that

5. ___________________103

department.

A rule to enforce referential integrity, as in the above example, could be as in figure

5.11. This is obviously based on relational style set-at-a-time query, and has tested that

the actual department that raised the event is tested for, which otherwise could be

expensive if the rule were called on every delete department command. But, referential

integrity checking is important, when you delete a department it should be clear that

no employees are still working there.

Obviously, if the same rule were declared for an object-oriented system, the state test

would simply query the department complex object to see if it had any employees

attached to it, hence it would not be as expensive as for relational systems.

5.6.2.3. Validity

A raised event may not always be valid even though it appears in a rule's event

specification. This can be explained by the following example.

Lunch of 1 hour may only be taken between the hours of 12pm and

2pm. The following may be specified. Tom to lunch during the

lunch period only Harry If Harry return

then Tom to lunch.

In the example above, Tom may not go to lunch if Harry does not return within the

specified time. Hence, REFLEX introduces the concept of [Naqvi 92,

93d]. The event may have to occur within a specified time or in some particular

sequence to be valid. An EEC A rule for the above example could be as follows:

ON staff. goneToLunch AND staff.returnFromLunch WITHIN 1 HOUR AND

staff.returnFroniLunch BETWEEN 12:00- 13:30

THEN uoTo Lunch

5. ___________________104

ELSE noLunchYet

A similar concept of monitoring intervals has since been introduced in SAMOS [Gatziu

93], but its specification is more cryptic than that supported by REFLEX. For

example, in REFLEX

e, SUCCEEDS e^ WITHIN 24 HOURS

says that follows/succeeds within 24 hours. The same specification in SAMOS

would read

(E2;E1 IN (occ_point (El) + 1440:00])

In the case of a primitive event, if it is raised then it must necessarily bring any rules

for which it is a simple event into context. For example if a rule had an event UPDATE

PERSON then on update person the event is valid and the rule's condition clause can then

be evaluated.

This is not the case for complex events since they are composed of more than one

primitive event. They are related by some form of algebra (English ESL in the case

of REFLEX). For example:

Event! AND Event2 (WITHIN 30 MINUTES)

In the above example Event, and Event2 must occur within 30 minutes of each other,

regardless of sequence.

5.7. Detectable Events

Active databases react to some occurrences of interest. These occurrences of events

have been highlighted in chapter three, and the events which are detectable by

REFLEX are summarised below. They are grouped by the three main types of events

105

i.e. those internal to the database, temporal or clock-based and the externally generated

events. They are given generic names i.e. the internal object event could be a

etc. dependant on the underlying host DBMS.

Internal:

before/after create

before/after get

before/after update

before/after delete

Temporal events:

before/after start

before/after commit

before/after abort

absolute (on a specific-date, at a specific-time)

relative (to an event occurrence)

periodic (repeat-after-period)

delay (wait duration)

sequential (time ordered conjunction)

External events: These events are application defined (or

and hence cannot be listed. Examples could

include the raising of a fire alarm or a pulse from

a radar.

Once detectable events have been defined, their use i.e. activating rules, must be

specified. If a complex event is required which is made up of a number of primitive

events, it must be constructed using an event algebra. The following section introduces

REFLEX'S event algebra, the English ESL.

5. ___________________106

5.8. English ESL - An Event Algebra

The temporal event algebra used by REFLEX provides comprehensive constructs for

specifying complex events. Unlike specification systems such as those proposed in

HiPAC [Chakravarthy 89], Ode [Gehani 92a], Samos [Gatziu 93], Sentinel

[Chakravarthy 93] ease of use has not been compromised as standard English

statements are used to declare the powerful clauses.

The language has been designed so as to be as natural and English-like as possible,

following COBOL1 s tenet but in terms of today's human computer interaction

psychology. The keywords provided by English are in four categories: logical,

temporal, internal and external.

The algebra contains several logical and temporal operators. The syntax and keywords

are introduced in the following section, followed by their operational semantics.

5.8.1. ESL Syntax

Logical Operators

unordered conjunction E, AND £2

inclusive disjunction E, OR £2

negation NOT E

time ordered conjunction E, PRECEDES £3

E, SUCCEEDS

Non-temporal Internal Operators

Before, just before the actual non-temporal event

BEFORE E

e.g. BEFORE UPDATE person

________________107

BEFORE COMMIT

After, just after the actual non-temporal event

AFTER E

e.g. AFTER CREATE person

AFTER ABORT

Note: AFTER DELETE class, is not supported

 Temporal Operators

Validity, a temporal limitation on a conjunction of two non-temporal

events

WITHIN number of HOURS/ MINUTES/ SECONDS

e.g. E, AND E, WITHIN 3 SECONDS

(E, AND E,) PRECEDES E3 WITHIN 45 MINUTES

Periodic, a repetition of a temporal event from the current time

EVERY number of HOURS/ MINUTES/ SECONDS

e.g. EVERY 5 MINUTES

UPDATE document OR EVERY 10 MINUTES

Relative, a temporal event is raised after a specified delay from the

current time

DELAY number of HOURS/ MINUTES/ SECONDS

e.g. DELAY 4 HOURS

Absolute, a temporal event is raised a specific point in time, or between

a range

ON DATE dd/mm/yy

e.g. ON DATE 16/3/93

UPDATE student ON DATE 6/3/94

AT TIME hhrmm

___________________108

e.g. AT TIME 5:00

ON DATE 16/5/95 AT TIME 13:30

BETWEEN range date | time - date | time

e.g. UPDATE student BETWEEN 16/3/95-28/3/95

General, temporal quantifiers

YEAR | MONTH | DAY | HOURS MINUTES | SECONDS

 External Events

EVENT the event keyword precedes abstract or user-defined

(external) events.

There is a precedence order of operations as with mathematics where multiplications/

divisions, followed by additions/subtractions. Each of the logical operators has a

position in the order. The highest position being the NOT which is evaluated first,

followed by PRECEDES, SUCCEEDS, AND and OR.

Parenthesis may be used to override operator precedence (using left associativity), or

simply to improve the clarity of a long and very complex event specification.

Further examples of the English event specification language (ESL) are:

read student

simple internal event - read

before update account or after update employee

disjunction of two non-temporal events

___________________109

Eventj precedes Event2 within 24 hours

validated ordered conjunction.

every friday at time 5:00pm

periodic

event radar

user-defined or abstract

5.8.2. Operational Semantics

For this research the approach taken by Knight [Knight 92b] in his discrete time system

has been adopted as a formal foundation. The semantics of this may be defined as a

discrete infinite set of points on a linear time domain. This maps well to the concept

of events which occur at instances in time, and is illustrated on the following pages.

The main properties of this formal temporal model may be summarised as follows:

 it consists of a well-ordered discrete set of elements T, which are points

at which events can occur

 a total order may be defined on T and is denoted by < and hence the

events e, < ^ may be interpreted as e,

 the immediate successor under this order relation is denoted by the

relation, and so denotes that is the immediate successor to

e,

next (t,, t2) may be defined for t,, t2 e T:

next (t,, t2) - t, < t2 A 3t. t, < t, t < t2

 the predicate is used to represent the connection between the

actual event e, and the time of its occurrence t.

 a mapping D:T - R is defined. D(t) gives the time of the point t, the

duration of time between ty and t where ̂ is some defined origin.

___________________110

The formal system can be used to define operations within the event specification

language. The syntax for its use is as follows:

(i) [non-temporal condition (Cj, e^ ..., ej], eeval=rule-evaluation(r)

(ii) event (e,,t,), event(e2 ,t2), ..., event(en , tn); event(eeval, teval)

(iii) f(t,, ...,tn;teval)

This specifies the time, teval, for the evaluation of rule(r). For example, taking the

example in figure 5.11, the following could be declared:

(i) e, = delete department(d), eeval = rule-evaluation(r)

(ii) event(e,, t,) event(eeval, teval)

(iii) next(t,, teval)

rule(r): select e. Name

According to this specification, rule(r) will be evaluated at time teval, where tcval is the

next cycle following time t, and where is the cycle on which department(d) was

deleted.

Using the above formalism, the semantics of the complex events formed using the ESL

operators are as follows:

5.8.2.1. AND

An unordered conjunction of two events and is said to take place when both of the

events and have occurred, irrespective of the sequence of occurrence, and time

of occurrence. This may be stated as follows:

e, AND e2

An example English ESL declaration for an unordered conjunction as defined above

_________________111

could be:

UPDATE student AND COMMIT

where is the internal object event, update the student class at the point of its

committal and is the internal transaction event, commit transaction.

Formally, e, AND e^ is expressed as:

i. [non-temporal condition (e,,^)], eeval = rule evaluation(r)

ii. event(e,, t,), event^, t2), event(eeval, teval)

iii. [next(tl5 teval), t2 <t,] OR [next(t2 , teval), t,<t2]

5.8.2.2. OR

Disjunction of two events and is said to take place when either one of the events

or has occurred. This may be stated as follows:

e, OR 62

An ESL example could be:

UPDATE student OR DELETE student

Formally, e, OR e^ is expressed as:

i. [non-temporal condition (e,,^)], eeval = rule evaluation(r)

ii. event(e,, t,), eventfe t2), event(eeval, teval)

iii. next(t,, tcval) OR next(t2 , teval)

5.8.2.3. PRECEDES

An ordered conjunction of two events and where both of the events and have

occurred, but e, occurs before e^. This may be stated as follows:

e, PRECEDES e^

An example English ESL declaration for an ordered conjunction as defined above could

be:

CREATE student PRECEDES DELETE student

5. ___________________112

Formally, e, PRECEDES is expressed as:

i. [non-temporal condition (e,^)], eeval=rule evaluation(r)

ii. event(e,, t,), eventfe, t2), event(eeval, tcval)

iii. [next(t2 , teval), t,<t2]

5.8.2.4. SUCCEEDS

For completeness the succeeds operator is also supported which is an ordered

conjunction of two events <?; and the opposite of precedes, where both of the events

and have occurred, but e, is the successor to e^,. This may be stated as follows:

SUCCEEDS

An example English ESL declaration for an ordered conjunction as defined above could

be:

CREATE student SUCCEEDS CREATE person

Formally, e, SUCCEEDS e^ is expressed as:

i. [non-temporal condition (e,,^)], ecval = rule evaluation(r)

ii. event(e,, t,), eventfe, t2), event(eeval, teval)

iii. [next(t,, teval), t2 <tj

5.8.2.5. WITHIN

The WITHIN operator defines the of an event. It is a temporal limitation on

any conjunction (unordered or ordered) of two events, Cj and £ . It specifies a

maximum duration between the first event occurrence and the second event occurrence.

A WITHIN operator could be declared as follows:

e, AND e^ WITHIN x HOURS/MINUTES/SECONDS

e, PRECEDES e^ WITHIN x HOURS/MINUTES/SECONDS

An ESL example could be:

_______________H3

UPDATE student AND UPDATE StudentUnit WITHIN 24 HOURS

Formally, e, AND WITHIN T is expressed as:

i. [non-temporal condition (e,, ej], eeva,=rule evaluation(r)

ii. event(e,, t,), eventfe, t2), event(eeval, teval)

iii. [t 2-t, < = T, next(t2 , teval)] OR [t rt2 < = T, next(t,, teval)]

5.8.2.6. BETWEEN

The BETWEEN operator defines a constraint of occurrence of an event. It is a

temporal conjunction to any declared event. An event is constrained to occur

between the events e, and e3 . A BETWEEN operator could be declared as:

UPDATE student BETWEEN 9:00-5:00

Formally, e^ BETWEEN e,-e3 can be expressed as:

i. [non-temporal condition (e^ 62)], eeval = rule evaluation(r)

ii. event(e,, t,), eventfe t2), event(e3 , t3), event(eeval, teval)

iii. (t, < t2 < t3) A next(t3 , teval)

5.8.2.7. NOT

The unary negation operator may only be declared within a closed interval. The

interval can be seen as being bounded by two events, which may be temporal events

but need not be. The rule will be evaluated whenever e, occurs before e3 , and e^ has

not occurred between these two events. A NOT operator could be the declared as:

NOT 62 BETWEEN e, - e3

An ESL example could be:

NOT UPDATE student BETWEEN 12:00-13:00

5. 7??? ___________________114

Formally, NOT e^ BETWEEN e,-e3 can be expressed as:

i. [non-temporal condition (els 62)], eeval=rule evaluation(r)

ii. event(e,, t,), event^, t2), event(e3 , t3), event(eeval, teval)

iii. (-i(t, < t2 < t3) A (t, < t2)) A next(t3 , teval)

5.8.2.8. EVERY

The EVERY operator defines the of a temporal event. The event is

continually raised after the same period from a reference point, which is assumed to

be the current time. It may be declared as follows:

EVERY x HOURS/MINUTES/SECONDS

For example:

EVERY 24 HOURS

Formally, the current time t plus a period T, i.e. t EVERY T may be expressed as:

i- eeval = rule evaluation(r)

ii. event(ecval , teval)

iii. (t'=t -I- nT) A next(t', teval)

5.8.2.9. DELAY

The DELAY operator defines a relative period, from the current time, after which an

event will be raised. It may be declared as follows:

DELAY x HOURS/MINUTES/SECONDS

For example:

DELAY 240 MINUTES

Formally, t DELAY T may be expressed as:

___________________115

i. eeval = rule evaluation(r)

ii. event(eeval, teval)

iii. (t'=t + T) Anext(f, teval)

5.9. Event Parameters

In some cases it would be useful to be able to reference the object that raised a given

event. For instance if aircraft movement has been detected by the radar, which has

raised an event, the system will need to know the actual aircraft that caused the event.

Different parts of the rule may need to reference the object that raised the non-temporal

event, i.e. the condition clause or the action clause. This can be achieved by

referencing the position in the event specification clause i.e. using an event parameter,

using the keyword OBJECT/?, where is replaced by the non-temporal event number.

For example, in the following ESL clause

READ student

If the condition clause wanted to reference the raising object it would use OBJECT1

since the student class is the first mentioned class (it is the only class in this example).

During the condition evaluation, the OBJECT 1 keyword would be replaced by the ID

of the actual student object, that raised the read event. Similarly, in the following

example

UPDATE student BETWEEN 16/3/94-15/5/94 OR DELETE student

In the above event clause there is an implicit conjunction between the first internal

event, UPDATE student, and the following temporal event, BETWEEN 16/3/94-

15/4/94. The internal event, DELETE student, is actually the third event in the clause

but only the second non-temporal event.

5. ___________________116

5.10. Condition Specification

REFLEX has been designed with flexibility of use in mind. To this end, as mentioned

before, the condition evaluation clause for a rule may take one of four forms as

discussed below:

 i.e. an empty condition that equates to TRUE, and results in an

Event-Action pairing. This is suitable for some rules which do not need

to test the internal state of the database, and simply execute some task

on the occurrence of an event. For example, to initiate a backup of the

database a rule could be declared as:

ON EVERY DAY AT TIME 5.30PM

IF NULL

THEN CALL BACKUP

 condition module using the CALL keyword. The result would

be a boolean. For example, if one wanted to determine the external

climate, an external module similar to the following could be called:

isItRainingQ

Returning a result of TRUE or FALSE. This would be particularly

useful, if the internal state of the database is not required, since the

external call would obviate the unnecessary update to the database

simply to test the external state.

 REFLEX's high level dialect. An example could be as

follows:

SELECT inches

FROM rainfall

WHERE DATE = CURRENT AND

TIME = CURRENT AND

inches > 0;

5. ___________________117

If the condition is satisfied, the SELECT returns a non-null result. This

form of the condition declaration is the most portable, as REFLEX

provides this for each platform, and it is close to an industry standard

way of interacting with all types of databases.

 proprietary language of the host DBMS.

REFLEX allows the user to enter queries in the native language of the

host database. This allows for fast query results as the host database

user may generally have greater knowledge of the host environment and

thus is able to declare optimal queries.

REFLEX maps the Object SQL to the proprietary language. An application designer

thus has the flexibility to write the clause in either form. The rule's condition clause

is compiled, as with the other clauses, either at creation time or on modification.

5.11. Action Specification

The EECA knowledge model implemented in REFLEX allows for multiple Action and

Fail Action specifications. These are a superset of those allowed for the Condition

specification. The specifications for the Action and Fail Action clauses are identical,

the form selected depending on whether the condition clause was satisfied or not. For

convenience both Action and Fail Action will be referred to as the Action clause for

the remainder of this section. There must be at least one Action specified, the forms

of which are as follows:

 execution module using the CALL keyword. For example, In

an Air Traffic Control System, an external call could be made to open

a dialogue window on the operators screen to either Alert i.e. some

dangerous situation, or prompt the capture of data about a given

5. ___________________118

situation i.e. a new aircraft has entered the airspace

CALL AlertOperator OBJECT 1

The external AlertOperator function is passed the name of the object

(aircraft) that raised the alarm.

Hence the database would be initiating external activities.

 REFLEX'S high level dialect is as described for the

condition clause, but with further extensions to allow for the insertion

of new objects into the tables or class instance space. An example could

be as follows:

INSERT INTO reorderjog (item_id)

VALUES (OBJECT 1)

i.e. if the update of a certain stock item caused its quantity-on-hand to

fall below a certain level, enter the particular item into the reorder log.

This form of the action declaration is again the most portable.

 proprietary language of the host DBMS.

As with the condition specification, REFLEX allows the user to enter

queries in the native language of the host database, allowing for faster

more optimal query results.

___________________119

5.12. Example EECA Rules

Example EECA rules could be as follow:

 Air Traffic Control System

Consider a rule to test whether an aircraft which has changed its position is in

danger by moving to close to another aircraft. The rule is brought into context

after an update to the database by a simple/primitive event. An OSQL query

tries to determine whether the aircraft in question is in the vicinity of another

aircraft. If so, the operator is alerted, and a log entry made.

E AFTER UPDATE aircraft

C SELECT a.NameQ

FROM aircraft a, aircraft b

WHERE a.NameO = OBJECT 1

AND (a.CurX - b.CurX) BETWEEN -5 AND 5

AND (a.CurY- b.CurY) BETWEEN -5 AND 5

AND (a.CurZ - b.CurZ) BETWEEN -5 AND 5;

EC immediate

A (AlertOperator OBJECT 1; immediate; independent)

(INSERT ON log a.itemlD, XYZ; decoupled; independent)

FA NULL

 Stock Control

In this scenario, if an item is sold, after the database has been updated a test

is made to determine whether the quantity on hand is less than a minimum

threshold. If so, a reorder item is created on the reorder table.

E AFTER UPDATE item

C SELECT a.Name

FROM item a

WHERE a.Name = OBJECT1

___________________120

AND a.QtyOnHand < a.MinQty;

EC deterred

A (INSERT ON reorderltem a.itemID, a.ReorderQty; decoupled; independent)

FA NULL

5.13. Summary

This chapter has introduced REFLEX'S EEC A knowledge model, which with its

multiple action and fail-action clauses and its associated extension of coupling modes,

is significant because it alleviates the problems caused by situation redundancy i.e.

replication of rules simply because they have the same event and condition clauses.

The section on coupling modes highlighted several problems of application semantics

caused by the EECA polyform, mainly the dependency issue. This has been resolved

by introducing the action clause tuple that includes a dependency flag for each

individual action or fail-action clause. The designer of the application system is given

the choice as to what level of transaction dependency is required for a given

application.

It is believed that the EECA knowledge model proposed does in fact allow the

declaration of the knowledge within the active database system to be both semantically

concise and obvious as to its intention. The model also allows for a more efficient

evaluation and operation of the overall active database system.

The representation of both rules and events as first-class objects were described

together with the rationale for the choice of their representation method i.e. uniformity

of representation, scope for optimisation, dynamic definability.

The complex event specification method employed by REFLEX was described in

relation to related work and its semantics. The issues of event chronology, interval

___________________121

logic and validity were illustrated, and lead to the English ESL. English ESL provides

similar complex event specification facilities to systems such as Ode [Gehani 92a] and

SAMOS [Gatziu 93], but unlike the other systems the semantics associated with the

English ESL have been critically specified using a modified form of the temporal logic

of Knight [Knight 92b].

The chapter concluded with the semantics of both the condition and action

specifications, and how they provide flexibility to the designer of an active application

by providing many forms of specification.

Chapter 6

Design Architecture and Implementation

This chapter overviews the architecture of REFLEX, and later discusses its

implementation. The portability and adaptiveness of the REFLEX extension to a given

DBMS, is examined and lessons learned by its implementation on two different

platforms namely ONTOS (SUN Solaris, XI1) and POET (PC, Windows). The

adaptability of the model are reported within the chapter.

6.1. Introduction

REFLEX provides active functionality for a host object DBMS by introducing some

new classes. The most important of these classes are as follows:

 active object

all application classes which require the notion of activity must

ultimately be derived from this class

 rule

which encodes the EECA knowledge model

 event

events are represented as objects which maintain links to affected rules

 knowledge manager

- 122-

______________123

a central scheduler of the knowledge execution within the database.

REFLEX has been engineered to adapt to different host DBMSs. This ability for a

general extension to be adaptive is investigated within this chapter.

As reported by Chakravarthy et al. [Chakravarthy 89], the HiPAC active database has

to manage the component parts of its system i.e. the objects, transactions and rules,

and hence it supports an object manager, transaction manager and rule manager. This

is not the case with REFLEX as it does not need to know how the objects themselves

are managed since this task is left to the underlying host DBMS. The system is

composed of layers, each of which have defined interfaces which allow low level

services such as the searching and retrieving of data, to be simply requested from the

host DBMS. Essentially embodying the modern day Software Engineering paradigm

of software component libraries and their use.

This chapter is organized as follows. As described in chapter four, the underlying host

databases are object-oriented, these are discussed in section 6.2 allowing the

architecture and implementation decisions to be understood. An overview of the

architecture is then presented in section 6.3, followed by detailed descriptions of the

components of the model. Section 6.5 introduces the distribution features of the model,

which then leads to the section which discusses performance issues. The user interface,

Vis, in introduced in section 6.7. The portability and adaptability of the model are

demonstrated in section 6.8.

6.2. Object Databases

Object oriented database environments require that the modeled objects exist or persist

after the processes that created them. This is the task of a persistent store or minimal

database system, as discussed in chapter two.

124

REFLEX has been designed as an extension to an object-oriented host DBMS. It has

been implemented upon two such object-oriented database systems ONTOS [ONTOS

91] and POET [GWB 92], these DBMSs will be briefly discussed in turn, emphasizing

their differences.

6.2.1. ONTOS

ONTOS [ONTOS 91] provides persistence and other data management facilities for

C++ objects [Stroustrap 86]. It is a relatively mature distributed client-server object

database that distributes the database around a network of homogeneous workstations,

figure 6.1. It has all of the object modelling tools expected of an object-oriented DBMS

i.e. inheritance, polymorphism, address translation, global naming schemes, advanced

Application
Code

Client

Network

Binder

I

Secondary
Server

Primary
Server

Secondary
Server

Database Registry i Distributed Database,...........,...........................;

Figure 6.1 ONTOS DB distributed database

transaction processing, concurrency control, distribution, and custom storage manager

facilities. Unfortunately, being a new type of database technology user interaction is

125

restricted. Access is gained by calling its libraries by programming in C + + , although

some of the later tools are graphical and claim to be 4GLs, they are still essentially

'screen painters'.

ONTOS provides persistence for application objects by means of a base class,

OC_Object, which all objects that require persistence must inherit from. Various

aggregation (or collection) classes are provided such as arrays, dictionaries, lists and

sets which also inherit from OC_Object. All ONTOS classes ultimately inherit from

its root class, OC_Entity, as can be seen in figure 6.2.

OC_Entity

OC_Object Primitive

Storaac
Manager Aggregate

Association List Set

ONTOS base class hierarchy

The requirement for a persistent object-oriented environment is that objects must be

saved to disk and retrieved at a later time, in their exact same state. For a language

such as SmallTalk [Goldberg 81], which is object-oriented in the pure sense of the

word since it treats everything as an object, this process is simple although clumsy as

it saves its entire environment image to disk. The entire environment is reloaded into

memory the next time it is required. This simplicity can be afforded because SmallTalk

is an interpreted language. C + + is a hybrid object-oriented language where object

______________126

extensions have been added to the compiled C programming language [Kernighan 78].

Unlike Smalltalk, C++ is essentially static, i.e. all of the information about

application objects is processed at compile time and is not available at run-time. This

type definition is required in persistent environments where the object may be retrieved

at a later date, by a different process than the one that originally created the object. If

the type definition is not available at run-time the retrieving process would not be able

to distinguish the member properties or methods, for example if Joe is of type Person,

without the definition of Person i.e. as having the following attributes name, sex, ...,

NI number, could not be loaded. ONTOS does, however, provide this information.

This is accomplished by registering type information into a schema database which can

be interrogated at run-time.

6.2.2. POET

POET [GWB 92], which stands for Persistent Objects and Extended database

Technology, like ONTOS provides persistent storage for objects. It is not, however,

as mature as ONTOS but does try to provide many of the same features. For this

research a stand-alone version of POET was used, there are however professional

versions which offer client-server functionality similar to that provided by ONTOS.

The standalone version does have some of the features such as collections (in the forms

of sets), transactions, references etc. POET is available on many platforms such as

UNIX (Sun Solaris), Macintosh, and Windows (3.11 and NT). For the purpose of the

research, a simple prototype was required to show that the system was indeed portable

and adaptive, so the Windows 3.11 platform was selected primarily because of cost.

POET like ONTOS, provides C++ class information at run-time. This is achieved by

registering the class definitions into a database, which then can be used at run-time.

For a POET application objects to become persistent, they must be declared using the

______________127

keyword e.g. for a Person class the following declaration could be used:

persistent class Person {

private:

public:

The following sections introduce the REFLEX architecture and how the modules

logically work together. Throughout this chapter the ONTOS implementation will be

used to demonstrate the various aspects of the model. The POET implementation will

be referred to in section 6.8, which demonstrates the portability and adaptiveness of

the model.

6.3. REFLEX Architecture

REFLEX, as an active database extension, deals with explicit knowledge in the form

of rules. The rules have event specifications, condition specifications and triggered

action declarations. In order to process these items REFLEX, like other active

databases such as HiPAC, has knowledge, event, transaction and execution models.

The above models are embodied in design of the REFLEX architecture which has the

following major logical components, figure 6.3:

 Knowledge Management Kernel (KMK)

 Event Manager (EM)

 Knowledge Selection Module (KSM)

 Condition Evaluation Module (CEM)

128

 Execution Supervisor (ES).

As well as the above mentioned components REFLEX has a module, the Transparent

Interface Manager (TIM), which interfaces REFLEX to any given host DBMS, and

mainly affords the flexibility and adaptability features of REFLEX. This module is

novel to the genre since other prototype active DBMS (HiPAC, StarBurst,

POSTGRES, ADAM) are closely linked to their underlying DBMS. REFLEX, similar

to HiPAC and ADAM, is designed and built as an object-oriented system.

User Applications

i

Execute
Actions

r

Execution
Supervisor

Knowledge
Management

Kernel

> i
Evaluate
Condition
Specification

v V

Condition
Evaluation

Module

External
Events

^ r

Notify Temporal
Event r^ . EventsEvent

Manager

^ k ^ ___ jnternnl Events

Event Context

Execute Action ^

Test Condition ^

PV,I,, ; ,,H Retr.eveRule ^
Event

. r . Specification ^ r '

Knowledge
Selection
Module

k k
External
Module
Access

Svstem

e'°Ck DBMS
Access

 , V V

Transparent
Interface
Manager

k

Host
DBMS
Access

V

HOST DBMS

Figure 6.3 REFLEX Architecture

As can be seen from figure 6.3, the events are raised and signalled to the Event

Manager from three sources (i.) internal events by the Transparent Interface Manager

(ii.) external events by the application programs and (iii.) temporal events by the

______________129

system clock. The Event Manager is responsible for the logging of the events and their

notification to the Knowledge Management Kernel, which evaluates whether the event

affects any rules. If the event affects any rules, the rules in question are passed to the

Knowledge Selection Module, which evaluates whether the rule's event specification

clause has been satisfied. If it has been satisfied, then the rule is returned to the KMK

ready for its condition clause to be tested. The KMK passes the rule to the Condition

Evaluation Module which tests the condition clause. If the clause is satisfied, the CEM

returns the rule with a status of Tireable'. The KMK then passes the rule to the

Execution Supervisor, which then executes the actions.

The component modules are described in the following section.

6.4. Components of the Model

6.4.1. Transparent Interface Manager (TIM)

For a given database to become active, one of the most important features is that the

occurring events must be detected. It is the TIM that allows host database

events to be trapped and signalled to the Event Manager. For this to occur access to the

database must go through the TIM. Internal events that the TIM signals are database

operations such as and and events that support transaction

atomicity such as and etc.

Database operations are detected by the provision of an active object class. This class

inherits from a base class provided by the host DBMS, figure 6.4, which allows an

object to persist. Using the object-oriented modelling feature of the

'Where the same operation may behave differently on different classes
[Rumbaugh 91].

130

active object class provides host DBMS access functions, such as Read,

Update, Write, etc. These over-ridden functions when called, provide signals to the

Event Manager as well as passing the original message through to the host base

function.

Base Persistent Class

| Read
i

! Writ.:

Active Object Class

Rcaii

I)pilule

Write

Figure 6.4 Active Object Class

Transactions in a host DBMS are provided either by free functions i.e. library functions

which are not part of any class e.g. as in ONTOS [ONTOS 91], or

by transaction classes as in for example, POET [GWB 92] and ObjectStore

[ObjectDesign 93].

If free functions are used, the underlying database's transaction manager can be

harnessed using [Dittrich 91], where its interface is encapsulated by special

wrapper functions which inform the Event Manager that a transaction based event has

taken place, to allow the detection of transaction events and also to allow the creation

of nested and sibling transactions.

2 A subclass may override a superclass feature by defining a feature with the
same name [Rumbaugh 91].

131

REF_transactionStart(args...)
em.raise(before, transactionStart, ...);
OC_transactionStart(args...);
em.raise(after, transactionStart, ...);

Figure 6.5 REFLEX example transaction event raise wrapper

The REFLEX Knowledge Model uses the notion of intervals for the occurrence of

internal events. Since an interval dictates a point in time just before or after an internal

event, an event is raised both before and after the actual host DBMS function call.

Figure 6.5. illustrates this principle with some example code.

Host Transaction Class

TramactionSiart

Transact ionCom mil

I ran-iaclinn Mini I

REFLEX Transaction
Class

IransacdonStan

Transact innCnmnt it

Transaction

Figure 6.6 Simial Generatiim Transaction Class

If the transaction scheme for the host DBMS is class based then active transaction

classes are sub-classed in a similar fashion to the Active Object Class, but from a base

transaction class, figure 6.6. The base transaction methods are over-ridden in the new

transaction class, to provide an event signal before passing the message through to the

actual base transaction method.

132

6.4.1.1. The Active Object Class

Access to the active features is serviced by the provision of an active object class,

If an application class is required to be able to activate the system, it must

ultimately inherit from AObject. This class inherits from ONTOS's OCJDbject class,

as can be seen in figure 6.7 and in the C + + definition code fragment figure 6.8.

OC_Objeet

ddelel Ihjecl

Desuiiv

Base Persistence
class for
ONTUS

AObject

pui< >l>jccl

delrleObjecl

De^um

AddKule

Kiilelierainr

employci
worltsNuinber
dcp.irlmeMt
jobTille
salirv Grade

InhTnlc
Depjrimeni

REFLEX'S
active class

Sample active class

Figure 6.7 Active Signalling Inheritance Hierarchy tor ONTOS

133

class AObject : public OC_Object { // subclass from ONTOS's base class

private:
char* AObjectNanie;
Reference ActiveRules; // Rules on Class
Reference Exempt Rules; // Rules the object is exempt from

public:
// Constructors/Destructors

AObject(char* name = 0);
AObject(APL * theAPL);
'AObjectQ;

// DBMS functions
virtual void Destroy(Boolean aborted = FALSE);
virtual Type* getDirectTypeQ;

virtual void putObject(Boolean deallocate = FALSE);
virtual void putClosure(Boolean deallocate = FALSE);
virtual void deleteObject(Boolean deallocate=TRUE);
virtual void lockObject(LockType);

// Methods for Rules Dictionary - Housekeeping
void AddRule(Rule*, int fromRule = FALSE);
void RemoveRule(Rule*, int fromRule = FALSE);
int HowManyRulesQ;
Rule* FindRule(char*);
void deleteRuleLinksQ;

. RfBoolean HasRule(Rule*);
Aggregatelterator * RulelteratorQ;

// Methods for Exempt Rules Dictionary

// Accessors
void CallingRule(Rule*);
virtual void Name(char* newName);
virtual char* NameQ;

Figure AObject Definition Code

6.4.1.2. Transaction Free Functions

To manage transaction points ONTOS models transactions as library free functions.

Since REFLEX must to the same mode of operation as the host DBMS, ONTOS,

it also models transaction calls as free functions. As can be seen in figure 6.9, a

______________134

REFLEX function REF_transactionStart(...) wraps around the host

OC_transactionStart() free function call.

void REF_transactionStart (
XAType Orig_RWConflict, // conflict
XAConflictRcsponse Orig_waitOnConflict, // conflict resolution
char* str, // name
BFP Orig_buf) //buffering

{
// Call Event Handler
EventDetector evdet;

evdet.cventRaiseTrans (START.BEFORE,"Raising event from BEFORE TransStart");

// Call original ONTOS function
OCjrunsaclionStart (Orig_RWConflict, Orig_waitOnConflict,

sir, Orig_buf);

evdet.cventRaiseTrans(START,AFTER,"Raising event from AFTER TransStart");

Figure 6.9 REFLEX transaction function call for the ONTOS DBMS

This method allows the event signal to be generated both before and after the actual

event.

6.4.2. Event Manager (EM)

As events are raised they are signalled to the Event Manager which is responsible for

both their recording and notification within the system.

As stated earlier, REFLEX supports composite events for which the component events

occur at different points in time. Each occurrence of an event must be recorded i.e. a

or history needs to be maintained.

135

When an event is detected, in order to satisfy the requirement that the event chronology

must be maintained, the EM logs the occurrence of the event in the The

EM then informs the Knowledge Management Kernel that an event has occurred.

6.4.2.1 Event Monitoring

Detection of the different event types (internal, user-defined and temporal), must occur

in order for the system to react. This is the responsibility of the Event Manager, figure

6.10.

Event Manager

Event Detector

Clock

eron

Transparent Interface
Manager

Transaction
Points

Database
Events

Application

EVENT

Figure 6.10 Event Signal Generators

Primitive internal database operations may be detected by building around the

database operations, which raise the event if called. This approach has been followed

for both event generator classes and free library functions, as was discussed previously

in the section on the Transparent Interface Manager.

External application generated events are detected by the application program explicitly

calling the event detector's raise signal. This method does not cause any noticeable

overhead as it does not require the application to modify the database artificially,

simply to raise an event.

Figure 6.11

6.4.2.2. Temporal Log

6.4.3. Knowledge Management Kernel (KMK)

6.4.3.1. EM-KMK-KSM Interface

6.4.3.2. KMK-CEM-ES Interface

6.4.3.3. KSM and CEM Concurrency

Figure 6.12

6.4.4. Knowledge Selection Module

Figure 6.13

Figure 6.14

Figure 6.15

6.4.5. Condition Evaluation Module

Figure

6.4.6. Execution Supervisor

Figure

6.5. Distribution and Parallelism

Figure 6.18

6.5.1. Possible Solutions

6.5.2. Remote Procedure Call

Requested rule a

and event

id event

KSM

Figure 6.19

6.5.2.1. Implementation Details

6.7. User

6.7.1. Related Work

6.7.2. Vis Design Approach

6.7.3. Visual Experience

REFLEX Visual Supeivisor

Figure 6.20

Amend Rule Details

ifrttion

Figure 6.21

Amend Event Details

Figure

6.8. Demonstrate Portability and Adaptability

6.8.1. The Porting Process

REFLEX
Application

Figure 6.23

6.8.2. The Adaption Process

6.8.3. Extra Functionality

6.8.4. Component Integration

6.8.5. Testing

6.8.6. What was learned in the Porting Process

Table 6.1

6.9. Summary

Chapter 7

Evolution and Experience of REFLEX

7.1. Introduction

7.2. The REFLEX Prototypes

Table 7.1 History of Prototypes

7.3. Using the Rules System

Figure 7.1

7.3.1. Constituent Parts of a Rule

7.3.1.1. Declaration of Complex Events

7.3.1.2. Specification of Rule Condition

7.3.1.3. Event-Condition Coupling Mode

7.3.1.4. Action Clause Specification

Figure

Creation and Declaration of Events

Figure

7.3.3. Definition of External Conditions and Actions

7.4. Example Applications

7.4.1. Air Traffic Control System

Figure 7.4

Air Traffic Control

Q"'t

RADAR

Air Traffic Control Simulation

REFLEX

7.4.1.1. Traditional Approach

7A.I.2. Active Approach

New Aircraft Details

ID : BA747
Current Position : 34 187 14500

Are the above details correct? (Y/N) y

AObject::putObject()

EventDetector::eventRaiseDB-Raising Object Name : BA747
EventDetector::eventRaiseDB: Raising event from BEFORE
putObject EventDetector::eventRaiseDB-Event does NOT affect
any rules - returning!
AObject::putObject-ActiveRules ... Binding TRUE

AObject::putObject-ActiveRules.... isActive TRUE
AObject::putObject-Back ActiveRules Dictionary put:
AObject::putObject-back from put ExemptRules

about to call Object:rputObject(deallocate); :
AObject::putObject-about to call EventDetector-> event Raise
EventDetector::eventRaiseDB-Raising Object Name : BA747
EventDetector::eventRaiseDB: Raising event from AFTER
putObject EventDetector::eventRaiseDB-Event does NOT affect
any rules - returning!
AObject::putObject-Back from event raise:
Committing aircraft details

EventDetector::eventRaiseTrans: Raising event from BEFORE
TransCommit EventDetector::eventRaiseTrans - Event does NOT
affect any rules - returning! EventDetector::eventRaiseTrans:
Raising event from AFTER TransCommit
EventDetector::eventRaiseTrans - Event does NOT affect any
rules - returning!

Figure

Add Rule: Please enter the rules name > Avoid Aircraft
Collision
Please enter description line 1: Triggered when aircraft
movements are detected within the airspace
Please enter description line 2:
Please enter description line 3:

Please enter Event Specification: update aircraft

Please enter Condition String (if OSQL please finish with ';'
select a.NameO, b.NameO from aircraft a, aircraft b where
a.NameO = OBJECTl and (a.CurX-b.CurX) between -5 and 5 and
(a.CurY-b.CurY) between -5 and 5 and (a.CurZ-b.CurZ) between
-5000 and 5000;

Please enter Action String, either as a SQL query of a
function call i.e. select a.ID() from aircraft a where
a.NameO = OBJECTl; please ensure to put ';' to finish
or call AlertOperator
call AlertOperator OBJECTl

Figure

New Aircraft Details

ID : PK121
Current Position : 29 183 19000

Are the above details correct? (Y/N) y

EventDetector::eventRaiseDB: Raising event from BEFORE
putObject Time is : Mon Jun 26 17:53:28 1995
RuleManager::knowledgeScheduler-Rule Name: Avoid Aircraft
Collision !isDisabled:1
PartCompEventSpec::OwningRule - The new Rule's name is Avoid
Aircraft Collision
RuleManager::knowledgeScheduler-Rule Name: Avoid Aircraft
Collision !isDisabled:1
PartCompEventSpec::ruleCompiledClause - Binding is TRUE
KnowlSel::testSingleEvent - but what type?
KnowlSel::testSimpleSpec - INTERNAL EVENT
KnowlSel::testSimpleSpec - INTERVALS MATCH
Clause::contextClassTypeName: aircraft
KnowlSel::testSimpleSpec - TYPES MATCH
KnowlSel::testEventSpec-after cl=rule->ruleClause(0)- IS SIMPLE
EVENT RuleManager::knowledgeScheduler - Rule Avoid Aircraft
Collision Event Specification Satisfied!
RuleManager::knowledgeScheduler before conditionStr
ConditionEvaluator:rmapEventParameters > Finished ===> About
to call ::parseQuery(select a.NameU, b.Name() from aircraft a,
aircraft b where a.NameO = "PK121" and (a.CurX-b.CurX)
between -5 and 5 and (a.CurY-b.CurY) between -5 and 5 and
(a.CurZ-b.CurZ) between -5000 and 5000;)
"PK121" "BA747"
"PK121" "PK121"

Cardinality = 2

RuleManager::knowledgeScheduler Back from Query Evaluation,
result: 2
call AlertOperator "PK121" AppObject::executeCommand

Figure

Add Event: Please enter the event name > RadarPulse

Please enter description line 1: Event is raised when aircraft
movement is detected
Please enter description line 2: within its airspace
Please enter description line 3:

New Event Details

Name : RadarPulse Num of Rules: 0
Event is raised when aircraft movement is detected
within its airspace

3

Are the above details correct? (Y/N) y

Figure 7.8 ATCS: Declaring a new event dynamically

Amend Rule: Please enter rule name > Avoid Aircraft Collision
Name : Avoid Aircraft Collision Rule No: RM000001
Event Spec : UPDATE aircraft

Select option (X)Abort, (Y)Accept and Commit
Change (E)ESL, (C)Condition, (A)Action » e

Please enter Event Specification: event RadarPulse or after
update aircraft
Name : Avoid Aircraft Collision Rule No: RM000001
Description I: Triggered when aircraft movements are
detectedwithin the airspace 2:

3:
Event Spec : EVENT RadarPulse OR AFTER UPDATE aircraft
Condition : select a.Name(), b.Name() from aircraft a,
aircraft b where a.NameO = OBJECT1 and (a.CurX-b.CurX) between
-5 and 5 and (a.CurY-b.CurY) between -5 and 5 and
(a.CurZ-b.CurZ) between -5000 and 5000;

Action: call AlertOperator OBJECT1 Immediate Dependent
Events : UPDATE RadarPulse

Select option (X)Abort, (Y)Accept and Commit
Change (E)ESL, (C)Condition, (A)Action » y

Figure

Amend Aircraft: Please enter aircraft name > PK121

ID : PK121
Current Position : 29 183 19000
Enter the new position (Latitude Longitude Height eg 16 03 60)
33 188 19500

the X: 33 Y: 188 Z: 19500

New Aircraft Details
ID : PK121
Current Position : 33 188 19500

EventDetector::eventRaiseTrans: Raising event from BEFORE
TransStart EventDetector::eventRaiseTrans: Raising event from
AFTER TransStart EventDetector::eventRaiseDB: Raising event
from BEFORE putObject Time is : Mon Jun 26 19:49:14 1995
RuleManager::knowledgeScheduler-Rule Name: Avoid Aircraft
Collision lisDisabled:1
Knowlsel::testEventSpec NEW PartCompiledEventSpec object
created Knowlsel::testSingleEvent - but what type?
KnowlSel::testEventSpec - COMPLEX EVENT, clause 0 satisfied
PartCompEventSpec::clause, index 1
KnowlSel::testSingleEvent - but what type?
KnowlSel::testSimpleSpec - INTERNAL EVENT
KnowlSel::expressionEval - Test RPN : OR Cl CO - length: 10
-indexPos 0
At While: OR
KnowlSel:
KnowlSel:
KnowlSel:

evalClause: OR at pos 4
evalClause Caluse OR is numbered 0

testEventSpec-Complex Event Returned TRUE! Will
return to RuleManager after delete pees
PartCompEventSpec::deleteObject
RuleManager::knowledgeScheduler - Rule Avoid Aircraft Collision
Event Specification Satisfied!
RuleManager::knowledgeScheduler before conditionStr
ConditionEvaluator::mapEventParameters > Finished ===> About
to call ::parseQuery(select a.Name(), b.Name() from aircraft a,
aircraft b where a.Name() = "PK121" and (a.CurX-b.CurX)
between -5 and 5 and (a.CurY-b.CurY) between -5 and 5 and
(a.CurZ-b.CurZ) between -5000 and 5000;)
"PK121" "BA747"
"PK121" "BA424"
"PK121" "PK121"
Cardinality = 3
RuleManager::knowledgeScheduler Back from Query Evaluation,
result: 3 RuleManager::knowledgeScheduler - about to execute
Action clause call
ATC::AlertOperator ********* Aircraft "PK121" in Danger Args:
"PK121" +
AObject::putObject-Back from event raise:

Figure 7.10

EventDetector::eventRaiseDB-Raising Object Name : BA747
EventDetector::eventRaiseDB: Raising event from AFTER read
Object EventDetector::eventRaiseDB-Event does NOT affect any
rules - returning!
ID : BA747 Name : BA747 POS : 34 187 14500
EventDetector::eventRaiseDB-Raising Object Name : BA424
EventDetector::eventRaiseDB: Raising event from AFTER read
Object EventDetector::eventRaiseDB-Event does NOT affect any
rules - returning!
ID : BA424 Name : BA424 POS : 37 190 14500
EventDetector::eventRaiseDB-Raising Object Name : PK121
EventDetector::eventRaiseDB: Raising event from AFTER read
Object EventDetector::eventRaiseDB-Event does NOT affect any
rules - returning!
ID : PK121 Name : PK121 POS : 29 183 19000

Figure 7.11

EC

7.4.2. Student Records System

Figure

7.4.2.1. Traditionally

Active Approach

Capture Rule Details

Figure 7.13

Capture Rule Action

Figure 7.14

Capture Rule Action

Figure 7.15 SRS: Creating a new rule fail action

Once

Figure 7.16

Raise Event: Enter event name > RunReport

Argument List: Please enter any arguments (if any) > computing

KnowlSel::testEventSpec NEW PartCompiledEventSpec object
created
KnowlSel::testEventSpec-after cl=rule->ruleClause(0)- IS SIMPLE
EVENT
RuleManager::knowledgeScheduler - Rule OnReport Event
Specification Satisfied!
RuleManager::knowledgeScheduler before conditionStr
ConditionEvaluator::mapEventParameters > Finished ===> About
to call ::parseQuery(call WhichReportType)
AppObject::executeCommand
AppObject::executeCommand - commandStr: call WhichReportType
<-> evArgs: computing
AppObject::executeCommand - about to switch(call
WhichReportType) -> evArgs: computing
SRS::WhichReportType External Condition test, test for
Computing School
SRS::WhichReportType Args: computing

ConditionEvaluator::returned from executeCommand: 1
RuleManager::knowledgeScheduler Back from Query Evaluation,
result: 1
RuleManager::knowledgeScheduler - about to execute Action
clauseselect Name() from student;
ExecutionModule::mapEventParameters--> Finished ===> About to
call ::parseQuery(select Name() from student;)

ExecutionModule::executeCommand- CommandType: select
MappedStr: select Name() from student;
EventDetector::eventRaiseDB-Raising Object Name : (null)
EventDetector::eventRaiseDB: Raising event from AFTER read
Object
EventDetector::eventRaiseDB-Event does NOT affect any rules -
returning!
"Waseem"

Cardinality = I
Raised

Figure

AppObject::syntaxCheck commandStr: WhichReportType
AppObject::executeCommand - about to switch(call
WhichReportType) -> evArgs: Mathematics
SRS::WhichReportType External Condition test, test for
Computing School
SRS::WhichReportType Args: Mathematics
External Condition Fail! Non Computing School

ConditionEvaluator::returned from executeCommand: 0
RuleManager::knowledgeScheduler - about to execute Action
clauseExecutionModule::executeCommand - FailAction!
requestedselect * from student;
ExecutionModule::mapEventParameters > Finished ===> About to
call ::parseQuery(select * from student;)

ExecutionModule::executeCommand- CommandType: select
MappedStr: select * from student;
EventDetector::eventRaiseDB-Raising Object Name : (null)
EventDetector::eventRaiseDB: Raising event from AFTER read
Object
EventDetector::eventRaiseDB-Event does NOT affect any rules -
returning!
"37133" tflDictionary #2Dictionary "Waseem" 77

16 3 65 (charPtr*)Oxa47d4 "(null)"
#3Dictionary #4Dictionary 1342028904 (void*)OxSeOcO

634412
Cardinality = 1
Raised

Figure

EC

7.5. Functionality of Prototype

7.6. Summary

Chapter 8

Conclusions and Future Work

8.1. Introduction

8.2. Summary of Research

8.2.1. Loose coupling

8.2.2. Extended EGA (EECA)

8.2.3. Events as first-class objects

8.2.4. REFLEX Model Optimisation

8.2.5. English ESL

8.2.6. VIS

8.2.7. Concurrency

8.2.7.1. Trap

8.2.7.2. Remote Procedure Calls (RFC)

8.2.8. Reflections on the Second Platform Implementation: POET

8.2.9. Novel Active Applications

8.2.9.1. Cortextual Parser

8.2.9.2. Dynamic Active Schema Integration Model (DASEV1)

8.3. Future Directions

8.3.1. Real data trials

8.3.2. Temporal extensions

8.3.3. Optimisation and parallelism

8.3.4. Petri net compiler

8.3.5. VIS Extensions

8.3.6. Analysis and Design of Rules

8.4. Conclusions and Contributions

Chapter 9

Bibliographic References

APPENDIX A

2. REFLEX

3. Distribution

4. The REFLEX Distribution Model

KSM

Figure 1

6. References

2. REFLEX Overview

2.1. Architecture

2.2. Knowledge Model

2.2.1. Event Objects

3. Related Research

4.1. Scope of the Condition Clause

4.2. Situation Redundancy

4.3. EECA Coupling Modes

4.4. Event Specification Language

before

precedes

every

eveut

AND (a.CurX - b.CurX) BETWEEN -5 AND 5

AND (a.CurY- b.CurY) BETWEEN -5 AND 5

AND (a.CurZ - b.CurZ) BETWEEN -5 AND 5;

EC

5. Conclusions and Future Work

References

Abstract.

1. Introduction

2. The REFLEX Model

2.1. REFLEX Architecture

Execution Supervisor.

3. Applications of Petri-Nets

4. Petri-nets in the REFLEX model

Analysis of Petri-Net Graphs

5. Conclusions and future work

Abstract.

2.1. Structure of Knowledge

OR,

WITHIN MIN

PRECEDES WITHIN HOUR

AT TIME

where a. customer, name = OBJECTl

and a.customer.name = 'Fred Bloggs'

Adding Rules to the System

REFLEX Visual Supervisor

REFLEX Visual Supervisor

Figurt 2

Events:

2.3. Employing Activity

2.4. Non-Destructive Knowledge

2.5. Rule Contention

Applied Active Databases

for Evolving Image Processing Algorithms

Abstract

segmentation

I. Introduction

2. Reflex Summary

3. Image Processing

IF

5. CP Architecture

Contextual

active algorithms

1. Air Traffic Control System

I

1

T^r/-ir"i'f-T~>^'t~^/"" > 4-/*>.>~« ^ir^Y-i-HTD-i-i ^ /~\ 1"** D IT 1 * r ,-s »-. *- y-J /-> ,-1 £- M/^T 1 r* »-» i r v i i T /~i <-* _

1 ..

a

A61

I

I

I:

I

I

2 ..

1 ..

2. Student Records System

2.1. Vis Interaction

2.2. Text Based Event Invocation

I

<->

I

1

I

261
I

APPENDIX C

REFLEX Petri

Petri-net

Cl-

APPENDIX D

Association (or relationship)

Aggregation

Generalization

OMT Graphical Notation

