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Abstract

Computational fluid dynamics (CFD) based Fire Field Modelling (FFM) codes offer 

powerful tools for fire safety engineers but their operation requires a high level of 

skill and an understanding of the mode of operation and limitations, in order to obtain 

meaningful results in complex scenarios. This problem is compounded by the fact that 

many FFM cases are barely stable and poor quality set-up can lead to solution failure. 

There are considerable dangers of misuse of FFM techniques if they are used without 

adequate knowledge of both the underlying fire science and the associated numerical 

modelling. CFD modelling can be difficult to set up effectively since there are a 

number of potential problems: it is not always clear what controls are needed for 

optimal solution performance, typically there will be no optimal static set of controls 

for the whole solution period to cover all stages of a complex simulation, there is the 

generic problem of requiring a high quality mesh - which cannot usually be 

ascertained until the mesh is actually used for the particular simulation for which it is 

intended and there are potential handling issues, e.g. for transitional events (and 

extremes of physical behaviour) which are likely to break the solution process.

In order to tackle these key problems, the research described in this thesis has 

identified and investigated a methodology for analysing, applying and automating a 

CFD Expert user's knowledge to support various stages of the simulation process - 

including the key stages of creating a mesh and performing the simulation. This 

research has also indicated an approach for the control of a FFM CFD simulation 

which is analogous to the way that a FFM CFD Expert would approach the modelling 

of a previously unseen scenario. These investigations have led to the identification of 

a set of requirements and appropriate knowledge which have been instantiated as the, 

so called, Experiment Engine (EE). This prototype component (which has been built 

and tested within the SMARTFIRE FFM environment) is capable, both of emulating 

an Expert users' ability to produce a high quality and appropriate mesh for arbitrary 

scenarios, and is also able to automatically adjust a key control factor of the solution 

process.
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This research has demonstrated that it is possible to emulate an Experts' ability to 

analyse a series of simulation trials (starting from a simplified, coarse mesh test run) 

in order to improve subsequent modelling attempts and to improve the scenario 

specification and/or meshing solution in order to allow the software to recover from a 

complete solution failure. The research has also shown that it is possible to emulate an 

Expert user's ability to provide continual run-time control of a simulation and to 

provide significant benefits in terms of performance, overall reliability and accuracy 

of the results.

The instantiation and testing of the Experiment Engine concept, on a chosen FFM 

environment - SMARTFIRE, has demonstrated significant performance and stability 

gains when compared to non Experiment Engine controlled simulations, for a range of 

complex "real world" fire scenarios. Preliminary tests have shown that the 

Experiment Engine controlled simulation was generally able to finish the simulations 

successfully without experiencing any difficulty, even for very complex scenarios, 

and that the run-time solution control adjustments, made to the time step size by both 

the Experiment Engine and by the Expert, showed similar trends and responses in 

reacting to the physical and/or numerical changes in the solution. This was also 

noticed for transitional events seen during the simulation. It has also been shown that 

the Experiment Engine (EE) controlled simulation demonstrates a saving of up to 

40% of simulation sweeps for complex fire scenarios when compared with non-EE 

controlled simulations. Analysis of the results has demonstrated that the control 

technique, deployed by the EE, have no significant impact on the final solution results 

- hence, the Experiment Engine controlled simulations are able to produce physically 

sound results, which are almost identical to Expert controlled simulations.

The research has investigated a number of new methods and algorithms (e.g. case 

categorisation, case recognition, block-wise mesh justification, local adaptive mesh 

refinements, etc.) that are combined into a novel approach to enhance the robustness, 

efficiency and the ease-of-use of the existing FFM software package. The 

instantiation of these methods as a prototype control system (within the target FFM 

environment - SMARTFIRE) has enhanced the software with a valuable tool-set and 

arguably will make the FFM techniques more accessible and reliable for novice users.
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The component based design and implementation of the Experiment Engine has 

proved to be highly robust and flexible. The Experiment Engine (EE) provides a bi- 

directional communication channel between the existing SMARTFIRE Case 

Specification Environment and the solution module (the CFD Engine). These key 

components can now communicate directly via status- and control- messages. In this 

way, it is possible to maintain the original Case Specification Environment and the 

CFD Engine processes completely independently. The two components interact with 

each other when the EE is operating. This componentization has enabled rapid 

prototyping and implementation of new development requirements (as well as the 

integration of other support techniques) as they have been identified.
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Chapter 1 ______________INTRODUCTION

1 Introduction

1.1 Overview

1.1.1 The development and advancement of Fire Field Modelling

During the last two decades, considerable progress has been made in the research of 

Fire Field Modelling (FFM) [Galea'89l. The development of sophisticated fire models 

(e.g. radiation models, smoke models, combustion models etc.) and more efficient 

solution algorithms, together with increasing computational power and reducing costs 

of computer hardware, have led to the increased use of FFM techniques by fire safety 

engineers, building regulators, fire services and others for research, development and 

design tasks in industry.

The need for Fire Field Modelling software means that there are many commercial 

and non-commercial Computational Fluid Dynamics (CFD) software, e.g. 
FLUENT[Fluent-6-2] , STAR-CD &&****, PHOENICS[Spalding-81], FLOW3D[FLOW3D-91], 

JASMINE[Kumar-91], SOFIE[Lewis-97], CFX[CFX97], FDS[Friday-° 1] , and SMARTFIR^Eviei99z\ 

that can and are being used to predict and analyse the effects of fires in safety critical 

situations. Typically this modelling will include air movement (i.e. flow rate of gas 

through openings, and production of certain toxic gas species, etc.) and heat transfer 

(gas and surface temperatures, heat fluxes impinging on surfaces) induced by thermal 

sources and might also include the modelling of strength reduction and structural 

failure of building elements and activation times for sprinklers and detectors.

There are two classes of CFD system typically used for FFM simulation, namely: 

general purposes CFD codes (e.g. FLUENT, START-CD, etc) and FFM specific CFD 

(e.g. FDS, SMARTFIRE, etc). Some of these CFD codes have developed from 

scientist/research driven batch mode codes that tend to have the typical set-up / 

configuration, meshing and post processing data analysis tools that are all completely 

separate from the numerical CFD engine. Such modelling systems are usually not 

very easy to use, since they are typically hard to configure and require a high degree
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of expertise - on the part of the user - to specify all of the complexity of the 

simulation case. Furthermore, in non FFM CFD codes, the user is also expected to 

activate all of the correct modules and parameters to ensure that the CFD code will 

behave correctly for FFM scenarios.

Clearly most, if not all, commercial and research based CFD codes are undergoing 

continuous enhancement and many facilities have been added or further developed 

during the period of this current research. However, even now, few CFD developers 

are aiming to provide the code interactivity and automated solution control that has 

been investigated in this research.

1.1.2 Challenges to use FFM codes

The special difficulties of CFD based FFM warrant some discussion because FFM 

practitioners are not always CFD Experts, and the area of FFM has some of the more 

difficult modelling and stability issues facing CFD simulation.

CFD based FFM codes offer powerful tools for the testing of fire safety designs but 

their operation still requires a high level of skill and understanding of their 

configuration and mode of operation to obtain meaningful results in complex 

scenarios. The challenges that FFM users will encounter when using CFD Fire 

Models include:

  Problem of identification and specification of the simulation scenario in terms 

of the physical and chemical phenomena that need to considered (i.e. 

estimation and selection of appropriate input data such as material properties, 

combustion, radiation, turbulence parameters and boundary conditions).

  CFD simulation is generally highly computationally intensive - especially for 

large scale geometries (e.g. whole buildings, stations, airport terminals, etc). 

The CFD governing equations are non-linear and are generally solved 

iteratively for every computational cell of a highly refined computational
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mesh. Many hours or even days are required for the solution of problems of 

fire safety interest.

  Problem of understanding and controlling the numerical solution algorithm 

(i.e. to guarantee convergence, consistency of results and stability).

  Performing the actual CFD computation itself requires operator skills of a 

different kind. For instance, selection of appropriate computational domain 

and selection of the best mesh to obtain reliable and accurate outputs, while 

minimising the computational time that is used. Successful simulation results 

are very likely to depend on the quality of the geometry specification and the 

meshing.

  CFD is typically very difficult for novice users. It will usually involve a 

complicated manual problem set-up with a huge number of modelling choices, 

e.g. Long processing period (usually requiring many halts, analysis and 

correction, followed by restarts). Even if the CFD simulation is able to get to a 

solution, it is not always clear if the final results are correct or reliable. This 

requires in-depth analysis and interpretation of the voluminous outputs 

generated by the CFD models and validation of the modelling outputs against 

suitable experimental fire data.

There are also significant dangers of misuse of FFM codes if they are used without 

adequate knowledge of both fire science and of numerical modelling IKumar-01l > The 

most experienced and Expert users of FFM codes usually overcome the long learning 

curve through a Fire Safety Degree, an MPhil or PhD studies. However, there is not 

always time available for fire safety engineers (and other FFM users) to learn about 

all of the potential issues relating to the use of FFM or the interpretation of FFM data.

These issues have created an increasing need for adding human expertise to FFM 

codes in order to support users who lack detailed CFD knowledge, but nevertheless 

have to use or make decisions based on FFM, for instance, consultants designing 

buildings who may have limited CFD knowledge or regulators presented with CFD
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modelling results who have to approve designs but do not know if the model has been 

run appropriately. Automated control of the simulation is also highly desirable, 

although Expert users will always need the ability to re-justify/correct the control 

parameters when things go wrong and in some cases this will require a complete re- 

specification and re-meshing. It is a tedious task for Expert users to monitor for 

early signs of solution changes and to make necessary parameter control changes 

accordingly.

It is often the case that some Expert users will take extra caution and run the case with 

an overly fine mesh and overly fine time step size in order to try to get the simulation 

results without frequent interventions - although this solution process will probably 

be highly non optimal. Other users will be constrained by available time and will run 

with defaults and have to use the results whatever the quality. Others might not know 

of the quality issues and might not check the solution quality and hence might make 

decisions based on flawed/incorrect results - with potentially catastrophic 

consequences.

1.1.3 Outcomes of the research

This dissertation describes a systematic approach to investigate potential supporting 

techniques for the accurate, efficient and robust use of CFD based Fire Field 

modelling software through set-up, meshing and CFD solution control. The 

investigations, research and prototyping have used an in-house FFM code at the 

University of Greenwich, called SMARTFIRE as a research vehicle for testing and 

developing many of the concepts form the core of this thesis. This decision to use 

SMARTFIRE was also aided by the fact that there is a significant body of in-house 

expertise about the FFM and the SMARTFIRE system, which was hugely beneficial to 

the knowledge elicitation process. The ultimate outcome of this research is the 

identification and creation of a set of robust and effective procedures for managing 

key stages of a FFM simulation so as to ensure that a solution is reached, in as short a 

time as possible and with minimal need for human intervention. This body of research 

has been instantiated as the prototype Experiment Engine, which has demonstrated 

that it is capable of emulating an Experts' ability to run a FFM simulation. The EE
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embodies a number of control strategies that come from investigating the steps that an 

Expert user would make to ensure that they obtain a successful set-up and a suitably 

high quality mesh for an arbitrary scenario. It has been identified that an Expert user 

will typically perform a number of test experiments in an attempt to understand both 

the mesh quality and the simulation stability. Another issue that has been researched 

is the Expert user's ability to control the solution process by continually monitoring 

and adjusting the numerical processing. The capture of these methods and Expert 

knowledge has allowed the prototyping of a tool which performs these actions during 

the set-up, meshing and simulation of a previously unseen FFM scenario. This 

prototype "Experiment Engine" has been seamlessly integrated into the SMARTFIRE 

software architecture and, as a result, the robustness and ease of use of the FFM 

environment has been greatly enhanced. Numerical stability and convergence have 

been demonstrated to be more assured, and this maximises the successful rate of fire 

simulations. The Experiment Engine also demonstrates significant performance gains 

over non Experiment Engine controlled simulations for complex real world fire 

scenarios. The Experiment Engine offers complete user support during the whole 

simulation process, can generally obtain good solutions without user intervention, and 

therefore makes these FFM techniques more accessible for novice users.

1.2 Research Objectives

In the light of the difficulties facing the use of CFD FFM, especially for novice users, 

the main objective of this investigation has been to research and test potential 

supporting techniques that can enhance the robustness, performance and accuracy of 

CFD based FFM. It is intended that this knowledge will assist with the reliable 

specification and successful simulation of Fire Field Modelling Scenarios.

In order to understand the difficulties experienced by novice CFD FFM users, a 

thorough investigation (please refer to chapter 2) was conducted into the issues and 

problems that can be encountered when setting-up or using Fire Field Models. The 

key stages of CFD based FFM, that can cause problems, were identified. It was also 

observed that Expert users are generally able to deal with many of the problems 

encountered through the critical stages of creating and performing a FFM simulation.
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In addition, the particular expertise that is needed to overcome these encountered 

difficulties is identified. The investigations of the problems - and their mitigating 

strategies - lead to the following research questions.

1.2.1 Main Research Questions

  To what extent is it possible to emulate an Expert users' ability to analyse a 

series of trials starting from a simplified, coarse mesh simulation run (or even 

to learn from a complete simulation failure) to help make a better set-up and 

meshing solution.

Prior to this investigation it was not known how Expert users would model and 

simulate a previously unseen scenario. Analysis of how Experts tend to use a CFD 

FFM code showed that they have an ability to learn from "quick and dirty" solutions 

in order to make the set-up and meshing better for the particular scenario. 

Furthermore, investigations have demonstrated that this expertise can be emulated 

using a Knowledge Based control module.

Appropriate set-up and meshing are vital ingredients to the success of the simulation 

both in terms of getting a solution and ensuring the accuracy of the solution. Most 

CFD based FFM codes are structured around the numerical algorithms and typically 

contain three main components: a pre-processor, a solver and a post-processor. These 

components usually operate in sequence. In the pre-processing stage, the user's 

activities include: the definition of the complete geometry of the computational 

domain of interest, selection of the most appropriate physical models for the scenario, 

specification of appropriate boundary conditions, followed by the generation of a 

sufficiently high quality mesh. All of this information is then passed to the Solution 

module (typically the pre-processing information is usually stored in files). In the 

next stage, the solver will calculate increasingly updated physical properties in all of 

the mesh cells using all of the boundary conditions to drive the solution. The 

calculations are derived from a numerical time and spatial discretization of the 

governing Partial Deferential Equations (PDEs) that determine the transport of all of 

the physical properties. In the post-processing stage, the huge amount of output
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numerical data that has been generated during the processing stage is usually analysed 

and represented using graphic or visual representation of some of the key solution 

features in the domain of interest for a specified time. These three distinctive stages of 

the operation are typically separate and have been defined in this way due to the 

manner in which most CFD software has been developed and constructed.

This modularity can be quite inconvenient, for example, a problem found in later 

stages of the simulation (e.g. due to poor quality meshing or because a particular 

physical model should have been activated) means that it will be necessary to re-run 

the simulation from the start using a revised set-up.

The inherent complexity and difficulties facing CFD based FFM mean that, even an 

Expert user, is not guaranteed to obtain a successful and well converged solution from 

the first attempt to simulate a previously unseen fire scenario. However, it has been 

observed that human Experts can subsequently improve on an initial problem set-up 

and meshing, based on qualitative assessment of the solution state/results of the 

failed/completed simulation or even from analysis of results from a simplified/coarse 

mesh version of the simulation. It is often the case that Experts cannot make definitive 

conclusions based on a single trial run. Consequently, it appears to be necessary to run 

more trials, each with improved set-up and meshing, from information provided by 

the previous trials. Typically, an Expert would also conduct a mesh independence 

study to give some assurance that the final solution is not dependent on the nature of 

the mesh used for the final simulation.

The initial stage of this research was to investigate if it possible to use human 

expertise to support novice users through set-up and mesh stages of creating a FFM 

simulation and, if this is possible, to investigate any tangible benefits due to emulating 

how Expert users learn from experimental trials and from failures to make the 

problem set-up and meshing better for previously unseen fire scenarios. These 

improvements could be: an improved successful rate of simulating previously un- 

encountered fire scenarios, better solution reliability, prevention and recovery from 

poor quality set-up and meshing, improved solution robustness and improved ease-of- 

use of running Fire Field Models.
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The first research question is obviously only a partial solution to the problems 

encountered in the whole FFM simulation process. However, it has been shown that 

these investigations provide a solid foundation on which to construct a methodology 

for the successful simulation of arbitrary fire scenarios. The second research question 

is:

  To what extent would it be possible to emulate an Expert's ability to control 

the production run assuming that appropriate set-up and meshing has been 

obtained in the experiment stage.

The investigation of exactly how Expert users achieve successful FFM simulation 

outcomes indicates that it is vital for them to be able to continually monitor the 

simulation state/results and to make control adjustments as appropriate. These run 

time configuration changes are made to ensure solution convergence and to ensure 

stability of the simulation. Ideally the procedures and knowledge that Expert's apply, 

to ensure a successful outcome, must be emulated in an automatic and efficient 

manner, in order to improve productivity of using CFD based FFM techniques. 

Although it is understood that an Expert user can typically optimise a FFM simulation 

by performing run-time adjustment of various solution control parameters - based on 

assessment of the simulation state - the generally long run times for CFD FFM 

simulations mean that this is tedious at best and often completely impractical, since it 

is unrealistic to expect an Expert to sit in front of a computer during the whole 

simulation process of any non-trial scenario which could last hours, days or even 

weeks.

This investigation is not a completely new idea in terms of emulating an Experts' 

ability to efficiently control a simulation. Former research, at the University of 

Greenwich, into an "Intelligent Control System" (ICS) [Janes-°2l demonstrated some 

limited success. However, to investigate the solution control techniques in an isolated 

manner - without adequate assurance of having the appropriate set-up and sufficient 

quality of meshing - inevitably had flaws, because the success of any simulation has 

to be built on having appropriate set-up and meshing. Conversely, it has been 

demonstrated that, having used a suitable set-up and mesh, the solution control 

investigations have also been beneficial. It has been possible to assure that the

8
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experiments stage would lead to tangible performance gains, greater levels of 

convergence and greater assurance of reliable outcome for arbitrary fire scenarios and 

to offer complete support for the use of FFM techniques. These benefits are 

desperately needed by novice users but can also be of significant support to Expert 

users for difficult and/or large scenarios.

Having identified the need for understanding how an Expert is able to mitigate the 

problems of running a FFM scenario, a follow on research question is defined as:

  Is it possible to instantiate the Knowledge acquired through this research into 

an automated software system (a Knowledge Based System integrated into the 

software architecture of a CFD code) such that the captured knowledge offers 

complete and automated user support for using the software through all stages 

from set-up, through meshing and also the run time control. The ultimate 

purpose of this system is to enhance robustness, stability and convergence of 

the CFD simulation, to provide performance gains and consequently enhance 

the rate of making successful fire modelling simulations?

Research into the two previous research questions produces state of the art techniques 

and application specific expertise to assist with the reliable specification and 

successful simulation of Fire Field Modelling scenarios. However, it is equally 

important that these techniques can be instantiated and demonstrated as a supporting 

module which offers robustness, flexibility and is practical to use. Prior to this 

investigation, much of the related research has focused on finding a solution to a 

particular problem that can be encountered during the CFD simulation process. For 

example, there are a number of automatic meshing, mesh refinement; and other 

techniques that aim to control the CFD solution. However, few - if any - 

investigations have attempted to fully automate and integrate these techniques into a 

robust and fail safe component that is embedded into either a CFD or FFM. It was not 

formerly known if such techniques could be integrated together to offer complete 

support to the whole simulation process and yet still be flexible enough to 

accommodate a differing range of user needs (i.e. the Experts may want to do the set- 

up and meshing manually and then use the automatic solution control capability of the
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Experiment Engine, while novice users would typically benefit from having maximal 

automation of the simulation process).

No investigation of automated support can hope to be complete, so it is also vital that 

the architectural design is fully extensible to allow integration of any future support 

technologies and/or knowledge. It was found that these investigations produced a 

significant opportunity to design a practical, effective and efficient tool which would 

benefit all users - regardless of their experience level - to be able to use FFM 

techniques, and to make the CFD based FFM techniques more accessible for novice 

and Expert users alike.

It was soon realized that there are many aspects of a simulation that an Expert user 

could change during the course of trial runs/experiments and the production run. With 

so many degrees of freedom, attempts to make a control system comprehensive 

enough to cover all the aspects of the set-up, meshing and solver control would make 

the proposed system less efficient (i.e. more degrees of freedom mean that 

significantly more tests are needed to reach a satisfactory conclusion, whilst the 

running of tests consumes time and compute resources and is, above all, costly) and 

would be fatally flawed because even the experienced Expert user's do not always 

fully understand the exact impact of complicated combinations of parameter changes, 

on the solution.

The trade-off, between the comprehensiveness of the response and the efficiency, 

means that it is necessary to find the most frequent, effective and critical changes that 

would be made by Experts during the trial and production runs. During the interviews 

with the Expert users, it was decided that time step size, mesh cell budget and the 

mesh distributions are among the most important parameters which Expert users 

typically modify to influence the outcome and quality of a simulation.

1.2.2 Subsidiary research questions

During the course of these investigations it was realised that there were number of 

subsidiary questions that would need to be answered.

10
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  Can an arbitrary "real" fire scenario be characterised into a distinct category 

and is it possible to build a corresponding library of meshing parameters for 

each category?

  What are the indicators to signal that a mesh needs to be refined, and to what 

degree, and how should it be refined?

  In what circumstances would Expert users tend to change times steps size, to 

what degree should the time step size be changed, and what possible impact 

would the Expert expect these changes to have on the solution?

  How can the convergence of every time step size and simulation stability be 

assured throughout the whole simulation process?

  Is it possible to prevent and recover from all types of solution fault?

  Can the system provide improvements in terms of simulation speed when 

compared to non-controlled simulations?

There is little or no knowledge to what degree or to which parameter and according to 

what conditions, the Expert users should change, in order to justify or optimise the 

set-up, the meshing or to control the solution. Consequently, the first task of this 

investigation is to identify and formalize the actions that Expert users would take 

during the course of a simulation (including any trial runs). In addition, the conditions 

(simulation state and/or results), leading the Expert to make decisions, have to be 

identified and the degree of the change has to be measured. The answers to these 

questions should provide the fundamentals to the Experiment Engine's knowledge 

base. When this knowledge is obtained, collated and refined, then it becomes possible 

to design an appropriate architecture for a conceptual Experiment Engine that would 

be capable of applying the information, knowledge and techniques to emulate an 

Expert user. This system will enable a better set-up and meshing based on adaptive 

trials and efficient control of the production run, must then be devised.

11
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1.2.3 Design and Implementation issues arising during this 

research

During the investigations, it was realised that there were a number of important issues 

that needed to be considered for the design and implementation of the Experiment 

Engine.

  Given the complexities of the FFM software, how should the Experiment 

Engine concept fit into an existing FFM architecture?

  Is the design flexible and extensible, in order to accommodate future 

developments and research directions? and,

  Is there a role for the Experiment Engine to provide a framework for the 

operation of other CFD supporting techniques (e.g. ICS and Group Solvers) 

that also aim to facilitate and/or optimize fire modelling simulations?

Investigation of these questions will prevent taking an inappropriate design decision 

or implementation of limitations within the Experiment Engine concept.

As previously mentioned, most CFD software packages have been designed to run the 

simulation in a strict ordered sequence, i.e. CASE SPECIFICATION/SET-UP before 

CFD SOLVER PROCESSING before POST PROCESSING. In this structure, the 

CFD solver is generally unable to communicate with the set-up that has already been 

made. If a problem is detected in a later stage, that was due to inappropriate set-up, 

then there is nothing that the software can do to correct the problem, other than to re- 

run the simulation. In order to change this mode of running to offer complete support 

during the whole simulation process, dynamic interaction is needed between the CFD 

solution process and the set-up environment. The existing software architecture has to 

be revised in order to mitigate this limitation, hence, it has been decided that the 

Experiment Engine should provide a two way communication channel between the 

Set-up Environment and the CFD Solver.

12
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Solutions to all of these problems / issues should lead to the seamless embedding of 

the Experiment Engine into the SMARTFIRE architecture, with the ultimate goal of 

being capable of emulating Experts' ability to better set-up and meshing for the 

simulation and also to make run time solution control more efficient and effective 

with almost no requirements for user intervention.

It is believed that Experiment Engine concept should be able to use any existing 

techniques and deliver tangible benefits in terms of improved successful rate of 

simulating real world fire scenarios, greater solution reliability, prevention and 

recovery from "poor quality" set-up and inappropriate/"poor quality" meshing, give 

greater robustness and give better ease-of use of the software.

1.3 Research Methodology / Plan

In order to achieve the research goals proposed in this investigation, in a manageable 

way, three key phases has been identified in which to focus the research efforts.

The first phase of this work is to gain a solid background in understanding the area of 

fire field modelling and in particular, perform a detailed investigation of the 

difficulties experienced by novice CFD users when having to specify and run a fire 

modelling scenario. This will include a major study of the available literature. A 

decision was taken to research the expertise based on Expert users' formulation, 

implementation and specification of simulation scenarios within the SMARTFIRE 

system. This decision was made because there is considerable in-house expertise 

about the SMARTFIRE FFM environment and the SMARTFIRE system is widely used 

and is specifically targeted at novice and in-experienced CFD users. A part of this 

study involved attending the MSc courses "Principle and Practice of Fire Modelling" 

and the "Principles and Practice of Evacuation Modelling" where novice users were 

observed meeting a FFM for the first time and awareness was gained of some of the 

difficulties of using FFM.

13



Chapter 1________________________________INTRODUCTION

As part of this familiarisation process, it was necessary to undertake a research study 

of issues relating to the specification and nature of fire definition within the FFM 

software. This study was intended to produce reliable data as to the most appropriate 

form of fire specification and recommendations (e.g. as to the use of the Heskestad 

fire height correlation model tSFPE'02^ m addition, it was necessary to undertake a 

range of validation studies using various fire representations in order to better 

understand the strengths and weaknesses of the various representations and to suggest 

further avenues for development.

From the work completed in the first phase, an appreciation of the importance, to the 

specification of fire field modelling scenarios, of the decision made during the 

specification of a case and how these affect the simulation should be developed. This 

lead to the development of routines to check the consistency and appropriateness of 

the configuration for an arbitrary simulation scenario so that the parameters passed to 

the CFD engine are, as far as possible, the most appropriate set of parameters and 

control setting possible for that scenario. In this stage, it was also very important to 

investigate the techniques for appropriate meshing of scenarios based on the nature of 

the problem to be solved and to categorize the various fire field modelling cases that 

are likely to be encountered. This included formulating and conducting interviews 

with fire field modelling Experts, after which it was possible to begin to formulate 

case specific meshing rules and key indicators for arbitrary case recognition. These 

knowledge elicited meshing rules and case recognition methods could then be 

implemented as supporting technologies with FFM set-up environment. In addition, it 

was determined that it was necessary to investigate how to provide an adaptive mesh 

refinement method, within the automated structured meshing system of the FFM 

environment, in order to support the further investigations.

The earlier investigations serve as important building blocks for the research of 

techniques and knowledge appropriate for the Experiment Engine (EE) concept. The 

EE concept is intended to be capable of using a simple coarse mesh analysis to enable 

a better understanding of the simulation scenarios so that this knowledge can be used 

to optimise (where appropriate) the simulation set-up and meshing, and to make the 

settings as robust as possible. This is analogous to the mode of operation of fire field
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modelling by CFD Experts, and can be described as partial automation of the friendly 

assistant expert.

Furthermore, the operation logs of the Experiment Engine decision making process 

will provide training support function that will help the user to make the correct/most 

appropriate choices during the specification and meshing of a particular scenario. 

Also the additional outputs from Experiment Engine help users to be able to identify 

the simulation states more thoroughly and precisely.

The final phase of this investigation saw the completion of the knowledge elicitation 

and technology investigations undertaken in the second phase, and then concentrates 

efforts on techniques that will further enhance and extend the Experiment Engine 

concept. In particular it was deemed necessary, to improve and diversify the solution 

control techniques. Eventually, it is intended that an enhanced Experiment Engine will 

provide a fully robust and automatic control technique to take control of the whole 

fire simulation process. Finally, to give assurance of robust and appropriate behaviour 

it is necessary to undertake comprehensive testing and validation of all of the new 

features. Any further improvements or requirements that emerge in the testing phase 

will also be researched in this phase as well.

On completion of the above research tasks, the Experiment Engine concept was fully 

instantiated and tested and was used to produce the final results for discussion and 

evidence supporting this thesis (for details please refer to Chapter 8). The summary 

and the conclusions of these considerations are presented in Chapter 9. Finally, any 

issues relating to further work need to be identified in order to realise the full potential 

of these techniques in future research.
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1.4 Contribution/major achievements

The following summary indicates the significance of this research that has made CFD 

based Fire Field Modelling software more robust, more reliable, automatically 

monitored and more accessible to the wider audience and more supportive to CFD 

novice users.

  Identification of shortcomings and limitations of most existing CFD software 

platforms in terms of providing a complete user sport during the whole 

simulation process.

  Investigation of how an Expert user will mitigate the problems and issues that 

are typically encountered when running a previously unseen FFM scenario.

  Investigation of a sophisticated Experiment Engine concept that is capable of 

emulating the key aspects of a FFM Expert user's decision making based on a 

series of trial runs to make the set-up and meshing as robust as possible and 

with newly developed advanced control techniques, the Experiment Engine is 

able to take control of the whole simulation process with convergence 

assurance.

This research identified a number of existing techniques that offer partial user support 

to perform particular tasks during the CFD simulation process. It also highlighted 

some specialized tools /Expert systems for automating CFD applications, such as 

mesh generation, run-time solver parameter control etc. However, even now, few - if 

any - CFD software systems are able to provide a complete supporting environment 

to users during the whole simulation process. Rather the existing systems offer 

techniques developed mainly targeted at specific phases of the simulation process and 

these tools and techniques have little interaction with each other and are not integrated 

to become a complete functional module that offers a complete supporting solution. 

And yet few CFD developers are aiming to provide the code interactivity and 

automated solution control that has been investigated in this research.
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This research indicated that there were key mitigation and improvement strategies for 

handling the issues and problems encountered when running CFD based FFM 

scenarios. The research further demonstrated that the Experiment Engine concept was 

able to provide a complete supporting environment (which has been built and tested 

extensively within the SMARTFIRE FFM environment) and use methods similar to 

those deployed by Expert users to make the FFM set-up and meshing as robust as 

possible and this process has been optimized as far as possible. It was revealed that, 

due to the complexity and diversity of many "real world" fire scenarios, a suitably 

well-constructed set of short trials with different self-learning sets of set-up and 

meshing parameters can make significant contribution to the proper set-up and 

consequently make the software operation more autonomous, more robust, more 

reliable and able to offer friendly assistance to novice CFD users. The Experiment 

Engine concept will also continually monitor the simulation state/results and be able 

to make run-time adjustments to ensure that the solution is always converging and 

that the stability of the simulation is maintained automatically and that the whole 

solution process is conducted in an efficient manner. As a result, the Experiment 

Engine concept was demonstrated that it could control simulation runs automatically 

with no user interventions required after the problem was defined. The EE was then 

able to make automatic parameter changes as, and when, necessary (i.e. decisions 

include the auto-refinement of the mesh for regions where finer mesh resolution 

required; changes of time step size in responding to transient events, heat release rate 

changes and the handling of convergence and stability problems, etc.) In this way, the 

Experiment Engine concept maximizes the success rate of fire simulations, and makes 

sure that convergence and simulation stability are guaranteed (if a solution can be 

reached). The EE concept is fully automatic and has been designed to minimize extra 

computational costs (in the worse case scenario, maximum costs are limited to no 

more than a 20% overhead, by careful design of the Experiment Engine rule 

processing strategy). In fact, the Experiment Engine enabled simulations, for complex 

cases, demonstrated that it was able to achieve more than 40% performance gains in 

terms of simulation efficiency compared to non EE supported simulations.

  Investigation of a new technique that seamlessly link the pre-processor and the 

CFD solver to allow feed back from the simulation into the scenario set-up.
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This enhancement of the existing FFM architecture is componentised and fully 

extensible.

CFD based FFM software is typically highly complex and traditionally has an 

architecture that is divided into, at least, two main components (namely a user 

interface in which to specify the problem / case set-up and a solver component which 

is dedicated to solving the complicated PDEs). The usual communication is one-way 

from case specification set-up environment forwards into the solver with the problem 

definition passed to the solver as formatted data (i.e. there was never any 

communication from the solver to the set-up component/user interface). In order to 

make the Experiment Engine concept work as proposed, a new component was 

designed and implemented into the existing FFM software architecture. The 

Experiment Engine was embedded in between the Case Specification Environment 

and the CFD Solver. In this way, the Experiment Engine is able to control all of the 

components involved during the simulation process. The Experiment Engine provides 

a two-way communication channel between the two major components. As a result, 

the communication can go in both directions using a message passing structure and 

protocols. This conceptual and physical componentization of the software architecture 

also allows rapid prototyping and implementation of new algorithms, solvers, 

supporting technologies and other ideas that may offer potential improvement. Hence 

the prototype research system has been designed to fully support further research in 

this (and any related) area.

Although this has not been investigated and therefore is not confirmed, the author 

strongly believes that the same architecture can be successfully applied to other 

general purpose or even other application specific CFD codes. The proposed 

Experiment Engine architecture and mode of operation should be sufficiently generic 

to suit other similar control problems.

  Investigation of performance based local adaptive mesh refinement methods 

for the mesh quality improvement of three dimensional multi-block structured 

hexahedral meshes.
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Generating an appropriate and sufficiently high quality of mesh, for any given 

scenario, is the major task during the problem set-up phase of the simulation and is 

vital to the successful outcome of the simulation. The validity and efficiency of the 

Experiment Engine concept depends on having an effective and efficient mesh 

refinement method. There are many existing adaptive grid techniques. However, to be 

effective and efficient, the adaptive techniques have to be tailored to the particular 

type of the initial grid and how it was generated. The newly developed local block- 

wise mesh refinement method is based on the general principle of h-adaptive 

techniques and these have been implemented and optimised for use with the particular 

FFM automated structured meshing system to make ensure that it is suitable, efficient 

and effective. This investigation is a performance based approach to meshing since it 

is able to make 'run-time' adjustments to the mesh to suit the precise meshing 

requirements of the scenario, which obviously vary from problem to problem. The 

methodology that has been investigated and adopted, fully exploits the multi-block 

structure of the structured meshing system and also utilises the earlier work for 

characterising cases and the block-wise mesh justification algorithm.

  Investigation of new techniques for case recognition and characterisation of 

scenario specific meshing libraries.

The CFD software using parameterised automatic mesh generation techniques has 

been found to suffer (for many arbitrary scenarios) from inappropriate or only 

partially appropriate meshing parameters in the meshing library. Usually the situation 

is that the meshing library only provided suitable mesh parameters for a certain class 

of scenarios (i.e. it was developed for room based fire scenarios), but fails to do as 

well for the other classes of scenarios (e.g. "tunnel fire" scenarios are commonly 

inappropriately meshed when using "room fire" meshing rules). This research 

investigated knowledge elicitation from Expert users to improve the utilization of the 

meshing library by characterisation of real world fire cases into a range of typical 

categories and building a set of meshing libraries accordingly. Each meshing library 

consists of the complete set of mesh parameters and rules which are most appropriate 

for that class of scenario. In order to automatically select an appropriate meshing 

library, for a given scenario, during the automated mesh generation process, a 

dedicated case recognition algorithm was developed. This took a hybrid approach
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with a combination of backward rule base reasoning and case based reasoning [Kolodner' 

93J. The general format of the case recognition algorithm was derived from weighted 

nearest neighbour case retrieval algorithm from case based reasoning.

The techniques developed here have also benefited the adaptive mesh refinement 

method, described earlier, since they ensured a good quality for the initial mesh, thus 

reducing the requirement for further refinement. In this way, the efficiency of the 

adaptive mesh refinement procedure is significantly improved.

  Improved solution controls techniques

Previous simulation control techniques have only investigated control during the 

solution CFD processing. This means that qualitative assumptions have to be made 

about the appropriateness of the set-up and the mesh, and that a suitable convergence 

level is "guessed" solely according to the user's experience. These factors and 

assumptions have not actually been thoroughly tested thus there is a considerable 

degree of uncertainty which will quite probably affect the performance of the control 

techniques deployed. With the development of the Experiment Engine concept, it has 

been possible to take the control decisions in the context of the whole simulation 

process - including any trial runs conducted and the set-up, meshing. Hence an 

appropriate convergence level has been thoroughly tested and all the extra 

information obtained in the experiment stages are considered to be valuable in terms 

of implementing more efficient and effective control techniques. For instance, the 

evaluation of the solution state can take a more direct approach because the 

convergence level has already been firmly established with a high degree of 

confidence in the experiment stage. In this way, the prior experiments make 

convergence assessment easier and more effective. In addition, the parameterised 

changes are limited to a single parameter (i.e. the time step size) so many unnecessary 

tests are omitted based on reasonably well established expertise. This enables the 

design of control actions in more manageable ways to prevent any potential excessive 

search costs thus improving the efficiency of the control.
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1.5 Background to this research

SMARTFIRE was chosen as the testing vehicle for this research. SMARTFIRE [ Ewer-°°] 

[petndis-95] [Tayior-97a] was developed in an attempt to make the CFD based FFM

techniques more accessible for novice users. SMARTFIRE has been developed an 

open architecture, interactive CFD code with integrated Knowledge Based System 

components. The SMARTFIRE system attempts to make Fire Field Modelling 

accessible to non-Experts users. SMARTFIRE makes many efforts to address issues of 

overall efficiency, reliability and to be user-friendly. In order to provide easy access 

to its solving power, SMARTFIRE includes sophisticated user interfaces to support 

scenario set-up, meshing, parameter configuration and to provide sophisticated run- 

time graphics capabilities and monitoring tools for comprehensive interactive 

monitoring and effective control of the simulation process.

The recently developed prototype Intelligent Control System [Janes~02J was intended to 

create an intelligent agent capable of emulating the Expert user's ability to effectively 

control CFD simulations and it was demonstrated that the ICS could provide similar 

benefits in terms of performance, overall reliability and result accuracy for relatively 

simple room based fire simulations. The Development of Groups Solvers Techniques 

[Ewer-99b] [Hurst-04] wag a^Q ^Q re(juce some of the high computational costs and memory

overheads for CFD based fire simulation by focussing processing effort only on cells 

where continual updates are required. (For more details about Groups Solvers 

Techniques please to refer to the related section in chapter 3).

However, these new techniques are all highly dependant on having appropriate set- 

ups and a sufficiently high quality mesh for any given scenario. The question is how 

can the system ensure that an arbitrary modelling scenario can be effectively and 

efficiently meshed and that the specification and configuration is optimal (or at least 

near optimal) and appropriate. This question was the origin of this current research.
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1.6 Structure of the thesis

Chapter 1. This chapter provides an overview of the research problems, enumerates 

the research questions posed and indicated how the objective of this research was 

achieved in a manageable way. It also presents the significance of the research. 

Major achievements and the contributions to knowledge have also been highlighted. 

The chapter also indicates the prior research that has been conducted in this area.

Chapter 2. This chapter provides a background to fire modelling techniques in general 

with special emphasis on fire field modelling. The operational skills needed to 

perform a successful fire field modelling simulations have been identified. The 

positive influence, of using knowledge-based problem set-up, on the simulation 

results has also been investigated and demonstrated.

Chapter 3. This chapter reviews the applicable literature relating to this research. It 

covers the various techniques available, mainly for improving the performance and 

ease of use CFD codes, and conveys to readers the knowledge and ideas that have 

been established and which are relevant to this research.

Chapter 4. In this chapter, attention is focussed on meshing issues, in order to seek 

any possible improvements to the current mesh generation and mesh quality control 

techniques. This investigation led to the discovery of a novel approach to structured 

meshing which enabled the meshing system to handle a wider range of real word 

scenarios more efficiently and effectively.

Chapter 5. This chapter describes the investigation and development of local block- 

wise mesh refinement methods for the structured meshing system. This meshing 

technique is based on adaptive finite element techniques commonly used in Finite 

Element Analysis, but adapted to the block structured target meshing system.

Chapter 6. This chapter describes the knowledge and technologies behind a new 

architecture for the control of a FFM solution process. This novel framework includes 

a new component called the Experiment Engine which is able to perform "trial and
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error" based experiment search for better set up, meshing and control parameters. The 

EE concept has been instantiated as a prototype within the SMARTFIRE environment. 

Initial test results of the EE are presented to show the validity of the local block-wise 

refinement regime and the effectiveness of the EE concept.

Chapter 7. In this chapter, additional investigations into extending the Experiment 

Engine concept are described. The Experiment Engine now emulates more of the 

Expert user's role in continually monitoring the solution process after providing an 

appropriate simulation set up, gained in the previous stages of the Experiment Engine 

process. This extension to the EE concept allows it to make run time adjustments of 

the solution control parameters. As a result, the fully automated Experiment Engine 

enabled simulation can respond to transitional events and heat release changes, and 

the EE enabled simulation process can obtain good solutions with almost no user 

interventions, therefore the EE offers complete user support for the whole simulation 

process.

Chapter 8. In this chapter, three computational examples are presented in order to 

show the effectiveness, efficiency and robustness of the prototype Experiment Engine 

by comparing the Experiment Engine enabled simulation to those from Expert users' 

applying manual control of a simulation and fully non-controlled "default" 

simulation.

Chapter 9. This chapter draws conclusions on how the investigations, conducted 

during this research, the supporting techniques researched in the early stages of this 

study and the prototype Experiment Engine concept benefit the wider FFM code 

users. The chapter then identifies the shortcomings and limitations of the current 

research and suggests avenues for further investigation.

23



Chapter 2__________________BACKGROUND TO FIRE MODELLING

2 Background to Fire Modelling 

[Chapter Overview]

This chapter provides background knowledge about Fire Modelling in general. The 

advantages and disadvantages of using mathematical models over the traditional 

experimental investigations are briefly discussed. This is followed by an introduction 

to fire modelling techniques with special emphasis on fire field modelling, which 

takes a CFD based Fire Field Modelling (FFM) code as an example to illustrate the 

operational skills needed to perform a successful fire field modelling simulation and 

to help to identify how Expert knowledge could help with fire modelling simulations.

Finally the chapter presents a concrete simulation example to show the positive 

influence, of using knowledge-based problem set-up, on the simulation results.

2.1 Introduction

Prediction of the course of fire can be obtained by experimental investigations and 

mathematical modelling.

A full-scale experiment is ideal to give the most reliable information about a fire 

process. However it is expensive in terms of both resources and time. Sometimes it is 

even impossible to do so, because of high costs, difficulties in actual measurements 

and hazards that may be involved. The usual alternative is to perform experiments on 

reduced scale and then the resulting information must be extrapolated to full scale and 

general rules for doing this are often unavailable. Furthermore, the reduced scale 

experiment does not always have all the features of a full scale experiment. This 

further reduces the usefulness of the experimental investigations. Finally it should be 

kept in mind that, even where full-scale experiments are achievable, the results are not 

necessary entirely accurate. The measurement process is seldom free from errors.
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Over the last two decades there has been a significant increase in our understanding of 
fire development and its influence on its surroundings [Prahi-75][Quitiere-84][Cox-95] 

Understanding of fire changed from being empirical to being scientifically based. This 

change and more widespread access to powerful computers - at low cost - has resulted 

in ever more fire safety engineering solutions that have been found through the use of 
mathematical models [william-°2]. The development of numerical methods [ patankar-8°l 

further increases the possibility of using mathematical models, in Partial Differential 

Equation (PDE) form, which describe the physical and chemical processes predict 

many fire phenomena of practical interest.

2.2 Experimental investigation compared to Mathematical fire 
modelling

Using mathematical models to predict fire phenomenon has been in use for more than 

two decades. The use of fire modelling techniques has become widely used by 

designers and practitioners in many area of fire safety design tWllham-°2]

There are many advantages that mathematical fire modelling can offer over a 

corresponding experimental investigation. First of all, the most important advantage 

of a mathematical fire modelling is its comparatively low cost. The cost of computer 

simulation is most likely many times lower than the cost of even a reduced scale of 

experiment. As ever, the increasing speed of CPUs and the availability of larger 

computer memory mean that computing has become cheaper and this cost will likely 

reduce even further. With the computer based simulation, it is very easy to try 

different set up and configurations with virtually no additional costs. Secondly, a 

computer solution of a problem gives detailed and complete information. It can 

provide the values of all relevant variables throughout the domain of interests (even in 

areas that were not thought to be important prior to the investigation but which were 

later deemed to be important due to the nature of the results). On the other hand, 

experiments cannot be expected to measure the distributions of all variables over 

entire domain. Finally, with computer simulations, it is generally possible to simulate
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most real scenarios, even those with extreme physical conditions. This contrasts with 

experimental investigations where it is not always possible, practical or feasible to 

perform the experiments or the required measurements. Furthermore, a simple 

computer simulation is ideal to study basic phenomena. In a basic phenomenon study, 

we need only focus on a few essential parameters and eliminate all irrelevant features. 

Then mathematical models become ideally suited to this kind of study, as a simple 

computer simulation with some simplified or ideal conditions such as one dimension 

and constant pressure can be easily set up. With the experimental method, such 

idealized conditions are not always easily obtained.

With the advantages mentioned above, it would seem that mathematical models 

outclass experimental investigations completely. However, it is very dangerous to 

think that 'old fashioned' experimental investigations can be abandoned. A computer 

simulation just works out the implications of an approximate mathematical model 

rather than computing/observing reality itself, so a computer simulation is useful only 

if it is adequately based on the validity of mathematical models and the numerical 

method used to solve the mathematical equations which describe the physical and 

chemical processes. Up until now, for some of the most complex phenomena, such as 

turbulent flows and non-Newtonian flows etc, adequate mathematical models have 

still not been completely and satisfactorily worked out. For simulations involving 

these complex phenomena, it is highly desirable to have sufficient experimental data 

to check the validity of the numerical simulations.

2.3 Computer based fire modelling

In general, the mathematical models consist of a series of equations which describe a 

certain physical process. If the equations are simple enough, they could (theoretically) 

be solved on a simple calculator. More commonly, the equations are not simple and 

there are a huge number of simultaneous equations that must be calculated. 

Consequently, a computer is required for their solution. Thus when reference is made 

to Fire Modelling, it actually means "computer based Fire Modelling" and this is 

normally realized as a computer program. The first computer program used to predict
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room fires was developed in the U.S. and was released in 1975 tBabrauskas-75\ and other 

research in this field goes back even further. Zone modelling [Walton-02l and field 

modelling £Galea'89] are two fundamentally different modelling strategies used to 

simulate the effects of fires in enclosures.

2.3.1 Zone modelling

Zone models solve the conservation equations for distinct and relatively large zones 

(typically these zones are sub-region layers of the whole domain or compartment). 

The basic assumption of zone models is that for each zone in a compartment, the 

physical properties such as gas temperature and species concentrations are assumed to 

be uniform. These zones interact by exchanging mass and energy [Quintiere-89]. The most 

commonly used type of zone model (in single compartment fires) is the two-zone 

model which divides the room into two distinct control volumes. One is the upper hot 

layer descending from the ceiling, and the other is cooler, lower layer as shown in 

Figure 2-1 and these are based on the following assumptions:

  Room is small in both area and height

  Two layer approximation is valid

  Constant pressure in the room

  Venting is possible through a small opening

Upper Zone

4- Plume Entrainnnent

Lower Zone

-Hot Layer

Crack

F 1 ow ou~t

Figure 2-1: Illustration of the two zone model concept in an Enclosure
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Figure 2-1 shows a schematic diagram how a compartment is modelled in a two-zone 

model. An example of an advanced Zone model computer program is called CFAST 
[CFASi-93] [CFAST-oo] [CFAST-04] CFAST {& ft multi.room cornpartment zone-based fire

growth model, which was developed by the National Institute of Standards and 

Technology. The code has been widely used in the fire protection community to 

support alternate design approaches, post-fire investigations and as a research tool to 

better understand fire phenomena.

Zone modelling has proved to be a practical method for providing estimates of fire 

processes in enclosures and it usually provides very fast solutions comparing to that 

of using field models. However, for obvious reasons, the Zone model application does 

have the following limitations,

  Relies on a priori understanding of how fires behave.

  Maths used in zone models relies heavily on empiricism.

  Zone models are mainly developed for approximating values on gas layer 

temperature and location of smoke interface.

  Advanced zone-based fire models can handle multi-compartment, but there is 

still a limit on the number of compartments that can be modelled.

2.3.2 Field modelling

The newest fire model is the Field model. Field modelling technology, and use, has 

advanced rapidly in recent years. CFD based Fire Field model consists of several 

mathematical models tGalea'97] . Each of which comprises a series of equations to 

describe a certain physical or chemical process. These equations are solved with the 

highest available resolution to yield distributions of the variables of interest.

2.3.2.1 CFD codes and Field models

The CFD code and the Fire models are the two essential components in the Fire Field 

Modelling approach. The CFD code solves the complex PDEs describing the 

conservation of mass, momentum, enthalpy, and species etc. within the physical
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domain of interest. The Fire models (sometimes called sub-models) are used to 

describe the complex processes of combustion, turbulence and thermal radiation. CFD 

based field model presents a higher resolution approach than zone modelling, and the 

whole history of the fire evolution can be provided in all of the control volumes in the 

solution domain.

The numerical solution of fire and other related processes can begin when the laws 

governing these processes have been expressed in mathematical form, generally in 

terms of differential equations. The principles of Computational Fluid Dynamics 

(CFD) involved are:

  Mass is conserved

  Momentum is conserved

  Energy is conserved

The continuity, momentum and energy conservation equations are Navier-Stokes 

Equations, which are three dimensional and time dependent. Starting with N-S 

equation, and applying vector notation gives what is commonly known as the 

Convection-Diffusion (CD) equation. This represents the Navier-Stokes equations in a 

compact form as given below.

Transient term Convection term Diffusion term

+ S0 

Source term

(2.1)

P = the density of the fluid 

= the diffusion coefficient

Where,

0 = dependent variable to be solved 

u = the velocity of the fluid

^ <j> = source /sink term

Transient term represents the rate at which ̂  accumulates per unit volume.

Convection term is the accumulation of Y per unit volume due to the divergence in its 

convective flux field.

Diffusion term is the accumulation of Y per unit volume due to the divergence in its 

diffusive flux field.

Source term includes all the additional sources of rper unit volume which is not 

covered by the previous terms.
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All the essential equations can be constructed using this generalised form and the 

coefficient and source terms for each of the equations are listed in Appendix A (Table 

A-l). A detailed discussion about the mathematical formulation of the equations that 

govern the processes of interest is out of the scope of this dissertation. For the readers 

who are interested in the complete derivation of the required equations, and for the 

mathematical models for complex processes like turbulence, combustion and radiation 

should turn to recommended standard text books on the subject [ pantakar- 8°-6l [Cox-95-8]

[Karlsson-OO]

2.3.2.2 Numerical methods

Numerical methods are useful for solving fluid dynamics, heat and mass transfer 

problems, and other partial differential equations of mathematical physics when such 

problems cannot be handled by exact analysis techniques because of non-linearities, 

complex geometries and/or complicated boundary conditions. It includes the task of 

providing a set of algebraic equations derived from the differential equations through 

a process known as discretisation. The discretisation process is achieved by dividing 

the physical space defining the solution domain into vast collection of smaller sub- 

domains. Sub-domains described by collection of discrete grid points which carry one 

value for each of the variables. Interaction with neighbouring grid point variables is 

described by the algebraic equations. Essentially three different but related 

discretisation techniques commonly used are Finite Difference Method (FDM), Finite 

Element Method (FEM) and Finite Volume Method (FVM) (also known as the 

control volume formulation).

FDM describes the unknowns 9 of the flow problem by means of point samples at 

node points of a grid of co-ordinate lines. Truncated Taylor series expansions are 

often used to generate finite difference approximations of derivatives of 9 in terms of 

point samples of 9 at each grid point and its immediate neighbours. Those derivatives 

appearing in the governing equations are replaced by finite differences yielding an 

algebraic equation for the values of 9 at each grid point tSmith-85].
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FEM use simple piecewise functions (e.g. linear or quadratic) to describe the local 

variations of unknown flow variables (p. The Navier-Stokes equations are precisely 

satisfied by the exact solution q>. If the piecewise approximating functions for q> are 

substituted into the equation it will not hold exactly and a residual is defined to 

measure the errors. The residuals are next minimized in some sense by multiplying 

them by a set of weighing functions and integrating. As a result a set of algebraic 

equations for the unknown coefficients of the approximating functions is obtained
[Bathe-96]

For FVM, a formal integration of Navier-Stokes equations over all the control 

volumes of the solution domain is carried out. A variety of finite-difference-type 

approximations for the terms in the integrated equation representing flow processes 

such as convection, diffusion and sources are then applied. This converts the integral 

equations into a system of algebraic equations tVerstee8-95^

Each of these methods has its advantage depending on the nature of the problem to be 

solved. For example, FDE is very easy to learn and apply for the solution of PDEs 

encountered in the modelling of engineering problems for simple geometries (i.e. not 

very irregular). For problems involving irregular geometries in the solution domain, 

the FEM may have the flexibility, since the region near the boundary can readily be 

divided into subregions. There is no best method for all problems. The clear 

relationship between the numerical algorithm and the underlying physical 

conservation principle forms one of main attractions of the FVM and makes the 

concepts much simpler to understand by engineers than other methods. So far, the 

control volume method is used by the majority of main commercially available CFD 

codes.

2.3.2.3 FFM codes

The development of sophisticated radiation models, smoke models and combustion 

models, along with advances in, and lowering costs of computer power, means that 

fire field modelling has begun the transition from the confines of research laboratory 

to the desk of the fire safety engineer. Fire Field Modelling (FFM) techniques are now 

widely used by fire safety engineers and others for research, development and design
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tasks in industry. Many CFD based applications are now capable of or dedicated to 

solving modelling fire scenarios. Among them the most popular currently in use are 

Fluent, StarCD, Phoenics, FDS, CFX, JASMINE, and SMARTFIRE etc.

Fluent, StarCD, and Phoenics are the leading general purpose, commercial, CFD 

codes which are capable of solving steady, transient, laminar Newtonian and non- 

Newtonian flow problems. These CFD solvers possess a variety of heat transfer, 

radiation, turbulence and gaseous combustion models thus can also be applied to fire 

modelling.

Fire Dynamics Simulator (FDS) is a computational fluid dynamics program designed 

specifically for fire protection practitioners. FDS solves numerically using a form of 

the Navier-Stokes equations appropriate for low-speed, thermally-driven flow with an 

emphasis on smoke and heat transport from fires tKevm'02l -

CFX is a commercial model that was developed by AEA Technology. It can be used 

for assessing fire dynamics, fire structure issues, and fire suppression. CFX solves the 

Navier-Stokes equations in three dimensions to determine heat and flow fields in an 
enclosure [CFX-web].

JASMINE was developed as a fire specific code by the Fire Research Station in the 

United Kingdom in the early 1980s. Processes of convection, diffusion and 

entrainment are simulated by the Navier-Strokes equations [Cox'86J.

SMARTFIRE [Ewer-°0] fpetridis-95J [Tayior-97a] i§ an open architecture5 interactive CFD code 

with integrated Knowledge Based System components that attempt to make fire field 

Modelling accessible to non-Experts users.

CFD based FFM techniques offer a powerful tool for fire safety design in buildings 

etc. However, it should be noted that field models are relatively complex to use and 

generally require operators with a good knowledge of both fire science and of 

numerical modelling. The accuracy of numerical simulation depends on many factors 

such as mesh/grid resolution, model specification and the appropriateness of the 

numerical methods being used.
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2.4 Operations ofFFM fire simulations

Like other Computational Fluid Dynamics applications, the field modelling software 

usually consists of a pre-processor, a solver and a post-processor. The pre-processor is 

used to define the actual problem (i.e. setting the boundary- and initial- conditions, 

selection of fire models to be used and generating mesh etc.) through a friendly and 

supportive Graphical User Interface (GUI). The solver uses the input data from the 

pre-processor to find a solution to the problem by using a selected numerical method. 

Finally, the resulting solutions are presented by the post-processor. The post- 

processing tools are usually able to display vector plots, 2D surface plots and provide 

view manipulations etc.

This section concentrates on the operation issues of the numerical simulation codes, in 

particular those within the SMARTFIRE environment, as this is the main platform for 

this research. In Figure 2-2 (drawn from an Expert user point of view), the whole 

SMARTFIRE simulation process is broken down to several stages and the difficulties 

of implementing each stage are highlighted. In addition, the expertise that is needed to 

overcome these encountered difficulties is also indicated. In this way, it is possible to 

identify when human expertise is needed and where it should be embedded into the 

system. The aims of this overview is to provide concrete information about the range 

of skills required to perform a successful simulation and to illustrate what ought to be 

done in order to assist with the reliable specification and successful simulation of Fire 

Field Modelling scenarios.
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2.4.1 Set up stage

2.4.1.1 Problem specification

2.4.1.2 Mesh generation

SMARTFIRE 



2.4.2 Numerical computation stage

SMARTFIRE) 

SMARTFIRE 



2.4.3 Interpretation and analysis of the results stage
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2.5 A simulation example

2.5.1 Flame characteristics
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2.5.2 The Heskestad plume



2.5.3 Description of the Experiment

SMARTFIRE 
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2.5.4 Model Setup and boundary conditions



2.5.5 Simulation specific settings

SMARTFIRE 

2.5.6 Simulation Results
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2.5.7 Interpretations of result

SMARTFIRE

simulation (b) 
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3 Literature Review 

[Chapter Overview]

SMARTFIRE 

3.1 Introduction



Chapter 3 LITERA TURE REVIEW 

model, radiation model, and combustion model etc.) and to generate a sufficiently 

high quality mesh. In the set-up stage of CFD simulation, the most labour-intensive, 

time consuming and difficult part - as found by many users - is that the generation of 

an appropriate mesh which is suitable for the problem being simulated, adequate for 

the solution accuracy required and within the resource constraints in terms of time and 

available computer performance and/or memory. After set-up, the simulation has to 

be properly configured to maintain simulation stabilities, to ensure overall 

convergence and finally to obtain the results needed within the available time. The 

aim of this research is to investigate those techniques which can assist users to go 

through this whole simulation process successfully regardless of the level of a users' 

experience and to make the whole simulation process automatic with minimum 

manual intervention. Prior to this research, very few techniques were developed that 

were aiming to provide complete support for users during all of the key stages of the 

whole CFD simulation process. It should be noted that this research highlighted a 

number of existing techniques that offer partial user support to perform particular 

tasks during the simulation process. For example, there are techniques to help with 

automatic mesh generation and some of these techniques are able to refine the mesh 

by applying an adaptive procedure. Other techniques concentrate on providing 

functionality that gives automatic run time solver control. There are also interesting 

research techniques from the Artificial Intelligence (AI) domain that have been 

applied to certain aspects of controlling a CFD simulation. For the purposes of 

completeness and clarity, these various techniques will be discussed in tum. The first 

section will explore some existing ideas in mesh generation, adaptation and 

consequent mesh refinement so as to give a good understanding of the aims and 

methods behind many of the mesh related techniques. The second section details 

control techniques applied to CFD and other similar fields. This is followed by a brief 

review on specialised tools and Expert Systems developed for automation of CFD 

simulation in various application areas other than Fire Field Modelling. The final 

section in the chapter described techniques for improving performance of CFD codes 

and other research which is relevant to this work. 
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3.2 Techniques to assist CFD setup

3.2.1 Automated Mesh generation
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3.2.1.1 A case based approach

3.2.1.2 Intelligent Local Approach



3.2.1.3 A feature based Approach





3.2.2 Mesh refinement and adaptation techniques

3.2.2.1 Overview of adaptive mesh refinement



3.2.2.2 Adaptive mesh refinement algorithms
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3.2.2.3 Implementation of adaptive mesh refinement techniques





3.3 Automated control techniques for CFD



3.3.1 Automatic adjustment of the relaxation parameters





3.3.2 Intelligent Control System



3.4 Specialized tools/Expert Systems for automating CFD 

applications







3.5 other interesting and/or relevant research

3.5.1 Group solvers

3.5.2 Parallel processing



3.5.3 Influence of time step size on the convergence behavior and 
numerical accuracy for CFD
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4 A novel approach to support mesh generation and 

automatic mesh quality control

[Chapter Overview]

4.1 Introduction



4.2 Meshing /grid generation





4.2.1 Structured mesh generation technologies
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4.3 Case Classification

4.3.1 Knowledge acquisition
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4.3.2 Building additional mesh libraries
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4.4 Case Recognition

4.4.1 Choice of reasoning techniques
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4.4.1.1 Rule Based Reasoning

4.4.1.2 Case Based Reasoning



4.4.1.3 Reasoning techniques chosen for case recognition
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4.4.2 Implementation of case recognition
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4.4.3 Validation of case recognition
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(Geometry Type Selection for Meshing

Meshing System has checked the geometry for your case 

and the closest match seems to be: 

TUNNEL IN X-DIRECTION GEOMETRY

If the Meshing System has not correctly identified the Geometry 

then please select the nearest type from the following options:

<~~ Default Meshing Rules

< " Tunnel along X-direction

<~ Tunnel along Z-direction

C" Tall Atrium Geometry

<""" Warehouse Geometry

<"" Airport Terminal Geometry

f Standard Room Geometry

(" Single Floor of a Building Geometry

<~ Multiple Storey Building Geometry

OK Cancel

4.5 block-wise mesh justification

84



4.5.1 Cell aspect ratio



4.5.2 A new approach to solve cell aspect ratio problems
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4.5.3 Implementation of block-wise mesh justification







4.5.4 Benefits of block-wise mesh justification
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5 Development of Local adaptive mesh refinement 

[Chapter Overview]



5.1 Introduction



5.2 Adaptive Techniques



5.3 An adaptive local mesh refinement method for the 
SMARTFIRE meshing system

5.3.1 Initial base mesh construction and mesh distortion 
justification





5.3.2 Methodology for Choosing Candidates for Refinement



5.3.3 Refinement method













5.3.4 Summary of the algorithm
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5.4 preliminary validation of the local adaptive mesh 
refinement method

5.4.1 General description of the Experiment



5.4.2 Model Setup and boundary conditions for the SMARTFIRE 
simulations

5.4.3 Performance comparison of two simulations with different 
meshes
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6.6.1.1 Problem set up and boundary conditions



6.6.1.2 Experiment Engine Configuration

6.6.1.3 Experiment set A starting with coarse initial base mesh





6.6.1.4 Experiments Set B starting with recommended initial base mesh





6.6.1.5 Comparison of the local mesh refinement performance on 
Experiment set A and B



6.6.1.6 Remarks



6.6.2.1 The geometry

SMARTFIRE

6.6.2.2 Vents and inlets



6.6.2.3 Material properties



6.6.2.4 Fire specification and model set up



6.6.2.5 Experiment Engine Configuration.



6.6.2.6 Results



EXPERIMENT ENGINE IS flSKING THE CURRENT CFD PROCESS CONTINUE TO RUN.
CFD TIME STEP 12 OK MESSflGE RECEIUED.
EXPERIMENT ENGINE IS flSKING THE CURRENT CFD PROCESS CONTINUE TO RUN.
CFD TIME STEP 13 OK MESSflGE RECEIUED.
EXPERIMENT ENGINE IS flSKING THE CURRENT CFD PROCESS CONTINUE TO RUN.
CFD TIME STEP 14 OK MESSflGE RECEIUED.
EXPERIMENT ENGINE IS flSKING THE CURRENT CFD PROCESS CONTINUE TO RUN.
CFD TIME STEP 15 OK MESSflGE RECEIUED.

Experiment Control flgent is ftctiue......
Loading current test results..................done.
Test Results Report has been saued to => D:\yanbo\ualidation_neu\corridor_wit
__h_extraction\experinents\test3\restart2\corridor_with_extraction_test3_res
__tart2_report.trpt 

The Experiments has been completed......
The Experiment Engine is trying to be based on the Tests Restart2 case to justi 
__fy the original case settings and make a production run.

****** Preparing Production Run ****** 
Loadinq the original case problem data. .done.

Justifinq the onqianl Problem settings based on the successful test run..,





6.6.2.7 Discussion of the results
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Chapter 7 ENHANCEMENT AND EXTENSION TO THE EXPERIMENT ENGINE 

The graph extraction routines, developed in the earlier ICS research, were also 

carefully examined and reused wherever applicable to serve the purpose of 

implementing the convergence forecast function. For example, these legacy routines 

were used to identify the presence of the oscillations and irregularities and are still 

useful but have been put it into a different context. After further consulting with 

Experts, it is believed that the presence of the oscillations and irregularities in the 

residual graph are an inherent part of the simulation process, but they are providing 

very important infonnation in the design of an accurate convergence forecast 

function. The Experiment Engine control system needs to be able to make a decision 

about whether the time step should be tenninated early (because for example the 

residual graph appears flat during a long enough period and hence it is very 

reasonable to assume that it will not converge using the current time step size) or 

whether to give the time step some extra sweeps to make it converge to the required 

level, otherwise it would be not converged if the predefined number of sweeps is 

reached just before the convergence. These smart Experiment Engine control 

decisions have to rely on an accurate convergence forecast function which is 

constantly monitoring the behaviour of the residual graph. Certain mathematical 

techniques (e.g. Fourier Transfonn algorithm) are applied to smooth the graph when 

there are irregular oscillations, and then to help produce a more accurate global trend 

in the residual graph. It should also be noted that the irregularities are also an 

indicator of the convergence and stability status. It has been observed that, in the first 

30 sweeps or so in the time step, the irregularities do not tend to cause problems since 

subsequent iterations tend to have less and smaller irregularities, and so do not 

particularly affect the convergence forecast. However when the upward trend in the 

irregularities persists as the iterations approach 50 or more sweeps, then the current 

time step will be tenninated early by the Experiment Engine. It was first thought that 

the convergence forecast function might not be good enough in assessing this kind of 

residual graph, i.e. it might make mistake, because if enough sweeps were configured 

then the graph may recover from the irregularities and converge to the required level. 

But this tends to forget that the main purpose of the convergence forecast function is 

to minimise the chance of even a single sweep of the computation is being wasted and 

to identify convergence, divergence and any possible instability - as early as possible. 

In this sense, re-examining the example indicates that, it is actually an economical 

decision made by the Experiment Engine based on the infonnation provided by the 
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8.2.4.1 Changes to the time step size in response to the transient events
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8.2.4.3 Fault recovery and accuracy assurance
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SMARTFIRE. 



****** Preparing Production Run ******
Loading the original case problen data............done.

Justifing the origianl Problen settings based on the successful test run, 
.............done.

Starting to build a PRODUCTION RUN. 
Making production run paj 
Sauing production run fi'

Saving production run co 
Saving production run
Updating all files for production run.......

Finalising the production run...... ......done.
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