
Greenwich Academic Literature Archive (GALA)
– the University of Greenwich open access repository

http://gala.gre.ac.uk

__

Citation:

Janes, Dominik Sebastian (2003) Intelligent control system for CFD modelling software. PhD thesis,
University of Greenwich.

__

Please note that the full text version provided on GALA is the final published version awarded

by the university. “I certify that this work has not been accepted in substance for any degree,

and is not concurrently being submitted for any degree other than that of (name of research

degree) being studied at the University of Greenwich. I also declare that this work is the result

of my own investigations except where otherwise identified by references and that I have not

plagiarised the work of others”.

Janes, Dominik Sebastian (2003) Intelligent control system for CFD modelling software.

##thesis _type## , ##institution##

Available at: http://gala.gre.ac.uk/8618/

__

Contact: gala@gre.ac.uk

http://gala.gre.ac.uk/
mailto:gala@gre.ac.uk

INTELLIGENT CONTROL SYSTEM FOR

CFD MODELLING SOFTWARE

Dominik Sebastian Janes

A thesis submitted in partial fulfilment of

the requirements of the University of Greenwich for

the Degree of Doctor of Philosophy

March 2003

To My Wife Anna

And

My Parents

Declaration

I certify that this work has not been accepted in substance for any degree, and is not

concurrently submitted for any degree other than that of Doctor of Philosophy (PhD)

of the University of Greenwich. I also declare that this work is the result of my own

investigations except where otherwise stated.

Domimk Janes

Brian Knight

Supervisor

©Dominik Janes 2003

Abstract

In this thesis we show that it is possible to create an intelligent agent capable of

emulating the human ability to control CFD simulations and provide similar benefits in

terms of performance, overall reliability and result accuracy. We initially consider the

rule-based approach proposed by other researchers. It is argued that heuristic search is

better suited to model the techniques used by human experts. The residual graphs are

identified as the most important source of heuristic information relevant to the control

decisions. Three different graph features are found to be most important and dedicated

algorithms are developed for their extraction.

A heuristic evaluation function employing the new extraction algorithms is proposed

and implemented in the first version of the heuristic control system (ICS 1.0). The

analysis of the test results gives rise to the next version of the system (ICS 2.0). ICS 2.0

employs an additional expert system responsible for dynamic pruning of the search

space using the rules obtained by statistical analysis of the initial results. Other features

include dedicated goal-driven search plans that help reduce the search space even

further. The simulation results and overall improvements are compared with non-

controlled runs. We present a detailed analysis of a fire case solution obtained with

different control techniques. The effect of the automatic control on the accuracy of the

results is explained and discussed. Finally, we provide some indications for further

research that promise to provide even greater performance gains.

Acknowledgements

I would like to thank my supervisory team at Greenwich University. Professor Brian

Knight for his invaluable advice and enthusiasm during my research. Without his

support this work would probably still be nowhere near completion. He has also helped

me greatly in writing this thesis by offering expert advice on all aspects of technical

writing (together with correcting my English).

My other supervisor, Doctor Mayur Patel also assisted me during my studies. He helped

me learn how to use SMARTFIRE and kindly allowed me to use his computer to

perform many CFD simulations that would otherwise have taken substantially more

time. I am also very grateful to my colleague, Doctor John Ewer, who helped and

supported me in many ways during my years at the University.

Because of the nature of my research I had to conduct several interviews with CFD

experts. My thanks go to the people, who contributed their time and advice. They are (in

alphabetical order): Doctor John Ewer, Professor Ed Galea, Doctor Fuchen Jia and

Doctor Mayur Patel.

Furthermore, I would like to thank Doctor Mayur Patel and Professor Ed Galea for

giving me the opportunity to do my Ph.D research at Greenwich University.

I am very grateful to my friends, Malcolm Kingman and Pauline Quinn, who sacrificed

their free time to review this thesis and correct any language and technical mistakes.

Finally I would like to thank Greenwich University for supporting me financially during

my studies in UK and for funding this Ph.D. research.

Table of Contents

ABSTRACT ..4

ACKNOWLEDGEMENTS.._

TABLE OF CONTENTS ..«^

CHAPTER 1

INTRODUCTION......................................._

1.1 OVERVIEW.. 11

1.2 RESEARCH QUESTIONS..13

1.3 RESEARCH METHODOLOGY...14

1.4 CONTRIBUTION... 16

1.5 MAJOR ACHIEVEMENTS ..17

1.6 OUTLINE OF THE THESIS.. 19

CHAPTER 2

NUMERICAL FIRE FIELD MODELLING... 20

2.1 INTRODUCTION...20

2.2 ADVANTAGES AND LIMITATIONS OF NUMERICAL SIMULATION... 21

2.3 COMMON STAGES IN NUMERICAL SIMULATION... 22

2.3.1 General problem definition.. 22

2.3.2 Detailed problem description...23

2.3.3 Building a computer model of'theproblem .. 23

2.3.4 Mesh generation...23

2.3.5 Numerical simulation ...24

2.3.6 Repeat simulation runs... 24

2.3.7 Interpretation and visualisation of the results.. 25

2.4 SIMULATION EXAMPLE... 25

2.4.1 General problem definition ..25

2.4.2 Detailed problem description... 26

2.4.3 Creating the computer model... 2 7

2.4.4 Mesh generation... 28

2.4.5 Numerical simulation ... 2P

2.4.6 Visualisation and Interpretation of the results... 30

2.5 NUMERICAL ENGINE... 31

Table of contents

2.5. / Controlling the solution process .. 35

2.6 SUMMARY OF TERMINOLOGY.. 38

CHAPTER 3

LITERATURE RE VIEW.. 40

3.1 INTRODUCTION...40

3.2 CONVERGENCE ACCELERATION TECHNIQUES ...40

3.2.7 Preconditioning.. 41

3.2.2 Conjugate Gradient Methods ...42

3.2.3 Multigrid methods ..42

3.2.4 Fuzzy logic in relaxation adjustment.. 44

3.2.5 Rule driven system for relaxation adjustment.. 44

3.3 OTHER TECHNIQUES FOR IMPROVING PERFORMANCE OF CFD CODES... 45

3.3.1 Group solvers ...45

3.3.2 KBS-based mesh generation... 46

3.3.3 Latency tolerant algorithms and parallel computers ...47

3.4 SMARTFIRE PROJECT...48

3.5 HEURISTIC SEARCH...49

3.6 SUMMARY .. 51

CHAPTER 4

INITIAL WORK ON A RULE-BASED CONTROL SYSTEM.. 52

4.1 OVERVIEW.. 52

4.2 SMARTFIRE-AN INTERACTIVE CFD SOFTWARE ... 52

4.3 EWER'S RULE-BASED CONTROL SYSTEM... 54

4.4 KNOWLEDGE ACQUISITION... 57

4.4.1 Consultations with experts ... 57

4.4.2 Interview results ...58

4.4.3 Analysis and interpretation ..59

4.5 NEW RULE-DRIVEN CONTROL SYSTEM (KBSVER 2.0).. 60

4.5.1 Residual graph assessment... 61

4.5.2 Intelligent scheduling of control actions.. 62

4.5.3 Discussion of initial test results.. 64

4.6 KBS 2.0 -ANALYSIS... ...65

4.6.1 Adjustments introduce instability... 65

4.6.2 Not enough information for control decisions.. 67

4.6.3 Incorrect control architecture.. 68

4.6.4 Analysis summary... 68

4.7 NEW APPROACH TO THE CONTROL PROBLEM .. 70

4.8 INVESTIGATION OF THE EFFECTS OF CONTROL ACTIONS ...70

Table of contents

4.9 SUMMARY .. 76

CHAPTER 5

HEURISTIC SEARCH AS A CONTROL TECHNIQUE.. 78

5.1 INTRODUCTION... 78

5.2 NEW ARCHITECTURE FOR THE CONTROL SYSTEM ... 78

5.3 HEURISTIC SEARCH ALGORITHM... 80

5.4 EVALUATION FUNCTION ...88

5.4.1 Convergence speed... 91

5.4.2 Irregularities ..96

5.4.3 Oscillations... 100

5.4.4 Compound evaluation function... 106

5.5 FAULT DETECTION..110

5.6 SUMMARY .. 113

CHAPTER 6

TESTS OF THE PROTOTYPE SYSTEM AND ANALYSIS OF THE RESULTS......................... 114

6.1 INTRODUCTION... 114

6.2 PROTOTYPE CONTROL SYSTEM ... 114

6.3 INITIAL IMPROVEMENTS TO THE ORIGINAL DESIGN... 116

6.3.1 Segment detection in convergence prediction method.. 117

6.3.2 Better divergence detection method... 120

6.3.3 Early detection and termination of diverging experiments .. 121

6.3.4 Enhanced search scheduling strategy.. 122

6.4 SPEED COMPARISON..123

6.4.1 54kWcase with coarse mesh.. 123

6.4.2 250kW case with fine mesh... 126

6.4.3 2.1MW case with fine mesh .. 129

6.5 FAULT RECOVERY... 130

6.6 FULL CONVERGENCE ASSURANCE... 132

6.7 INITIAL CONCLUSIONS ..132

6.8 SUMMARY ..133

CHAPTER 7

SECOND VERSION OF THE CONTROL SYSTEM.. 135

7.1 INTRODUCTION... 135

7.2 IDENTIFICATION OF DIFFERENT STATES DURING SIMULATIONS... 135

7.2.1 Diverging graphs.. 136

7.2.2 Normal graphs.. 137

8

Table of contents

7.2.3 Oscillations and slow convergence.. 137

7.3 MAJOR HEURISTIC FUNCTION IMPROVEMENTS.. 138

7.4 SEARCH TREE PRUNING... 142

7.4.1 Goal-driven search plans... 142

7.4.2 Dynamic modification of the search plan... 144

7.5 SUMMARY .. 148

CHAPTER 8

RESULTS ..

8.1 INTRODUCTION... 150

8.2 SPEED COMPARISON.. 150

8.2.1 54kWcase with coarse mesh.. 152

8.2.2 250kW case with fine mesh... 153

8.2.3 2.1MW case with fine mesh .. 156

8.3 FAULT RECOVERY... 158

8.3.1 Divergence recovery... 158

8.3.2 Oscillation removal.. 158

8.4 ACCURACY ASSESSMENT (STECKLER CASE) ... 159

8.4.1 Corner stack temperatures... 160

8.4.2 Doorway temperatures... 161

8.4.3 Doorway velocities... 162

8.4.4 Discussion.. 163

8.5 SUMMARY .. 164

CHAPTER 9

CONCLUSIONS..................................._

9.1 OVERVIEW.. 165

9.2 EMULATION OF HUMAN CONTROL ACTIONS.. 165

9.3 SPEED IMPROVEMENTS ...167

9.4 RELIABILITY AND FAULT RECOVERY .. 168

9.5 RESULTS ACCURACY... 169

CHAPTER 10

FURTHER WORK ..171

10.1 INTRODUCTION.. 171

10.2 FLEXIBLE EXPERIMENT SCHEDULING... 171

10.3 USING "SPREAD-OUT SEARCH" TECHNIQUE ... 172

10.4 ASSESSMENT OF EXPERIMENT COST vs. EXPECTED GAIN ... 173

10.5 OTHER AREAS FOR IMPROVEMENT... 173

Table of contents

REFERENCES...................................^

APPENDIX A

RULES USED IN SEARCH TREE PRUNING...186

APPENDIX B

TECHNICAL REFERENCE FOR SMARTFIRE ...188

APPENDIX C

STECKI.ERCASE..»

APPENDIX D

MAIN SETUP FILE FOR STECKLER CASE (.INF FILE)..219

APPENDIX E

AUTOMATIC DYNAMIC CONTROL OF CFD BASED FIRE MODDELING SIMULATIONS -

INTERFLAM2001...227

10

Chapter 1

Introduction

1.1 Overview

Simulations of Computer Fluid Dynamics (CFD) scenarios are very complex numerical

problems requiring considerable computing power. There are many factors that

influence the accuracy of the results and determine whether correct results will

eventually be obtained. The CFD software has come a long way since its first use in

research laboratories. Initially the CFD packages were fairly crude, there was no real

interface and all the necessary data had to be entered manually into text files. Nowadays

the number of industrial applications of CFD grows and the capabilities of modern

computers improve rapidly. Most currently available commercial numerical packages

contain sophisticated interfaces and numerous tools that assist the user during the whole

simulation process, from the set-up to the final visualisation of the results. Some of

these enhancements are due to the improvements in computer hardware (e.g. increased

speed, advanced graphical capabilities) while others were made possible by substantial

research in the relevant domains (e.g. automated mesh generation).

One of the features that was common in early numerical packages was the fact that most

programs treated the numerical-processing module as a "black box" that was initialised

and then, usually after a very long time, produced the final solution. This approach

meant that substantial expert knowledge was necessary to correctly set-up a problem

and to choose appropriate control parameters. This was initially acceptable as the

problems analysed were small and the required expertise was always at hand since the

CFD codes were mainly used in advanced research laboratories. However, as the

available computer speed and the capacity of memory chips increased rapidly, it became

possible to simulate bigger and more complex scenarios. Unfortunately, these cases

turned out to be much more difficult to control and often required tedious monitoring of

the simulation process to ensure that the results were correct and produced in reasonable

time. This situation encouraged many researchers to develop numerous ways to reduce

11

Chapter'1: Introduction

the complexity of the CFD simulations and improve the performance, stability and ease

of use. However, even now, few CFD developers are aiming to provide code

interactivity and automated solution control. The emphasis in development is usually

directed towards broadening the range of cases that can be run with the software,

improving the numerical models and approximations used in the software and providing

better quality tools for set-up, meshing and post processing data analysis.

One of the research projects that does concentrate on providing a high degree of control

by allowing continuous user interaction to optimise the performance and stability of the

simulation is the SMARTFIRE package from The University of Greenwich (Ewer-00,

Petridis-95 and Ewer-93). SMARTFIRE is a CFD system reengineered from a legacy

FORTRAN code that puts special emphasis on user-friendly interface, real-time

progress monitoring capabilities and tools for comprehensive control of the simulation

process. SMARTFIRE displays all the relevant information during numerical

computations, allowing the user to monitor the simulation, detect problems and make

modifications as necessary. This was an important improvement but there were still

major problems that could not be fully resolved with this approach. Firstly, CFD

simulations often take a very long time, which makes it virtually impossible for a

human expert to comprehensively monitor any non-trivial case. Secondly, there is still

insufficient knowledge available about which control actions should be applied in

particular circumstances. An automated system using rule-driven architecture was

implemented in SMARTFIRE with some success (Ewer-98, 99c) but the rules

employed proved to be ineffective in complex scenarios although initial experiments

showed that substantial benefits could be gained by executing efficient and correct

control actions.

This dissertation describes the development of an automated control system with the

aim of maximising the performance gains while at the same time improving the

reliability, ease of use and efficiency of the numerical software. Intelligent Control

System (ICS) uses a heuristic search technique with a comprehensive evaluation

function (specifically developed for this application) to determine the best adjustments

to the control parameters. The evaluation function employs several pattern recognition

algorithms that extract relevant features from residual error graphs. Additional Artificial

12

Chapter'1: Introduction

Intelligence (AI) techniques are used to improve the overall efficiency of the control

procedure.

The main objective of this project is to provide an answer to the following research

question:

To what extent can we emulate human ability to control a numerical fire

modelling software?

It is understood that human experts can optimise a numerical simulation by performing

various control actions based on their assessment of the current simulation state but

there is little information available about the techniques used for this purpose. Therefore

the first goal of this work is to identify and formalise the procedures for simulation

assessment and proper control actions. Furthermore, the factors that influence experts'

decisions have to be identified and their real value verified. When this knowledge is

obtained and refined then the appropriate architecture for an automated system capable

of using that information to emulate human control actions must be devised. Having the

correct architecture it is then necessary to develop algorithms for automatic extraction

and assessment of the features, which were deemed relevant in assessing the simulation

state. Solutions to all these problems should serve as the building blocks for the

automated control system

The initial requirements for the complete control system are as follow:

 A fully implemented system should constantly monitor the simulation progress

and be able to perform purposeful and effective control actions.

 A control agent must detect all anomalous states during the simulation and

trigger appropriate recovery procedures.

 The AI system should deliver tangible benefits in terms of performance,

reliability and ease-of-use while not compromising the accuracy of the final

solution.

13

Chapter'1: Introduction

Therefore, the improvements provided by AI control system will have to be analysed

with special emphasis placed on the following issues:

It is believed that an appropriate set of control actions can substantially reduce the

simulation time and increase the overall stability and reliability of the simulation

process. The potential reduction in execution time is expected to be substantial, as Ewer

(Ewer-99c) showed (using a very simple 2D case) that even a basic control system was

able to reduce the execution time by 50%.

At the very beginning it was necessary to develop a better understanding of the problem

and to gain experience with the fire simulation software (SMARTFIRE). This involved

running several simulations to become familiar with all the steps necessary to obtain the

final solution (see Chapter 2). Performing complete simulations was essential to

understanding of how much expertise was required to control a fire simulation correctly

and efficiently.

The next stage of the research focused on determining how other, more experienced

users, used and controlled SMARTFIRE. A prototype control system developed and

implemented in SMARTFIRE by John Ewer (summary available in 4.3) was analysed.

This was the starting point that subsequently led to the formal process of knowledge

acquisition, aimed at identifying the techniques used by the experts to control the

simulation process (4.4). Furthermore, a review of the available literature was

conducted to assess how other researchers tackled the problem of convergence

14

Chapter'1: Introduction

acceleration and automatic solution control to ensure that this research was not

repeating the work of others (3.2-3.3).

The knowledge acquisition and subsequent analysis resulted in the development of an

enhanced version of Ewer's rule-based system (KBS 2.0 - see 4.5). However, the

simulations of standard fire cases revealed the limitations of the rule-based system and

it became apparent that a different approach was necessary to obtain satisfactory results

(4.6). Several generic types of control action were tested on a range of cases and the

results were analysed. Consequently, a new architecture based on heuristic search was

proposed (Chapter 5). This approach (intelligent search with elements of trial and error)

was closely modelled on the techniques used by the human experts to control real

simulations. A literature study of heuristic methods was performed to look for research

that shared common features with the problem of simulation control. A general

overview of heuristic methods is given in 3.5 while the details of the most relevant

heuristic systems are presented in 5.3 and 5.4.4.

The construction of a suitable heuristic evaluation function was an essential part of the

new architecture. Further interviews with experts and the analysis of the results of many

experiments (4.8) identified three different features of the residual graphs that were

most relevant to the control process. Consequently, dedicated feature extraction

algorithms were developed and gave rise to a prototype three-part evaluation function

(5.4).

This new approach was first implemented in a prototype system (ICS 1.0 - see 6.2),

which was further improved and then tested on several test cases (6.4, 6.5 and 6.6). A

number of issues were identified and prompted further analysis, which resulted in

significant improvements. The cost of the search algorithm was substantially reduced

and the evaluation function was further improved. Statistical analysis gave rise to goal-

driven search plans and dynamic plan modification. These improvements were

incorporated in ICS 2.0 (and are described in Chapter 7).

ICS 2.0 was fully tested and then used to produce the final results of this thesis (Chapter

8). The summary and the conclusions are presented in Chapter 9.

15

Chapterl: Introduction

This research demonstrated that a sufficiently sophisticated intelligent software agent

was capable of using methods similar to those employed by human experts to

effectively control numerical software. A number of diverse AI techniques were used in

order to successfully emulate human control actions. It was revealed that, due to the

complexity of the problem, a simplistic rule-based approach was unable to provide

satisfactory improvements and therefore several different AI paradigms had to be

employed to comprehensively model human control techniques.

The research produced an intelligent software system that emulated human control

actions using new control methods, which were discovered in the course of the work.

The agent uses a heuristic search with a comprehensive evaluation function constructed

using the knowledge elicited from experts and inferred from experiments. Diverse

algorithms were developed to model human assessment procedures as closely as

possible:

 Fourier Transform and digital filters to assess amplitude and duration of residual

error oscillations.

 Linear approximation augmented with segment identification was applied to

convergence forecasting and divergence detection.

 Algorithmic graph approximation was used for irregularities assessment.

The final system provided significant benefits by reducing the processing time and

enhancing the reliability of numerical simulations. ICS proved to be very competent in

recovering from faults and ensuring full convergence throughout all time steps. These

very important improvements show that the heuristic search, modelled on an intuitive

search routinely performed by humans, can be effectively used as a control technique.

Consequently, a complex control problem was solved using techniques from AI domain.

Furthermore, the detailed statistical analysis of the effects and nature of various control

actions and their combinations revealed new knowledge that was subsequently

acknowledged by experts. It is worth noting that initially a few experts described some

of the conclusions as counterintuitive although eventually agreed that they were valid.

16

Chapter'1: Introduction

The tangible benefits obtained by ICS suggest that residual errors were correctly

identified as the main source of information required to control the simulation

effectively. However, the results also indicate that by extracting additional information

the system could be made more efficient and perhaps provide even bigger performance

gains.

ICS proved very competent in dealing with exceptional situations like divergence or

excessive oscillations. The recovery procedures used by the system were always able to

recover from divergence and ensure that all the time steps converged.

The physical results were also analysed to assess whether the ICS has any impact on

their accuracy. It was concluded that the ICS-controlled simulation produced physically

sound results, which were in good agreement with non-controlled simulation using the

same mesh, and with the golden-standard simulation. However, the results were not

identical. A golden-standard case (a non-controlled simulation using a very fine mesh

and high number of iterations) was used to determine which simulation was more

accurate but the results proved to be inconclusive. Consequently, the experts'

assumption that full convergence of all time steps guarantees absolute accuracy could

not be indisputably confirmed and should be further investigated. Additional research is

also needed to reveal the cause of the observed differences in results between the

automatically controlled simulation and the non-controlled one.

This research exceeded the initial expectation and actually delivered a commercially

viable solution to the complex control problem. It not only successfully modelled a

human control technique but went further and discovered new techniques for controlling

a CFD system, which were subsequently implemented to provide further improvements.

It was demonstrated that a reduction in processing time in excess of 50% could be

achieved while concurrently delivering considerable enhancements to the reliability of

the simulation. Furthermore, the research results indicate that even better performance

could be achieved by enhancing the current architecture and using a more sophisticated

evaluation function.

17

Another main achievement is the comprehensiveness of the control technique. The

system is remarkably robust, which means that most simulations can be left

unsupervised and ICS can be trusted to control the whole process efficiently and

accurately. This feature is of paramount significance for new users or persons who are

not CFD experts. Providing that they are able to set up a case correctly, they can rely on

ICS to control the simulation and deliver accurate results in reasonable time. Such

enhancements in ease-of-use can lead to wider acceptance of the CFD software by non-

experts and encourage its use for a variety of industrial applications, e.g. all stages of

product development (design, manufacturing and testing). Furthermore, due to the

enhanced stability and tangible reduction of processing time, ICS could also be an

invaluable tool for CFD experts by helping them simulate complex cases in shorter time

and with less manual intervention. The system's ability to automatically recover from

divergence relieves the expert from the tedious task of constant monitoring of the

simulation state while full convergence assurance guarantees the accuracy of the final

results. The speed factor is also very important as, even though experts can potentially

outperform ICS, this is usually only possible if they commit a lot of resources and spend

considerable time continually fine-tuning the numerical solution. This is certainly not a

practical approach, especially as the simulations often take several hours or even days.

As part of this research, a comprehensive analysis of the control methods was also

conducted to try to expand and formalise the knowledge elicited from the experts. This

resulted in better understanding of the effects of various control actions and revealed

facts that were not immediately apparent to the experts. This knowledge was used to

enhance the currently used control procedures and recommendations that can be applied

independently from ICS were produced.

Although this has not been investigated and therefore is not confirmed, the author

strongly believes that the same architecture can be successfully applied to other CFD

codes and perhaps even to numerical packages outside the CFD domain using similar

numerical solvers. The proposed application of heuristic search should be sufficiently

generic to suit other similar control problems. Of course, the evaluation function would

have to be adapted or even completely rebuild and other components of the system

substantially modified (e.g. the KBS system governing the dynamic modification of the

search plan might require a different set of rules). However, the general principle should

still be valid. Since ICS was designed to closely emulate human control actions, then as

long as human experts use similar procedures with other numerical packages (which is

believed to be the case), an adapted ICS should still be able to provide tangible

improvements.

Chapter 1 of this thesis provides an overview of the research problem, and outlines the

contribution made. It presents main achievements of this work and the benefits in

potential applications. Chapter 2 provides more details about CFD simulations and

presents terminology used throughout this work. Chapter 3 reviews current research into

convergence acceleration and stability enhancements of numerical methods. It also

presents related research into control systems that employ similar AI techniques.

Chapter 4 documents initial attempts to control CFD software by a rule-driven system

and contains analysis of the reasons that contributed to its failure. Chapter 5 introduces

a new architecture based on a heuristic search. There is a detailed description of the

knowledge elicitation process that led to the search-based solution and the development

of the heuristic evaluation function. Chapter 6 examines a prototype of the new control

system (ICS ver 1.0) and the initial results. It identifies the shortcomings of the

prototype and outlines the ways of overcoming them. The system is further enhanced

and uses additional AI techniques: goal-driven search and simple planning with

dynamic rule-driven plan modification. A detailed description of these improvements

and the final design of ICS ver 2.0 are presented in Chapter 7. Chapter 8 compares and

analyses the results of non-controlled simulations vs. ICS-controlled ones. Chapter 9

presents the conclusions. Directions for future work are detailed in Chapter 10.

Chapter 2

Numerical fire field modelling

Although CFD came to prominence fairly recently it quickly found its way to an

overwhelming number of diverse industries ranging from nappy production to jet

aircraft design. But before we go into more detail, we should try to answer the

fundamental question. What exactly is CFD? A brief definition is offered by Shaw

(Shaw-92):

Computational Fluid Dynamics (CFD)

Although we are constantly surrounded by fluids (normally in the gaseous form) we are

not always aware of their presence, which might create a misleading picture about the

usefulness and applicability of CFD. The truth is, virtually every major industry uses

CFD in one way or another. Therefore the following list is by no means exhaustive but

focuses on examples that best emphasise the diversity of CFD applications:

- assisting in wing and body shape design

- aerodynamics, engine design

- predicting the weather and natural disasters (floods, storms

and even volcano eruptions)

- improving the efficiency and reliability of

technological processes

20

- determining the effects of fire and explosions

This chapter provides an overview of CFD with special emphasis on its applications in

fire field modelling. It also introduces the concepts and terminology used in this

dissertation. It does not attempt to present an exhaustive explanation of CFD but tries to

place this research in a broader context and to provide the necessary background

information for readers from outside the CFD domain. For more comprehensive and in-

depth treatment, one should consult any of the introductory books on CFD (Anderson-

95, Shaw-92 or Wendt-92).

There are many reasons why a computer simulation is currently a method of choice for

a variety of applications. One of the most important factors is, of course, money: a

simulation usually costs a fraction of corresponding experimentation cost. Furthermore,

it is much quicker and allows efficient testing of various configurations and conditions,

which would otherwise require a tedious and expensive set-up for each separate

experiment. Another area where computer simulation shows its advantages is where the

experiment is either difficult or very dangerous to conduct. Extreme conditions like very

high temperature or pressure can be simulated with ease. Dangerous factors that make

conducting the experiments impractical, e.g. production of toxic substances or a

possibility of explosion do not affect the simulation - one can safely and cheaply create

and observe the results of any potentially disastrous action.

With all these advantages it might be tempting to conclude that the real experiments are

obsolete and that a computer simulation is the best and only tool - both in science and

industry. However, things will probably never become that simple. The main problem is

that the computer-generated results are only as good as the physical model employed. If

the model does not describe the reality accurately enough simulation results will occur,

which differ significantly from the real life scenarios. There are also cases where the

simulation is so computationally expensive that only experiments can provide accurate

results in reasonable time. The classic example of such problem is turbulence.

_

Currently, the turbulence cannot be efficiently simulated apart from very simple cases

and even then very powerful computers are required. A number of simplified models

exists, which have been created specifically to make simulating turbulence feasible but

the associated assumptions and approximations often make the results too inaccurate to

be of any use.

Furthermore, computer simulations require considerable skill and experience in order to

set them up properly and then run efficiently. And even if everything goes well and the

simulation produces the desired results, these are usually in a form of a huge array of

numbers, which have to be post-processed and then interpreted to form any conclusions.

Of course, all these problems are very well known and many researchers are working to

resolve or alleviate some of these issues. Consequently, we can safely assume that

computer simulations will become even more popular in the future.

To make the concept of a simulation more concrete, this section presents the details of

each simulation stage starting with the problem formulation and then all subsequent

stages that lead to the final results and their interpretation. Since the CFD simulations

are inherently complex, this overview aims to provide more information about the range

of skills required to perform a successful simulation.

A CFD problem can be defined in many different ways. The definition may include a

very detailed description of the whole environment and various factors that are believed

to have influence on the results. On the other hand, a problem can also be described

with a single sentence (e.g. "A medium-sized room with a single window, door and a

small fire in the middle"). Of course, the fewer details there are in the description the

more assumptions have to be made about the domain.

22

Regardless of the amount of information present in the initial specification it is always

necessary to build a full and detailed definition of the problem that is being solved. If all

the necessary data was already provided in the description then the task is very

straightforward - the specification may need little more than reformatting to fit into the

required template/layout. However, if the data is incomplete then the missing pieces of

information have to be reconstructed by making educated guesses about the domain. For

example, if the problem specification does not include the initial temperature, an

arbitrary default value will be chosen. The same pattern applies to all information, like

domain dimensions, standard pressure, fire output, etc. The process of choosing

appropriate default values requires experience and extensive knowledge, often from a

variety of fields (not only computational-modelling). It is a very important part of the

set-up since incorrect problem specification can invalidate the final results.

The next step is to translate the problem definition into an equivalent computer model.

It is important to differentiate this phase from the previous one (creating the detailed

description of the problem) as computer models have various limitations and the

original specification often has to be significantly simplified to fit the model

requirements. For instance, complex geometry may have to be represented by a set of

cubes while changes in fire growth are approximated by a heat output curve. Again,

substantial experience is required to make appropriate decisions to minimise the adverse

effects on the quality of the final results and to avoid performance problems.

Before a numerical simulation can be performed the domain has to be meshed, i.e.

divided into discrete cells. The quality of the mesh is one of the most important factors

that determine whether the simulation will be successful. An inappropriate mesh may

adversely affect the results and even cause the computational engine to fail while a

23

correct and well designed mesh can reduce the simulation time and significantly

improve the results accuracy. For more details about meshing one should consult a

dedicated book (e.g. Knupp-94).

At this stage iterative solvers are employed to perform the actual simulation and

produce the results. This is normally the most time-consuming part of the whole process

although the actual time required depends on a variety of factors. The following list is

by no means exhaustive but is intended to show the diversity of factors that determine

the simulation time:

 Mesh quality/accuracy

 Number and size of time steps

 Required accuracy of the solution

 Computational power available

This is the crucial part of the simulation and therefore it is described in more detail later

in this chapter (section 2.5).

This phase is not required but occurs quite frequently in numerical analysis of complex

scenarios. Often the first run does not produce satisfactory data, takes too long or

diverges and therefore produces meaningless results. In such cases the computer model

of the problem and/or the control parameters are revised after which the numerical

simulation is restarted. Occasionally, obtaining the correct results requires a lengthy

process of iterative adjustments that eventually lead to an acceptable solution.

24

The raw results produced by the numerical engine can consist of a flat file (or files)

containing many numerical values. In order to extract any useful information from the

data, the results have to be post-processed and then interpreted. For very simple

scenarios the interpretation can be trivial but for complex cases covering a long period

of time only sophisticated visualisation techniques allow a full analysis of the results.

One of the very effective visualisation techniques is a 2-dimensional (or even 3-

dimensional) animation of all time steps using the data produced by the numerical

engine. However, normally the animation is not necessary and usually the results are

presented on a set of graphs showing the changes in the relevant variables, perhaps

complemented by plots of crucial variables in important sections of the domain. It is

however important to remember that the results do not just "pop out" from the

numerical engine but that they have to be post-processed in order to allow a full analysis

of the data.

We will now focus on an example case and present the full simulation process starting

from the very early "draft" specification, through all the stages to the eventual

visualisation and interpretation of the results. This case is neither a template for setting

up and performing any simulation nor does it purport to present all factors that should

be considered while setting up a similar case. It is provided here exclusively to illustrate

some of the practical issues and concepts that are commonly encountered while

performing numerical simulations.

We set out to model the flow in a small room (3m x 3m x 2.2m) with an electric heater

in the middle of the floor (Figure 2-1). The room has a single door and one window.

Both the window and the door are open. The walls are made of brick and the roof is

25

made of concrete and all are well insulated. We are interested in the resulting flow

(velocities) and temperature distribution.

After analysing the initial problem definition we now have to add the missing details in

order to obtain a complete scenario specification. All the gaps in case description have

to be filled by making reasonable assumptions. In this case the amount of missing

information is small (as the scenario is very simple) but there is still a surprising number

of 'guesses' that have to be made. The following list contains only some examples (with

the default values chosen in brackets):

 Ambient temperature

Pressure

Wall heat characteristic

Any other items in the room?

Exact window position

Window size

Power of the heater

And so on...

26

Figure 2-2 shows how the initial description was transformed into a full case

specification.

In this phase, apart from creating a computer model of the room geometry (usually

greatly simplified), we also have to decide on the physical models that are to be used.

For instance, the heater will be modelled by a simple heat release curve. In this case the

27

curve is extremely simple as the heat output is constant and equals IkW. The heater

itself is represented as a cube since its real shape is irrelevant for our purposes. For

simplicity we assume that the heater does not have a fan. The room becomes a simple

box with two vents (door and window) - as shown in Figure 2-3. There are no changes

in geometry during the simulation (like window being opened/closed, etc.). The

simulation will cover a period of 100s and the preferred time step size will be Is.

The next step in the set-up process is the construction of a mesh (Figure 2-4). Domain

meshing is a process that requires considerable skill and is a subject of very active

research. The smaller the number of cells the shorter the simulation time but on the

other hand, finer mesh produces more accurate results, which are closer to real-life

conditions. In our case the mesh is finer in the regions where we expect to have the

most complex flow - around the heat source, close to the vents and walls. However, the

cells are much larger in regions that are believed to have little impact on the overall

flow. Furthermore, two extended regions have been created outside both vents (window

and door) to correctly model the flow to and from the room.

28

Results are produced during this stage of the process. Appropriate control parameters

are initially chosen and adjusted during the simulation (if allowed by the software) to

obtain correct results in reasonable time. Usually, at the beginning of the simulation one

chooses the time step size (here Is), number of time steps (usually determined by the

simulation period required - 100 time steps in this case) and relaxation parameters.

Dynamic modification of these parameters during the simulation may have significant

effect on the performance and accuracy of the results as the conditions in the domain

may change significantly during the simulation. Considerable experience and thorough

understanding of the simulation processes is necessary to perform optimal control

actions. The experts usually monitor residual errors to assess the current simulation state

- a typical residual graph is shown in Figure 2-5 and is further explained in section 2.5.

The graph in Figure 2-5 shows a single time step and the residual values are shown on

the vertical axis while the horizontal axis represents the iteration number. This

convention is used throughout the thesis in all graphs where the axis are not shown.

The results may be presented in a virtually unlimited number of ways dependent on

what is considered the most important result. In this case we were interested in

velocities in the centre of the door at the end of the simulation (t=100s) and the

temperature distribution in the middle section of the room at the same time. The

velocity profile is shown on a graph in Figure 2-7 while the snapshot of the temperature

distribution is shown on the 2D slab from the centre of the room (Figure 2-6). The

results clearly show what everybody knows intuitively: a person using the heater with

both the door and the window open has little chance of warming up the room.

~ 3307274

Y[m]

-0.20 020 [m/s;

30

We have shown that several different factors contribute to the success of a numerical

simulation. Nevertheless, the actual number-crunching phase remains the essential

element of the whole process. Even the best set-up simulation will not produce any

results if the numerical engine does not work properly. The computations must be both

efficient and reliable, otherwise the results obtained would be inaccurate or impossible

to obtain within a reasonable period of time. Since this dissertation focuses on an

intelligent system, which dynamically controls the iterative solver, this stage of the

simulation is presented here in more details.

In CFD there are two main types of problem being solved: and

We will initially concentrate on the former and use it to explain common concepts in

numerical simulation. In the steady state case one is only interested in the final stage

when the simulated domain reaches equilibrium and not in the preceding, intermediate

phases. A very simple example of such problem is a rectangular plate with constant

boundary conditions (i.e. constant temperature on the edges). If this case is simulated as

a steady state then the initial state or any time-dependant variables are not important and

only the final stable temperature distribution in the whole plate is of any interest.

Consequently, the desired result of the simulation is a set of numbers that represent the

temperature distribution over the whole plate when it reaches a stable final state. Note

that the simulation does not determine when this state is reached but only what is the

final temperature distribution.

A numerical simulation can be described as an iterative search for progressively better

approximations of the solution. There is, however, one obvious problem associated with

this approach: since the final solution is not known in advance (obviously - if it was

known then we would not have to run the simulation) then it is difficult to measure the

accuracy of the current approximation. This brings us to another very important term in

CFD: a broadly defined as a difference between two

consecutive approximations. The actual formula varies between models and

implementations but the underlying principle remains similar: the residual error is a

31

convenient measure of the current result quality. The error is normally computed

separately for each variable in every cell and then averaged over the whole mesh to

produce a single residual value for each variable.

Figure 2-5 presents a typical residual error graph over the number of iterations

performed. One can see that during the first iterations the residuals are relatively big.

This is perfectly normal since we start from an arbitrary "guess" which is likely to be

substantially different from the actual solution and therefore the simulation state

changes significantly at the beginning as each approximation is quickly getting nearer to

the correct state. In the final stage the residual error diminishes since the simulation is

close to the correct solution and consecutive approximations change very little. The

simulation is believed to have (i.e. found the correct solution) if the residual

error is lower then the predetermined The tolerance value is necessary since

it is unrealistic to expect the error to disappear completely. Fortunately in practical

applications it is never necessary to obtain the results with absolute accuracy (absolute

accuracy can be obtained by solving the equations analytically but this is only possible

for very simple cases). Looking at the graph displayed in Figure 2-5 it is clear that the

residuals are about to converge to the predetermined tolerance (10~4)

One should also remember that Figure 2-5 shows an example of a typical well-behaved

residual graph and that other graphs often look very different, especially if the

simulation experiences problems in finding the correct solution or becomes unstable.

Examples of real-life graphs are presented in Figure 2-8

32

iterations

2.

Using several residual errors as a measure of accuracy is more difficult but still very

convenient. The experts have different opinions about how to define the convergence

using several residuals. Some believe that all residuals should reach the tolerance while

others are only interested in the "most important" variables like pressure or velocities.

Nevertheless, it is generally agreed that the simulation is progressing well if all the

residuals are decreasing and there is a good chance of reaching tolerance within a

reasonable period of time. It is difficult to avoid expressions like "good chance" and

"reasonable period" since the actual values depend very much on the case and

application. For some scenarios 24h of processing per time step might be acceptable

while for others anything above a minute would be too slow. It is often useful to

compare the performance between different time steps from the same problem, which

brings us to Transient cases are more general than steady state ones

since they introduce the time variable into the simulation. The following comparison of

the steady state and transient cases should explain the difference:

start with guessed values for variables (j) and proceed to

obtain the values of <|> at a point when the simulation reaches a steady state (the

flow does not change)

33

start with values of at time t and a guess for <|>

at time t+At, then find the values of <|) at t+At.

Usually, a transient case consists of several consecutive time steps but a scenario with a

single time step of a finite length can also be considered transient. Another important

difference must be stressed: in transient cases the initial domain state (values of solved

variables at the beginning of the simulation) affects the results while in the steady state

the initial conditions often have no impact on the final outcome (although they can

affect the performance). Consequently, transient cases require more thorough and

detailed set-up procedures. In this project we will deal exclusively with transient cases,

as they are more general and also more difficult to control. Figure 2-9 presents

snapshots of three different time steps from a transient simulation in a simple room. We

can clearly see how the flow develops through time and the plume starts to lean over

until it reaches equilibrium. In many cases, the result of the final step is equivalent to

the result of a steady-state simulation but since the transient simulation also produces

the results from the intermediate phases, it allows us to analyse the flow development.

Fire modelling relies heavily on transient simulations, as they make it possible to

observe the effects of various events happening in the domain: windows breaking,

flashover occurring or perhaps the effect of sprinklers.

34

^f f:

I JS

One of the most important issues in numerical simulations is performance. Numerical

modelling is computationally very expensive and requires fast computers with vast

amounts of memory. Of course, new and more powerful computers help to mitigate this

problem but it will never disappear completely. As more computing power becomes

available more complex scenarios can be simulated, and since there is no practical limit

to this complexity performance will always be an important factor.

Another common problem affecting the simulations is the possibility of divergence. The

iterative solvers provide no guarantee that the correct results will eventually be

produced. One can obtain incorrect results even for a very simple scenario if the initial

control parameters are inappropriate and there is no attempt to rectify the error during

the simulation. This problem is much more acute in complex scenarios that use

advanced physical models. Sometimes the control parameters have to be continuously

adjusted during the simulation to reflect changing conditions in the domain. This is

commonly referred to as

There are two main types of parameters that can be modified during the simulation:

and Relaxation is usually expressed as a and is defined

independently for each variable. By modifying the relaxation parameter one can either

accelerate the changes in the associated variable or slow it down

Generally the bigger the relaxation coefficient (a) the faster the

simulation advances but at the same time becomes less stable. Consequently, too much

relaxation increases the danger of divergence, especially for strongly non-linear

equations. In contrast, the under-relaxation is often employed to avoid divergence in

non-linear problems but it slows down the solver hereby affecting performance. In fire

simulations relaxation control is usually confined to adjusting the amount of under-

relaxation. is another very important parameter used to control the

stability of the simulation. It is understood that the smaller the time step size the more

stable the simulation becomes. On the other hand experts also believe that a bigger time

step provides better performance. Consequently, the actual time step size is usually a

compromise between speed and stability. Of course in real simulations there are other

factors that influence the choice of the time step size, e.g. if one requires the results at

specific points in time or when very fast (or very slow) physical processes are being

simulated.

Unfortunately, it is not fully understood how the control actions should be applied and

experts often invent their own informal rules to assist them in modifying control

parameters. These rules depend on the software used and the particular application

domain. The general mode of operation of fire field modelling software is that the flow

field and pressure fields are unknown at the start of the simulation. The heating due to

the fire sources and consequent density changes lead to buoyancy forces that drive the

flow. The difficulty with this technique is that the initial stages of a simulation are

comparatively unstable and generally require significant under-relaxation to prevent

instabilities from causing divergent solutions. However, although tight under-relaxation

may be appropriate at the beginning of a simulation, the same parameters can have a

detrimental effect on the quality or efficiency of the simulation in later stages where

small changes compounded by excessive under-relaxation can falsely stagnate the

solution.

The obvious solution is to apply significant under-relaxation at the start of the

simulation and then, when the processing appears to have stabilised, to apply less under-

relaxation for the remainder of the simulation. However, this technique is far from ideal

because similar instabilities can occur later as particular flow features develop. Some

flow features which can destabilise a solution are changes in orientation of fire plumes

or ceiling jets, changes in height of the neutral plane and the creation or destruction of a

re-circulation region within the flow field.

As the complexity of CFD software and modelling capabilities increase, there will be

additional difficulties introduced by the temporal effects associated with more

sophisticated behaviour such as flash-over, breaking windows, opening doors,

secondary ignition and fire spread. None of these destabilising effects are handled by

crude batch mode software without considerable manual intervention that is both

tedious to apply and prone to errors. Ideally, automated intelligent agents are required

to monitor the solution status and to make control decisions, based on the solution

status, so that processing continues both optimally and in a stable manner. This

dissertation concentrates on the development of the intelligent control agent capable of

emulating the human ability to control the numerical solver and consequently the whole

simulation process. It is believed that such an agent can substantially improve the

performance and perhaps obtain more accurate results than are normally achieved in

non-controlled simulation. Finally, fully automated control should make complex

simulations easier to run and therefore be more accessible to non-CFD experts.

Several CFD-related terms are used in this dissertation and therefore this section

contains a brief explanation of the terminology.

- a time step is converging if the residual errors are diminishing

consistently and approaching required tolerance. The time step converges when all the

residuals are below the specified tolerance (convergence condition).

- a time step/simulation is diverging if at least one residual (usually more)

is steadily increasing or has been increasing and remains significantly higher than the

required tolerance.

- a grid of points or a set of volumes, at which the relevant variables are

calculated. Numerical methods can only calculate the results at finite number of discrete

points in the domain and therefore require a mesh to define these points.

- a method for modelling physical processes by iteratively

solving a set of differential equations that govern these processes. Very expensive

computationally and therefore normally performed on computers.

- special coefficients that control the convergence speed of

iterative solvers. Reducing the relaxation stabilises the numerical solution while adding

more relaxation speeds up the convergence.

- a measure of the accuracy of the current approximation. Usually

calculated separately for each solved variable and defined as a difference between two

consecutive approximations, averaged over all mesh cells.

- physical quantities being calculated during the simulation, e.g.

pressure, velocity, radiation, etc.

- a simulation that starts with guessed values for variables and

proceeds to obtain the values of at a point when the simulation reaches a steady state,

i.e. all the flow properties stabilise and reach equilibrium.

- a single stage in a transient simulation, which covers a short period of the

simulated time. Transient simulations usually produce results at several discrete points

in time.

- a simulation, which finds the value of cj> at t+At based on the value of

<|) at time t. This process is normally performed repeatedly to produce results for several

time steps. Each time the results of a preceding time step are used as the initial guess for

the next step.

This chapter presents a brief overview of literature relevant to this project. By reviewing

related publications we ensure that we were not repeating work that had already been

done elsewhere. It also puts this project in the broader context and provides useful

background information. Firstly, we concentrate on convergence acceleration

techniques that are sometimes used in numerical software. We also explain a few other

methods for improving the performance of CFD simulations that are not classified as

convergence acceleration algorithms.

Secondly, we present a brief description and the history of SMARTFERE (a fire

modelling package) together with a prototype rule-based control system developed by

John Ewer. SMARTFIRE was used as a testing vehicle for all versions of our control

system while the results of Ewer's research served as a starting point of this

investigation.

Finally, we present various projects that use heuristic search techniques to solve

complex problems. The final version of the control system uses heuristic method and

therefore it was deemed appropriate to include a brief description and the history of

these techniques and explain how they are used to solve a wide range of problems.

Consistent advances in computer hardware over the last two decades, which seem to

confirm Moore's Law (doubling of computational power every 18 months) led some to

suggest that there is no need for sophisticated convergence acceleration algorithms in

CFD software and that more effort should be directed towards developing better models

incorporating additional physics. Unfortunately, the addition of new models usually

results in a problem that is more difficult to solve and therefore, the simulation can

actually take longer despite the availability of faster hardware. Furthermore, even with

existing models there are still many cases that cannot be solved in a reasonable time and

will remain unsolved for the foreseeable future. The following excerpt presents just one

of many examples (Moin-97):

Consider a transport airplane with a 50-meter-long fuselage and wings with a
chord length (the distance from the leading to the trailing edge) of about five
meters. If the craft is cruising at 250 meters per second at an altitude of
10,000 meters, about 10 quadrillion (1016) grid points are required to
simulate the turbulence near the surface with reasonable detail.

What kind of computational demands does this number of points impose? A
rough estimate, based on current algorithms and software, indicates that even
with a supercomputer capable of performing a trillion (1012) floating-point
operations per second, it would take several thousand years to compute the
flow for one second of flight time!

Currently, the turbulence can only be simulated accurately for very simple scenarios

(like flow in a pipe) and even then computations have to be performed on massively

parallel supercomputers. A popular alternative approach is to use approximate models,

which are partially based on empirical data and average the small eddies which allows

for a much coarser mesh and consequently shorter simulation time.

The need for more efficient algorithms becomes even more necessary when one seeks

solutions to many intermediate pseudo steady state problems, i.e. "snapshots" of the

solution state at different points in time. This is often the case in fire research where the

details of fire development and spread are usually more useful to the researcher than the

final steady state solution. In response to all these problems several different

convergence acceleration techniques were developed over the last 30 years.

One of the most established method for accelerating the solution of linear systems is

preconditioning. The principal idea is to replace the original system of equations by the

41

preconditioned set of equations that are easier to solve (remove 'stiffness'). Given a

linear system:

Ax = b

one can apply a preconditioner P, to create the following system:

P is a matrix that approximates A" 1 but is easy to compute (unlike the A" 1 matrix).

Preconditioning is often used in conjunction with other convergence acceleration

techniques (e.g. multigrid). A more detailed explanation of preconditioning techniques

is beyond the scope of this thesis but there are numerous books and papers that describe

this subject comprehensively (Choi-97, Lee-93 and Turkel-87). ILU preconditioners are

one of the more commonly used hi CFD applications (Zingg-97, Cai-97, Rausch-95 and

Venkatakrishnan-93). An important type is a local preconditioner, i.e. a preconditioner

that depends only on values at the current grid point with no influence from

neighbouring grid point values (Lee-97, Ollivier-95, Morano-93 and Pierce-96).

Another interesting algorithm for solving large linear systems is Conjugate-Gradient

method, which is a substantial enhancement over the method of steepest descent. It was

discovered independently by Hestenes (Hestenes-51) and Stiefel (Stiefel-52) and it was

subsequently generalised to non-linear problems by Fletcher and Reeves (Fletcher-64).

It would be difficult to provide a concise definition of this technique in this limited

space and therefore for details one should refer to a comprehensive explanation

provided by Shewchuk (Shewchuk-94).

Multigrid strategies are derived from computational methods but are generally

considered as convergence acceleration techniques, rather than solution methods

themselves. A multigrid strategy accelerates the solution of a set of fine grid equations

by computing corrections on a coarser grid. This is based on the observation that the

local variations in the solution are very quickly resolved by simple iterative methods on

a fine grid. However, it is much more difficult and very inefficient to remove the global

(low-frequency) errors on the same fine grid. Consequently, a multigrid method uses

several, progressively coarser meshes (grids) to accelerate the elimination of the global

errors. When the local errors are eliminated within the first few iterations on the fine

grid there is a significant degradation in convergence rate. At that point the solution is

transferred onto a coarser grid where some of the global errors in the fine mesh become

local ones and are quickly resolved. The corrections computed on a coarse mesh are

then interpolated back on the fine mesh. This method can be applied recursively using a

set of progressively coarser grids. Mutigrid methods can be used with any existing

relaxation technique and with both linear and non-linear equations. A comparison of

multigrid against other convergence acceleration techniques is presented in (Mavriplis-

98) while a detailed description of multigrid can be found in (Wesseling-92).

Mutligrid methods are currently one of the most popular convergence acceleration

techniques. The first publication with multigrid algorithms appeared in 1964

(Fedorenko-64) but the real interest in these methods was started by independent

research of Brandt (Brandt-73, Brandt-77) and Hackbush (Hackbush-76). They both

published efficient and robust algorithms for multigrid methods and presented a sound

theoretical analysis of this technique. Since then multigrid methods have received

increasingly more attention and they have found their way into a number of different

applications and numerical packages.

Zhang is one of the researchers that specialise in CFD applications of multigrid

techniques. In his thesis (Zhang-97) he concentrated on the development of further

improvements to standard multigrid methods with special emphasis on CFD

applications. He developed efficient multigrid acceleration techniques that are

particularly well suited to providing high accuracy numerical solutions in CFD. Some of

the acceleration techniques have been shown to be essential for certain problems to

converge. Zhang's techniques are easy to parallelise and do not require the coefficient

matrix to be symmetric and positive making them easier to apply to a wide range of

practical cases.

_

A system that uses fuzzy logic to adjust the relaxation parameters in CFD simulations

was developed in Japan (Tatsuya-96). It was initially tested with heat conduction cases

but subsequently the rules were improved to deal with fluid flow simulations. The

system was embedded in PHEONICS and proved to provide stable convergence.

Unfortunately, no further details are currently available as the paper was published in

Japanese

A different approach to the convergence acceleration was proposed by Ewer (Ewer-98).

Ewer developed a rule-based system for automatic solution control during the

simulation. The system's main goal was to improve the convergence rate but it also

employed a simple algorithm for divergence avoidance. The control decisions were

based on automatic assessment of the most recent residual errors and involved small

relaxation adjustments. The architecture was based on a set of rigid rules that governed

the control actions.

Ewer presented an example (simple 2D transient case) where the system reduced the

total number of iterations by 50%. He also demonstrated that the results were similar to

the performance improvement obtained by a human expert controlling identical scenario

interactively. No significant degradation in the accuracy of the final results was

observed. However, Ewer stated that the control architecture did not scale very well and

failed to provide similar improvements when applied to more complex 3-dimensional

cases with larger heat output rate. He suggested that a more sophisticated control

technique might be necessary for 3D cases due to the many degrees of freedom present

in such scenarios.

Ewer's approach was adopted as a starting point of this work and therefore his system is

explained with more detail in Chapter 4.

One of many interesting concepts implemented within Smartifre is the use of group

solvers (Ewer-00). This idea represents a natural enhancement to the standard JOR and

SOR solvers (Pantakar-80). It focuses on the fact that during a standard simulation the

computational effort is equally divided between all the cells. Therefore even the cells

that are positioned far from the main flow receive the same attention from the solver as

the ones in the most active region. If there are many such cells then a significant amount

of computation time is not used towards advancing the solution. This problem is

especially acute in fire research where complex geometries are often used in simulation

of fire spread (e.g. multi-storey buildings). Inevitably, a large part of the domain

remains relatively inactive throughout most of the simulation.

Group solvers provide a way to partition the domain into regions with different levels of

activity and then perform an increased number of iterations in active regions than in

other areas. Ewer proposed two different types of partitioning:

where the cell membership to the particular group is determined at the

beginning of the simulation and does not change. This technique is useful in

directing the computational effort away from non-important regions like sealed

rooms or cells very far away from the heat source.

where the cell membership is constantly verified during the

simulation and can change dynamically. The membership criteria can be very

flexible. In one of Ewer's examples the cells with absolute velocity less than

10% of the current maximum domain velocity are configured as "Calm" group

while all other cells are classified as "Active". Each group has a different

number of internal iterations assigned (the more active the group the more

iterations are performed).

Both static and dynamic groups can be used in the same simulation. In his paper Ewer

(Ewer-99c) presents an example where the use of group solvers reduced the overall

simulation time by 37%. It must be noted that this technique does not explicitly

accelerate convergence but improves the performance by reducing the computational

cost of calculating solution for non-essential regions.

Although the mesh generation is performed before the CFD simulation is even started it

is still one of the most important issues in CFD modelling as poor mesh quality has

detrimental effect on the simulation results and can also severely impair the

performance (in extreme cases making it impossible to obtain the correct solution). The

area of automated mesh generation was researched by Taylor (Taylor-97a) who created

an expert system for mesh generation and integrated it within the SMARTFIRE

package.

A human expert constructs a grid by first analysing the layout and physical properties of

the domain. The expert would normally create a fine mesh where significant changes

are expected (vents, heat source, plume area) while using bigger cells (coarser mesh) in

the areas that are considered less relevant (e.g. distant from the main flow). Creating a

good mesh requires considerable experience and therefore presents a serious obstacle

for novice users of CFD applications.

The automated mesh generation proposed by Taylor relies on Case Based Reasoning

augmented by a rule-based system. The system maintains a database of various CFD

cases with corresponding meshes (created initially by human experts). During a typical

mesh generation session, the best-matching case from the library is identified and

retrieved. In the next step, the retrieved mesh is adapted to account for differences

between the new problem and the library case. The modified mesh is then presented to a

rule-driven system, which validates the mesh against the set of meshing principles (the

rules are static and were obtained during the knowledge elicitation process) and further

modifications are then performed (so called 'repair phase'). During the 'repair phase'

the mesh is only adjusted by a small amount and therefore several iterations are usually

required until all the rules are satisfied. The final solution can be added to the existing

case library to be used in the reasoning process for subsequent cases. Taylor's system

has been integrated into SMARTFIRE as one of several tools designed to make CFD

simulations more accessible and easier to use by non-experts (Taylor-96).

Recent advances in computer hardware resulted in powerful parallel computers

becoming almost commonplace and by 2004 it is expected that teraflops computers

(machines capable of performing 1012 floating point operation per second) will become

accessible to small group of users (Keyes-97). The next milestone will be a petaflops

system (1015 op/sec). Such powerful computers consist of many processors (the

petaflops systems are expected to have between 104 to 106 processors) with deep

memory structures and therefore require specialised algorithms to take advantage of

their computational power. The main issues are inter-processor synchronisation and

memory latency (latency is the ratio of time required to fetch a variable from memory

versus the time required for a floating-point operation). As the processor speeds have

rapidly increased, the memory access has not improved at the same rate and

consequently all modern processors use multi-level caching in order to alleviate this

problem. However, since most of the CFD simulation operate on large sets of data, the

caching strategy is not as effective as in other applications. This has given rise to

specialised algorithms that use cache-friendly strategies like data re-use and increased

locality. Such algorithms were demonstrated to double or even triple the computational

throughput. There are many different techniques used in the development of latency

tolerant codes. Some of them concentrate on data re-ordering to improve locality

(Cuthill-69, Lohner-97) while others propose special mesh partitioning strategies to

minimise inter-process communication to improve the speed of parallel processing.

There also exist dedicated latency-tolerant solution algorithms, like multigrid and

Newton-Krylow-Schwarz solver (Cai-97).

Most of the latency-tolerant algorithms are still in their infancy but one can expect that

in the future more research will be directed towards the development of such algorithms

to take full advantage of the computational power offered by teraflops and subsequently

petaflops systems.

SMARTFIRE is a CFD package developed by Greenwich University, written in C

and based on numerical methods re-engineered from a legacy Fortran code (also

developed in Greenwich (Ewer-00)). SMARTFIRE is a dedicated fire-modelling

application that aims to make CFD simulations more accessible to non-experts through

the use of an intuitive window-based Graphical User Interface (GUI) augmented by

expert systems to guide and assist a novice user throughout the whole modelling

process, starting with problem specification and ending on the visualisation of the

results. SMARTFIRE uses a 3D unstructured mesh and can solve turbulent or laminar

flow problems under transient or steady state conditions. The first version of the system

could only model the fire as a user-defined volumetric heat source but it was

subsequently enhanced by the addition of the combustion model (Jia-99). Since

SMARTFIRE is written in an object-oriented programming language and was designed

to form open software architecture, it is a very convenient platform for other CFD-

related research. As a result, it plays an essential part in several research projects within

Greenwich University (Wang-99, Ewer-98, Taylor-97a).

One of its unique features is the user interface. Unlike many traditional CFD codes

which tend to run in a batch-mode, SMARTFIRE is fully interactive and allows the user

to observe the developing solution (thanks to the advanced visualisation capabilities),

perform on-the-fly modifications and other control actions. Various diagnostic outputs

can be monitored and used by the experts for fine-tuning the simulation process.

When the users gained more experience using the new capabilities offered by

SMARTFIRE, it became apparent that the performance of the CFD simulation can be

significantly improved by real-time adjustments to control parameters (mainly

relaxation coefficients and time step size). Ewer presents an example (Ewer-98) where

an experienced user managed to reduce the simulation time by 50% by performing

small adjustments throughout the whole run. There was, however, one major problem

associated with this acceleration technique - it required the expert to continuously

monitor the simulation and perform occasional adjustments in order to obtain significant

performance benefits. This was obviously not a practical approach (especially for big

simulations that could run for days) and therefore further research (Ewer-98) was

conducted to determine whether it was feasible to create an automated system capable

of emulating control actions performed by human experts. Ewer developed a prototype

rule-driven system and showed that it was able to provide significant performance gains

on a simple 2-dimensional fire case. This thesis is a sequel to his research into

Automated Solution Control although the rule-driven approach was subsequently

abandoned in favour of more advanced AI techniques.

The convergence acceleration and simulation control methods described in this thesis

are based on a heuristic search paradigm and therefore a short overview of heuristics

and some of the applications into robot navigation are presented here.

(from Pearl-84). Heuristics are commonly referred to as

"rules of thumb", i.e. a set of rules that are effective most of the time but not every time.

They are normally used when the complexity of the problem is too great to perform a

full analysis to derive a definitive solution method. Initially the heuristic approach was

mainly used for game playing and puzzles. The Travelling Salesman Problem (TSP) is a

classical example that is best solved using heuristics. For TSP, one has to find the

cheapest path that visits every node once and only once, returning to the initial node in a

graph of N nodes with each edge assigned a non-negative cost. TSP is an NP-hard

problem, i.e. all known algorithms require exponential time to solve it in the worst case.

TSP is surveyed in (Lawler-85) while one of the most popular heuristics that is being

used for solving TSP was proposed by Edmonds and Karp (Karp-72). Other classic

problems that are commonly encountered in theoretical AI research are the 8-Queens

problem (arranging 8 queens on a chessboard so they don't attack each other (Floyd-67)

or n-puzzle (finding a sequence of moves that will arrange n-1 pieces in the

predetermined order on a n-field board (Loyd-59, Michie-66)).

As AI expanded substantially over the last three decades, the heuristic techniques have

gone beyond theoretical analysis of confined problems and are now used in real-life

applications (robot navigation, handwriting and speech recognition, biometrics, etc.).

One of the most popular applications of heuristics is robot navigation and, as it has

striking similarities to our control problem, a few examples of heuristic navigation

systems are presented here.

Elnagar (Elnagar-95) presents a set of heuristics designed to control a free flying robot

in a 3D environment. The robot's task is to reach to the goal navigating around the

obstacles and staying (within some margin) at the required altitude. Consequently, the

basic evaluation function is the sum of obstacle repulsion, goal attraction and level

attraction. Elnagar describes two additional heuristics designed to improve the search

efficiency and to overcome the local minima problem. In (Autere-97) the authors

present a motion planning system for an autonomous robot. They developed admissible

heuristics that are computed by solving the planning problem in a simplified space. The

efficiency of the heuristic was compared against a simple Manhattan distance heuristic

using three cases with varying degrees of freedom and proved to be 10 to 100 times

more efficient than the latter.

Many researchers concentrate on applications that could potentially be commonly used

in everyday life, like control systems that may in the future lead to a "driver-less" car.

Fiorini (Fiorini-98) presents a motion planning system in a dynamic environment

(where the obstacles move). The system consists of a heuristic module for real-time

trajectory generation and a collision avoidance module that computes a set of feasible

avoidance manoeuvres at regular time intervals. The system was tested as a control

module in an autonomous moving vehicle. Hiraishi (Hiraishi-98) developed a heuristic

navigation system designed to work in a time-constrained environment. Such system is

well suited for real time route finding in automobile navigation where the control

decisions must be made within a short period of time.

An interesting problem is researched by Koenig (Koenig-98). He describes a motion

planning system for a maze where the robot knows the maze layout but does not know

its location or orientation in the maze. The robot navigates by interleaving planning and

plan execution which allows it to gather information early. The planning is guided by a

real time heuristic search.

This chapter presents the research projects related to the work described in this thesis. It

gives an overview of various convergence acceleration techniques and other methods

aimed at improving the speed and robustness of linear methods, with special emphasis

on CFD simulations. There is a brief description of various research projects that were

conducted within the SMARTIFRE group (with special attention given to the rule-

driven control system designed by Ewer). Finally, an overview of heuristics is presented

together with several examples where the heuristic search is used in robot navigation.

51

Chapter 2 presented a general overview of the fire modelling techniques and described

all the generic stages that are required in a successful fire simulation. Each of those

stages was then further explained using a simple real case and a real fire modelling

software. In this chapter we will present more details about the software that was used

to generate that initial example (SMARTFIRE). A simple rule-based control system

implemented in SMARTFIRE is described and analysed. We follow the development of

its successor, KBS 2.0, and explain the reasons responsible for the failure of both

systems. Finally, this chapter reveals why this research moved away from a simple rule-

based approach and describes the experiments that were performed to enhance our

understanding of control actions to aid the search for alternative control techniques.

In the recent years the numerical packages started to move away from the "batch-

processing", which was prevalent in their early days. It became apparent that the

complexity of the scenarios that are simulated nowadays requires a high degree of

control in order to obtain correct results in feasible time. A modern interactive

numerical engine allows an expert to monitor the current simulation state, detect

developing problems and modify the control parameters as necessary. One of the

examples of such interactive code is SMARTFIRE, which contains a sophisticated

interface that gives real-time access to all the data during the simulation. A user has full

control over the simulation process and can access and modify all parameters.

Consequently, an expert can substantially reduce the execution time and improve the

accuracy of the results by continuously watching the progress of the simulation making

necessary adjustments when required. SMARTFIRE is very flexible and easy to use -

the user is presented with an advanced GUI and can start the simulation at a press of a

button, in which case all the control parameters take their default values. However, for

many scenarios the default parameters are not appropriate and can seriously affect the

accuracy of the final results and/or time performance. In the worst case it may be

impossible to obtain the final results as the simulation diverges or progresses so slowly

that a solution would never be achieved.

Nevertheless, the interactive CFD code remains a very useful tool for experts. But even

they cannot fully utilise its potential. The main source of problems is the time factor, as

typical CFD simulations take several hours to complete, whilst in some cases this time

is extended to days. It is unreasonable to expect that any expert is ready to spend a few

days in front of the computer diligently adjusting control parameters and correcting

problems as they develop. In fact, even intermittent control is virtually impossible, since

it still requires substantial amount of time and effort to investigate various possibilities

and assess the results. Of course, if someone is prepared to wait longer for the results

then there is often no need to make any aggressive performance-oriented modifications.

However, for unstable cases, the control actions are necessary since the only alternative

is continual restarting of the whole case with different sets of control parameters until a

correct run is achieved.

Unstable scenarios lead to further problems in numerical simulations - it is very

difficult to guarantee that every time step fully converges. The convergence is usually

defined as the point where all errors fall below the specified tolerance. It is believed that

the full convergence of all time steps guarantees the correctness of the final results.

However, due to the complexity of convergence assurance experts usually settle for the

'most of the time steps converged or almost converged' solution. Special care must be

taken to ensure that there were no diverged time steps as in such case final results can

be inaccurate.

As a partial solution to the problems detailed above, most of the interactive numerical

engines give some feedback on the internal state of a solution (FLOWSD FLUENT,

STARCD). Some codes allow 'bookmarks' to be saved, which can then be reverted to,

in case any of the subsequent time steps diverge. All this functionality greatly enhances

the productivity and accuracy of numerical simulations. But the main and the most

important problem still remains - in order to obtain the maximum benefits the

simulation has to be constantly supervised and controlled by a skilled operator.

Considering the length of a typical simulation, full control by human experts is virtually

impossible. Furthermore, efficient control requires expert knowledge and therefore a

novice user is not able to control a CFD simulation properly.

The first attempt to address the control problem in SMARTFIRE was made by Ewer

(Ewer-98). Ewer implemented a simple system for dynamic control that was based on

his own experience with running CFD simulations. Ewer's system used a rule-driven

approach where the control actions were limited to small relaxation adjustments while

decisions were made using a basic state-recognition algorithm. The rules were fairly

simple and the control decisions were based on a limited amount of information.

The system tracked the residual errors and used them as the indicator of the simulation

state. The local trends in residual errors were examined and assessed. The assessment

was very simple as it compared only the gradients from the last three residual errors.

The gradients determined if the particular residual was classified as converging or

diverging. Depending on the result of the assessment, the relaxation was either

increased or reduced. The variables were grouped depending on their interdependencies

and relative importance. For instance, PRESSURE and VELOCITIES were assessed

together and the relaxation changes were always applied to the whole group of variables

at the same time.

Ewer designed his control system to allow for at least 10 sweeps between the

neighbouring control actions. He found that the control actions performed during the

time step introduced a local instability (commonly known as a "kick") which required

some time to die away. Applying changes too frequently can accumulate the adverse

effects of several modifications and destabilise the simulation (potentially beyond

recovery). Ewer claimed that the effect of the kick usually disappeared after 5 sweeps

and therefore he decided to impose a minimum gap of 10 sweeps between two adjacent

control actions but used an even bigger number (20) in his dynamic control example.

This value effectively determines the frequency of the control actions.

The control changes were small since Ewer believed that they were less likely to cause

serious instability. Consequently, Ewer adopted a "little but often" technique as a basis

of his control strategy. This decision might have been influenced by the lack of reliable

divergence detection and recovery method hence a "divergence-avoidance" approach.

On the other hand, Ewer did implement a simple divergence recovery policy: local trend

analysis was used to detect major convergence problems and then, if any were detected,

the hard-coded "safe" set of control parameters was applied. This approach, however,

did not guarantee divergence recovery and it usually incurred a substantial performance

penalty. Consequently, any problems with convergence had to be avoided, which was

partially achieved by using only small adjustments.

The performance of the control system was demonstrated using a simple 2D case with a

small fire and a partition, which is removed after the initial 30s. The results showed that

Ewer's system reduced the overall number of sweeps by 50% when compared with a

non-controlled simulation using default (safe) settings. The reduction was similar to the

performance improvements obtained for the same case by a human expert. The results

were very encouraging but unfortunately the system did not scale very well and failed to

control 3D scenarios effectively. Ewer attributed these problems to more degrees of

freedom and higher complexity of 3-dimensional cases. Nevertheless, he did

demonstrate that considerable savings in run time could be achieved by correct and

efficient control actions. It was also confirmed that the reduction in the number of

sweeps did not affect the accuracy of the results. Ewer also acknowledged that further

research was necessary before an automated control system could provide tangible

improvements in a broad range of complex cases.

A brief summary of the benefits and limitations of Ewer's approach is presented below.

Ewer's major contributions:

 The research showed that an automated system was capable of reducing the

simulation time and improving the solution stability.

 Ewer listed the problems that he encountered during the design of the control

system and proposed solutions to overcome some of them.

 Ewer believed that the residual errors were the main indicators of the simulation

state and that most of the information relevant to the control decisions could be

retrieved from the residual graphs.

 Adverse effects of applying the changes during the time step ("kick") were

documented and explained.

Main limitations of the system:

 The control architecture was not very sophisticated and used informal

knowledge obtained by its author while experimenting with SMARTFIRE.

 Solution monitoring was limited to a few discrete points during the time step.

 Control decisions were based on local information extracted from the residual

graph. There was no attempt to examine the whole graph or assess a full time

step in the control process.

 There was no real attempt to perform any control actions between time steps. A

single rule was used every time a new time steps was started: "if the last time

step converged then use its control parameters; if not - use the pre-determined

safe set of relaxation parameters".

 The system did not adjust the time step size. The time step size is believed to be

another major factor determining the performance and stability of the

simulation.

 The system did not guarantee full convergence and was focused exclusively on

improving the convergence rate.

Despite problems with 3-dimensional cases the results obtained by Ewer showed that

there was a potential for substantial performance improvements. Ewer's system was

able to provide a reduction in execution time and autonomously control a simple CFD

case. Problems with complex scenarios did not undermine its achievements, as it was

only a prototype designed to test the feasibility of automated control. The author

acknowledged its shortcomings and indicated the areas for improvement. It was

believed that further research would lead to a more reliable version of the system,

capable of controlling complex cases successfully.

The initial research focused on identifying deficiencies of Ewer's approach and

developing advanced algorithms for better and more comprehensive assessment

procedures. It must be noted that the fundamental principles of Ewer's approach

remained intact - the control actions were still limited to relaxation adjustments applied

repeatedly within the time step simulation. At that time such approach seemed rational,

as there was insufficient knowledge available to propose an alternative architecture. A

detailed analysis of Ewer's system and its set of rules served as a starting point in the

process of identifying areas for improvements. Consequently, the first stage of the

research was focused on knowledge acquisition and involved several interviews with

three different experts. The goal was to formalise the current knowledge and document

the control techniques used by experts in their work.

The knowledge acquisition consisted of a series of interviews with four different experts

that were familiar with SMARTFIRE and had some knowledge of other numerical

packages. Each expert was asked to describe his own control technique and then was

asked several questions regarding various issues related to the control problem. The

following main topics were investigated during the interviews:

 Definitions of convergence and divergence.

 Variable priorities (experts were asked to classify the solved variables according

to their importance).

 Influence on their control decisions of different features in the residual graphs.

 Description and identification of different stages during the simulation.

The experts were also encouraged to add any comments they felt might be important. In

the final stage of the interview, each expert was shown a set of residual graphs and

asked to classify them as good or bad and then suggest appropriate control actions.

The interviews failed to uncover a consistent set of rules for controlling a CFD

simulation. Each expert seemed to be using a slightly different technique. One preferred

to adjust the time step size only and used the default set of relaxation parameters in

most simulations. Another one usually modified only relaxation parameters for

PRESSURE and VELOCITY. The third expert analysed the residual graphs for

ENTHALPY variable to determine whether the time step size should be reduced (it was

reduced when ENTHALPY was diverging). Another important observation was that the

experts were usually focused on divergence recovery and had little knowledge of

performance-oriented modifications. As a result there was insufficient expertise

available regarding the effects of the control actions and their suitability in particular

cases.

There was good agreement about the convergence and divergence definitions. All

experts stated that if all residual errors dropped below the tolerance level then the time

step was believed to have converged. One expert added that the mass error could be an

additional way to confirm the convergence. Furthermore, the divergence was defined as

residual errors consistently increasing although sometimes it might be difficult to

distinguish between short-term convergence problems and real divergence. The experts

confirmed that the residual graphs were the main indicator of the simulation state but

stressed that their control decisions were also based on the analysis of the physical

processes happening within the simulated domain

All experts agreed that PRESSURE and VELOCITY were the driving forces of the

simulation but there were different opinions about the relative importance of other

variables. However, in most cases ENTHALPY, KINETIC_ENERGY and

TEMPERATURE were also classified as important.

When the experts were presented with several example residual graphs, their assessment

results were very similar. They agreed that the convergence rate was the

most important factor but added that other features (i.e. graph smoothness, presence of

oscillations) also play a part in graph assessment. However, the experts found it very

difficult to recommend any control actions based on the information only available in

residual graphs.

The experts stressed that the full convergence of all time steps guaranteed the accuracy

of the final results. One of the experts added that the change in heat release rate was

normally the most important factor determining the stability of the simulation. A big

change in heat output within a single time step may result in divergence and therefore

should be avoided (usually by reducing the time step size).

The interviews confirmed that the residuals were the main indicator of the simulation

state but the experts also analyse residuals from previous steps and the physical

conditions in the domain when making any modifications to the control parameters. The

convergence rate was deemed the most important property of the residual graph.

Experts also mentioned the smoothness of the residual graph and presence of outliers

and oscillations as other significant features. They strongly emphasised the importance

of full convergence of all time steps and its effect on accuracy.

The knowledge elicitation did not provide as much information as it was hoped for. The

experts had limited knowledge about the effects of different adjustments and the

suitability of particular actions to specific problems. It transpired that the performance-

oriented modifications were performed very rarely. The experts had more experience

with divergence but their standard recovery procedure was rather simple and involved

reducing the time step size.

Unfortunately, the interviews did not uncover enough knowledge to make it possible to

design a completely new control system. However, the new information helped

introduce significant improvements to Ewer's control technique. It was hoped that

additional research would lead to better understanding of the control problem and

therefore result in further improvements.

Although the experts did not provide as much information as it was hoped for, some of

their observations together with the conclusions drawn from the failure of the previous

system gave rise to major enhancements to the original rule-driven approach. However,

partially due to the limited success of the knowledge elicitation, the main principles of

the original design remained largely intact:

 Control actions comprise of small relaxation adjustments applied during the time

step.

 The adjustments are governed by a rule-driven system, which relies on a custom

assessment algorithm to extract relevant data from the residual graphs.

 The residual graphs remain the exclusive source of information about the current

state of the simulation and the quality of the solution.

The new system (KBS ver 2.0) contained many improvements that were believed to be

able to provide tangible performance benefits and allow efficient control of 3D

scenarios. The information obtained during the interviews with experts was used in the

development of a new assessment algorithm for residual graphs. The new algorithm was

able to extract the features that the experts deemed relevant to the control process. The

assessment procedure consisted of several stages and various measures (remaining

iterations to convergence, divergence detection, smoothness, average gradient, etc) were

constructed to describe the quality of a particular graph.

Furthermore, a special state based approach was implemented for efficient scheduling

of the control actions. Four different control phases in a single time step were identified

and different control rules developed for each of them. The following sections contain a

more detailed description of the major improvements.

One of the very obvious problems in the original system was the inadequate trend

assessment algorithm. Since only the last three values were used to determine the trend,

the results were not just inaccurate but very unreliable. To address this problem, the

newly developed assessment algorithm was designed to use substantially more data to

perform a detailed and comprehensive analysis. During the first assessment stage, the

graph was classified as 'mainly up', 'mainly down' or 'unstable'. This method was

modelled on the initial graph assessment performed by human experts. Depending on

the classification result, different techniques were used for further analysis. These

procedures have now been superseded in the further work described in this thesis and

therefore only a brief description of the assessment algorithm for a 'mainly down' graph

will be presented here as an example.

If a graph is classified as 'mainly down' then the main purpose of the control action is

to speed up the convergence since a downward trend indicates that there is no need for

divergence recovery. Small fluctuations are irrelevant for the purpose of trend

assessment and therefore the graph is usually smoothed (Ott-93) before any further

analysis. Smoothing is useful as it eliminates most minor variations (always present in

residual graphs) and a graph is produced with a more consistent trend that is easier to

analyse. If necessary (e.g. many trend variations persisting after the initial processing), a

more aggressive smoothing process can be subsequently applied. The resulting graph is

then analysed in order to extract more information about the trend. If after smoothing

the graph still does not exhibit a consistent downward trend then a specially developed

algorithm (adapted from the computer graphics domain, see Earnshaw-85, Le Riche-69

and Reuman-74) approximates the graph with a set of lines. The resulting set of

gradients is used to further analyse the trend. More examples of how the assessment

procedure works are presented in Figure 4-1. It is important to note that at this point the

relaxation changes are only recommended and not applied. Another set of rules is used

in the next stage to analyse the recommendations from all the variables to decide what

modifications would eventually be applied.

-b -

The assessment algorithms were constantly improved, as new data emerged during the

testing of the new control system. This resulted in the development of several

interesting techniques for graph analysis, which proved to be very useful in further

stages of the research.

Another improvement was the introduction of more sophisticated scheduling of the

control actions. Ewer's system accessed the simulation every 20 sweeps while

additional rules restricted the changes during special periods, i.e. the control actions

could not be performed within the first few sweeps, for some period after adjustments

and in the final part of the time step. The next version of the KBS adopted these

principles but implemented more advanced methods for state identification.

\

C

Figure 4-2 shows all four states that can be attained within a single time step together

with a brief description of the events that cause the state transition. Each stage

represents a different part of the time step processing and requires significantly different

control actions:

- the solution process is in this stage during the first few sweeps. Substantial

errors are expected and the residual graphs often appear unstable. Experts believe that

no control actions should be applied at this stage since the residual trends are not fully

developed yet and therefore do not provide sufficient information to make correct

decisions. Normally, the starting phase finishes after 5-10 sweeps.

- this state represents the 'middle' part of the time step, which is the most

interesting stage of the simulation. Virtually all performance-oriented control actions

are performed in this state. The relevant residual graphs are analysed and then

appropriate changes introduced (if required). If any adjustments are made, the system

enters a new state: RECOVERY.

- the recovery stage is similar to the starting period. As the name

suggests, its main purpose is to allow the numerical engine to recover from a local

instability introduced by the most recent changes. When the 'kick' effect dies out, the

system returns to the MONITOR state.

- In the final phase of the time step no modifications are allowed. When it is

determined that residuals are close to reaching convergence then no performance-driven

control actions should be applied as the associated 'kick' may artificially increase the

residual values and therefore defer the convergence.

Consequently, at each point of the simulation, KBS 2.0 operates in one of the four

different states, which determine what control actions are allowed. The system closely

monitors the simulation progress to identify the transition points between the stages.

Most of the transitions are relatively straightforward to detect but some require non-

trivial algorithms. For instance, the length of the START phase can be arbitrarily

defined as the first 10 sweeps of the time step whereas the identification of the FINISH

state is more complicated. If it is agreed that the FINISH phase occurs during the last 15

sweeps before convergence, then one must be able to detect a point in the time step

simulation where there are only 15 sweeps remaining to full convergence. In order to

solve this problem, a special algorithm for predicting the convergence point had to be

developed. Fortunately, when the residual graphs are presented in a logarithmic scale

then a simple method of the least-squares approximation gives acceptable results and is

therefore used for convergence prediction. Obviously, the accuracy of the prediction

varies but this fact does not invalidate its benefits. The convergence prediction method

was substantially improved in the later stages of this research (see Chapter 5 and 6)

The new system incorporated many improvements that Ewer identified as essential. As

a result, the control procedures became more predictable and more robust.

Unfortunately, KBS 2.0 was still unable to control 3-dimensional cases effectively. The

results obtained during tests were not consistent, in some cases the new KBS reduced

the number of sweeps, in others the total number of sweeps actually increased. To make

matters worse, even in the best cases the observed performance improvement was lower

than 7%. The lack of consistent reduction in simulation time was an early warning sign

since the implemented enhancements were expected to provide substantial performance

benefits. Contrary to the initial expectations, 3D cases remained very difficult to

control. The analysis of the simulation progress and the automated control process did

not reveal any obvious areas that could benefit from further refinements to Ewer's

approach. These problems prompted a suggestion that perhaps the underlying

architecture was inappropriate and did not model the human control actions correctly.

Since there was no obvious solution that would promise to overcome the difficulties

encountered, it became clear that a more thorough analysis of the control problem was

necessary before new control architecture could be proposed.

The initial tests clearly demonstrated that the new control system did not provide any

significant reduction in the number of sweeps and its behaviour was inconsistent and

inefficient. Since most of the proposed improvements had been implemented, it became

apparent that only radical changes to the system architecture might be able to produce

the required performance gains. Consequently, it was decided to conduct a thorough

analysis of the test results in order to establish the factors responsible for the failure of

the first two systems (Ewer's and KBS 2.0, based on Ewer's approach) and perhaps

devise a different architecture for the next generation of the control system. The

research was therefore once again focused on the identification of the deficiencies in the

rule-driven control systems.

The first identified source of the problems was the "kick effect" occurring immediately

after the changes were applied. After analysing several residual graphs, it was revealed

that often the adjustments did not seem to speed up the convergence rate while the

introduced instability significantly delayed the convergence. Even in the graphs where

the increase in relaxation did result in a better convergence rate, the benefits were often

nullified by the kick. This problem is illustrated in Figure 4-3.

u i

When the relaxation parameters are modified during the time step then the residual

errors change abruptly (producing the "kick effect"). The magnitude and direction

(sharp increase or decrease) of the "kick" vary and depend on a number of factors. The

important conclusion is that the resulting instability in the residual values can delay the

convergence, even if the purpose of the changes was to speed it up. For example, in

Figure 4-3 the last modification creates a sharp increase in residual values, which

cancels most of the increase in speed that was gained. This problem is compounded by

the fact that the control architecture relies on frequent but small adjustments, which

result in the introduction of several instabilities within a single time step. In order to

minimise the adverse effect on performance it might be more efficient to make bigger

changes but less frequently. However, bigger adjustments require sophisticated analysis

of the current simulation state, as they are more likely to cause serious instability and

subsequent divergence. Perhaps the changes should be applied between the time steps,

as the "kick effect" would be merged with the instability caused by changing the current

simulation time. This approach avoids introducing local instabilities during a time step

but it requires further research.

Another major flaw identified in the design of the first two control systems was the fact

that the control decisions were based on very limited amount of information. Ewer's

system used only three most recent residual values as the indicator of the current trend.

This was clearly unsatisfactory and several attempts to improve the assessment

procedure were made. The number of points analysed was substantially increased (to at

least 20). Other factors like trend consistency and the change in convergence speed

were also considered in the set of control rules. Nevertheless, the results suggest that the

amount of information extracted from the residual graphs might have been insufficient

to make purposeful control actions.

In the search for a better feature extraction procedure, the experts' assessment

techniques were once again put under scrutiny. It transpired that the experts always

examined the whole graph (and sometimes even several preceding graphs) to assess the

quality of the simulation. The experts assess both global and local trends in the residual

errors and their decisions can often be influenced by historical data, i.e. the outcome of

the previous time steps. Unfortunately, the frequent adjustment strategy used by both

systems makes such global assessment very difficult because using different sets of

control parameters at different parts of the graph obscures its true form by introducing

artificial irregularities. It became clear that correct control decision could not be based

exclusively on the analysis of local trends, as the residual graphs often contain very

important macro-features that are essential to the effectiveness of the assessment

procedure. Relying only on local analysis can also be misleading as the residual values

are inherently noisy and there is always a danger that the noise will be interpreted as a

trend. The natural "noisiness" is compounded even further by the kick effect, which not

only makes the local analysis more difficult but also makes the global assessment

virtually impossible.

As the analysis progressed it was becoming apparent that the underlying control

architecture was based on unsound principles. Despite various enhancements, the

software agent failed to provide the reduction in simulation time or stability

improvements that were hoped for. Furthermore, the convergence of every time step

could not be fully guaranteed. A quick solution for those problems was not apparent. It

was agreed that none of the improvements so far conceived seemed capable of

providing the required benefits. However, it was known that the experts were able to

significantly reduce the simulation time and guarantee full convergence. Therefore, it

was concluded that the system architecture and the associated control actions must have

been inappropriate and fundamentally different from the human control techniques. This

conclusion led to the reassessment of the information extracted from the experts during

the knowledge acquisition phase.

The knowledge reassessment identified distinctive differences between the control

methods used by humans and the algorithms used in both control systems. Further

interviews with the experts established that the global features of the residual graphs

were essential in determining the best adjustments. Local trends may also contain vital

information but should only be used to enhance the result of the global assessment.

Further analysis revealed that the rules used in the KBS were brittle and arbitrary, as

there was insufficient knowledge available at the time about the effects of frequent

control actions. Experts tried to help but did not have the necessary knowledge, since

they hardly ever modified the standard set of relaxation values. Most of the time the

experts were put off by the amount of time necessary to exercise proper control and

therefore their experience was limited and came from rare and non-standard cases. This

further confirmed that the knowledge elicitation was not very effective and failed to

identify the issues that were essential to the full understanding of the control problem.

This was probably due to the combination of factors of which the main ones were:

 Lack of experience in formal knowledge elicitation techniques.

 Too much emphasis during the interviews on the control techniques used in the

original Ewer's system.

 Insufficient expertise available (the experts interviewed did not have all the

necessary knowledge required to build an effective rule-driven control system).

The analysis also established that the previous conclusion, stating that the frequent

relaxation adjustment strategy was a natural extension of the control technique used by

experts, was incorrect and the control system built around that principle did not emulate

the human control actions properly.

A brief summary of the problems affecting the KBS 2.0 is presented below:

 The kick effect seriously affects the performance.

 The assessment method is focused on local features rather than full graph

assessment.

 The kick effect introduces artificial irregularities hence making the full global

analysis of the graph impossible.

 The system architecture does not easily allow for the time step size to be

changed.

 There is no reliable divergence recovery procedure.

 Full convergence assurance is difficult to implement and guarantee.

 The set of rules used is very brittle and inflexible.

 Control actions fundamentally different from human control.

 "Little-but-frequent" control strategy proved to be ineffective and inefficient.

As a result of these problems the 3D cases could not be properly controlled. There was

no significant reduction in the observed simulation time while in many cases, the

automated control even led to a small increase in the total simulation time. These

problems prompted a search for the new architecture for the control system.

The major factor contributing to the failure of the previous control strategy was the

presence of the "kick" and its adverse effects on performance and stability.

Consequently, one of the priorities adopted for the design of the new architecture was

whenever possible to avoid introducing local instabilities. It was proposed that all the

modifications to the control parameters should be applied between the time steps. In this

way, adjustments do not introduce any artificial irregularities during the time step and

therefore the residual graph can be assessed by the techniques similar to the ones used

by the experts. Unfortunately, the experiments with the KBS 2.0 showed that there was

insufficient knowledge available to build a robust rule-driven control system. This was

partly due to the fact that the knowledge acquisition was not exhaustive enough but also

because the experts were not familiar enough with the nature and the effects of various

adjustments since they only performed them very rarely. It was also becoming apparent

that the relaxation and the time step size should be modified simultaneously but there

was no knowledge available about the effects of combining these two types of control

actions. Moreover, even the effects of simple adjustments were not well known and

therefore it was virtually impossible to design a reliable control system at that stage.

This analysis led to the conclusion that an effective rule-based control system could not

be built using the expertise then available, as very little was known about the effects of

control actions. Further research was therefore required to enhance our understanding of

the problems associated with automated control of CFD simulations. Moreover, new

control methods should be investigated, as the knowledge acquisition failed to identify

formal rules that could be used in a classical rule-driven expert system.

The knowledge reassessment showed that very little was known about many aspects of

control actions, hi standard cases experts do not usually interfere with the simulation

process. The relaxation is adjusted very rarely - most of the time the default set of

parameters stays intact for the whole simulation. The time step size is modified even

less frequently. Generally, if the simulation went badly then a second run with a smaller

time step size is considered. However, the experts generally seem to agree with the

following statements:

 Adding under-relaxation slows down the simulation but at the same time makes

it more stable.

 Increasing the time step can lead to divergence but may also speed up the

simulation.

 Removing under-relaxation speeds up the solution but can also cause

divergence.

 Decreasing the time step size stabilises the simulation but is also believed to

adversely affect the performance.

There is little information about whether the changes can be combined (e.g. increasing

the relaxation and reducing the time step size at the same time) and what the effects of

such combinations would be. It is also not very clear what changes are best suited to a

particular situation (e.g. what needs to be adjusted in case of divergence: time step size,

relaxation or both?). Moreover, the experts have contradicting views about the

magnitude of changes that should be applied and their impact on performance and

stability.

In order to answer all those question and confirm the experts' intuition, a

comprehensive set of experimental runs was devised to investigate various types of

control actions and analyse their effects. The main goal was to test a broad range of

changes to control parameters and store the full set of results for further analysis. Based

on the analysis of KBS 2.0 it was decided that all control actions should be confined to

the period between the time steps and therefore the experiments should only include this

type of adjustment.

Several different cases were used for this investigation. All the scenarios were based on

a Steckler case (Steckler-82) but with different heat source locations and different fire

sizes. The geometry of the Steckler room remained unchanged while the heat output of

50kW and 250kW was varied (62.7kW was used in the original experiments). Steckler-

type case is convenient, as it is very well documented and is often used as a benchmark

case (Grandison-01). It reaches a steady state, which allowed testing the effects of the

control actions in the steady state as well. Furthermore, since it is a fairly small and

simple case, the processing time is relatively short. This fact was very important, as the

experiments increased the normal execution time by a factor of five. The main

limitation of the Steckler case is the use of a heat source with constant output. Constant

heat output does not model the fire growth correctly and therefore two additional cases

were run, which contained a heat source described by a growing heat release curve

(with a peak at 50kW and 250kW respectively). A heat release curve is a commonly

used to model the fire growth process.

Ten different scenarios were simulated during the tests. Each scenario consisted of 100

time steps (with a time step size either Is or 2s) with the control parameters being

modified after every 5 steps. Consequently, for each case there were 25 points where a

comprehensive set of control actions was tried. Every set of experiments contained 20

different control actions that tested various types of adjustments. At each experiment

point, the simulation state was first saved, and then one type of modification introduced

and the time step restarted. When the time step has completed then the relevant data was

saved for further analysis, the previously stored simulation state was recovered and a

different type of control action tested. This procedure was repeated until the whole set

of modification had been tested, in which case the initial state was retrieved one more

time and from that point the simulation progressed undisturbed using the original

control parameters until the next experiment point (i.e. for the next 5 time steps). Figure

4-4 presents a diagram of the experiment procedure.

As every case contained 100 time steps with the experiments performed after every 5

steps, the total of 500 experiments were performed within a single scenario, which gave

a total of 5,000 experiments. A single type of control action was therefore tested 250

times, which produced sufficient data to use statistical analysis.

The details of different types of modifications that have been tested are presented in

Table 4-1. The changes were relative and were limited to ±50%, ±20% for relaxation

and +100%, -50% for the time step size. The relaxation adjustment was always applied

uniformly to all variables. The results of the experiments were analysed using two

different methods:

- every experiment was compared against the

corresponding time step without any changes applied. The difference between

the number of sweeps required to attain convergence determined the relative

speed improvement (or deterioration). The final figure describing the

convergence speed was normalised to represent a uniform measure of the

improvement.

- the residual graphs, which were stored

during the simulation, were then visually assessed using a viewer developed

specifically for this purpose. The visual inspection was necessary to compare

various features that might reflect the stability of the simulation (smoothness,

presence of a flat-convergence phase, major irregularities, oscillations, etc). It

was a tedious task requiring considerable patience (as it involved assessing 5000

residual graphs) that was made much easier by the custom viewer, which

allowed quick comparison and assessment of the relevant features.

Exp
No.

1

2

3

4

5
6

7
8

9
10

11
12

13

14

15

16

17
18

19

linear relax,
mod. factor

+50%

+20%

-50%

-20%

0%
0%

0%
+50%

+20%
-50%

-20%
+50%

+20%

-50%

-20%

+50%

+20%
-50%

-20%

False time
step relax,
mod factor

+70%

+30%

-50%

-20%

0%
0%

0%
+70%

+30%
-50%

-20%
+70%

+30%

-50%

-20%

+70%

+30%
-50%

-20%

Time step
size mod.
Factor

0%

0%

0%

0%

+100%
+50%

-50%
+100%

+100%
+100%

+100%
+50%

+50%

+50%

+50%

-50%

-50%
-50%

-50%

experiment description

Substantial relaxation increase, no time step
size change
Relaxation increase, no time step size
change
Substantial relaxation reduction, no time
step size change
Relaxation reduction, no time step size
change
No relaxation change, time step size doubled
No relaxation change, time step size
increased by 50%
No relaxation change, time step size halved
Substantial relaxation increase, time step
size doubled
Relaxation increase, time step size doubled
Substantial relaxation reduction, time step
size doubled
Relaxation reduction, time step size doubled
Substantial relaxation increase, time step
size increased by 50%
Relaxation increase, time step size increased
by 50%
Substantial relaxation reduction, time step .
size increased by 50%
Relaxation reduction, time step size
increased by 50%
Substantial relaxation increase, time step
size halved
Relaxation increase, time step size halved
Substantial relaxation reduction, time step
size halved
Relaxation reduction, time step size halved

The results of the analysis form a substantial document but only the conclusions are

relevant for this dissertation:

 The increase of relaxation speeds up the convergence. However, excessive

relaxation can destabilise the simulation causing divergence.

 Removing the relaxation slows down the simulation (It is also believed that it

can provide divergence recovery but there was no conclusive evidence in the

experiments although the results did indicate that removing relaxation stabilised

the solution).

 Smaller time steps are usually more stable but not necessarily slower (!).

Therefore the time step size reduction may be a very efficient method for

divergence recovery since the impact on performance is minimised.

 Bigger time steps can provide some reduction in simulation time but may also

cause major convergence problems.

 The results indicate that the time step size is responsible for the stability of the

simulation while the relaxation controls the convergence speed. However, the

relation is not straightforward and there are many other factors involved.

 Increasing the relaxation and reducing the time step size can produce superior

results in terms of improved time performance and acceptable stability.

 Increasing both the relaxation and the time step size can produce a substantial

reduction in execution time but it is also likely to cause major instabilities and

divergence.

 Removing the relaxation and reducing the time step size improves the stability

but at the same time significantly degrades the performance.

 Removing the relaxation and increasing the time steps size does not provide any

tangible benefits. The performance is seriously affected while the stability of the

simulation does not improve. Consequently, this type of changes did not seem to

provide any benefits regardless of the current simulation state. It neither

stabilised the simulation nor accelerated the convergence.

The experiments confirmed the experts' opinions about the stabilising effects of

relaxation removal and the time step size reduction. It was also confirmed that adding

relaxation might speed up the convergence and consequently the whole simulation

process.

But there were also a few surprises revealed during the experiments. The time step size

reduction was generally believed to have an adverse effect on the performance. This

belief however, was not confirmed by the experiments. In most of the cases, reducing

the time step size had little effect on the performance. The convergence speed was not

significantly affected however the actual result varied (from a 20% reduction to a 60%

increase in convergence time). Moreover, the smaller time steps always appeared more

stable and smoother than their larger counterparts. This came as a surprise to the experts

since they normally assumed that a bigger time step meant shorter simulation time. The

experiments showed that the time step size has more impact on the simulation stability

than speed. Therefore a simulation of a scenario might take a similar amount of time

regardless of whether it uses 100 steps of 1 second or 500 steps of 0.2 second. Of

course, the reality is more complex and the above example is somewhat simplistic. For

instance, the findings are based on the assumption that all the time steps have fully

converged. In a typical non-controlled simulation many time steps do not fully converge

but run for a predetermined number sweeps. In such cases, a bigger time step always

means a shorter simulation time, as the processing time is defined as a number of

sweeps multiplied by the number of steps and therefore is not convergence dependent.

This may also explain why experts believed that a bigger time step reduces the

simulation time. However, it is understood that non-converged time steps affect the

accuracy of the results and such simulations should only be used for "quick and dirty"

runs. Consequently, all performance comparisons presented in this dissertation are

always based on fully converged simulations (whenever possible, as in some non-

controlled simulations obtaining convergence of all time steps is very difficult to

achieve).

The experiments identified one class of control actions (relaxation removed and time

step increased) as ineffective since it never provided any tangible benefits. The

experiments also helped to link some types of control actions with a particular

simulation state (e.g. reducing the step size can restore convergence). Further research is

required to fully understand these relationships. The experiments showed that the

effects of the control changes vary depending on a case but there are some general rules

that apply most of the time.

Apart from facilitating the analysis of different control actions, the experiments also

provided a considerable amount of data (in the form of residual graphs) that could be

easily accessed and analysed further using a specially developed viewer. These graphs

proved to be invaluable in further development and quick validation of different

assessment techniques.

This chapter describes initial attempts to develop a rule-driven control system for

SMARTFLRE. A prototype system created by Ewer is presented and its advantages and

deficiencies analysed. The subsequent attempts to improve the original Ewer's design

are described together with the discussion of the initial results. The reasons behind the

poor performance of the system are analysed and several different factors that

contributed to the lack of performance improvements are identified. It is shown that due

to insufficient expertise available, a pure rule-based approach cannot be successfully

applied at this stage. Some suggestions for other types of control architecture are

offered. Finally, the details of experiments performed to gain insight into the nature and

effects of various control actions are presented together with a brief discussion and

conclusions.

In Chapter 4 it was shown that the rule-based systems were not very successful in

emulating the techniques used by human experts to control fire simulations. In this

chapter we propose a new system that relies on heuristic techniques to determine the

optimal control parameters. A complete heuristic evaluation function is presented

together with three dedicated algorithms developed specifically for residual graph

feature extraction. All components described here form the building blocks for the new

heuristic control system.

This chapter also provides a reference to other relevant research projects that use

heuristic techniques to solve different types of complex problems.

After the failure of the rule-based approach, the knowledge elicited from experts was

reassessed. It was known that the experts were able to significantly improve the

performance but still, the automated system designed to model human control actions

failed to provide any improvement. It became obvious that the initial design was

inherently flawed and it was believed that there were several different factors

responsible for its failure:

 Knowledge elicitation phase was not thorough enough.

 The chosen architecture (frequent rule-driven relaxation adjustments) did not

model human control actions correctly.

 Experts use only limited number of stable rules and therefore their control

actions are often based on subjective assumptions and trial-and-error search.

 Different control procedures are used by different experts, which made it

difficult to design a system based on a consistent and exhaustive set of rules.

 Incorrect conclusions were drawn from Ewer's test results and the initial

interviews with experts.

The first stage in the search for a new solution involved establishing precisely which

facts were known and could be used for the purpose of automated control. Although

there was insufficient expertise on control rules, there did exist knowledge about when a

simulation was going well and when it was not. Based on the residual graphs, an expert

was able to differentiate between acceptable and unacceptable solution states. This

prompted the following conclusions:

 The residual graphs provide essential information about the simulation state.

Therefore, the control decisions can be based almost exclusively on the results

of the residual graph assessment.

 The residual graphs can also be analysed after adjustments have been made to

assess the results of any control actions.

The new control system must therefore be able to closely emulate the experts' ability to

extract solution state information from residual graphs. This fact was already well

known but it was not pursued actively enough during the initial stage of knowledge

acquisition.

It also became apparent that the experts never precisely knew what control actions

should be applied. Some experts claimed to follow some arbitrary rules (e.g. reduce

time step size if enthalpy clearly diverges) while other used a generic approach and, for

instance, always reduced the time step size when the solution diverged. Furthermore,

experts were never certain whether the control action they had applied would have the

desired effect. It was therefore a common practice to save the solution state before

making any adjustments so that the previous state could always be restored if the

adjustment did not work as planned. This approach resembles a trial-and-error search

although there is an element of expertise in the search.

The overall structure of the human control procedure outlined above, is that of a

heuristic search with a heuristic evaluation function derived from the examination of

residual graphs and residual histories. Consequently, it was decided that the new control

architecture should emulate the human control technique using a simple search

algorithm guided by appropriate heuristics, based on residual graph assessment.

One of the main benefits obtained from the analysis of KBS ver. 2.0 failure was the

conclusion that the control actions should be applied between time steps and should also

include time step size modifications. Another important fact was the observation that

experts always saved the solution state before making any adjustments so they could

recover from change-induced divergence. The experts rarely performed performance-

oriented adjustments because of the length of time required to assess the results of a

single control action. Fortunately, an automated system does not suffer from tiredness

and can perform a much more exhaustive search examining several different types of

changes in order to find an almost-optimal set of control parameters. As a result, the

new system was designed around the following main principles:

 A runtime heuristic search is used to determine appropriate control parameters.

 Heuristic evaluation function based on residual graphs is used for the assessment

of both the simulation and the search result.

 Automatic divergence detection is based on similar heuristics.

 A heuristic search is also employed in divergence recovery.

The most comprehensive approach to the control problem would be to test all the

possible combinations of the parameters for every time step and then select the path that

provides the best results (e.g. shortest execution time). Such exhaustive search can find

the optimal path to the solution but the cost of the search would be very great. Since the

heuristics relies on the assessment of the residual graphs, the search would require a

very large number of full simulations to be performed just to obtain the relevant data.

Clearly, this method is inappropriate, especially as we are not interested in finding the

shortest path to the solution but in obtaining the final simulation results in the shortest

possible time. However, for the purpose of discussion it is useful to consider some of

the features associated with exhaustive search. Consequently, there are two main

difficulties associated with such search method:

 The parameters are continuous and therefore it is impossible to create an

exhaustive and finite set of different configurations of control parameters.

Consequently, the branching factor of the search tree is unlimited.

 The cost of the exploration of a single set of parameters (examination of a single

node in the search tree) is of the same magnitude as the cost of a single time

step. As a standard simulation usually contains at least 100 steps and runs for

several hours or days, the cost of the exhaustive exploration is prohibitive.

The first problem can be easily overcome by using a discrete subset of the control

parameters. This technique avoids the infinite branching problem thus making the

search cost finite although still not feasible. Assuming that 20 discrete sets of control

parameters are used, the equivalent branching factor is also 20. Therefore, the cost of

the search is 20X (where is the number of time steps - for simplicity we do not

consider changes to time step size). Consequently, the cost of the search for a close-to-

optimal path (but not fully optimal, as the control changes are discrete) is still absolutely

unacceptable. Fortunately, a numerical simulation contains special properties that can

be exploited in order to reduce the cost of the search.

Firstly, we are not interested in finding the optimal path to the solution. The two main

goals:

 reducing the simulation time,

 ensuring the validity of the results

can be achieved without finding the shortest possible path to the solution. Since the

search time forms part of the simulation time, it must be kept to the absolute minimum.

On the other hand, we have assumed that a heuristic search is the right solution to our

control problem. Consequently, an appropriate search procedure must be devised, which

is capable of minimising the search time while maximising the performance

improvements obtained by the control parameters found during the search.

81

Secondly, experts consider a time step to be valid if the residuals have converged.

Consequently, time step correctness does not directly depend on the set of parameters

used. The sub-optimal path can provide better performance if the search cost is limited.

Generally, there is little point in trying to find a better set of parameters for the time step

that has already produced correct results (a different situation arises if the time step

diverges - then the correct parameters must be found). This property is very important

as it indicates that we never need to backtrack further than the last fully converged time

step.

Thirdly, if the final solution exists then a path to the solution can be found from any

point between START and END, providing that all time steps between START and the

chosen point have converged. This fact has profound implications as it guarantees that if

a particular time step diverges then a single-step backtracking will always be sufficient

to resolve the problem and return to the path that leads to the solution. In other words -

there are no hidden dead-ends, i.e. divergence can always be resolved by backtracking

by one step and trying again with a different set of parameters.

These conclusions resulted in the development of a simple search algorithm that

virtually guarantees finding a correct solution if one exists.

It was decided that the simulation process would be treated as a search for the solution.

The goal is to obtain accurate results for all time steps in the shortest possible time. It is

very important to differentiate between the following two goal definitions:

 finding the shortest path to the goal,

 reaching the goal in the shortest possible time.

In the first case, the path is the required solution to the problem. A classical example of

such search is the 8-puzzle (Pearl-84) where the objective is to rearrange a given initial

configuration of eight numbered tiles arranged on a 3x3 board into a given final

configuration (usually an ordered sequence). Since the final state is given, the main task

is to find the shortest sequence of actions that lead to this state.

In the second situation one is primarily concerned with reaching the target in the

shortest possible time. Therefore, there are two distinctive goals: reaching the solution

and minimising the search time. Again, a number of examples are available in literature.

A typical one is the 8-Queens problem (Floyd-67) where the goal is to place 8 queens

on a chessboard such that no queen attacks each other. One is only interested in the final

solution and therefore the search path is of little interest. However, since no one wants

to wait several hours for the solution, the search time should be kept to minimum.

A slightly more sophisticated example is the problem of real-time robot navigation in

unknown environment. In this problem the final state is known (the destination) but the

path is not. However, the search is not focused on finding the shortest path but on

reaching the destination in the shortest possible time. Of course, the path has significant

impact on the time required to reach the destination but there are further factors that

have to be considered, like the cost of environment exploration (since it is initially

unknown). We will describe this problem in more detail as it shares many

characteristics with the control architecture proposed for SMARTFIRE.

The autonomous robot navigation is an intensively researched subject in AI. Several

examples of different heuristic navigation systems were already presented in Chapter 3.

Here we will concentrate on a single case and use it to highlight the similarities with a

CFD control system. It is a classic problem of automatic navigation through an obstacle

course from A to B and it is largely based on the research into Mobile Robot Obstacle

Avoidance by Borenstein and his team (Borenstein-91, Shoval-94 and Ulrich-00).

However, the example presented here has been modified to emphasise the issues related

to the control algorithm for CFD simulations - our robot uses a very slow route-finding

algorithm and therefore cannot use it in real-time.

In our example a robot (agent) has to move from the point A to the point B without any

information about the topography of the terrain. The agent knows its position and the

position of the goal (e.g. using GPS). Primitive sensors enable the agent to detect

obstacles when it bumps into one of them. It also has a custom vision system that can

see at some distance and recognise obstacles but analysing the input is energy

consuming and takes long time. Therefore it is often better to choose a longer path and

consult the vision system infrequently rather than spend a lot of resources on the search

83

for the shortest route since the goal is to reach the point B as quickly as possible. Blind

walk is not especially effective since every time an obstacle is detected the vision

system must be engaged in order to find the way around the obstacle (we assume that

the agent is unable to go around the obstruction without the feedback from the vision

system).

A heuristic search algorithm can be used to help the robot navigate. A simple example

will help describe how the algorithm works. Figure 5-1 shows an environment with the

starting point (A) and the target (B). Dark shapes represent obstructions that the robot

has to avoid while dark lines and shaded regions represent areas that take long time to

cross and therefore it may sometimes be quicker to go around them.

The consecutive stages in the robot's progress are discussed below:

The agent (robot) uses its vision system to determine in which direction it should start

moving. The semicircle represents the area covered by the optical sensors. The

obstruction in front is detected and the agent chooses the direction that avoids the

obstacle but gets him to the goal at the fastest rate. Robot turns off his vision system and

moves forward for a specific distance, The distance at which the robot intends to travel

is not fully covered by its vision system and therefore the process of choosing the

direction is inherently heuristic. The robot does not encounter any obstacles and arrives

at the point p2.

The agent engages the vision system (always looking in the

direction of the goal). The seemingly best route is chosen and robot moves forward in

this direction.

The agent bumps into an obstruction and has to revise its route.

It goes back a short distance and arrives at point p4.

The agent determines a new direction that avoids the

obstruction in front and starts moving forward.

The agent has covered the pre-set distance and arrives in

point p5. The vision system is used and an internal reasoning engine determines that

crossing the rough area in front will be quicker then going around it. The robot moves in

the chosen direction.

The agent bumps into an obstruction and has to revise its

direction again. It goes back a short distance and arrives in point p7.

The robot determines a new direction that avoids the

obstruction in front and starts moving forward.

The agent detects that it has started to

move away from the goal. It stops and uses the vision system to find a new direction. It

then moves in the selected direction.

The agent reaches the goal.

This algorithm is neither optimal nor infallible but it is interesting because of its

similarity to the search algorithm proposed for the CFD control system. Complex

features of the CFD simulations could obscure the description of the algorithm while a

simple route-finding problem contains a sufficient number of details but is easy to

understand and provides a suitable vehicle to demonstrate the benefits and drawbacks of

the algorithm.

Unfortunately this algorithm is not guaranteed to find the solution even if one exist.

This is the consequence of the following properties:

 No advanced backtracking capability - the agent cannot recover if it gets stuck

in the dead end.

 Possibility of failure to find the path to the target when confronted with complex

and/or large obstructions.

Both of these problems can be addressed by certain improvements to the algorithm but

this is not relevant for our purposes. Instead, we will focus on the similarities between

this algorithm and the control technique for the CFD system and explain later why these

problems do not apply in CFD simulations.

The algorithm used by the robot can be formalised as follows:

1. Use the vision system to find the most promising direction
to advance.

2. If no direction was found unable to solve the problem.
Terminate.

3. Move in the direction selected.
4. If goal reached - success.
5. If obstruction detected then go back and then go to step 1.
6. If the pre-determined distance covered then go to step 1.
7. If moving away from the goal go to step 1

The vision system is used to obtain the heuristics that determine the next move. Even if

the vision system were on constantly it would still provide only heuristic information, as

it can see for a limited distance only. The environment is not fully accessible and

therefore only the backtracking techniques can guarantee finding the shortest path to the

destination. The important point is though, that finding the shortest path is not

necessary, as the goal is to reach the destination in the shortest possible time. Finding

the shortest path often requires an extensive exploration of the domain, which can take a

substantial amount of time and therefore can be very inefficient.

The heuristics used (the logic behind the vision system) is fairly complex as it must

eliminate the paths leading to obstruction, assess whether it is more efficient to choose a

shorter but slower path through a rough region or walk around it. It should also estimate

which direction leads to it reaching the goal in the shortest time. There is another

Chapter 5: Heuristic search as a control technique

important feature - although the agent moves with its vision system switched off it can

still detect arising problems (i.e. bumping into the obstruction) and initiate corrective

actions.

Now a similar algorithm is presented but applied to a CFD simulation.

1. Use the look-ahead system to find the most promising set
of control parameters for subsequent time steps.

2. If no suitable parameters were found - terminate.
3. Execute the next time step.
4. If problems detected (divergence, oscillations) restart the

time step and go to step 1
5. If n time steps executed since the last look-ahead go to

step 1.
6. If goal reached - success.
7. Go to step 3.

The algorithm is virtually identical to the one used in the route finding system. It

guarantees finding the solution providing that the following criteria are met:

• The goal is theoretically accessible.

• The goal can be reached from every point of the simulation providing the

preceding time steps completed successfully (i.e. there are no dead-ends).

• The agent never moves away from the goal.

To reduce the complexity we presume that it is up to the expert to decide whether the

goal is accessible and that the agent assumes that it can always find the solution. The

third postulate is always true, as the time step size has to be a positive number and

therefore every successfully completed time step brings the agent closer to the goal. The

only remaining issue is the absence of dead-ends, which experts believe to be true and

therefore it will not be investigate further (as this dissertation is focused on the

emulation of expert control actions).

The complete algorithm incorporates the ideas that have been presented so far. The

search cannot be performed after every time step because of the excessive

computational cost incurred. Consequently, the search is only performed at specific

87

points, determined by a dedicated scheduling method. Because the control parameters

are continuous and therefore the potential search space is infinite, only a limited number

of modifications can be tested in reasonable time. In the first version of the system, 15

different control actions are tried at each search point. The results are stored and then

assessed. The control parameters that provided the best results are applied and used in

the subsequent time steps. The evaluation function that identifies the best improvement

forms the most complex part of the system and is essential to its effectiveness.

A heuristic search cannot be performed without an appropriate evaluation function. The

available paths (i.e. sets of control parameters) that may lead to the solution have to be

assessed in order to select the best one. It was determined that experts did have some

knowledge that could assist in the development of such function. Extensive interviews

with experts were conducted, which provided valuable information, however the final

conclusions remained ambiguous. The experts agree that most of the information that is

important to the control system can be extracted from the residual error graphs. It is also

accepted that convergence speed (the number of sweeps required to attain convergence)

determines the performance. Generally - the fewer sweeps are required to complete a

unit of the simulated time (e.g. Is) the better. Unfortunately there was much ambiguity

about the influence of various other features present in the graph on the assessment

result. Experts could not fully agree on the importance of oscillations and irregularities.

Consequently, a special procedure was devised, whose only purpose was to formalise

the evaluation algorithm by analysing the experts' assessment procedure. The extensive

set of graphs acquired during the earlier experiments was analysed and the results

discussed with the experts. The experts were asked to order a group of graphs according

to their quality (or rather, the quality of the corresponding simulation state) and then to

describe the features that influenced their decisions. Initially, the assessment was

expressed verbally but as the interview progressed, it started becoming more formal.

The findings were summarised and then confirmed with experts during final interviews.

As a result three major features, believed to reflect the underlying simulation quality

and speed, were identified. The experts acknowledged the findings but were unable to

determine the necessary priorities and therefore could not fully assist in the

development of a combined evaluation function (a function that produces a final

assessment based on the sub-assessments of each feature separately).

An example set of graphs that were used in the interviews is shown in Figure 5-2. All of

these graphs were produced at various points of one simulation and are shown on a

logarithmic scale (e.g. value -2 represents 0.01 residual error). The first graph (1) was

assessed as the best one - all the variables quickly converged to the required tolerance

(0.0001). A consistent downward trend was present throughout the whole time step. The

next graph (2) also converged but contained some oscillations that seemed to have

delayed convergence. However, the trend was mainly down. The following graph (3)

failed to converge despite the fact that it was smooth and the initial convergence rate

looked very promising. At one point however, the residuals flattened out and remained

constant above the required tolerance. The fourth graph (4) contained substantial

oscillations, a few residuals actually increased and there were also further irregularities

(spikes and bumps). The graph did not converge. Graph (5) displayed more serious

problems. It contained serious irregularities that could not be classified as oscillations.

There seemed to be no consistent trend in the residuals as they stayed at approximately

the same level but with substantial fluctuations. Consequently, convergence did not

occur in that time step. The last graph (6) had small irregularities and oscillations but

the residuals remained at a high level after very brief period of increase.

Similar analyses were performed on several sets of graphs available from the earlier

experiments. This round of interviews was much more successful than the first one as it

was eventually identified that the three most important factors influencing experts'

assessment are:

(number of sweeps required to attain convergence)

(sections of graph where the

residuals differ significantly from the global trend)

(sections of graph that exhibit strong

periodic variations in residual values)

The experts agreed that this list represented a comprehensive set of features, which they

normally use in their assessment of the residual graphs. One issue remained unresolved

- determining how much influence each of these features had on the assessment result.

The experts were not able to answer this, as each one of them used their own informal

assessment. Nevertheless, the identification of these features was a big step forward, as

it provided the building blocks for a combined evaluation function. The feature

extraction algorithms developed as a result of the interviews are presented in the next

section.

The convergence speed can be defined by the following formula:

/ -
(5.1)

The value represents the average number of sweeps required to solve a single second of

the simulated time (for the lack of a better name, the term 'convergence speed' is used

throughout this thesis although it is counterintuitive as its value decreases when the

performance improves). The average convergence speed can be calculated for the whole

simulation, a part of it or for a single time step only. Figure 5-3 presents residual graphs

from two time steps, both starting at the same point in the simulation but using different

control parameters. This example describes the method for convergence speed

calculation.

T2 (<it= 0.75s)

150 sweeps 110 sweeps

ccmv_speed
sweeps*- conv_speed2 * 146.7

5-3

The number of sweeps to convergence can be obtained directly from the fully

converged graph, as the actual convergence point already exists. However, this is not

very useful since we usually want to estimate the number of sweeps to convergence

before the required tolerance level is attained. An accurate early assessment is essential

to the efficiency of the control system since it helps identify and terminate diverging

time steps quickly. If an early experiment assessment determines that the required

improvement could not be provided then it can be stopped immediately. This leads to

big savings in execution time, which is a desirable feature in an efficient assessment

procedure. Consequently, the following question must be answered: How to estimate

the number of sweeps required to convergence for a not converged graph?

The search for an algorithm capable of estimating the convergence point started with the

visual examination of many different graphs. The residual graphs are normally

presented using a logarithmic scale as it makes trend assessment much easier while a

linear scale obscures most of the interesting features. The initial analysis focused on

stable and quasi-stable graphs only, since even the experts have difficulty predicting the

behaviour of unstable or diverging graphs. The stable graphs, on the other hand, contain

consistent trends and their behaviour can usually be predicted with reasonable accuracy.

Firstly, the experts were asked to extrapolate several residual graphs manually. Some of

the examples (together with the corresponding full real-simulation graphs) are presented

in Figure 5-4. The comparison suggests that the experts usually focus on the global

trend while predicting the convergence point. They normally do not attempt to predict

any irregularities or radical trend changes. It was therefore confirmed that the experts'

technique is predominantly based on the linear extrapolation of the most recent trend.

Most of the fluctuations are filtered out as they are considered to be irrelevant noise.

The examples show that, although it is difficult to make a very accurate prediction due

to frequent unexpected trend changes, the intuitive method used by experts provides a

satisfactory approximation of the real convergence.

sin(x)+l

5-9

-..} f

A'

1. Apply the high-pass filter to discard low-frequency

components (global trends).

2. Estimate the frequency power spectrum using FFT.

3. Analyse the spectrum to detect distinctive peaks that

indicate the presence of significant oscillations.

4. Apply QM filters to isolate potential frequencies (one at a

time). The filter produces two outputs - in-phase and in-

quadrature.

5. Combine the outputs from QM filters to estimate the

amplitude.

6. Check if the amplitude is greater than the predefined

threshold.

7. Check if the amplitude stays above the threshold for at

least two full periods of the analysed frequency,

8. If both conditions are true then the graph is classified as

containing this particular oscillation.

\-&

&

/

/

/
\/

'

7)

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

6-9

(1)
Start experiments request received

Choosing the strategy:
SPEED_UP strategy selected

Experiments for the time step no. 17 initialised
(2)

Experiment no. 25 initialised
The modifiers are: 1, 1, 1
Experiment no. 25 has completed
Assessment results:

Convergence: 230.112
Irregularities: 0.00240728
Oscillations: 0.0732877

(3)
Experiment no. 16 initialised
The modifiers are: 1.5, 1.7, 0.5
Experiment no. 16 has completed
Assessment results:

Convergence: -1
Irregularities: 0.0246837
Oscillations: 0.25

Experiment no. 1 skipped as it is likely to diverge
Experiment no. 8 skipped as it is likely to diverge
Experiment no. 12 skipped as it is likely to diverge

(4)
Experiment no. 17 initialised
The modifiers are: 1.2, 1.2, 0.5
Experiment no. 17 has completed
Assessment results:

Convergence: -1
Irregularities: 0.0116086
Oscillations: 0.291096

Experiment no. 1 likely to diverge but already skipped
Experiment no. 2 skipped as it is likely to diverge
Experiment no. 8 likely to diverge but already skipped
Experiment no. 9 skipped as it is likely to diverge
Experiment no. 12 likely to diverge but already skipped
Experiment no. 13 skipped as it is likely to diverge
Experiment no. 16 skipped as it is likely to diverge

(5)
Experiment no. 6 initialised

147

The modifiers are: 1, 1, 1.5
Experiment no. 6 has completed
Assessment results:

Convergence: -1
Irregularities: 0.0222255
Oscillations: 0.365753

Experiment no. 5 skipped as it is likely to diverge
Experiment no. 8 likely to diverge but already skipped
Experiment no. 9 likely to diverge but already skipped
Experiment no. 12 likely to diverge but already skipped
Experiment no. 13 likely to diverge but already skipped

(6)
None of the experiments provided satisfactory improvement

(mis)

<chanses A> <chanses B>

<chanses A> <chanses B>

SMARTFIRE

BASIC EQUATIONS USED IN SMARTFIRE

SMARTFIRE,

GENERAL SCALAR EQUATION

OVERALL DISCRETISATION EQUATION

ALGEBRAIC EQUATIONS

1
2

ABSOLUTE LI NORM
ABSOLUTE L2 NORM

BOUNDARY CONDITIONS

SMARTFIRE VARIABLE NAMES

SMARTFIRE SYSTEM OF UNITS

RUN PROBLEM
FILENAME = a74_med_mesh
TITLE Fire case a74__med_mesh
DIMENSION 3
ENABLE KBS
CARTESIAN MESH
STRUCTURED MESH
BFC MESH DIMENSIONS

NX 29
NY 17
NZ 20

END
*** AUTO START
*** SETUP MODE
*** RESTART
END
*

PROBLEM DEFINE
TRANSIENT

TIME STEP 1
NUMBER OF TIME STEPS 200

FLOW
TURBULENT
HEAT TRANSFER
SIX FLUX RADIATION

SCATTERING COEFF 0
AMBIENT ABSORPTION COEFF 0.01
MINIMUM ABSORPTION COEFF 3 . 5
MAXIMUM ABSORPTION COEFF 7
MINIMUM ABSORPTION TEMP 323
MAXIMUM ABSORPTION TEMP 1289
WALL EMISSIVITY 0.8

END
*** CROSS PRODUCT TERMS
END
*
*
*

INITIAL VALUES
U-VELOCITY 0.00
V- VELOCITY 0.00
W-VELOCITY 0.00
PRESSURE 0.00
TEMPERATURE 303.75
KINETIC ENERGY 0.01
DISSIPATION RATE 0.01

END

*
*

219

MATERIAL PROPERTIES
NUMBER OF MATERIALS 3
DEFINE MATERIAL NUMBER 1

MATERIAL NAME Standard Air
CONDUCTIVITY CONSTANT 0.02622
SPECIFIC HEAT CONSTANT 1045.78
VISCOSITY CONSTANT 1.6e-005
DENSITY IDEAL GAS LAW

MOLECULAR WEIGHT 29.35
NATURAL STATE GAS
THERMAL EXPANSION 0.003292
DISCONTINUITY HANDLING NO SLIP

END
DEFINE MATERIAL NUMBER 2

MATERIAL NAME Wall Default Material
CONDUCTIVITY CONSTANT 0.69
SPECIFIC HEAT CONSTANT 840
VISCOSITY CONSTANT le+010
DENSITY CONSTANT 1600
NATURAL STATE SOLID
THERMAL EXPANSION 0
DISCONTINUITY HANDLING NO SLIP

END
DEFINE MATERIAL NUMBER 3

MATERIAL NAME Non Conducting Material
CONDUCTIVITY CONSTANT 0.01
SPECIFIC HEAT CONSTANT 10000
VISCOSITY CONSTANT le+010
DENSITY CONSTANT 10000
NATURAL STATE SOLID
THERMAL EXPANSION 0
DISCONTINUITY HANDLING NO SLIP

END
END

BOUNDARY CONDITIONS
NUMBER OF FACE PATCHES 10
NUMBER OF VOLUME PATCHES 1

*
* Start 2D Boundary patch

* ORIENTATION => LOW-X EXTENT INDICES =>
* BOUNDARY IS A WALL PATCH

DEFINE FACE PATCH NUMBER 1
STATIONARY WALL
SOLID RADIATION BOUNDARY
WALL EMISSIVITY 0.8
MATERIAL INDEX 2
PATCH THICKNESS 0.1
TURBULENT WALL LAYER FOR HEAT

FLUX COEFFICIENT 10
AMBIENT TEMPERATURE 303.75

END
END

* End 2D Boundary patch

*
*

220

Start 2D Boundary patch

* ORIENTATION => HIGH-Y EXTENT INDICES => 1 10 5 5 1 9
* BOUNDARY IS A WALL PATCH

DEFINE FACE PATCH NUMBER 2
STATIONARY WALL
SOLID RADIATION BOUNDARY
WALL EMISSIVITY 0.8
MATERIAL INDEX 2
PATCH THICKNESS 0.1
TURBULENT WALL LAYER FOR HEAT

FLUX COEFFICIENT 10
AMBIENT TEMPERATURE 303.75

END
END

* End 2D Boundary patch

* Start 2D Boundary patch

* ORIENTATION => LOW-Z EXTENT INDICES => 1 10 1 5 1 1
* BOUNDARY IS A WALL PATCH

DEFINE FACE PATCH NUMBER 3
STATIONARY WALL
SOLID RADIATION BOUNDARY
WALL EMISSIVITY 0.8
MATERIAL INDEX 2
PATCH THICKNESS 0.1
TURBULENT WALL LAYER FOR HEAT

FLUX COEFFICIENT 10
AMBIENT TEMPERATURE 303.75

END
END

* End 2D Boundary patch

*
* Start 2D Boundary patch

* ORIENTATION => HIGH-X EXTENT INDICES => 11 11 1 5 1 9
* BOUNDARY IS A FREE-SURFACE PATCH

DEFINE FACE PATCH NUMBER 4
OUTLET
ADIABATIC
FREE RADIATION BOUNDARY

END
* End 2D Boundary patch

*
* Start 2D Boundary patch

* ORIENTATION => LOW-Y EXTENT INDICES =>11111119
* BOUNDARY IS A WALL PATCH

DEFINE FACE PATCH NUMBER 5
STATIONARY WALL
SOLID RADIATION BOUNDARY
WALL EMISSIVITY 0.8
ADIABATIC

END

221

* End 2D Boundary patch

*
*
* Start 2D Boundary patch

* ORIENTATION => HIGH-Y EXTENT INDICES => 11 11 5 5 1 9
* BOUNDARY IS A FREE -SURFACE PATCH

DEFINE FACE PATCH NUMBER 6
OUTLET
ADIABATIC
FREE RADIATION BOUNDARY

END

* End 2D Boundary patch

* Start 2D Boundary patch

* ORIENTATION => LOW-Z EXTENT INDICES => 11 11 1 5 1 1
* BOUNDARY IS A FREE -SURFACE PATCH

DEFINE FACE PATCH NUMBER 7
OUTLET
ADIABATIC
FREE RADIATION BOUNDARY

END
* End 2D Boundary patch

* Start 2D Boundary patch

* ORIENTATION => HIGH-Z EXTENT INDICES => 11 11 1 5 9 9
* BOUNDARY IS A FREE -SURFACE PATCH

DEFINE FACE PATCH NUMBER 8
OUTLET
ADIABATIC
FREE RADIATION BOUNDARY

END
* End 2D Boundary patch

*
*
* Start 2D Boundary patch

* ORIENTATION => LOW-Y EXTENT INDICES => 1 10 1 1 1 9
* BOUNDARY IS A WALL PATCH

DEFINE FACE PATCH NUMBER 9
STATIONARY WALL
SOLID RADIATION BOUNDARY
WALL EMISSIVITY 0.8
ADIABATIC

END
* End 2D Boundary patch

*
* Start 2D Boundary patch

* ORIENTATION => HIGH-Z EXTENT INDICES =>1101599
* BOUNDARY IS A WALL PATCH

222

DEFINE FACE PATCH NUMBER 10
STATIONARY WALL
SOLID RADIATION BOUNDARY
WALL EMISSIVITY 0.8

MATERIAL INDEX 2
PATCH THICKNESS 0.1
TURBULENT WALL LAYER FOR HEAT

FLUX COEFFICIENT 10
AMBIENT TEMPERATURE 303.75

END
END

* End 2D Boundary patch

*
*

* Start 3D Fire patch

* EXTENT INDICES =>441255

DEFINE VOLUME PATCH NUMBER 1

ENTHALPY 4.99206e+006
END

* End 3D Fire patch

*
END
*
*
*

RELAXATION
FALSE TIME STEP

U-VELOCITY 0.2
V-VELOCITY 0.2
W-VELOCITY 0.2
KINETIC ENERGY 0 .1
DISSIPATION RATE 0.1
ENTHALPY 0 . 5

END
LINEAR RELAXATION

PRESSURE 0.4
U-VELOCITY 0 . 6
V-VELOCITY 0 . 6
W-VELOCITY 0.6

* KINETIC ENERGY 0 . 1
* DISSIPATION RATE 0.1

* ENTHALPY 0.2
DENSITY 0.6
BUOYANCY 0.6
ABSORPTION COEFF 1. 0
RADIATION X POS 0.2
RADIATION X NEC 0.2
RADIATION Y POS 0 . 2
RADIATION Y NEC 0.2
RADIATION Z POS 0 . 2
RADIATION Z NEG 0.2

END
SOLVER RELAXATION

*** PRESSURE 0.2

*** U-VELOCITY 0.5
*** V-VELOCITY 0.5

*** W-VELOCITY 0.5
*** KINETIC ENERGY 0.1

223

* **
* * *

]
END
*
*

DISSIPATION RATE 0.1
ENTHALPY 0.2

END

SOLVER CONTROL
OUTER ITERATIONS 50
FLOW ITERATIONS 1
GLOBAL TOLERANCE 0.0001
DEFAULT TOLERANCE le-008
SOLVER TYPE

PRESSURE SOR
U-VELOCITY JOR
V-VELOCITY JOR
W-VELOCITY JOR
KINETIC ENERGY SOR
DISSIPATION RATE SOR
ENTHALPY SOR
RADIATION_X_NEG SOR
RADIATION_X_POS SOR
RADIATION_Y_NEG SOR
RADIATION_Y_POS SOR
RADIATION_Z_NEG SOR
RADIATION_Z_POS SOR

END
SOLVER ITERATIONS

PRESSURE 40
U-VELOCITY 2
V-VELOCITY 2
W-VELOCITY 2
KINETIC ENERGY 20
DISSIPATION RATE 20
ENTHALPY 2 0
RADIATION_X_NEG 2 0
RADIATION_X_POS 20
RADIATION_Y_NEG 2 0
RADIATION_Y_POS 20
RADIATION_Z_NEG 20
RADIATION_Z_POS 20

END
END
*

RESIDUAL METHODS
PRESSURE
U-VELOCITY
V-VELOCITY
W-VELOCITY
KINETIC ENERGY
DISSIPATION RATE
ENTHALPY
TEMPERATURE
BUOYANCY
RADIATION_X_NEG
RADIATION_X_POS
RADIATION_Y_NEG
RADIATION_Y_POS
RADIATION Z NEG

REFERENCE L2 NORM 6
REFERENCE L2 NORM 2
REFERENCE L2 NORM 3
REFERENCE L2 NORM 2
REFERENCE L2 NORM 0.5
REFERENCE L2 NORM 1
REFERENCE L2 NORM le+006
REFERENCE L2 NORM 1000
REFERENCE L2 NORM 10
REFERENCE L2 NORM 20000
REFERENCE L2 NORM 20000
REFERENCE L2 NORM 20000
REFERENCE L2 NORM 20000
REFERENCE L2 NORM 20000

224

RADIATION_Z_POS
ABSORPTION COEFF

REFERENCE L2 NORM 20000
REFERENCE L2 NORM 5

END
*
*
*

PRINTOUT CONTROL
CREATE VAR FILE
CREATE RESTART FILE

NO RESTART FILE
NO DATABASE SAVES
NO VISUAL SAVES
NO STATUS SAVES
NO RESULT SAVES

AUTOMATIC SAVING
*** CREATE STEADY VISUAL EVERY
*** CREATE TRANSIENT VISUAL EVERY
*** CREATE STEADY RESTART EVERY
CREATE TRANSIENT RESTART EVERY 50
*** CREATE STEADY RESULTS EVERY
CREATE TRANSIENT RESULTS EVERY 20
*** CREATE STEADY GRAPHS EVERY

* * *
* * *
* * *
* * *

2.83 1.7 1.399

CREATE TRANSIENT GRAPHS EVERY
*** OUTPUT ITERATION NUMBERS
*** OUTPUT TIME STEP NUMBERS

USE BINARY RESTART FILE
*** USE ASCII RESTART FILE

CREATE PHI FILE
FLOWVIS PHI FORMAT
MONITOR LOCATION

*** SILENT
SUCCINCT
PRINTOUT FREQUENCY 1
CFD PROCESS STEPS 1

*** CREATE DEBUG FILE
CREATE LOG FILE

*** CREATE TABLE FILE
DEFINE PLOT NUMBER 1

TITLE Stack temperatures
PATH 2.495 0 2.495
TEMPERATURE
Y COORD

END
DEFINE PLOT NUMBER 2

TITLE Door temperatures
PATH 2.83 0 1.399
TEMPERATURE
Y COORD

END
DEFINE PLOT NUMBER 3

TITLE Door velocities
PATH 2.83 0 1.399
U-VELOCITY
Y COORD

END
END

10
1
1

100
1
100

50

10

ONWARDS
ONWARDS

2.495 2.2 2.495

2.83 2.2 1.399

2 . 83 2.2 1.399

GENERAL INFORMATION
NOT BOUSSINESQ

225

*** BOUSSINESQ
GRAVITY X COMPONENT 0
GRAVITY Y COMPONENT -9.81
GRAVITY Z COMPONENT 0
REFERENCE DENSITY 1.17756
REFERENCE TEMPERATURE 303.75
PRESSURE AT ZERO COORDINATE 101325

*** DIFFERENCING SCHEME UPWIND
*** DIFFERENCING SCHEME HYBRID
*** DIFFERENCING SCHEME POWER LAW
*** DIFFERENCING SCHEME EXPONENTIAL
*** KE SOURCE LINEARISATION METHOD 1
*** KE SOURCE LINEARISATION METHOD 2
*** KE SOURCE LINEARISATION METHOD 3
*** MINIMAL STORAGE
*** NOT MINIMAL STORAGE
END
*
*
*

DEBUG CONTROL
****** TO uge anv item: remove * characters to uncomment (and

activate)
****** you should also activate CREATE DEBUG FILE in printout control
*** DEBUG ITERATION NUMBERS 1 ONWARDS
*** DEBUG TIME STEP NUMBERS 1 ONWARDS
*** DEBUG CELL NUMBERS 1 TO 9860
*** PRESSURE
*** U-VELOCITY
*** V-VELOCITY
*** W-VELOCITY

*** KINETIC ENERGY
*** DISSIPATION RATE
* * * ENTHALPY
*** CONVECTIONS
*** PROPERTIES
* * * GEOMETRY
****** ALL
****** CHECK VARIABLES
****** CHECK MEMORY
****** CHECK SETUP

END
*
*
*

STOP

226

in
a.
o

in

11.0 REFERENCES

