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Abstract

In this thesis the potential gains in vectorisation of linear and non-linear systems of 
equations are investigated. Previous studies carried out on the suitability of algorithms 
for vectorisation have been based on the solution of Poisson's equation. In accordance 
with this, a range of algorithms are explored and compared using a VA-1 pipeline 
processor attached to a MASSCOMP MC5400. Analysis shows that almost full 
vectorisation is possible leading to speed-up factors of up to 90. Based on these 
results the vectorised conjugate gradient with a Jacobi preconditioner (JCGV) is the 
best of the algorithms considered.

This work is extended to the development of a two-dimensional fluid flow code which 
is used to solve the Navier-Stokes equations, SIMPLE is implemented to handle the 
non-linear nature of the equations. The first two problems are isothermal flows, viz, 
the 'moving lid cavity' and the 'sudden expansion in a duct' problem. A study of 
where the greatest computational effort is expended, and subsequent vectorisation leads 
to 98% of SIMPLE being modified. This results in speed-up factors of 6 for the 
cavity problem and 29 for the sudden expansion problem. In both problems the JCGV 
is marginally faster than the vectorised Jacobi with under-relaxation (JURY). However, 
the JCGV algorithm is not robust and it is necessary to relax carefully the 
approximation, otherwise high computation times or divergence is likely.

Two further problems are considered each with increasing complexity, these include 
scalar quantities of temperature and characteristics of k-e turbulence. One problem is 
based on 'turbulent L-shaped flow in a duct' and the other on the 'natural convection 
in a square cavity'. A consequence of the higher scalar computation gives speed-up 
factors of 5 for the turbulent L-shaped flow and 11 for the natural convection 
problem. There is little to choose between the JCGV and JURV algorithms, however, 
the robustness problems with the JCGV algorithm remain.

A multigrid method (ACM) is used to improve the convergence rate of the algorithms, 
particularly as the size of problem is increased. Although it is more effective in 
scalar, it also provides worthwhile improvements for the vectorised algorithms with 
overall factors of 8.5. Convergence difficulties with the JCG algorithm also prevents 
the combination with the ACM method. Therefore, the vectorised JUR algorithm with 
the ACM method is not only more efficient and reliable, but also has scope for 
improvement as the grid is increased.

The potential gains in vectorisation of the SIMPLE family on pipeline architectures 
have been clearly demonstrated and indicate that such efforts on practical CFD codes 
should be well rewarded with regard to processor performance.
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CHAPTER ONE



1.0 INTRODUCTION

1.1 Overview of CFD

In recent years the field of Computational Fluid Dynamics (CFD) has evolved at a

phenomenal rate. CFD has grown to such an extent that today it is used as a

design tool which is capable of predicting complex flows in situations where

experimentation is not feasible or too costly, or both. Currently, CFD simulations

and experiments are both used as a means for investigating engineering

applications. However, it may not be long before numerical simulation is

considered more important than experimentation in many areas. The role of the

experiment may be limited to the validation and necessary refining of CFD models

and computation procedures. CFD simulations are certainly more informative and

can cover a range of different complex fluid flow simulations many of which can

not be performed experimentally, this makes CFD simulations essential.

Consider the spread of smoke and fire in an underground station such as the 

King's Cross incident. Simulations of this type are extremely important. An 

attempt to carry out experiments for such a problem with different scenarios is 

extremely difficult. Even for a single numerical fire simulation this can be a very 

demanding computational task. The emergence of supercomputer architectures such 

as the CRAY family, CYBER 205 and IBM 3090 (Hockney and Jesshope [1988]) 

which can compute at very high speeds, coupled with the advances in numerical 

techniques and solution procedures, make such simulations possible. Indeed, CFD 

simulations relating to the King's Cross fire (Fennell [1988]) have been performed 

at Harwell using their own three-dimensional CFD code called HARWELL- 

FLOW3D (Jones et al [1985]).



Traditionally, CFD simulations have been computationally very expensive and 

although complex problems could be tackled, the accuracy of the solution or the 

resolution of the grid was not as high as the engineer would have liked. However, 

the introduction of pipeline vector processors as an alternative to the conventional 

scalar processors has begun to overcome these past difficulties. Today, many large 

and complex flow problems can be modelled using general purpose CFD codes 

such as HARWELL-FLOW3D (Jones et al [1985], Burns et al [1986]) and 

PHOENICS (Rosten and Spalding [1986]). In addition, the number of computation 

nodes which can be solved in a reasonable time is now approaching the order of 

hundreds of thousands. The introduction of these new architectures has also 

assisted in advancing several branches of CFD to such an extent that many have 

become research topics in their own right.

One branch which has become very fruitful is the refinement and modification to 

existing solution procedures which are used to solve the governing differential 

equations. The problem with solving the equations numerically lies in the fact that 

the equations are often coupled and that the pressure field (which drives the flow) 

is not known a priori. The use of a stream function - vorticity formulation will 

overcome the latter problem since the pressure is explicitly eliminated, however, 

this approach is currently restricted to flow problems where the pressure field is 

not dominant. A more common practice is to adopt a primitive variable approach. 

Here the velocity components and pressure (pressure-correction) equations are 

obtained from their governing equations. The SIMPLE solution procedure (Patankar 

and Spalding [1972]) and its derivatives are probably the most widely used within 

the CFD community and forms the basis of many commercial software packages.
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Turbulence modelling is also an area of intense research. There are currently two 

main schools of thought for resolving the presence of turbulence in engineering. 

The first is based on large eddy simulation (Riley and Metcalfe [1980]) and 

involves the solution of the full Navier-Stokes equations. Even with the computer 

power currently available, the expected computation times needed to solve very 

simple problems are still too high. The second approach focuses on the solution of 

the time-averaged Navier-Stokes equations together with transport equations to 

model key characteristics of turbulence. Research on this approach has been more 

successful and continues to be popular particularly amongst engineers. Launder et 

al [1974, 1975] were amongst the first to adopt such an approach, and although 

the k-e model is very popular, there is to date no general turbulence model.

The numerical representation of the convection term present in the governing 

equations has been of interest for many years, especially in flow problems 

dominated by the convection process. This has led to a number of different 

schemes, each attempting to correctly describe the convection process. The hybrid 

scheme (Spalding [1972]) switches between central and upwind differencing. The 

Quadratic Upstream Interpolation for Convective Kinematics (QUICK) scheme due 

to Leonard [1979] is more accurate at low grid Peclet numbers but at the expense 

of an increase in the computation time. This is evident in some turbulent flow 

simulations (Han, Humphrey and Launder [1981]). The Curvature Compensated 

Convective Transport (CCCT) scheme will guarantee the boundedness condition 

and can be used to derive all the schemes above (Gaskell and Lau [1988]). The 

Corner UPwInDing (CUPID) scheme (Patel, Markatos and Cross [1988]) copes 

particularly well with the problem of false-diffusion, again at the expense of some 

increase in computation time.

- 4 -



The way in which the computational domain is discretised will lead to either 

structured or unstructured grids, A finite-difference approach has been successfully 

used in the past, but more recently the control-volume approach has increased in 

popularity to such an extent that it now exists as a serious competitor to the finite- 

difference approach. Both of these methods have been applied extensively to 

structured grids and less so to body fitted grids. The finite-element method on the 

other hand is ideal for complex geometries but lacks the simplicity of the control- 

volume approach. Recently, work has been done on the use of a control-volume 

based finite-element method (Prakash and Patankar [1985], Lonesdale and Webster 

[1989]) and this could be a future trend. The control-volume approach has been 

adopted in this research because all the examples have straightforward rectangular 

geometries.

1.2 Literature survey

The ability to perform large scale simulations particularly in CFD would have been 

near unthinkable fifteen years ago. A select few had access to supercomputers, the 

most successful machines being the CRAY-1 (Russell [1987]) and a derivative of 

the original CDC STAR-100 machine called the CYBER 205 (Kascic [1979]). 

These machines were significantly faster than any other machines available at that 

time. The spectacular improvements in computer speed were achieved as a direct 

result of combining the technological advances in hardware with the introduction 

of a higher level of concurrency or parallelism in the architecture. By the early 

eighties the CRAY and CDC machines had become world leaders and had allowed 

CFD practitioners to become more adventurous. This in turn stimulated other 

computer manufacturers to market their own vector and parallel based machines,
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these include the IBM 3090, AMT DAP, FACOM VP-100 and VP-200, the NEC 

SX-1 and SX-2 and the Sequent balance 8000 and 21000 machines. Not 

surprisingly, a vast amount of literature has appeared in the last decade on the 

solution of practical engineering problems using supercomputers. This has also led 

to new journals dedicated entirely to the computer science of vector and parallel 

processing the most notable being 'Parallel Computing'.

In the past, a large number of the publications have been based on work carried 

out on CRAY-based machines and a smaller proportion on CYBER 205 machines. 

Although some of these machines can be used to perform both vector and coarse- 

grain parallelism operations, attention is primarily focused on the use of a single 

pipeline vector processor.

A number of different questions need to be answered about the use of vector 

processing in the solution of CFD problems. For example, how fast can a CFD 

code run on a given vector processing architecture? How much faster (or slower) 

is the vectorised execution compared to the execution of the equivalent scalar 

code? and how much improvement in speed can one ever hope to achieve using a 

particular vector processor, given the characteristics of a typical CFD code? The 

answers to these questions will help to reveal and characterise different aspects of 

vector processing and vector processors.

1.2.1 Vectorised tridiagonal algorithms

In the past much attention has been given to the solution of a system of equations 

since it has become apparent that this constitutes a high proportion of the total
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computation time. Lambiotte and Voigt [1975] consider the solution of a

tridiagonal system of nxn equations using a number of direct and iterative

algorithms. One of the direct algorithms considered is the Gaussian elimination

algorithm with LU factorisation. For the purposes of vectorisation the implicit steps

are replaced by explicit steps. When coded on a CDC STAR-100 vector machine

the modified Gaussian elimination algorithm (using the vector hardware

instructions) is more efficient than the conventional scalar algorithm for matrix

systems n>l3. The vectorised algorithm of Stone [1973] was implemented and

found to be slower than the vectorised Gaussian elimination algorithm. Lambiotte

and Voigt [1975] also consider the vectorised cyclic reduction algorithm (Hockney

[1965]), their study reveals that the cyclic reduction algorithm is up to seven times

faster than the Gaussian elimination algorithm for large matrix systems «>125. As

well as direct algorithms, iterative algorithms such as the Jacobi, red-black SOR

and a Traub factorisation [1973] are also studied by Lambiotte and Voigt [1975].

Results are presented for the solution of the tridiagonal system of equations Ax=r

where the zth row of A is given by (0,...,0,&,1,£,0,...,0), r=(l,...,l)T and b is varied

to change the diagonal dominance of the matrix system. The settings are those

used by Traub [1973] where fc=0.24, 0.4 and 0.49 for the cases where «=100 and

1000. The red-black SOR algorithm is the most efficient iterative algorithm, but

overall, the cyclic reduction algorithm is found to be the best of all the algorithms

for the problem considered on the CDC STAR-100 machine.

Masden and Rodrigue [1976] carried out a similar investigation to that of 

Lambiotte and Voigt [1975] based on the solution of a tridiagonal matrix system. 

They restricted their study to direct solvers only and compared the performances of 

the vectorised Gaussian elimination algorithm, Jordan's algorithm [1974] and the
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cyclic reduction algorithm (Hockney [1965]). The calculations were also performed 

on a CDC STAR-100. machine and therefore similar conclusions were obtained to 

those of Lambiotte and Voigt [1975]. Masden and Rodrigue then proceeded to 

define a hybrid 'Super-STAR-Algorithm' which takes advantage of the fact that at 

an

inefficient on the CDC STAR-100. Instead, the process switches to a more 

efficient low-order tridiagonal solver such as the vectorised Gaussian elimination 

algorithm. The super-STAR-Algorithm was faster than the Gaussian elimination 

algorithm (implemented on a CDC 7600 scalar machine) for /i>750.

.ne a hybrid 'Super-STAR-Algorithm' which takes advantage of the fact that at 

advanced stage of the cyclic reduction process the computation becomes

Swarztrauber [1979] considers the vectorised implementation of Cramer's rule for 

the solution of a tridiagonal system of equations. The performance of the algorithm 

was compared to the Gaussian elimination algorithm with partial pivoting. On a 

CDC 7600 scalar machine the Gaussian elimination algorithm is faster, but despite 

having a higher operation count than the cyclic reduction algorithm, the vectorised 

Cramer's rule is faster than the Gaussian elimination on the CRAY-1. This is 

purely because the Gaussian elimination algorithm is vectorised to a lesser degree.

1.2.2 Vectorised algorithms for large sparse systems of equations

The early eighties saw some of the first computations performed on practical CFD 

problems. Spradley et al [1981] presented a General Interpolants Method (GIM) to 

analyse complex three-dimensional flow fields described by the inviscid Euler 

equations as well as the time-averaged Navier-Stokes Equations. The code 

combined the techniques of finite-element (for the geometry definition) with finite- 

difference (to solve the resulting equations). The solution of the equations were
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obtained using a MacCormack predictor-corrector type scheme and was found to 

be the most time consuming of all the modules. By re-ordering the index over 

which the calculations were performed the solver was adapted for use on the CDC 

STAR-100. A number of different problems were considered and a sixfold 

improvement in speed was achieved over the same code on a CDC 7600 scalar 

machine. When a pipeline CYBER 203 was used a further improvement of two 

was achieved.

Kordulla [1984] also reported on the vectorisation of a MacCormack based CFD 

code for the CRAY-IS machine. The problem studied was flow past a hemisphere- 

cylinder configuration at a 5° angle of attack and a Reynolds number of 212,500 

referenced with the radius of the sphere. The computational grids used were 

31x20x31 and 42x20x31. Since the vectorisation of the explicit steps were 

straightforward the emphasis was on the vectorisation of the implicit steps in the 

predictor-corrector scheme. The results indicated that the computation times on the 

IBM 308IK were about eight times slower than on the CRAY-IS (scalar 

processor). When the CRAY auto-vectoriser was switched on the ratio increased to 

10 and for the manually vectorised code the ratio was further increased to 31. 

Although the CRAY vectorising compiler has improved considerably since then, 

this example helps to illustrate the limitations in relying on a vectorising compiler. 

There is clearly a need for user-interaction.

Borrel et al [1985] also used the MacCormack scheme to simulate three- 

dimensional flow past a wing. The solution is determined using the Euler equations 

to obtain pressure and velocity components. A similar vectorisation approach was 

taken to Kordulla [1984] where loop indices are re-ordered and data dependencies
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most efficiently with long vectors. Moreover, it is the authors belief that an 

explicit whole-field solver would be better suited for a three-dimensional problem 

since the vector operations would be of maximum possible length.

On some three-dimensional problems it becomes impractical to carry out the 

simulation using a scalar processor, instead results are presented for the vectorised 

computation only (Rizzi and Therre [1985]). This approach to presenting results is 

informative to an engineer since it becomes possible to determine how quickly a 

problem can be solved.

Thus far the numerical algorithms have been restricted to the solution of 

tridiagonal systems. Much work has been done on the solution of a large sparse 

matrix system, this system is not necessarily tridiagonal and is often encountered 

when using a discretisation scheme to represent the domain of interest. The growth 

and popularity of the pipeline vector processor as an architecture to solve computer 

intensive CFD problems can be partly attributed to the availability of explicit 

numerical algorithms which are readily vectorised. Examples of such algorithms are 

the JUR and conjugate gradient (Hestenes and Stiefel [1952]) algorithms. A large 

number of the results quoted for the use of such algorithms have been based on 

the solution of the Poisson equation. The discretisation of the Poisson equation 

using a five point finite-difference technique results in a linear system of 

equations, these make up a sparse pentadiagonal matrix (A) in two dimensions.

The conjugate gradient algorithm is based mainly on matrix-vector and vector- 

vector operations and is therefore ideal for vector processing. However, the 

algorithm has been reported to be slow in some cases (Concus, Golub and O'leary
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[1975]). To overcome this problem a preconditioning matrix (P) is introduced into 

the formulation, the purpose of the preconditioning matrix is to lower the condition 

number of the original matrix and the right-hand-side vector b, hence the matrix 

system becomes

p-'Ax = p-'b

The choice of the matrix P raises interesting points, for example, will it destroy 

the structure and other desirable properties present in the original matrix? Will it 

be detrimental to the convergence rate of the original conjugate gradient method? 

How expensive is the generation of the matrix P relative to the total computation 

time and will the matrix formulation for P be such that efficient vectorisation is 

possible? It is found that the solution of a tridiagonal matrix system (an 

intermediate step in the preconditioned algorithm) poses some problems when 

attempting to vectorise this step. Various approaches have been taken to overcome 

this problem. One suggestion is the use of the cyclic reduction algorithm (Rodrigue 

and Wolitzer [1981] and Jordan [1981]). Alternatively, any other tridiagonal solver 

presented thus far could be used.

Dubois, Greenbaum and Rodrigue [1979] suggest the use of a truncated Neumann 

expansion to represent the inverse of the original matrix as the preconditioning 

matrix. Despite full vectorisation there was a significant increase in the number of 

conjugate gradient iterations.
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Van der Vorst [1982] suggested a truncated Incomplete Cholesky Conjugate 

Gradient algorithm (ICCG) where the inverse of the matrix (1-E) is given by

In the two cases studied, the truncated ICCG algorithm was more efficient than the 

truncated Neumann expansion. Also, the increase in the number of iterations was 

minimal and as a result the vectorised version of the truncated ICCG was 

competitive with the scalar ICCG algorithm. However, in a later study van der 

Vorst [1986] showed that for some problems the number of iterations can increase 

significantly to make the vectorised ICCG algorithm less competitive. The 

improvements in using the vectorised truncated ICCG over the scalar ICCG 

algorithm on a CRAY-1 and CRAY X-MP were up to 50%, with over a twofold 

increase on the CYBER 205.

The simplest preconditioning matrix is the Jacobi or diagonal preconditioner (JCG). 

Radicati and Vitaletti [1987] compare the solution times of the JCG and the ICCG 

algorithms on an IBM 3090-VF machine. The problem was a three-dimensional 

elliptic partial differential equation with mixed boundary conditions and is solved 

on a 403 grid. In the case of the ICCG algorithm the solution of the intermediate 

matrix system is solved once and stored. Although this results in a higher cost per 

iteration this is offset by the reduced number of overall conjugate gradient 

iterations. In each case comparisons were made between the vectorised and scalar 

ICCG and JCG algorithms. The compressed diagonal storage method was used 

since this produces vector lengths of order 403 . In scalar mode the ICCG is 

superior to the JCG algorithm but the opposite is true in vector mode. This is
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mainly due to the essentially scalar computations which are used to solve the 

intermediate matrix system. Despite this, speed-up factors of 2 are reported in 

favour of the vector ICCG and up to 6 in favour of the vector JCG algorithm.

Block preconditioning can also be used as part of the conjugate gradient algorithm 

(Meurant [1984] and Concus, Golub and Meurant [1985]). A vectorised Cholesky 

decomposition is used as a block preconditioner to solve three test problems, the 

inner products were coded in CAL (Cray Assembler Language). The ICCG 

algorithm is implemented for comparison, and computations were performed on the 

CRAY-IS and CRAY X-MP machines. The best improvements were obtained 

using the block preconditioning algorithm rather than the ICCG, but the times 

recorded did not include the time to generate the preconditioning matrix. 

Furthermore, in one test case the approximation of the inverse was poor enough to 

cause a severe degradation in the performance of the vectorised algorithms.

Kightiey and Jones [1985] consider the solution of large three-dimensional 

turbulent flow simulations using SIMPLE. The emphasis is on the solution of the 

pressure-correction equation which is solved using the conjugate gradient algorithm 

with various preconditioned. These preconditioned include the Jacobi, standard 

incomplete Cholesky, truncated incomplete Cholesky (van der Vorst [1982]) and a 

block factorisation. In the solution of the 'trivial' Poisson equation the elaborate 

preconditioned are not worth the extra expense and the JCG algorithm is 

considered to be the best. However, as the complexity of the problem increases the 

ICCG algorithm is the most efficient even though the block preconditioner is more 

robust.
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Later, Kightley and Thompson [1987] cany out a comparison of preconditioned

conjugate gradient algorithms with different multigrid methods. The conjugate

gradient algorithms considered are the JCG, standard ICCG and truncated ICCG.

The multigrid algorithms used are those described in Wesseling et al [1982] and

Hemker et al [1983, 1984, 1985] and are denoted in brackets by a pseudo-name.

These include the incomplete LU factorisation (MGD1), incomplete block

factorisation (MGD5), the point red-black SOR (MG001) and the line-zebra SOR

(MGOQ3) algorithms. Results were presented for the solution of the Poisson

equation with a discretised uniform 128x128 grid on a CRAY-IS. A speed-up

factor of 3.3 and 4 were obtained in favour of the vectorised MGD1 and MG001

algorithms, respectively. A case is found where the truncated ICCG is less efficient

than the standard ICCG algorithm (Kightley and Jones [1985]). The general

conclusion was that the conjugate gradient based methods were efficient for low

accuracy solutions but the multigrid methods were more appropriate when a much

higher accuracy is desired in the solution.

Kincaid et al [1986] consider the application of the conjugate gradient (CG) and 

chebychev (SI) methods as a means of accelerating some popular iterative 

algorithms. The CG acceleration was substantially faster for the solution of 

Poisson's equation on a 20x20 grid using a scalar processor. (Scalar simulations 

were performed on a CYBER 170/750 and all vector simulations performed on a 

CYBER 205). Using a 64x64 grid there was little to choose between the vectorised 

red-black SOR-CG, Jacobi-CG and Richardson-CG. Even though the latter two 

required more CG iterations these algorithms were easier to implement and were 

recommended for general use.
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Elaborate ordering schemes for the CG algorithm have been examined by Melhem 

and Gannon [1987]. For ill-conditioned systems of equations the column-wise two 

colour ICCG algorithm is shown to be more efficient than the natural ordered JCG 

algorithm.

Kapitza and Eppel [1987] describe an incomplete Crout factorisation for the 

conjugate gradient algorithm which is used to solve a three-dimensional Poisson 

equation. This is referred to as the Idealised Generalised conjugate gradient (IGCG) 

algorithm. The simulation was performed on a CYBER 205 and the performance 

compared to a number of iterative relaxation algorithms. Their unit of measure was 

the work unit (which is the time taken to carry out one iteration of the algorithm, 

WU) and speed-up factors of 10 over popular iterative algorithms such as the red- 

black SOR were not uncommon. However, it should be realised that the 

computation involved in a single WU of the CG algorithm is not the same as that 

of an iterative algorithm.

Gemzsch [1987] proposed a fully vectorised SOR variant for a general second 

order elliptic partial differential equation. The motivation for this was that there are 

overheads associated with the use of a red-black ordering, these would be quite 

significant on some vector processing architectures, for example the CRAY-2 and 

IBM 3090VF. The original unknowns are transformed to give a discretised 

approximation, instead of being described by the traditional five-point molecule 

with connections north-east-south-west (N-E-S-W), it is now described by NE-SE- 

SW-NW (figure 1.2.2). The new variant was tested on the solution of Poisson's 

equation using a 127x127 grid and was found to be twice as fast as the red-black 

algorithm on both the CRAY-2 and IBM 3090VF machines.
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1.2.2 Computation molecule for (i) natural SOR (ii) vectorised SOR
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The implementation and comparison of multigrid methods for pipeline architectures 

has been briefly mentioned. Hemker, Wesseling and Zeeuw [1984] compare two. 

different preconditioning matrices on the CRAY-1 and CYBER 205 machines. The 

preconditioned were an incomplete LU factorisation (ILU) and a zebra SOR 

algorithm. They concluded that the zebra SOR algorithm was more efficient than 

the ILU factorisation on the CRAY-1, but the opposite was true when they were 

implemented on the CYBER 205. Vanka and Misengades [1987] suggested the 

vectorisation of the multigrid block implicit method on a CRAY X-MP, while 

Holter [1985] considered the implementation of multigrid methods due to Brandt 

[1977] on a CYBER 205.

1.2.3 Parallel-based algorithms for large sparse systems of equations

Some of the earliest work on the use of parallel architectures to solve a system of 

equations was performed by Stone [1973]. The machine used was the ILLIAC IV 

and was described as having an 'exotic' architecture. (The ILLIAC IV was 

classified as a MIMD parallel processing machine and was to have a considerable 

influence on the development of future architectures). In his work Stone considered 

the implementation of a tridiagonal solver using LU decomposition by recursive 

doubling. Unfortunately, the only results presented were based on the number of 

arithmetic operations.

The popularity of the cyclic reduction algorithm is such that it has been 

implemented on the ICL DAP (Whiteway [1979]). The ICL DAP is made up of a 

64x64 array of processing elements, all of which simultaneously carry out the 

same instruction on a different data set. However, the implementation of the cyclic
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1.3 Discussion

A literature review of publications using a pipeline processor to solve partial 

differential equations has been carried out. One observation which arises is that 

there is no single 'best' algorithm. This is not surprising since there are a number 

of different factors which can have a significant effect on the performance of an 

algorithm.

The comparison between different algorithms is highly problem dependent. The 

convergence rate of some algorithms tend to decrease noticably as the diagonal 

dominance of the matrix becomes weaker. Therefore, one suggestion could be to 

solve a number of different matrix systems with varying diagonal dominance 

factors, this would help to present a more complete picture.

Another problem involves the implementation of the algorithm on different pipeline 

architectures. Despite the fact that a scalar algorithm is universal to all scalar 

machines this is not the case for the same vectorised algorithm. The vectorisation 

techniques used to restructure the scalar algorithm may be different and so lead to 

a performance specific to that vectorisation technique. In addition, the use of 

software tools such as compilers and low-level run-time vector libraries which have 

varying levels of sophistication can make comparisons even more difficult. Finally, 

the fact that different pipeline architectures have different characteristics means that 

it is unlikely any single algorithm can claim to be the most efficient on all 

pipeline architectures.
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The survey clearly shows that the computation effort is concentrated on the 

solution of.linear systems of equations typified by the discretisation of the Poisson 

equation. In some cases almost total vectorisation of the code is possible for some 

algorithms and this leads to substantial reductions in computation times. A high 

proportion of the code is vectorised because there is a relatively small overhead 

associated with the setting up of coefficients and source terms. However, will this 

be the case in fluid flow simulations where there are many more factors to be 

considered?

It is known that the problems discussed with regard to the implementation of 

algorithms on pipeline architectures will still apply to CFD computations. The 

solution of a linear system of equations still forms a major component in the 

solution procedure, however, the essentially scalar computations become more 

significant. These involve the generation of more complex diffusion and convection 

coefficients as well as complicated source terms.

1.4 Outline of present work

A fundamental description of various parallel processing architectures is presented, 

and attention is then focused on the pipeline vector processor and how it fits into 

various classes. All the computations in this work are carried out on the VA-1 

pipeline processor, this is attached to a MASSCOMP 5400 machine (MASSCOMP 

[1984]); Therefore, a detailed characterisation of this machine is given. A measure 

of the expected speed-up is determined using Amdahl's law, this has proved useful 

and is used throughout this work to assess the performance of the vectorised code.
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Different solution procedures are reviewed with regard to the solution of the 

Navier-Stokes equations in Chapter 3. These solution procedures involve SIMPLE 

and its derivatives. The SIMPLE procedure is chosen for implementation because 

of its suitability to the problems to be solved. In addition, a whole-field strategy is 

adopted since this will enable vector operations of maximum possible length.

In Chapter 4 a number of different algorithms such as the Thomas, cyclic 

reduction, JCG, JUR, SOR and red-black SOR are applied to the solution of the 

Laplace equation on a unit square, for a number of different grids. The algorithms 

are then vectorised in various ways, the Thomas and SOR being restructured to 

remove the recursion present in the scalar formulation. The expected improvement 

factors are predicted using Amdahl's law. This identifies the point-by-point and 

conjugate gradient solvers as the most efficient vectorised algorithms.

The complexity of the problems solved are extended to fluid flow simulations 

involving the solution of pressure and momentum components (Chapter 5). The test 

cases involve the solution of the two-dimensional lid-driven cavity problem and the 

flow in a suddenly expanding duct. The effect of just vectorising the pressure- 

correction equation solver in the SIMPLE procedure leads to modest improvements 

in speed, the limiting factor being the scalar computations. Further vectorisation is 

carried out on the rest of the SIMPLE procedure and this leads to a more 

substantial reduction in the computation time.

In Chapter 6 the effect of introducing scalar transport equations such as enthalpy 

and k-e turbulence representations are investigated. Here the test cases include the 

natural convection in a square cavity problem which introduces the solution of the



enthalpy equation for Rayleigh numbers up to 106, and the k and e equations for a 

Rayleigh number of 107. The second case is two-dimensional, turbulent, L-shaped 

flow in a duct. Although there is a reduction in the total contribution of the 

pressure-correction solution, the vectorisation of the scalar equations still leads to 

worthwhile reductions in time.

A multigrid solution strategy based on the ACM method of Settari and Aziz 

[1973] is presented in Chapter 7 following a review of multigrid methods. The 

ACM method is used to solve the pressure-correction equation and is applied to 

the four test cases described in Chapters 5 and 6. The improvements in 

computational speed are more notable in the cases where there is a dominant 

pressure field. The best performance of the scalar algorithms was achieved with up 

to four levels of the ACM method. Whereas, the same algorithm vectorised is 

most effective with just two levels. It is likely that the number of levels used by 

the vectorised algorithm will increase as the grid size is increased.

Finally, conclusions and suggestions for future development of the present work 

are presented in Chapter 8.
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CHAPTER TWO
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2.0 CLASSIFICATION OF ARCHITECTURES

2.1 Introduction

This chapter describes the general classification of a computer according to its 

architecture. Attention is focused on the pipeline vector processor category, and in 

particular to the MASSCOMP 5400 computer with an attached pipeline vector 

processor (VA-1). The potential of such a vector pipeline processor is investigated 

A means of predicting the expected speed-ups in using such a processor is also 

outlined This strategy is to be used at a later stage for the consolidation of quoted 

speed-ups for a CFD code.

2.2 Classification of architectures

The classification of computer architectures into an accurate and universal form is 

not an easy task. To date, there have been three different approaches presented. 

These are due to Flynn [1966, 1972], Shore [1973] and Hockney and Jesshope 

[1981]. All three have their merits but no single approach has emerged as the 

universally accepted classification scheme.

There are many reasons for this, the most significant of which is the broad 

spectrum of parallel architectures which have been proposed. Some of these 

architectures have come into being because of their obvious potential (for example, 

pipelining), others remain essentially theoretical (for example, the MISD machine 

proposed by Flynn [1966]). Another problem with attempting to classify these 

architectures is that in some cases the more useful architectures do not fall into a 

single category. They may fall into many categories, or none at all, hence
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requiring a separate category. The three different approaches to classifying these 

architectures are now presented.

2.3 Classification due to Flynn

The classification due to Rynn [1966] provides a broad characterisation of the 

different computer architectures. However, the categories defined are based on the 

flow of data or instructions (referred to as a 'stream'), rather than on the structure 

of the machines. Whether the instruction or data streams are single or multiple will 

determine one of four possible categories.

2.3.1 Single Instruction stream - Single Data stream (SISD)

This class of machine accepts a single stream of instructions, each of which acts 

upon a single stream of data items. A pipeline processor can be used to increase 

the rate at which instructions are processed, therefore machines with pipeline 

processors of this type are classed as SISD machines. SISD machines are also 

collectively called standard von Neumann machines.

2.3.2 Single Instruction stream - Multiple Data stream (SIMP)

This class of machine also accepts a single stream of instructions, however, each 

instruction acts upon a multiple stream of data items. The multiple stream of data 

can also be regarded as a vector of data, where each vector element represents a 

single stream of data items. The multiple stream of data can be achieved either 

through an array of processors or a pipeline processor. There are many examples
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of SIMD machines including processor arrays such as the ICL Distributed Array 

Processor (DAP) and ILLIAC IV, and pipelined vector machines such as the 

CRAY-1 and the CYBER 205.

2.3.3 Multiple Instruction stream - Single Data stream (MISD)

In this class of machines there are many different instructions being performed on 

single data items. To date, there are no practical examples of this class.

2.3.4 Multiple Instruction stream - Multiple Data stream (MIMD)

This final class is representative of true multiprocessor machines. In this class each 

processor accepts its own instruction stream and acts upon its own stream of data. 

Gorsline [1980] suggests that the pipeline processor falls into this class since it 

performs many instructions on a multiple scalar stream of data. Examples of 

MIMD machines include the Denelcor Heterogeneous Element Processor (HEP) 

and an array of transputer processors.

2.4 Classification due to Shore

The classification of machines according to how they are organised was proposed 

by Shore [1973]. Six different machine types (I - VI) are described, each machine 

type defined using four basic parts - a control unit (CU), a processing unit (PU), 

an instruction memory (IM) and a data memory (DM). What differentiates the six 

machine types is the particular way in which the basic parts (including multiples) 

are arranged.
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2.4.1 Machine I

This arrangement describes the conventional von Neumann machine (figure 

2.4.1-1). The single DM read produces all bits from a single word for processing 

in parallel by the PU, this is referred to as a horizontal word slice. However, since 

the PU may contain multiple functional units and may also be pipelined, machines 

such as the CRAY-1 can also be included in this class.

2.4.2 Machine II

This arrangement is very similar to that of machine I. The major difference is that 

the single DM read produces a single bit from all words (figure 2.4.2-1). Again, 

all bits are processed in parallel by the PU, this is referred to as a vertical bit 

slice. The more words that need to be processed, the more significant the speed 

advantage of this machine. Examples of this machine type include STARAN and 

the ICL DAP.

2.4.3 Machine in

This arrangement provides both horizontal and vertical PU's and so allows access 

to both bit and word slices (figure 2.4.3-1). This machine type is a combination of 

machines I and n and therefore has the benefits of both. An example of this 

machine type is the Orthogonal Computer of Shooman.
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2.4.4 Machine IV

This arrangement is a natural extension to that of machine I. Here, the PU and 

DM are replicated, and these are under the control of a single CU (figure 2.4.4-1). 

Although there is no direct communication between PU's, this architecture can 

easily be extended. An example of this machine type is the PEPE (Parallel 

Element Processor Ensemble) machine.

2.4.5 Machine V

This arrangement is an improvement to machine IV. It allows PU's to 

communicate with its two neighbours and is sometimes referred to as the 

connected array class (figure 2.4.5-1). An example of this machine type is the 

ILLIAC IV machine.

2.4.6 Machine VI

This final arrangement has a single component containing the PU and DM (figure 

2.4.6-1). Here the processing logic is distributed throughout the memory. Examples 

of this type of machine are associative processors.

2.5 Classification due to Hocknev and Jesshope

As part of this classification a comprehensive notation is introduced to aid with the 

description of different architectures. Hockney and Jesshope [1981] define a
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2.4.1-1 MACHINE Irword-serial bit-parallel class

2.4.2-1 MACHINE II:word-parallel bit-serial class
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2.4.3-1 MACHINE fflrorthogonal class

2.4.4-1 MACHINE IV:Unconnected array class
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2.4.5-1 MACHINE V:Connected anay class

I

2.4.6-1 MACHINE VlrLogic in memory class
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computer (C) as having an instruction unit (I) which controls an execution unit (E) 

connected to a single memory bank (M). Therefore in notational form the scalar 

von Neumann machine is represented by

C = I[E-M]

The structural notation includes up to ten different rules for units, six rules for the 

connections between units and three different types of control of the units. A 

complete breakdown is given by Hockney and Jesshope [1981] pp32-42.

The architectural subdivisions are presented as hierarchical structures so that a 

single class of computer is defined at the end of each branch. The discussion here 

is restricted to machines with a single instruction unit (figure 2.5-1). More 

specifically, machines with a single instruction unit - single unpipelined execution 

units (serial processors), and a single instruction unit - multiple execution units 

(pipelined vector or parallel processors).

For the serial computer class (figure 2.5-2) two further divisions are necessary. The 

first is whether the arithmetic unit is integer- or floating-point, and the second is 

whether the integer-point is 1-bit serial or n-bit parallel.

For the pipelined vector or parallel computer class (figure 2.5-3), a distinction 

between pipelined machines is necessary. This is because there exist high 

performance pipeline scalar machines and high performance pipeline vector 

machines. The pipeline scalar machines have either a single instruction which 

controls all units at each cycle, or a system where instructions are issued to 

individual units. The pipeline vector computers are divided into two classes. Those 

where specific arithmenc operations are executed are referred to as special-purpose



pipelines, and those where more than one arithmetic operation can be executed are 

referred to as general-purpose pipelines.

The final subdivision of multiple execution units is the processor array class of 

computers. These can be either floating-point or few-bit execution units. Further 

divisions describe the way in which the processors are connected.

Flynn's approach provides a useful, broad, easy-to-remember classification of 

architectures. However, it does have its drawbacks. For example, the interpretation 

of the term 'stream' can be such that the pipeline processor is placed in all four 

categories. It may be classed as SISD because it processes a single stream of 

vector data , or SIMD if every element of the vector is regarded as an individual 

stream of data. It can be classed as MISD or MIMD if the pipeline arithmetic unit 

performs in parallel on a scalar or vector stream of data. Flynn placed the pipeline 

processor together with processor arrays despite the completely different 

architectures.

The classifications due to Flynn and Shore are very similar. Machine I and the 

SISD class are equivalent, and machines n, HI, IV and V provide a detailed 

breakdown of the SIMD class. Not surprisingly, there is no obvious class for the 

pipeline processor.

The classification of Hockney and Jesshope provides a detailed breakdown of 

computer architecture based on functional units. Although more precise, (for 

example it has a clear classification of the pipeline processor), it does have the 

drawback of being less memorable.
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SINGLE INSTRUCTION UNIT

SERIAL COMPUTERS PIPELIN|IECT^ROJl
S COMPUTERS

PIPELINED PROCESSOR ARRAY

2.5-1 Overview of subdivisions for computers with a single
instruction unit

SERIAL COMPUTERS

INTEGER ARITHMETIC FLOATING-PIONT 
ARITHMETIC

1-BIT SERIAL n-BIT PARALLEL

UNIVAC1 IBM701

FLOATING-POINT 
SERIAL COMPUTER

IBM 7090

2.5-2 Single instruction - serial computer class



UNFEPEUNED

MULTIPLE

FPSAP^SOIS CHDC76OO

FLOATING-POINT 

UNITS

FEW-BIT 

EXECUTION UNITS

STARAN
CONNECTEPJ 

2.5-3 Single instruction - vector and parallel classes
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2.6 Classification of pipeline processors

The notion of using a pipeline process to improve the efficiency of a system has 

existed for many years. It has been widely used in automated industrial plants, in 

particular the car industry. This has since been extended to enhance computer 

performance. The CDC 7600 was amongst the first of such computers to utilise the 

idea of pipelining.

It has already been mentioned that different pipeline processor configurations exist 

(Ramamorthy and Li [1977], Handler [1977]). Three such classes are:

i. unifunctional or multifunctional

These have already been described in section 2.5 and are either special- 

purpose (unifunctional) or general-purpose (multifunctional) pipeline 

processors.

ii. static or dynamic

A static pipeline processor is defined by the continuous execution of 

instructions of the same type. A dynamic pipeline processor allows the 

simultaneous existence of several functional configurations.

iii. scalar or vector

Processing a sequence of scalar operations under the control of a loop 

defines a pipeline scalar processor, and similarly for processing vector 

operations defines a pipeline vector processor.

All future references to a pipeline processor will imply a pipeline vector processor.



2.7 How a pipeline processor attains its speed

A pipeline consists of a number of processing stages, where each stage is 

responsible for a specific task in an arithmetic operation. Information is transferred 

between adjacent stages under the control of a common clock. Consider the 

problem of performing the arithmetic operation

ct = a, + b, i=l,...,4

where it takes four stages to complete a single addition. Figure 2.7-1 shows the 

benefit in using a pipeline processor over the conventional scalar processor. By 

overlapping the arithmetic operations a result is obtained after the fourth clock 

cycle, and thereafter a single result is obtained every clock cycle (total of 7 clock 

cycles). In the case of a scalar processor a result is obtained every fourth clock 

cycle (total of 16 clock cycles).

In general, an arithmetic operation which takes / stages can process vectors of 

length n in a time given by

T, = / + (n-1) (2.7-1)

where T, is the time in clock periods. Here, / clock cycles are required to obtain 

the first result and n-1 cycles to complete the remaining n-1 results. Using a scalar 

processor the time taken to complete the arithmetic operation is given by

T, = n/ (2.7-2)
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We can now define the speed-up S, of a pipeline processor with / stages over the 

conventional scalar processor as

S, = L = n/ (2.7.3) 
T, / + (n-1)

Thus the theoretical speed-up (S^J approaches / for a large vector length. This 

speed-up is never reached for many reasons. These include a penalty time incurred 

in initialising the pipeline processor and delay times between clock cycles.

2.8 Memory-to-memorv and register-to-register pipeline processors

The difference between these two architectural configurations depends on where the 

operands are retrieved from within the pipeline processor. If all the source 

operands and results are retrieved directly from the main memory then this 

describes the memory-to-memory architecture. Here it is necessary to specify the 

base address, offsets, increments and vector lengths which define the vectors to be 

used. Examples of machines with this configuration include the STAR-100 and 

CYBER 205.

If the source operands and results are retrieved indirectly from the main memory 

and through registers, then this describes the register-to-register architecture. 

Examples of machines with this configuration include the CRAY family and the 

Fujitsu VP-400.

Thus far different pipeline architectures have been considered. Attention is now 

focused on a pipeline processor which has been used as pan of this research.
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