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ABSTRACT

The work is devoted to the application and further development of modern statistical 

methods to study pharmacokinetics of drugs. Specifically, it deals with applications 

and development of repeated measures analysis, so called 'population approach' 

methods, in the field of pharmacokinetics. hi the first part of the thesis, a new, model- 

free approach is developed and tested. It introduces a model-free measure of patient's 

exposure to drugs, and then investigates the relationships between the exposure level 

and covariates using various statistical techniques. Classification tree models (CART) 

and regression analysis are used to study various subpopulations of interest. It is 

shown, via simulations, that the model-free method is capable to identify predictors of 

exposure in a wide range of variability in the data. The non-linear mixed effect 

modelling is used to confirm the results of the model-free investigation. Model-free 

approach is successfully applied to several drugs. Non-linear Mixed Effects 

population models developed for the same data agree with its results. Limits of the 

new method are also identified. Specifically, it does not allow the estimation of the 

variability: either the within-subject (intra-individual) variability in response, or 

between-subject (inter-individual) variability of the pharmacokinetic parameters in the 

population. The second part of the thesis is devoted to applications of the Non-linear 

Mixed Effect methodology to population pharmacokinetics and dose-response 

analysis. Population pharmacokinetic and dose-response models of several drugs are 

developed. Pharmacokinetic models allow for complete characterisation of the drug's 

pharmacokinetics and its relationships to safety and efficacy. The developed models 

are used to explore the relationships between the exposure (individual Bayes 

estimates) and demographic predictors of exposure, and safety and efficacy of the 

drug. Finally, the developed models are used in simulations to guide the design of new 

studies
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1 INTRODUCTION

The work is devoted to application and further development of modern statistical 

methods to study pharmacokinetics of drugs. Due to the dual (statistical and 

biological) nature of the work, it requires some introduction to the field and definition 

of pharmacokinetic terms. Let us begin with such an introduction.

1.1 Overview Of Principles Of Pharmacokinetics

When a drug is given (administered) orally to a human or an animal, it first enters the 

systemic circulation (a blood stream) through complex absorption mechanisms 

[Rowland & Tozer, 1995]. Following absorption, it is distributed to different tissues 

in the body. On passage through organs of elimination (e.g., liver, kidneys, etc.) it is 

eliminated (cleared) from the body. The amount of drug in each tissue is not constant. 

It rises following administration of the drug, then decreases, and eventually is cleared 

completely. Figure 1 depicts the typical pharmacokinetics or time course of the drug 

(i.e., time dependence of the amount of the drug in an organ) in different tissues 

following a single oral dose of a drug.

Is-

o "*
o> 

Q o

O-

Blood plasma

468 
Time, t

10

Figure 1. Typical drug pharmacokinetics after a single oral dose.

Pharmacological action of a drug, positive (efficacy) or negative (toxicity) depends on 

the amount of the drug at the site of action. Therefore, for optimal therapy (therapy 

that balances desired and side effects of the drug) understanding of the kinetics of the 

drug is crucial. However, most internal organs in humans are difficult to access, and 

the amount of the drug in the tissue can not be measured directly. Instead one typically
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measures the drug concentration in blood or blood plasma (also in urine, feces, milk, 

etc). From this profile (a time course) one can characterise pharmacokinetics of the 

drug in the body. The field of science that study the time course of absorption, 

distribution and elimination of drugs in the body is called pharmacokinetics (PK) 

[Gibaldi & Perrier, 1982].

Several pharmacokinetic parameters are commonly used to characterise drug 

pharmacokinetics. The most important are:

  Area under the concentration versus time curve (AUC);

  Maximal achieved concentration (Cmax);

  Time to achieve the maximal concentration (tmax);

  Clearance (Cl), defined as the proportionality coefficient between the rate of drug 

elimination from the body and the drug concentration in plasma. Clearance 

represents the volume of plasma that is cleared of drug per unit of time;

  Apparent volume of distribution (V), defined as a proportionality coefficient 

between the amount of drug in the body and drug concentration in plasma;

  Bioavailability (F), defined as fraction of the dose absorbed into systemic 

circulation;

  Half-life (t\/2) that is the time that takes to lower plasma concentration of the drug 

in half.

Repeated administration of a drug eventually (after several doses) yields steady-state 

concentrations of the drug in different tissues. These concentrations typically 

fluctuate periodically, with the period of dosing. The pharmacokinetic parameters at 

steady state may differ from those following a single dose. The relationship between 

single and multiple-dose pharmacokinetics is an important feature of the drug kinetics.

1.2 Compartmental Methods

Mathematical models that describe pharmacokinetics may be purely empirical or may 

have a physiological meaning. The most widely used pharmacokinetic models are the 

so-called compartmental models. They assume that the body consists of several 

'compartments' storing the drug, as shown schematically in Figure 2. The drug

17



transfers between the compartments and is eliminated following some functional 

relationships. The central compartment 1 may, for example, represent blood that 

transfers the drug to all the other tissues, presented by peripheral compartments 2 and 

3.

21 I
2

-*
1

-»
3

T

Figure 2. Three-compartment model with input into and elimination from the 

central compartment.

The compartment models aim to describe the disposition of the drug (e.g., 

concentration time course of the drug) in any compartment given concentration 

measurements from an individual at known times and the history of dosing. They can 

be described by systems of ordinary differential equations of the form;

at < (0 - = Eq. 1

7*'

where X\ represents the amount of the drug in the i-th compartment, Ij (t) is an input 

function into the i-th compartment from outside the system, ky- and kj,ei are the rates of 

transfer between the compartments and rates of loss of drug, respectively, and n is the 

number of compartments in the model.

Usually, the transfer and the elimination rates, ky- and kj ei, are assumed to be constant. 

Then the system is linear, and the solution is described by a sum of several 

exponential terms. Combinations of the rate constants then describe all the 

pharmacokinetic parameters of the drug.

The scope of compartmental modelling is to define functional relationships between 

the compartments and to estimate the parameters that describe the data. Estimation of 

unknown parameters of compartmental models is usually performed with the 

nonlinear regression.
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1.3 Variability In Pharmacokinetics

Different people respond differently to the same drug, and the same individual may 

have different responses (drug concentrations) on different occasions. Many factors 

can contribute to the inter-individual (between subjects) and intra-individual (within a 

subject) variability. Factors such as genetics, diseases, age, weight, and gender 

contribute to inter-individual variability, while drugs given concomitantly, 

environmental factors, non-compliance, food, time of the day and season can 

contribute to intra-individual variability. Determining subpopulations with altered 

kinetics has the implication for the choice of an appropriate dosing regimen (that is, 

the way of administering the drug, such as once or twice a day, orally or 

intravenously, etc.).

1.4 Two-Stage Approach

The traditional way to deal with variability is to use the two-stage method. First, the 

kinetics is described individually for a number of subjects from a homogeneous 

population (holding all factors contributing to variability constant), and 

pharmacokinetic parameters are derived for each subject. Then the population values 

of each parameter (mean and variance or coefficient of variation) are computed from 

the empirical distribution of individual estimates of the parameter. To define the 

influence of a specific factor on the drug kinetics, several populations that differ only 

in that factor should be compared with respect to their parameters (e.g., young versus 

elderly, fed versus fasted, etc.) [Rowland & Tozer, 1995].

This approach is widely used in pharmacokinetic studies, and until recently it has been 

the only method used. However, it has many limitations as discussed by Beal and 

Sheiner [1985], and Sheiner [1984].

Firstly, the two-stage method can be applied only to small pharmacokinetic studies 

under restrictive inclusion criteria. These studies are usually short and well controlled. 

They employ few dosing regimens and small number of usually healthy subjects who 

do not take other drugs. Many measurements are taken from each person allowing the 

description of the kinetics in each individual. To have enough power for comparisons,
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these studies are designed to compare kinetics with respect to only few factors. Thus, 

they cannot be used to study several correlated influential factors.

Secondly, in order to distinguish between inter- and intra-individual variability, 

traditional studies have to employ artificial and complex designs. These designs are 

not representative of clinical practice and usually can not be carried out in studies that 

involve real patients.

1.5 Population Approach

In patient studies (population studies), where the primary objective is the investigation 

of the drug safety and efficacy, the optimal pharmacokinetic designs are neither 

feasible nor desirable. Design of patient studies is dictated by the therapeutic goals. 

From the pharmacokinetic prospective these studies have non-experimental 

(observational) design. Only a few measurements are usually available per individual. 

The timing and number of measurements may differ between subjects, dosing 

regimens may also differ. This type of data is called sparse data. The population 

included in such studies is much broader and less homogeneous. Many factors can 

contribute to pharmacokinetic variability of a particular drug in a patient population. 

The number of homogeneous subpopulations can also be very large (and unknown a 

priori). The two-stage approach is not appropriate in dealing with such data.

A more recent approach for analysing sparse kinetic data from a population (called 

population approach) was first proposed by Sheiner et al. [1972]. Its first published 

application was five years later [Sheiner & Rosenberg, 1977] and the first software for 

analysing data in this manner, NONMEM, was released in 1980 [Beal & Sheiner, 

1980]. Since then, the population approach has been an area of active research [Beal, 

1998; Grasela & Sheiner, 1991; Sheiner & Grasela, 1991]. The approach uses the 

Nonlinear Mixed Effects regression Model to analyse the data pooled over all 

individuals (see an overview by Sheiner & Ludden [1992]).

The population model combines a pharmacokinetic model, called the structural 

model (for example, a compartmental model) and a statistical model. The basic idea 

behind the population model is that the same mathematical equation describes the 

response for any particular individual, but the underlying structural parameters of this
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equation vary from individual to individual. The overall variability in the measured 

response reflects the inter-subject variability in kinetics and the residual variation. The 

latter includes the intra -individual variability and a measurement error.

Individual structural (pharmacokinetic) parameters are modelled in terms of fixed and 

random effects. Fixed effects account for inter-individual differences in the values of 

individual covariates (age, sex, liver function, severity of a disease or other 

demographic or laboratory data). Random effects of the first type account for 

unexplained inter-individual variability in the pharmacokinetic parameters. Random 

effects of the second type account for residual variability. The full set of assumptions 

and models on (i) pharmacokinetic structural relationships, (ii) inter-individual 

variation and (iii) residual error variance build a "pharmacostatistical" population 

model.

A form of the Nonlinear Mixed-Effect Model sufficiently general for our purposes is 

given by the equation:

yy = fjj(D ik , tD ik , ty; (£) + 6ij(D ik , tD ik, ty; (&), Eq. 2

where the index i=!,...,! denotes the subject (I is the number of subjects), the index 

j=l...,Ji denotes an observation (Jj is the number of observations for the subject i), and 

k=l,.. .,Kj denotes a dose administration (Kj is the number of doses administered to 

the subject i). The observed plasma concentration yy (or it's transformed value, such 

as log concentration) is a noise-corrupted realisation of the expected value for the j-th 

observation on the i-th subject. This model assumes the existence of some parametric 

function of time fy(D ik , tD ik, ty; (£j) (a structural model) that describes the expected 

response (e.g., plasma concentration) in a subject. The vectors Dik and tD ik describe 

the dosing history of an i th subject, and the vector ty describes times of the 

observations. The vector (& is the vector of pharmacokinetic parameters for the i th 

subject. The random noise ey that perturbs the expected value of yy is represented in 

(Eq. 2) as a function to indicate that its distribution (e.g., variance) may depend on 

dose, time and pharmacokinetic parameters.

The vector of parameters <j>j vary randomly among the subjects. It is a function
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<fc = h(xi; 0, r,,) Eq. 3

of the vector of parameters 0 (the fixed effects that characterise the population), on the 

collection x; of covariates, and on the vector of random effects T^ The random effects 

Hi and 8y are assumed to have zero expectations

E(aO = 0, E(Eij ) = 0, Eq. 4 

and be statistically independent

Cov(Hi, 8ij) =0 . Eq. 5

The variance-covariance matrix of inter-individual random effects and variance of 

intra-individual random effects are denoted as Q and a2, respectively, i.e.,

Var(8ij)=a2, i=l,.-,I; j=l,-..,Ji   Eq. 6

(In a more general model, e^ may be a vector; its variance-covariance matrix is then 

denoted as £).

Thus, the pharmacokinetics of the drug is completely described within the given 

model by (i) vector of the population parameters 0, (ii) vectors of individual random
*\

effects rji (or its variance-covariance Q), and (iii) variance of residuals a (or the 

variance-covariance matrix S).

The simplest method for estimation of unknown parameters is the so-called First - 

Order method [Sheiner, et al, 1972]. It approximates the nonlinear model with a 

model that is linear in all random effects by using a first-order Taylor expansion in all 

random effects around zero [Beal, 1984]. To illustrate the method let us rewrite (Eq. 

2) and (Eq. 3) in a more general form:

Eq. 7
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including into Xy the covariates Xj, the dosage histories Dik, to ik, and the sampling 

time histories tjj. Then the first-order model can be written as

ytj = ,,, + --,,q , +-,,,, -. Eq. 8

The estimates of the model parameters 0, Q and I are then obtained by the extended 

least squares method [Real, 1984]. Under the assumption of normality of random 

effects, the extended least squares yields maximum likelihood estimates for the first - 

order model [Beal, 1984].

The first -order method produces estimates of the population parameters 0, Q and L, 

but it does not obtain estimates of the random inter-individual effects r^. An estimate 

of Hi, conditional on the first order estimates for 0 and Q (at zero value of I) can be 

obtained by maximising the empirical Bayes posterior density of TJJ, given the vector 

yij for the i th individual [Beal & Sheiner, 1998]. Since the estimate 3.1 is obtained after 

the population estimates, it is called theposthoc estimate.

The first-order method was implemented in the software NONMEM, and is referred to 

as FO method.

In contrast to the first-order method, conditional estimation methods (also 

implemented in NONMEM [Beal & Sheiner, 1998]) produce estimates of the 

population parameters 0, Q and L and, simultaneously, estimates of the random inter- 

individual effects T|J. They maximise the likelihood for all the data with respect to 0, 

L, H and Tjj. Different methods use different approximations to the likelihood. These 

methods are very time-consuming and prone to problems. Therefore, they are used 

only when the FO method produces biased estimates.

The NONMEM software that implements FO and conditional estimation methods has 

become a standard for nonlinear mixed effect modelling in the pharmaceutical 

industry. The alternatives include other Gaussian maximum likelihood algorithms 

based on different linearisations of the model [Lindstrom & Bates, 1990; Vonesh, 

1992; Vonesh & Carter, 1992; Wolfinger, 1993], semi-nonparametric maximum
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according to observed interim response, are used more and more often. The mixed- 

effects methodology is the only option for deriving dose-response relationships in 

such studies.

1.6 Model-Free Approach

Nonlinear mixed-effects modelling is a very powerful technique. However, it has its 

own limitations. Firstly, it is a very time intensive method [Steimer, et al, 1994]. 

Secondly, it requires an answer to the following question: how do the structural and 

covariate models, f\j and h, depend on their arguments? Seldom, if ever, does theory 

provide a priori answers to these questions. Exploratory diagnostic techniques have 

been developed to guide the selection of model form fy and covariate dependencies h 

[Ette & Ludden, 1995; Mandema, et al, 1992]. The success of these exploratory 

methods led to the idea of using nonparametric "exploratory" data analysis methods 

developed by Chambers et al. [1983]. Such an analysis is especially useful when the 

data has a fairly simple structure, e.g., in the situation of steady state dosing with the 

same dose given to all the individuals. These nonparametric exploratory methods are 

essentially a mix of graphical and statistical techniques (see [Pollak, 1990] for a 

general survey of exploratory methods).

Motivated by Ebelin et al. [1992 ] and Laplanche et al. [1991], where exploratory 

analysis were made primal, a nonparametric, model-free, approach to pharmacokinetic 

population analysis has been developed [Gibiansky, et al, 1997, 1999; Nedelman, et 

al, 1995,1996]. The basic idea of the model-free approach is to categorise patients 

into groups according to their exposure, using graphical algorithms, and then use 

various statistical techniques to explore association of these groups with the 

covariates.

The approach involves partitioning observed plasma concentrations into several 

regions (observation levels) taking into account time of concentration measurements. 

Patients are then partitioned into 'exposure levels' depending on which observation 

level their concentrations fall into. Exposure level serves as a new response - an 

ordered factor that characterises the exposure to the drug. It can be explored for an 

association with covariates. Depending on the goals of the investigation a variety of 

statistical techniques can be used: from univariate measures of association to elaborate
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multivariate classification and regression tree (CART) analysis [Breiman, et al., 

1984]. Quantitative measures of exposure, individual (Area Under Quartile or AUQ) 

and population (Area Under Population Curve or AUPC) can also be derived. This 

allows for comparisons of exposure for subpopulations. Both, the exposure level and 

the individual AUQ, can also be used as a covariate in pharmacodynamic models, 

models that relate drug effect to pharmacokinetic parameters.

The method has been evolving over time. First, it was mostly a qualitative method, 

designed to serve as a screening tool for parametric modelling, the aim was to reduce 

the number of variables in the model building process. It later developed into an 

elaborate statistical technique able to stand on its own.

In the present work the aforementioned techniques are developed and applied to 

several drugs under development. The structure of the work is the following.

1.7 Organisation of the thesis

Chapter 2 starts with a simpler, model-free approach. It describes the evolution of the 

approach as it is applied to three projects, three different drugs. In the first two 

sections (Sections 2.1 and 2.2), model-free approach served as a screening tool: results 

were to be incorporated into model building of the nonlinear mixed-effects model 

[Nedelman et al., 1995, 1996]. Therefore, the most interest was in qualitative results. 

In the third section (Section 2.3) the model-free approach was meant to be the only 

technique used for the analysis of the data. This necessitated a considerable 

refinement of the method: use of a wider spectrum of modern statistical techniques 

and development of quantitative measures of exposure for subpopulations [Gibiansky 

et al, 1997]. The fourth section of Chapter 2 (Section 2.4) supports the model-free 

approach by an extensive simulation [Gibiansky et al, 1999].

Chapter 3 is devoted to two applications of the Nonlinear Mixed Effect methodology. 

In the first section (Section 3.1), a population pharmacokinetic model for one of the 

drugs described in Chapter 2 is developed. To find a form of the structural model, 

individual pharmacokinetic models are first developed for data from phase I 

pharmacokinetic studies using compartmental modelling [Gibiansky, 1995; Nedelman 

et al, 1997a]. These data and patient data used in Chapter 2 are then used for the
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development of the population model [Nedelman et al, 1996]. Initial values of the 

population parameters are obtained by the two-stage method [Gibiansky, 1994]. After 

model development is completed, simulations are used to assess the bias and precision 

of the model parameters. The developed model is used to help design subsequent 

studies for the drug [Gibiansky, 1996].

In the second section of Chapter 3 (Section 3.2), the Nonlinear Mixed Effects 

Methodology is used to develop a population dose-response model of a drug. The drug 

was given to hypertensive patients to reduce their diastolic blood pressure (DBF). If a 

patient did not respond (i.e. his/her blood pressure did not drop below a pre-specified 

threshold after a pre-specified time), the dose for that patient was increased or a dose 

regimen was changed. Thus, different patients received different doses of the drug 

during the trials. Only the patients most resistant to the therapy received the highest 

doses. In this chapter development of the population model of change in DBF 

depending on dose is described. During the trials more cardiovascular adverse events 

were seen among African-American patients than among Caucasians. Therefore, these 

subpopulations are thoroughly investigated in covariate models. Structural model 

relationships were sought among step, linear and sigmoid [Gabrielsson & Weiner, 

1997] models. The best structural models turned out to be different for different races.

Finally, Chapter 4 concludes the work by summarising results of all investigations 

described in Chapters 2 and 3. The results of the model-free approach of Chapter 2 

and model-based approach of Chapter 3 are compared. Differences and similarities of 

these approaches are discussed.

1.8 Tools

Software is an essential tool in this work. The main software packages used in the 

work include SAS® [SAS Institute Inc., 1990], S-PLUS [1997] and NONMEM 

[1992]. SAS was used throughout the work for data management and conventional 

statistics. It was also used for the development of the spline-partitioning technique 

described in the Sections 2.2, 2.3 and 2.4 of Chapter 2, and for the compartmental 

modelling and simulation of Section 3.1 of Chapter 3. S-PLUS is a very powerful tool 

for modern statistical techniques, exploratory graphics and visualisation of data. It was 

used for tree-based modelling, robust regression and simulation in the Sections 2.3
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and 2.4 of Chapter 2, for exploratory graphics and statistical computing in the Section 

3.2 of Chapter 3. NONMEM today is a gold standard in the pharmaceutical industry 

for the nonlinear-mixed effect modelling. It was used for model development in the 

projects of Chapter 3.
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2 MODEL-FREE POPULATION PHARMACOKINETICS

One of the goals of pharmacokinetics is to characterise the relationship between the 

pharmacokinetic parameters of a drug and covariates (such as demographic, disease- 

related, etc.) that alter patient's drug exposure (e.g., AUC). In many situations, finding 

such factors and quantifying the differences in exposure in subpopulations is the main 

goal of the investigation. A model-free approach deals with such situations 

[Gibiansky, et al., 1997; Nedelman, et at., 1995, 1996]. The basic idea of the approach 

is to classify patients into groups according to their exposure and then use various 

statistical techniques to explore association of these groups with covariates. In the 

following three sections this model-free approach is applied to three situations, each 

time the method is more refined and modified to the needs of each project. In the 

fourth section the developed technique is tested on simulated data.

2.1 Anxiolytic Compound

2.1.1 BACKGROUND

As part of the development of a new anti-anxiety drug, there was a need to estimate 

the systemic exposure to the drug (i.e. AUC of the drug in plasma) from phase III 

clinical trials (large-scale safety and efficacy trials in patients). In the trials, patients 

received the drug three times a day for six weeks. Plasma samples were drawn once a 

week at times chosen by the patients. Evaluating pharmacokinetics from such sparse, 

arbitrarily timed plasma samples is known as a pharmacokinetic screen [Steimer, et 

al., 1994].

2.1.2 DATA

The data was obtained from two phase III trials in patients with generalised anxiety 

disorder. The patients received their medication orally at home three times a day, but 

not on a rigid 8-hour schedule. Patients were randomised to different treatment groups 

and were titrated up (i.e. dose was slowly increased) to the target dose (within a given 

treatment) over the first few days of the study. The final daily doses ranged from 3 mg 

to 22.5 mg across treatment groups. Figure 3 displays the distribution of daily doses in 

the two studies.
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Frequency distributions of prescribed daily doses, after titration and 

during the time when blood draws were performed, in the two patient 

studies, Study I" , and Study II

Some of the daily doses were non-uniformly distributed between the three 

administrations. For example, a frequent daily dose of 17.5 mg was divided into 5 mg 

in the morning, 5 mg in the afternoon, and 7.5 mg in the evening. The patients took 

their medication at home, and maintained a diary recording the doses they took at each 

administration, but did not record the time.

Patients returned to their physicians for an evaluation once a week for 6 weeks. 

During the weeks 3-6, after the titration period, a blood sample was taken during the 

patient's visit to the clinic. The time of the visit and the time interval since the last 

administration of the drug (time post-dose) were not controlled but rather were 

determined by the patient's choice of when to take the drug and visit the clinic. When 

blood was sampled, patients were asked how long it had been since their most recent 

administration of the drug and since the second most recent. Thus, for each patient, in 

addition to a weekly diary record of dosages, a report from memory of the times of the 

two most recent drug administrations was available. Table 1 displays the numbers of 

patients and numbers of blood samples available for analysis.
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Table 1 Numbers of patients and plasma samples

Study

I

II

Number of patients

87

170

Number of samples

274

562

2.1.3 OBJECTIVES

The goal of this investigation was to characterise the average exposure to the drug and 

relate it to demographic predictors, i.e. identify covariates that affect the exposure to 

the drug. Demographic covariates chosen for exploration of their relationships to 

exposure were age, gender, race, weight, height, body surface area and smoking.

2.1.4 METHODS

The method is based on partitioning observed plasma concentrations into several 

regions, called observation levels, taking into account time of concentration 

measurements. Patients are then partitioned into exposure levels depending on which 

observation level their concentrations fall into. Exposure level serves as a new 

response, an ordered factor that characterises the exposure to the drug. It can be 

explored for an association with covariates.

First, observed plasma concentrations are partitioned into quartiles. This partitioning 

involves several steps:

1. Concentrations are normalised for dose, using weighted average dose

WDOSE. Because it was common to have non-uniform dosage regimens with 

a cycle of three dose levels during a day, WDOSE accounted for three doses 

prior to blood sampling: Dl - the last dose, D2 - second-to-last dose, and D3 - 

third-to-last dose. Weights were chosen to give more importance to more 

recent doses:

WDOSE = (4D1 + 2D2 + D3)/7. Eq. 9
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Previous pharmacokinetic studies [Krause, 1991; Krause, et at., 1990] of the 

drug had indicated that concentrations vary proportionally to dose. Dose- 

normalisation permitted us to combine observations from many dose levels.

A scatter plot of dose-normalised concentrations versus time post-dose was 

considered. Most concentrations were obtained within 0 to 8 hours post dose; 

few concentrations obtained later than 8 hours were excluded from the 

analysis. The time axis was divided into one-hour time intervals from 0 to 8 

hours post-dose.

Within each one-hour interval, the quartiles of the dose-normalised 

concentrations were determined. Figure 4 shows four piecewise constant 

functions that within each one-hour interval take on the values of the four 

quartiles. These functions thus divide the scatter plot of points into four areas, 

which are called observation levels.

2
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Figure 4. Dose-normalised plasma concentrations from the two patient studies, 

with piece-wise constant functions of hourly quartiles of observations. 

Regions between step functions are defined to be observation levels.
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Then patients are partitioned into exposure levels depending on which observation 

levels their dose-normalised concentrations fell into. This process is schematically 

depicted in Figure 5. One can distinguish four different situations:

A. If all of a patient's observed dose-normalised concentrations fall into one 

observation level, the patient is then called an 'all-in-one' patient and is 

assigned to the corresponding exposure level (Figure 5A).

B. Suppose that a patient's dose-normalised concentrations fall into two adjacent 

observation levels. Let u out of n observations for the patient, be in the upper 

of the two adjacent levels and n-u in the lower. Let di, ...,du, be the distances 

from the points in the upper level to the common boundary, and let d u+i, ... , d 

n be the distances for the points in the lower level. If

then the patient is assigned to the exposure level corresponding to the upper 

observation level; otherwise, the reverse.

In Figure 5B, n = 4, u = 2, and since the two points in the third observation 

level are farther from the common boundary than are the two observations in 

the second level, the patient is assigned to the third exposure level.

C. If a patient's dose-normalised concentrations fall into either the first to third 

observation levels or else the second to fourth observation levels, such 'three- 

adjacent' patient is assigned to the exposure level corresponding to the middle 

of the three observation levels (Figure 5C).

D. If a patient has dose-normalised concentrations spanning the first and fourth 

observation levels, then the patient is called an 'all-four' patient and is 

considered not to represent a stable type. Such patient is left unclassified as to 

exposure level (Figure 5D).



Figure 5. Dose-normalised plasma concentrations for fictitious patients:

illustration of assignment algorithm. Patient observations fall in A 

one observation level, B - two adjacent regions, C -three adjacent 

regions, D - four observation levels.

This classification provides a crude estimate of exposure for each patient; the 

exposure level to which a patient is assigned is an ordinal measure of the patient's 

dose-normalised exposure to the drug.

The choice of the observation levels and the exposure measure in the model-free 

approach is somewhat arbitrary. The four observation levels used in this work were 

chosen by the analogy with four quartiles commonly used in the statistical analyses. 

One can use an ordinal measure based on more observation levels or create a 

continuous measure. For example, some average (over the subject's measurements) of 

standardised distances of the subject's measurements from the average population 

concentrations within the respective time intervals may serve as such a measure. The



rule of subject's assignment to the exposure level is not unique as well. One can 

imagine more elaborate schemes. As one will be able to see, the present choice made 

it possible to obtain meaningful results. More experiments may be needed to find the 

best possible exposure measure within the model-free framework. This work focuses 

on obtaining practical results and proving of method's concept with the chosen 

exposure measure rather than experimenting with various possible alternatives.

To find predictors that affect exposure, exposure levels are related to demographic 

covariates by standard statistical techniques: contingency-table analysis for the 

categorical covariates such as smoking, gender, and race; ANOVA for the continuous 

covariates such as age and measures of body size.

For comparison of model-free and model-based results, discussed later, a quantitative 

measure of an individual exposure, a quartile-based analogue of the AUC, was 

created. It is called the area under the quartile, or AUQ.

To compute an AUQ for each patient during each week, a number called a dose- 

normalised AUQ is first associated with each exposure level. Figure 6 shows how 

such a number is computed for the third exposure level. The shaded area is the area 

under the function that defines the middle of the third observation level, the fifth 

octile. For the first, second and fourth exposure levels, the first, third and seventh 

octiles are used, respectively.

An AUQ for a given patient in a given week is then computed by multiplying the 

patient's average weighted dose WDOSE times the dose-normalised AUQ for the 

patient's exposure level.
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Figure 6. Definition of the dose-normalised area under the quartile for the 

exposure level. Shaded is AUQ for he third exposure level. Thick solid 

lines denote boundaries of the exposure levels.

2.1.5 RESULTS

Table 2 shows the frequency distributions of the four types of patients in each study. 

The observation levels were determined from the data from the two studies combined; 

the purpose of the separation in Table 2 is to check whether there is any large 

difference between the studies with respect to frequencies of types. The frequencies 

show that 80 percent of subjects were in the two most stable types, all-in-one and two- 

adjacent. Only 3 per cent were not classified because of having dose-normalised 

concentrations in both the first and fourth observation levels. Results confirm that 

patients were similar in two studies with respect to their types; there were no large 

differences in the frequencies of types in these studies.
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Table 2. Frequencies of patient types

Type

Frequency 

(Col %)

Study I Study II Total

All-in-one
41

47%

68

40%

109

42%

Two-adjacent
26

30%

69

41%

95

37%

Three-adjacent
17

20%

28

16%

45

18%

All-four
3

3%

5

3%

8

3%

Total 87 170 257

Table 3 shows the distribution of patients among exposure levels. Due to the way that 

exposure levels are constructed, there is no constraint that the patients partition 

uniformly among them. Despite this, the distribution across the four levels of 

classified subjects is fairly uniform. Furthermore, patients were similar in the studies; 

there are no large differences between the studies in frequencies of assigned exposure 

levels.



Table 3. Frequencies of exposure levels

Exposure level

Frequency 

(Col %)

Study I Study II Total

Unclassified
3

3%

5

3%

8

3%

1
17

20%

37

22%

54

21%

2
16

18%

48

28%

64

25%

3
30

35%

45

27%

75

29%

4
21

24%

35

21%

56

22%

Total 87 170 257

Table 4 contains the main results of the project. Specifically, it summarises the results 

of the univariate statistical analysis. Each covariate was tested separately. For 

categorical covariates the null hypothesis of no difference was tested against a two- 

sided alternative hypothesis of a difference in exposure level depending on the level of 

covariate. For continuous covariates the null hypothesis was the hypothesis of no 

difference in means of the covariate between different exposure level groups. Testing 

was performed at the 95% significance level. The contribution of each covariate to the 

exposure level is presented in terms of the p-values, with p < 0.05 being regarded as 

significant, p < 0.01 more significant, and p < 0.001 regarded as highly significant. 

The direction of the influence is also shown. As can be seen, smoking, gender and age 

are found to be significantly related to exposure; with smoking being the most 

important factor followed by gender, and then by age. Smoking decreased exposure 

levels, whereas age increased the levels. Females tended to be in higher levels. Neither 

race nor any measure of body size was significantly related to exposure level.
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Table 4. Relationships between demographics and exposure.

Covariate Contribution
Direction of effect 

on exposure level

Smoking

Gender (female)

Age

Race

Weight

Height

Surface Area

+++

++

+

-

-

-

-

;
t
t

- p>0.05, + p<0.05, ++p<0.01,    p< 0.001.

Figure 7 Model-free AUQs versus model-based AUCs.

These results are reported in Nedelman et al [1995], where they were used in the 

model-based analysis of the drug's pharmacokinetics. The covariates found to be 

important by the model-free method were incorporated into the nonlinear mixed effect
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model. The model (not described in this thesis) confirmed the findings of the model- 

free approach. Apparent oral clearance increased in smokers, and decreased in females 

and with increasing age. The contribution of these covariates followed the same order 

as in model-free approach. Figure 7 shows a strong linear correlation between model- 

free AUQs and model derived AUCs.



2.2 Antifungal Compound

2.2.1 BACKGROUND

The second project is devoted to an anti-fungal drug. Pharmacokinetic studies have 

revealed that this drug has a prolonged half-life ranging from 4 to 22 days 

[Faergemann, et a/., 1991; Jensen, 1989, 1990]. This long half-life may cause marked 

accumulation of the drug over the 6 to 24 weeks of administration. Long-term 

exposure to high levels of the drug might alter the risk/benefit ratio of treatment with 

this agent. Consequently, the investigation was undertaken to identify demographic 

predictors of its exposure and to explore whether increased exposure or demographic 

predictors of increased exposure were associated with altered safety or efficacy in 

patients.

2.2.2 DATA

Data was obtained from two efficacy and safety studies (PI and P2) in patients with 

onychomycosis. Patients were directed to take one tablet daily, either placebo or the 

drug. Dosing continued for 24 weeks in Study PI and 12 weeks in Study P2. In each 

study, there were three treatment arms. One arm received placebo for the entire 

duration of dosing. The second arm received active drug at 250 mg/day for the entire 

duration of dosing. A third arm received active drug at 250 mg/day for the first half of 

the dosing period (12 weeks in Study PI and 6 weeks in Study P2) followed by 

placebo for the second half. Sparse pharmacokinetic samples were obtained in these 

efficacy studies. Maximally three plasma samples were collected per patient during 

the study. One sample per patient was drawn when the patients visited their physicians 

at weeks 4, 12, and 24 in Study PI, and weeks 4, 6, and 12 in Study P2. The times 

during the day of the patients' appointments, and consequently, the times post dose of 

the blood samples, were not specified in the protocol but rather were determined 

solely by the patients' and investigators' convenience - i.e., they were, in the sense of 

population screens, "random". Patients kept diaries recording the times of doses taken 

on the two evenings prior to blood sampling. Investigators recorded the times of the 

blood samples.

In both studies, the times post dose at which the blood samples were drawn generally 

fell into three major groups: around 15 hours, 1000 hours, and 2000 hours post dose



as shown in Figure 8. Indeed, since doses were taken in the evening before the day of 

the visit to the physician, blood samples were usually taken around 15 hours after the 

tablet was ingested. The second cluster at around 1000 hours comes from the blood 

samples at 12 weeks from those patients in Study PI who received the drug for only 

the first six weeks. The third cluster at around 2000 hours comes from the blood 

samples at 24 weeks from those patients in Study P2 who received the drug for only 

the first 12 weeks.

234567

Figure 8. Concentration versus time data for studies P1 and P2 (points) on the 

log scales. Superimposed are three splines that define partition 

boundaries.

In total, 545 plasma concentrations were available: 327 observations from 130 

patients in Study PI and 218 observations from 89 patients in Study P2. Among them, 

29 samples had zero concentrations, i.e. concentrations below the quantification limit 

of the bioanalytical assay (BQL). They were excluded since a log scale for 

concentrations was used. Two more observations were eliminated because they were 

obvious outliers. The resulting data set had 514 observations.

2.2.3 OBJECTIVES

As before, the goals of the model-free population pharmacokinetic analysis were to

partition patients into exposure levels, and subsequently explore the relationship



between the covariates and exposure levels. It was decided in advance to restrict 

consideration to the following covariates:

Demographic: age, sex, race, weight, body surface area, and smoking status; 

Lipid levels: LDL (low-density lipoprotein cholesterol) concentration; 

Medical conditions: hypertension, peripheral vascular disease.

2.2.4 METHODS

Unlike the previous project, the data was very non-uniformly distributed across time. 

There were clusters of many points and there were extended intervals with few or no 

points. Consequently, use of a piecewise constant function at equal intervals, to 

partition plasma concentrations into quartiles, was not possible. Any other arbitrary 

chosen division of time intervals (for example, intervals with equal numbers of points) 

was also questionable. Due to the temporal variations of the plasma concentration 

data, lumping together distant points was also inappropriate. As a result, interpolation 

of the data was used. In particular, nonparametric smoothing splines were used to 

separate observation regions instead of piecewise constant functions (see DeBoor, 

1978 for a detailed description of smoothing splines or a brief Remark below).

Remark:

Suppose one has a scatterplot of n pairs (xit yj. Among all functions f(x)

with two continuous derivatives, a smoothing spline minimises a penalised 

residual sum of squares

where A, is a fixed constant, called a smoothing parameter, and a <xj <... <xn 

<b. The solution is a natural cubic spline with knots at the unique values ofx, 

(i.e. Xj *Xj for any pair of knots x* Xj) . The smoothing parameter A. controls 

the fit. At the one extreme, as A -» 0, the penalty term dominates, forcing 

f(x) = 0 everywhere, and thus the solution is the least-squares line. At the 

other extreme, as A, -> oo, the penalty term becomes unimportant and the 

solution tends to an interpolating twice-differentiable function. The



smoothing spline is a powerful and flexible form of non-parametric regression 

technique based on strictly interpolating splines [Silverman, 1985].

To partition plasma concentrations into observation levels a nonparametric cubic 

smoothing spline is fitted through the scatter plot of concentration versus time for all 

patients, all visits and studies together, as in Figure 8. The resulting curve estimates 

"typical" plasma levels as a function of time, dividing the scatter plot into two parts, a 

higher and a lower. Then the same nonparametric smoothing is applied separately to 

each of the two parts. The resulting curves estimate "typical" lower and upper 

concentrations as functions of time. The three curves, three partition boundaries, 

divide the points into four regions, four observation levels. Each of these four regions 

do not necessary contain 25% of the observations, as in the previous project. The less 

uniform the concentrations are distributed at each time interval, the further the regions 

are from the quartiles.

Fitting a smoothing spline involves an arbitrarily assigned value of the smoothing 

parameter A,. The greater the parameter the smoother the fitted curve is. Several values 

of A, were used, based on experimentation with the smoothing algorithm.

The smoothing was to be applied to a scatter plot of concentration versus time post 

dose. However, both concentrations and times post dose ranged over several orders of 

magnitude, so the linear scales of concentration and time might not be the most 

convenient. Log-transformed concentrations were used on the y-axis. On the x-axis, 

both log-transformed and untransformed raw times were tried.

The duration of treatment from the first dose until the plasma sample was drawn 

ranged from 4 to 24 weeks. It was suspected that the drug might accumulate in the 

blood over such periods. In this case, in order to standardise the concentration values 

during different weeks of dosing, the concentrations should be adjusted for the 

expected accumulation. Both variants, with and without adjustment, were tried. In one 

variant, the concentrations were left unadjusted for accumulation. In the other variant, 

they were adjusted by dividing concentrations by a pseudo-accumulation factor,

. 1 1~ -24</*/> ' 1 -e



where d is the number of days of dosing prior to the blood sample, and b is an 

estimate of a parameter that characterises a half-life. Two values of b were used: 

0.00165 and 0.0019. This parameter comes from the compartmental modelling and it 

is described later in Chapter 3 (where it was denoted b4).

Not all possible combinations of the preceding options regarding smoothing 

parameter, axis scales, and adjustment for accumulation were used. Complete analyses 

were conducted using five different combinations of options. Table 5 exhibits those 

combinations.

Table 5. Combinations of parameters used for partition

Combination
Transformation 

of time
b4

Smoothing 

parameter

1

2

3

4

5

none

log

log

log

log

0.0019

0.0019

0.0019

none

0.00165

10,000,000

0.1

1.0

1.0

1.0

After observation levels are determined, patients are assigned to the exposure levels 

according to the same algorithm as in the previous project. Thus, in the modified 

partitioning method piecewise constant boundaries of the observation levels are 

replaced by smooth functions of time, namely smoothing cubic splines.

A statistical analysis was performed to explore the association between the exposure 

levels and the covariates. The categorical covariates used in the analysis were gender, 

age (divided at 40 years from the previous experience with the drug), race, smoking, 

history of hypertension, and history of peripheral vascular disease. The continuous 

covariates were age, weight, body surface area and LDL cholesterol level. Age was 

used both as a continuous and categorical covariate.



For each categorical covariate, frequency tables were generated and the Fisher's exact 

test was applied. The null hypothesis of no difference was tested against a two-sided 

alternative hypothesis of a difference in exposure level depending on the level of the 

covariate. Testing was performed at a 95% significance level.

For continuous covariates, the distribution of the covariate by exposure level was 

summarised by means and standard deviations. Furthermore, the mean of each 

continuous covariate was compared across the exposure levels by an analysis of 

variance (ANOVA), in which the null hypothesis of equality of the means was tested 

against an alternative that the means either increased or decreased linearly with the 

exposure levels.

It is important to note that not all of the covariates are independent. It is known that 

weight and body surface area differ for men and women; interaction of cholesterol 

level and age in the studies with gender could also be suspected. For a continuous 

response variable a natural choice of analysis would be to perform a two-way 

ANCOVA, with gender and a covariate in the model. The exposure level, however, is 

not a continuous variable. Therefore, in order to account for possible confounding of 

the effect of the covariate on the exposure level by gender, the two-way ANOVA with 

gender and the exposure level as the main effects of the model was performed for all 

continuous covariates. The interaction term was also included.

Also, to account for the fact that cholesterol generally increases with age [Braunwald, 

et al., 1987] a two-way ANOVA was performed for cholesterol level with age, the 

exposure level, and their interaction included in the model. As with the categorical 

covariates, testing was performed at a 95% significance level.

The partition algorithm, described above, was implemented in SAS and SAS/IML 

language [SAS Institute Inc., 1989a]. The SAS/IML function SPLINEC was used for 

spline fitting. The statistical analysis was implemented using SAS/STAT [SAS 

Institute Inc., 1989b].
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2.2.5 RESULTS

Figure 8 shows the scatter plot of log concentrations versus log time with the partition 

boundaries resulting from combination 4 of the parameters (see Table 5). The other 

combinations produced similar plots.

Table 6 displays the percentage of observations assigned to each of the four 

observation levels by each Combination of options. As can be seen, five 

Combinations yield similar partitions. As expected, the method did not partition the 

observations into four equally sized groups; the first and the fourth observation levels 

have slightly less observations than the second and the third levels.

Table 6. Frequencies of observation levels

Combination
Observation Level

1 2 3 4

1

2

3

4

5

22%

21%

21%

23%

21%

28%

27%

28%

30%

28%

29%

29%

29%

27%

29%

21%

23%

22%

21%

22%

Table 7 displays the distribution amongst the exposure levels generated by each of the 

five combinations. The five distributions are similar, with combination 4, where no 

adjustment for accumulation was made, being the most different. Only 4% of patients 

have not been assigned to the exposure levels because they had plasma levels in both 

the first and fourth observation levels. As with the observation levels, the distributions 

of patients are not uniform over the four exposure levels. The differences between the 

first and fourth exposure levels relative to the second and third are more pronounced 

than with the observation levels. This suggests that many patients had occasionally but 

not consistently high or low plasma levels.



Table 7. Frequencies of exposure levels

Combination
Exposure level

1 2 3 4 Unassigned

1

2

3

4

5

16%

15%

15%

18%

15%

34%

35%

35%

33%

35%

29%

30%

30%

31%

30%

17%

16%

16%

14%

16%

4%

4%

4%

4%

4%

Table 8 displays the distributions of patients according to the spread of their plasma 

levels among the four observation levels. The results are generally similar, with 

combination 4 again differing most from the others. On average, 35% of the patients 

were in the most consistent All-in-One category, and another 41% were in the 

Two-Adjacent category.

Table 8. Frequencies of patient types

Combination

Patient Type

All-in- 

One8

Two- 

Adjacent6

Three- 

Adjacent0

All- 

Four'1

1

2

3

4

5

33%

32%

31%

47%

31%

42%

41%

43%

35%

44%

21%

23%

21%

15%

21%

4%

4%

4%

4%

4%

a) All concentrations in one observation level

b) All concentrations in two adjacent observation levels

c) All concentrations in three adjacent observation levels

d) Concentrations span four observation levels
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Table 9. Frequencies of gender and race versus exposure level

Exposure 

level
Total

Gender 

(Row %)a

Male Female

Race

(Row %)a

Caucasian Black Oriental Other

Unassigned

1

2

3

4

9

33

76

65

36

89%

85%

84%

85%

89%

11%

15%

16%

15%

11%

78%

97%

91%

88%

89%

0%

0%

0%

2%

3%

0%

0%

0%

2%

3%

22%

3%

9%

9%

6%

a) Computed as percent of a cell frequency to the Total in the corresponding exposure level

Table 10. Frequencies of age versus exposure level

Exposure 

level
Total

Age in years

40 and under

Total under 
Male 

40

N % a %b

Female

%b

over 40

Total over 

40

N % a

Male

% c

Female

% c

Unassigned

1

2

3

4

9

33

76

65

36

4

19

27

15

4

44%

58%

36%

23%

11%

75%

79%

78%

80%

100%

25%

21%

22%

20%

0%

5

14

49

50

32

36%

42%

64%

77%

89%

100%

93%

88%

86%

88%

0%

7%

12%

14%

13%

a) Computed as percent of a cell frequency to the Total in the corresponding exposure level;

b) Computed as percent of a cell frequency to the Total under 40 in the corresponding exposure level;

c) Computed as percent of a cell frequency to the Total over 40 in the corresponding exposure level.

Table 9 - Table 15 display the distributions of covariates by exposure levels: Table 9 

Table 11 show frequencies of categorical covariates; Table 12 - Table 15 display 

means and standard deviations of quantitative covariates. From the results presented 

for categorical covariates, it is evident that gender, race and a history of vascular 

disease does not influence the assignment to the exposure level: the percentage of
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males, Caucasians or patients with vascular disease does not change with the exposure 

level. Age, smoking and a history of hypertension appear to have an effect on 

exposure: percentage of patients over 40 years old, non-smoking patients and patients 

with the history of hypertension increases with the exposure level. From the tables for 

the continuous covariates, mean age increases with the exposure level. There is also a 

slight increase in LDL for women. Means of weight and body surface area do not 

change across the exposure levels.

The exposure level assignments in the Table 9 - Table 15 are from combination 3. The 

results of the other combinations are similar.

Table 11. Frequencies of smoking, vascular disease and hypertension versus 

exposure level

Exposure 

level
Total

No. of cigarette packs 

per day

0 <1 1-2 >2

Vascular 

disease

No Yes

Hypertension

No Yes

Unassigned

1

2

3

4

9

33

76

65

36

100%

73%

80%

83%

97%

0%

12%

14%

8%

3%

0%

15%

5%

8%

0%

0%

0%

0%

2%

0%

100%

97%

99%

98%

97%

0%

3%

1%

2%

3%

89%

100%

93%

88%

78%

11%

0%

7%

12%

22%

Table 12. Means and standard deviations of age versus exposure level

Exposure 

level

Age (years)

Total

Mean Std

Male

Mean Std

Female

Mean Std

Unassigned

1

2

3

4

44.9

41.9

46.1

50.5

55.7

16.1

12.0

11.9

11.8

11.8

46.6

42.6

46.3

50.2

55.5

16.3

12.1

12.4

11.4

12.4

31.0

37.8

44.6

51.8

57.3

0

12.0

8.4

14.5

5.1
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Table 13. Means and standard deviations of weight versus exposure level

Exposure 

level

Baseline Weight (kg)

Total

Mean Std

Male

Mean Std

Female

Mean Std

Unassigned

1

2

3

4

80

82

77

83

81

16

18

13

16

16

83

84

80

87

83

14

15

11

14

16

58

68

65

62

65

0

29

17

7

14

Table 14. Means and standard deviations of body surface area versus exposure 

level

Exposure 

level

Body surface area (m2)

Total

Mean Std

Male

Mean Std

Female

Mean Std

Unassigned

1

2

3

4

2.0

2.0

1.9

2.0

2.0

0.2

0.3

0.2

0.2

0.2

2.0

2.1

2.0

2.1

2.0

0.2

0.2

0.2

0.2

0.2

1.7

1.7

1.7

1.7

1.7

0

0.4

0.2

0.1

0.2

51



Table 15. Means and standard deviations of low-density lipoprotein cholesterol 

(LDL) versus exposure level

Exposure 

level

Baseline LDL level (mg/mL)

Total

Mean Std

Male

Mean Std

Female

Mean Std

Unassigned

1

2

3

4

3.1

3.2

3.3

3.5

3.3

0.6

0.7

0.9

1.2

1.0

3.2

3.2

3.3

3.4

3.3

0.6

0.7

1.0

1.2

1.0

2.6

2.6

3.1

3.6

3.8

0

0.8

0.9

0.9

0.2

Table 16 contains the main results of the analysis. Specifically, it summarises the 

results of inferences regarding relationships between the exposure level and the 

covariates for each of five combinations. Each covariate was tested separately as 

described in the Methods (Section 2.2.4). Contribution of each covariate to the 

exposure level is shown in the table in terms of the p-values with p < 0.05 being 

regarded significant, p < 0.01 more significant, and p < 0.001 regarded as highly 

significant. The direction of the influence is also shown.

As can be seen, the five combinations agreed on the importance of smoking and age as 

correlates of the exposure level. Four of five combinations also recognised 

hypertension as a significant covariate. Sex, race, history of vascular disease, lipid 

level (LDL), and two measures of body size (weight and surface area) were all found 

not to be significantly associated with the exposure level. Smokers generally had 

lower plasma levels; older patients and patients with hypertension (of which there 

were only 24) generally had higher plasma levels.
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Table 16. Relationships between demographics and the exposure level for five 

combinations.

Covariate

Contribution

Combination

1 2 3 4 5

Direction of effect on 

exposure level

Smoking

Age (>40)

Age

Hypertension

Gender

Race

Vacular disease

Weight

Surface Area

LDL

+

+++

+++

+

-

-

-

-

-

-

+

+++

+++

+

-

-

-

-

-

-

+

+++

+++

++

-

-

-

-

-

-

++

+++

+++

-

-

-

-

-

-

-

+

+++

+++

++

-

-

-

-

-

-

4-

t
t
t

- p>0.05, + p<0.05, p<0.01; +++ p< 0.001.

The results of this analysis were used in the model-based analysis of the drug 

discussed in Section 3.1.3 of Chapter 3. The covariates found to be important by the 

model-free method were incorporated there into the nonlinear mixed effect model.



2.3 Antiplatelet And Vasodilative Agent

2.3.1 BACKGROUND

The third analysis deals with a drug indicated for treating the symptoms of 

intermittent claudication. The drug increases the distance that patients can walk before 

pain prevents their motility.

The aim of the pharmacokinetic analysis of phase III safety and efficacy studies, was 

to identify covariates affecting patients' exposure to the drug and to quantify the 

influence of these covariates.

Analysis of phase I pharmacokinetic data of the drug showed proportional increases in 

AUC, and less than proportional increases in Cmax, following single doses across the 

dose range of 50-200 mg. The time to plasma maximum concentration (tmax) and the 

terminal half-life were approximately 3 hours and 12 hours respectively, and were 

similar across the doses. Following multiple administration of a 100 mg dose, twice-a- 

day (b.i.d.), steady-state plasma concentrations were achieved within 4-5 days. When 

administered under fed conditions, there was an increase of approximately 50% in the 

Cmax and an increase of 25% in the AUC.

Plasma concentration-time profiles after a single dose or after discontinuing a 

multiple-dose regimen had irregular secondary peak(s), as shown in the Figure 9 at 20 

- 25 hours post dose for approximately 70% of subjects.

A nonparametric approach for the population analysis was further developed and 

applied to the data of the project.



10OO -,

Figure 9. Plasma concentration versus time after last dose for a typical subject 

after eight days of dosing.

2.3.2 DATA

Data come from four randomised, double blind, efficacy and safety studies (I, II, III 

and IV) in patients with intermittent claudication. Walking distance at baseline 

measured on a treadmill, was one of the main criteria for inclusion in the studies. 

Drug (100 mg daily) or placebo was administered for 12, 16 or 24 weeks twice-a-day 

(bid), once in the evening and once in the morning, half an hour before the meal. 

Patients were evaluated every two to four weeks during their visit to the clinic. They 

had to skip their morning dose at the day of the visit (for morning visits), or take their 

dose early morning before the afternoon visit. Patients had to come to the clinic for 

'trough' (at the end of dose interval, right before the next dose) evaluation always 

around the same time. At some visits in some of the studies, 'peak' evaluations were 

also performed. For 'peak' evaluation, patients had to take the drug immediately after 

the 'trough' evaluation and be evaluated 2-4 hours later. The number of patients from 

each study on a 100 mg dose, the duration of treatment, and the number of plasma 

samples are listed in Table 17.
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Table 17. Number of patients, samples and treatment duration.

Study

No. patients 

on 1 00 mg 

dose

Treatment 

duration 

(weeks)

Samples per patient 

up to
'Trough' 'Peak'

I

II

III

IV

171

95

133

119

24

12

24

16

8

5

3

3

 

2

 

2

Criteria for inclusion and exclusion of patients were similar across the studies except 

for some differences in treadmill set-up and in the baseline walking requirements (See 

Appendix A). In addition, patients in the study II had to complete 3 weeks of low fat, 

low cholesterol diet prior to the study, and had to adhere to the diet during the study.

Blood samples of non-compliant patients were excluded from the analysis. Non- 

compliance was defined prospectively in the clinical protocol. A patient was 

considered non-compliant if he/she took less than 75% of the prescribed drug on 2 or 

more successive visits or had undetectable plasma levels on 2 or more successive 

occasions.

T3 O

Figure 10. Distribution of sampling times between 0 and 50 hours.
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Samples taken later than 20 hours after the last dose were also excluded. There were 

28 samples between 20 and 50 hours, which was insufficient to meaningfully define 

the observation regions (this is discussed later in the Methods, Section 2.3.4). Figure 

10 shows the distribution of sampling times between 0 and 20 hours. In addition, there 

were 39 samples spread from 50 to 3108 hours, which were also excluded from the 

analysis. The details concerning the excluded observations are described in Appendix 

B.

In total, 2161 plasma concentrations from 462 patients were used in the analysis.

2.3.3 OBJECTIVES

As before, the objectives of the model-free population pharmacokinetic analysis were 

to partition patients into exposure levels, and then, explore relationships between the 

covariates and exposure levels. The list of covariates included: 

Demographics: age, gender, race, weight, body surface area, and

obesity;

Lifestyle: alcohol and smoking habits; 

Medical history: myocardial infarction, cerebro-vascular event, and

diabetes;

Disease state: duration of disease and walking impairment at baseline; 

Concomitant medications 

and medical conditions: drugs and therapeutic subclasses of drugs used by at

least 25 patients.

2.3.4 METHODS

The analysis, as described earlier in Section 2.2.4, was based on partitioning plasma 

concentrations into observation levels, and assigning each patient an exposure level. 

An investigation of the relationships between the exposure level and covariates was 

then conducted. Plasma concentrations were partitioned into observation levels and 

patients were assigned to exposure levels following the same procedure as in Section 

2.2.4. Further steps dealing with the relationships between the exposure and the 

covariates, were considerably refined and expanded as presented in the following 

sections.



It was assumed that there was no accumulation of the drug during the studies and the 

disease progression or drug's pharmacological effects did not affect pharmacokinetics 

of the drug. The assumption was supported by phase I studies, where steady state was 

reached by Day 4 of twice-a-day dosing. The earliest plasma concentrations were 

taken after 2 weeks of dosing in phase III studies, so steady-state should have been 

reached by the first evaluation.

In Step I, as before, three nonparametric cubic smoothing splines were fitted through 

the scatter plot of concentration versus time, to estimate partition boundaries as 

functions of time after the last dose. The span of times after the last dose was not as 

large as in the previous project, so there was no need for transformation of times. 

Also, all patients had the same dose throughout all the studies, therefore dose 

normalisation of concentrations was not necessary. Raw concentrations, not their log- 

transformations were used for partitioning. Log-transformation of the concentrations 

in a pharmacokinetic analysis is a customary practice, based on the observation that 

plasma concentrations are often log-normally distributed in the population. 

Transforming the data therefore allows one to make mean-based comparisons using 

the normal theory assumptions. The partitioning algorithm does not use the 

assumption of normality, so there is no theoretical advantage in using transformed 

data. There were no reasons to expect that the results depend on whether log- 

transformed or raw data were used.

The determination of splines depends on the choice of a smoothing parameter. Since 

the choice of this parameter is somewhat arbitrary, three different values of the 

smoothing parameter were used. The set of four regions obtained for each value of the 

smoothing parameter will be further referred to as a Partition set (not a combination as 

in Section 2.3, since only one parameter influenced the partition).

In Step II, patients were assigned an exposure level according to the algorithm 

described earlier. It was done for several Partition sets.

The next step, Step III, relates the exposure levels and variability to covariates. Two 

types of responses were investigated for association with covariates: 1) For patients 

classified into one of four exposure levels, exposure level represented an ordered 

categorical response; 2) High and Low variability was another response variable, a
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categorical response. Patients assigned to one of the exposure levels represented the 

Low variability group, patients from the 'unclassified' group represented the High 

variability group.

Table 18 lists all the covariates, their types and levels (for categorical covariates) that 

were investigated for association with the exposure level and the variability type. Two 

measures of obesity (Obesity, OBES, and %above ideal body weight, PIBW) and body 

surface area (BSA) were computed for each patient from their weight, height and 

gender as follows [Bayley & Briars, 1996; Rowland & Tozer, 1995]:

Ln(BSA) = -3.751+0.422*ln(HGT)+0.515*ln(WGT), Eq. 12

_ _ _ t\

where HOT is height (cm), WGT is weight (kg), and BSA is measured in cm ;

50 + 2.3/2.5* max(0, HOT -152) for males

IBW= Eq. 13

45 + 2.3/2.5* max(0, HOT -152) for females,

and

PIBW = 100 (WGT - IBW) / IBW, Eq. 14

where IBW denotes ideal body weight (kg) and PIBW is percent above ideal body 

weight.

Obesity (OBES) was defined as 0, if PIBW < 20, and 1, otherwise.

Concomitant medications were considered in two ways: grouped by their generic 

name (irrespective of the dose and manufacturer) and grouped by subclasses of major 

therapeutic classes. To be used as covariates, the concomitant medications and groups 

of medications had to be used by more than 25 patients. The cut-off of 25 patients was 

decided prospectively as approximately 5% of initial 518 patients, before cleaning the 

database.
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Table 18 Description of covariates

Covariate Type

Demographics

Lifestyle

Medical history

Disease state

Concomitant 

medications and 

medical 

conditions

Study design

gender, race, obesity (>20% above ideal body weight)

age, weight, body surface area (BSA) , % above ideal 

)ody weight

smoking(never/ previously/current), 

alcohol (never/ previously/current)

diabetes, myocardial infarction, cerebro-vascular event

duration of disease (0.5 to 1; 1 to 5 ; 

5 to 10; >10 years), 

vaseline walking impairment a (Mild/ Moderate/ 

Severe)

drugs and therapeutic subclasses of drugs used by at 

[east 25 patients (Yes/No) 

[ndividual drugs: acetaminophen, nifedipine.

combination vitamins and minerals, lisinopril, 

nitroglycerin, lovastatin, glyburide, enalapril maleate, 

atenolol, furosemide, combination diuretics, verapamil 

lydrochloride, digoxin, gemfibrozil, levothyroxine 

sodium, vitamin e, diclofenac sodium, potassium 

chloride, ranitidine hydrochloride, isophane insulin 

suspension; 

Groups bv therapeutic class: antihistamine drugs,

sympathomimetic (adrenergic) agents, cardiac drugs, 

antilipemic agents, hypotensive agents, vasodilating 

agents, nonsteroidal anti-inflammatory agents, 

antidepressants, benzodiazepines, replacement 

preparations, diuretics (except potassium sparing 

diuretics), antacids and adsorbents, cathartics and 

laxatives, misc. GI drugs, insulins, sulfonylureas and 

thyroid agents

study

Factor

Continuous

Ordered 

categorical

Factor

Ordered 

categorical

Factor

(Yes/No)

Factor

a) Mild - > 200 m; Moderate - from 100 to 200 m; Severe - < 100 m.
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To count the number of patients on a particular medication or a group of medications, 

every patient was assumed to be on a drug, if he/she had at least one plasma sample 

while on that medication. For each drug/group of drugs that was used by 25 or more 

patients, the indicator variable of whether a person was on that medication at the time 

of sampling was recorded for each blood sample.

In total, there were 21 individual drugs and 16 therapeutic subclasses of drugs used by 

25 or more patients.

Multivariate Classification Tree-based analysis (CART]

To account for possible confounding by correlated covariates, a binary classification 

tree was grown by CART methodology using S-Plus (Version 3.3) [Venables & 

Ripley, 1994]. The attractiveness of the tree approach includes the ability to handle 

categorical and continuous variables, interaction between variables and missing values 

of covariates. Also, the tree is invariant to monotone transformations of variables, thus 

relaxing the distributional requirements for independent and dependent variables 

[Breiman et al., 1984]. Following in the Remark is the brief description of the 

methodology:

Remark:

Constructing trees is a modelling technique especially suitable for modelling 

of a categorical response function of several categorical, factor or continuous 

variables. Tree based models seek to partition the space of observations into 

the groups (leaves) that are as homogeneous (with respect to response) as 

possible \vithin the groups, and as heterogeneous as possible between the 

groups. The resulting model consists of a partition of the space of 

observations into a set of leaves and a probability distribution over the levels 

of response variable for each leaf The splitting rules uniquely define the 

leaves. The tree construction process starts with the tree with just one leaf that 

includes all the observational space. The procedure takes the maximum 

reduction in deviance (objective function used for the tree modelling, see 

[Ciampi et al., 1987]) over all allowed splits of this initial leaf to choose the 

first split. The procedure is repeated until the number of observations in each 

leaf or its deviance is small. The tree grown by this procedure may overfit the 

data; i.e. may describe the training data set well while not adequately
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describing a new data set. The pruning procedure [Breiman et al, 1984], a 

methodology analogous to model selection in regression, obtains an optimal 

subtree by minimising a cost-complexity measure (a sum of the deviance and a 

term proportional to the tree size) of a sequence of subtrees. An even better 

way is to grow the tree on one set of data and test it on a different set of data 

(external validation) or to split the data to use different data for building and 

predicting (internal validation). A detailed description of the tree-based 

modelling methods can be found, for example, in [Clark & Pregibon, 1992].

Separate trees were grown for each of three partition sets. Each tree was then pruned 

and cross-validation was performed [Venables & Ripley, 1994]. For cross-validation, 

the data set was randomly divided into 10 subsets, the tree was grown for each 9710th 

of the data, and the sequence of pruned trees was tested on the remaining 1710th . 

Averaging over ten trees for each pruning size gave a cross validated plot of deviance 

as a function of the tree size. The tree size that corresponded to a minimum deviance 

was considered to be optimal. An overparametrised model (i.e., the model with 1-2 

more terminal nodes than in the optimal tree) was considered for further exploration 

of subpopulations. The goal of allowing 1 -2 more covariates than in the optimal tree 

was to check that those covariates (less important according to the tree) would not be 

significant in further explorations. This would ensure that the tree model captured all 

the important covariates.

Univariate analyses

For the covariates identified as significant by the tree models, nonparametric

Spearman rank correlation analysis [Snedecor & Cochran, 1980] and subgroup

analysis of association between the covariates and response were performed.

Subgroups were defined by the tree models and by the correlation between the

covariates.

Table 19 describes the types of nonparametric association tests used for different types 

of variables. The purpose of this analysis was two-fold: first, it was aimed to formally 

confirm the results of the tree-based analysis of association of covariates with the 

exposure level for patients classified to an exposure group. Second, for all patients, 

the analysis was to test the association between patient's variability type (High/Low) 

and the covariates.
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Table 19. Univariate analysis

Data used
Response

Type Variable

Covariate

type
Analysis Reference

All patients

except

unclassified

All patients

Ordinal

Categorical

Exposure

level

Variability

type

Categorical

Continuous

Categorical

Continuous

van Elteren

test

Jonckheere's

test

Fisher exact

test

tables of

means and

standard

deviations,

side-by-side

box plots

Lehmann, 1975

Hollander, Wolfe,

1 973; Morris, Dietz,

1989

Kendall, Stuart,

1979; Mehta, Patel,

1983

After the tree models identified influential covariates it was important to estimate the 

clinical, not statistical importance of these covariates. Therefore, it was important to 

quantify the effect of covariates. This was done in Step IV.

In Step IV, scatter plots of concentrations were examined for identified 

subpopulations to obtain quantitative information about differences between those 

subpopulations. Concentrations from all patients, not only from patients classified into 

one of four 'exposure levels' were used. Population curves were obtained by lowess 

regression (S-Plus, version 3.3) [Venables & Ripley, 1984]) fitted to subpopulations. 

Lowess regression is an iterative robust algorithm that fits weighted locally linear 

regression to the data. The result is a smooth curve through the data that downweights 

outliers [Chambers & Hastie, 1992].

Areas under population plasma concentration-time curves (AUPC) were computed 

and compared for subpopulations. In this case a population curve is a purely empirical
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curve, a smoothed 'average' of the data. Therefore the curve can not be extrapolated 

over the boundaries of the data. This means that the computed area under the curve 

would depend on the time of the first and the last data point used to compute the 

curve. Thus, to be able to compare the areas for subpopulations these areas should be 

computed using the same start and stop time. Area Under the Curve (AUC) is a 

strictly defined parameter in pharmacokinetics, with defined time intervals (0 to 

infinity for a single dose or dosing period for a steady state multiple dosing). Time 

intervals of AUPC would not agree with the traditional definition and would depend 

on the data points for the subpopulations. Therefore, instead of presenting absolute 

values of AUPCs, only a comparison of AUPCs for the subpopulations of interest is 

reported.

Quantification of the differences by comparing AUPCs is a univariate procedure: it 

accounts for one variable at a time. Correlation analysis of the covariates identified by 

the tree models was used to determine the appropriate subpopulations for AUPC 

comparisons.

2.3.5 RESULTS

In total, 2161 plasma concentrations from 462 patients were used in the analysis. 

Figure 11 shows scatter plots of all available samples for each study. Though timing 

and amount of data differed across the studies, the range of concentrations was 

approximately the same for all the studies.

Demographics

In order to combine four studies in one analysis, the study population should be 

similar. The data in Table 20 - Table 24 describe the distributions of all the covariates 

across the studies. Table 20 exhibits the distribution (counts and percentages) of 

categorical demographic covariates. Statistically significant differences (Chi-square 

test) are marked with the asterisk (*) and p-values are shown for those variables.

Table 21 shows the distribution (counts and percentages) of patients on concomitant 

medications or therapeutic subclasses of medications. Thirty seven individual drugs or 

groups were used by 25 or more patients. Of them, 11 were distributed differently
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between the studies (p < 0.05 in 2-tail Fisher's exact test). Only these medications are 

presented.

I 8

II

Figure 11. Plasma Concentration versus time after last dose for four studies.

Table 22 - Table 24 show the distributions of continuous variables: age, % above ideal 

body weight, weight and body surface area across the studies.
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Table 20. Distribution of categorical demographic covariates across the studies.

Covariate/ levels

(p-value)a

# patients (N)

Frequency

N (%)

Study

I

157

II

88

III

116

rv
101

Total

462

Gender:

Males

Females

Caucasian

Other

Obesity

No

Yes

Current smoking:

No

Yes

Alcohol

consumption:

Never

Previous

Current

Amount of alcohol:

Seldom

Sometimes

Daily
        »* *   
Disease state

(0.001):

Mild

Moderate

Severe

119(75.8)

38(24.2)

137(87.3)

20(12.7)

83 (52.9)

74(47.1)

97(61.9)

60(38.2)

22(14)

44(28)

91 (58.0)

26 (28.5)

35(38.5)

30(33.0)

15(9.6)

79(50.3)

63(40.1)

76 (86.4)

12(13.6)

77 (87.5)

11(12.5)

49 (55.7)

39 (44.3)

52(59.1)

36(40.9)

14(15.9)

26 (29.5)

48(54.6)

19(39.6)

21(43.8)

8(16.7)

50(56.8)

24(27.3)

14(15.9)

88 (75.9)

22(19)

106(91.4)

10(8.6)

63 (54.3)

53(45.6)

56(48.3)

60(51.7)

21(18.1)

25(21.5)

70 (60.3)

27(38.6)

17(24.3)

26(37.1)

11(9.5)

52(44.8)

53(45.7)

79 (78.2)

28 (27.7)

91 (90.1)

10(9.9)

52(51.5)

49 (48.5)

56(55.5)

45 (44.5)

NA

19(33.9)

20(35.7)

17(30.4)

39(38.6)

42(41.6)

20(19.8)

362 (78.4)

100(21.6)

411(89.0)

51(11)

247 (53.5)

215(46.5)

261(56.5)

201 (43.5)

80(17.3)

117(25.3)

265 (57.4)

91 (34.3)

93(35.1)

81(30.6)

115(24.9)

197(42.6)

150(32.5)
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Covariate/ levels

(p-value)a

# patients (N)

duration of illness:

6MOtolYR

lYRtoSYRS

SYRStolOYRS

>10YRS

Diabetes:

NO

YES

Myocardial

infarction:

NO

YES

Cerebro-vascular

event**(0.002):

NO

YES

Frequency

N (%)

Study

I

157

19(12.1)

66(42.0 )

45(28.7 )

27(17.2)

115(73.2)

42(26.8)

122(77.7)

35(22.3)

148(94.2)

9(5.73)

II

88

6 (6.8)

42(47.7)

21(23.9)

19(21.6)

72(81.8)

16(18.2)

78(88.6)

10(11.4)

73(82.9)

15(17.05)

III

116

5 (4.3)

60(51.7)

30(25.9)

21(18.1)

87(74.0)

29(25.0)

95(81.9)

21(18.1)

92(79.3)

24(20.69)

IV

101

6 (5.9)

48(47.5)

28(27.7)

19(18.8)

77(76.2)

24(23.8)

80(79.2)

21(20.8)

88(87.1)

13(12.87)

Total

462

36 (7.8)

216(46.8)

124 (26.8)

86 (18.6)

351(75.9)

111(24.0)

375(81.1)

87(18.8)

401(86.8)

61(13.2)

a) indicator of significance: p<0.05; ** p<0.01; *** p< 0.001
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