
Greenwich Academic Literature Archive (GALA)
– the University of Greenwich open access repository

http://gala.gre.ac.uk

__

Citation:

Ierotheou, Constantinos Savvas (1990) The simulation of fluid flow processes using vector
processors. PhD thesis, Thames Polytechnic.

__

Please note that the full text version provided on GALA is the final published version awarded

by the university. “I certify that this work has not been accepted in substance for any degree,

and is not concurrently being submitted for any degree other than that of (name of research

degree) being studied at the University of Greenwich. I also declare that this work is the result

of my own investigations except where otherwise identified by references and that I have not

plagiarised the work of others”.

Ierotheou, Constantinos Savvas (1990) The simulation of fluid flow processes using vector

processors. ##thesis _type## , ##institution##

Available at: http://gala.gre.ac.uk/8674/

__

Contact: gala@gre.ac.uk

http://gala.gre.ac.uk/
mailto:gala@gre.ac.uk

1387488
(i)

A THESIS

entitled

THE SIMULATION OF FLUID FLOW PROCESSES USING VECTOR PROCESSORS

Submitted in partial fulfilment of the
requirements for the award of the

DEGREE OF DOCTOR OF PHILOSOPHY

of the

COUNCIL FOR NATIONAL ACADEMIC AWARDS

</ CONSTANTINOS SAVVASJEROTHEOU 0 «Vu^
BSc, GIMA <** ^ 0 ̂ %

3 ^$2' v.

Faculty of Technology t:.; ' '
Centre for Numerical Modelling and Process Analysis

School of Mathematics, Statistics and Computing
Thames Polytechnic

LONDON

MAY 1990

To my family

(ii)

The simulation of fluid flow processes using vector procesors
by

Constantinos Savvas lerotheou

Abstract

In this thesis the potential gains in vectorisation of linear and non-linear systems of
equations are investigated. Previous studies carried out on the suitability of algorithms
for vectorisation have been based on the solution of Poisson's equation. In accordance
with this, a range of algorithms are explored and compared using a VA-1 pipeline
processor attached to a MASSCOMP MC5400. Analysis shows that almost full
vectorisation is possible leading to speed-up factors of up to 90. Based on these
results the vectorised conjugate gradient with a Jacobi preconditioner (JCGV) is the
best of the algorithms considered.

This work is extended to the development of a two-dimensional fluid flow code which
is used to solve the Navier-Stokes equations, SIMPLE is implemented to handle the
non-linear nature of the equations. The first two problems are isothermal flows, viz,
the 'moving lid cavity' and the 'sudden expansion in a duct' problem. A study of
where the greatest computational effort is expended, and subsequent vectorisation leads
to 98% of SIMPLE being modified. This results in speed-up factors of 6 for the
cavity problem and 29 for the sudden expansion problem. In both problems the JCGV
is marginally faster than the vectorised Jacobi with under-relaxation (JURY). However,
the JCGV algorithm is not robust and it is necessary to relax carefully the
approximation, otherwise high computation times or divergence is likely.

Two further problems are considered each with increasing complexity, these include
scalar quantities of temperature and characteristics of k-e turbulence. One problem is
based on 'turbulent L-shaped flow in a duct' and the other on the 'natural convection
in a square cavity'. A consequence of the higher scalar computation gives speed-up
factors of 5 for the turbulent L-shaped flow and 11 for the natural convection
problem. There is little to choose between the JCGV and JURV algorithms, however,
the robustness problems with the JCGV algorithm remain.

A multigrid method (ACM) is used to improve the convergence rate of the algorithms,
particularly as the size of problem is increased. Although it is more effective in
scalar, it also provides worthwhile improvements for the vectorised algorithms with
overall factors of 8.5. Convergence difficulties with the JCG algorithm also prevents
the combination with the ACM method. Therefore, the vectorised JUR algorithm with
the ACM method is not only more efficient and reliable, but also has scope for
improvement as the grid is increased.

The potential gains in vectorisation of the SIMPLE family on pipeline architectures
have been clearly demonstrated and indicate that such efforts on practical CFD codes
should be well rewarded with regard to processor performance.

Acknowledgements

I would like to express my gratitude to Professor Mark Cross and to Dr Will

Richards for their invaluable advice and encouragement over the last three years,

particularly during the difficult phases of the work.

I would also like to take this opportunity to thank the staff at the School of

Mathematics, Statistics and Computing, and to the postgraduates at the Centre for

Numerical Modelling and Process Analysis of Thames Polytechnic. They contributed

to many useful discussions and provided a stimulating working environment. In

addition, I would like to acknowledge Mrs Berol Cooper and Mrs Irene Wilmot for

providing me with adequate computer resources.

My sincerest thanks go to my parents, my sister Helen, and my brothers Andrew,

George and Nicos who have supported and encouraged me throughout my education.

Thanks too, to all my personal friends, particularly Hazel and Tony.

Finally, the financial support provided by the Science and Engineering Research

Council is gratefully acknowledged.

(iv)

Contents

Title page (i)
Abstract (ii)
Acknowledgements (iii)
Contents (iv)

Chapter 1 1
1.0 INTRODUCTION 2
1.1 Overview of CFD 2
1.2 Literature survey 5

1.2.1 Vectorised tridiagonal algorithms 6
1.2.2 Vectorised algorithms for large sparse systems of equations 8
1.2.3 Parallel-based algorithms for large sparse systems of equations 18

1.3 Discussion 20
1.4 Outline of present work 21

Chapter 2 24
2.0 CLASSIFICATION OF ARCHITECTURES 25
2.1 Introduction 25
2.2 Classification of architectures 25
2.3 Classification due to Flynn 26

2.3.1 Single Instruction stream - Single Data stream (SISD) 26
2.3.2 Single Instruction stream - Multiple Data stream (SIMD) 26
2.3.3 Multiple Instruction stream - Single Data stream (MISD) 27
2.3.4 Multiple Instruction stream - Multiple Data stream (MIMD) 27

2.4 Classification due to Shore 27
2.4.1 Machine I 28
2.4.2 Machine H 28

2.4.3 Machine IH 28

2.4.4 Machine IV 29
2.4.5 Machine V 29

2.4.6 Machine VI 29
2.5 Classification due to Hockney and Jesshope 29
2.6 Classification of pipeline processors 37
2.7 How a pipeline processor attains its speed 38
2.8 Memory-to-memory and register-to-register pipeline processors 39
2.9 The MASSCOMP MC5400 system 41

(v)

2.9.1 Overview of MC5400 system 41

2.9.2 Overview of VA-1 board 42

2.9.3 Vector Accelerator Run Time Library (RTL) 44

2.9.4 Performance of the MC5400 46

2.9.4.1 Measurement of n1/2 and r. 46

2.9.4.2 LINPACK performance 52

2.10 Expected gains in vectorisation of a program 52

2.11 Closure 55

Chapter 3 57

3.0 SOLUTION PROCEDURES 58

3.1 Introduction 58

3.2 The governing differential equations 58

3.2.1 General conservation equation 58

3.2.2 The discretisation of the general conservation equation 60

3.3 Control-volumes in a discretised domain 62

3.4 Derivation of control-volume equations 64

3.4.1 The momentum equations 64

3.4.2 The diffusion equation 66

3.4.3 The convection equation 67

3.4.4 The source term 68

3.4.5 Continuity equation 69

3.4.6 The scalar equation 70

3.4.7 The final control-volume equations 73

3.5 Solution procedures 74

3.5.1 The SIMPLE solution procedure 74

3.5.2 The SIMPLEC solution procedure 76

3.5.3 The CTS SIMPLE (Consistent Time Step) solution procedure 77

3.5.4 The SIMPLER solution procedure 77

3.5.5 The EVIPLE solution procedure 78

3.5.6 The PISO solution procedure 79

3.5.7 The RMOSE solution procedure 81

3.5.8 The SIMPLEST solution procedure 83

3.6 Implementation of the SIMPLE family 83

3.6.1 The NEAT approach 83

3.6.2 The whole-field pressure-correction approach 84

3.7 Choice of solution procedure 85

3.8 Closure 86

(vi)

Chapter 4 89
4.0 SOLUTION OF LINEAR SYSTEM OF EQUATIONS 90
4.1 Introduction 90
4.2 The Poisson equation 90
4.3 Linear equation solvers 93
4.4 Linear equation solvers used in this study 96
4.5 Tridiagonal algorithms 97

4.5.1 Thomas algorithm 101
4.5.2 Cyclic reduction algorithm 105

4.6 Results for the Laplace equation using tridiagonal algorithms 110
4.7 Pentadiagonal algorithms 116

4.7.1 The point-by-point JUR algorithm 116
4.7.2 The point-by-point SOR algorithm 119
4.7.3 The RBSOR algorithm 123
4.7.4 The conjugate gradient algorithm with a Jacobi preconditioner (JCG) 126

4.8 Results for the Laplace equation using pentadiagonal algorithms 129
4.9 Closure 137

Chapter 5 139
5.0 VECTORISATION OF THE SIMPLE SOLUTION PROCEDURE 140
5.1 Introduction 140
5.2 Scalar algorithms 140
5.3 PROBLEM 1: Square cavity with moving lid problem 142

5.3.1 Physical and geometrical specification 142
5.3.2 Results using scalar algorithms 144

5.4 PROBLEM 2: Sudden expansion problem 152
5.4.1 Physical and geometrical specification 154
5.4.2 Results using scalar algorithms 154

5.5 Distribution of computation effort in the SIMPLE solution procedure 158
5.6 Vectorisation of the pressure-correction equation 161
5.7 Further vectorisation of the SIMPLE solution procedure 170
5.8 Results 172
5.9 Closure 183

Chapter 6 185
6.0 ADDITION OF SCALAR QUANTITIES 186

6.1 Introduction 186
6.2 The scalar equations 186
6.3 PROBLEM 3: L-shaped turbulent flow problem 188

6.3.1 Physical and geometrical specification 188

(vii)

6.3.2 Results using scalar algorithms 190
6.4 PROBLEM 4: Natural convection in a square cavity problem 190

6.4.1 Physical and geometrical specification 194

6.4.2 Results using scalar algorithms 196

6.5 Distribution of computation effort in the SIMPLE solution procedure 197
6.6 Results 217

6.7 Closure 227

Chapter 7 228
7.0 THE IMPACT OF USING A MULTIGRID METHOD 229
7.1 Introduction 229
7.2 The SIMPLE-based procedure as a multigrid smoother 231
7.3 SIMPLE-based procedures using multigrids as a linear solver 232
7.4 The additive correction multigrid method (ACM) 233
7.5 The ACM method applied to the pressure-correction equation 234

7.5.1 The one-dimensional ACM method 234

7.5.2 The two-dimensional ACM method 237
7.6 The flexible cycle C strategy 240
7.7 Iterative algorithms used in the ACM method 242
7.8 Implementation of the ACM method on a pipeline processor 243
7.9 Results using the ACM method 243

7.9.1 PROBLEM 1: The cavity with moving lid problem 244
7.9.2 PROBLEM 2: Sudden expansion problem 244
7.9.3 PROBLEM 3: L-shaped turbulent flow problem 245
7.9.4 PROBLEM 4: Natural convection in a square cavity problem 254

7.10 Discussion of results 254

7.11 Closure 266

Chapter 8 269
8.0 CONCLUSIONS 270

REFERENCES 275
APPENDIX Al

CHAPTER ONE

1.0 INTRODUCTION

1.1 Overview of CFD

In recent years the field of Computational Fluid Dynamics (CFD) has evolved at a

phenomenal rate. CFD has grown to such an extent that today it is used as a

design tool which is capable of predicting complex flows in situations where

experimentation is not feasible or too costly, or both. Currently, CFD simulations

and experiments are both used as a means for investigating engineering

applications. However, it may not be long before numerical simulation is

considered more important than experimentation in many areas. The role of the

experiment may be limited to the validation and necessary refining of CFD models

and computation procedures. CFD simulations are certainly more informative and

can cover a range of different complex fluid flow simulations many of which can

not be performed experimentally, this makes CFD simulations essential.

Consider the spread of smoke and fire in an underground station such as the

King's Cross incident. Simulations of this type are extremely important. An

attempt to carry out experiments for such a problem with different scenarios is

extremely difficult. Even for a single numerical fire simulation this can be a very

demanding computational task. The emergence of supercomputer architectures such

as the CRAY family, CYBER 205 and IBM 3090 (Hockney and Jesshope [1988])

which can compute at very high speeds, coupled with the advances in numerical

techniques and solution procedures, make such simulations possible. Indeed, CFD

simulations relating to the King's Cross fire (Fennell [1988]) have been performed

at Harwell using their own three-dimensional CFD code called HARWELL-

FLOW3D (Jones et al [1985]).

Traditionally, CFD simulations have been computationally very expensive and

although complex problems could be tackled, the accuracy of the solution or the

resolution of the grid was not as high as the engineer would have liked. However,

the introduction of pipeline vector processors as an alternative to the conventional

scalar processors has begun to overcome these past difficulties. Today, many large

and complex flow problems can be modelled using general purpose CFD codes

such as HARWELL-FLOW3D (Jones et al [1985], Burns et al [1986]) and

PHOENICS (Rosten and Spalding [1986]). In addition, the number of computation

nodes which can be solved in a reasonable time is now approaching the order of

hundreds of thousands. The introduction of these new architectures has also

assisted in advancing several branches of CFD to such an extent that many have

become research topics in their own right.

One branch which has become very fruitful is the refinement and modification to

existing solution procedures which are used to solve the governing differential

equations. The problem with solving the equations numerically lies in the fact that

the equations are often coupled and that the pressure field (which drives the flow)

is not known a priori. The use of a stream function - vorticity formulation will

overcome the latter problem since the pressure is explicitly eliminated, however,

this approach is currently restricted to flow problems where the pressure field is

not dominant. A more common practice is to adopt a primitive variable approach.

Here the velocity components and pressure (pressure-correction) equations are

obtained from their governing equations. The SIMPLE solution procedure (Patankar

and Spalding [1972]) and its derivatives are probably the most widely used within

the CFD community and forms the basis of many commercial software packages.

- 3 -

Turbulence modelling is also an area of intense research. There are currently two

main schools of thought for resolving the presence of turbulence in engineering.

The first is based on large eddy simulation (Riley and Metcalfe [1980]) and

involves the solution of the full Navier-Stokes equations. Even with the computer

power currently available, the expected computation times needed to solve very

simple problems are still too high. The second approach focuses on the solution of

the time-averaged Navier-Stokes equations together with transport equations to

model key characteristics of turbulence. Research on this approach has been more

successful and continues to be popular particularly amongst engineers. Launder et

al [1974, 1975] were amongst the first to adopt such an approach, and although

the k-e model is very popular, there is to date no general turbulence model.

The numerical representation of the convection term present in the governing

equations has been of interest for many years, especially in flow problems

dominated by the convection process. This has led to a number of different

schemes, each attempting to correctly describe the convection process. The hybrid

scheme (Spalding [1972]) switches between central and upwind differencing. The

Quadratic Upstream Interpolation for Convective Kinematics (QUICK) scheme due

to Leonard [1979] is more accurate at low grid Peclet numbers but at the expense

of an increase in the computation time. This is evident in some turbulent flow

simulations (Han, Humphrey and Launder [1981]). The Curvature Compensated

Convective Transport (CCCT) scheme will guarantee the boundedness condition

and can be used to derive all the schemes above (Gaskell and Lau [1988]). The

Corner UPwInDing (CUPID) scheme (Patel, Markatos and Cross [1988]) copes

particularly well with the problem of false-diffusion, again at the expense of some

increase in computation time.

- 4 -

The way in which the computational domain is discretised will lead to either

structured or unstructured grids, A finite-difference approach has been successfully

used in the past, but more recently the control-volume approach has increased in

popularity to such an extent that it now exists as a serious competitor to the finite-

difference approach. Both of these methods have been applied extensively to

structured grids and less so to body fitted grids. The finite-element method on the

other hand is ideal for complex geometries but lacks the simplicity of the control-

volume approach. Recently, work has been done on the use of a control-volume

based finite-element method (Prakash and Patankar [1985], Lonesdale and Webster

[1989]) and this could be a future trend. The control-volume approach has been

adopted in this research because all the examples have straightforward rectangular

geometries.

1.2 Literature survey

The ability to perform large scale simulations particularly in CFD would have been

near unthinkable fifteen years ago. A select few had access to supercomputers, the

most successful machines being the CRAY-1 (Russell [1987]) and a derivative of

the original CDC STAR-100 machine called the CYBER 205 (Kascic [1979]).

These machines were significantly faster than any other machines available at that

time. The spectacular improvements in computer speed were achieved as a direct

result of combining the technological advances in hardware with the introduction

of a higher level of concurrency or parallelism in the architecture. By the early

eighties the CRAY and CDC machines had become world leaders and had allowed

CFD practitioners to become more adventurous. This in turn stimulated other

computer manufacturers to market their own vector and parallel based machines,

- 5 -

these include the IBM 3090, AMT DAP, FACOM VP-100 and VP-200, the NEC

SX-1 and SX-2 and the Sequent balance 8000 and 21000 machines. Not

surprisingly, a vast amount of literature has appeared in the last decade on the

solution of practical engineering problems using supercomputers. This has also led

to new journals dedicated entirely to the computer science of vector and parallel

processing the most notable being 'Parallel Computing'.

In the past, a large number of the publications have been based on work carried

out on CRAY-based machines and a smaller proportion on CYBER 205 machines.

Although some of these machines can be used to perform both vector and coarse-

grain parallelism operations, attention is primarily focused on the use of a single

pipeline vector processor.

A number of different questions need to be answered about the use of vector

processing in the solution of CFD problems. For example, how fast can a CFD

code run on a given vector processing architecture? How much faster (or slower)

is the vectorised execution compared to the execution of the equivalent scalar

code? and how much improvement in speed can one ever hope to achieve using a

particular vector processor, given the characteristics of a typical CFD code? The

answers to these questions will help to reveal and characterise different aspects of

vector processing and vector processors.

1.2.1 Vectorised tridiagonal algorithms

In the past much attention has been given to the solution of a system of equations

since it has become apparent that this constitutes a high proportion of the total

- 6 -

computation time. Lambiotte and Voigt [1975] consider the solution of a

tridiagonal system of nxn equations using a number of direct and iterative

algorithms. One of the direct algorithms considered is the Gaussian elimination

algorithm with LU factorisation. For the purposes of vectorisation the implicit steps

are replaced by explicit steps. When coded on a CDC STAR-100 vector machine

the modified Gaussian elimination algorithm (using the vector hardware

instructions) is more efficient than the conventional scalar algorithm for matrix

systems n>l3. The vectorised algorithm of Stone [1973] was implemented and

found to be slower than the vectorised Gaussian elimination algorithm. Lambiotte

and Voigt [1975] also consider the vectorised cyclic reduction algorithm (Hockney

[1965]), their study reveals that the cyclic reduction algorithm is up to seven times

faster than the Gaussian elimination algorithm for large matrix systems «>125. As

well as direct algorithms, iterative algorithms such as the Jacobi, red-black SOR

and a Traub factorisation [1973] are also studied by Lambiotte and Voigt [1975].

Results are presented for the solution of the tridiagonal system of equations Ax=r

where the zth row of A is given by (0,...,0,&,1,£,0,...,0), r=(l,...,l)T and b is varied

to change the diagonal dominance of the matrix system. The settings are those

used by Traub [1973] where fc=0.24, 0.4 and 0.49 for the cases where «=100 and

1000. The red-black SOR algorithm is the most efficient iterative algorithm, but

overall, the cyclic reduction algorithm is found to be the best of all the algorithms

for the problem considered on the CDC STAR-100 machine.

Masden and Rodrigue [1976] carried out a similar investigation to that of

Lambiotte and Voigt [1975] based on the solution of a tridiagonal matrix system.

They restricted their study to direct solvers only and compared the performances of

the vectorised Gaussian elimination algorithm, Jordan's algorithm [1974] and the

- 7 -

cyclic reduction algorithm (Hockney [1965]). The calculations were also performed

on a CDC STAR-100. machine and therefore similar conclusions were obtained to

those of Lambiotte and Voigt [1975]. Masden and Rodrigue then proceeded to

define a hybrid 'Super-STAR-Algorithm' which takes advantage of the fact that at

an

inefficient on the CDC STAR-100. Instead, the process switches to a more

efficient low-order tridiagonal solver such as the vectorised Gaussian elimination

algorithm. The super-STAR-Algorithm was faster than the Gaussian elimination

algorithm (implemented on a CDC 7600 scalar machine) for /i>750.

.ne a hybrid 'Super-STAR-Algorithm' which takes advantage of the fact that at

advanced stage of the cyclic reduction process the computation becomes

Swarztrauber [1979] considers the vectorised implementation of Cramer's rule for

the solution of a tridiagonal system of equations. The performance of the algorithm

was compared to the Gaussian elimination algorithm with partial pivoting. On a

CDC 7600 scalar machine the Gaussian elimination algorithm is faster, but despite

having a higher operation count than the cyclic reduction algorithm, the vectorised

Cramer's rule is faster than the Gaussian elimination on the CRAY-1. This is

purely because the Gaussian elimination algorithm is vectorised to a lesser degree.

1.2.2 Vectorised algorithms for large sparse systems of equations

The early eighties saw some of the first computations performed on practical CFD

problems. Spradley et al [1981] presented a General Interpolants Method (GIM) to

analyse complex three-dimensional flow fields described by the inviscid Euler

equations as well as the time-averaged Navier-Stokes Equations. The code

combined the techniques of finite-element (for the geometry definition) with finite-

difference (to solve the resulting equations). The solution of the equations were

- 8 -

obtained using a MacCormack predictor-corrector type scheme and was found to

be the most time consuming of all the modules. By re-ordering the index over

which the calculations were performed the solver was adapted for use on the CDC

STAR-100. A number of different problems were considered and a sixfold

improvement in speed was achieved over the same code on a CDC 7600 scalar

machine. When a pipeline CYBER 203 was used a further improvement of two

was achieved.

Kordulla [1984] also reported on the vectorisation of a MacCormack based CFD

code for the CRAY-IS machine. The problem studied was flow past a hemisphere-

cylinder configuration at a 5° angle of attack and a Reynolds number of 212,500

referenced with the radius of the sphere. The computational grids used were

31x20x31 and 42x20x31. Since the vectorisation of the explicit steps were

straightforward the emphasis was on the vectorisation of the implicit steps in the

predictor-corrector scheme. The results indicated that the computation times on the

IBM 308IK were about eight times slower than on the CRAY-IS (scalar

processor). When the CRAY auto-vectoriser was switched on the ratio increased to

10 and for the manually vectorised code the ratio was further increased to 31.

Although the CRAY vectorising compiler has improved considerably since then,

this example helps to illustrate the limitations in relying on a vectorising compiler.

There is clearly a need for user-interaction.

Borrel et al [1985] also used the MacCormack scheme to simulate three-

dimensional flow past a wing. The solution is determined using the Euler equations

to obtain pressure and velocity components. A similar vectorisation approach was

taken to Kordulla [1984] where loop indices are re-ordered and data dependencies

- 9 -

most efficiently with long vectors. Moreover, it is the authors belief that an

explicit whole-field solver would be better suited for a three-dimensional problem

since the vector operations would be of maximum possible length.

On some three-dimensional problems it becomes impractical to carry out the

simulation using a scalar processor, instead results are presented for the vectorised

computation only (Rizzi and Therre [1985]). This approach to presenting results is

informative to an engineer since it becomes possible to determine how quickly a

problem can be solved.

Thus far the numerical algorithms have been restricted to the solution of

tridiagonal systems. Much work has been done on the solution of a large sparse

matrix system, this system is not necessarily tridiagonal and is often encountered

when using a discretisation scheme to represent the domain of interest. The growth

and popularity of the pipeline vector processor as an architecture to solve computer

intensive CFD problems can be partly attributed to the availability of explicit

numerical algorithms which are readily vectorised. Examples of such algorithms are

the JUR and conjugate gradient (Hestenes and Stiefel [1952]) algorithms. A large

number of the results quoted for the use of such algorithms have been based on

the solution of the Poisson equation. The discretisation of the Poisson equation

using a five point finite-difference technique results in a linear system of

equations, these make up a sparse pentadiagonal matrix (A) in two dimensions.

The conjugate gradient algorithm is based mainly on matrix-vector and vector-

vector operations and is therefore ideal for vector processing. However, the

algorithm has been reported to be slow in some cases (Concus, Golub and O'leary

- 11 -

[1975]). To overcome this problem a preconditioning matrix (P) is introduced into

the formulation, the purpose of the preconditioning matrix is to lower the condition

number of the original matrix and the right-hand-side vector b, hence the matrix

system becomes

p-'Ax = p-'b

The choice of the matrix P raises interesting points, for example, will it destroy

the structure and other desirable properties present in the original matrix? Will it

be detrimental to the convergence rate of the original conjugate gradient method?

How expensive is the generation of the matrix P relative to the total computation

time and will the matrix formulation for P be such that efficient vectorisation is

possible? It is found that the solution of a tridiagonal matrix system (an

intermediate step in the preconditioned algorithm) poses some problems when

attempting to vectorise this step. Various approaches have been taken to overcome

this problem. One suggestion is the use of the cyclic reduction algorithm (Rodrigue

and Wolitzer [1981] and Jordan [1981]). Alternatively, any other tridiagonal solver

presented thus far could be used.

Dubois, Greenbaum and Rodrigue [1979] suggest the use of a truncated Neumann

expansion to represent the inverse of the original matrix as the preconditioning

matrix. Despite full vectorisation there was a significant increase in the number of

conjugate gradient iterations.

- 12 -

Van der Vorst [1982] suggested a truncated Incomplete Cholesky Conjugate

Gradient algorithm (ICCG) where the inverse of the matrix (1-E) is given by

In the two cases studied, the truncated ICCG algorithm was more efficient than the

truncated Neumann expansion. Also, the increase in the number of iterations was

minimal and as a result the vectorised version of the truncated ICCG was

competitive with the scalar ICCG algorithm. However, in a later study van der

Vorst [1986] showed that for some problems the number of iterations can increase

significantly to make the vectorised ICCG algorithm less competitive. The

improvements in using the vectorised truncated ICCG over the scalar ICCG

algorithm on a CRAY-1 and CRAY X-MP were up to 50%, with over a twofold

increase on the CYBER 205.

The simplest preconditioning matrix is the Jacobi or diagonal preconditioner (JCG).

Radicati and Vitaletti [1987] compare the solution times of the JCG and the ICCG

algorithms on an IBM 3090-VF machine. The problem was a three-dimensional

elliptic partial differential equation with mixed boundary conditions and is solved

on a 403 grid. In the case of the ICCG algorithm the solution of the intermediate

matrix system is solved once and stored. Although this results in a higher cost per

iteration this is offset by the reduced number of overall conjugate gradient

iterations. In each case comparisons were made between the vectorised and scalar

ICCG and JCG algorithms. The compressed diagonal storage method was used

since this produces vector lengths of order 403 . In scalar mode the ICCG is

superior to the JCG algorithm but the opposite is true in vector mode. This is

- 13 -

mainly due to the essentially scalar computations which are used to solve the

intermediate matrix system. Despite this, speed-up factors of 2 are reported in

favour of the vector ICCG and up to 6 in favour of the vector JCG algorithm.

Block preconditioning can also be used as part of the conjugate gradient algorithm

(Meurant [1984] and Concus, Golub and Meurant [1985]). A vectorised Cholesky

decomposition is used as a block preconditioner to solve three test problems, the

inner products were coded in CAL (Cray Assembler Language). The ICCG

algorithm is implemented for comparison, and computations were performed on the

CRAY-IS and CRAY X-MP machines. The best improvements were obtained

using the block preconditioning algorithm rather than the ICCG, but the times

recorded did not include the time to generate the preconditioning matrix.

Furthermore, in one test case the approximation of the inverse was poor enough to

cause a severe degradation in the performance of the vectorised algorithms.

Kightiey and Jones [1985] consider the solution of large three-dimensional

turbulent flow simulations using SIMPLE. The emphasis is on the solution of the

pressure-correction equation which is solved using the conjugate gradient algorithm

with various preconditioned. These preconditioned include the Jacobi, standard

incomplete Cholesky, truncated incomplete Cholesky (van der Vorst [1982]) and a

block factorisation. In the solution of the 'trivial' Poisson equation the elaborate

preconditioned are not worth the extra expense and the JCG algorithm is

considered to be the best. However, as the complexity of the problem increases the

ICCG algorithm is the most efficient even though the block preconditioner is more

robust.

- 14 -

Later, Kightley and Thompson [1987] cany out a comparison of preconditioned

conjugate gradient algorithms with different multigrid methods. The conjugate

gradient algorithms considered are the JCG, standard ICCG and truncated ICCG.

The multigrid algorithms used are those described in Wesseling et al [1982] and

Hemker et al [1983, 1984, 1985] and are denoted in brackets by a pseudo-name.

These include the incomplete LU factorisation (MGD1), incomplete block

factorisation (MGD5), the point red-black SOR (MG001) and the line-zebra SOR

(MGOQ3) algorithms. Results were presented for the solution of the Poisson

equation with a discretised uniform 128x128 grid on a CRAY-IS. A speed-up

factor of 3.3 and 4 were obtained in favour of the vectorised MGD1 and MG001

algorithms, respectively. A case is found where the truncated ICCG is less efficient

than the standard ICCG algorithm (Kightley and Jones [1985]). The general

conclusion was that the conjugate gradient based methods were efficient for low

accuracy solutions but the multigrid methods were more appropriate when a much

higher accuracy is desired in the solution.

Kincaid et al [1986] consider the application of the conjugate gradient (CG) and

chebychev (SI) methods as a means of accelerating some popular iterative

algorithms. The CG acceleration was substantially faster for the solution of

Poisson's equation on a 20x20 grid using a scalar processor. (Scalar simulations

were performed on a CYBER 170/750 and all vector simulations performed on a

CYBER 205). Using a 64x64 grid there was little to choose between the vectorised

red-black SOR-CG, Jacobi-CG and Richardson-CG. Even though the latter two

required more CG iterations these algorithms were easier to implement and were

recommended for general use.

- 15 -

Elaborate ordering schemes for the CG algorithm have been examined by Melhem

and Gannon [1987]. For ill-conditioned systems of equations the column-wise two

colour ICCG algorithm is shown to be more efficient than the natural ordered JCG

algorithm.

Kapitza and Eppel [1987] describe an incomplete Crout factorisation for the

conjugate gradient algorithm which is used to solve a three-dimensional Poisson

equation. This is referred to as the Idealised Generalised conjugate gradient (IGCG)

algorithm. The simulation was performed on a CYBER 205 and the performance

compared to a number of iterative relaxation algorithms. Their unit of measure was

the work unit (which is the time taken to carry out one iteration of the algorithm,

WU) and speed-up factors of 10 over popular iterative algorithms such as the red-

black SOR were not uncommon. However, it should be realised that the

computation involved in a single WU of the CG algorithm is not the same as that

of an iterative algorithm.

Gemzsch [1987] proposed a fully vectorised SOR variant for a general second

order elliptic partial differential equation. The motivation for this was that there are

overheads associated with the use of a red-black ordering, these would be quite

significant on some vector processing architectures, for example the CRAY-2 and

IBM 3090VF. The original unknowns are transformed to give a discretised

approximation, instead of being described by the traditional five-point molecule

with connections north-east-south-west (N-E-S-W), it is now described by NE-SE-

SW-NW (figure 1.2.2). The new variant was tested on the solution of Poisson's

equation using a 127x127 grid and was found to be twice as fast as the red-black

algorithm on both the CRAY-2 and IBM 3090VF machines.

- 16 -

i j

1.2.2 Computation molecule for (i) natural SOR (ii) vectorised SOR

- 17 -

The implementation and comparison of multigrid methods for pipeline architectures

has been briefly mentioned. Hemker, Wesseling and Zeeuw [1984] compare two.

different preconditioning matrices on the CRAY-1 and CYBER 205 machines. The

preconditioned were an incomplete LU factorisation (ILU) and a zebra SOR

algorithm. They concluded that the zebra SOR algorithm was more efficient than

the ILU factorisation on the CRAY-1, but the opposite was true when they were

implemented on the CYBER 205. Vanka and Misengades [1987] suggested the

vectorisation of the multigrid block implicit method on a CRAY X-MP, while

Holter [1985] considered the implementation of multigrid methods due to Brandt

[1977] on a CYBER 205.

1.2.3 Parallel-based algorithms for large sparse systems of equations

Some of the earliest work on the use of parallel architectures to solve a system of

equations was performed by Stone [1973]. The machine used was the ILLIAC IV

and was described as having an 'exotic' architecture. (The ILLIAC IV was

classified as a MIMD parallel processing machine and was to have a considerable

influence on the development of future architectures). In his work Stone considered

the implementation of a tridiagonal solver using LU decomposition by recursive

doubling. Unfortunately, the only results presented were based on the number of

arithmetic operations.

The popularity of the cyclic reduction algorithm is such that it has been

implemented on the ICL DAP (Whiteway [1979]). The ICL DAP is made up of a

64x64 array of processing elements, all of which simultaneously carry out the

same instruction on a different data set. However, the implementation of the cyclic

- 18 -

1.3 Discussion

A literature review of publications using a pipeline processor to solve partial

differential equations has been carried out. One observation which arises is that

there is no single 'best' algorithm. This is not surprising since there are a number

of different factors which can have a significant effect on the performance of an

algorithm.

The comparison between different algorithms is highly problem dependent. The

convergence rate of some algorithms tend to decrease noticably as the diagonal

dominance of the matrix becomes weaker. Therefore, one suggestion could be to

solve a number of different matrix systems with varying diagonal dominance

factors, this would help to present a more complete picture.

Another problem involves the implementation of the algorithm on different pipeline

architectures. Despite the fact that a scalar algorithm is universal to all scalar

machines this is not the case for the same vectorised algorithm. The vectorisation

techniques used to restructure the scalar algorithm may be different and so lead to

a performance specific to that vectorisation technique. In addition, the use of

software tools such as compilers and low-level run-time vector libraries which have

varying levels of sophistication can make comparisons even more difficult. Finally,

the fact that different pipeline architectures have different characteristics means that

it is unlikely any single algorithm can claim to be the most efficient on all

pipeline architectures.

- 20 -

The survey clearly shows that the computation effort is concentrated on the

solution of.linear systems of equations typified by the discretisation of the Poisson

equation. In some cases almost total vectorisation of the code is possible for some

algorithms and this leads to substantial reductions in computation times. A high

proportion of the code is vectorised because there is a relatively small overhead

associated with the setting up of coefficients and source terms. However, will this

be the case in fluid flow simulations where there are many more factors to be

considered?

It is known that the problems discussed with regard to the implementation of

algorithms on pipeline architectures will still apply to CFD computations. The

solution of a linear system of equations still forms a major component in the

solution procedure, however, the essentially scalar computations become more

significant. These involve the generation of more complex diffusion and convection

coefficients as well as complicated source terms.

1.4 Outline of present work

A fundamental description of various parallel processing architectures is presented,

and attention is then focused on the pipeline vector processor and how it fits into

various classes. All the computations in this work are carried out on the VA-1

pipeline processor, this is attached to a MASSCOMP 5400 machine (MASSCOMP

[1984]); Therefore, a detailed characterisation of this machine is given. A measure

of the expected speed-up is determined using Amdahl's law, this has proved useful

and is used throughout this work to assess the performance of the vectorised code.

- 21 -

Different solution procedures are reviewed with regard to the solution of the

Navier-Stokes equations in Chapter 3. These solution procedures involve SIMPLE

and its derivatives. The SIMPLE procedure is chosen for implementation because

of its suitability to the problems to be solved. In addition, a whole-field strategy is

adopted since this will enable vector operations of maximum possible length.

In Chapter 4 a number of different algorithms such as the Thomas, cyclic

reduction, JCG, JUR, SOR and red-black SOR are applied to the solution of the

Laplace equation on a unit square, for a number of different grids. The algorithms

are then vectorised in various ways, the Thomas and SOR being restructured to

remove the recursion present in the scalar formulation. The expected improvement

factors are predicted using Amdahl's law. This identifies the point-by-point and

conjugate gradient solvers as the most efficient vectorised algorithms.

The complexity of the problems solved are extended to fluid flow simulations

involving the solution of pressure and momentum components (Chapter 5). The test

cases involve the solution of the two-dimensional lid-driven cavity problem and the

flow in a suddenly expanding duct. The effect of just vectorising the pressure-

correction equation solver in the SIMPLE procedure leads to modest improvements

in speed, the limiting factor being the scalar computations. Further vectorisation is

carried out on the rest of the SIMPLE procedure and this leads to a more

substantial reduction in the computation time.

In Chapter 6 the effect of introducing scalar transport equations such as enthalpy

and k-e turbulence representations are investigated. Here the test cases include the

natural convection in a square cavity problem which introduces the solution of the

enthalpy equation for Rayleigh numbers up to 106, and the k and e equations for a

Rayleigh number of 107. The second case is two-dimensional, turbulent, L-shaped

flow in a duct. Although there is a reduction in the total contribution of the

pressure-correction solution, the vectorisation of the scalar equations still leads to

worthwhile reductions in time.

A multigrid solution strategy based on the ACM method of Settari and Aziz

[1973] is presented in Chapter 7 following a review of multigrid methods. The

ACM method is used to solve the pressure-correction equation and is applied to

the four test cases described in Chapters 5 and 6. The improvements in

computational speed are more notable in the cases where there is a dominant

pressure field. The best performance of the scalar algorithms was achieved with up

to four levels of the ACM method. Whereas, the same algorithm vectorised is

most effective with just two levels. It is likely that the number of levels used by

the vectorised algorithm will increase as the grid size is increased.

Finally, conclusions and suggestions for future development of the present work

are presented in Chapter 8.

- 23 -

CHAPTER TWO

- 24 -

2.0 CLASSIFICATION OF ARCHITECTURES

2.1 Introduction

This chapter describes the general classification of a computer according to its

architecture. Attention is focused on the pipeline vector processor category, and in

particular to the MASSCOMP 5400 computer with an attached pipeline vector

processor (VA-1). The potential of such a vector pipeline processor is investigated

A means of predicting the expected speed-ups in using such a processor is also

outlined This strategy is to be used at a later stage for the consolidation of quoted

speed-ups for a CFD code.

2.2 Classification of architectures

The classification of computer architectures into an accurate and universal form is

not an easy task. To date, there have been three different approaches presented.

These are due to Flynn [1966, 1972], Shore [1973] and Hockney and Jesshope

[1981]. All three have their merits but no single approach has emerged as the

universally accepted classification scheme.

There are many reasons for this, the most significant of which is the broad

spectrum of parallel architectures which have been proposed. Some of these

architectures have come into being because of their obvious potential (for example,

pipelining), others remain essentially theoretical (for example, the MISD machine

proposed by Flynn [1966]). Another problem with attempting to classify these

architectures is that in some cases the more useful architectures do not fall into a

single category. They may fall into many categories, or none at all, hence

- 25 -

requiring a separate category. The three different approaches to classifying these

architectures are now presented.

2.3 Classification due to Flynn

The classification due to Rynn [1966] provides a broad characterisation of the

different computer architectures. However, the categories defined are based on the

flow of data or instructions (referred to as a 'stream'), rather than on the structure

of the machines. Whether the instruction or data streams are single or multiple will

determine one of four possible categories.

2.3.1 Single Instruction stream - Single Data stream (SISD)

This class of machine accepts a single stream of instructions, each of which acts

upon a single stream of data items. A pipeline processor can be used to increase

the rate at which instructions are processed, therefore machines with pipeline

processors of this type are classed as SISD machines. SISD machines are also

collectively called standard von Neumann machines.

2.3.2 Single Instruction stream - Multiple Data stream (SIMP)

This class of machine also accepts a single stream of instructions, however, each

instruction acts upon a multiple stream of data items. The multiple stream of data

can also be regarded as a vector of data, where each vector element represents a

single stream of data items. The multiple stream of data can be achieved either

through an array of processors or a pipeline processor. There are many examples

- 26 -

of SIMD machines including processor arrays such as the ICL Distributed Array

Processor (DAP) and ILLIAC IV, and pipelined vector machines such as the

CRAY-1 and the CYBER 205.

2.3.3 Multiple Instruction stream - Single Data stream (MISD)

In this class of machines there are many different instructions being performed on

single data items. To date, there are no practical examples of this class.

2.3.4 Multiple Instruction stream - Multiple Data stream (MIMD)

This final class is representative of true multiprocessor machines. In this class each

processor accepts its own instruction stream and acts upon its own stream of data.

Gorsline [1980] suggests that the pipeline processor falls into this class since it

performs many instructions on a multiple scalar stream of data. Examples of

MIMD machines include the Denelcor Heterogeneous Element Processor (HEP)

and an array of transputer processors.

2.4 Classification due to Shore

The classification of machines according to how they are organised was proposed

by Shore [1973]. Six different machine types (I - VI) are described, each machine

type defined using four basic parts - a control unit (CU), a processing unit (PU),

an instruction memory (IM) and a data memory (DM). What differentiates the six

machine types is the particular way in which the basic parts (including multiples)

are arranged.

27 -

2.4.1 Machine I

This arrangement describes the conventional von Neumann machine (figure

2.4.1-1). The single DM read produces all bits from a single word for processing

in parallel by the PU, this is referred to as a horizontal word slice. However, since

the PU may contain multiple functional units and may also be pipelined, machines

such as the CRAY-1 can also be included in this class.

2.4.2 Machine II

This arrangement is very similar to that of machine I. The major difference is that

the single DM read produces a single bit from all words (figure 2.4.2-1). Again,

all bits are processed in parallel by the PU, this is referred to as a vertical bit

slice. The more words that need to be processed, the more significant the speed

advantage of this machine. Examples of this machine type include STARAN and

the ICL DAP.

2.4.3 Machine in

This arrangement provides both horizontal and vertical PU's and so allows access

to both bit and word slices (figure 2.4.3-1). This machine type is a combination of

machines I and n and therefore has the benefits of both. An example of this

machine type is the Orthogonal Computer of Shooman.

- 28 -

2.4.4 Machine IV

This arrangement is a natural extension to that of machine I. Here, the PU and

DM are replicated, and these are under the control of a single CU (figure 2.4.4-1).

Although there is no direct communication between PU's, this architecture can

easily be extended. An example of this machine type is the PEPE (Parallel

Element Processor Ensemble) machine.

2.4.5 Machine V

This arrangement is an improvement to machine IV. It allows PU's to

communicate with its two neighbours and is sometimes referred to as the

connected array class (figure 2.4.5-1). An example of this machine type is the

ILLIAC IV machine.

2.4.6 Machine VI

This final arrangement has a single component containing the PU and DM (figure

2.4.6-1). Here the processing logic is distributed throughout the memory. Examples

of this type of machine are associative processors.

2.5 Classification due to Hocknev and Jesshope

As part of this classification a comprehensive notation is introduced to aid with the

description of different architectures. Hockney and Jesshope [1981] define a

- 29 -

I

2.4.1-1 MACHINE Irword-serial bit-parallel class

2.4.2-1 MACHINE II:word-parallel bit-serial class

- 30 -

2.4.3-1 MACHINE fflrorthogonal class

2.4.4-1 MACHINE IV:Unconnected array class

- 31 -

2.4.5-1 MACHINE V:Connected anay class

I

2.4.6-1 MACHINE VlrLogic in memory class

- 32 -

computer (C) as having an instruction unit (I) which controls an execution unit (E)

connected to a single memory bank (M). Therefore in notational form the scalar

von Neumann machine is represented by

C = I[E-M]

The structural notation includes up to ten different rules for units, six rules for the

connections between units and three different types of control of the units. A

complete breakdown is given by Hockney and Jesshope [1981] pp32-42.

The architectural subdivisions are presented as hierarchical structures so that a

single class of computer is defined at the end of each branch. The discussion here

is restricted to machines with a single instruction unit (figure 2.5-1). More

specifically, machines with a single instruction unit - single unpipelined execution

units (serial processors), and a single instruction unit - multiple execution units

(pipelined vector or parallel processors).

For the serial computer class (figure 2.5-2) two further divisions are necessary. The

first is whether the arithmetic unit is integer- or floating-point, and the second is

whether the integer-point is 1-bit serial or n-bit parallel.

For the pipelined vector or parallel computer class (figure 2.5-3), a distinction

between pipelined machines is necessary. This is because there exist high

performance pipeline scalar machines and high performance pipeline vector

machines. The pipeline scalar machines have either a single instruction which

controls all units at each cycle, or a system where instructions are issued to

individual units. The pipeline vector computers are divided into two classes. Those

where specific arithmenc operations are executed are referred to as special-purpose

pipelines, and those where more than one arithmetic operation can be executed are

referred to as general-purpose pipelines.

The final subdivision of multiple execution units is the processor array class of

computers. These can be either floating-point or few-bit execution units. Further

divisions describe the way in which the processors are connected.

Flynn's approach provides a useful, broad, easy-to-remember classification of

architectures. However, it does have its drawbacks. For example, the interpretation

of the term 'stream' can be such that the pipeline processor is placed in all four

categories. It may be classed as SISD because it processes a single stream of

vector data , or SIMD if every element of the vector is regarded as an individual

stream of data. It can be classed as MISD or MIMD if the pipeline arithmetic unit

performs in parallel on a scalar or vector stream of data. Flynn placed the pipeline

processor together with processor arrays despite the completely different

architectures.

The classifications due to Flynn and Shore are very similar. Machine I and the

SISD class are equivalent, and machines n, HI, IV and V provide a detailed

breakdown of the SIMD class. Not surprisingly, there is no obvious class for the

pipeline processor.

The classification of Hockney and Jesshope provides a detailed breakdown of

computer architecture based on functional units. Although more precise, (for

example it has a clear classification of the pipeline processor), it does have the

drawback of being less memorable.

- 34 -

SINGLE INSTRUCTION UNIT

SERIAL COMPUTERS PIPELIN|IECT^ROJl
S COMPUTERS

PIPELINED PROCESSOR ARRAY

2.5-1 Overview of subdivisions for computers with a single
instruction unit

SERIAL COMPUTERS

INTEGER ARITHMETIC FLOATING-PIONT
ARITHMETIC

1-BIT SERIAL n-BIT PARALLEL

UNIVAC1 IBM701

FLOATING-POINT
SERIAL COMPUTER

IBM 7090

2.5-2 Single instruction - serial computer class

UNFEPEUNED

MULTIPLE

FPSAP^SOIS CHDC76OO

FLOATING-POINT

UNITS

FEW-BIT

EXECUTION UNITS

STARAN
CONNECTEPJ

2.5-3 Single instruction - vector and parallel classes

- 36 -

2.6 Classification of pipeline processors

The notion of using a pipeline process to improve the efficiency of a system has

existed for many years. It has been widely used in automated industrial plants, in

particular the car industry. This has since been extended to enhance computer

performance. The CDC 7600 was amongst the first of such computers to utilise the

idea of pipelining.

It has already been mentioned that different pipeline processor configurations exist

(Ramamorthy and Li [1977], Handler [1977]). Three such classes are:

i. unifunctional or multifunctional

These have already been described in section 2.5 and are either special-

purpose (unifunctional) or general-purpose (multifunctional) pipeline

processors.

ii. static or dynamic

A static pipeline processor is defined by the continuous execution of

instructions of the same type. A dynamic pipeline processor allows the

simultaneous existence of several functional configurations.

iii. scalar or vector

Processing a sequence of scalar operations under the control of a loop

defines a pipeline scalar processor, and similarly for processing vector

operations defines a pipeline vector processor.

All future references to a pipeline processor will imply a pipeline vector processor.

2.7 How a pipeline processor attains its speed

A pipeline consists of a number of processing stages, where each stage is

responsible for a specific task in an arithmetic operation. Information is transferred

between adjacent stages under the control of a common clock. Consider the

problem of performing the arithmetic operation

ct = a, + b, i=l,...,4

where it takes four stages to complete a single addition. Figure 2.7-1 shows the

benefit in using a pipeline processor over the conventional scalar processor. By

overlapping the arithmetic operations a result is obtained after the fourth clock

cycle, and thereafter a single result is obtained every clock cycle (total of 7 clock

cycles). In the case of a scalar processor a result is obtained every fourth clock

cycle (total of 16 clock cycles).

In general, an arithmetic operation which takes / stages can process vectors of

length n in a time given by

T, = / + (n-1) (2.7-1)

where T, is the time in clock periods. Here, / clock cycles are required to obtain

the first result and n-1 cycles to complete the remaining n-1 results. Using a scalar

processor the time taken to complete the arithmetic operation is given by

T, = n/ (2.7-2)

- 38 -

We can now define the speed-up S, of a pipeline processor with / stages over the

conventional scalar processor as

S, = L = n/ (2.7.3)
T, / + (n-1)

Thus the theoretical speed-up (S^J approaches / for a large vector length. This

speed-up is never reached for many reasons. These include a penalty time incurred

in initialising the pipeline processor and delay times between clock cycles.

2.8 Memory-to-memorv and register-to-register pipeline processors

The difference between these two architectural configurations depends on where the

operands are retrieved from within the pipeline processor. If all the source

operands and results are retrieved directly from the main memory then this

describes the memory-to-memory architecture. Here it is necessary to specify the

base address, offsets, increments and vector lengths which define the vectors to be

used. Examples of machines with this configuration include the STAR-100 and

CYBER 205.

If the source operands and results are retrieved indirectly from the main memory

and through registers, then this describes the register-to-register architecture.

Examples of machines with this configuration include the CRAY family and the

Fujitsu VP-400.

Thus far different pipeline architectures have been considered. Attention is now

focused on a pipeline processor which has been used as pan of this research.

- 39 -

n

uacffiamt

O.O2

OiOOS -

' ' '

3O -

3O -

200 400 60O 80O 1OOO 12OO 14OO

Vector size .. : :3; ; -V-.^'V-;. '':'i'-^ : %-:' ;: -;.- : '-: : '" :: ".- : --i- ;; : ;

:: OO

. OO

OO" :

OO

0^8
fraction of vectorised code

- 56 -

1F-~. ' - -' '.

te

sx.

dxJ

33UU

-<>-

~

if, =

80 -

60: '^

20 -

0.4

0.3

0,1

10 25 30 35 40:

300

250

200

150

100

50

10 15 20 25 30 35 40

f

80

70

40

30

20

10

40 45

80

'£^

60

50

C? ^-»

20

10 15 20 25 30 35 40

v 0ms

"Ov8

q»6

0 200 400 GOO 800 1000 1200 1400 1600 1800 2000 2200

I

100 200 300 400 SOQ 600

100 200 300 400 500 500

-5,5
1000 2QOO 3000 4000 5000

100 200 300 400 : 500 500

12000 14000 16000 18000

1 L30R

2000 4000 SOOO-; 8000 10000 12000: "WOOO 16000 18000 20000

Q 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

t inie fsecondsj

500 1GGO 1500 2000 2500 3000

2000 3000 4000 5000

0 2000 4000 6000 8000 10000 12QDQ 14QQQ 16000 18000

5000 10000 1500D 2GOQQ-' 25000:

SOOU 10000 150QQ 20000 2500Q 30QOQ

200 300 400 500 600 700 900:

-4v5

-5.5
200 600 800 1000 1200

1500 2000 2500 3000 3500: 4000

500 1000 1500 2000 2500

1000 1500 2000 2500 3000

en QJ

1000 2DQD 3000 4000 5000 6000 7000 8000 9000 10000:

