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The Dynamic Behaviour of Rail Vehicles operating at 

High Speeds for Manriding in British Coal Mines

Po van Manen

The behaviour of trains used at high speeds for transporting men 

along mine railways is examined using a number of mathematical models. 

These models predict the responses of different rail vehicles to 

typical irregularities in the track, and are used to examine the 

guidance, the ride, and the likelihood of derailment of the main 

classes of manriding trains used in British coal mines. The outcome 

of the modelling compares favourably with the results of tests 

carried out on actual vehicles.

The investigation has shown that the safe speed at which trains 

may operate is ultimately restricted by the condition of the track,but 

changes in the design of the vehicles can lead to an improved per- 

formance. The use of conventional wheelsets, for example, can reduce 

flange wear significantly and so allows higher speeds to be reached. 

Guidelines for the design of vehicles intended for high speed use 

are included in this thesis.
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Summary

The behaviour of trains used at high speeds for transporting men 

along mine railways is examined using a number of mathematical models. 
These models predict the responses of different rail vehicles to typ- 

ical irregularities in the track, and are used to examine the 

guidance, the ride, and the likelihood of derailment of the main 

classes of manriding trains used in British coal mines. The outcome 

of the modelling compares favourably with the results of tests 

carried out on actual vehicles.

The investigation has shown that the safe speed at which trains 

may operate is ultimately restricted by the condition of the track, but 
changes in the design of the vehicles can lead to an improved per- 

formance. The use of conventional wheelsets, for example, can reduce 
flange wear significantly and so allows higher speeds to be reached. 
Guidelines for the design of vehicles intended for high speed use 

are included in this thesis.
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Chapter 1 

Outline of Study

1.1 Introduction 

1.1.1 Reasons for the research

Rail vehicles are used extensively for manriding in British Coal 

mines, often travelling long distances along the underground railways 

(the average distance from the shaft to the coal face is 4.5 km 

(see Curl (1))). It is important from a point of view of 

productivity to get the men to their places of work quickly, and so 

faster trains are being introduced into many mines. Trains are 

already operating at speeds up to 25 mph and, at such speeds, there 

are kinetic effects which alter the manner in which the vehicles 

behave: the motion is affected by the suspension, inertia of 

components, forces generated between the wheels and the rails, and 

the resilience of the track. This dynamic behaviour affects the ride 

of the train and, under certain conditions, could lead to derailment. 

It will become even more significant as the speeds are increased in 

the future.

Although there has been an extensive study of the dynamics of 

mainline trains, no parallel study of rail vehicles operating in 

mines has been carried out. The manriding trains are small in 

comparison, and are generally equipped with fairly primitive suspension 

systems (see Fig 1.1). They operate on narrow gauge track (see Fig 

1.2), which is often of a poor standard, and at speeds that are 

significantly lower than for mainline trains. Much of the work 

which has been done for high speed rail vehicles concerns stability 

and curving, which is largely inappropriate in the study of manriding 

trains. Other work concerned with vehicle ride can only be of limited 

use because of the differences in the vehicles and the track. This 

research has been carried out in order to gain an insight into the 

behaviour of manriding trains as they travel at speed along underground 

railways in order to identify any design changes that are required.

1.1.2 Railways in coal mines

Coal mines are used to extract coal from an underground seam. A 

shaft is sunk to the level of the seam and roads are constructed that 

radiate out towards the coal faces (see Fig 1.3). In British

-1-



Chapter 1 Outline of Study /Fig 1.1

Fig 1.1 Electric battery locomotive hauling two axle 
manriding cars

Fig 1.2 Railway in a subsidiary road in a British coal mine

-2-



Chapter 1 Outline of Study

subsidiary road
arterial road

coal face

Fig 1.3 Layout of a British coal mine

coal mines the roads are generally driven to follow the seam through 

ground which is often unstable due to the soft strata of the rock 

and, as a result, the railways laid in the roads often have quite 

steep gradients (up to 1 in 15) and large levels of undulation and 

twist.

There is no standard length of rail: the length depends largely 

on what size can be taken down via the vertical shafts (18 ft lengths 

of rail are common). There are three weights of rail used, these 

being: 30 kg/m, 25 kg/m, and 17 kg/m. The two heavier types of rail 

are used for railways constructed in arterial roads, and the lightest 

rail is used principally for railways in subsidiary (gate) roads.

In the arterial roads rails are usually supported on chairs 

attached to wooden sleepers. Steel sleepers are generally used for 

track laid in gate roads. The sleepers are laid on many different 

types of bed: directly on the floor of the road, on ballast, and 

in concrete. The type of ballasting that is used affects the 

resilience of the track which, in turn, affects the behaviour of the

-3-



Chapter 1______________Outline of Study /1.1.2

vehicles. There is no standard gauge, but 2 ft, 2 ft 6 in, and 

3 ft gauges are commonly used.

1.1.3 Rail vehicles used for manriding

The rail vehicles used for manriding are generally either gondola 

type or two axle cars (see Figs 1.4 and 1.5) which are hauled by 

locomotives or by rope. These vehicles have evolved from the 

minecar (see Fig 1.6), and insufficient consideration seems to have 

been given to problems which arise when travelling at speed; this 

is particularly apparent with respect to guidance.

The wheels on a conventional mainline train have a tapered 

profile, and each pair of wheels is rigidly fitted to an axle. This 

arrangement, usually referred to as a wheelset, ensures that the 

wheels revolve at the same speed« If the wheelset is displaced 

laterally there will be a difference in the rolling radii of the 

wheels which will cause the wheelset to yaw, and so move back towards 

the track centreline, thus providing guidance to the middle of the 

track without the flange coming into contact with the rail. This 

behaviour was first described by Stephenson in 1821 (see Stephenson 

(2)) and is known as the kinematic oscillation. The majority of 

manriding vehicles, however, are fitted with wheels that revolve 

independently on a fixed axle. With this arrangement, which will 

be referred to as a "pair of wheels", the wheels are able to revolve 

at different speeds and so guidance will only occur if there is a net 

lateral component of the normal force beween the wheel and the rail 

acting to push a displaced pair of wheels back towards the track 

centreline. Because the profiles of the wheels are tapered, lateral 

displacement causes the axle to rotate slightly about a longitudinal 

axis, and this leads to the development of a small lateral restoring 

force. This force only becomes significant as the flange touches 

the rail and the contact angle between the wheel and the rail gets 

large. The guidance with this type of wheel arrangement is generally 

accompanied by flange contact, which can lead to excessive wear of the 

wheels and rails when operating at high speeds.

The suspension on manriding vehicles is generally very stiff with 

little or no damping and, as a result, there is only limited isolation 

from motion due to rail irregularities. In addition to this, the

-4-



Chapter 1 Outline of Study /Fig 1.4

Fig 1.4 Gondola manriding car

Fig 1.5 Two axle manriding vehicle

-5-
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Chapter 1_______________Outline of Study______________/1.1.3

travel in the suspension is small and this does not always allow all 

the wheels of a vehicle to remain in contact with the rail when 

travelling over large irregularities in the track. The safety of 

the train, as well as its ride, is therefore affected.

Finally, there is no requirement in the specfications used for 

manriding by the National Coal Board (NCB) for wheels to be dynamically 

balanced and, as a result, vibrations due to out-of-balance forces can 

occur when the vehicles travel at high speeds.

1.1.4 Types of vehicles used at high speeds.

There are four main types of vehicle which are used for high speed 

manriding in British coal mines, these being: gondola vehicles, unit 

trains, two axle vehicles, and locomotives.

A gondola vehicle is made up of a car body suspended on a pair of 

bogies (see Fig 1.4), and has both primary and secondary suspensions. 

The primary suspension is between the wheels and the bogie, and the 

secondary suspension is between the bogie and car-body.

These vehicles are used in the arterial roads, and are hauled 

by locomotives in trains of up to eleven cars. The maximum operating 

speed of these cars is currently 25 mph.

Unit trains are permanently coupled trains made up of several cars 

(see Fig 1.7). Unlike gondola vehicles, these trains are used to 

transport men along the gate roads as well as arterial roads. The 

use of unit trains is a fairly recent development and so there are 

few in operation. These trains generally have a softer primary 

suspension than more conventional manriders and, in some cases, also 

have limited secondary suspension. Unit trains currently operate at 

speeds up to 25 mph.

The two axle vehicle (see Fig 1.5) is widely used for manriding, 

although at operating speeds which are generally lower than those 

achieved by the gondola cars and unit trains. These vehicles have no 

secondary suspension, and are hauled by either locomotives or rope.

The locomotives used for hauling manriding vehicles are of three 

types, these being: diesel, electric overhead trolley, and battery 

electric locomotives. The first two types are suited for hauling 

trains over long distances, and these are the types generally used 

for high speed manriding (see Figs 1.8 and 1.9).
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Chapter 2____Mathematical Modelling of Rail Vehicles____/2.4.2

Equation (2.30) can now be expressed in the form:

u = T(s) u (2.32)



u(x) = u sin(ftx) (2.34)

2TT 
ft = /A = spatial frequency
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Fig 2.15 Delta impulse function, 6(t)

For the input,

u(t) = A. . 6(t) (2.43)

where,

A n = a constant 

6(t) = delta impulse function 

(see Fig 2.15)

the response will be:

q(t) = A . h(t) (2.44)
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Appendix 1 Iburier Transforms /Pig Al.l

Fig Al.l Basic computer program to calculate the 
discrete Rmrier Transform of a sequence 
AUl) , Al(2) , . .A1(N8) by the fast Iburier 
Transform technique (see Newland (13)).

where,

A1(R) = x in equation (A1.3) r
N8 = N in equation (A1.3)







Fig A2.1 Evaluation of transfer function (TF. F77)
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