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Abstract 

The primary aim of this study was to examine the change in performance prior to and 

following a fatiguing interval training session (TS).  A secondary aim of this study was to 

examine the change in oxygen uptake (VO2 ) during moderate and severe intensity running, 

and the relationship with the change in performance.  Seven male runners (mean + s.d.: age 

24 + 6 years; height 1.79 + 0.06 m; body mass 67.9 + 7.6 kg; VO2 max 4.14 + 0.49 l.min-1) 

were studied.  The VO2  during moderate and severe intensity running and running 

performance were studied immediately prior to, one hour following, and 72 h following the 

TS.  The TS was performed on a treadmill, and consisted of 6 bouts of 800 m at 1 km.h-1 

below the velocity at VO2 max (v- VO2 max), with 3 min rest intervals.  Performance was also 

assessed at 1 km.h-1  below v- VO2 max, in the form of time to exhaustion (tlim).  The VO2  and 

heart rate (ƒc) were assessed both during the severe intensity performance trial, and the 

moderate intensity run at 50% v- VO2 max.  Whilst a significant change was observed in 

running performance and the VO2  during both moderate and severe intensity running prior to 

and following the TS, no relationship was observed between the magnitude of change in 

these variables.  One hour following the TS, tlim was decreased by 24%, VO2  during moderate 

intensity running was increased by 2%, and the difference in VO2  between 2 min 45 s and the 

end of severe intensity running was increased by 91% compared with values recorded prior to 

the TS.  One hour following the TS, ƒc was also increased significantly during moderate 

intensity running by 5% compared to the value recorded prior to the TS.  These findings 

demonstrate that the TS resulted in a reduction in performance, and that the relationship 

between running performance and VO2  during running may be altered under conditions of 

prolonged fatigue. 

 

Keywords:  Oxygen uptake - endurance - running - fatigue 
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Introduction 

Time to exhaustion (tlim) during severe intensity exercise has been used to assess endurance 

running performance previously (eg., Billat et al., 1994a; b).  According to the critical power 

concept, tlim during severe intensity exercise, which is defined as being above critical power, 

is generally less than 30 min (Hill, 1993).  During constant load cycle ergometry exercise to 

exhaustion, it has been found that only exercise at power output above critical power results 

in the attainment of maximal oxygen uptake (VO2 max) (Hill and Smith, 1999).  Conversely, 

Billat et al. (1997) found that during constant velocity running exercise above critical 

velocity, oxygen uptake (VO2 ) did not reach VO2 max in high-level distance runners.  It has, 

however, been suggested that tlim during severe intensity exercise may be related to the 

magnitude of the change in VO2  between 3 minutes and the end of exercise (Poole et al., 

1994a).  Two recent studies have demonstrated that the VO2  during heavy intensity running 

(James and Doust, 1999) and moderate intensity running (James and Doust, 1998) is 

increased following an interval training session (TS).  It is therefore interesting to examine 

whether following a similar TS, changes in VO2  during moderate and severe intensity 

running are related to changes in tlim. 

 

Many mechanisms have been proposed to explain the additional VO2  during running in a 

fatigued condition, including reduced neural input to the active muscles resulting in reduced 

force production, reduced tolerance to stretch loads, reduced recoil characteristics, and 

depleted muscle glycogen stores (Sherman et al., 1983; Sherman et al., 1984; Buckalew et al., 

1985; Nicol et al., 1991a; Nicol et al., 1991b).  A greater recruitment of type II muscle fibres, 

possibly in addition to, or instead of the type I fibres offers a further potential mechanism 

(Sejersted and Vollestad, 1992).  In the case of running exercise, a changed fibre recruitment 

pattern may be a product of the damage caused by the repeated stretch shortening cycles, 

glycogen depletion in selected fibres, or other ‘non-metabolic’ fatigue (Hagerman et al., 

1984; Vollestad et al,. 1984; Green, 1991). 

 

Differences in the VO2  during running have been shown to have significant implications for 

performance, especially in subjects with similar values for maximal oxygen uptake (VO2

max) (Costill and Winrow, 1970;  Daniels, 1974; Morgan et al., 1989a).  However, in 

general, studies with both a cross-sectional and longitudinal design demonstrate equivocal 

findings with regard to the relationship between VO2  during constant velocity running and 

performance (Morgan and Craib, 1992). 

 

The tlim at the velocity associated with VO2 max (v- VO2 max) appears to be a suitable measure 

of running performance, and is probably the best method currently available for the 

assessment of changes in endurance running performance following an intervention.  The tlim 
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has been demonstrated to be a reliable measure during running at v- VO2 max (Billat et al., 

1994b).  The tlim when measured during running at v- VO2 max has been shown to be closely 

related to velocity maintained during a half marathon competition, and lactate threshold when 

expressed as %VO2 max (Billat et al., 1994a).  Based on the usual duration of tlim at v- VO2

max (~6 min 30 s), and the proposed physiological factors determining the time limit at this 

intensity, it is somewhat surprising that tlim is related to half marathon velocity and lactate 

threshold, but not to VO2 max, v- VO2 max, running economy or velocity maintained during a 

3000 m performance.  However, results from previous studies indicate that the measurement 

of tlim at v- VO2 max in a laboratory setting is suitable for studying the effects of an 

intervention on performance in a group of endurance runners (Billat et al., 1994b). 

 

This study aimed to establish whether tlim was reduced following a bout of severe intensity 

interval running training, and whether a change in VO2  during moderate and severe intensity 

exercise was related to a change in tlim. 

 

Methods 

Seven well-trained male runners gave informed consent to take part in the study which had 

been approved by the ethics committee of Chelsea School, University of Brighton.  The 

subjects were all thoroughly habituated to laboratory testing procedures. 

 

All subjects rested for 3 days prior to the start of the experiment, and no training was 

performed throughout the testing period.  The subjects were instructed to consume their 

normal high carbohydrate diet between testing sessions.  For 3 hours prior to each testing 

session subjects refrained from eating, and consuming caffeine and alcohol.  Subjects were 

instructed to arrive at each testing session fully hydrated, and wearing identical footwear and 

similar clothing.  The same individual warm up routine was performed on each occasion.  All 

testing took place between 1 pm and 5 pm. 

 

All running took place on a Woodway treadmill (Cardiosport Ltd., Salford, U.K.).  The speed 

of the treadmill driving motor is monitored by sensors on the motor and is shown on the 

digital display.  Since the treadmill belt is unable to slip due to the rack and pinion 

arrangement, it always rotates at the same speed as the motor, and therefore the treadmill belt 

is effectively self-calibrated at the speed displayed on the control console.  Routine checks 

were made, in addition to the self-calibration, by manual counting of belt rotations over a 

recorded time.  The belt length was accurately measured, and when multiplied by the number 

of revolutions and divided by the time for the known number of revolutions, the belt speed 

was found.  The grade of the treadmill was checked manually using a protractor, and spirit 
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level.  The grade was determined as the tangent of the angle of incline (i.e., 

opposite/adjacent).  

 

On the first occasion subjects visited the laboratory, age, height, mass, VO2 max and v- VO2

max were determined.  VO2 max was measured for treadmill exercise using an incremental 

velocity protocol (Jones and Doust, 1996a).  Increment duration was 1 min, with an increase 

of 1 km.h-1 each minute.  All running was performed with the treadmill at a 1% grade since 

this was the gradient found to best represent outdoor running (Jones and Doust, 1996b).  The 

v- VO2 max was defined as the velocity corresponding to the highest VO2  value recorded 

during the incremental test.  In the event of a plateau, the lowest associated velocity was 

recorded. 

 

During exercise subjects wore a nose clip and a large, broad flanged rubber mouthpiece 
(Collins, Mass, USA) fitted to a low-resistance (Inspired < 3 cmH2O and expired < 1 cmH2O 

at flow rates up to 350 L.min-1 ATPS) breathing valve (University of Brighton, England) of 

negligible volume (90 ml), consisting of lightweight perspex tubing (T-shape) into which is 

mounted two rubber flap one-way low resistance valves (Mine Safety Appliances Ltd.), 

connected to a 200 L Douglas bag from the expired side via a 1 m length of light weight 

Falconia tubing of 36 mm bore (Baxter Woodhouse and Taylor Ltd.).  Expired gas was 

collected for a timed period of whole number of breaths during the final 45 seconds of each 
minute.  The expired gas was analysed for O2 and CO2 content, using a paramagnetic O2 

analyser (1100 series, Servomex, Crowborough, U.K.) and an infrared CO2 analyser (1490 

series, Servomex, Crowborough, U.K.).  Each analyser was calibrated at two points, and 

checked for linearity using high precision gas mixtures and room air.  Gas volume was 

measured using a dry gas meter (Harvard Apparatus Ltd., Edenbridge, U.K.) previously 

calibrated against a Tissot spirometer, and regularly checked for linearity throughout the 

complete collection volume range using a 7 L calibration syringe (Hans Rudolf Inc., Kansas 

City, Mo., USA). 

 

A standardised relative workload for each subject of 6 x 800 m intervals at 1 km.h-1 below v-
VO2 max, with 3 min rest between each interval, was used as the interval training sessions 

(TS); this was designed to replicate a severe overload which well-trained runners would 

regularly perform.  The ƒc was recorded continuously using a telemetric system (Sport Tester, 

Polar Electro Oy, Kempele, Finland).  The TS was performed on two occasions at a similar 

time of day (2.00 to 4.00 p.m.) by all subjects. 

 

Prior to and following both TS, a series of moderate intensity constant load runs were 

perfomed (tests 1m, 2m, 3m, 4m, 5m).  Also, a series of severe intensity constant load runs 
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were performed (tests 1s, 2s, 3s).  The design of the study, which included the TS to be 

repeated, was to allow tests to be performed either 1 hour or 72 hours after the training 

session.  Due to the fatiguing nature of the severe intensity runs, it was not considered 

appropriate to perform tests at 1 hour and 72 hours following the same TS.    

 

The series of moderate intensity runs were at the velocity corresponding to 50% v- VO2 max, 

which was chosen to ensure that all subjects were exercising at an intensity well below that 

which would elicit a rise in blood lactate above 2 mM (James and Doust 1998).  This 

requirement was necessary to provide steady state gas exchange conditions (Barstow and 

Mole, 1991).  Each subject was weighed and then instructed to begin running on the treadmill 

ergometer for 15 min.  From 10 min to 12 min and 13 min to 15 min ƒc and cadence were 

recorded, along with duplicate collections of expired gas over a timed period of whole 

number of breaths always in excess of 1 minute duration. 

 

The series of severee intensity runs were designed to allow determination of time to 

exhaustion (tlim), and were a continuation of certain moderate intensity tests, including test 

1m, test 3m, and test 5m respectively.  Within 15 s the treadmill was ramped up to 1 km.h-1 

below v- VO2 max, at which point the timing was initiated.  Expired gas was collected for 30 

second periods, and ƒc and cadence were determined from 2 min 30 s until the exercise was 

terminated.  Verbal encouragement was given, but subjects were not told the time elapsed 

either during or following the test until the whole experiment had been completed, in order to 

minimise any effects of altered motivation due to a time goal.  Timing was stopped as the 

subjects hands touched the frame of the treadmill.  Following the test expired gas was 

analysed to determine the difference in VO2  between the value after 2 min 30 s of severe 

intensity exercise and the value at the end of the test.  The VO2  was recorded as representing 

the mid-point of the collection period (e.g., 2 min 45 s), and all calculations were based upon 

these time points.  Since the difference in VO2  was observed over differing durations 

between subjects, the difference was expressed as a rate of increase in litres per minute per 

minute (l.min-2). 

 

A velocity of 1 km.h-1 below v- VO2 max rather than v- VO2 max, which has been widely used 

to determine tlim previously (Billat and Koralsztein, 1996), was chosen in light of the expected 

tlim.  To determine a difference in VO2  between 2 min 30 s and the end of exercise, tlim had to 

be long enough to make at least two reliable samples of expired gas (i.e., > 210 s) in all three 

severe intensity tests.  The particular concern was the test in the fatigued condition at 1 h 

following the training session (i.e., test 2s).  Accounting for our method of determination of 

v- VO2 max, and our experience of tlim at this velocity under a variety of conditions, 1 km.h-1 
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below v- VO2 max was considered an appropriate velocity to ensure a duration of > 210 s in 

all subjects. 

 

Test 1m and test 1s were performed following 3 days of rest.  Test 2m and 4m were 

performed immediately prior to the TS.  Tests 3m and test 2s were performed 1 hour 

following the first TS.  Test 5m and test 3s were performed 72 h following the second TS.  

Following the first TS, the subjects were weighed to determine any changes in body mass.  

The subjects were instructed to consume a volume of water calculated from the change in 

body mass during the overload to reflect the loss of fluid as sweat.  This rehydration strategy 

has been previously shown to be successful through determination of plasma volume changes 

(James and Doust, 1998). 

 

Repeated-measures analysis of variance with multiple comparison (Tukey) was used to 

determine the significance of differences between tests.  A p-value of less than 0.05 was 

chosen prior to the study as the level at which a difference would be regarded as significant.  

 

Results 

Subject anthropometric details are given in table 1.  All but two subjects completed the TS, 

with one subject failing to complete the final interval (400 m completed), and the other 

subject failing to complete the final three intervals in both TS’s (630, 660, 520 and 730, 630, 

760 m completed respectively).  The reason for the failure to complete the TS’s was fatigue 

in both cases, so was not considered a limitation for the overall aim of the experiment. 

 

The ƒc response during the first and second TS is shown in figures 1 and 2 respectively.  It is 

clear that the response was not different between the two TS, and the maximal ƒc during each 

interval was approaching the maximal ƒc recorded during the incremental test as shown by the 

line breaking the y-axis in figure 1 and 2.  The exercise intensity for both the training session 

and the run to exhaustion was severe, at a velocity which elicited ~95 % VO2 max after 3 

minutes of running. 

 

Responses to the severe intensity runs are shown in table 2.  A significant difference was 

observed for tlim between tests 1s and 2s, and tests 2s and 3s (p < 0.05).  The tlim  recorded 1 h 

following the TS (test 2s) was 24 % less than tlim in the rested condition (test 1s) and 32 % 

less than tlim 72 h following the TS (test 3s).  The decrease in tlim in test 2s was associated with 

a significantly greater VO2  difference between 2 min 45 s and the end of exercise in test 2 

compared with test 1 or 3 (p < 0.05).  No relationship was observed between the change in tlim 

and the change in VO2  between 2 min 45 s and the end of exercise during the severe intensity 

run (see figure 3). 
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Responses to the moderate intensity runs are shown in table 3.  A significant difference was 

observed for VO2  in test 3m compared with test 2m, and test 5m compared with test 4m (p < 

0.05).  At 1 h following the TS (test 3m), VO2  was increased by 2 % above the value prior to 

the TS (test 2m).  At 72 h following the TS (test 5m), VO2  was decreased by 3 % below the 

value prior to the TS (test 4m).  A significant difference was observed for ƒc in test 3m 

compared with test 2m, and test 5m compared with test 4m (p < 0.05).  At 1 h following the 

TS (test 3m), ƒc was increased by 5 % above the value prior to the TS (test 2m).  At 72 h 

following the TS (test 5m), ƒc was decreased by 13 % below the value prior to the TS (test 

4m).  No relationship was observed between the change in tlim and the change in VO2  during 

the moderate intensity run (see figure 4). 

 

Although a significantly greater VO2  difference between 2 min 45 s and the end of severe 

intensity running, and a significantly greater VO2  during moderate intensity running was 

observed in test 2 compared with test 1, no relationship was found between these two 

measures (see figure 5).  No significant differences were observed for cadence between any 

of the conditions in either the moderate intensity, or the severee intensity run (p < 0.05). 

 

 

Discussion 

Although a decrease in tlim and an increase in the VO2  response were observed during the 

severe intensity trial following the TS in the present study, no relationship existed between 

the change in these two variables.  Likewise, although VO2  during moderate intensity 

exercise was increased following the TS, no relationship existed between this change and the 

decrease in tlim. 

 

Whilst the primary aim of the study was to examine the change in tlim, in order to establish 

possible mechanisms, it was interesting to examine whether tlim was changed in association 

with the VO2  response during severe intensity running.  Although gas exchange has been 

shown not to reach a steady state during severe intensity exercise (e.g., Barstow and Mole, 

1991), examination of the VO2  response at the same intensity as that used for the assessment 

of tlim and the TS may provide useful information.  Poole et al., 1994a suggest that tlim during 

severe intensity exercise may be related to the magnitude of the change in VO2  between 3 

minutes and the end of exercise.  This suggestion is based on the notion that the quicker VO2  

reaches VO2 max, the quicker fatigue will develop, since exercise at VO2 max can only be 

sustained for a finite time.  In the present study, the change in the VO2  between 2 min 45 s 

and the end of exercise was expressed as an acceleration and then examined in this regard, 

but no relationship was found between the change in tlim and the change in the VO2  response 
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following the TS.  Due to the off-line technique used to determine gas exchange in the 

present study, if subjects reached VO2 max prior to tlim, it was not possible to account for this 

when calculating the acceleration in VO2 .  It is also possible that an increase in VO2  may be 

constrained as VO2  approaches VO2 max, thereby slowing the attainment of VO2 max.   Since 

the slow component of VO2  kinetics is yet to be characterised, the extent of the limitation 

imposed by our gas analysis technique is unknown.  Withstanding this limitation, the finding 

suggests that other factors, such as anaerobic capacity may be important in determining time 

to exhaustion at a severe intensity.  It has been previously demonstrated that anaerobic 

capabilities may contribute significantly to distance running performance (Bulbulain et al., 

1986). 

 

Bernard et al (1998) has recently demonstrated the importance of determining VO2  during 

running at velocities representative of performance velocities.  This importance is greatest for 

athletes competing in events performed above the lactate threshold.  Exercise above the 

lactate threshold (heavy intensity) has been shown to elicit an excess 2OV  above that 

predicted from the velocity- 2OV  relationship derived from exercise below the lactate 

threshold, which has both an intensity and time component (Whipp and Wassermann, 1972).  

Bernard et al (1998) refer to VO2  during exercise above the lactate threshold as the ‘aerobic 

energy cost’, and suggest that an increase in the aerobic energy cost occurs at heavy 

intensities.  However, due to the time dependent nature of the development of the excess 

2OV , Bernard et al (1998) demonstrate that it is not satisfactory to determine the aerobic 

energy cost after 3 minutes of exercise.  The difference between the true aerobic energy cost 

when a steady state is reached, and aerobic energy cost through inadequate determination 

(i.e., prior to attainment of steady state or velocity too low), may be termed the aerobic 

energy deficit, or more simply the ‘oxygen cost deficit’.  The oxygen cost is defined as the 

2OV  per body mass (kg) per unit distance (km) expressed in millilitres (ml), and is calculated 

as the quotient of exercising minus resting 2OV (ml.kg-1.min-1), and velocity (km.min-1) 

(Lacour et al., 1990, adapted from di Prampero, 1986).  In the case of the present study, we 

analysed our data to determine the oxygen cost deficit, which we defined as the difference 

between 2OV  (ml.kg-1.km-1), after 10 minutes of moderate intensity running (50% v2OV

max) and the 2OV  (ml.kg-1.km-1) at exhaustion during severe intensity running (~95% 2OV

max), in the fatigued and non-fatigued conditions.  However, we found no relationship 

between oxygen cost deficit changes and performance changes between pre and post TS (see 

figure 6).  This finding would suggest that the fatigue 1 h following the TS, as evidenced by 

reduced tlim, is not simply related to altered oxygen cost deficit. 

 

Although tlim is itself a performance measure, tlim at v- VO2 max has also been shown to 

correlate with other endurance running performances such as the velocity maintained during a 



 10 

half marathon competition (Billat et al., 1994a).  The results of studies examining the 

relationship between tlim at v- VO2 max and other physiological measures which are often 

related to endurance running performance have been equivocal (see table 4).  Interestingly, in 

one study anaerobic capacity has also been shown to partially account for differences in tlim at 

v- VO2 max (Hill and Rowell, 1996).  These different findings may reflect variations between 

the fitness level of the subjects, and methodological variations.  The protocol for 

determination of VO2 max, and particularly v- VO2 max, may be particularly important.  For 

example, the duration of each increment of a graded exercise test may influence the VO2 -

velocity relationship, since it is now widely acknowledged that with long increments an 

excess VO2  will develop for each increment above the anaerobic threshold (Hansen et al., 

1988).  The effect of the developing excess VO2  during slow incremental protocols will 

result in lower velocities for a given VO2 , and hence a relatively reduced v- VO2 max.  

Although we exercised subjects a 1 km.h-1 below v- VO2 max in the present study, the graded 

test to maximum consisted of rapid increments (i.e., 1 km.h-1.min-1).    

 

Whilst Billat et al. (1994b) found that tlim was repeatable in a group of sub-elite runners as a 

whole, the intra-subject variation was in the region of 10%.  Intra-subject variation of this 

magnitude may have confounded our findings that no relationship exists between either the 

change in tlim and VO2  during moderate intensity running, or the change in tlim and VO2  

response to severe intensity running. 

 

Reduced performance at one hour following the TS compared with performance after rest or 

72 hours following the TS may be due to a variety of factors.  It is unlikely, however, that 

factors such as dehydration or increased core body temperature were responsible due to our 

findings following an identical TS in previous studies (James and Doust, 1998; James and 

Doust, 1999).  In these studies, by one hour following the TS, plasma volume and rectal 

temperature had both returned to values recorded prior to the TS.  Furthermore, it was 

demonstrated in the present study that cadence was unchanged one hour following the TS.  

Although this finding has been demonstrated previously, the initial measurement was not 

made until one day following the training session (Morgan et al., 1990; 1996).  In contrast, 

Xu and Montgomery (1995) found that immediately following prolonged moderate intensity 

exercise, cadence is slightly, but significantly altered.  However, it should be noted that this 

change was observed immediately following the training session.   

 

It may be speculated that changes in other kinematic and kinetic variables may have occurred 

following the training session, which are not evident when examining cadence.  For example, 

recently Candau et al. (1998) have demonstrated increased variability in step frequency with 
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fatigue during running.  The relationship demonstrated by Candau et al. (1998) between step 

variability and VO2  during running is of particular interest. 

 

Several physiological changes have been associated with an increased VO2  during moderate 

intensity running, and changed VO2  response to severe intensity running, which may act to 

reduce performance.  Importantly, studies by Poole et al. (1991; 1992) suggests that 

pulmonary VO2  closely reflects VO2  measured over the working limb both during moderate  

and severe intensity exercise.  Therefore, factors that may contribute to a changed VO2  in the 

exercising limbs should be considered as possible candidates for altered tlim.  With regard to 

moderate intensity running, due to the steady state response, it is possible to derive a caloric 

equivalent.  Following exactly the same overload as that used in this study, we have observed 

that 31% of the change in VO2  was due to increased metabolism of fat (James and Doust, 

1998).  In the present study, 10% of the change in VO2  was due to increased metabolism of 

fat, as calculated from pulmonary gas exchange variables.  It is possible that time to 

exhaustion is influenced by substrate availability, and an increased metabolism of fat in the 

moderate intensity run one hour following the TS indicates a depletion of muscle glycogen 

stores.  A previous study has demonstrated the importance of muscle glycogen stores prior to 

exercise for short duration performance (Maughan and Poole, 1981). 

 

With regard to severe intensity exercise, whilst a close relationship between blood lactate 

concentration and the VO2  response to severe intensity running has been observed, it has 

been suggested that blood lactate concentration is simply correlated with, but not causal to 

the VO2  response.  A dissociation between the two has been demonstrated via training and 

infusion of epinephrine during exercise in humans which increases blood lactate 

concentration and decreases pH (Gaesser, 1994) and infusion of lactate into working dog 

muscle (Poole et al., 1994b).  Factors which are associated with lactate production in the 

working limb have also been investigated.  Although evidence is not direct, changes in 

muscle fiber recruitment is thought to be a likely explanation for a significant part of the VO2  

response to severe exercise (Poole et al., 1994a).  The suggestion that a progressively greater 

recruitment of type II fibres may contribute to the VO2  response to severe intensity exercise 

may also partly explain the reduced performance following an interval training session.      

 

In conclusion, the significant reduction in performance during severe intensity running 

following the training session was associated with an increase in VO2  during moderate 

intensity running, and a changed VO2  response to severe intensity running.  However, no 

relationship existed between the magnitude of the change in performance and the VO2  

response during either moderate or severe intensity running. 
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Table 1:  Anthropometric data:  Values are expressed as mean (SD). n = 7. (VO2 max 

maximal oxygen consumption, v-VO2 max velocity at maximal oxygen consumption) 

 ___________________________________________________________ 

Age  Height  Mass  VO2 max v- VO2 max 

(years)  (m)  (kg)  (l.min-1) (km.h-1) 

____________________________________________________________ 

24  1.79  67.9  4.14  19.4 

(6)    (0.10)    (7.6)  (0.49)  (1.3) 

____________________________________________________________ 
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Table 2:  Responses to the severe intensity run to exhaustion following rest (test 1s), 1 h  

following (test 2s) and 72 h following (test 3s) the training session (TS): Values are 

expressed as mean (SD). (tlim time limit to exhaustion, 2 min 45 s VO2  oxygen consumption 

at 2 min 45 s, End VO2  oxygen consumption at exhaustion, VO2  diff difference between 

oxygen consumption at 2 min 45 s and exhaustion, Max ƒc heart rate at exhaustion, Caden. 

cadence) 

_______________________________________________________________________ 

    Test 1s   Test 2s   Test 3s 

_______________________________________________________________________ 

tlim (s)    318 (59) a 243 (52) b 359 (130) 

2 min 45 s VO2  (l.min-1) 3.99 (0.62)  3.94 (0.65)  3.96 (0.62) 

End VO2  (l.min-1)  4.21 (0.61)  4.19 (0.62)  4.17 (0.59) 
VO2  diff (l.min -2)  0.11 (0.06) a 0.21 (0.08) b 0.11 (0.11) 

Max ƒc (b.min-1)  193 (12)  191 (11)  192 (13) 

Caden. (Stride.min-1)   91 (6)  91 (5)  91 (6) 

_______________________________________________________________________ 
a Difference between test 1 and test 2 (P < 0.05) 
b Difference between test 2 and test 3 (P < 0.05) 
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Table 3:  Responses to the moderate intensity run following rest (test 1m), prior to (test 2m 

and test 4m), 1 h following (test 3m) and 72 h following (test 5m) both training sessions (TS).  

Results are expressed as mean (SD).  (VO2  oxygen consumption, ƒc heart rate) 

____________________________________________________________________ 

  Test 1m Test 2m Test 3m Test 4m Test 5m 

____________________________________________________________________ 
VO2   2.21 (0.23) 2.19 (0.26)  a 2.23 (0.26) 2.23 (0.27)  b 2.16 (0.23) 

(l.min-1)   

ƒc  141 (17) 136 (13)     a 143 (14) 137 (15)     b 119 (48) 

(b.min-1) 

Cadence 81 (5)  80 (4)  81 (4)  80 (4)  80 (4) 

(strides.min-1) 

____________________________________________________________________  
a Difference between test 2m and test 3m (P < 0.05) 
b Difference between test 4m and test 5m (P < 0.05) 
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Table 4:  Comparison of time to exhaustion and relationship with other physiological 

characteristics in endurance runners (time to exhaustion tlim, maximal oxygen uptake VO2

max, velocity at VO2 max v- VO2 max, anaerobic threshold, Tan). 

____________________________________________________________________ 

Study    tlim   Correlation Coefficient 

      VO2 max v- VO2 max Tan 

____________________________________________________________________ 

This study a   318  -0.793* -0.621  -0.343 

Billat et al. (1994b) b  404  0.138  0.241  0.671* 

Billat et al. (1994d)c  360  -0.347* -0.362* 0.378* 

Billat et al. (1995)c  321  -0.200  -0.538* -0.050 

Billat et al. (1994e)b  404  0.170  0.320  0.580* 

Billat et al. (1994c) c  325  -0.502* -0.691* ......... 

Billat et al. (1994a)b  371  .........  ..........  0.629* 

Hill et al. (1996) d  290  .........  .........  0.660* 

____________________________________________________________________ 

* denotes significant correlation (p < 0.05) 

a: well - trained; b: subelite; c: elite; d: well - trained female 

note: all studies used v-VO2 max except the present study. 
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Figure 1:  Heart rate at the end of each exercise bout during the first training session (line 

breaking axis denotes mean maximum during the incremental test) (values are mean and 

standard deviation) 

 

Figure 2:  Heart rate at the end of each exercise bout during the second training session (line 

breaking axis denotes mean maximum during the incremental test) (values are mean and 

standard deviation) 

 

Figure 3:  Change in time to exhaustion and change in oxygen uptake kinetics during severe 

exercise performed prior to and 1 h following the training session. 

 

Figure 4:  Change in time to exhaustion and change in oxygen uptake during moderate 

exercise performed prior to and 1 h following the training session. 

 

Figure 5:  Change in oxygen uptake kinetics during severe exercise and change in oxygen 

uptake during moderate exercise performed prior to and following the training session. 

 

Figure 6:  Change in time to exhaustion and change in oxygen deficit during severe exercise 

performed prior to and 1 h following the training session.  Oxygen cost deficit is calculated as 

the difference between the oxygen cost of the moderate and severe exercise. 


