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Abstract 

Elevated oxygen uptake (VO2 ) has been previously observed during moderate 

intensity running following a bout of interval running training.  To further 

investigate this phenomenon, the VO2  response to high-intensity exercise was 

examined following a bout of interval running.  Well-trained endurance runners 

were split into an experimental group (maximum oxygen uptake, VO2 max 4.73 + 

0.39 L.min-1) and a reliability group (VO2 max 4.77 + 0.26 L.min-1).  The 

experimental group completed a training session (4 x 800 m @ 1 km.h-1 below 

speed at VO2 max, with 3 min rest between each 800 m interval).  Five min prior 

to, and 1 h following the training session, subjects completed 6 min 30 s of 

constant speed, high-intensity running designed to elicit 40% ∆ (test 1 and 2).  The 

slow component of VO2  kinetics was quantified as the difference between VO2  

from 6 min and VO2  from 3 min of exercise, i.e., ∆ VO2 (6-3).  The ∆ VO2 (6-3) 

was the same in two identical conditions in the reliability group (mean + s.d.: 0.30 

+ 0.10 L.min-1 vs 0.32 + 0.13 L.min-1).  In the experimental group, the magnitude 

of the slow component of VO2  kinetics was increased in test 2 compared with test 

1 by 24.9% (0.27 + 0.14 L.min-1 vs 0.34 + 0.08 L.min-1) (p < 0.05).  The increase 

in ∆ VO2 (6-3) in the experimental group was observed in the absence of any 

significant change in body mass, core temperature or blood lactate concentration, 

either at the start or end of test 1 or 2.  It is concluded that similar mechanisms 

may be responsible for the slow component of VO2  kinetics and the fatigue 

following the training session.  It has been previously suggested that this 

mechanism may be primarily linked to changes within the active limb, with the 

recruitment of alternative and/or additional less efficient fibres. 

 

Keywords:  Oxygen uptake - running - training - fatigue
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Introduction 

Fatigue following long-duration running exercise has been observed previously 

(Sherman et al., 1984; Nicol et al., 1991a, b).  The consequences of fatigue, which 

may last for several days following a bout of long-duration running exercise, have 

also been shown to influence the pulmonary VO2  during moderate-intensity 

running (Xu and Montgomery, 1995; James and Doust, 1998).  James and Doust 

(1998) demonstrated an increased VO2  during moderate-intensity running at 50% 

VO2 max, one hour following an interval training session.  Xu and Montgomery 

(1995) demonstrated increased VO2  during moderate-intensity running at 54% and 

67% VO2 max, immediately following a 90 minute run performed at both 65% and 

80% of VO2 max. 

 

It is possible that a significant portion of the increased VO2  observed during 

moderate-intensity, long-duration running originates from a changed efficiency of 

the active muscles, since Morgan et al (1996) have suggested that 30 min of high-

intensity running does not influence gait mechanics.  Many mechanisms have been 

proposed including reduced neural input to the active muscles resulting in reduced 

force production, reduced tolerance to stretch loads, reduced recoil characteristics, 

and depleted muscle glycogen stores (Sherman et al., 1983; Sherman et al., 1984; 

Buckalew et al., 1985; Nicol et al., 1991a; Nicol et al., 1991b).  A greater 

recruitment of type II muscle fibres, possibly in addition to, or instead of the type I 

fibres offers a further potential mechanism (Sejersted and Vollestad, 1992).  In the 

case of running exercise, a changed fibre recruitment pattern may be a product of 

the damage caused by the repeated stretch shortening cycles, glycogen depletion 

in selected fibres, or other ‘non-metabolic’ fatigue (Hagerman et al., 1984; 

Vollestad et al,. 1984; Green, 1991).  Technical limitations have prevented 

systematic investigation of this issue in exercising humans, however. 
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It has also been demonstrated that a proportion of the slow component of VO2  

kinetics during prolonged high-intensity, constant-load cycling exercise primarily 

originates in the exercising limb (Poole et al., 1991).  Barstow et al. (1996) have 

demonstrated an inverse relationship between the amplitude of the slow 

component of VO2  kinetics expressed relative to the overall increase in VO2 , and 

the % type I fibres in cycling exercise.  It has also been demonstrated that a 

relationship exists between % type I fibres and muscular efficiency during both 

cycling and novel knee extension exercise (Coyle et al., 1992).  Fatigue during 

isometric exercise in humans has been associated with increased VO2  in the active 

limb, and this increased VO2  closely mapped altered fibre recruitment patterns 

determined through intramuscular EMG recordings and the glycogen depletion 

method (Sejersted and Vollestad, 1992).  Attempts to manipulate the contribution 

of different fibre types to power production during cycling exercise through 

alterations in cadence have produced equivocal findings.  It has been observed that 

an increase in cycling cadence results in an increased magnitude of the slow 

component of VO2  kinetics in one study (Gaesser et al., 1992), and a tendency for 

a decreased magnitude of the slow component of VO2  kinetics in another 

(Barstow et al., 1996).  During graded incremental cycling exercise, alterations in 

cadence had no systematic effect on the development of a slow component of VO2  

kinetics for work rates above the lactate threshold (Zoladz et al., 1995). 

 

Since the responses following prior running exercise are not well known, the 

present study examined the effect of a bout of fatiguing running exercise on the 

VO2  during constant-speed, high-intensity running. 

 

Methods 

Well-trained male runners gave informed consent to take part in the study which 

had been approved by the ethics committee of Chelsea School, University of 

Brighton.  The subjects were all thoroughly familiar with laboratory testing 
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procedures and treadmill running.  Subjects were divided into an experimental and 

a reliability group, for which details are given in table 1. 

 

All subjects rested for 3 days prior to testing.  The subjects were instructed not to 

eat, or consume caffeine or alcohol in the 3 h prior to the test, and to consume 

their normal diet between testing sessions.  For each subject, all testing took place 

at the same time of day, and subjects followed their individual warm-up routines.  

Subjects were instructed to present to each testing session in a rested and fully 

hydrated state, wearing identical footwear and clothing. 

 

In the experimental group, test 1 was performed immediately preceding the 

training session and test 2 was performed 1 hour following the training session.  

Following the training session, the subjects were weighed to determine any 

changes in body mass.  Then subjects were instructed to consume a volume of 

water determined by the loss of body mass during the training session, which was 

thought to primarily constitute sweat losses during the training session.  This 

rehydration strategy has been previously shown to be successful through 

determination of plasma volume changes (James and Doust, 1998). 

 

The reliability group performed test 1 and 2 within a week under rested 

conditions, with no training performed in the three days prior to both tests.  Within 

each subject, the tests were performed at a similar time of day. 

 

On the first occasion subjects visited the laboratory, age, height, and body mass 

were recorded.  A maximal incremental test with the treadmill set at a 1% gradient 

was performed to determine VO2 max and ventilatory threshold (Tvent).  Increment 

duration was one minute, with an increase in speed of 1.0 km.h-1 each minute until 

volitional exhaustion.  The primary criterion used to determine whether VO2 max 

was attained, was a plateau in VO2  with an increase in speed.  Since not all 
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subjects demonstrated a clear plateau,  VO2 max was also used to refer to the 

highest VO2  recorded during the test, as long as other criteria were fulfilled (i.e., 

R > 1.05, maximum ƒc > 90% of age-adjusted estimated maximum).  The speed at 

VO2 max (v- VO2 max) was taken as that which elicited the highest VO2  during the 

continuous incremental test.  When a plateau in VO2  was observed with 

increasing speed, the first point on the plateau was taken as v- VO2 max. 

 

The criterion for determination of Tvent was a sudden and sustained increase in 

respiratory exchange ratio (VCO2 / VO2 ), in addition to the ventilatory equivalent 

for oxygen (VE / VO2 ).  The Tvent was determined by three experienced 

independent reviewers without prior knowledge of the subjects under review.  In 

all cases, at least two reviewers agreed, and the third reviewer never differed by 

more than 1.0 km.h-1 for the speed at Tvent (v-Tvent). 

 

The training session was intended to represent a severe overload which most 

runners in serious training would regularly perform (Martin and Coe, 1991), and 

consisted of four intervals of 800 m at 1 km.h-1 below v- VO2 max.  The treadmill 

was maintained at a 1% gradient since this was the gradient which has been found 

to best represent the energetics of outdoor running (Jones and Doust, 1996).  The 

rest duration between each interval was 3 mins, during which time subject’s opted 

to walk around the laboratory.  Throughout the training session, heart rate (ƒc) was 

recorded for each subject using telemetry (Sports Tester, Polar Electro Oy, 

Kempele, Finland). 

 

Test 1 and 2 consisted of constant-velocity high-intensity running which was 

calculated to elicit a VO2  which corresponded to 40% of delta.  In this case, delta 

(∆) represents the difference between VO2  at Tvent and VO2 max.  To determine 

the velocity which corresponded to 40% ∆ for each subject, a linear regression of 

VO2  from running velocity during the maximal incremental test was used.  
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Linearity was demonstrated by a coefficient of determination (R2) for the 

regression lines of 98.4% + 1.4% (mean + s.d.) (see figure 1).  It is recognised that 

the relationship between VO2  and velocity increasingly deviates from linearity at 

intensities above Tvent, particularly as increment duration increases.  The 

consequence for the present study is that the velocity predicted from the linear 

model actually elicited a VO2  of 51% ∆, rather than 40% ∆ as predicted. 

 

Initially, a rectal probe was inserted (10 cm into the rectum) for the determination 

of rectal temperature prior to and following each test.  Following the individual 

warm-up of approximately 5 min, body mass was determined for each subject.  A 

free-flowing capillary blood sample was then taken from each subject for 

subsequent analysis for determination of whole blood lactate concentration ([La-

]B).   

 

Each subject then began running for 6 min 30 s at the predetermined velocity.  

From 3 min to 6 min 30 s expired air was continually collected.  The duration of 

each collection was timed, and generally lasted for ~40 s.  The expired gas was 

subsequently analysed for determination of VO2 , VCO2 , respiratory exchange 

ratio (R) and expired minute ventilation (VE ).   Within 1 min following the final 

gas collection period a second post-exercise fingertip capillary blood sample was 

taken for subsequent determination of [La-]B. 

 

Since the slow component of VO2  kinetics is operationally defined as the 

difference between the VO2  at 3 and 6 minutes of high intensity exercise (Whipp 

and Wasserman, 1972), VO2  values immediately after 3 minutes and 6 minutes of 

exercise were used for determination (∆ VO2 (6-3)).  A typical  VO2  response to 

the high intensity exercise is shown in figure 2.   
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All testing was performed on a treadmill (Woodway ELG2, Cardiokinetics, 

Salford, U.K.), for which the speed was regularly checked. The number of belt 

revolutions were counted over a recorded time, and in combination with 

measurement of belt length, belt speed was determined.  However, since the 

treadmill belt is unable to slip, and the speed of the motor driving the belt is the 

speed that appears on the display, any changes in speed would be evident on the 

display.   

 

During test 1, test 2, and the continuous incremental test, subjects wore a nose clip 

and a large, broad flanged rubber mouthpiece (Collins, Mass, USA) fitted to a 

low-resistance (inspired < 3 cmH2O @ 360 L.min-1 and expired < 1 cmH2O @ 360 

L.min-1) breathing valve of small volume (90 ml) (University of Brighton, 

England). The breathing valve was connected to a 200 L Douglas bag from the 

expired side via a 1 m length of light weight Falconia tubing of 4.0 cm bore 

(Baxter Woodhouse and Taylor Ltd.).  Expired gas was collected for a timed 

period.  During the incremental test expired gas was collected during the final 40 

seconds of each stage, and during test 1 and 2 expired gas was collected 

continuously from 3 minutes.  The expired gas was subsequently analysed for 

mixed expired O2 fractions (FEO2) and mixed expired CO2 fractions (FECO2), 

using a paramagnetic O2 analyser (1100 series, Servomex, Crowborough, U.K.) 

and an infrared CO2 analyser (1490 series, Servomex, Crowborough, U.K.) 

respectively.  Each analyser was calibrated at two points, and checked for linearity 

using high precision gas mixtures (B.O.C.) and room air.  Gas volume was 

measured using a dry gas meter (Harvard Apparatus Ltd., Edenbridge, U.K.) 

previously calibrated against a Tissot spirometer, and regularly checked for 

linearity throughout the complete collection volume range using a 7 L calibration 

syringe (Hans Rudolf Inc., Kansas City, Mo., USA). 
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Blood lactate concentration was determined from a 25 µl sample of capillary 

blood collected in a heparinised capillary tube.  The sample was analysed 

enzymatically in duplicate for [La-]B (P-GM7, Analox Instruments Ltd., London, 

England), which was calibrated prior to use with an 8 mM standard.  

 

A paired student t test was used to test for differences between test 1 and 2 in both 

the reliability and the experimental group.  Differences were regarded as 

significant for a p-value of less than 0.05.  Where a direction of change could be 

specified, a one tailed test was performed. 

 

Results 

The anthropometric characteristics of both the reliability and experimental group 

were similar, with little variation within each group (table 1).  In both groups, the 

subjects were well-trained runners, demonstrated by a VO2 max of 4.77 l.min-1 and 

4.73 l.min-1, and a v- VO2 max of 19.6 km.h-1 and 20.0 km.h-1 respectively.  The 

VO2  at Tvent was 79% and 77% of VO2 max respectively. 

 

The mean heart rate response during the interval training session for the 

experimental group is given in figure 3.  Over the four 800 m bouts of running, 

heart rate reached 181, 182, 184, and 183 beats.min-1 respectively.  These values 

compare with a mean maximum heart rate measured during the continuous 

incremental test of 184 beats.min-1. 

 

The measurement of ∆ VO2 (6-3) was shown to be repeatable in the two tests 

performed by the reliability group, and the mean difference in ∆ VO2 (6-3) was 

0.022 L.min-1 (7.0%) (table 2).  This was in comparison to a significant difference 

of 0.076 L.min-1 (24.9%) in ∆ VO2 (6-3) between the two tests in the experimental 

group (p < 0.05) (table 2). 
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With regard to the actual values after 3 min and 6 min of high-intensity exercise, 

no significant differences were seen in either the reliability or experimental groups 

(table 2).  However, there was a tendency for the 6 min value in the experimental 

group to increase between test 1 and 2 (4.51 l.min-1 and 4.59 l.min-1).  These results 

demonstrated that variation existed between subjects in the way in which the 

difference in ∆ VO2 (6-3) between test 1 and 2 was achieved. 

 

These results were observed without any significant changes in body mass (table 

3), core temperature (table 4), or [La-]B (table 5) between test 1 and 2 for either 

group (p > 0.05).  It was, however, apparent that [La-]B had not quite returned to 

normal pre-test values by 1 hour following the interval training session.  Despite 

the slightly increased pre-test value in test 2, the post-test [La-]B was similar to 

that observed following test 1 in the experimental group.    

 

Discussion 

Most studies examining the kinetics of the VO2  response to high intensity exercise 

have used cycle ergometry to provide the exercise stress.  A few studies have 

examined the kinetics of the VO2  response during running exercise.  In 1970, 

Nagle and colleagues measured a 0.36 l.min-1 increase in VO2  between minutes 5 

and 30 of treadmill running at 82-89% VO2 max, and an increase of 0.20 l.min-1 at 

74-79% VO2 max.  More recently, Sloniger et al (1996) found that during running 

at a speed calculated to elicit 99% VO2 max, an increase in VO2  of 0.70 + 0.15 

l.min-1 occurred between the third minute and the end of exercise (range 7.3 - 13.5 

min).  Also, Billat and Koralsztein (1996) found that during running at 90% and 

100% of v- VO2 max, VO2  between 2 and 5 minutes increased by 0.23 + 0.14 

l.min-1 and 0.22 + 0.19 l.min-1 respectively.  Interestingly in this study, after 5 min 

of exercise at 90% v- VO2 max, VO2  failed to increase further.  However, after 5 

min at 100% v- VO2 max, VO2  continued to increase to the VO2 max value 

measured during the graded incremental test.  The slow component of VO2  
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kinetics during running, taken as the difference between VO2  after 3 and 6 min of 

exercise, was measured during two identical trials in the reliability group in the 

present study, and on both occasions a similar value was recorded (0.30 + 0.10 

l.min-1 and 0.32 + 0.13 l.min-1). 

 

Whilst the results recorded for the reliability group in the present study do not 

differ markedly from the results of previous studies which used running as a mode 

of exercise, the use of 40 second samples of expired gas collected in Douglas bags 

contrasts with the breath-by-breath gas analysis technique utilised in the previous 

studies.  A limitation of the single, relatively long sample after 3 minutes and 6 

minutes of exercise is provided by the possibilities for errors.  A single collection 

of expired gas after 3 and 6 minutes is clearly less reliable than several collections 

at 3 and 6 minutes.  However, the use of a reliability group provided evidence that 

the technique used in the present study gave similar results on two occasions 

within the group.    

 

A significant increase in ∆ VO2 (6-3) in the experimental group was demonstrated 

as a consequence of the running exercise which was performed as part of both the 

training session and test 1.  This finding was observed in the absence of a 

significant change in body mass, core temperature, or blood lactate concentration 

prior to, or following each test.  A slightly higher [La-]B prior to test 2 in contrast 

to test 1 was not accompanied by a higher [La-]B following test 2 in contrast to test 

1.  

 

Poole et al (1991) have demonstrated that ~86% of the increase in pumonary VO2  

beyond the third minute of exercise could be accounted for by the increase in leg 

VO2  during severe-intensity cycling exercise.  Energy consuming processes which 

originate outside the active limb are therefore thought to be a small contributing 

factor to increasing VO2  after 3 minutes of high-intensity exercise.  Gaesser et al 
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(1994) have shown that increased levels of circulating plasma epinephrine 

concentrations (420 + 130 pg.ml-1 to 2190 + 410 pg.ml-1) at 10 minutes of high-

intensity exercise have no effect on the slow phase of VO2  kinetics between 10 

and 20 minutes.  Also, following six weeks of endurance training, Womack et al 

(1995) found an attenuated increase in VO2  between 10 and 20 minutes of high-

intensity cycling exercise at the same absolute power.  The reduced VO2  slow 

component was also observed when plasma epinephrine concentrations were 

increased to pre-training levels in the post-training condition. 

 

Although the magnitude of the increase in VO2  after 3 minutes of high-intensity 

exercise has been shown to be highly correlated with the rise in blood lactate 

concentration, Stringer et al (1994) have postulated that it is not lactate per se, but 

the associated acidosis that causes the increase in VO2 , due to the rightward shift 

of the oxyhaemoglobin dissociation curve which raises capillary PO2.  An increase 

in temperature would elicit a similar shift in the oxyhaemoglobin dissociation 

curve.  In the present study whole body core temperature was not changed 

throughout exercise, or in absolute terms at the beginning and end of exercise in 

test 2 compared with test 1 in either group.  It is, therefore, unlikely that changes 

in whole body temperature contributed significantly to the change in the ∆ VO2 (6-

3) between test 1 and 2 in the experimental group.  In any case, the effect of 

temperature on the increase in VO2  beyond three minutes of high-intensity 

exercise is not well established, since Poole et al (1988) have also found that a 

rising core temperature (0.81 + 0.16 °C) during 24 minutes of high-intensity 

cycling can accompany a steady VO2 .  Conversely, during a similar duration of 

severe-intensity cycling (17.7 + 1.2 min) a similar magnitude of increase in 

temperature (0.98 + 0.30 °C) accompanied a large increase in VO2  after 3 

minutes.   
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It is possible that a slowed VO2  kinetics prior to 3 minutes of running may be 

responsible for the increase in ∆ VO2 (6-3) in the present study.  However, Gerbino 

et al. (1996) have demonstrated speeded VO2  fast kinetics during high-intensity 

exercise 6 min following a prior bout of high intensity exercise, which was 

attributed to the vasodilatory effect of the lactic acidosis associated with the prior 

high-intensity exercise bout. Associated with the speeded VO2  fast kinetics was a 

decreased ∆ VO2 (6-3) after the high-intensity exercise.  Gerbino et al. (1996) 

suggested that the fast component of VO2  kinetics during high-intensity exercise 

are normally dictated by the muscle perfusion response to exercise, and so a prior 

bout of high-intensity exercise which will increase perfusion to the active 

musculature will speed the VO2  fast kinetics.  In the present study, it is possible 

that the prior exercise elicited some effect on the fast component of VO2  kinetics 

in test 2 in the experimental group, since the [La-]B was slightly increased prior to 

the start of test 2.  However, the observation that the 3 minute VO2  value was not 

different in the two tests in the experimental group would suggest that the fast 

component of VO2  kinetics in test 2 was similar to that in test 1. 

 

In an attempt to manipulate the contribution of different muscle fibre populations 

in the exercising limb to the slow component of VO2  kinetics, Gaesser et al (1992) 

measured VO2  at 3 min and at 18 min of high-intensity cycling exercise in 

subjects pedalling at 50 and 100 revs.min-1.  The change in VO2  between 3 min 

and 18 min was doubled in subjects pedaling at the faster cadence (0.67 + 0.11 

l.min-1 vs 0.38 + 0.07 l.min-1).  In contrast to this finding, Barstow et al. (1996) 

have found no significant effect of manipulation of pedal cadence on the change in 

VO2  between 3 min and 8 min of high-intensity cycling at cadences ranging from 

45 to 90 revs.min-1, although a trend of decreasing VO2  change for increasing 

cadence was observed.  Also in the study by Barstow et al. (1996), it was 

demonstrated that an inverse relationship exists between the amplitude of the slow 

component of VO2  kinetics expressed relative to the overall increase in VO2 , and 
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the % type I fibres.  During moderate-intensity exercise it has also been 

demonstrated that a relationship exists between % type I fibres and muscular 

efficiency during both cycling and novel knee extension exercise (Coyle et al., 

1992).  Some evidence seems to exist that a progressive recruitment of additional, 

possibly less efficient muscle fibres may be responsible for the increasing VO2  

during high-intensity exercise.  Shinohara and Moritani (1992) found that between 

minutes 4 and 7 of high-intensity cycling exercise the integrated electromyogram 

of the active muscles was positively correlated with the rise in pulmonary VO2 .   

An increased recruitment of less efficient fibres has also been proposed as a factor 

contributing to the increased metabolic rate during prolonged fatiguing exercise 

(Vollestad et al., 1990), and it is conceivable that the findings following the 

training session in the present study are largely due to progressively greater fibre 

recruitment.  Fatigue during isometric exercise in humans has been associated 

with increased VO2  in the active limb, and this increased VO2  closely mapped 

altered fibre recruitment patterns determined through intramuscular EMG 

recordings and the glycogen depletion method (Sejersted and Vollestad, 1992). 

 

In conclusion, it is demonstrated that the slow component of VO2  kinetics can be 

determined reliably during running.  Additionally, a significant increase in the 

slow component of VO2  kinetics was observed 1 hour following an interval 

training session.  The increase in ∆ VO2 (6-3) following the training session was 

observed in the absence of a significant change in body mass, core temperature, 

and blood lactate concentration.  It is possible that a changed muscle fibre 

recruitment pattern towards a progressively greater recruitment of less efficient 

type II fibres may occur following the training session.  Further studies are needed 

to determine the response following a running training session.  As well as 

providing an explanation for the prolonged fatigue following this mode of 

exercise, such studies may increase knowledge about the mechanism for the slow 

component of VO2  kinetics during high intensity exercise. 
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Table 1: Group anthropometric characteristics. 

__________________________________________________________________ 

  Age Mass VO2 max v- VO2 max Tvent  v-Tvent 

  (yrs) (kg) (L.min-1) (km.h-1) (L.min-1)        (km.h-1) 

__________________________________________________________________ 

Reliability Group 

x  28.0 71.0 4.77  19.6  3.78  15.9 

+ s.d    8.3   4.3 0.26    0.6  0.36    1.3 

 

Experimental Group 

x  29.8 71.2 4.73  20.0  3.65  16.0 

+ s.d    6.3   7.3 0.39    0.7  0.41    1.2  

__________________________________________________________________ 
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Table 2: Oxygen uptake at 3 and 6 minutes, and difference between 3 and 6 

minute values in test 1 and 2 for the reliability and experimental 

group 

__________________________________________________________________ 

     Test 1    Test 2  

__________________________________________________________________ 

Difference in VO2  between 3 and 6 minutes (L.min-1) 

Reliability group   0.30 (0.10)   0.32 (0.13) 

Experimental group   0.27 (0.14)   0.34 (0.08)# 

 

VO2  at 3 min (L.min-1) 

Reliability group   4.26 (0.24)   4.24 (0.25) 

Experimental group   4.24 (0.28)   4.25 (0.24) 

 

VO2  at 6 min (L.min-1) 

Reliability group   4.55 (0.32)   4.56 (0.34) 

Experimental group   4.51 (0.39)   4.59 (0.31) 

__________________________________________________________________ 

Values are expressed as mean (standard deviation).  # indicates significantly 

different value from test 1 (p < 0.05). 



 23 

Table 3: Body mass prior to and following each test, and difference between 

pre-and post-test values for the reliability and experimental group 

__________________________________________________________________ 

     Test 1    Test 2  

__________________________________________________________________ 

Difference between pre- and post-test body mass for each test (kg)   

Reliability group   0.4 (0.3)   0.2 (0.1) 

Experimental group   0.2 (0.1)   0.2 (0.1) 

 

Pre-test body mass (kg) 

Reliability group   72.1 (2.0)   72.4 (2.3) 

Experimental group   71.9 (6.3)   72.0 (6.3) 

 

Post-test body mass (kg) 

Reliability group   71.8 (1.9)   72.1 (2.3) 

Experimental group   71.7 (6.2)   71.7 (6.3) 

__________________________________________________________________ 

Values are expressed as mean (standard deviation).  No significant differences 

between tests 1 and 2 for either group (p > 0.05). 
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Table 4: Core temperature prior to and following each test, and difference 

between pre- and post-test values for the reliability and 

experimental group 

__________________________________________________________________ 

     Test 1    Test 2  

__________________________________________________________________ 

Difference between pre- and post-test core temperature for each test (°C)   

Reliability group   0.8 (0.3)   0.8 (0.3) 

Experimental group   0.8 (0.3)   0.7 (0.2) 

 

Pre-test core temperature (°C) 

Reliability group   37.4 (0.4)   37.4 (0.5) 

Experimental group   37.2 (0.4)   37.0 (0.1) 

 

Post-test core temperature (°C) 

Reliability group   38.1 (0.5)   38.2 (0.3) 

Experimental group   38.0 (0.3)   37.6 (0.4) 

__________________________________________________________________ 

Values are expressed as mean (standard deviation).  No significant differences 

between tests 1 and 2 for either group (p > 0.05). 
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Table 5: Blood lactate concentration prior to and following each test, and  

  difference between pre-and post-test values for the reliability and  

  experimental group 

__________________________________________________________________ 

     Test 1    Test 2  

__________________________________________________________________ 

Difference between pre- and post-test [La-]B for each test (mM)   

Reliability group   5.2 (1.6)   5.3 (1.9) 

Experimental group   5.4 (1.7)   4.4 (1.7) 

 

Pre-test [La-]B (mM) 

Reliability group   0.8 (0.3)   1.0 (0.2) 

Experimental group   0.9 (0.3)   1.8 (1.0) 

 

Post-test [La-]B (mM) 

Reliability group   6.0 (1.6)   6.5 (1.6) 

Experimental group   6.5 (1.4)   6.4 (1.7) 

__________________________________________________________________ 

Values are expressed as mean (standard deviation).  No significant differences 

between tests 1 and 2 for either group (p > 0.05). 
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Figure 1:   

Oxygen uptake for the incremental test for one subject 

 

Figure 2:   

Oxygen uptake after 3 minutes of constant-speed high-intensity running in one 

subject 

 

Figure 3: 

Final heart rate during each 800 meter bout of running during the training session 

for all subjects 


