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ABSTRACT

This study is concerned with the prediction of the fluid-flow, chemical 
reactions and heat transfer processes in an industrial off-gas ducting 
system.

A mathematicai model is developed and then applied to predict the 
processes occurring in the off-gas ducting system. Particular attention 
is focussed on the two-phase thermal behaviour and the chemical 
reactions. A three-dimensional, two-phase numerical solution technique 
is used to solve the governing time-averaged partial differential equations. 
The model includes equations for turbulence, chemical reactions and 
two-phase thermal radiation. The calculations are performed for a 
particulate phase comprising non-reacting particles and a gaseous phase 
comprising chemically reacting gases. Both exothermic and endothermic 
reactions are considered.

The effects of thermal radiation, particle solidification, chemical reactions 
and heat transfer on the two-phase flow are introduced and examined in 
detail.

Predictions are made for an extensive range of parameters. The effects 
of these parameters on the off-gas ducting system are quantified. 
Comparisons are made between predicted results and experimental data 
when available and agreement is reasonable.

The models developed can be easily incorporated into general-purpose 
fluid-flow packages. The procedure is general, and allows two-phase, 
two- or three-dimensional computations. Industrial plant can be 
modelled realistically on minicomputers at moderate costs. Convergence 
can normally be obtained with ease.

It is concluded that for the cases studied, thermal radiation is a dominant 
factor in the calculation of the heat losses and that the particle 
contribution to these losses is small compared with that of the gases. 
The model indicates that the strongly temperature dependent reaction 
rates have a dominant influence in determining optimal operating 
conditions.
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This study is concerned with the prediction of the fluid-flow, chemical 
reactions and heat transfer processes in an industrial off-gas ducting 
system.

A mathematical model is developed and then applied to predict the 
processes occurring in the off-gas ducting system. Particular attention 
is focussed on the two-phase thermal behaviour and the chemical 
reactions. A three-dimensional, two-phase numerical solution technique 
is used to solve the governing time-averaged partial differential equations. 
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detail.

Predictions are made for an extensive range of parameters. The effects 
of these parameters on the off-gas ducting system are quantified. 
Comparisons are made between predicted results and experimental data 
when available and agreement is reasonable.

The models developed can be easily incorporated into general-purpose 
fluid-flow packages. The procedure is general, and allows two-phase, 
two- or three-dimensional computations. Industrial plant can be 
modelled realistically on minicomputers at moderate costs. Convergence 
can normally be obtained with ease.

It is concluded that for the cases studied, thermal radiation is a dominant 
factor in the calculation of the heat losses and that the particle 
contribution to these losses is small compared with that of the gases. 
The model indicates that the strongly temperature dependent reaction 
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CHAPTER 1 - INTRODUCTION 

1. 1 The Problem Considered

This work is concerned with numerical prediction of the flow 

characteristics in the 'off-gas ducting system' of a modern industrial steel 

making plant. The flow is turbulent and two-phase with a particulate 

phase which solidifies within the region and a gaseous phase in which 

chemical reactions occur.

A model is developed which consists of a set of coupled non-linear 

partial differential equations describing the flow. heat-transfer, 

composition of the reacting chemical species and volume fractions of the 

two phases. These equations are converted to finite-difference schemes 

by means of a control volume approach and are solved using the widely 

used fluid-flow package PHOENICS (Spalding (1981)).

The main objectives of this research are to develop a comprehensive 

computer model of off-gas ducting systems. This provides both insight 

into the interaction between the major physicochemical factors and a tool 

for design assessment and optimisation.

Section 1.2 consists of a description of a modern steelmaking furnace. 

In Section 1. 3 a general review of recent work on similar industrial plant 

is presented which provided the background for the present work. 

Sections 1.4 and 1.5 state the objectives of the present work, the novel 

features It contains and the subject and method of investigation. 

Section 1.6 provides an outline of the structure of the rest of the thesis.
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In oxygen Steelmaking. the converter is used to process blast furnace 

metal and ferrous scrap into steel. This involves reacting oxygen with 

the bath of molten iron to decarburize the metal and to remove other 

impure elements such as silicon, manganese and phosphorus. In 

addition lime and other fluxes are added to the vessel to form a stag 

which allows further removal of impure elements. All these reactions 

lead to the formation of an off-gas which leaves the converter vessel at 

high temperature. The off-gas also contains particulate matter such as 

iron dust and slag droplets. The off-gas is drawn off through a ducting 

system. Figure 1 shows a typical Steelmaking converter and off-gas 

system.

There is quite a range of oxygen and Steelmaking processes and many 

variations and improvements have been made over the last 30 years. 

These involve, in varying degrees, injection of oxygen from the top 

and/or bottom of the bath, with the co-injection of nitrogen, argon or 

natural gas from the bottom. In addition, coal, iron ore. lime and 

other fluxes can be added by either top charging or injection, or bottom 

injection. A particularly interesting development has been the injection 

of coal into the molten iron bath, which results in an increased energy 

input into the converter. This means that the process is made more 

flexible so that greater amounts of scrap or iron ore can be melted.

The off-gas produced is derived from the reaction of oxygen with the bath 

carbon, from the decomposition and reaction of injected coal and from 

other injectants such as hydrocarbons and flushing or stirring gas. By
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applying combinations of top and bottom oxygen injection together with 

coal and hydrocarbon injection, it is possible to obtain a wide range of 

off-gases containing CO, CO2. H2. H2O and N2-

Particulate matter is also formed as a consequence of the gas/liquid 

reactions and the gas/liquid disengagement. This is largely in the form 

of iron particles but can also contain amounts of slag or ash.

In normal steelmaking operations, the off-gas leaves the converter 

between 1500 and 1700°C. It enters a water-cooled off-gas duct or 

vessel where it is cooled to 1000°C or lower. Often air is drawn in at 

the seal between the converter and the duct and combusts in this section 

of the off-gas system.

Following this, the off-gas is further cooled and is cleaned in a wet 

scrubbing or a dry electrofilter off-gas cleaning system. The gas is 

then either flared or used in the steelworks fuel gas network.

Under some process situations it may be desired to modify the 

composition of this gas in order to make it more suitable for a 

subsequent reaction. One such example is to inject hydrocarbons into 

the off-gas duct to increase the fuel content of the gas. that is. to 

reduce the oxidation potential of the gas.

The research described in this thesis was carried out in order to provide 

a greater understanding of the processes which can be carried out in 

off-gas systems.
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In this section a general review is presented for work on modelling of flow 

and calculations for furnaces and ducted flow. Attention is focussed on 

complex three-dimensional modelling work that includes thermal radiation 

and chemical reactions and resemble the present application. More 

detailed reviews on thermal radiation and chemical reactions modelling 

work are given in Chapters 3 and 4, respectively.

Patankar and Spalding (1972) presented the basis of a computer model 

for the prediction of a two-phase flow, heat-transfer and combustion 

processes in a three-dimensional furnace. The main physical features 

was the assumption of a simple chemically reacting system (ie. species 

mix in unique proportions and produce a unique single product). The 

effective diffusivities of all species were assumed equal, fuel and oxidant 

could not co-exist and the effective viscosities were computed from a 

pre-specified algebraic formula. in the absence of any advance 

turbulence model.

Patankar and Spalding (1974) subsequently developed this model and 

demonstrated its application for a three-dimensional turbulent flow in a 

gas-turbine combustion chamber. The geometry considered involved the 

mixing of the streams of fuel and air in a confined space with additional 

air streams being used for film-cooling and dilution purposes. 

Differential equations were solved for two turbulence quantities, for the 

concentration of the species, and for the radiation fluxes. A cartesian 

coordinate system was adopted and the integration domain covered only a 

small section of the annular combustor. which was treated as a perfectly 

rectangular geometry. The results reported were plausible but actual
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comparison with measurements was not made.

Serag-EI-Din (1977) applied a polar coordinate version of Patankar and 

Spalding (1974). to a three-dimensional can combustor geometry. 

Thermal radiation was neglected and so was the influence of chemical 

kinetics on the predicted reaction rates. Overall, the predicted results 

displayed generally good agreement with cold-flow measurements, but 

when combustion was introduced the agreement was very poor. This 

was attributed to the neglect of the chemical kinetics in the predicted 

reaction rates. Nevertheless, the same combustion model has been 

used in other flow configurations with good results. For example. Pai et 

al (1978), applied the Patankar and Spalding (1974) procedure for the 

case of an experimental rectangular furnace of the International Flame 

Research Foundation in Holland, and quite realistic predictions were 

obtained.

Abou Ellail et al (1977) described a prediction method for 

three-dimensional reacting flows. It comprised of a numerical solution 

technique for the time-averaged governing partial-differential equations 

and physical modelling for turbulence, combustion and thermal radiation. 

The combustion model was based on a 'fast kinetics' statistical approach 

and the radiation model was based on a flux method. Comparisons of 

predictions and data was presented for an industrial furnace. The 

TEACH-3E computer program was employed.

Megahed (1979) used a similar mathematical model to the ones 

described above with a curvilinear coordinate system. In the first part of 

the work he used a flux model for the thermal radiation and then a more
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flexible method, the 'discrete transfer' method of Shah (1979). The 

model was applied to a real-life industrial glass furnace and validation of 

the results was made with experimental results.

Khalil et at (1975) performed calculations with three combustion models, 

characterised by instant reaction, with scalar fluctuations and Arrhenius or 

eddy-breakup reaction rate with scalar fluctuations. Comparison with 

furnace measurements indicated that the last two models lead to 

reasonably correct results. Radiation was accounted for with a four-flux 

model.

Gosman et al (1978) described a general-computer based procedure for 

the prediction of gaseous-fired cylindrical combustion chambers. 

Combustion modelling has been developed to handle diffusion, 

partially-premixed and premixed combustion. A flux method was 

employed for the radiation heat transfer, producing qualitatively good 

results. The TEACH-T code was employed for the numerical solution of 

the equations.

Khaiil (1979) developed a general computer programme to calculate the 

local flow properties in turbulent reactive and non-reactive flows with 

recirculatlon. He employed a four flux representation for the thermal 

radiation modelling. The combustion models employed were 

characterised by instant reaction, with clipped Gaussian probability 

distribution of concentration, finite-reaction rate with an eddy-breakup 

formulation, and a finite-reaction rate which accounts for temperature and 

concentration fluctuations. The model was assessed with comparison 

with experimental results and indicated satisfactory agreement. The
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model was further extended and refined by Khalil et al (1981) and was 

applied to more complex furnace geometries with reasonable success.

Carvalho (1983) applied a new mathematical model to predict the 

processes occurring in a combustion chamber. A three-dimensional 

numerical solution technique was used to solve the governing differential 

equations and the physical modelling for the turbulence, combustion and 

thermal radiation. The radiation model was based on the 'discrete 

transfer' method and reaction model employed a clipped Gaussian 

distribution function. The model was applied in a glass-furnace 

(Carvalho and Lockwood (1985)) but predictions were not fully validated 

because of the lack of experimental results.

Lixing et al (1986) studied a three-dimensional flow field and 

two-dimensional coal combustion in a cylindrical combustor of co-flow jets 

with large velocity difference. Their solution procedure was based on 

the Patankar and Spalding procedure and thermal radiation was not 

accounted for. The reaction model was based on the eddy-breakup and 

Arrhenius rates and k-  turbulence model was employed. The predicted 

results were not validated against experimental ones.

Boyd and Kent (1986) presented a fully three-dimensional computer 

model of a pulverised fuel, tangentially fired furnace. The models 

predicts gas flows species concentrations and temperature, particle 

trajectories and combustion and radiation heat fluxes. Radiation was 

based on the 'discrete transfer' method and chemical reaction of a very 

simple model. Overall agreement of the results was pleasing, except in 

the case of the temperatures around the burners where temperatures were
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overpredicted. This is attributed to the simplistic nature of the 

combustion model.

The work described in this short review, highlights the problems 

associated with modelling the complexity of typical furnaces and similar 

plants. The geometry is complex and the chemical reactions not fully 

understood. Heat transfer processes are also complex. The models 

place a severe strain on even the most powerful modern computers.

Another feature is the lack of detailed experimental results to validate the 

models. Authors resort to statements such as 'the results seemed 

plausible' or vague statements like 'agreement with experimental 

measurements was reasonable', without actually quoting figures. The 

reason for this is not hard to see. The conditions within the plant are 

so hostile that experimental measurements are very difficult to obtain. 

Furthermore, industrial plant is expensive and must be kept in full 

production to recover costs. Few industrialists would be prepared to 

hold up production in order to carry out detailed experimental 

measurements.

Unfortunately experimental measurements for off-gas ducting systems have 

also been difficult to obtain. It has been necessary to rely on the 

judgement of engineers at the collaborating establishment to assess 

results. However, in some cases temperature and gas composition 

measurements were available and enabled the models to be validated.
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The development of the converter processes in the metallurgical industry 

to their present standard or efficiency has been brought about largely by 

trial and error and by experience gained under production conditions. 

Present status of design and operating conditions are to a great extent 

the product of many years of engineering evolution. They perform their 

functions reasonably well and thus attention is becoming focussed upon 

the behaviour of the gases and participate matter in the off-gas ducting. 

This is because, in reality, the behaviour of the gaseous species in the 

ducting and their interaction with the particulates is not well understood. 

Disasters can occur when particulate accumulates and blocks the off-gas 

duct.

It would be useful to know how ducting dimensions and geometry 

influence:

# the global and relative movement of the gas and particulate 

phases;

# the rates of heat loss of both phases and radiation heat transfer 

Impact on them for different particle sizes and particle loading;

# the chemical reactions between the gaseous species; and

# the influence on gas and particle chemical composition of 

temperature, etc, on entry to the ducting.

in particular, it would be useful to identify the means to control the 

amount of combustion in the hood and the distribution of the particulate 

phase.
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Increasing pressure is being placed on engineers and plant designers to 

have recourse to every available modern theoretical and analytical means 

to quantify and enhance the off-gas duct performance. Much could be 

learned from the careful instrumentation and monitoring of the daily 

operating of existing systems. Any attempt to do more than this is 

however filled with problems. Converters and off-duct systems are very 

expensive and there is no reassurance that a new radical design will offer 

improved performance. Even the cost of experimenting with 

modifications on existing designs is prohibitive.

Over the last decade some work has been done in this subject area, but 

it has tended to concentrate on one or two at the most of the above 

aspects. Also the nature of the physical system, renders laboratory 

experimental work very difficult since the problems of scale-up yield 

inherent constraints, thus frequently making the scaled-down models 

results not valid for the full-scale system. At the same time, as 

mentioned before, the 'hostile' plant environment makes full-scale 

measurements difficult.

The short literature survey in Section 1. 3 reveals deficiencies in many of 

the chemical reaction models and the exclusion of radiation from some of 

the heat transfer models, is clearly unacceptable for the temperatures 

found in the off-gas ducts. New models have been developed which 

make fewer simplifying assumptions concerning the chemical reactions. 

Also a new radiation model has been developed which takes account of 

both the gaseous and participate phases.

The code for both the radiation and combustion models is lengthy and
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complex. However, it was modularised in the form of convenient 

subroutines designed to be easily added to a general fluid-flow solver, 

such as PHOENICS. This provides a powerful framework for the 

modelling and analysis of ducting systems, accounting for:

three-dimensional turbulent fluid flow: 

gaseous and particulate phase; and 

heat transfer.

The implementation of the newly developed models into PHOENICS 

enhanced its capabilities and overcame previous difficulties in modelling of 

furnaces.

The present work is developed with reference to a real industrial problem 

of paramount importance, namely the flow of a mixture of reacting gases 

and pure iron particles. through off-gas ducts, encountered in 

metallurgical applications.

In summary, items that have been studied and models that have been 

developed are:

# multiphase radiative heat transfer between the particles, gases 

and walls, factors that are of prime importance in evaluating 

heat losses;

# chemical reactions in the gaseous phase;

# Interphase processes (momentum, heat and mass transfer);

# solidification of iron particles; 

t the influence of turbulence; and
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# the influence of geometric configuration.

To the authors knowledge, no previous published model makes a detailed 

examination of all these phenomena in off-gas ducts. For the case of 

radiation heat transfer, no previous model accounts for emission and 

absorption from both phases and scattering by the particulate phase, in 

such a way as to be easily incorporated into a general fluid-flow solver. 

For the chemical reaction model, important ideas have been developed, 

taking into account a combined turbulence influenced and Arrhenius type 

reaction rate, suitable for both exothermic and endothermic reactions and 

coping with non-premixed gases of arbitrary composition. This involves 

far fewer simplifying assumptions than previous models.

This thesis examines all the important aspects of the off-gas phenomena 

and important conclusions are drawn about efficiency and operating 

conditions.

This thesis can be divided into two main parts.

The first part deals with the general phenomena occurring in the duct, 

including turbulence and two-phase radiation heat transfer. Predictions 

are made for different operating conditions, different geometric 

configurations, particle sizes and loadings. Where possible the 

predictions are compared with available experimental results.

In the second part of the work, predictions are made for systems that 

also include chemical reactions in the gaseous phase. Air and natural
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gas are also injected into the system, through various injection points and 

results are presented for a variety of cases in two- and three-dimensions 

with various gas compositions. Reaction models for one. two-reactions, 

with Arrhenius and kineticaily influenced rates are considered and again 

where possible predictions are compared with experimental results.

In summary, the ultimate object to the present study is the development 

and application of a complete mathematical model and of a computer 

simulation methods for off-gas ducting systems which provide both insight 

into the interaction between the major physicochemical factors and a tool 

for design assessment and optimisation.

This thesis contains seven chapters.

Chapter 1, the present chapter, forms the introduction. Chapter 2 gives 

an outline of the physical and mathematical modelling of the problem. It 

contains descriptions of the governing two-phase equations, turbulence 

and auxiliary relations, such as interphase heat transfer, interphase 

friction, particle solidification and boundary conditions. It also contains 

an outline of the solution procedure embodied in the employed software 

package PHOENICS.

Chapter 3 is devoted to the modelling of thermal radiation. The newly 

developed two-phase radiation model is discussed in detail and existing 

models are presented.

Chapter 4 is concerned with the novel chemical reaction models.
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Chapter 5 presents results with and without radiation, for a variety of 

geometries and operating conditions. Comparison with experiments are 

presented where possible.

Chapter 6 contains results with radiation and chemical reactions for a 

variety of two- and three-dimensional geometries for one and two-phase 

problems.

The last chapter in the thesis. Chapter 7. assesses the extent to which 

the objectives of the present investigation are fulfilled and makes 

suggestions for future work.
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The problems of flow and heat transfer in combustors and furnaces are of 

a multidisciplinary nature because of the multitude of physical and 

chemical phenomena involved. For this reason, attention must be 

focussed on the general principles which govern the behaviour of the flow 

in such complex configurations as well as on the validity of assumptions 

made to reduce the complexity of the problem.

One type of assumption concerns the simplification of the furnace 

geometry, which in its full complexity would be prohibitively expensive to 

model, in terms of storage and computational time. A second type of 

assumption is needed since the physical and chemical processes cannot 

at present be calculated by an exact method (Bradshaw et al (1981)). 

The validity of these assumptions may be demonstrated only by 

comparison with experimental data.

The conservation equations of mass, momentum, chemical species and 

energy are well established and. when expressed in partial-differential 

forms, can be coupled with the above assumptions, to provide the 

foundations upon which the prediction procedures will be based. 

Empirical correlations for interphase-friction factors. interphase 

heat-transfer factors, latent heat, reaction-rate laws and others are also 

needed to provide a quantitative formulation of such complex two-phase 

flows.

The equations which describe such processes are known and numerical 

procedures are available to solve them, but the storage capacity and
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speed of present day computers are not sufficient to allow a practical

solution. Hence the need to develop physical and mathematical models

that can be applied to such complex situations within practical resources.

For laminar flow the equations can be solved numerically using existing 

numerical techniques, without major problems. However, in the case of 

turbulence, numerical solution of the equations requires a fine 

computational mesh, which is vastly in excess of what current computer 

hardware and software can accommodate (Spalding (1983(a)); Anderson 

et al (1984)). This is due to the fine scales of the energy-containing 

eddies. However, for most practical purposes, details of the fine-scale 

fluctuations are seldom required, since the knowledge of time-averaged 

values of the dependent variables is usually sufficient for engineering 

purposes.

In the present chapter the differential equations governing the fluid 

dynamics and heat-transfer for three-dimensional flows are presented, in 

polar coordinates, together with the required auxiliary relations.

The following are the dependent variables of the problem: velocities of 

the gas and particles in the radial, azimuthal and axial directions, v-j. 

V2' u l- U 2- W 1 and W2- pressure p. assumed to be the same for both 

phases; gas and particle volumetric concentrations, RI . R£; enthalpies of 

gas and particles, h-j, Y\2'. turbulence kinetic energy and dissipation rate 

of the gaseous phase, k. e: composite radiation fluxes in the radial, 

azimuthal and axial direction. RY. RX and RZ; and. the chemical species 

concentrations, c-|. 02. 03 and 04.
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The independent variables are: the radial, circumferential and axial 

distances, r, e, z of a polar-cylindrical coordinate system.

The mathematical model used in this work is based on the 

finite-difference analogues of the partial-differential equations that govern 

the three-dimensional, transient or steady flow of two distinct fluid 

phases. The terms in the following differential equations denote 

influence on a 'unit-volume' basis.

The volume fractions, densities and velocities of each of the two phases, 

in order to satisfy the mass-conservation principle, obey the following 

equations.

(i) Gas-phase equation:

* rfi ( P1 R1 U 1> = ° (2 ' 1)

(ii) Particle-phase equation:

~ (p2R2> + f^ <P2R2*2> * p ar

7 |5 (P2R2U2 ) =0 (2.2)

The volumetric fractions RI and R£ are related by the 'space-sharing' 

equation:
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2.3.2 

~ (p L R L (j)) + 1 |p (rR L p L v L cD) + £

if > +

where 4> stands for u-j. U2. v-j, V2. WT and W2; r^ and S<j> are diffusion 

coefficients and source terms; and subscript i refers to the phase in 

question (gaseous or particulate). For the applications considered, r^ 

for the gaseous phase is equal to Meff /<7$, 1 - where Meff is the effective 

viscosity and o^, -j the Prandtl/Schmidt number for variable <t>. For the 

particulate phase r$ is assumed to be zero (eg. no diffusion) in the 

absence of other reliable physical information.

The effective viscosity, M-eff- °f the gaseous phase is defined and 

calculated from the (k-e) two-equation model of turbulence (Launder and 

Spalding (1974)):

CM pi k2 
Meff = + Mje (2.5);

where the empirical constant CA is equal to 0.09 and k,e and \n are the 

turbulence energy. its dissipation rate and the laminar viscosity 

coefficient, respectively.

The source terms. S<j>. for the momentum equations, are given in Table
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2. 1 below in the form in which they occur in the finite-difference 

equations, eg. as the integral over the finite-difference cells. They 

contain contributions such as: the pressure gradient in the relevant 

direction, the gravitational force, the interphase-friction term, viscous 

stress terms (involving gradients of. velocities) as defined by the 

Navier-Stokes equations, etc.

JS<j)dvol (Integral source term for fInlte-dlfference cell)

W|

w2

V Is cell volume:
Cf Is Interphase friction coefficient

* Cf (v 2 -v 1 )

V2 VR2 C-j

Cf r(U2-ui)

The equations for the angular momentum, ur. Is 
solved In preference to that for u.

TABLE 2.1: SOURCE TERMS IN MOMENTUM EQUATIONS

2.3.3

Let h-|, ri2 stand for the stagnation enthalpy of the gas and solid phases 

per unit mass, respectively, by which is meant the thermodynamic 

enthalpy plus the kinetic energy of the phase plus any potential energy 

associated with the position of the fluid in a force field, plus heat of

combustion (see Chapter 4). 

leads to the following equations.

Then the first law of thermodynamics
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(i) Gas-phase energy equation

~

r ae ^IPI"! 11^ + <PiRiwihi>

aRi 
- p ~ + S (2.6)

(ii) Particle-phase energy equation

~ C(p2h2-p>R2l * p ff

1 d

r

= Cf(v-|->

- Q12 - p -^ + Sh (2.7).

where 0,12 is the rate of heat transfer from gas to particles; and p is the 

pressure which is assumed to be shared by both phases. Sh includes 

the terms accounting for radiation heat transfer (see Chapter 3).

If we denote the mass fraction of a chemical species £ by mf, then the 

conservation of chemical species equation is given by:

~ (rm fip L vt) + - ~

(m fiPL w L ) = ^
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If > *
where 3$ is the rate of generation/destruction of species A. by chemical 

reaction, per unit volume. The term S<j> is discussed in Chapter 4, and 

is the exchange coefficient of 4.

The above conservation equations (2.6). (2.7) and (2.8) can be cast 

into a generalised conservation equation of the form:

  (rp$) + dlv (rpv<t> -

' T ! ' (29) transient convection diffusion source

The pressure variable is associated with the continuity equation:

+ dlv (pv) = 0 (2.10).

The above set of equations has to be solved in conjunction with 

observance of constraints on the values of the variables, represented by 

algebraic relations. The constitutive relations used for the present 

application are given below. It should be mentioned that, although little 

emphasis is placed on these relations, their proper form and function are 

essential to realistic predictions for the two-phase flows under 

consideration.

The ability to predict the Interphase drag or the relative velocity between
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phases is of considerable importance for modelling a two-phase system, 

as the use of a reliable interphase drag correlation can affect significantly 

the results. In this work, prescribed functions for the coefficient in the 

drag terms of equations (2.4). (2.6) and (2.7). are used.

The expression for the interphase-friction force for the finite-difference 

cell is given by:

2
F = 0.5*CD*Ap*pg*Vsfip (2.11);

where:

Ap = Total projected area of particles/cell

= 1.5 * R2 * Vol/2rp (2.12).

rp = Radius of particles.

R2 = Volume fraction of phase-2 (particles).

Vol = Volume of the cell,

pg = Density of phase-1 (gases).

vsfip = SI 'P velocity.

+ v2 fl + w2 (2.13). si s£

= (Ug-Up). etc. 

Ug = u-velocity component of gases. 

Up = u-velocity of particles, etc.

The drag coefficient CD is given by Cllft et al (1971) as:

CD = max[0.42. ~ (l+0.15Re°- 687 )+0.42/(l+4.25*104*Re~ 1 - 16 )]

(2.14);

where Re is the particle Reynolds number given by:
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Re = pg 2r p VsLlp /Mfi (2.15);

Although the drag experienced by a solid particle moving through a fluid 

is also dependent upon a number of other factors including fluid 

turbulence, acceleration, particle shape etc. equation (2. 14) can be 

used with reasonable confidence in most problems of practical interest 

(Clift et at (1971)).

Although the equations solved for the transport of heat between the 

gaseous and particulate phases are those of the phase enthalpies, 

equations (2.6) and (2.7). it is convenient to think in terms of 

temperatures, J-\ and T2 , by introducing the specific heat capacities, c-j 

and c2 . of the two phases, respectively. Then, assuming Ts to be the 

particle surface temperature (ie the temperature of the interface between 

the two phases). we can calculate the rates of heat transfer from gas to
 

the particle surface. qi s , and from particle surface to the particle
*

interior. q s2 . These are given by:

qis = ai <Ti-Ts > (2.16); 

qs2 = a2 (TS-T2 ) (2.17);

where a-\ and a2 are heat-transfer coefficients for the gas and solid, 

respectively, multiplied by the interface area through which the transfer 

occurs. ai is calculated by assuming Nusselt numbers for the gas is 

2, valid for spherical particles, in the absence of any other reliable 

experimental evidence. The heat-transfer coefficient a2 is computed 

assuming a cubic temperature distribution within the particle (Markatos 

and Kirkcaldy (1983)). which leads to:
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3A A   As (2.18);

where As is the interface area. \ is the particle thermoconductivity and 

is the particle radius.

An energy balance over a control volume enclosing the interface yields:

(2.19)

Combination of equations (2.16). (2.17) and (2.19) yields:

_ 
3

a 1 T1+a2T2
(2.20);

and

Pis =
a l a2 (Tl"T2 ) 

(a-j+32) (2.21)

In many practical applications, particles enter a domain at high

temperature, in a molten state. As the flow progresses, the

temperature drops, due to radiation and convective heat losses. The

particles solidify at a temperature which is constant for a given pure

substance. Therefore. given that Tm is the particle melting

temperature, and L is the heat of solidification, the particle surface 

temperature. Ts . is now defined as:

h 2-L

for

for

m

+ L)

for TmC2 < h2 < Tm C2 -»  L

(2.22)
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^ ^ (rl) = -(a+s)l + aE + | (I+J+K+L+M+N) + J/r (a)

r dr (rj) = (a+s)J " aE ~ I

Tl = -(a+s)K + aE + ^ (I+J+K+L+M+N) (c)

= (a+s)L - aE - f (I+J+K+L+M+N) (d)

1 dN s^S = <a+s)N - aE - f (I+J+K+L+M+N) (f)r d© o

(3.5)

1 d_ 
r dr

d_ 
dr





Rp = N*(particle voLume)/V (3.8).

4 rr r3





= agEg+a pApEp - [a g -Ka p +s p )Ap ]K + ^ Ap ( I+J+K+L+M+N)

(c)

= -agEg-a pApEp + [a g -«-(a p -»-s p )A p ]L + Ap

(d)

r de = agEg* aPAPEP " tag + <ap+sp )A p ]M + ^ Ap

(e)
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Sp 
- g* Ap (K+L+M+N) + (a pAp+ag +   3 > < I+J> (a)

; ( ., a ->A > ~ <K+L> = - T (I+J+M+N)A Ddz I ag-Ka p -»-Sp)Ap dz J 3 P

(K+L) - 2a pApEp - 2a gEg (b)

r d (a>(as)A)r d

A (I +J +K+L) + (aA-»-a +   -8 ) <M+N) (c)

RX=M+N (a) e-comblned flux

RY=I+J (b) radial-combined flux

RZ=K+L (c) axlaI-combined flux



dRX 
de 9=0'

(a)

dRX 
de

dRY 
8=0' dr

dRY 
r=0' dr

dRZ 
r=R' dz

dRZ 
z=0' dz

(b) (c) (d) (e) (f)





dRY 
dr

blocked
regIon



' ^ VO.<io/

^ ^ ^











(3.44).
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