
Greenwich Academic Literature Archive (GALA)
– the University of Greenwich open access repository

http://gala.gre.ac.uk

__

Citation:

Martin, Frank A. (1990) Tutoring systems based on user-interface dialogue specification. PhD thesis,
Thames Polytechnic.

__

Please note that the full text version provided on GALA is the final published version awarded

by the university. “I certify that this work has not been accepted in substance for any degree,

and is not concurrently being submitted for any degree other than that of (name of research

degree) being studied at the University of Greenwich. I also declare that this work is the result

of my own investigations except where otherwise identified by references and that I have not

plagiarised the work of others”.

Martin, Frank A. (1990) Tutoring systems based on user-interface dialogue specification .

##thesis _type## , ##institution##

Available at: http://gala.gre.ac.uk/8685/

__

Contact: gala@gre.ac.uk

http://gala.gre.ac.uk/
mailto:gala@gre.ac.uk

1472487

TUTORING SYSTEMS BASED ON USER-INTERFACE
DIALOGUE SPECIFICATION

FRANK MARTIN

A thesis submitted in partial fulfilment of the
requirements of the Council for National Academic Awards

for the degree of Doctor of Philosophy

August 1990

Thames Polytechnic, London

/ A£^o

00?" *e.
/o2&

flft£

	Acknowledgements i

	Abstract ii

	List of abbreviations used iii

1.1 Background 2
1.2 Aims and rationale 10
1.3 Conclusions in brief 16
1.4 Implementation and environment 17
1.5 Structure of this thesis 19

20

2.1 Specification methods in software engineering 21
2.2 Specification methods for user-interface design 26
2.3 Jacob's specification method revisited 35
2.4 Selection of a specification technique 38

42

3.1 Overview of the LIY method 43
3.2 LIY's principal components 47
3.2.1 Representation of the task 47
3.2.2 Representation of the learner 48
3.2.3 Teaching strategy 51
3.2.4 Set of teaching operations 52
3.2.5 Other LIY components 52
3.3 How the learner sees LIY 54
3.3.1 Teaching 54
3.3.2 Assessment 61
3.3.3 Feedback in the form of advice 64
3.4 How the courseware designer sees LIY 67
3.4.1 ELICITOR, ELICITUT and its domain model 67
3.4.2 LIY's teaching operations 76
3.4.3 Designer rules 79
3.4.4 Further aspects 80
3.5 Operational and pedagogic task/subtask hierarchies 81
3.5.1 Dependency and binary tree transformation 83
3.5.2 Transformation to pedagogic ordering 86
3.5.3 Complete description of a pedagogic

	task classification tree 91
3.6 Managing tutorial delivery 92
3.7 Concluding remarks 96

97

4.1 What is an ITS? 98
4.2 LIY: the ITS viewpoint 100
4.2.1 Modelling the domain 100
4.2.2 Modelling the learner 101
4.2.3 Teaching strategy 105

113

5.1 "Dialogue specification can be used as the basis
for courseware design". 114

5.2 "LIY is a portable tool for producing and delivering
tutoring systems". 118

5.3 Meeting the subsidiary aims 120
5.4 Further work 125
5.4.1 Research 125
5.4.2 Development 134
5.5 Conclusion 136

138

(147)

I wish to thank Dr. du Boulay for all his support during the protracted period

of this research and especially for agreeing to supervise it in the first place.
Thanks are due also to Professor Cross for suggesting that earlier tutoring work
on the Polytechnic Prime computers could be turned into a research project.

Lastly I must thank both my wife Jean for her perceptive insights on the first
draft and colleagues who read and commented upon it.

This thesis shows how the appropriate specification of a user interface to an
application software package can be used as the basis for constructing a tutorial
for teaching the use of that interface. An economy can hence be made by
sharing the specification between the application development and tutorial
development stages. The major part of the user-interface specification which is
utilised, the task classification structure, must be transformed from an operational
to a pedagogic ordering. Heuristics are proposed to achieve this, although human
expertise is required to apply them. The reported approach is best suited to
domains with hierarchically-ordered command sets.

A portable rule-based shell has been developed in Common Lisp which supports
the delivery of tutorials for a range of software application package interfaces.
The use of both the shell and tutorials for two such interfaces is reported. A
computer-based authoring environment provides support for tutorial development.

The shell allows the learner of a software interface to interact directly with the
application software being learnt while remaining under tutorial control. The
learner can always interrupt in order to request a tutorial on any topic, although
advice may be offered against this in the light of the tutor's current knowledge
of the learner. This advice can always be over-ridden.

The key-stroke sequences of the tutorial designer and the learner interacting with
the package are parsed against an application model based on the task
classification structure. Diagnosis is effected by a differential modelling
technique applied to the structures generated by the parsing processes.

The approach reported here is suitable for an unsupported software interface
learner and is named LIY ("Learn It Yourself1). It provides a promising method
for augmenting a software engineering tool-kit with a new technique for
producing tutorials for application software.

u

ATN

Ticcrr

Adaptive Control of Thought

Artificial Intelligence

American Standard Code for Information Interchange
Augmented Transition Network

Computer-Assisted Learning

Computer-Aided Software Engineering
Command Language Grammar
DYnamic Computer-Assisted Learning

Input/Output

Intelligent Tutoring System

Learn-It-Yourself

Object-Oriented Programming System

Time-shared Interactive Computer-Controlled
Information Television

Vienna Development Method

in

Chapter 1

Introduction

Chapter 1

1.1 Background

Computer users are becoming increasingly sophisticated. As they operate ever-

improving hardware they provide software suppliers with a market for new

products which is evolving continuously. The increase in the number of

computers in use and the number of software products to run on them has led
to an explosive growth in training requirements. The future is clear: computers
can and will provide the tutorial means for users to learn how to use unfamiliar
software. If this seems to be rather a sweeping statement let us consider the
alternatives. The traditional approach has been to send the learner on a
commercial course. If the learner is being sent by his or her employer then that
organisation has to meet not only the very significant expense of the course itself
but also the cost of losing the services of the employee for the duration of the
course. Many potential users will not be able to seek funds from an employer
to go on a course: professionals in non-computing disciplines, for example,
learning a new package in their own time, or someone at home improving their
"computer literacy" skills on a domestic computer. For them, self-tuition will
be the only way. Self-tuition may not mean the use of a computer: books
provide a traditional way of disseminating information by self-study. When
learning a skill, however - and using a software interface is principally a
cognitive skill with a small motor element - learning by doing is superior to
learning from written material, at one remove from the subject matter.

The work portrayed below describes this "learning by doing" in terms of
presenting the learner with a structured view of the domain which is to be
mastered - the target package - coupled with appropriate tutoring material. The
learner interacts with the user interface of the software package being learnt and
it is the structure of this software interface which underlies the view of the target
package which is presented to the learner. The approach is called "Learn-It-
Yourself1 , or LIY for short. For a different class of learner - the child in
school - the idea of presenting a relatively unstructured learning environment has
been proposed (Papert 1980). The motivating features for the child - using a
simple graphical programming language called LOGO - are assumed to rest on
the fun involved and the child's natural inquisitiveness. Learning objectives

Chapter 1

relate to developing simple arithmetic and spatial ability. At present such an

unstructured approach is usually inappropriate to the learner of a new software

interface - particularly if it is text-based - due principally to the complexity of

such interfaces. This could change somewhat in the future as user interfaces

become more heavily based on graphical paradigms. These provide a relatively

small number of tools of universal applicability which can be put together by

the user to provide powerful facilities. This "putting together" of a small number

of tools leads to a large number of features, many of which are best learnt by
experiment. An example of this is the drawing tool Microsoft Windows Paint

which provides a huge range of facilities for drawing, since the user can combine

different styles, fonts, palettes, brushes and so on. The manual for this tool is

only 37 pages long; although it is a powerful package it is best learnt by

exploratory trial-and-error.

Microsoft Windows Paint is simply "graphical interface"; the graphics facilities

dominate the package and apart from filing system features there is very little
else. This type of software is at one extreme compared with a purely text-based
interface which manipulates a complex computer system, for example, the
concepts of which the learner must acquire through a training sequence. It is

plausible to suggest that future systems are likely not be at either of these two

extremes but somewhere in between. It will thus be appropriate to present the

learner of such a system with a structured view of the domain to be learnt, with

opportunities to experiment with the software in a protected environment which

will not permit damage to occur to the machine's software systems as a whole.

LIY is a method, based upon a software tool-kit, for engineering the type of

courseware that is specifically designed to teach the use of a limited class of

software interfaces. The tool-kit comprises courseware authoring and delivery

environments. As an example, LIY could be used to teach the use of a new

word-processing or database management system. Software interfaces are usually

task-oriented, in that operating them can be viewed as carrying out a sequence

of actions to achieve a task. Thus the LIY approach is appropriate for task-

oriented domains. Considered from a methodological viewpoint, LIY would not

be appropriate for more open-ended domains such as history or geography.

Chapter 1

Furthermore, LIY is only designed for dealing with text-based interfaces. At

present it normally requires that all application input (i.e. semantic input to the

application rather than command input which interrogates or controls it) be

terminated by a recognisable character, such as enter or escape. LIY cannot

usually deal with fixed-length input not followed by a recognisable terminator

although this can occur on occasion as discussed in chapter 3. The current

version of LIY has no method of managing "hot keys". These are certain pre-

determined key-stroke sequences which always suspend the current task and

invoke some standard associated service. The most common example is the

constant availability of a certain key - often Fl in PC-based software - which

enables the user to seek help. LIY will not handle software interfaces

incorporating direct-manipulation devices such as mice. O'Shea has pointed out

some of the difficulties associated with modelling the users of such devices

(O'Shea 1989). As software interfaces become increasingly graphics-based these

difficulties will assume more importance. They are discussed further in section

5.4.1.

It is proposed above that the computer itself is the natural delivery medium for

tutoring the learner of a new software interface. This idea is not new. The

LEARN system of UNIX (Kernighan and Lesk 1979) and the DYCAL system

for Prime computers running the PRIMOS operating system (Martin 1983) both

provided a tutorial environment with controlled embedded access to the user

interface. That is to say, learners could be set assignments in which they were

requested to manipulate the interface to an actual program rather than, for

example, a simulation of that interface. The tutorials were designed to teach the

use of the operating systems themselves. More recently application packages

such as Lotus 1-2-3 and WordPerfect have been released with built-in tutorial

assistance. These tutorials allow the learner to interact with what appears to be

the genuine application software. Typically, only a restricted subset of the

operations that can normally be performed is available, making learner control

difficult and browsing by the learner impossible. A more fundamental problem

is that there appears to be a very tight coupling between the application and its

tutorial. Tight coupling precludes the development of a tutoring system for

software interfaces which is portable in the sense of being applicable over a

Chapter 1

range of interfaces. LIY adopts a "loose coupling" approach in order not to

preclude portability. Finally, existing systems for commercially-available

application software do not use any ITS technology such as sophisticated student
modelling or diagnosis. Diagnosis, when it occurs, is very much at the level of
matching character-strings.

It is not intended that the reader should infer that written material has no place
in tutorials for software interfaces. On the contrary, written text and graphics
provide extremely valuable input to the whole self-teaching process since
currently it is easier for most people to find a required page in a book than to
find a particular screen. This may change as a result of research into hypertext
systems. It is a moot point whether the book supports the computer-based
tutorial or the tutorial supports the book. Let it be said that they complement
one another.

Other workers have attempted different approaches to producing tutorial material
for software interfaces. The DOMINIE system has a knowledge-elicitation phase
which captures static screen-dumps from the application (Spensley and Elsom-
Cook 1988). These can then be displayed to the learner as part of an
appropriate teaching operation. The DOMINIE work focuses upon the
representation of multiple teaching strategies and the selection of the most
appropriate such strategy. It does not however permit the learner to interact
directly with the software being taught, unlike the LIY approach described here.

For software interfaces, alternatives to tutoring systems are advice systems.
These can permit the user - perhaps a novice - to interact directly with a
program but allow him or her to interrupt in order to seek advice. This is
exemplified by the EMACS editor (Stallman 1979). An alternative design is for
systems which themselves give advice at what are considered appropriate
moments. The possible design of one such system is outlined in the context of
a tutorial for WordStar (Jackson and Lefrere 1984). The approach proposed is
based on the maintenance of plan representations of hypotheses concerning the
user's state. These plans could then be revised dynamically. Greenfield
describes an approach to plan generation based on Definite Clause Grammars

Chapter 1

(Gieenfield 1988), a representation formalism particularly suited to processing by

a Prolog interpreter. This technique is used to represent pre-defined user plans

and to parse command line input, in this case to UNIX. Also for UNIX, the

EUROHELP system is a 100 person-year project which is proposing an

intelligent help system for UNIX mail (Breuker 1988). This important

undertaking is examining many different aspects of ITSs for advice systems, such

as plan generation, discourse and - obviously - aspects of explanation. The

SINK Consultant is an intelligent help system for SINK - a UNK derivative

developed by Siemens AG (Kemke 1987). It is reported to be a command-based

taxonomic hierarchy, similar to that of LIY, and permits the user to ask

questions in natural language. Knowledge for answering these questions is held

in frame-like representations at the nodes in the taxonomy. Woodroffe describes

the FITS system which is a tutor for the UNK command line interface

(Woodroffe 1988). The thrust of this work again focuses upon planning with the

program maintaining a hierarchy of increasingly abstract possible plans. These

are hypothetical representations of the learner's actual plan.

Jackson and Lefrere provide an interesting analysis of some of the difficulties of

matching a hypothetical plan to users' actions and revising such a plan if

necessary. These include the user: (i) changing goal; (ii) adopting an alternative

strategy, not in the plan, to achieve the same goal; (iii) incorporating another

task into the original plan; (iv) making an error, for example typing the wrong

command or typing a series of commands in the wrong sequence.

The TOTS system (Rickel 1988) shares some similarities with the LIY work

described here in that it attempts to provide a domain-independent intelligent

tutoring shell for task-oriented domains. Both the FITS and TOTS approaches

base their plan representations upon Sacerdoti's procedural network (Sacerdoti

1977). LIY is aimed at a subset of such domains: user interfaces to software.

Like LIY, TOTS is weak in the area of identifying learner misconceptions,

principally because these are particularly domain-specific. It is unclear whether

TOTS could be used for teaching the use of software interfaces. Rickel does not

report any evidence that it would be able to do so in a manner which would

support direct interaction with the target software.

Chapter 1

It can be argued that to learn a programming language is also to learn the use

of a software interface. The best-known work in this area is PROUST (Johnson

and Soloway 1987), a tutoring system for teaching Pascal. The Pascal compiler

is simply a "black box" which takes program statements as input and produces

machine-code and error messages as output. Like the compiler, PROUST

processes a complete (though syntactically correct) Pascal program. It attempts

to identify and report semantic errors by comparing such mistakes with a "bug

catalogue" of known possible errors. It is a non-interactive program, whereas the

work described in this thesis is suited to tutoring interactive software interfaces.

PROUST incorporates knowledge both about Pascal and about the typical bugs

learners make when developing Pascal programs.

The Lisp Tutor, based on the ACT* theory of learning (standing for Adaptive

Control of Thought), is also concerned with teaching a programming language
(Anderson and Reiser 1985). However, unlike PROUST which operates post-
hoc after the student has submitted a complete program, Andersen's tutor deals

with the interactive environment of a Lisp interpreter. Errors are detected and

reported immediately they are committed. Further, the learner is required to

repair such errors at once. The LIY approach described below can be applied

to a wide range of software interfaces, admittedly of less complexity than a Lisp

interpreter. For a given cost of implementation, there appears to be a trade-off
between the power of a tutor and its complexity on the one hand and its

generality over a range of domains on the other. The Lisp Tutor is towards the
high end of the implementation cost scale. Figure 1.1 shows how

implementation costs change with respect to distance from a line of constant cost

and attempts to position PROUST and Andersen's approach as used in building

the Lisp Tutor in relation to LIY, which exhibits low cost and high generality

but only moderate power.

LIY's aims are set out fully in the next section. It has so far been described in
terms of computer-based delivery of tutorial material concerned with software

interfaces; it also attempts to provide an authoring environment for building such

tutorials.

Chapter 1

Power and complexity Line of constant cost

ANDERSDN TUTORS

General^

Fig. 1.1

In the authoring field, Tang et al. propose object-oriented tools for modelling

users and dialogues, with a mapping between the two (Tang et al. 1989). These

tools would then prompt the designer for domain-specific information.

Woolf describes an authoring system being built to enable teachers who are not

familiar with Al programming to construct intelligent tutorials (Woolf 1987).

The interface to the system is predominantly graphical. Woolf identifies the

main problem in the building of such authoring systems as being that of domain

knowledge representation. As is described in succeeding chapters, the LIY

representation of the domain is based on the specification of the user interface

to the application software. LIY assumes that this will have been defined at the

software design stage.

The TEACHER'S APPRENTICE system once more proposes an authoring

environment with a highly graphical interface (Lewis et al. 1987). The chosen

domain is the familiar one of school algebra. This tutor, like the Lisp Tutor

(Anderson and Reiser 1985), is based on the ACT* theory of cognition in which

8

Chapter 1

pre-stored fine-grained production rules model all aspects of the learner's
behaviour, both correct and "buggy". These rules must be elicited from the
designer. The tutoring strategy is said to be "induced" from the behaviour of the
designer playing the roles both of teacher and ideal student In fact the designer
must specify correct and incorrect protocols in order for the system to generate
the productions required.

SCALD uses a script-based expert system to support the tutorial designer which
incorporates knowledge about how to build CAL systems (Nicolson and Scott
1986). It does not support an intelligent tutorial delivery environment, nor is it
specifically aimed at software interfaces.

The systems described above all focus on one or more of the accepted issues in
ITS design as a means of investigating and refining approaches to handling those
issues: domain and learner modelling, planning, teaching strategies, problem
generation, natural language interfaces, representation of teaching expertise and
so on. In contrast the LIY research reported here is concerned specifically with
software interfaces and their representation and asks the question "How can this
representation - which will already exist - be exploited in the cause of tutorial
creation and delivery?".

Chapter 1

Aims and rationale

Section 1.1 above describes the area of this research and the background in terms
of related research. This section provides a more focused view of the aims of
the research and explains the rationale for carrying it out.

The aims are considered first. There were two principal aims, along with four
more general ones. The principal aims were:

specification

If it were the case that a user-interface specification could contribute to
construction of a tutorial for that interface, then this would save effort: for some
given project the specification would be contributing to both the software
engineering and the courseware engineering stages. Such an economy could
only occur when the project development provides not only for the software but
also its tutorial courseware. No economy would occur if the tutorial were to be
implemented retrospectively as an afterthought

This aim tests the domain-independence of the LIY approach. Most of the tutors
being discussed in the current literature are for single domains such as the
teaching of algebra. The work described here is concerned with developing a
method with wide applicability. If the research had been focused on aspects of
design of a tutor for just one particular software interface then the issues the
work would have addressed would have been those confronting the ITS research
community in general. These issues have not gone away simply because of the
portability aim of LIY. Some of them are considered in LIY's design and are
discussed in detail in chapters 3 and 4. Others are discussed in the concluding

Chapter 1

chapter. Please note, though, that the desire for portability pervades the entire

LIY conception.

There were four subsidiary, or more general, aims which were kept in mind as

being desirable:

(a) The learner should be allowed to interact directly with the software

interface being taught.

The reasoning behind this is that learning by "doing" is very effective. Learning

by interacting with a simulation could be as good provided that the simulated

interface was as good as the real thing - a situation appropriate on cost grounds

to teaching airline pilots, but hardly to teaching software interfaces. The learning

experience of interacting with static screen dumps, as for example in DOMINIE,

is likely to be of lower quality (Spensley and Elsom-Cook 1988).

(b) The learner should be able to interrupt at any time.

On the face of it learner control does not seem to have provided the

breakthrough in CAL acceptability which was hoped of it and it would be

instructive in the future to analyse the reasons. Merrill points out in his study

of learner control in the TICCIT system that distinctions can be made between

learner control of strategy, presentation and content (Merrill 1980). In LIY the

learner essentially has control over strategy, and the case for using it rests on the

high level of motivation anticipated of the learner. In a study by Hartley it was

found that a group of students offered learner control reported a greater degree

of stimulation and satisfaction than a similar group learning the same material

under program control, factors which are clearly concomitant with maintaining

a high degree of learner motivation (Hartley 1981). More recently Hartley and

Tait report experiments with a system offering both learner-control and advice

in the domain of mathematics for biology students (Hartley and Tait 1986).

While the system was liked by the students, there was some concern as to

whether it met the particular requirement of stimulating thought and reflection

in this particular domain. The authors propose a design incorporating a

11

Chapter 1

knowledge base to support the advisor which would enable it to probe deeper

issues concerning the student's understanding.

Anderson has pointed out the importance of control to the learner even if this

control is illusory (Anderson 1989). He described an informal experiment in

which a lecturer was giving the last lecture of a course. He divided the students

into two groups (group 1 and group 2). He needed to teach only one of two

possible topics. Group 1 were allowed to choose the topic while group 2 were

to be denied a choice although they were taught the same topic as group 1. The

result was that group 1 performed better in post-tests than group 2, who were

denied even the illusion of having some control over what was to be taught

MATILDA, a system for teaching Lisp to novices, was apparently not as

successful as the system used in Hartley and Tail's study (Elsom-Cook 1983).

The learners, who were students on a taught MSc. course in cognition,

computing and psychology, were largely computer-illiterate, and were inhibited

about trying things to find out how MATILDA worked. It can be inferred that

the cognitive load associated with learner control was relatively large compared

with the cognitive content of the learning task. The learner perceived "learning

the task" as being more important and therefore opted to minimise cognitive load

by avoiding learner control. For software interfaces the LIY approach should

help to overcome this problem for the following reasons. First, a high level of

motivation on the part of the learner is assumed. Second, many learners will

already be computer-literate even if they lack knowledge concerning the software

interface that they are learning (package-illiterate). Third, some learners will be

transferring skills from another not dissimilar interface (computer-literate and

package-literate). As an example of the last point consider a learner who is

familiar with WordStar and who is learning to use an alternative word processor

such as WordPerfect. Having control over navigation within the task domain

would allow the learner to capitalise on existing knowledge of word processors.

This is discussed further in the context of learner acceptance in the rationale

below.

12

Chapter 1

(c)

This requirement is necessary so that tutorials can be built for a wide range of

different software interfaces. It follows as a result of the second of the principal

aims described above: the feasibility of a portable shell.

The standard ITS concepts are discussed more fully later on, together with other

ideas which have not yet been fully developed in the implementation. These

include a variation in certain of the learner model attributes to include both a

characterisation profile and a performance profile, so that longer-term attributes

of the learner could be preserved across a range of tutorials. Additionally, an

idea put forward by Pask concerning feedback systems has led to the suggestion

of a general architecture for those tutoring systems which include learner control

(Ogborn and Johnson 1982). This is described in detail in section 4.2.3.

The rationale for this research is based on the proposition, stated earlier, that the

computer is the natural medium for delivering training material for software

interfaces. A further step along this path is to consider the stage at which

courseware should be produced ("Courseware" here is specifically limited to

mean training material for software interfaces.) Associated with the fact that

courseware is difficult and time-consuming to produce is the fact that, like

documentation - an analogy which will recur later - there is a tendency for

courseware production to be an afterthought Some of the work which is

described here is concerned with examining ways of building the courseware at

the same time as the software. It is hoped that this will lead to an overall

reduction in the effort - and hence cost - required to produce both software and

courseware compared with a more conventional, separate approach. The desire

to seek ways of reducing the cost of producing courseware permeates the LIY

approach. As with any creative undertaking, courseware production provides

many challenges.

13

Chapter 1

These include:

problems of courseware creation;

problems of courseware maintenance;
problems of learner acceptance.

Good courseware creation, like writing a good book, is perhaps more of an art
than a science. Nevertheless the aspiring author of a book can learn techniques
and approaches to apply to the craft (art?) which will result in a higher quality
product. The same is doubtless true of courseware production, but in the case
of courseware for software interfaces it is clear that the computer itself could
provide added support. This is because objects which exist in the user interface
to the application software are also those objects about which knowledge is to
be taught by the courseware. Such support is certainly highly desirable: some
writers claim that the ratio of courseware production time to student usage time
can be upwards of 40:1, which represents a working week for every hour of
running time (Kearsley 1982). Experiences with the DYCAL system indicated
a much higher ratio than this (Martin 1983).

Courseware maintenance is perhaps more of a problem when considering
tutorials for software interfaces in comparison with other types of computer-
based tutorial: when the software changes in such a way that the user interface
is affected, then the courseware must change also (Mayer 1967). It is not
obvious that in this instance courseware re-writing can be avoided - you cannot
simply change one or two identifiers and recompile! - but if the software
changes in a way which impacts upon the conceptual objects which the software
manipulates then by comparing old and new versions of structures representing
objects in the user interface it would be possible to predict those courseware
elements in need of updating. The similarity, mentioned above, between
courseware for software interfaces and documentation is that in both cases they
can get out of step with software versions. This can be very misleading and
quite possibly worse than having no tutorial courseware at all. An
implementation approach which keeps the development of software and its
tutorial courseware locked in step should be of help in obviating this problem.

14

Chapter 1

The third of the problems mentioned in this section, learner acceptance, is

perhaps the most important. The two major goals of the application of AI

techniques to tutoring systems are the production of more effective courseware

on the one hand and exploring the cognitive processes involved in learning and

teaching on the other. Both approaches use techniques which are based largely

on the architecture laid down by Hartley in which he considered an adaptive

teaching system (Hartley 1973). At the present time one of the best-known

approaches to the second goal concentrates on very fine-grained modelling of the

learner in order to force him or her to stay on the learning path of some ideal

learner who would become an expert in the tutored domain. This "expert

paradigm" is best exemplified in Andersen's Lisp and geometry tutors. While

it can be argued that these tutors are adaptive - indeed, the ACT theory of

learning is acronymic for Adaptive Control of Thought - they do not adapt to the

will of the learner. Thus the learner cannot exert any influence over what to

learn or over the sequence in which to learn it. For software interfaces this is

particularly important for two reasons. The first is that a learner may well not

desire nor need to know everything about a software interface. As an example

the installation of software may well only be done by a particular member of a

department, while other users need not know the installation procedures. On the

other hand, some time later it might be that the installation procedure is the only

topic that a particular user wishes to learn from a tutorial. Secondly, users who

are bringing skills from other similar user interfaces - so-called transfer of

training - possibly only need to be taught a restricted subset of skills in order

to be productive with the target application software. While LIY is not as

adaptive - in a fine-grained sense - as the Anderson tutors are to each input from

the learner, the learner-control capability described earlier in this section does

allow tutorials to be adapted to the needs of the software interface learner.

15

Chapter 1

1.3 Conclusions in brief

This section provides a short summary of the conclusions, set out more fully in

chapter 5, with respect to the principal aims.

With regard to the first aim - that of investigating the use of a user-interface

specification as the basis of a tutorial - the outcome is positive but there are

some reservations. Task classification1 leads in the first instance to an

operational ordering of user commands which defines the order in which tasks

should be carried out to achieve an objective. The LIY tutor requires a

pedagogic ordering, in which commands are laid out in a sequence which is

logical for the learner. It appears possible to transform from operational to

pedagogic ordering by applying heuristics. These are rather heavily dependent

upon knowledge of the domain, for example: "prompt the designer for any

SETUP functions and teach these last". They would not appear to be tractable

in the sense of encoding as rules into a program to carry out the transformation.

Nonetheless they have been used with success for the transformation by hand of

task classifications in three separate domains.

The second principal aim is concerned with demonstrating the feasibility of a

portable shell for software interface tutorials. The LIY work described here

shows that such a shell can be built; it has been used successfully in the

construction of two tutorials. The first is for teaching the use of a DIALLER

program to control a modem: in fact this program is simply a front end, with no

modem control implemented. The other is for teaching the use of the LIY

authoring system: this is a "real" program which updates files on disk.

1 The term task classification is used in preference to task analysis as the latter
term currently has a more overtly psychological connotation than is desired.
Human factors workers use task analysis to refer to inferred users' tasks rather
than operations in the task domain of a user interface.

16

Chapter 1

1.4 Implementation and environment

The LIY implementation broadly follows the proposals set out in an earlier paper
(Martin 1987). As described in the previous section, two "application1! programs
were developed in order to test the LIY approach. These were a \phantom
DIALLER - the front end of a program to control a modem - and the authoring
sub-system of LJY itself. Tutorials were successfully developed for these
programs. A delivery environment for LIY tutorials was also built incorporating:

(i) a graphical interface to the learner;

(ii) domain and learner models;

(iii) teaching strategy encoded as a set of rules;

(iv) rule interpreter;

(v) a set of teaching operations.

It was decided to implement all the software in the same programming language
in order to minimise interface problems between the various programs. The
language used was Golden Common Lisp 286 Developer version 2.2 - an almost
complete Common Lisp implementation. It implemented the Common Lisp
package feature which was used to separate the name-spaces of the various
software components. This was both desirable from the implementation point of
view, and essential in being able to demonstrate LIY tutorials running with real
software. No modification to either of the application software packages was
necessary in order to get them to run with the tutorials, although some of the
standard Common Lisp input-output routines which these packages used were
replaced - only when being used for tutorials - with special-purpose versions of
increased functionality. The interface of these routines to the application
software remained transparent and in accordance with the Common Lisp standard
at all times.

17

Chapter 1

The hardware used was a Tulip AT running MS-DOS with 2.5mB of RAM and

a 40mB hard disk. Although it incorporated a Hercules monochrome graphics

card the graphics implementation was confined to the so-called IBM graphics

characters.

My interest in tutoring systems for software interfaces was kindled when, in

1980, the ageing Thames Polytechnic IGL 1902A was replaced by Prime

computers running the PRIMOS operating system, which is quite similar to

UNIX. At about the same time I came across UNIX itself and the LEARN

system (Kernighan and Lesk 1979). The latter is a set of computer-based tutorials

for learning about UNIX, in particular its filing system and the editor ed. I

implemented the somewhat similar DYCAL system for PRIMOS which gave

several generations of students an introduction to the Polytechnic computing

environment and was also distributed to a handful of other academic Prime users

(Martin 1983). A developing interest in A.I. focused my attention on ITSs, and

a determination to develop better tutoring systems than LEARN and DYCAL

resulted in my registration for a research degree in January 1984. I initially

considered a tutoring system for a financial application which is described in an

earlier paper (Martin 1987). In the event the DIALLER, with a much simpler

user interface, and its tutorial were developed instead, followed by the tutorial

for LIY's authoring sub-system. The financial application was not implemented

and it is not reported here, although a pedagogic task classification tree was

evolved for it. The transformation heuristics described in section 3.5 were

applied to the original tree, in operational ordering, and it was pleasing to

discover that they produced the same tutorial ordering as that which had earlier

been worked out empirically. Progress was sporadic, but a half-sabbatical for

the academic year 1988-89 enabled me to complete the programming.

Although no formal evaluation of LIY has been attempted with learners, it has

been used by a handful of people and their suggestions noted. In consequence,

changes were made which strengthen the diagnostic messages to the learner and

which generally improve the user interface of the feedback component. This is

described more fully in section 3.7.

18

Chapter 1

1.5 Structure of this thesis

The contents of this chapter are principally concerned with background, aims and

rationale. Because of the significance of specification methods, particularly in

user-interface design, chapter 2 is devoted to this topic. The last section of the

chapter (2.4) describes the interface representation elements used by LIY.

Chapter 3 portrays the LIY method for producing tutorials and describes how it

works. It also sets out the approach taken to the transformation of an

operational task classification to pedagogic ordering. (Note that appendices B

and C describe the complete development of the pedagogic structures for the

DIALLER and ELICITOR tutorials. These are the two LIY tutorials which have

so far been built and which are described in sections 3.3 and 3.4 respectively.)

Chapter 4 outlines the components of an intelligent tutoring system and focuses

on certain ITS aspects of LIY. It also proposes an architecture for ITSs

incorporating learner-control. Chapter 5, "Discussion and Conclusion", assesses

the extent to which LIY achieves the aims - both principal and subsidiary - set

out in section 1.2. It also outlines further research and development work which

might be appropriate.

This chapter starts by examining specification methods used in software

engineering. It then discusses and contrasts methods of user interface

specification, going on to describe one of them in relation to the requirements

of a tutoring system. The final section justifies the selection of various user

interface attributes for incorporation in the LIY system.

20

Chapter 2

2.1 Specification methods in software engineering

Specification methods are increasingly being used in software engineering,

principally as a means of reducing the incidence of errors. In addition to

specification methods, design methods are evolving - very often involving a

specification technique - which aim both to reduce the cost and to increase the

reliability of a software design.

Many of these design methods owe a considerable debt to the ideas of structured

programming. This is particularly true of Structured Design (Yourdon and

Constantine 1979) and Jackson Structured Design (Jackson 1983), also known as

JSD. Yourdon and Constantine offer a method of structuring by breaking up a

large problem into a number of smaller, more manageable units. Jackson

Structured Design (JSD) grew out of Jackson Structured Programming (JSP) - a

program design method - but now encapsulates it. JSD starts by building a

model of the environment in which the proposed system is to operate - the "real

world". This model is described in terms of entities and their actions. (Note

that a JSD entity is not the same as a database entity.) The functions expected

of the proposed system are then added. Timing considerations lead to what is

known in JSD as dynamic modelling, in which each JSD entity is modelled as

a sequential process. The JSD entities have to be connected by a scheduler.

The last phase of the JSD method is to convert the specification into a set of

executable programs. A notation is used for specifying entities and actions.

Diagrams are used for modelling the real world and the proposed system.

The Structured Analysis school (De Marco 1978, Gane and Sarson 1979) both

use data analysis, data dictionaries, data flow diagrams and a "formalism" for

representing algorithms known as "pseudocode" or "structured English". While

these techniques are not as mechanistic as JSD they have found a wide degree

of acceptance although the notation for describing algorithmic specification lacks

conciseness. Neither of these Structured Analysis methods go as far as JSD:

they both stop short of implementation whereas JSD considers both specification

and implementation.

21

Chapter 2

A rather more formal approach is found in USE - User Software Engineering -

which is a method for building interactive information systems based on the use

of a formal specification method and various automated tools (Wasserman 1984).

The user interface is modelled as a set of transition diagrams and there is a

graphics editor to maintain them. An interpreter can execute them as dialogue

descriptions for prototyping. Originally, algorithmic specification was to be in

a specially-designed Pascal-like programming language called Plain, with the idea

that a Plain interpreter could be built to offer rapid system prototyping.

Subsequently systems were formally specified in BASIS (Leveson el al. 1983)

which used an abstract model based on Hoare's ALPHARD language (Hoare

1972).

The computer support for the implementation of software directly from a

specification is referred to under the umbrella heading of computer-aided software

engineering ("CASE"). CASE is currently targeted at automating the production

of business systems. The methodologies it supports are those based on data

analysis and data flow rather than those based on set theory and logic. CASE

tools focus on one of the stages of systems development, typically business

system analysis and design, database and file design, programming - often

generating code in Cobol - system maintenance and project management. CASE

workbenches are more powerful, offering a complete set of CASE tools for

system implementation based upon a single design methodology. It could remain

simply a dream, but might not one day a CASE workbench contain also a user-

interface tutorial generator tool?

Returning now from design to specification, perhaps the best-known method of

formal (program) specification is the Vienna Development Method (VDM) which

is described by Jones (1980). This proposes a concise method for specifying

data objects and their processing based on logic and set theory. Specifications

using this method can then be transformed into actual programs. Because the

specification method is sufficiently formal, Jones* method allows the designer to

reason about specifications and programs. Thus designers using VDM are

encouraged to satisfy themselves that the design is correct: they can prove it to

be so. The specification methods of Structured Analysis in particular are

22

Chapter 2

insufficiently rigorous to allow this. It would appear that the utility of a

software specification system is proportional to the individual effort required to

master its use (and unfortunately inversely proportional to its degree of current

acceptance within the computing community at large). Complete specifications

for systems using techniques such as VDM and BASIS are arduous to produce.

Specification of a fragment of a university administration system in BASIS
formed part of Leveson's Ph.D. thesis (Leveson 1980).

Another example is the formal specification of a text editor (Sufrin 1982). A

number of points are made below concerning this particular work. This is

because it is the specification of an application which is more like the software

systems for which tutorial approaches such as that of LIY would appear to be

useful. The notation used is the Schema Notation developed by the

Programming Research Group at Oxford (Morgan 1985). Schema has evolved
more recently into the better-known Z notation (Spivey 1989).

The first point to make about Sufrin's specification is that it is quite long - the
journal article is 46 pages, of which the formal specification takes up perhaps

30 - whilst an informal specification is provided in four pages as an appendix.

Secondly, no attempt has been made to prove particular properties about the

editor: although there is a formal description of each of the editor functions there
is no consistent set of pre- and post-conditions. There is no implementation

detail, therefore no transformation from specification to implementation, and
therefore no argument concerning the validity of assertions during transformation.
But then what Sufrin has attempted to do is

"to permit exploration of the consequences of our design and to

provide an unambiguous definition against which the correctness of

implementation strategies might be proven".

Nor has this been easy: he acknowledges a serious flaw in an earlier

formalisation. As in most examples of creative work, at the end Sufrin suggests
improvements, here in the form of abstractions which would enable the editor to

be enhanced. Although this fits in with his "exploration" justification quoted

23

Chapter 2

above, there seems to be a danger of the tail wagging the dog in that there

could be grave difficulties with enhancement if a suitable abstraction could not

be found. This is not meant to be a specific criticism of Sufrin's work since

this latter problem is present in all design and specification systems. The point

to note is that the problem of dealing with enhancements does not simply go

away even with a formal specification approach. Lastly, the user interface of

Sufrin's editor is particularly straightforward: every editor function can be

implemented with a single key depression. Since most systems have more

complex user interfaces than this it follows that specifications for such systems

would be even longer and require even more effort than that for Sufrin's editor.

Elsewhere Sufrin describes how the specification language Z might be applied

to the design of the user interface to an electronic mail system set in an office

context (Sufrin 1986). As before, a modeless command set is assumed, so that

one key-stroke is all that is necessary to accomplish any particular function. The

creation and editing of documents on the screen is to be done through the editor

Sufrin specified earlier, discussed above. It follows that the concerns expressed

earlier about the editor are felt even more deeply about this larger system.

Although the specifications describe the functional behaviour of the interface they

need to be supported by more tangible views of its appearance. Perversely, the

formal specifications represent a triumph of function over style; no essence of

the aesthetic element of the interface is conveyed. A specification in this form

could not become the basis of a contract of acceptance between client and

system designer - a claim often made in favour of the formal specification

approach - since the client would not have any interface to envisage. It would

be necessary to provide mock-ups of the proposal but this could pose the

problem of inconsistencies arising - possibly later - between the mock-ups and

the specification. A better strategy would be to derive a prototype from the

specification itself although this could pose so much effort for the designer,

before a contract had been signed, as to render the approach economically

infeasible.

The observations made above are not in any way meant to imply criticism of

Sufrin's achievements. Indeed, they are especially valuable in that they show the

24

Chapter 2

great effort required to produce formal specifications of real systems.

Nonetheless, formal approaches have been found to be of value in producing

correct specifications which can be agreed with clients and which enable correct

implementations to be produced. The barrier to the wider acceptance of formal

specification approaches appears to be the cost in relation to the short life of the

final product. The portion of costs devoted to procuring the expertise and effort

for specification is especially significant. Many writers, including Sufrin,

advocate the adoption of the formal specification approach since it is used in

other, more mature, engineering disciplines. Such an approach would be more

viable when depreciated over a longer product life-time of perhaps twenty years,

say. Over a four-to-six year lifetime the formal specification approach appears

at present for most applications - but not all - to be simply too costly.

Although software specification has been the target of considerable research and

development, it does not appear to provide a suitable "handle" for building a

tutorial for some arbitrary software product. There is too large a gap between,

on the one hand, the functional behaviour of the software system and, on the

other, both the users' perceptions of the system through its user interface and the

psychological requirements - particularly with respect to structure - of a tutorial.

Maybe there is a parallel with Clancey's observations concerning the

shortcomings of the GUIDON tutorial for the MYCIN expert system (Clancey

1987). This research attempted to turn a rule-based expert system, incorporating

an explanation facility, into a tutoring system. It was found to be unsuccessful

for tutoring since MYCIN's knowledge was too "compiled" to suit the needs of

the learner. From a functional viewpoint the rule-base drove the system

successfully and it could provide meaningful explanations in terms of rule-traces.

These explanations, however, were meaningful only to those already familiar

with MYCIN's domain. Clancey goes on to describe NEOMYCIN - an attempt

to incorporate epistemological meta-knowledge into MYCIN - which he hopes

will be more successful as a tutoring system.

With a view to moving closer to the hypothetical learner as the user of a

software system, we turn next to considerations of user-interface specification.

25

Chapter 2

22 Specification methods for user-interface design

The previous section was concerned with specification methods used in the

design and implementation stages of the engineering of reliable software. This

section considers some of the difficulties, associated with the user interface,

which are posed by software specification techniques. It also discusses interface

specification methods in their own right.

VDM (Jones 1980) is one of the most rigorous and best-known techniques but

has a rather restrictive way of specifying input-output This restriction becomes

apparent when one considers the context of a highly interactive system, perhaps

executing on a personal computer with a sophisticated windowing and graphics

capability. It is this type of system, running mass distribution software, for

which the greatest need for computer-based tutorial support has been identified.

Yet VDM doesn't have an easy way of representing the complex input-output

interactions of such a system. VDM defines input-output in terms of lists, which

one may assume normally to be of text characters. An interactive system would

therefore need to define many such lists to describe interactive I/O. There is no

obvious way in VDM to handle the temporal characteristics of overlapped input

and output Anderson, discussing the properties of a formally specified

interactive system, notes the lack of a mechanism for handling temporal

characteristics as being a particular problem for user-interface specification

methods (Anderson 1986).

Other techniques have been used for describing - and perhaps modelling -

complex user interfaces; they are discussed below. Currently, formal program

specification methods provide powerful data abstraction and procedural

specification capabilities but are weak on user-interface representation;

conversely, methods designed for representing and modelling complex user

interfaces do not address the problems of data and procedural specification.

No single method, or even class of methods, has emerged as pre-eminent for

user-interface specification. A number are discussed including Backus-Naur

Form (BNF), transition diagrams, the Command Language Grammar or CLG

26

Chapter 2

(Moran 1981) and path algebras (Alty 1984). It is important to distinguish

between user representation methods and user-interface representation methods.

The techniques examined here are all examples in the latter category. Other

workers such as Reisner and Payne are interested in modelling the user per se

during interaction with a system. They are attempting to develop theories of

user behaviour and of users' representations of interfaces, such as Reisner's

Formal Grammar (Reisner 1981), Payne's Task-Action Grammar or TAG (Payne

1984) and Johnson et a/.'s TAKD (Johnson et al 1984). For an interesting

discussion of classes F(X) of user models, see (Whitefield 1987). F(X)

represents agent F's model of X, where F could be one of program, user,

researcher, designer, X could be one of system or program, user, designer. Note

that nobody is interested in modelling the researcher!

Jacob contrasted the BNF and transition diagram approaches to representing the

user interface of a small part of a military message system (Jacob 1983). He

was interested in a complete formal specification for such a system, both as a

design and implementation aid and for rapid prototyping of its user interface.

His view is that transition diagrams provide a more readable specification of the

user interface than that offered by BNF. Although the two approaches can be

shown to be formally equivalent, Jacob maintains that surface differences can

have an important effect on comprehensibility. This idea is appealing: as an

example, one has only to think of the ease of doing arithmetic in the Roman

compared with the Arabic number representations. Jacob points out that

transition diagrams explicitly embody the concept of a state and the transition

rules associated with it. These states have a fixed temporal relation (e.g. State2

cannot be reached until State 1 has been reached) which is essential in specifying

an interactive dialogue. In BNF the temporal relation between events is implicit

which makes it much harder to use for dialogue specification. In contrast to

declarative specification methods, transition diagrams comprise a procedural

element which goes some way to overcoming the problems, mentioned earlier,

concerned with the temporal aspects of interface representation. Jacob describes

tools which allow textual descriptions of transition diagrams to be input and

transformed into an equivalent graphical representation. The USE system

mentioned in the previous section is also based on similar tools (Wasserman

27

Chapter 2

1984). Of course, BNF or transition diagrams are fine for describing the syntax

of a user interface, but what of its semantics? Jacob doesn't really deal

adequately with semantics in detail, but proposes that semantic actions should be

described in some high-level programming language-like constructs. Numeric

labels attached to the arcs of the transition diagrams are used to refer to code

sections which define semantic actions associated with the given syntactic

elements. Figure 2.1 illustrates a possible representation of the MS-DOS "cd"

command. "V 1 is the subdirectory operator.

snter

Fig. 2.1

28

Chapter 2

The semantics of the command would be specified by action or condition-action

sequences for the numbered arcs. The dollar sign in "$Name" signifies de-

referencing of the symbol "Name" which has been passed from some suitable

lexical analyser. For the "cd" command of figure 2.1 the sequence would be:

(1) action: TempDir:= CurrentDir

(2) action: CurrentDir:= TempDir

(3) action: TempDir:= Root

(4) condition: not exists-dire $Name)

action: response(TempDir '\' $Name 'not found'

(5) condition: exists-dire $Name)

action: TempDir:= TempDir '\' $Name

(6) no associated semantics

(7) condition: exists-dire $Name)

action: TempDir:= TempDir '\' $Name

(8) action: CurrentDir:= TempDir

(9) condition: not exists-dir($Name)

action: response(TempDir '\' $Name 'not found'

It is thought that the first attempt to use transition diagrams for user interfaces

was due to Parnas (Pamas 1969). An improvement was subsequently made

which allowed transition diagrams to invoke other diagrams in a fashion similar

to the familiar program subroutine principle, i.e. non-terminal input symbols

could appear on the transition arcs (Woods 1970). A more general approach

based on Woods' augmented transition networks (ATNs) but which allows

hierarchies of transition states has been proposed (Kieras and Polson 1985). The

29

Chapter 2

subroutine nesting idea mentioned above is generalised not only to conditions but
also to actions and states. As before, in comparison with VDM the semantics
of the actions lack rigour.

Transition diagrams appear therefore to be a promising representation method for
that class of user interfaces which lends itself to this approach. There are
unresolved problems with their use in situations which are non-deterministic such
as occur in certain graphics windowing displays. Consider an arcade game in
which the display on the screen shows the hunter and its quarry, both in motion,
represented internally as two objects but notionally as two transition diagrams.
Assume that the transition diagram for the quarry will indicate termination of the
hunted object if caught by the hunter. Some suitable transition is similarly
indicated concerning the state of the hunter if this event occurs. "Caught" here
means that hunter and quarry occupy the same place on the screen. It is
possible for the transition diagrams of each party to encode a transition for "Am
I at the same point as the other party?", though this would be a poor approach
if many hunters and quarries were to be represented. Instead it would be better
to have a third object, or agent - the screen manager. This meta-process would
be able to detect adjacency and send appropriate messages to the other parties.
Thus the interaction is resolved by encoding a state-transition in the hunter and
quarry based on reception of such an appropriate message. The difficulty with
this as a means of user-interface representation is that the message from the
screen-manager doesn't model anything in the interface. The message is not the
output of systems analysis, but is merely introduced to support the animation of
objects which are in the interface.

There are also difficulties with the use of transition diagrams to represent those
user interfaces which permit the use of "hot keys". The asynchronous control
behaviour of hot keys poses problems for modelling the domain by a tutoring
system and a facility to do this has not been incorporated into the current version
of LIY. Chapter 5 describes a possible approach to this problem.

The Command Language Grammar, or CLG, is a representation method for
exploring the concept of the user interface (Moran 1981). Moran adopts three

30

Chapter 2

perspectives in CLG: the linguistic view, the psychological view and the design

view. Further, user-interface components are stratified into four distinct levels:

task level, semantic level, syntactic level and interaction level. The task level

imposes a structure over the set of tasks which the user wishes to carry out with

some hypothetical system. This is very much in the style of user representation

mentioned earlier as a basis for developing a psychological model of the user.

The semantic level defines the conceptual entities and operations of this

hypothetical system together with the methods for accomplishing the tasks from

the task level in terms of these entities and operations. Thus the semantic level

refines the task level - the pattern for all the adjacent levels. The syntactic level

recedes the methods from the semantic level in terms of the syntactic level

commands, while the interaction level describes the user's physical actions

associated with the syntactic elements.

Moran's linguistic view of CLG provides an analysis of the structure of

command language systems and is relatively brief. He compares CLG with the

state-transition and augmented transition network approaches but finds the state-

transition representation lacks a sufficient analysis of the functions associated

with the states. This finding accords with the general view expressed earlier that

user-interface specification methods are weak in the area of procedural

specification. However, it is as well to remember that CLG is designed as a

representation for investigating user interfaces in general, whereas LIY requires

a specific representation method for the engineering of courseware. This is a

more pragmatic objective which doesn't therefore necessarily rule out a state-

transition representation.

The psychological view sees CLG as a means of representing a user model, i.e.

a model of the user's view of some interactive system. Due to the lack of a

method for representing knowledge in CLG, it is unsurprising that Moran states

that the four levels of CLG can only represent a part of what the user knows

about a system. The problem from a courseware engineering viewpoint is that

any model of the user's knowledge provided by CLG is static. As a

representation method CLG cannot provide support for modelling the user's

interaction with a system in a way which would intelligently support delivery of

31

Chapter 2

a tutorial for that system. On the other hand one of the strengths of an interface

representation system like CLG is that it forces the system designer to consider

the user's conceptual model of the system. Moran asserts that this is defined in

CLG by the semantic level. It is naturally a desirable objective of any

courseware engineering method that it should provide support for the learner to

assimilate or induce the underlying conceptual model. On learning, Moran

suggests consideration of Rumelhart and Norman's modes of learning: accretion,

tuning and restructuring (Rumelhart and Norman 1978). Of these CLG can only

address the simplest two: accretion and tuning. Since any representation system

could claim to be able to model learning by accretion - an additive process - it
is not obvious that CLG is offering any outstanding advantages for modelling
learning compared to other interface representation methods. As regards tuning,
the learner shifts his or her focus over the subject domain, subsuming lower

levels into higher-level concepts. Yet any interface representation method which

would enable the learner to forge a link between an objective (task) and its

means of accomplishment (action) - and which in some way structures the

objectives - would encourage this learning mode.

The design view regards CLG as a tool for helping the designer generate and
evaluate alternative system designs. The sequence of levels in CLG proceeds
from abstract to concrete, providing a pathway for design by successive
refinement. Moran proposes the addition of design aids - design principles,

design operations and design rules - for helping with design decisions.

Unfortunately there is no reported experience of using CLG as a design aid.

Moran exemplifies CLG by reference to a model mail system called EG.

However, EG is sufficiently small that its whole design can be held "in the
mind". Thus in a sense the EG example shows how CLG can be used as a
representation method rather than a design method since it would appear that
EG has not been designed using CLG. This is not a failing: indeed, Moran
stresses that CLG is intended as a representation method. Merely, caution needs
to be exercised in making claims for CLG as a design aid. Experiences with

CLG in this role are reported by Sharratt (1987), who describes some possible

improvements and extensions.

32

Chapter 2

CLG represents a system in terms of its entities and operational characteristics

at various levels. The top-most task level, while providing a "first cut" means

of structuring a system's operational domain, provides only a weak separation

from the semantic level. Further, as Moran admits, decisions as to whether

details should be admitted to the task level or the semantic level are arbitrary.

In the LIY system the output of task classification, required both for the

implementation of the application software and of its tutorial, is a

representational level broadly equivalent to the semantic level of CLG.

Foley has proposed an Interface Definition Language (IDL) which is an object-

oriented high-level description language for user interfaces (Foley 1987). IDL

describes the user interface at the conceptual and semantic level, rather than the

syntactic and lexical levels, and could thus be used to implement any particular

user interface through a user-interface management system. This approach has

recently been reported, using the UIDE User Interface Design Environment

(Foley 1988). IDL enables the construction of a knowledge base concerning the

proposed interface. Algorithms have been developed for possible transformations

which can be made to the knowledge base while preserving internal consistency.

These transformations enable the designer to transform one proposed interface

into another, at the same time maintaining functional equivalence, so as to permit

the exploration of the consequences of different designs. UIDE is reported as

not only implementing the knowledge base which represents the conceptual

design of the user interface (subsuming IDL), but also the transformation

algorithms and a user-interface management system to implement any

application's user interface. It could be that, within UIDE, transformations may

be possible towards a pedagogic orientation for a user interface. Such an

approach would parallel the LIY transformations described in the next chapter.

Waddington and Johnson propose relating a family of task models to user-

interface specifications so as to be able to explore the consequences of adopting

differing user interfaces (Waddington and Johnson 1989). The approach is

hierarchical in a manner somewhat similar to CLG, involving a "generalised task

model", a "specific task model" and a "specific interface model". To strengthen

the procedural aspect of the specification, the generalised task model can

33

Chapter 2

decompose tasks into procedures, which decompose again into actions. The

specific interface model uses a representation based upon pie- and post-

conditions. However, from a formal specification viewpoint, a great deal more

remains to be said about the syntax and semantics of the mappings between the

components.

Alty has proposed an interesting application of algebra to networks (Alty 1984).

His path algebra technique provides a powerful means of analysing the complex

dialogues of an interactive system. In particular, path algebras can be used for

detecting redundant paths, loops, etc. which can arise in a less-than-perfect

command language. Alty claims that path algebras are quite general and have

applicability in CAL as a design tool, but while they can obviously be used for

network analysis their use as a design aid, particularly for CAL, is not so

apparent. Others (Ferraris et al. 1984) have proposed alternative network

disciplines - Petri nets in this case - for direct application to CAL as a means

of modelling the semantics of the domain being taught and the conditions under

which the learner is allowed to make transitions between nodes, or sub-goals,

within the domain.

34

Chapter 2

23 Jacob's specification method revisited

In his original paper Jacob proposed a complete specification method for user

interfaces based upon state transition diagrams (Jacob 1983). As discussed in the

previous section, both syntax and semantics were considered. Figure 2.2 relates

a tutoring system to an application software package through a user interface.

glass box

user
interface

From the perspective of the tutoring system the application is perceived as a

"black box" so that any of the tutor's knowledge concerning it - particularly

necessary for learner diagnosis - must be represented to the tutor by the user

interface. (Learner diagnosis in this context enables a tutoring system to provide

an analysis and commentary concerning a learner's interaction with the

application software.) The user interface behaves somewhat like a "glass box"

enveloping the application black box - a concept proposed in the slightly

different context of the teaching of programming languages (du Boulay et al.

1981).

35

Chapter 2

The power of the user interface to represent the application to the tutoring

system will vary with the extent to which a specification of the interface is

available; certain syntactic and semantic definitions of components of the

interface may or may not be present An analysis follows showing the effects

of the presence or absence of various specification elements in the interface.

The cases are considered in order of decreasing interface power, so that the first

case offers the most powerful interface representation and thus provides the

tutoring system with the greatest capability for performing learner diagnosis. A

distinction is made between commands to the application representing control

input and other application input conveying semantic information to the

application. Consider as an example the user interface to an "application" which

is in fact an operating system. Printing a file might be accomplished by a

command with two components. The first component, perhaps prwf, is a control

command - one of a limited set of possibilities - whereas the second component,

usually a file-name, is application input

"Jacob's ladder"

(i) Complete user interface specification in Jacob style, i.e. syntax of

commands and application input using transition diagrams; semantics of

commands and application input

(ii) Syntax of commands and application input; semantics of commands only.

(iii) Syntax of commands and application input; semantics of application input

only.

(iv) Syntax of commands and application input; no semantics specified.

(v) Syntax of commands only.

(vi) Syntax of application input only.

(vii) No specification components.

36

Chapter 2

Case (i), at the top of Jacob's ladder, permits a tutoring system to infer a

complete model of the application and thus in principle to perform optimal

learner diagnosis.

Case (ii) is weaker in that, for example, an analysis by the tutor would be

incomplete for a sequence in which a learner attempted to access a non-existent

file.

Case (iii) would mean that, again for example, if a learner were requested to

rename a file, then the alternative strategy of copying followed by deletion of

the original file could not be detected as being equivalent.

Case (iv) clearly combines the restrictions of cases (ii) and (iii).

Cases (v) and (vi) are more restrictive still and, to be meaningful, require some

mechanism in the syntactic structure to enable the tutor to discriminate between

application input representing commands and that which represents other semantic

information to the application. Some learner diagnosis would still be possible

with these cases.

Case (vii) permits no learner diagnosis, although obviously simple right/wrong

assessment is possible, based on detection of perfect performance by string-

matching.

The next section discusses the requirements of a tutoring system in more detail

and proposes case (v) as being appropriate for testing, with an implementation,

the utility of the transition diagram technique.

37

Chapter 2

2.4 Selection of a specification technique

An ideal formal specification for most programs would consist of a functional
component - what the program is actually to do - and an interface component

- how the program is to conduct a dialogue with a user. In addition there could
be a further interface specification to describe a program's interaction with other
machine elements. These might be device interfaces to sensors, for example, or

possibly interfaces to other programs. Since this research is concerned with
tutorials for the user interface, the link to equipment and other programs will not
be considered. Also inappropriate would be a full functional specification; this
research is not concerned with examining the binding between software
specification and implementation. What is of interest are the elements of an
interface specification which could be exploited in the building of a tutorial for
that interface. Both input and output would need to be considered in order that
an application interface be completely specified. The research described here is
only concerned with the input side; a tutor needs to focus on learner input to an
application in order to attempt interpretation of it in a meaningful way. It might
be possible for a tutor to manage interpretation of learner interactions with
software if application output be considered in addition to input; detection of
an error message, for example, could act as a powerful trigger to tutorial action
of some kind. However, it is not clear that a tutor's "black box" view of
software would permit it to infer very much from consideration of error
messages. An approach to learner diagnosis is proposed which incorporates a
model of the application software, against which recorded learner input can be
interpreted by the tutor. Application output is not considered.

In the context of this research, specification can be regarded as serving
essentially two purposes. Firstly, as a specification of the software it describes,
it could be rendered executable. Thus it could be used as a prototype for all or
part of a program. It would be perfectly possible for the specification of the
input side of a user interface to be used as the application front-end, displaying
appropriate screens, handling correct input, guarding against incorrect input and
dealing with error messages. This would in principle be possible for cases

situated towards the top of Jacob's ladder, particularly case (i). Such an

38

Chapter 2

approach has not been followed for LIY following consideration of the

implementation effort necessary: in order that LIY remain portable it would

require the building of part of a general-purpose application generator, capable

of handling front-end input-output. Nor has back-end specification been

considered. The current so-called "fourth-generation" approach typically allows

high-level specification of back-end processing, largely in terms of database

access, using structured English. This is subsequently transformed into a

structured high-level-language program.

Secondly, specification can support the design and delivery of a tutorial. It can

be used for tutorial construction as an aid to the designer, for example ensuring

that courseware is built for every command in the interface. It can also be used

during tutorial delivery, both for learner diagnosis based upon a model of the

domain when evaluating learner input, and as a means of providing a conceptual

representation of the interface to the learner, possibly in graphical form.

It is appropriate now to turn back to Jacob's ladder and select a "rung" which

would appear to support the aims of this research. The top of the ladder offers

the most power but, as has been pointed out earlier, appears to be somewhat

ambitious. Not unusually it is the semantic definitions which pose the biggest

problems. Jacob's semantic definitions may or may not be sufficiently formal

to be understood by an interpreter. To build such an interpreter, however, is

not all that would be required. A tutoring system would need to find a method

for interpreting the learner's intentions in order to provide effective diagnosis.

The requirements for implementing a tutoring system at the top of Jacob's ladder

would be rather like having to implement PROUST (Johnson and Soloway 1987)

with the additional tasks of needing to define Pascal and implement an interpreter

for it.

It would appear to be useful, therefore, to turn to the other end of the ladder and

see what a weaker specification could offer a tutoring system. Case (vi), in

which only application input syntax is defined, appears to be problematic in that

not all user interactions with software require application input. Consider, taking

an operating system interface as an example, the actions of navigating to, or

39

Chapter 2

listing, a directory. With knowledge only of application input a tutoring system

would not be able to perform diagnosis based upon all types of learners'

interactions.

Moving up the ladder to case (v) provides a tutorial with knowledge about the

syntax of command input but not of application input. Thus a tutor should be

able to model the learner's use of commands and perform a measure of

diagnosis. Application input, as opposed to command input, could be handled

(but in a somewhat simple-minded fashion) in the manner of case (vii), seeking

a strict match between known correct input and the learner's input.

Case (v) from Jacob's ladder, i.e. specification of input command syntax, has

thus been selected as the basis for an LIY implementation.

The specification elements used for the tutorial in LIY are two-fold. Firstly

there is an operational task or command hierarchy. This represents the output

of the systems analysis task classification stage. Figure 2.3 shows an example

taken from LIY's DIALLER. It illustrates such an operational hierarchy for the

top level of the program and should be read as "DIALLER consists_of

DIALJDIRECT and DIAL_FROM_MEMORY and SETUP and QUIT". The

dotted continuation marks indicate that each sub-operation (DIALJDIRECT etc.)

is itself recursively decomposed in the same way.

The operational ordering shown here is not particularly appropriate for

supporting a tutorial. This is discussed in the next chapter together with a view

of the task classification transformed into pedagogic ordering.

Secondly the specification contains a mapping of the input command syntax of

the interface on to the nodes in the pedagogic ordering. As an example, for the

DIALLER this means attaching "D" to the DIAL_DIRECT node, "M" to the

"DIAL_FROM_MEMORYM node, and so on, "D" and "M" being two of

DIALLER'S top-level commands. This command representation of the domain

forms a model which is interpreted by a deterministic transition tree parser

during the learner diagnosis phases of tutorial delivery. The domain model also

Chapter 2

DIAL. SETUP QUIT

DIRECT
MEMORY : :

Fig. 2.3

needs to know the navigating sequence followed by the actual domain.

Specifically, this is necessary so that the parser can be reset at the appropriate

point in the hierarchy after the execution of a bottom-level leaf command.

Strictly speaking, this is a semantic consideration which moves LIY slightly

above case (v) on Jacob's ladder.

No syntax of direct application input is represented although LIY's parser

recognises the termination symbols for this type of input Such values - typically

either enter or escape - are, like the commands, attached to the appropriate nodes

of the pedagogic task classification.

Thus for LIY, only a proportion of a user-interface dialogue specification has

been exploited: the task command hierarchy, the control routing following leaf

processing, the syntax of input commands and the terminators for application

input. Yet this is sufficient for the construction of a domain model capable of

being used for learner diagnosis.

41

This chapter starts with an overview of the LIY method. It then describes LIY's

principal components in relation to the four elements of the Hartley and Sleeman

model (Hartley and Sleeman 1973). LIY is described from the viewpoint of the

learner and then of the tutorial designer, in each case drawing on appropriate

examples. A section is devoted to the technique for transforming the task

classification structure to yield a pedagogic ordering. Although the earlier

sections of this chapter are illustrated by reference to existing LIY tutorials, the

transformation technique is exemplified through references to the well-known

operating system MS-DOS. The development of the two existing LIY tutorials

from the interface specification elements discussed in chapter 2 is reported not

in this chapter but in appendices B and C. A complete description of the

pedagogic task classification structure is provided. There follows a section

setting out LIY's control behaviour and the chapter is summed up with some

closing remarks in the final section.

42

Chapter 3

3.1 Overview of the LIY method

LIY consists of both a system for delivery of tutorial material and a system for

authoring it The delivery system is the more fully developed. It uses domain

and learner representations and performs diagnosis using a form of differential

modelling which has some similarities with the use of issues in the WEST

system (Burton and Brown 1982). The authoring system is only partly

implemented at present; all its aspects, whether currently implemented or not, are

straightforward but time-consuming to program. The following description

therefore emphasises the delivery system.

Figure 3.1 shows how LIY teaches the potential user of a software application

by permitting interaction with it while the tutorial maintains control.

I.IY
tutorial

ATSTD! ica t ion
sx>t tvaro

Fig. 3.1

Two LIY tutorials have been written so far. One teaches the use of a DIALLER

program which in principle controls a modem installed in a computer. A

complete implementation would allow the user to connect to the telephone

43

Chapter 3

system through the keyboard, and then to a remote computer, for example. The

other teaches the use of the ELICTTOR program which is the authoring system

for building LIY tutorials. Rather than teach the use of existing applications it

was decided to develop software with, of course, a particular specifiable

interface. Thus the DIALLER and ELICITOR programs have been built. This

approach offered the following advantages:

(i) LIY could be tried within the scope and limitations - text-based input, etc.

- set out in chapter 1;

(ii) the LIY method could be applied to a very simple interface in the first

instance (that of the DIALLER program);

(iii) using a common development environment (Lisp) would facilitate the

capture for tutorial diagnosis of the learner's input to the application. Note,

though, that the two implementations - tutoring system and application - are

segregated in separate name-spaces by the Lisp package feature. This means that

applications can run quite independently of the tutoring system and in particular

that the latter does not need to be loaded into memory to run an application.

It can be seen that the ELICITOR "application" is a tool in the LIY system.

The DIALLER program is a cut-down version of what the real thing might be:

it presents an appropriate interface to the user but doesn't connect to a modem

nor to the outside world. In the passages describing the learner's and the tutorial

designer's views of LIY (sections 3.3 and 3.4), the examples are drawn from the

DIALLER and the ELICITOR respectively.

The LIY tutor contains a representation of the application domain imported in

a modified form from the systems analysis and design stage for development of

the application itself. The objective is to utilise some of the work done during

this early phase later on, at the tutorial design and delivery stage.

Chapter 3

software
design

software
implementation

software
in action

user

tutorial
design

tutorial
implementation

vlx
tutorial

inaction

Fig. 3.2

Figures 3.2 and 3.3 contrast the conventional and LJY approaches to application

and tutorial design. In figure 3.3 the reference to "shared interface

representation" is not meant to imply an actual shared machine representation.

Rather, it implies that a proportion of the systems analysis effort, devoted to

developing the task classification structure, can serve at both the software

implementation and tutorial implementation stages. Note that this task

classification structure represents an operational sequence. In other words, it

represents the way in which operations in the hierarchy are constructed from

those at a lower level. The operational sequence must be transformed to a

pedagogic sequence, as discussed below in section 3.5.

45

Chapter 3

SHARED
INTERFACE

REPRESENTATION

software
design

tutorial
design

software
implementation INTERFACE

REPRESENTATION

learner/
user

Fig. 3.3

46

Chapter 3

LIY's principal components

This section describes LIY in relation to Hartley and Sleeman's four-component

architecture for an ITS (Hartley and Sleeman 1973). In chapter 4 an alternative

architecture is proposed, able to incorporate learner-control, which is a

development of the five-ring model (O'Shea et al. 1984).

Hartley and Sleeman describe the four components of an ITS as being:

(a) representation of the task;

(b) representation of the learner;

(c) teaching strategy expressed as a set of means-ends

guidance rules;

(d) set of teaching operations.

Representation of the task

The representation of the task is elicited from the tutorial designer as a tree.

Leaf nodes in the tree typically correspond to an internal command in the

application. The tree is almost the only application-dependent part of an LIY
tutorial, the only other application-dependent objects being path-names loaded
in at LIY top-level. Besides structuring the task domain of the application, the

tree contains much other information attached to each node in the structure.

Examples of this information include teaching operations such as slide-shows or

exercises using the application. It also models the domain in terms of its

control structure so that during the diagnosis phase, when the learner's key-

stroke sequence is being parsed, it can be used as a transition tree. It is

described more fully in the sections that follow, particularly section 3.5.

Chapter 3

33.2 Representation of the learner

LIY builds representations of the learner as profile information, as well as

computing an assessment of the learner's performance during the diagnosis

phase. Global information inferred about the learner's characteristics and

performance is used to maintain a characterisation profile and a performance

profile.

Characterisation Profile

This is used to determine the advice given when the learner attempts to take

control in order to navigate to an alternative topic. The advice is adapted to an

assessment of the learner's interaction style in a set of rules ("L-C-ADVICE").

These rules consider equally three qualitative variables: COMPETENCE,

DUCKER, and PUTTER. COMPETENCE really belongs in the performance

profile but is considered here since it contributes - equally with the other two

variables - to advice given to the learner by the tutor. The COMPETENCE

variables - WEAK, NORMAL and STRONG - together with DUCKER and

FLITTER are in fact coded as boolean functions which examine the value of

associated variables ('COMPETENCE*, *DUCK-CNT* and *FLIT-CNT*

respectively).

(a) COMPETENCE

More specifically, the rules consider WEAK, a particular range of values of this
variable. COMPETENCE is scored on a continuous scale from 0 to 10, with an
initial value of 5. Depending upon the outcome of assignments set, it is

modified by an increment for a correct answer or a decrement for an incorrect
one, bearing in mind that it is restricted to the range 0 to 10. COMPETENCE

is not referenced directly in the advice rules, but there are three qualitative

variables based on its value. These are WEAK, NORMAL and STRONG,

corresponding to values of COMPETENCE in the ranges 0 to 2.4999, 2.5 to

48

Chapter 3

7.4999, and 7.5 to 10. The normal value of the increment applied to

COMPETENCE is 0.5, but there is an amplification effect at the start of the

tutorial, the first three increments (or decrements) applied having values 2, 1,

and 0.66667. The idea of this is to decrease the sensitivity of the advice rules

with the passage of time so as to avoid apparently significant random

movements around the mean. No particular claim is made for this technique

and it has yet to be evaluated.

(b) DUCKER

This qualitative variable is used in the rules to indicate a learner who habitually

avoids set assignments. To duck an assignment means that the learner, having

failed with it on two or more successive occasions, has elected to abandon it

(thus avoiding it) and to move on to the next topic. Such a learner is

considered to be a DUCKER if this has happened with more than two

assignments.

(c) PUTTER

A learner is deemed to be a FLITTER if, on three or more occasions, he or she

has forced a move to a new topic under learner-control in the face of advice

from the tutorial against such action. Note that LIY's philosophy is that, if the

learner is sufficiently determined, such moves should always be possible.

If both DUCKER and FLITTER occur together only the DUCKER variable is

updated.

Three levels of advice are offered against a move. The strongest is reserved for

the learner whose characterisation profile indicates that all three of WEAK,

DUCKER and FLITTER apply, and that there is more than one prerequisite topic

associated with the learner's target move. (There is further discussion of

prerequisites and LIY's control behaviour in section 3.5.) The next level down

49

Chapter 3

in strength of advice applies to the same situation but where there is just one

prerequisite, or alternatively where only one or two of WEAK, DUCKER and

FLITTER apply. The weakest advice against a move to the learner's target is

reserved for situations in which either none of the three qualitative variables

apply although there is more than one prerequisite topic, or one or two apply

but there is only one prerequisite associated with the learner's target topic. A

move is permitted with no contrary advice if there are no outstanding

prerequisites (whatever the state of the qualitative variables) or in the situation

in which none of these variables apply and there is just one prerequisite.

Performance Profile

Nodes in the tree are marked to indicate that a topic has been taught when the

learner has completed all the teaching operations associated with it. This

represents one aspect of the learner's performance. The other aspect of the

performance profile is COMPETENCE, a score representing the learner's ability

to handle the assignments set by the tutorial. COMPETENCE is considered

above, rather than in this section, for clarity.

Diagnosis

During diagnosis a comparison is made between the effect of running the

learner's key-stroke sequence and a "correct" sequence through a model of the

application. The matters addressed by the correct sequence will normally be a

subset of those addressed by the learner. There is a fuller discussion of the

diagnosis module in chapter 4.

50

Chapter 3

3.2.3 Teaching strategy

The teaching strategy which LIY uses is described in detail in section 3.6.

Briefly, there are five sets of rules labelled arbitrarily with the letters "a" to "e".

Each rule in a given rule-set is named by a combination of rule-set letter and a

number, based on increments of ten, for example alO, a20 and so on. Figure

3.27, at the end of this chapter, illustrates the relationship between the rule-sets.

"a" rules are LIY's top-level rules and connote a teaching strategy as follows:

compute the "next" untaught topic in the task representation and teach it;

permit learner-controlled interruption under certain circumstances;

if there is other knowledge about a topic - represented as designer rules

- then apply that other knowledge. (There is a description of designer

rules in section 3.4.3.)

"b" rules are concerned with control behaviour following a learner interruption.

"c" rules determine the outcome of such an interruption in terms of advice as

described in the previous section;

"d" rules conventionally describe designer rules\

"e" rules select the next teaching operation.

The forward-chaining interpreter for these rules is very straightforward. It

avoids the problems of conflict resolution by firing the first rule it finds with a

matching antecedent. The consequent of a rule can include a call to the

interpreter to run another rule-set or to exit from interpretation of the current

rule-set. The interpreter normally exits from a rule-set (or halts at the top-level)

when it can find no more rules to fire. On occasion it is useful to set the rule

interpreter global variable *LOOPLIMIT* to a numeric value - typically 1 -

which indicates a limit on the number of passes the interpreter should make

over a "called" rule-set

51

Chapter 3

33.4 Set of teaching operations

LIY teaching operations are described in detail in section 3.4 - "How the

Courseware Designer sees LIY". In brief, the operations include:

(i) slide-show;

(ii) create an application environment: setup the application in some particular

way;

(iii) watch and record learner input (when interacting with the application:

implies subsequent diagnosis);

(iv) place the learner at some chosen point in the application;

(v) get learner input directly ("immediate" assessment);

(vi) free learner exploration of the application (no diagnosis).

3.2.5 Other LIY components

The ELICITOR is an LIY program which interacts with the courseware designer

to enable the construction of LIY tutorials. It allows the designer to specify the

appropriate task classification structure, and then permits enhancement to selected

nodes in this structure by letting the designer point with the mouse at a target

topic.

Teaching material is presented to the learner in the form of "slides". These are

in fact simple ASCII files which can be created by the tutorial designer using

any suitable text-editor.

52

Chapter 3

LIY captures the key-stroke sequence of the learner interacting with the

application. This is done, transparently to the application, by substituting the

normal Lisp input-output routines used by applications with replacement routines

of the same names. These routines are contained in a module (actually, a file)

along with the slide-show delivery routine.

There are many LIY utility functions and they are grouped together logically as

initialisation routines, mouse-driving routines, further input-output routines and

"others" - the latter being quite a large file!

53

Chapter 3

3.3 How the learner sees LIY

33.1 Teaching

The following discussion is based on a learner's interaction with the DIALLER

tutorial. Figure 3.4 shows a typical screen from a slide-show: the very first

screen of the tutorial, in fact. The banner at the bottom of the screen indicates

that the learner may get a re-run of the sequence of slides forming a slide-show

by pressing the "home" key. The space bar moves the tutorial on to the next

teaching operation, while the learner can interrupt by pressing the "control +

break" combination. On the right of the banner is indicated the title of this

current topic.

A learner-control interruption displays the screen which is illustrated in figure

3.5 If the learner quits then the environment is saved to the extent that he or

she can subsequently continue without having to cover topics already learnt.

Option "E" permits the learner to interact directly with the application, from its

top level, as if the tutorial were not present; no diagnosis is performed but, on

quitting the application, control reverts to the appropriate place in the tutorial.

Option "B" permits the learner to browse over the task classification tree and to

use the mouse to select a topic to learn. Alternatively if the learner knows the

topic's name then it can be typed in directly to the menu.

Figure 3.6 illustrates a typical screen from the DIALLER program; here, the

learner has been placed in the application and asked to carry out some

assignment with it Figure 3.7 demonstrates that the learner can interrupt in the

application as well as in a slide-show.

If the learner selects option "B" to browse then a plan of the (partial) task

classification tree is displayed, as illustrated by figure 3.8. The current node in

fact Hashes. The learner can see more of the tree by clicking on the arrows at

54

Chapter 3

the edges of the screen, can select a topic to learn by clicking on it 1 , or can quit

- reverting to the original topic being taught - by selecting the "quit" lozenge at

the top-left of the screen. The previous section described how topic selection

is mediated by advice from LIY, based on the learner's current state, although

the learner can over-ride this advice if necessary.

1 The proceed-n nodes, necessary for the transformation from general tree to
binary, are not selectable (see section 3.5).

55

Chapter 3

Chapter 3

Chapter 3

DIAL DIRECT IRON KETOAKD

9

Chapter 3

Chapter 3

Chapter 3

3.3.2 Assessment

I'm afraid that doesn't seem right.

Press any key to continue..

Chapter 3

I'm afraid that STILL doesn't seem right.

Press any key to continue..

Type NEXT if you would like to move on, or press RETURN to try again:

NEXT

The correct response should have been:

A:\TOP\NEXT

Chapter 3

I'm afraid that doesn't seem right.

You appear to have quit ELICITUT in an abnormal way.
The exit command "ESCAPE" associated with the topic QUIT was expected.
Press any key to continue..

I'm afraid that doesn't seem right.
Possibly you left out some of the commands,
or used them in the wrong order.

The command "ENTER" associated with the topic DIAL-DIGITS was
expected.

Press any key to continue..

I'm afraid that STILL doesn't seem right.
Possibly you misused one or more of the commands which
alter the state of DIALLER.

The command "S" associated with the topic SAVE
should be avoided for this assignment.

Press any key to continue..

I'm afraid that STILL doesn't seem right.
Possibly one or more of the character strings which you
typed into DIALLER was incorrect.

The input 123 4567 was expected.

Press any key to continue..

Chapter 3

Well done!

Press any key to continue..

3.3.3 Feedback in the form of advice

Chapter 3

OK - What would you like to learn?

Press RETURN to continue with your original topic.

Type Q to quit UY

B to browse

E to explore DIALLER freely

or the topic's name.

All end with RETURN

SET-PAUSE

It might be better for you not to move to SET-PAUSE

at this stage because you have not yet mastered

the following prerequisites :-

ABANDON

SAVE

QUIT

You may inspect the structure of prerequisite information by selecting the

BROWSE option following a Ctrl-Break interruption, which you can type right

away:

Alternatively, you may type F to force a move to SET-PAUSE, or press

RETURN to continue with your original topic:

"You are advised AGAINST moving to"

Chapter 3

"You are VERY STRONGLY advised AGAINST moving to"

DUCKER, FLITTER,

Chapter 3

3.4 How the courseware designer sees LIY

3.4.1 ELICITOR, ELICITUT and its domain model

Chapter 3

Welcome to EUCITOR - the Task Analysis structure (TA) creation program.

Please type the name of the application which

the tutorial is to teach (or Q to quit)

Welcome to EUCITOR - the Task Analysis structure (TA) creation program.

Please type the name of the application which

the tutorial is to teach (or Q to quit)

TA.LSP already exists. It will be renamed

to TAJ3AK and a new version created.

Do you wish to go ahead? (Y or N)

Chapter 3

A version of TA.TXT already exists.

If you would like to keep it for editing with a text

editor, please quit by typing Q.

If you would like to recreate a new version, (the old version will be renamed

TAMXT), please type R.

If you would like to continue with the existing TA.TXT,

adding to it if you wish,

please type C.

Your choice..

Chapter 3

********** pfOee*ti-1 *****

Preoeed-1

*~^

leads jo

leads jo

Chapter 3

leads jo

Proceed-n

Proceed-1 QUIT, t INPUT-TREE, \

EUCIT-TA-INPUT

CR

enter).

INPUT-TREE. Proceed-1 INPUT-

TREE

Proceed-1

leads-to INPUT-TREE-DATA.

Chapter 3

INPUT-TREE

MAKE-

LEAVES LISP-CREATION,

ELJCIT-TA-INPUT.

Proceed-1 EUCITUT-TA,

Proceed-1

Proceed-1,

are

INPUT-TREE-DATA

and

QUIT. QUIT

ELICIT-TA-INPUT\

Chapter 3

Proceed-1

ELICIT-TA-INPUT

Proceed-1.

ENTER). is

Chapter 3

Chapter 3

Proceed-1.)

learn-ta

To quit this TA creation phase at any time, please

press Escape

Please enter each node in the task structure and follow it with ENTER

> LEARN-TA CONSISTS-OF >

Is this OK? :

LEARN-TA CONSISTS-OF PARTI PART2 (Y or N)

CONSISTS-OF >

Error - LEARN-TA - already declared as a parent

Chapter 3

CONSISTS-OF nil.

3.4.2 LIY's teaching operations

(i) slide-show : "S"

Chapter 3

fragment.

(ii) create an application environment: "E"

(Hi) watch and record learner input: "W"

(iv) place the learner at some chosen point : "P"

Chapter 3

(v) get learner input directly : "G"

(vi) free learner exploration of the application : "F"

(vii) re-run designer rules : "D"

-

(viii) re-run "set-up" operations : "R"

-

previous

(ix) execute Lisp code directly : "X"

Chapter 3

3.4.3 Designer rules

LEARN

Chapter 3

3.4.4 Further aspects

leads jo

Chapter 3

3.5 Operational and pedagogic tasklsubtask hierarchies

dos, execute park

dos

park

exit-type

execute

by free exploration

"dos cd ... park".

Chapter 3

ttos

\
execute

park

proceed-lt proceed-2

(dos

knowledge about dos knowledge

Chapter 3

directory

3.5.1 Dependency and binary tree transformation

el al.

a

b c.

c b\ b

"b

b

b, c.

c

b.

Chapter 3

All leaf-nodes in a left sub-tree which is linked by DEPEND to some node

X, and leaf-nodes in left sub-trees which are linked by DEPEND to

ancestors of X, are prerequisites of X.

c d b, d

Chapter 3

Chapter 3

rename

rmdir.

Transformation to pedagogic ordering

Chapter 3

park

quit

p&rk

ex&cute
aiter-dirs fifes

nkdir

^* depend*-on

nav-dirs, alter-dirs flies

path-names

cd dir.

park

alter-dirs

files.

Chapter 3

park Proceed-1

execute
fiics

p&tfr-

3.23

nav-dirs 3.22

3.24. files

3

3.23

3.25.

J

Chapter 3

cfos

park Proceecf-t

\
Proceect-2 execute

Proceecf-3

names
psth-

Proceect-f

Pfoceect-5

Chapter 3

3.5.3 Complete description of a pedagogic task classification tree

Chapter 3

3.6 Managing tutorial delivery

proceed-ri)

what

how

Chapter 3

control

Chapter 3

Chapter 3

Chapter 3

3.7 Concluding remarks

all

Intelligent Tutoring Systems

five-ring model et al.

figure-of-eight model

Chapter 4

4.1 What is an ITS?

knowledge communication system

Pedagogical expertise

knowledge base domain

expertise

predictive

student model
learner model

Chapter 4

[The Lisp Tutor

(SOPHIE et al.

(STEAMER et al.

Chapter 4

42 LIY: the ITS viewpoint

all

4.2.1 Modelling the domain

Chapter 4

4.2.2 Modelling the learner

Profiles

profiles characterisation

profile performance profile.

Diagnosis

Chapter 4

minimally correct string.

history list

Chapter 4

current node

save-setup.

minimally correct string.)

unless

Chapter 4

You appear to have quit EUCITUT in an abnormal way.

The exit command "ESCAPE" associated with the topic QUIT was expected.

Possibly you left out some of the commands,
or used them in the wrong order.

The command "ENTER" associated with the topic DIAL-DIGITS was expected.

Possibly you misused one or more of the commands which
alter the state of DIALLER.

The command "S" associated with the topic SAVE
should be avoided for this assignment.

Possibly one or more of the character strings which you
typed into DIALLER was incorrect.

The input 123 4567 was expected.

Chapter 4

why,

SAVE

42.3 Teaching strategy

An architecture for learner-control systems

et al.

Chapter 4

Teaching Administrator

Student History

Student Model

Teaching Strategy

Teaching Generator

Chapter 4

et al.

strategy teaching strategy).

change

tactics,

strategy,

meta-reasoning,

adaptive

Chapter 4

Non-acfap8vB system

Adaptive system

Chapter 4

Setf-mocftfying adaptive system

Chapter 4

hypothesises

figure-of-eight model

dumb help

Chapter 4

hypothesis tester

f

figure-of-eight

model. hypothesiser

Chapter 4

hypothesiser

FLITTER

Chapter 5

5.1 "Dialogue specification can be used as the basis for courseware

design".

what

Chapter 5

when

Chapter 5

can

Chapter 5

what when -

Chapter 5

"LIY is a portable tool for producing and delivering tutoring

systems".

Chapter 5

Chapter 5

5.3 Meeting the subsidiary aims

"the learner should be allowed to interact directly with the software interface

being taught".

et al.

et al.

Chapter 5

"The learner should be able to interrupt at any time."

Chapter 5

"LIY should comprise not only a delivery system but also an authoring system."

"LfY should incorporate intelligent tutoring technology where possible."

Chapter 5

et al.

overloaded,

correct minimal string

Chapter 5

Chapter 5

5.4 Further work

5.4.1 Research

Jacob's ladder

Jacob's ladder

Chapter 5

procedural network

hot keys.

Chapter 5

Evaluation

Because

Chapter 5

cost

across

DUCKER PUTTER

Chapter 5

"There can be no doubt that evaluating Intelligent Tutoring Systems

(ITSs) is costly, frustrating and time-consuming. In fact, in our own

work to build PROUST evaluation has consumed nearly as much

effort as the design of PROUST itself."

is

Chapter 5

Scaling up

the whole

user's task,

Chapter 5

Making LfY more "intelligent"

replace

delete move.

et al.

do

teaching

Chapter 5

always

Implementation issues : direct-manipulation devices

Chapter 5

user-interface management system

Chapter 5

Implementation issues : OOPS

object-oriented programming system,

user-

interface management system

5.4.2 Development

used

Chapter 5

XXXX XXXX

Chapter 5

Conclusion

Chapter 5

Proc. CAL '83,

Artificial Intelligence and Education,
Proceedings of the 4th International Conference on AI and Education,

The architecture of cognition,

BYTE magazine,

People and Computers: Designing for Usability,
Proc. HCI '86,

International Journal of Man-Machine
Studies,

Artificial
intelligence and human learning,

References

Intelligent Tutoring Systems,

Intelligent

Tutoring Systems,

Artificial Intelligence and Instruction,

Structured analysis and system specification,

International Journal of Man-Machine Studies,

International Journal of Man-

Machine Studies,

Proc.

Ergonomics Soc. MMI Conference,

Proc, CAL '83,

Proc. CHI '88,

References

Proc. Interact '87,

Principles of instructional

design, 3rd. edition.

Structured systems analysis: tools and

techniques.

Intelligent Tutoring Systems,

Proc. ITS-88,

Microcomputers in secondary education - issues

and techniques,

International Journal of Man-Machine Studies, 5,

International Journal of Man-Machine Studies, 5,

Computers and Education,

International Journal of Man-Machine Studies,

References

Acta

Informatica

Artificial Intelligence and Instruction,

Proc.

CHI '88,

System development.

International Journal of Man-Machine

Studies,

Communications of the A.C.M.,

Proc. Interact '84,

Artificial Intelligence and Instruction,

Software development: a rigorous approach.

Communications of the ACM.,

References

Proc. INTERACT '87,

LEARN - computer-aided instruction

on Unix. (2nd. edn.).

International Journal of Man-Machine Studies,

Applying behavioural abstractions to information system

design and integrity.

Information Systems,

Artificial Intelligence and Instruction,

Foundations of

Intelligent Tutoring Systems,

Expert

Systems,

Computational

Intelligence,

References

Module HA, Proc. Informatics '83,

IEEE Transactions on Human Factors in Electronics,

Computers and

Education,

International Journal of Man-

Machine Studies,

The Schema Language.

Towards an intelligent authoring system.

Conversation Theory.

Instructional Science,

Artificial

Intelligence and Education, Proceedings of the 4th International Conference on

AI and Education,

Intelligent Tutoring Systems,

References

Artificial and Human Intelligence,

Mindstorms - children, computers and Powerful ideas.

Proceedings of the 24th.

National A.C.M Conference,

The cybernetics of human learning and performance.

Proceedings of Interact '84,

IEEE Transactions Software Engineering,

Proceedings of ITS-88,

Semantic

factors in cognition,

A structure for plans and behaviour.

IFIPITC3 conference: AI

tools in education,

References

Proceedings of Interact '87,

Artificial intelligence and education,

volume I,

Intelligent Tutoring Systems,

Proceedings of the 1986 IEEE

Workshop on Visual Languages,

Intelligent tutoring systems: at the crossroads of artificial

intelligence and education,

DOMINIE: teaching and assessment

strategies.

The Z notation: a reference manual.

EM ACS - the extensible, customizable, self-documenting

display editor.

Artificial

Intelligence,

People and Computers: Designing for

Usability, Proc. HCI '86,

References

Science

of Computer Programming,

People and computers

People and computers

Proceedings of Interact '84,

Artificial intelligence and tutoring systems,

Proceedings of Interact '87,

Artificial intelligence and human learning,

Communications of the ACM.,

Artificial Intelligence and Instruction,

Structured design.

Appendix A

Appendix A

Appendix A

(+

Appendix A

Appendix A

Appendix A

Appendix A

Appendix A

commands;

Appendix B

command syntax

Appendix B

(1) The development of the task hierarchy

Appendix B

pulse tone

Appendix B

quit

Appendix B

Appendix B

Appendix B

(2) Command syntax

Appendix B

Appendix B

(3) Non-command input

Appendix B

(4) Flow of control

-&i£*

?

'-

\ i

j? ^
CCT DJkt

**f

**

\

Appendix B

(5) Application of heuristic and binary tree transformations

operational pedagogic

general

binary

proceed-n,

Appendix B

Appendix B

Appendix B

Appendix B

Appendix B

Appendix B

Appendix B

Appendix B

Appendix B

(6) Lisp representation of the DIALLER structure

B-21

Appendix B

B-22

Appendix B

(setf PROCEED-1

B-23

Appendix B

Appendix B

Appendix B

(setf

» S n

Appendix C

(1) The development of the task hierarchy

Appendix C

Appendix C

(2) Command syntax

(3) Non-command input

Appendix C

(4) Flow of control

proceed

.fiftff*t*t*Vl'4Wt't'-tV-t'-l'tWi'-fftffffA

:?

Appendix C

(5) Application of heuristic and binary tree transformations

Appendix C

Appendix C

LISP-CREATION MAKE-LEAVES, MAKE-LEAVES

INPUT-TREE.

Appendix C

Proceed-2

Appendix C

(6) Lisp representation of the ELICITUT structure

Appendix C

nij>K

HT1M

))

("S"

("D")

("X" '(progn

Appendix D

For the delivery system

Appendix D

For PARTICULAR applications

Not shown

Appendix D

For the ELICITOR authoring system

"consists-of

%

