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Abstract

This thesis involves the computation of aerodynamically generated sound using a source- 

extraction based coupling approach.

In the present coupling method, the unsteady aerodynamic calculation and the 

calculation of sound propagation are separated artificially. A set of acoustic perturbation 

equations is derived by decomposing all flow variables into their dominant part and their 

fluctuating part, and neglecting some small-magnitude terms, and further simplified into a 

set of isentropic perturbation equations. Accompanying the derivation of the acoustic 

perturbation equations, a new extracting formulation for the acoustic source terms contained 

in the unsteady flow field is proposed. The acoustic source terms required in solving the 

acoustic perturbation equations are computed numerically from the time-dependent 

solutions of the unsteady flow field.

In the simulation of the unsteady flow, the unsteady Reynolds-Averaged-Navier- 

Stokes equations (RANS) based cell-centred finite volume method is mainly used. A large 

eddy simulation (LES) technique is also employed in the investigation of one application 

case. A powerful and efficient high order dispersion-relation-preserving (DRP) finite 

difference scheme with fully staggered-grid variable arrangements is implemented in the 

solution of the acoustic perturbation equations. The performance of a set of radiation 

boundary conditions is examined for various background flows. A suitable and efficient 

coupling procedure, in conjunction with the source-extraction formulation, is designed 

between the cell-centred finite volume based CFD solver and the fully-staggered finite 

difference based acoustic solver.

A range of acoustic model problems are investigated with the purpose of assessing the 

feasibility and accuracy of the source-extraction formulation associated with the coupling 

procedure. These model problems include wave propagation, reflection, interaction, and 

scattering, of acoustic pulse with/without background mean flow. The accuracy of 

computational results from these model problems is very encouraging when reasonable
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computational mesh sizes and time steps are used in both the CFD solver and the acoustic 

solver.

Several applications of the source-extraction based coupling method to some more 

complex cases have also been examined. These cases are: 1) generation and propagation of 

sound by a series of vortices impinging on a finite thin flat plate; 2) generation and 

propagation of sound from a subsonic flow past a finite thin flat plate with a small angle of 

attack; 3) generation and near field radiation of aerodynamic sound from an low speed, 

laminar flow over a two-dimensional automobile door cavity; 4) flow-induced noise from 

an open cavity turbulent flow. These application calculations have demonstrated 

preliminarily the capability and potential of the new source extraction formulation for 

solving more realistic aeroacoustic problems.
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Chapter 1

Introduction

1.1 Acoustics and Aeroacoustics

Sound is, just like light, one of the natural phenomena that are earliest known to human 

beings. In the real world, there exist various sounds. Sound is everywhere in our life. Sound 

may be good or bad. In most ordinary people's mind, harmonic and melodious music is a 

kind of good sound while roaring from engines/motors in transportation systems is just a 

kind of bad sound. We normally refer to such bad sound as noise.

Acoustics was originally, as one of the oldest branches in physics, related to the study 

of small pressure waves in a medium which can be detected by human ear. In other words, 

acoustics was mainly concerned with audible "sounds" (the typical range of frequency in 

which our ear can detect is : 20 Hz < f < 20kHz). In modern denomination, the scope of

acoustics has been extended to higher and lower frequencies: ultrasound and infrasound. 

Structural vibrations are often included in acoustics. In addition to frequency, the study of 

sound is conventionally divided, according to the propagation medium, into aeroacoustics, 

solid acoustics and underwater acoustics. In this thesis, the original definition and the 

propagation of sound in fluids, particularly air, is considered.

Aerodynamic sound is an inevitable product of unsteady flow, and mainly the result 

of the unsteady flow fluctuation as well as its interactions with structures immersed in the 

flow. Once aerodynamic sound is generated it propagates/radiates outwards in the 

surrounding medium. Hence aeroacoustics may be defined as the study of how sound is 

generated in air flow, and how it propagates/radiates in the non-uniformly moving medium.
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The goals of aeroacoustics are to understand the physics of aerodynamic sound generation, 

to develop effective and accurate prediction and analysis methods, and ultimately, to reduce 

the noise level which emitted from jet engine or any other units with highly unsteady flows. 

Naturally, aeroacoustics forms the basis of applications that relate to our daily life, such as 

hall acoustics, environmental acoustics, speech acoustics, physiological acoustics, and so 

on. Besides, aeroacoustics is important in many other fields, like automotive and energy 

industry.

Undoubtedly, the pioneering and distinguished textbook "Theory of Sound" by 

Rayleigh [1877] remains as the true basis of acoustics. Many fundamental ideas have been 

expressed in the book, and new facets of the celebrated scientific work have been giving 

great impulse to further research. However, aeroacoustics had long been a part of 

aerodynamics and had not become an independent field of research.

Aeroacoustic studies have being motivated by a variety of practical engineering needs 

from aviation and other sectors. The reduction of aerodynamic noise needs always to 

develop revolutionary concepts in the theory of aeroacoustics as well as accurate prediction 

techniques. After World War II, new challenges made the research of aeroacoustics enter 

the first golden age of aeroacoustics, which focused on the problems of jet noise and jet 

engine noise, and lasted from the late 1940s until the mid 1970s.

In 1952 Sir James Lighthill first proposed the famous theory of LighthilFs acoustic 

analogy for sound generation by turbulence [Lighthill, 1952; 1954] in response to the 

demand of finding ways to reduce the noise produced by jet engines. The important work of 

Lighthill is now widely considered as the birth of aeroacoustics as an independent field of 

research. Since the pioneering work of Lighthill, much work later in aeroacoustics has been 

based on the well-known Lighthill's acoustic analogy with certain modifications, 

simplifications, and adaptations to the particular flow conditions.

A recent survey from aircraft industry expects a growth of passenger kilometres of 

100% or more in the next 15 years. In order to satisfy the resulting demand for larger and/or 

faster airplanes, more recently, several alternative air vehicles have been proposed for 

civilian transportation. These include the supersonic civilian airplanes, large civil transports 

propelled by modern profans, and others. The introduction of these alternatives, or other 

advanced aviation technology concepts and innovations, potentially increase aircraft noise. 

The noise of future supersonic civilian airplanes (supersonic jet noise and sonic boom), the
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noise of future subsonic propulsion systems (e.g., large high bypass-ratio ducted fans with 

short inlet ducts), the noise of open rotors (e.g., helicopter rotors in descent), and the 

airframe noise of large airplanes are a few examples from aviation applications.

Regulatory agencies have begun to impose stricter noise regulations. Aeroacoustics 

researchers and engineers are now faced with the task of reducing the noise levels, not only 

of existing classes of aircrafts, but also of new, possibly even noisier ones. On the other 

hand, aeroacoustics has been listed by NASA as one of ten critical disciplines of science 

and engineering that will lead to gain scientific understanding in order to pioneer new and 

revolutionary concepts in aeronautics and to improve the theoretical, experimental, and 

computational tools for the design and analysis of advanced aerospace systems [Hessenius, 

1993].

It is well-known to all that the reduction of the aerodynamic noise is very important 

for civil aeroplanes. The flow-induced noise is also one of the principal concerns military 

aircrafts. For high-speed fighter aircrafts, the vibration of structural loads, which partly 

results from the flow-induced aeroacoustic environment, on the vehicle and on weapons that 

may be in the vicinity of the aircraft, should be taken into account. The several dB reduction 

of sound pressure level could gain an obvious increase of the fatigue life of a particular 

vehicle.

In order to be able to compete with air traffic on short distance, high speed trains have 

to become faster. Hence, the need to reduce the aerodynamic noise is true for future high 

speed trains since the generated noise by unsteady pressure fluctuations on train body 

surface increases approximately in proportion to the sixth power of the travelling speed 

[Ogawa & Kamioka, 1999]. In addition, small-size cooling fans for computers or electronic 

systems, as well as air-conditioning devices, are more and more present in everyday life. 

Human beings need and call for silence, not only during the fly-over of an aircraft, but 

when experiencing the flow of a hair-dryer too.

Facing the stricter regulations and new practical problems encountered in the use of 

new technology, presently, aeroacoustics can be viewed as flourishing. As stated by Sir 

James Lighthill [Lighthill, 1993], the research of aeroacoustics has recently entered its 

second'golden age'.
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1.2 Computational Aeroacoustics

There are three distinct streams in the study of aeroacoustics: analytical methods, 

experimental methods and numerical methods.

Before the development of large memory and high-speed computers, the study of 

aeroacoustic problems was mainly based on the first two methods mentioned above, or 

empirical approaches combined with both theoretical methods and experimental methods. 

With rapid advancement in computational power and significant strides in numerical 

algorithm development, many problems in scientific and engineering fields have been 

studied using the computer as a tool. Consequently, many new branches of research have 

been generated, such as, computational mathematics, computational physics, computational 

chemistry, and so on. Similarly, the dramatically increasing in numerical investigations for 

aeroacoustic problems led to a new research field Computational Aeroacoustics (CAA). 

Although aeroacoustics is not a new discipline, CAA is a relatively new research field in 

aeroacoustics. CAA is a broad field that encompasses research in the use of numerical 

simulations to better understand aerodynamic noise, and increasingly playing an important 

role in acoustic prediction and analysis of noise problems. According to a definition at the 

ICASE/NASA LaRc workshop in 1993 [Hardin, 1993], CAA is a relatively new research 

field of aeroacoustics, deals with the direct calculation of acoustic field generated by flow 

and of the interaction of acoustic field with flow. The phase direct calculation means that 

the methodology proceeds directly from the fundamental physical principles that govern the 

time-dependent motion of the compressible flows.

The fact that the physics behind the unsteadiness that generates aerodynamic sound is 

very complicated inevitably leads to many challenges for CAA. Fluctuations tend to grow 

in shear layers and vortical structures. Resolving these fluctuations in shear layers and 

vortical structures can be difficult. Trying to capture the fluctuations in them is even more 

challenging. Separated regions, instabilities, and large and small scale turbulence structures 

can all contribute to the sound field. Furthermore, energy that is radiated as noise is 

typically only a small fraction of the total energy near the acoustic source. This is part of the 

scale disparity between acoustic and hydrodynamic fluctuations. The human ear is able to 

distinguish between signals with vastly varying amplitudes, so it is typical to use a 

logarithmic scale to describe them. The sound pressure level (SPL) is given by
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SPL=2Q\og(p'rms/pref ) with units of decibels (dB). The reference pressure

pref =20xlO~6 Pa is the threshold of human hearing in air at I kHz for a typical human ear,

and rms means the root mean square of the acoustic pressure perturbations. The ratio of 

pressure amplitudes between a quiet conversation, 60dB, and a rook 'n' roll concert, 120dB, 

is 1000. In addition, atmospheric pressure is 3500 times greater than the pressure amplitude 

of a 120dB signal. At 120dB, one starts feeling discomfort and experiences a ringing in the 

ears. Although this level is very loud to humans, it is so small that a typical computational 

fluid dynamics (CFD) simulation very easily loses the sound waves among the large 

hydrodynamic fluctuations. Simultaneously resolving the hydrodynamic fluctuations and 

the wide range of acoustic signals is very difficult.

Acousticians also have to deal with very disparate length and time scales. Most people 

can hear fairly well between frequencies of lOOHz and 10kHz. This corresponds to 

wavelengths of 0.034m and 3.4m, respectively. The requirement of enough mesh points in 

the domain to resolve the very short wavelength while having a domain large enough to 

encompass the long wavelength results in enormous computational mesh point number. One 

is also faced with the challenge of trying to propagate the signal to observers located at 

great distances from the sources. A similar scale problem occurs temporally. The 

wavelength /I of an acoustic wave is related to the temporal period T by A=cT , where c

is the speed of sound. The periods for lOOHz and 10kHz are 0.01s and 0.0001s, 

respectively. Hence, one needs many time steps for the short period, and long running time 

to get a significant sample of the long period. This problem is usually exacerbated by initial 

transients in numerical solutions which must decay sufficiently before one can start 

sampling the acoustics. Even when using sampling techniques developed for experimental 

work, it is difficult to run codes long enough to get statistically significant samples of 

pseudo-random phenomena. Furthermore, the disparity between different acoustic waves is 

only part of the problem. One also has to compare the acoustic scales with those of other 

fluid phenomena and the geometry. All these indicate that sound generated by aerodynamic 

flows are of multi-scale.

From the perspective of physics, two fundamental problems in CAA can be classified 

as follows:



to model numerically sound generation (acoustic sources) as accurate as possible in 

the unsteady flows;

  to compute accurately the propagation/radiation of the resulting acoustic waves.

Broad goals of CAA are to enable aeroacoustic predictions in a variety of engineering 

flows, and to advance our understanding of the sound generation process in general. 

Flexibility with geometrical shapes and generality with physical boundary conditions is a 

major strength of computational approach in dealing with aeroacoustic problems. Also, as 

discussed in a review by Lele [1997], computational approaches to engineering problems 

should be supplemented, when possible, with other tools such as model and full scale 

testing, asymptotic analysis, etc. to gain the greatest insight into the problem at hand.

1.3 A brief comparison of CAA and CFD

In general, the study of aeroacoustics is concerned with noise produced by aerodynamic 

sources, including turbulence and moving aerodynamic surfaces. The process of generation 

and propagation of aerodynamic sound cannot be separated from the development process 

of unsteady flow field. Physically, both the flow field and the accompanying acoustic field 

are described by the same governing equations. In other words, the generation and 

propagation of aerodynamic sound are both governed by the Navier-Stokes equations. As 

we all know, computational fluid dynamics (CFD) is the analysis of systems involving fluid 

flow, heat transfer and associated phenomena by means of computer-based simulation 

according to a hierarchical mathematical model of Navier-Stokes equations. CFD has made 

impressive progress during the last two decades, especially in aerodynamic computations. 

In the hands of competent engineers, CFD has become not only an indispensable method for 

aircraft load predictions but also a reliable design tool.

CAA is rapidly emerging as an essential element in the study of aeroacoustics. 

Currently, much effort has being made in developing numerical schemes and methods in 

CAA. A natural question to ask is "why not use existing conventional CFD methods to 

solve aeroacoustic problems?" No attempt is made here to give a complete comparison 

between the computational aerodynamics with the standard CFD methodology and the 

computational aeroacoustics. Comparisons are only given in the following selective aspects.
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Although both the flow field and the resulting acoustic field are governed by the same 

equations of motion of fluids unsteady compressible Navier-Stokes equations, one must 

recognize that the nature and objectives of aeroacoustic problems are distinctly different 

from those commonly encountered in aerodynamics. Aerodynamic problems are often the 

time independent ones, whereas aeroacoustic problems are, by definition, time dependent 

[Tarn, 1995]. When CFD methods were developed for aerodynamic computations, the 

numerical algorithms were generally devised for the steady solutions of flows. The main 

objective of computational aerodynamics is to obtain aerodynamic loads acting on various 

components of a vehicle, whereas one of the main objectives in CAA is to calculate wave 

propagation and far-field acoustic characteristics (e.g., SPL, directivity, etc.) which is of 

little significance in typical aerodynamic computations. Further, the characteristics of the 

unsteady flow field and that of the acoustic field are also significantly different. Sound 

waves are simply propagating pressure perturbations superimposed onto the mean flow 

field. Generally speaking, acoustic perturbations are several orders of magnitude smaller 

than the mean quantities of flow. Typical acoustic fluctuation has energy level of 8-10 

orders of magnitude smaller than that of the hydrodynamic fluctuation in the flow field 

which contains the generation of the aerodynamic sound. On the other hand, the wavelength 

of acoustic waves is many times larger than the characteristic hydrodynamic length scales in 

the unsteady flow field. Therefore, the frequencies of acoustic waves are generally very 

high.

Another important issue which also reflects significantly different requirements for 

both computational aerodynamics and CAA is numerical dissipation and dispersion of a 

numerical scheme. The word 'dissipation' refers to the gradual decrease in the amplitude of 

the resulting acoustic waves as they propagate through a medium on the used computational 

grid. The word 'dispersion' refers to the propagation of the different wave components in 

the acoustic field at spurious, grid-dependent speed. Unfortunately, most conventional CFD 

schemes are with apparent numerical dissipation and dispersion. In fact, the numerical 

dissipation and dispersion as well as spurious, high-frequency reflection at computational 

boundaries present probably the biggest barriers to numerical solution of aeroacoustic 

problems where solutions are required at a great distance from the sound sources and a long 

running time. Though the same numerical concerns tend to occur in the calculations by 

means of CFD codes designed to capture the aerodynamic loading on a body, for the most
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part they do not cause difficulty in obtaining appropriate solutions in the purely 

aerodynamic case since flow properties are required accurately only on the body itself. 

Numerical dissipation, which rapidly contaminates calculated aeroacoustic waveforms, is 

considered to be beneficial in solutions to aerodynamic problems since it increases the 

stability of the solution. Dispersion is rarely noted in conventional aerodynamic 

computations using standard CFD codes, again since there is no requirement that the 

solution be accurate throughout the computational domain. It may be expected that the use 

of the conventional CFD methods for aeroacoustic calculations cannot obtain good results. 

This may be easily shown through a simple numerical experiment in which one- 

dimensional propagation of sound waves generated by a piston at one end that starts 

oscillating at time zero was computed by a CFD solver (upwind fully implicit scheme) 

using the Reynolds-averaged-Navier-Stokes equations [Djambazov et al., 1998a]. The CFD 

solutions agree only well in a very narrow region next to the source end. The acoustic 

pressure decay quickly. Refining of the mesh does not change the result at all.

From a computational viewpoint, the implementation of the numerical solutions for 

both the aerodynamic flow field and the resulting sound field has significant differences. 

For example, in order to accurately resolve the structure of the flow field in which some 

regions involving strong gradients in flow variables, stretched meshes are generally 

employed in an aerodynamic computation using a CFD method. However, the regular 

Cartesian mesh is more desirably adopted even for bodies with curved surfaces exist in the 

flow (of course, this will also give rise to some difficulties in the treatment of the solid 

boundary).

Generally, it is somewhat difficult to propagate an acoustic wave faithfully on a 

stretched mesh. This is partly because strong stretching in the computational mesh will 

inevitably introduce artificial inhomogeneities. On the other hand, non-uniform mesh will 

strongly affect the dissipative and dispersive features of a numerical scheme (especially 

finite difference based schemes). Vichnevetsky [1987] showed that if a wave is propagating 

into a stretched mesh, the wave can actually appear to change frequency and be reflected 

such that it starts propagating back in the other direction! Similarly, the unstructured 

meshes will create irregular numerical interface all over the physical space. In time- 

dependent aeroacoustic problems, they will affect the propagation of the acoustic waves and



cause some non-physical acoustic phenomena, such as non-physical sound scattering, 

reflecting, and so on.

One can also note that the order of a numerical scheme implemented in the 

aerodynamic calculations using conventional CFD methods is usually lower than third order 

whereas the use of high-order (refer here to the exceed third-order) numerical schemes is 

common in computational aeroacoustics due to the small amplitude of acoustic wave 

propagation and multiple- frequency waveforms. This does not mean that one may not use 

high-order numerical schemes in aerodynamic computations. While high order numerical 

schemes can generally obtain more accurate results for aerodynamic problems compared to 

the common numerical schemes, they will inevitably increase the span of the computational 

stencil, which increases the computational cost. For many aerodynamic problems, the use of 

the common numerical schemes (less than the third order) may achieve a reasonable 

accuracy of a numerical solution. However, this is not true for most aeroacoustic problems. 

Further, it must be pointed out that a high order scheme is not necessarily dispersion- 

preserving.

Because of the reasons above, there are still some computational issues that are 

relevant and unique to aeroacoustics. Among the treatment of boundary conditions by 

which allowing anechoic passage of out-going acoustic waves, maintaining a silent 

passage/outflow of vertical flow disturbances which may be nonlinear is most critical. 

Crighton [1993], Tarn [1995] and Lele [1997] had given a good discussion on these aspects. 

As pointed out by Tarn [1995], the development of CAA requires independent thinking.

1.4 Solution strategies in CAA

Like computational fluid dynamics (CFD), CAA encompasses a wide variety of physical 

systems, physical models, numerical algorithms, and solution philosophies. By solution 

philosophies here they mean the combination of physical models and approximations which 

are used to solve an aeroacoustic problem invariably there are many possible algorithms 

for any particular problem, and subtle tradeoffs are to be made in choosing one. From a 

computational point of view, two solution strategies can be classified currently, i.e., the 

direct sound computation and coupling computation of sound.
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1.4.1 Direct computation of sound

One of the prediction strategies in CAA is the direct sound computation. The unsteady flow 

and the sound generated by the unsteady flow can be computed together using the unsteady 

compressible Navier-Stokes equations, i.e. the unsteady flow and its sound are regarded as 

correlated parts of the same flow field. These first-principle based computations of sound 

generation provide physical insight into the sound generation mechanisms and its 

interaction with the flow. Such calculations are also invaluable in developing other 

prediction methods, such as coupling methods (hybrid methods). Since such direct 

computations of aerodynamic sound generation allow a very detailed look at practically any 

flow quantity of interest, the mechanism of sound generation can be explored at a 

fundamental level. As these are better understood, perhaps one can look for new paradigms 

for the control of the noise

The direct sound computation can be accomplished using various levels of 

approximation, yielding more or less detailed descriptions of the acoustic field. One level of 

the direct sound computation is to utilize direct numerical simulation (DNS) to solve the 

unsteady, compressible Navier-Stokes equations on a computational domain (domain of 

interest). From the computational perspective, such computation is the most accurate and 

also the most straightforward numerical method. In the direct sound computations based on 

DNS, the governing equations (compressible or incompressible Navier-Stokes equations) 

are discretized directly, and solved numerically. If the mesh is fine enough to resolve the 

smallest scales of motion, one can obtain an accurate time-dependent solution of the 

governing equations completely free of modelling assumptions, in which the only errors are 

those introduced by the numerical discretization. DNS makes it possible to compute and 

visualize any quantity of interest, including those that are difficult or impossible to measure 

experimentally, and to study the relationships between flow variables and acoustic 

variables. In the past decade, endeavours in the use of DNS in CAA have met with some 

success, and has yielded important insights into aeroacoustic physics (e.g., Colonus et al., 

[1993]; [1997]; [1999]; Freund et al., [1997]; [1998]; [2000]; Gloerfelt et al., [2001]; 

Mitchell et al., [1995]; [1996]; Avital et al., [1999a]; Al-Qadi & Scott, [1998]; Inoue et al., 

[2001]).
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Although DNS is useful and attractive tool for the study of aeroacoustics, it has many 

limitations. First, the use of highly accurate, high-order schemes is desirable to limit 

dispersion and dissipation errors, these schemes (spectral methods, for example) tend to 

have little flexibility in handling complex geometries and general boundary conditions. 

Second, in order to properly resolve all scales of an unsteady flow in DNS calculation one 

has to discretize the equations on extremely fine grids. The size of the smallest scales 

decreases with increasing Reynolds numbers, the dimensionless parameter that measures 

the relative importance of convective and diffusive effects. At present, typical estimates are 

that, to resolve all the scales of motion for a three-dimensional DNS, one requires a number 

of grid points proportional to the 9/4 power of the Reynolds number and the cost of the 

computation scales like the third power of the Reynolds number [Piomelli et al., 1997]. 

Since the sound source depends on time correlations, in principle the entire flow history 

must be stored; this would impose prohibitive storage requirements even to compute the 

sound radiated by a model flow like isotropic turbulence. In addition, a huge computational 

domain has to be chosen in order to simulate the propagation of acoustic waves. It is well- 

known that most technically relevant flows in aeroacoustics are characterized by relatively

high Reynolds numbers (i.e., characterized by Re = 0(l06 - 109 J ), it can easily be shown 

that it will be impossible to apply DNS for practical flow and aeroacoustic problems in the 

foreseeable future. To fulfil these two conditions at the same time will be a challenge for 

some generations of researchers to come. Furthermore, numerical calculations that include 

both the unsteady flow field and the acoustic field will introduce additional numerical 

issues. For these reasons, the calculations of an acoustic field based on DNS have largely 

been limited to simple geometries at low Reynolds number.

The lower level of the direct sound computation strategy is to use directly Large Eddy 

Simulation (LES). LES is similar to DNS in that it provides a time dependent solution of 

Navier-Stokes equations. Unlike DNS where all scales in the unsteady flow must be 

calculated, LES computes accurately only the dynamics of the large scales (i.e., the energy- 

containing eddies), which are known to contribute most to the sound generation in many 

problems, by using the filtered equations while the scales of the order of the grid spacing or 

less are modelled in some appropriate fashion, usually in a dynamic procedure. This method 

is based on the consideration that, while the large eddies are flow-dependent, the small
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scales tend to be more universal, as well as isotropic. Furthermore, small scales react more 

rapidly to perturbations, and recover equilibrium quickly. Thus, the modelling of the 

subgrid scales is significantly simpler than that of the large scales, and can be more 

accurate. For this reason, LES is not restricted to low Reynolds number, which makes the 

use of LES very attractive, especially at Reynolds numbers of engineering interest. Because 

the effect of small (subgrid) scale eddies on the large (resolved) scale motion is modelled in 

LES, the computational cost is drastically reduced compared with direct numerical 

simulation (DNS). In recent years, some acoustic calculations from LES have been reported 

(e.g., Bogey et al., [2000a]; Bogey & Bailly, [2002, 2003]; Choi et al., [1999]; Avital et al., 

[1999b]; [2001]; Constantinescu & Lele, [2001]; Piomelli et al., [1997]; Zhao et al., 

[2000a]; Uzun et al., [2002]; Lupoglazoff et al., [2002]; Gloerfelt et al., [2002]; Katoh, 

[1992]; Lui & Lele, [2002]). In some numerical studies on jet noise based on LES, 

Reynolds numbers of one or two orders of magnitude higher than those being used in the 

investigations based on DNS are seen. Most features of the flow field and the acoustic field 

were in good agreement with computational results from DNS or experimental data. These 

investigations reveal that LES methods are capable of simulating flows at higher Reynolds 

numbers and capturing the main physics of flows. Since sound generation is an unsteady 

process, LES will probably be the most powerful computational tool to be used in 

aeroacoustic research in the foreseeable future since it is a better way to obtain time- 

accurate solutions.

Although the LES results in the literature are encouraging and show the potential 

promise of LES application to aeroacoustic prediction, it should be pointed out that LES has 

its own weaknesses. One of the weaknesses, which might affect the application of LES to 

sound computations, is the effect of the small scales on the acoustic sources. For example, 

none of the LES studies on jet noise done so far has predicted the high-frequency noise 

associated with the unresolved scales. This implies acoustic power may have been 

underestimated if the contribution of these unresolved scales is simply neglected. Although 

the contribution of the small scales to the momentum transport is usually small, their 

contribution to the sound generation may be significant. However, the problem of 

evaluating the sound generation of the unresolved, subgrid-scale motions may be alleviated 

or overcome by developing subgrid-scale models. Piomelli et al [1997], Rubinstein and 

Zhou [1999], Seror et al. [1999], Zhao et al. [2000b], Bodony and Lele [2002], Bogey and
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Bailly [2003] did some initial work on the investigation of the contribution of small-scale to 

the noise spectrum. More research on the development of subgrid-scale models is need.

It has also been noted that the highest Reynolds number achieved in the LES 

simulations, which is much higher than that attained by current DNS calculations, so far is

still below those practical Reynolds number of interest (Re = o(l06 -109 )). Simulations of

aeroacoustic problems at higher Reynolds number (for example, jet noise) would be very 

useful in analyzing the broadband noise spectrum at such high Reynolds numbers. The 

recent jet noise computations of Bogey and Bailly [2002; 2003] are perhaps the most 

successful LES calculations done for high Reynolds number jets at the time of 

this writing. Similar with DNS, this is mainly a resolution problem. In LES the contribution 

of the large-scale structures is computed exactly. The similarity of the small scales, which 

only transmit energy to smaller scales (energy cascade), and the fact that the dissipation is 

set by the large scales are exploited by subgrid-scale models, of which the main purpose is 

to reproduce the energy transfer accurately, at least in a statistical sense. When the filter 

cutoff is in the inertial region of the spectrum, therefore, the resolution required by LES is 

nearly independent of the Reynolds number. However, the cost of LES calculation depends 

on the Reynolds number if a solid surface is present, since the length scale of the energy- 

carrying large structures is Reynolds number dependent near the wall [Meneveau & Katz, 

2000]. In addition, the motion of the large scales must be computed accurately in time and 

space, fine grids (or high-order schemes) and small time-steps are required. Chapman 

[1979] estimated that the resolution requirements for the application of LES to a turbulent 

boundary layer of flat plate, in which the resolution required to resolve the outer layer of the

growing boundary layer is proportional to Re04 , while for the sublayer (which, in 

aeronautical applications, only accounts for approximately 1% of the boundary layer 

thickness) the number of points need an increase at least like Re18 . Furthermore, since the 

turbulent motions are intrinsically three-dimensional, even flows that are two-dimensional 

or one-dimensional in the mean must be computed using a three-dimensional approach. 

Finally, for both the flow field and the resulting acoustic field, the equations of motion must 

be integrated over long time. Thus, while LES gives some relative improvements over DNS 

on the computational cost, its application to engineering flows remains expensive. Until 

recently, the direct sound calculation using LES is still used in academic environments and
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research laboratories to study the mechanism of sound generation. In the author's opinion, 

with the development of subgrid scale models for wall layer modelling and the decreasing 

cost of computational power, the application of LES to direct sound computation in 

computational aeroacoustics is bound to become more and more affordable.

Apart from the direct computation of aerodynamic sound based on DNS and LES, 

several direct computations of sound from the unsteady solution of Reynolds-averaged- 

Navier-Stokes equations (RANS) were presented by some researchers. Shieh and Morris 

[Shieh & Morris, 1999; 2000] studied two-dimensional and three-dimensional acoustics of 

cavity flows with the use of unsteady RANS simulations. In their computations, the one- 

equation Spalart-Allmaras turbulence model [Spalart & Allmaras, 1992] and the Detached 

Eddy Simulation (DBS) have been implemented to account for the turbulent flow field. Loh 

and Wang [2000] applied a new space time conservation element and solution element 

method (CE/SE for short) to compute the typical vortex-induced, self-excited oscillation 

gap noise problem and the subsonic cavity noise problem. Ashcroft et al. [2000a; 2000b] 

investigated numerically noise problem of an automobile door cavity using a multi-block, 

compressible, finite-volume, unsteady RANS solver with a Wilcox turbulence model 

[Wilcox, 1988]. Zhang et al. [1995] analysed far-field noise radiation from an unsteady 

supersonic cavity flow using RANS in conjunction with turbulence model. Although 

these computations have shown, to some extent, success, it should be noted that direct 

simulations of acoustic field based on RANS with algebraic Baldwin-Lomax turbulence 

model [Baldwin & Lomax, 1978] and turbulence model [Jones & Launder, 1973] 

cannot usually obtain reasonable acoustic results due to their excessive turbulent dissipation 

(e.g., Baysal et al., [1992]; Shih et al., [1994]). Sinha and Arunajatesan [2000] criticized the 

use of RANS in flows that involve strong coupling with acoustics.

According to the discussion above, direct sound computation based on DNS for 

high/moderate-Reynolds number flows of practical interest is limited by tremendous 

resolution requirements that are far beyond the reach of the capability of even the fastest 

supercomputers available. On the other hand, direct sound computation based on LES for 

aeroacoustic problems is not inexpensive, and has some particular issues that need to be 

tackled. Under the circumstances, researchers in computational aeroacoustics field have to
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seek for more practical solution strategy. The development of coupling methods for 

aeroacoustic problems has been an active area of research in computational aeroacoustics.

1.4.2 Coupling computation of sound

The major basis for the use of coupling methods comes from a theoretical analysis and the 

observation of characteristics of the flow field and the resulting acoustic field.

Most aeroacoustic problems of technological importance involve unsteady viscous 

flows (either laminar or turbulent). In many cases (such as jet noise or airframe noise) if 

there were no viscous effects of flows or instabilities, there would be no sound generation. 

However, an enormous range of length scales and time scales are involved in simulating 

unsteady viscous flows, especially turbulent flows, for aeroacoustic purposes. The 

following Table given by Morfey [2000] shows an estimation of these scales. In the table, 

Re = is the Reynolds number and is the Mach number, where and

denote velocity and length scales for the energy-containing eddies in the flow. The 

corresponding eddy time scale is while the smallest time and length scales in the 

flow (i.e., those at which dissipation takes place) are determined by the kinematic viscosity, 

, and the energy dissipation rate per mass, . The latter is assumed to scale as ~ 

Table 1.1. Length and time scales involved in aeroacoustic calculation for 
turbulent flows

Type of scale

Length

Time

Kolmogorov scale 

(smallest relevant scale)

U'

/e Re-0.75

u
,0.5

-0.5

Acoustic scale 

(largest scale)

Due to the distinct characteristics in both the unsteady flow field and the 

accompanying acoustic field, domain decomposition technique is generally adopted and is



16 

also a natural consideration in computational aeroacoustics. Domain decomposition is a 

generic technique for solving large mathematical and computational problems by obtaining 

partial solutions of the different sub-problems that build up the original problem. The term 

'domain' is most often used in a general sense and can refer to geometrical, physical, or any 

other type of subdivision. The coupling of viscous and inviscid calculations in some 

aerodynamic problems is an example of the application of domain decomposition in 

computational aerodynamics. In CAA, the implementation of concept of domain 

decomposition is that computational domain of interest is often divided into two parts 

considering different characteristics in both flow field and acoustic field. One is the 'near 

field' where main acoustic sources are contained. Other one is the 'far field' in which 

concerns are the propagation/radiation of the resulting acoustic waves. Figure 1.1 gives a 

schematic representation of a possible domain decomposition of the computational domain 

in computational aeroacoustics for jet noise problems and airframe noise problems of a 

multi-element airfoil system.

Far field

nozzle I Near field

Far field

Flow
Near field

a) jet noise b) airframe noise of multi-element airfoil

Fig. 1.1. Schematic of a possible domain decomposition of computational domain.

The flow field and the acoustic field are different and, at the same time, closely 

related each other. The acoustic sources are the result of the highly unsteady fluid motion in 

the near field or the interactions between the unsteady flow and bodies immersed in the 

flow. It could be said that calculating both acoustic waves and the small scale unsteady flow 

field is a harder problem than simply capturing the structure of the unsteady flow field 

itself. This suggests that the development of coupling methods is important in the
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short/medium term. For coupling methods in CAA, the source region (the near-field of the 

unsteady flow) where detailed flow structures need to be resolved may be simulated by a 

CFD technique (DNS, LES or RANS). The acoustic field is then calculated via an acoustic 

analogy or by solving a set of acoustic perturbation equations. The most important 

advantage in such a fluid-acoustic coupled procedures is the aerodynamic calculation and 

the calculation of sound propagation/radiation are separated so that the most appropriate 

approach may be employed at each step. In such coupling calculations, the coupling is 

implemented through various types of the acoustic sources which may come from 

aeroacoustic theories, semi-empirical relations, experimental measurements, and direct 

numerical extraction from the unsteady solution in the flow field. The key to accurate 

prediction of aerodynamic sound depends greatly on the accurate description or simulation 

of the unsteady flow field, which is an essential requirement for all coupling methods. 

Undoubtedly, the use of coupling methods allows widely available general purpose CFD 

methods to be used as the first element of a coupled fluid-acoustic simulation, i.e. the 

unsteady calculation in the near field (or sound source field from an aeroacoustic point of 

view).

There are two types of coupling methods under the frame framework of the fluid- 

acoustic coupling. The first is to solve the full unsteady incompressible or compressible 

flow equations for the near-field of the unsteady flow (i.e. sound source region without any 

or with less extensive simplification), then make use of the calculated sources for the 

solution of the acoustic field through an acoustic integral approach. DNS, LES and unsteady 

RANS simulations as well as other appropriate methods can be used in the first step of the 

coupling. As discussed above, the use of DNS and LES in the whole computational domain 

of interest in solving aeroacoustic problems is still subject to certain limitations with the 

current computational resource. However, the flow phenomena involving the generation of 

acoustic sources are often located in a small near-field region, for example, for trailing-edge 

acoustics in the vicinity of the trailing edge or the acoustic physics in the vicinity of 

leading-edge of a slat. Thus, the computations of nonlinear unsteady flow fields in a limited 

region of the whole computational domain of interest using DNS or LES is feasible with the 

current computational power. For the solution of acoustic field, various versions of acoustic 

analogies can be applicable, such as Lighthill's wave equation [Lighthill, 1952; 1954], the 

Ffowcs Williams-Hawkings (FW-H) equation [Ffowcs Williams & Hawkings, 1969], and
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Lilley's equations [Lilley, 1974]. An acoustic analogy is a rearrangement of the governing 

equations of fluid motion such that the left-hand side consists of a wave operator in an 

undisturbed medium and the right-hand side is comprised of acoustic source terms. The 

solution of the equation can be written as the convolution of the source terms with the 

Green function for the wave operator. Hence, with the strengths of the source terms 

obtained in the regions where they are significant, one can determine the acoustic signal at 

any point in the flow, including locations at long distances from the sources. The acoustic 

analogy is the most developed method and widely used in the aircraft industry. Another 

alternative is the Kirchhoff s surface method [Kirchhoff, 1883]. Although Kirchhoff-surface 

technique has been known for more than 100 years, it is only recently applied in CAA (e.g., 

Farassa & Myers, [1988]; [1995]; Lyrintzis & Mankbadi, [1988]; Pilon & Lyrintzis, [1998]; 

Difrancesantonio, [1997]; Brentner & Farassat, [1998]). In Kirchhoff-surface method, the 

acoustic sources are determined correspondingly from the unsteady solutions in the acoustic 

source field. In addition, the boundary element method (BEM) is also a choice for the 

prediction of far-field sound [Manoha et al., 1999]. The numerical simulation techniques 

(DNS, LES and RANS-based methods) can in principle be combined with each acoustic 

solver mentioned above. Hence a variety of different combinations is possible.

Coupling methods in which a numerical method (DNS, LES, or RANS) coupled with 

an acoustic analogy method or Kirchhoff-surface method have been used by many 

researchers, and achieved to some extent success in some aeroacoustic predictions. No 

attempt is made to give an overview due to the rapidly growing published literature. For 

such coupling methods, the most important advantage is that the calculation of acoustic 

field is economical computationally since certain integral formulation is used. However, the 

main drawback is that the details of the acoustic field cannot be obtained. In addition, an 

appropriate choice of the integral surface location, which may affect significantly the 

acoustic results, is not always handled easily.

In the past decade, the second type of coupling methods has already received much 

attention from CAA community. In the second type of coupling methods, the first step in 

the coupling is similar to the first step of the coupling procedure described above. The 

unsteady aerodynamic near-field, which contains the sound sources, is simulated by using 

DNS, LES and RANS-based methods. The difference between the two types of coupling 

methods lies in that for the second type of coupling methods the calculation of the acoustic
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field is performed by solving a set of acoustic perturbation equations (APE) associated with 

source terms through certain numerical methods rather than an integral formula. Although 

the source terms are also extracted directly from the computed unsteady solution of the flow 

field, the extracting formulations for the acoustic source terms are developed corresponding 

to the set of acoustic equations. The extraction of the acoustic source terms is crucial in 

implementing the second type of coupling methods.

In general, a set of APE with source terms are derived from the Navier-Stokes 

equations through a decomposition of variable into base (non-acoustic) component and 

perturbation (acoustic) component and some simplified procedures. The acoustic 

perturbation equations govern the propagation of acoustic propagation/radiation. They are, 

in essence, the advanced versions of the classical Possion-type wave equation. However, the 

derivation of a set of APE remains more the form of the Navier-Stokes equations while 

acoustic analogies always result in wave-operator-type acoustic equation for certain 

variables (e.g., acoustic pressure or density) with higher order partial derivatives than those 

in the original fluid flow governing equations.

One of the first attempts following the second type of coupling methods was made by 

Hardin and Pope [1994]. In their numerical procedure, the formulation for nearly 

incompressible flow is at leading-order strictly incompressible one. The pressure variations 

(required to maintain a strict divergence-free velocity field) in the incompressible flow are 

linked to an isentropic density perturbation. This nearly incompressible flow description is 

subtracted from the exact nonlinear compressible flow equations, and the resulting set of 

perturbation equations is viewed as a set of governing equations appropriate for the acoustic 

field and is discretized on an acoustic mesh which is chosen with a suitably large mesh 

spacing so that only the expected large-scale acoustic field is represented. Such a coupling 

procedure allows the implementation of the most efficient method on the most appropriate 

grid in each coupling step. The work of Hardin and Pope has made an important impact on 

the research of the second type of coupling methods. Hardin and Pope [1995] demonstrated 

its validity of their coupling procedure by conducting a simulation of acoustic field radiated 

from the laminar flow over a two-dimensional cavity. Lee and Koo [1995] investigated the 

sound generation due to an inviscid rotating vortex pair using Hardin and Pope's coupling 

method and obtained good prediction in comparison with an asymptotic solution. Recently, 

Shen and S0rensen [1999a] modified the aeroacoustic model in Hardin and Pope's non-
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linear two-step procedure. The new formulation was applied to laminar flows around a 

circular cylinder [Shen & S0rensen, 1999b]. More recently, Shen and S0rensen [2001] 

further developed their formulation to deal with turbulent flows by using an eddy-viscous- 

based turbulence model, and calculated acoustic noise generated by the flow past a 

NACA0015 airfoil a an incidence of 20 degree. Miyake et al [Miyake et al., 2001] adopted 

the numerical coupling procedure proposed by Hardin and Pope to calculate the acoustic 

field from near-wall turbulent flow low Mach number. However, the simulation of the 

acoustic source field in their coupling calculation is based on DNS. Viswanatham and 

Sankar [1995] employed a set of linearized Euler equations (LEE) with acoustic source 

terms which from the solution of RANS in the near field to predict noise radiated from 

axisymmetric supersonic jets. Morris et al [Morris et al., 1997] developed also a two-step 

coupling method in which a set of non-linear disturbance equations with source terms are 

derived. With the coupling between a RANS code and solving the non-linear disturbance 

equations with source terms, the acoustic field of some supersonic axisymmetric jets flow 

was investigated. Bailly and Daniel [1999] employed a treatment of acoustic source based 

on a stochastic approach in which RANS equations with a k-e turbulence model were 

solved when LEE was used to calculate the subsonic jet noise. Actually, a turbulent velocity 

field from the knowledge of the local mean flow was used as a source term. Later, the 

source model with LEE was applied to compute sound field generated by two co-rotating 

vortices in a sheared mean flow through a coupling procedure in which the unsteady flow 

field are evaluated using a LES technique, see [Bailly et al., 2000]. Ewert et al [2000; 2001] 

proposed recently a set of acoustic perturbation equations for calculation of the propagation 

of the acoustic waves. At the same time, they also proposed a modelling way for acoustic 

sources when implementing the coupling procedure, and applied it to the calculation of the 

sound field generated by the low Mach number laminar flow over a circular cylinder and to 

predict trailing edge noise based on an LES of the compressible flow field and the acoustic 

perturbation equations. Compared to the first type of coupling method associated with 

acoustic analogies, the second type of coupling method not only obtains the acoustic 

sources strength directly from the unsteady flow but properly accounts for the refraction and 

scattering effects of non-uniform flow on the sound propagation as well. The detailed 

formulation description of some of the second type of coupling methods mentioned above 

and treatment for acoustic source terms will be discussed in following chapter.
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1.5 Objectives of the Present Study

In the previous sections, a brief comparison between CAA and conventional CFD is made. 

Some difficulties and challenges faced in the development of CAA are pointed out. Current 

computational strategies used in CAA are discussed. The importance of adopting coupling 

methods for practical aeroacoustic prediction is particularly emphasized through the 

analysis of the characteristics in both the unsteady flow field and the acoustic field. The 

research in this thesis involves particularly the second type of coupling method. The main 

objectives of this research can be outlined as follows:

  to exploit a general numerical extracting formulation for the acoustic sources 

contained in the unsteady flow field, particularly under the framework of the 

second type of coupling methods, for the calculation of the resulting acoustic 

field by solving a set of acoustic perturbation equations.

  to investigate a high-order, optimized, staggered finite difference numerical 

method for the solution of the set of acoustic equations, including the use of a 

proper numerical boundary conditions.

  to build a suitable and efficient coupling procedure, in conjunction with the 

proposed source-extraction formulation, between a finite-volume based CFD 

solver and the finite-difference based acoustic solver.

  to apply the source-extraction formulation and the coupling procedure to some 

model acoustic problems and some more general problems with practical 

engineering background for test purposes.

  to achieve better understanding of the mechanism of aerodynamic sound 

generation in various complex flows.

1.5 Thesis Layout

This thesis consists of seven chapters. In Chapter 2 a brief overview of acoustic equation(s) 

and the treatment of acoustic sources under the coupling method framework are given. 

Lighthill's acoustic analogy theory is briefly introduced. Some extensions of the Lighthill 

acoustic analogy are also mentioned. Some weaknesses of the acoustic analogies are
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discussed. A few representative extracting formulations for acoustic source terms provided 

by some other researchers in the implementation of the second type of coupling methods are 

emphatically discussed. A set of acoustic perturbation equations (APE) is derived, 

following the decomposition of variable, from the time-dependent, compressible Navier- 

Stokes equations. Accompanying the derivation of acoustic equations, a new extracting 

formulation of acoustic source terms is developed at the end of this chapter. The set of 

acoustic perturbation equations is further simplified into another form which directly 

involves the acoustic perturbation pressure following the isentropic relation of pressure and 

density.

Chapter 3 gives a description of the implementation of a RANS-based cell-centred 

finite volume method used to simulate the unsteady near-field flow.

In Chapter 4, numerical solution methods of acoustic perturbation equations are 

discussed. The dispersion-relation-preserving (DRP) high-order optimised finite difference 

scheme is first introduced. Then a staggered-type extension of the DRP scheme is 

described. A set of radiating boundary conditions are tested for various background flows. 

Code validation for the acoustic solver is presented.

In Chapter 5 a coupling procedure and data mapping between the finite-volume- 

discretization-based CFD solver and the finite-difference-discretization-based acoustic 

solver is built up and described. Some acoustic model problems are investigated based on 

the described coupling procedure associated with our new source-extraction formulation. 

Computational results from the coupling procedure are compared with exact solutions or 

reference solutions.

Chapter 6 presents some preliminary application of the new source-extraction 

formulation associated with the coupling procedure to some more complex cases. An 

attempt is also made in the end of this chapter to perform the coupling procedure through 

using a Large-Eddy Simulation technique in the unsteady computation in the near-field for 

the extraction of sources terms.

A summary and some suggestions of future work of this research are made in Chapter 

7.



Chapter 2

Acoustic Equations and Acoustic Sources

In the first chapter the author has discussed the solution strategies adopted currently in 

sound prediction in aeroacoustics by means of numerical calculations. A key step in a 

coupling procedure is to identify and evaluate the acoustic sources. It will play a crucial role 

in calculating the propagation of the resulting acoustic waves and the analysis of the 

acoustic fields, such as, sound pressure level (SPL) and directivity of the acoustic field. In 

the past half century, much effort has been made to develop theories to describe the 

generation of aerodynamic sound and to model numerically the acoustic sources in coupling 

methods. At the same time, various forms of acoustic equations that describe approximately 

the propagation of acoustic waves are also derived by many researchers.

In this chapter, for the purposes of better understanding the research in this thesis, 

some important works on describing acoustic equation(s) and the modelling of acoustic 

sources will be introduced. Generally speaking, two kinds of acoustic sources can be 

identified in aeroacoustics. One arises from external excitation (for example, a vibrating 

solid surface). This kind of acoustic sources are relatively easy to be described and 

modelled. The other concerns sound sources generated by the flow itself (for example, 

vortex structures associated with shear layers or their interactions with solid obstacles). The 

complexity of unsteady flow field under various flow conditions (especially when 

turbulence is involved) results naturally in difficulties in describing the generation of 

aerodynamic sound and identifying the acoustic sources.

In the past fifty years, LighthilFs acoustic analogy and its some variants have been the 

dominant theory of aeroacoustics. Hence, a few selected important works following 

Lighthill's acoustic analogy theory are first outlined. Subsequently, a few recent ways of
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modelling acoustic sources associated with the second coupling methods classified in the 

introduction chapter are briefly described. The concrete solution of the described acoustic 

equation/equations is not discussed. As an attempt in this research field, a new extracting 

formulation for acoustic source terms, in conjunction with a set of acoustic perturbation 

equations (a particular form of the linearized Euler equations), is derived and described in 

detail.

At the very beginning, it should be made clear that the research work in this thesis is 

not to develop a rigorous of the generation of aerodynamic sound in unsteady flows. 

In some sense, the source extraction exploited in this thesis is only a 'numerical' technique 

for modelling acoustic sources when the linearized Euler equations are employed to 

calculate the propagation of acoustic waves.

2.1 Lighthill's acoustic analogy theory

Lighthill's acoustic analogy is to be introduced first. The primary work of Lighthill [1952; 

1954], performed in the fifties to tackle the problem of jet noise, is the most important 

advance in acoustics since the work of Rayleigh [1877] in the investigation of aerodynamics 

sound.

The basic idea of Lighthill's acoustic analogy is the real problem of aerodynamic 

sound radiated in a highly disturbed flow may be replaced by the problem of the classical 

acoustic radiation with equivalent acoustic sources. The difficulty of 

deriving exact equations is then avoided and replaced by the question of defining equivalent 

sources, which is essentially a task of aerodynamic nature. In fact, Lighthill's acoustic 

analogy is the recasting of the exact equations of fluid motion (Navier-Stokes equations and 

continuity equation) in the form of an inhomogeneous wave equation suitable to be applied 

in the far field (and ignoring here nonlinear waveform distortion) where pressure (or 

density) perturbations propagate through still fluid at the ambient sound speed. If external 

mass injection and external forces, i.e. external sources, are not considered, the famous 

Lighthill equation can be written, with compact tensor notation (repeated indices presume 

the summation convention), as
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where is density perturbation (defined as the deviation from the quiescent reference 

density), denotes the speed of sound in the ambient medium, represents the Lighthill 

stress tensor and is defined as

= )<?.. (2.2)

where stands for the quiescent reference density, is pressure perturbation, is the 

Kronecker symbol if and otherwise), denotes viscous the stress 

tensor and is defined as

(2.3)

where is the rate of strain (deformation) tensor and is defined as

/
1

+ (2.4)

Eq.(2.1) is an inhomogeneous wave equation. The right-hand side of Eq.(2.1) is referred to 

as the acoustic sources which can 

Note that perturbations (//,//) are defined as the deviations between the total flow 

variables and the quiescent reference state (/?0 ,/?0 ) during the derivation of

(2.5)

(2.6)
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Eq.(2.1) is the original form given by Lighthill [1952]. Following the similar derivation 

above, later one gave an acoustic analogy equation, in which the pressure perturbation is 

used instead of the density perturbation,

....(2- 7)

The Lighthill analogy described above is the first and the most influential attempt to 

create a theoretical description for sound generation by turbulent flows. As no 

approximation has been made in the derivation of the Lighthill analogy equation for the 

and , it is exact. From the expression of the Lighthill stress tensor, , three basic 

aeroacoustic processes which contribution to the sources of sound:

  The non-linear convective forces described by the Reynolds stress tensor v . ,

  The viscous forces ,

  The deviation from a uniform sound velocity or the deviation from an isentropic 

behaviour ( ).

From Eq.(2.7), the sound produced by the source term is also called 

see Pierce [1981]. The source term normally usually

referred to as the in literature.

The only assumption in the Lighthill acoustic analogy is that the resulting sound 

waves propagate in a homogeneous medium at rest. However, Lighthill's equation is in 

principle not easier to be solved than the original flow equations. When considered as 

independent an equation it contains less information than the original set of equations. The 

analogies are only convenient when one introduces approximations to determine the flow in 

the source region. A common assumption is that the source region is limited in space and 

that the flow in the source region is not sensitive to the acoustical boundary conditions in 

the quiescent fluid. This is often a reasonable approximation in when the
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quiescent fluid is unbounded. In other words, one can neglect the feedback from the 

acoustic field to the flow in the source region. Obviously, this assumption is not valid for 

some cases, for example, duct-fan noise problems.

Another approximation is to neglect the wave propagation time across the source 

region. This is reasonable when the source region has a characteristic length which is much 

smaller than the acoustic wave length. That is to say that the source is Similarly, 

this is not true for some aeroacoustic problems, for example, high-speed jet noise.

From Eq.(2.1) and Eq.(2.7), one can note that different choice of the variable in the 

wave equation leads to different noise source terms. The following section describes some 

modifications and extensions of the Lighthill acoustic analogy , one may further find that 

different propagation equation of acoustic waves will also lead to very different acoustic 

source terms.

In addition, it should be pointed out that the source terms in Lighthill's equation 

contain actually both acoustic sources and convection and refraction effects in the 

inhomogeneous acoustic domain. The convection effects included in the source terms will 

result in an unnecessary larger computational domain of acoustic calculation. For example, 

considering the trailing edge noise problem (i.e., the noise generated by the turbulent flow 

in the vicinity of a sharp trailing edge of an airfoil), in order to non-uniform convection 

effects, the source of Lighthill's equation has to be determined not only in the region closed 

to the trailing edge but also in the remaining inhomogeneous acoustic domain that can be 

considerably large even for small Mach number flows [Crighton, 1993]. Grogger et al 

[2001] showed that the convection effects due to the irrotational flow field around a 

Zhukhovski airfoil (12% thickness) are not sufficiently described by assuming a simple 

constant convection speed.

2.2 Some modifications and extensions of the Lighthill 
acoustic analogy

Lighthill's acoustic analogy has been influencing the study of aeroacoustics since it was 

published in the early 1950s. It can be said that much effort is made to modify, simplify, 

and adapt it to the particular flow conditions. In this section a few important modifications 

and alternative formulations of the Lighthill acoustic analogy theory are briefly described.
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The main objective is to manifest the diversity of the description of acoustic sources in 

various processes of sound generation. This will help us to understand the descriptions of 

other acoustic equations and acoustic sources in the second half of this chapter.

2.2.1 Powell's equation and Howe's equation

Under the framework of acoustic analogy, many researchers try to modify and extend 

Lighthill's formulation, including the treatment of acoustic sources. One of important 

attempts is to identify the source of flow-noise in terms of the vorticity because the vorticity 

is a very convenient quantity to describe a low Mach number flow. This is in part 

reminiscent of the classical decomposition of perturbations as a superposition (in the linear 

regime) of acoustic, vertical and entropy modes. In the non-linear regime a second order 

development shows that vortex-vortex interactions generate the aerodynamic sound [Chu & 

Kovasznay, 1958]. Another advantage of using vorticity as the source of sound is that it is 

often much more concentrated than velocity. The first source formulation, associated with a 

simple wave equation in terms of the vorticity, was given by Powell [1964].

For subsonic low Mach number, an isentropic non-conductive frictionless fluid, 

Powell's simple wave equation with source term can be written as:

(2-8)

where o> is vorticity, and defined as follows

(2.9)

Although the left-hand side of Eq.(2.8) is still a simple wave operator, the variable 

characterizing to sound is still pressure. The source term in the right-hand side of equation 

is quite different from that in Lighthill's equation. It can be seen that Powell 's formulation 

explicitly stresses the fact the vorticity <o is responsible for the generation of aerodynamic 

sound.
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Howe [1975] further extended Powell's work. At low Mach number the 

inhomogeneous wave equation can be written as:

(2.10)

where and v 0 -V . For the reference flow V 0 , we choose a 

potential flow with stagnation enthalpy The total enthalpy is

(2.11) 
2

where is the specific energy of the fluid.

Once again, one can note that the variable characterizing sound and the wave operator 

are different from those in Lighthill's equation, and also different from that in Powell's 

equation. Howe's formulation is a more general form of Powell's formulation. In other 

words, Powell's formulation is an approximate of the Howe's formulation. Powell's 

formulation was originally derived for free space conditions. If we neglect some terms, 

Powell's formulation can be derived from Eq.(2.10). Howe's analyses [Howe, 1975; 1984] 

demonstrates that Eq.(2.10) is also valid for subsonic isentropic internal flows if convective 

effects in the wave propagation are neglected. This is an important modification of 

Lighthill's equation. From Eq.(2.8) and Eq.(2.10), it appears that the source term is a 

This is completely different from Lighthill's 

The Powell-Howe formulation is particularly powerful when a simplified vortex 

model is available for the flow considered. Examples of such flows are discussed by Howe 

[1975; 1996], Disselhorst and Van Wijngaarden [1980], and Peters and Hirschberg [1993]. 

In Powell's formulation one also neglects the compressibility of the flow in the source 

region.
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2.2.2 The Ffowcs Williams-Hawkings equation

Most practical problems of sound generation by flow involve moving boundaries, moving 

sources interacting with those boundaries, or turbulence in shear layers separating a 

quiescent medium from a high-speed flow. To apply Lighthill's equation in these 

circumstances, a , are introduced. These may coincide with the surface of 

a moving solid or mark a convenient interface between fluid regions of widely differing 

mean properties. A solution is then sought by imposing boundary conditions on either 

by first performing subsidiary calculations to determine the pressure or velocity on , or 

when coincides with the surface of a solid, by application of suitable impedance 

conditions.

Let an indicator function that vanishes on the control surface and

satisfies in the fluid outside and /(*,/)<0 within The Heavyside 

function //(/) is defined as follows

. (2.12) 
0

Further assume to move with a velocity Using the same procedure as the

Lighthill analogy, the Ffowcs Williams-Hawkings equation can be read as follows [Ffowcs 

Williams & Hawkings, 1969]:

( }a/ 2 u a* 2

where is the same definition as in Eq.(2.6), and

where as before in the analogy of Lighthill, and



31

(2.15)

(2.16)

Compared with the Lighthill equation (Eq.(2.1)), the variable in the simple wave operator 

and the form of the acoustic sources are changed. From Eq.(2.14), it is clear that the surface 

source term and the surface force occur in the acoustic source terms. Upon till now,

the Ffowcs Williams-Hawkings equation is the most general form of the original Lighthill 

analogy theory. In unbounded space it is easy to recover the Lighthill equation from 

Eq.(2.13). Because of considering the moving surfaces, the Ffowcs Williams-Hawkings 

equation is widely employed to investigate the noise from a helicopter's rotating blades.

2.2.3 Phillip's equation and Lilley's equation

In the Lighthill acoustic analogy the flow-noise problem is reduced to the 

propagation/radiation of a prescribed distribution of in a homogeneous 

medium at rest. In many cases, the refraction of sound from mean flow is of importance. 

For instance, in the case of noise radiation from turbulent jets, the sound waves generated 

by the fine scale turbulence have to traverse the shear layer of the mean flow before 

reaching an observer outside. The velocity and density gradients of the jet mean flow cause 

significant refraction of the radiated sound. As the initial formulation (Eq.(2.1)) is an exact 

combination of the fluid motion equations, the source contains, all the 

propagation effects of the flow (refraction, convection, scattering). But with the usual 

approximation of by where v is the 'non-acoustic' part of the velocity, these

effects are completely lost. Even if they were kept in the source terms, the modelling of 

propagation effects mixed with sources would be very difficult due to the different orders of 

magnitude and different scales. Some researchers have tried to separate analytically the 

propagation effects from what they thought were truly source terms through modifying the 

simple wave propagation operator in the left side of Eq.(2.1).
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The basic idea is to construct an equation resulting from the equations of mass and 

momentum (similarly to Lighthill's acoustic analogy), and to include the acoustic mean 

flow interaction in the left-hand side of the equation. Phillip's equation [Phillips, 1960] was 

the first such attempt. For a perfect gas at ambient temperature, and neglecting entropy 

contribution, Phillips's equation read

1 

\ v

(2.17)

where is the specific heat ratio, the entropy, is the specific heat at constant volume, 

and v-V. Note that the dependent variable is natural logarithm of 

perturbation instead of The essential modification with respect to Lighthill's 

equation is that the time derivative is replaced by the material derivative 

Phillips claimed that the left-hand side of Eq.(2.17) represented the propagation of sound in 

a moving medium and the right-hand side gave the sources. In fact, Phillips' equation 

accounted for only part of the acoustic-flow interactions.

In order to obtain an equation in which all the propagation effects are accounted for in 

the left-hand side of an equation, Lilley [1974] derived his famous equation by taking the 

material derivative of Phillips' equation. Lilley's equation may be written in the following 

form [Goldstein, 1976]:

a2 n
2c; 0 (2.18)

where n 

1 
(2.19)

and is the specific heat at constant pressure.
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Lilley's equation contains better wave propagation physics. Compared with the source 

terms in Lighthill's equation, Lilley's source terms is more accurate representation 

sources because some wave propagation terms are moved back the left-hand side of the 

acoustic equation. It should be noted that velocity involved in the left-hand side of Phillips' 

or Lilley's equation is not just mean velocity but the total velocity. The perturbation 

velocities are generally small compared to the mean velocity. Hence, it is reasonable to 

linearize the left-hand side of Eq.(2.18). For the unidirectional mean flow case, the source 

term can also be simplified and various approximations have been developed, see Goldstein 

[1976]. Again, the variable characterizing sound and the source terms in Lilley's equation 

are different from those mentioned above. In addition, Lilley's equation is a third-order 

equation.

2.3 Some treatments of acoustic sources associated with other 
forms of acoustic propagation equations

In Section 2.1 and Section 2.2, Lighthill's equation for the propagation of acoustic waves 

and several important modifications and extensions have been briefly described. However, 

it must be particularly pointed out that their developments and derivations are all done 

under the framework of Lighthill's acoustic analogy. Two apparent important features can 

be seen. One important feature is that the choice of the variable to characterize sound 

significantly affects the form of acoustic source terms. Different selection of the variable 

leads to very different acoustic source terms. The other important feature is that the form of 

acoustic source terms also depends on the equation which describes sound propagation. 

Since the acoustic source terms contain unknown variables (velocity, pressure, and density), 

using an unsteady flow solver for the unsteady flow field which contains aerodynamic 

sources combined with an acoustic analogy for the far field acoustic calculations is quite 

common in aeroacoustics. From the perspective of accounting for the convection effects on 

acoustic waves from the flow, Lilley's equation is better choice. Unfortunately, as pointed 

out by Ribner [1981], Lilley's equation includes the prediction of hydrodynamic 

instabilities and thus, solutions can become unstable at critical mean flow profiles. 

Furthermore, Lilley's equation is a third order equation whose use is limited due to some 

difficulties in solution.
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Under the framework of coupling methodology, the linearized Euler equations (LEE) 

or other acoustic perturbation equations (APE) with acoustic source terms have become a 

new research direction in CAA field in the last decade or so. The LEE or other APE 

contains the effects of convection, refraction and scattering from mean flow on the 

propagation of the resulting acoustic waves. Furthermore, the LEE or other APE also valid 

in various non-uniform flow conditions. In the implementation of a coupling method, the 

acoustic source terms associated with the acoustic equations of the acoustic waves need to 

be extracted from a CFD simulation which can be a DNS, a LES or an unsteady RANS- 

based solver. A crucial point of a coupling method is the determination of the acoustic 

source terms. Currently, in the coupling methods associated with a set of acoustic 

perturbation equations with acoustic source terms, the efficient and accurate evaluation of 

near-field sound sources still remains an and problem.

However, as far as acoustic equations and acoustic source terms are concerned, a 

point must be clarified: if one puts all wave propagation terms on the left-hand side of 

Navier-Stokes (i.e., the full Euler equations) to account for mean flow convection and 

refraction as well as non-linear steepening effects, at the same time, leaves all viscous terms 

in the right-hand side of Navier-Stokes equations, the acoustic source terms become only 

viscous terms from the perspective of acoustic analogy. This is definitely erroneous. It 

could be said that the derivation of acoustic equations used in the second type of coupling 

methods doesn't follow the idea of acoustic analogy. Before describing a new extracting 

formulation for acoustic source terms made in this thesis, some ways of modelling 

numerically acoustic source terms in acoustic perturbation equations with the second type 

of coupling methods are overviewed below. In order to avoid any confusion and errors, the 

formulations are written as close as possible to the original form as in the cited references.

2.3.1 Hardin and Pope's formulation and the treatment of 
source terms

One of the first attempts in deriving acoustic equations with source terms from flow 

governing equations without following the framework of Lighthill's acoustic analogy was 

made by Hardin and Pope [1994].
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According to Hardin and Pope [1994], a hydrodynamic density correction to the

ambient density is introduced as where is the

ambient speed of sound, is the incompressible pressure, and is the time-averaged 

incompressible pressure distribution.

Suppose that flow variables are decomposed as follows

, = £/, + (2.20)

(2.21)

(2-22)

where wj and /?' are the fluctuation of the velocity components and pressure about their 

incompressible counterparts and is the fluctuation of the density about the corrected 

incompressible density /?,. Furthermore, it is assumed that 

where denotes the entropy.

Inserting Eq.(2.20)~Eq.(2.22) into the compressible Navier-Stokes and neglecting the 

effect of viscosity on the fluctuation, a set of nonlinear equations for the fluctuation is 

obtained as

' (2.23)

dP' . 2 "H 2

(2.24)

=    (2.25)

where /, = /7,X + "«: ) and is the 

ratio of specific heats.

These equations constitute a closed set of the acoustic perturbation variables /?', ,

and with the source terms on the right-hand side given by the incompressible solution. If
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the incompressible flow were uniform, these equations reduce to the Euler equations. Note 

that the fluctuations about the incompressible flow are assumed isentropic whereas the 

background incompressible flow is viscous and dissipative. Eq.(2.23)~Eq.(2.25) have been 

solved for various cases [Hardin & Pope, 1994; 1995; Lee & Koo, 1995; Ekaterinaris, 1997; 

Tsujimoto et al., 1998; Miyake et al, 2001].

Hardin and Pope's formulation was later modified by Shen and S0rensen [1999a; 

1999b]. Eq.(2.22) was replaced by where is the fluctuating density about

Similarly, substituting the newly decomposed variables into the Navier-Stokes 

equations and neglecting the viscous terms, Shen and S0rensen obtained the formulation

(2.26)

, , ap

(2.27)

(2.28)

where Note that the only acoustic source coming from the incompressible

solution in the instantaneous pressure, and hence the acoustic calculation may be started at 

any time during the incompressible computation.

Recently Shen and S0rensen [2001] extended their formulation to handle 

incompressible turbulent flows when the Reynolds-averaged Navier-Stokes (RANS) 

equations are used with a turbulence model for the unsteady flow field. The formulation can 

be written as follows

,
v ' 

(2.29)

(2.30)
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where now the overbar stands for the averaged quantities in the RANS, /]. = ,

, is turbulence viscosity, and is the turbulent kinetic energy. 

As compared to the laminar acoustic formulation, some extra terms relating to turbulence 

appear in the acoustic velocity equations. These terms are considered as additional acoustic 

source terms associated with the Reynolds stresses of the turbulent flow.

2.3.2 Morris et aPs nonlinear equations and the treatment of 
source terms

From a conventional Reynolds decomposition of the full, time-dependent Navier-Stokes 

equations, Morris et al. [1997] proposed a set of non-linear disturbance equations with 

source terms. To derive the nonlinear disturbance equations, the flow vector is split into

its mean value and a perturbation 

(2.32)

_ 
where lim   and the flow is assumed to be statistically stationary.

T^ao'TJt,

Substituting Eq.(2.32) into the full, time-dependent Navier-Stokes equations results in 

a set of perturbation equations. By definition, the mean flow is independent of time and 

only time derivative appearing in the equation set is that of the perturbation flow variables. 

The terms involving the perturbation quantities are retained on the left-hand side and the 

terms involving purely mean flow quantities are treated as source terms (on the right-hand 

side). The perturbation terms also contain nonlinear perturbation quantities. The viscous 

perturbation terms are neglected, as it is argued, following Hardin and Pope [1994], that the 

time-average properties are the result of dissipative mechanics, whereas the large-scale 

fluctuations are essentially inviscid in nature. After rearranging the mean flow and
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(2.33)
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2.3.3 Bailly et al's momentum source terms for the linearized 
Euler equations

(2.43)
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2.3.4 Billson et al's source terms for the linearized Euler 
equations

3(/7v,.)' 
0 (2.50)
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2.3.5 Ewert et aPs acoustic perturbation equations and source 
terms
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(2.77) 

(2.78) 

(2.79) 

From expressIOn (2.77), one can see that E{qlq' contains only derivatives of 

perturbation quantities, and the obtained approximate flow quantities as their coefficients. 

The tenn on the right-hand side ofEq.(2.75) (i.e., R ) contains only the overbared quantities 

in the decomposition of flow variables. Hence, R may be numerically evaluated after the 

approximate solutions are obtained using numerical techniques. 

K[a"q,q'] contains simultaneously both the obtained approximate flow solutions 

and the perturbation quantities. Furthennore, one may also note that K[a"q,q'] contains 

the nonlinear tenn of the Eq.(2.72). Physically, K[a"q,q'] encapsulates certain effects of 

feedback of the resulting acoustic field on the flow field from. If a problem was completely 

linear, and at the same time one considers the fact that the acoustic perturbation may be 

several orders of magnitude smaller than the overbared flow quantities (especially outside 

the near-field), the influence of the tenn K[a"q,q'] could be considered to be neglected as 

a means of obtaining approximately a set of acoustic perturbation equations. Neglecting of 

K[a"q,q'] means nonlinear acoustic propagation and the effect of the acoustic field on the 

unsteady flow field due to non-linear mode interaction are not considered. However, in 

some cases, for example, sonic boom production and acoustic resonance, the problems are 
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= -fl_2 = -0.18941314 

= -fl_3 =0.02651995
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