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Abstract

This thesis investigates the feasibility of establishing a generalised approach for defining 

similarity metrics between 3D shapes for the casting design problem in Case-Based 

Reasoning (CBR).

This research investigates a new approach for improving the quality of casting design advice 

achieved from a CBR system using casting design knowledge associated with past cases. The 

new approach uses enhanced similarity metrics to those used in previous research in this area 

to achieve improvements in the advice given. The new similarity metrics proposed here are 

based on the decomposition of casting shape cases into a set of components. The research 

into metrics defines and uses the Component Type Similarity Metric (CTM) and Maximum 

Common Subgraph (MCS) metric between graph representations of the case shapes and are 

focused on the definition of partial similarity between the components of the same type that 

take into account the geometrical features and proportions of each single shape component. 

Additionally, the investigation extends the scope of the research to 3D shapes by defining and 

evaluating a new metric for the overall similarity between 3D shapes. Additionally, this 

research investigates a methodology for the integration of the CBR cycle and automation of 

the feature extraction from target and source case shapes.

The ShapeCBR system has been developed to demonstrate the feasibility of integrating the 

CBR approach for retrieving and reusing casting design advice. The ShapeCBR system 

automates the decomposition process, the classification process and the shape matching 

process and is used to evaluate the new similarity metrics proposed in this research and the 

extension of the approach to 3D shapes.

Evaluation of the new similarity metrics show that the efficiency of the system is enhanced 

using the new similarity metrics and that the new approach provides useful casting design 

information for 3D casting shapes. Additionally, ShapeCBR shows that it is possible to 

automate the decomposition and classification of components that allow a case shape to be 

represented in graph form and thus provide the basis for automating the overall CBR cycle.
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The thesis concludes with new research questions that emerge from this research and an 

agenda for further work to be pursued in further research in the area.

Research Keyword

Case-Based Reasoning, Shape Recognition, Shape Decomposition, Shape Classification, 

Similarity Metrics, AutoCAD, Knowledge Management, Visual Reasoning.
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Chapter 1

This chapter gives an overview and the objectives of the research for the readers. The 

research questions have been as far as possible answered in brief and it is explained how they 

were addressed. The knowledge contribution of this research follows, along with an overview 

of the following chapters.

1.0 Introduction

The research is concerned with establishing a generalised approach for casting metal designs 

to define similarity metrics between 3D shapes using graphical representations for shape 

matching in Case-Based Reasoning (CBR).

In order to evaluate the approach, an application system has been developed at the University 

of Greenwich, called "ShapeCBR system". This system has evolved through addressing 

additional research objectives such as the decomposition process, the classification, and 

matching for shapes together with two new metrics have been created the first one, called 

"Component Type Metric" (CTM) is improving the efficiency of similarity measurement for 

shape matching and the second one "Overall Similarity Metric" (OMS) is to calculate overall 

similarity metrics between complex 3D shapes. Finally an algorithm has been developed to 

evaluate the ShapeCBR system and CBR itself, to improve the efficiency and performance of 

the system. ShapeCBR has the potential for being integrated within CAD packages in the 

current market.

1.1 Rationale for current research

The research is mainly concerned with similarity metrics for the shape retrieval problem. It is 

also concerned with automating the processes of decomposition and classification for 3D 

geometrical shapes using a graphical representation to allow for the efficient retrieval of 

similar shapes and thus reuse of relevant casting design knowledge.



The background of the problem is metal casting designs. It is useful to define what "metal 

casting" means. A casting may be defined as a "metal object obtained by pouring molten 

metal into mould and allowing it to solidify." The liquid metal is poured into the mould 

cavity where it is shaped.

Of all the methods of processing components such as forging, machining, casting is the 

cheapest for mass production. The problem with casting is one of quality of the final product. 

This is very dependent on the know-how relating to design of the mould. There is now 

considerable body of knowledge which has been acquired from the work carried out by 

industries, government bodies and universities relating to casting products soundly within 

cost constraints. Although the value of design knowledge is widely recognised throughout the 

industry, the management of design knowledge is often unplanned in some respects. Design 

histories are often lost, or banished to paper files that are difficult to search. Also, design 

engineers retire [Pegler C.J.I993], or move away leaving inadequate design records. There 

are many problems faced by a casting design engineer, centring on the physical freezing 

processes. Foremost among these is shrinkage in the mould, which can give rise to porosity 

and areas of structural weakness [Campbell, 1991]. Other practical problems arise during 

pattern making and subsequent machining of the cast part.

Jolly [Jolly, M. 1996] found in his survey that the foundry industry is looking for software 

applications that can not only predict problems that occur during metal solidification (such as 

shrinkage porosity) but also, having predicted these problems, propose intelligent solutions 

for the problems found. Current commercial casting software can be classified into two broad 

areas:

1. Intelligent knowledge-based systems (DCBS), [Hennessy, D. Hinkle, D 1992],

2. and numerical simulations based on physical process models [Corbett, C.F. 1989].

The advantages of a CBR system are that it is to possible store the valuable know-how and to 

distribute the expertise.

Intelligent knowledge-based systems (IKBS) attempt to support an earlier stage in the design 

process. Numerous software tools such as those discussed in [Knight, B; et al, 1995] have 

clearly demonstrated the effectiveness of knowledge-based and other advanced (new) 

heuristic-based programs for designing castings.



There are some commercial software packages available in the market that can calculate the 

position of feeders, e.g. NOVACAST [NovaCast: Sillen, R.I991]), analysis geometric 

properties and gives suggestions further improvement the design e.f. AutoCast [Ravi, 

B.I 999].

Although many prototype tools have demonstrated the efficiently of CBR in the domain of 

engineering and design [Marir, F; Watson 1994 -15], there is an insufficiency of research for 

its use in the foundry industry. CBR can play an important role in intelligent casting software. 

One commercial CBR system [Price, CJ. et al. 1997] called Wayland is used for the setting 

of parameters in pressure die-casting. This research has demonstrated that CBR has an 

exciting future in casting software.

The main problem for a CBR system is how to retrieve cases efficiently, where the retrieval 

based on the shape. Although there are other possible search indices, for example the type of 

casting alloy, weight and general description of part (wheel, sea-gland, valve, engine bearing 

cap. etc.), these descriptions are too general for accurate retrieval. General classifications of 

shape components have been proposed; for example, Biederman's geons [Biederman et al 

1992]. However, during this research, it became apparent during knowledge elicitation, that a 

decomposition of shapes specific to the casting industry already existed in practice [Knight B. 

et al, 1995, and Wlodawer, R: 1967].



1.2 Research questions

1.2.1 The main question is:

[Q] Is it possible to retrieve useful casting information efficiently and automatically 

from a "similar" existing three-dimensional casting design for a given target shape? 

(The similarity problem in casting design).

To fully understand the main question of similarity metrics between three dimensional shapes 

for shape retrieval problems it is necessary first to answer the following additional questions:

1.2.2 The Componentisation questions

This section presents the primary objective along with the additional questions of this 

research, attempts to prove the feasibility of shape componentisations automatically into 

connected generic components, which would help a casting designer to store the products of 

decomposing and classification into case base knowledge. Regarding automatic retrieval 

driven by a given target design, the first componentization question is:

[CQ] Can the CBR process for the shape retrieval of casting designs be automated?

CBR process: is retrieve and re-uses experience for problem-solving tasks. CBR process is 

effectively applies past solutions to new situations. From a case base, which stores and 

organises past situations, the CBR process chooses situations similar to the problem at hand 

and adapts their solutions.

This question raises three sub questions:

[CQ-a] Can 3D shapes be automatically decomposed into a set of substantially 

different 2D shapes (views) that can be used to retrieve useful casting knowledge? 

[CQ-b] Can 2D shapes be automatically decomposed to a set of connected generic 

components?



[CQ-c] Can useful casting knowledge about casting shapes be retrieved 

automatically from a CBR system that stores the componentised views of the 

shapes?

It is shown in this thesis that it is possible to decompose a shape automatically to a set of 

connected generic components.

Bar

Taper (A)

Taper (B)

(L) (T) (X)

Fig. 1.0 shows the proposed primitive components (L, T and X), Bar and Tapers elements [Mileman: 2000].

L Bar Type (A) L

Bar Type (B) Bar Type (B) 
I____I

Fig. 1.1 shows bars type (A) and type (B).

This thesis attempts to answer this question by devising and testing a novel algorithm for 

decomposing 3D shapes into a set of substantially different 2D shapes or (views).

This algorithm is based on the identification of hotspots. A hotspot is an important point for 

the decomposing process which is made up from two connected original lines, (the original 

lines concerning the boundary of the shape). This point is only concerned with internal 

geometrical information for the shape and only from this point can penetrate (go through) 

the shape (A shape could be made up from one or more components and these components 

can be classified into different component types and these types could be identified by their



internal geometrical information for the shape). Once hotspots have been found, projecting 

techniques are used for decomposition of the shape into a set of rectangles and triangles can 

be used to define the taper types.

It is shown in this thesis that it is possible to classify the generic components automatically 

and efficiently into identifiable elements, components and regions. Components are classified 

as Ls, Ts, and Xs (Fig. 1.0) etc. by using an algorithm known as "Full-scan" to identify the 

structural components and an algorithm known as "Semi-scan" to identify elements. See 

Chapter 4 for details. The combination of these two techniques identifies the regions. 

This thesis attempts to answer the sub question [CQ-b] of the componentisation question by 

devising and testing a novel algorithm for shape classification into identifiable components. 

This algorithm is based on identifying component types by using the searching method for 

the first hotspot. Once the first hotspot has been recognised, then a rectangular shape will be 

drawn, called Core-Spot (heart of each component) see the algorithm in Chapter 4 in details. 

The Full-scan task is continuing to scan cyclic overall the shape, point by point, to find the 

hotspots and identify components by their number of hotspots. This method is called "Full- 

scan".. (See on Fig. 1.0).

This thesis attempts to answer the sub question [CQ-c] of the componentisation question by 

devising and testing a novel algorithm for shape matching.

Once sub-question [CQ-a] and [CQ-b] are resolved and stored in case-based knowledge, 

then it is possible to retrieve useful products from 3D shapes automatically and efficiently for 

a given target shape. Section 1.3.3 introduces the second main question of similarity metrics.

1.2.3 The Similarity metrics questions

This section is focusing on similarity metrics between 3D shapes. An algorithm has been 

designed that could produce a competent and efficient way to retrieve useful casting design, 

automatically, from case base knowledge, within the ShapeCBR System.

The similarity question poses different sub-questions which are as follows:



The first sub question is:

[SQ-a] Is it possible for the similarity metrics devised in previous research to be 

improved to produce more efficient retrieval of useful casting advice from the 

ShapeCBR System?

The problem concerned:

Mileman [Mileman: 2000] proved that useful casting advice from the ShapeCBR system 

could be retrieved from similar designs. However, Mileman assumed that components of the 

same type are identical. For example any types of bar whether thick or thin, are deemed 

similar, so basically the size of the component types have not been considered. [Mileman: 

2000]In his approach one of the similarity metrics were component numbers with their types, 

which was an inefficient and cumbersome process that could hamper the practical use of a 

commercial system. Additionally, only the type and not the actual geometrical dimensions of 

a component were stored. This prevented us from increasing the sensitivity of the similarity 

criteria to take account of a similarity measure between components of the same type. For 

example, it makes sense that the aspect ratio of a Bar component would affect its similarity to 

another bar component for purposes of casting. The positioning of feeders and chills can be 

affected, so that the knowledge associated with a shape may be contingent not only on the 

types, but on actual geometrical features of the constituent components. 

The leaf metric is defined by the nodes of a graph which are connecting components (for 

example: bar, taper) and that have one 'free' interface connection.

Mileman, assumed that bar and taper component types count as leaves But this research 

investigated the assumptions that they are different elements. For example a bar is 

rectangular-shaped and cannot be divided into more elements. But the taper component type 

can be divided into two or more elements. Fig. 1.0 shows that the taper type (A) made up from 

one rectangular-shaped and one triangle-shaped so it means there are two elements and for 

taper type (B) made up from two triangles and one rectangular-shaped so it means there are 

three elements). Therefore we believe that the differences between these two component 

types play an important role and they are affecting the degree of competent similarity 

measurement for shape retrieving.
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However the only new additional metrics that have been applied for current research is 

combining numbers of component types with types of component plus their size. And we 

believe that this new metric is useful for the efficient shape retrieval process.

The research deals with 3D axisymmetric shapes (shape has one view cross section); and also 

3D arbitrary shapes (shape has a finite number of different cross-section views) within the 

current thesis.

The second sub-question is:

[SQ-b] Can a competent similarity metric between 3D casting shapes be defined to allow 

for retrieval of useful methoding advice associated with 3D shapes?

This Similarity question deals with 3D arbitrary shapes.

The above question was considered by Mileman in his thesis [Mileman: 2000], but was left as 

future work.

Typically, casting shapes are stored as files produced by CAD packages such as AutoCAD. 

These files contain all geometrical information and most CAD packages provide facilities for 

providing 2D sections through the 3D shape. The case base in the first system contained only 

one 2D cross-section (3D axisymmetric shapes) through each shape assumed by Mileman. 

However, in many cases two or more substantially dissimilar 2D sections could provide a 

more accurate description of a 3D shape. These would need to be taken into account for a 

more efficient retrieval of 3D shapes. The selection of dissimilar 2D sections can be achieved 

with the use of a similarity threshold to define substantially dissimilar sections.

Arbitrary 3D shapes can be treated as two or more cross-sections or views and these can 

provide valuable identifiers to enable accurate retrieval. In this case, the overall measure of 

similarity between two 3D shapes needs to be considered. For example take multiple views of 

a target shape and compare with multiple views of retrieval shapes.
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1.3 Research Methodology

In order to answer the research questions defined in this section, a conclusive literature 

review was conducted. The literature review investigated the body of knowledge covering the 

application area in casting design and looked into previous attempts to automate decision 

support using empirical, numerical and knowledge based/AI techniques. Additionally, there 

was a comprehensive review of CBR techniques and applications to similar application areas. 

Based mainly on previous successful work in the area [Mileman :2000], it was decided to 

extend the CBR techniques used there with a view to automating the CBR process, improving 

the efficiency of knowledge retrieval and extending to 3D shapes.

The new approach and techniques were implemented into a system called ShapeCBR and a 

qualitative evaluation was first conducted. Following this, further evaluation was conducted 

using the case base used in Mileman research as a benchmark to evaluate the efficiency of the 

new approach. A further evaluation of the applicability of the approach to 3-D shapes used 

elicited from a casting domain expert and advice retrieved was compared to the human expert 

advice. The results of the evaluation showed that the CBR technique can be automated for 2D 

shapes and that the proposed enhanced similarity metrics brings about efficiency gains in 

terms of the quality of the advice gained and that the approach can be extended to 3D casting 

shapes.

1.4 Achievements

This section describes briefly the main achievements of this research while investigating the 

questions posed.

This research contains a number of contributions both in the specific field of similarity metric 

between 3D shapes for CBR, and to CBR itself in general. These are:

A new algorithm has been designed and tested to automate shape processing in a competent 

and efficient way for decomposing shapes into a set of connected generic components and to 

classify decomposed products into generic components of identifiable types (Fig. 1.0) 

[Mileman, Thesis: 2000] such:



  Bar

  L-component

  T -component

  X-component

  Taper

The similarity metrics between components on the same type have been extended using 

methods that take into account the geometrical features of each single shape component. The 

improved similarity metrics have been shown to give better results by matching and 

retrieving better expert casting advice. (See chapter 5 on similarity metrics).

Finally, an efficient equation has been created for overall similarity metrics for 3D rotational 

symmetric shapes using graphical representations to matching the shapes. Overall similarity 

metrics between arbitrary 3D shapes can be defined and used to retrieve relevant casting 

advice. The 3D shapes can be treated from one view to a number of cross-sections or views. 

Often these shapes can provide valuable identifiers to enable accurate retrieval. Chapter 6 on 

evaluation discusses this in detail.

1.5 Thesis Summary

The thesis is divided into seven chapters, which are dealing with particular processes 

dependent on each other.

Briefly, the scope of each chapter can be described as follows:

The first chapter covers the Introduction of the thesis and provide a background to the 

problem casting design, by investigating the main research questions, its sub-questions, and 

possible ways of finding solutions, to overcoming the problem. It also describes the 

methodology of the current research and followed by achievements and thesis summary.

The second chapter presents the relevant literature review, as well as extracts of the 

undertaken research. The research was quite widespread, since various issues had to be 

investigated and the nature of the casting designs (shapes) and their method of engineering
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had to be established. The information technology that was used, more specifically CAD 

application [AutoCAD] and their suggestions were examined. The availability of artificial 

intelligence (AI) approaches to CAD, case-based reasoning (CBR) techniques, visual design, 

and knowledge management were studied.

The third chapter covers the decomposition algorithm to automate the decomposition process 

of shapes. This is analysed in depth along with the 3D models approach. The decomposition 

algorithm deals with numbers of 2D cross sections or (views).and these views represents 3D 

shapes. The outcome stored into the case-base knowledge is ready for next step of 

'classification'.

Chapter four covers the design of a second algorithm to automate shape classification, which 

is analysed in depth by recalling decomposition that results from the case-based database. In 

this chapter, new techniques have been analysed and designed by developing two algorithms 

to automate shape classification. The first method is "Full-scan" to identify the components 

and regions (L, T, X and tapers) and the second method is "Semi-scan" to identify elements 

(type of Bar (A) and Bar (B)) see on Fig. 1.1. The results of this classification are stored into 

the case-based knowledge, ready for retrieval.

Chapter five deals with the similarity approach. A (CBR) technique has been used for 

similarity metric and has been analysed in detail. A number of algorithms have been created 

to implement an application for shape matching. Several equations and formulas have been 

created to achieve both individual similarity and population similarity (in this case looking 

for overall similarity between two 3D shapes) and also to describe the actual problem with 

their final solutions for the shape retrieval process.

Chapter six introduces an evaluation for current research based on experimental results, by 

testing over 100 3D shapes and 20 additional new shapes from 3D arbitrary shape types. In 

this chapter evaluation is based firstly on previous research results from Mileman [Mileman: 

2000] and secondly took previous data and replacing with new record from current research 

and evaluate by the system ShapeCBR to see the progresses and successful of through current 

methods have been used and the third test was on overall similarity metrics between arbitrary 

3D shapes. These shapes can be treated from one view to the number of cross-sections 

(views). Often these shapes can provide valuable identifiers to enable accurate shape
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retrieval. And the final results for the three testes have been judged a human expert in related 

areas.

Chapter 7 presents the conclusion and further work of the thesis. It starts with a brief 

summary of the main achievements, and then discusses future enhancements, present a 

numbers of contributions, followed by a number of Appendices.
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Chapter 2 

Literature Review

An overview and objectives of this current research have been introduced in chapter one and 

a brief explanation of each question has been presented. The aim of this chapter is to establish 

the domain of this project, namely casting design, CAD and CBR. The various well- 

established techniques, knowledge management, computer Aid design (CAD), knowledge 

based design, Case-Based Reasoning, and more are examined in an attempt to discover if 

improvements can be made to the early phases of casting designs.

In addressing expertise in the comprehension of casting design and CAD, this study draws 

upon literature from many sources including cognitive science, psychology, and architecture. 

Although it is beyond the scope of this thesis to present an extensive review of this literature 

(Gobert, 1998 for a thorough review), some literature will be presented to provide the readers 

with a suitable background for the research that took place. It should also be noted here that it 

is beyond the purposes of this study to provide a detailed discussion of the numerous 

different design theories.

2.0 Introduction

Experiential knowledge plays a significant role in the human reasoning process as previous 

experiences help in understanding new situations and in rinding solutions to new problems. 

Experience is used when performing different tasks, both those of a routine character and 

those that require special skills. This is also the case when designing where over 50% of the 

work on a day-to-day basis is routine design that consists of modifying past solutions [Moore: 

1993]. This means that most of the design problems have been solved before, in many cases 

over and over again. Despite this, the computer support used by designers still lacks the 

ability to use experiential knowledge in a rational way. In recent years, researchers in 

Artificial Intelligence (AI) have studied if cases (knowledge about specific problem-solving 

experiences) could be used as a new case of experiential knowledge. Cases are valid in a 

specific situation in contrast to generalised knowledge, e.g. base rules.
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Making use of past experience in the form of cases is commonly known as Case-Based 

Reasoning (CBR) [Kolodner: 1993]. The application of CBR in design, known as Case-Based 

Reasoning Design, is still in its infancy even though several CBR systems focusing on 

various domains have been developed [Maher, et al 1997, Rivard and Fenves, 2000]. 

Although many of these applications are useful in solving the specific problem that they are 

aimed at CBR systems are seldom used in practice the reasons is that the information of the 

case used is system-specific to creating such representations provides the system developer 

with an opportunity to investigate new ways to represent design information and much 

knowledge has in this way been gained on the other hand, this limits the information 

available for the CBR to information either created by the CBR system or information 

translated to the system-specific representation. Because these representations are rather 

complicated and different from those used by the ordinary designer when documenting 

design information, it is difficult to achieve an automatic translation. For this reason, most 

CBR systems only contain cases that are produced using the respective system or information 

translated by hand to the system-specific representation.

Case-Based Reasoning (CBR) originates from the cognitive observation that humans often 

rely on past experience to solve new problems. Using this observation, [Schank, 1982] 

created the theory of dynamic memory, which describes a concept of memory organization 

that could be used as a guideline for computer representation [Schank, 1999]. The premise of 

dynamic memory is that remembering; understanding, experiencing and learning cannot be 

separated from each other [Kolodner, 1993]. We understand by remembering old similar 

situations and use these to create expectations about the new situation. If these expectations 

turn out to be right, we feel that we understand; if the expectations fail we try to explain why 

by remembering old situations with similar failures. These explanations are then used to 

change the memory (Learning) so that the new situation can be understood. 

In order to make this possible, the same knowledge has to be used for remembering, 

understanding, experiencing, and learning.

The analogy between dynamic memory and a system facilitating CBR is rather near at hand. 

The main aim for CBR in such a system is to find, i.e. recall, old experience that can be 

helpful in the present design situation. This experience is used when designing for 

understanding the problem and for finding a solution. The design activity creates another 

experience that can be stored in the design system for the purpose of reuse. As stated in the
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theory of dynamic memory, this can only be possible if the CBR activity and the design 

activity share common properties and structures.

The theory of dynamic memory also implies that understanding is the main aim and 

remembering supports this activity. Using analogy again, it can be stated that designing is the 

main aim for a design system while CBR aids this activity. Concerning the choice of 

presentation, this ought to yield that the representation and the information used for designing 

should also be used for CBR. It should also be pointed out that unless the CBR process 

becomes more or less automatic, the designers would be reluctant to add potentially useful 

cases to the case-base [Flemming and Woodbury 1995] or to try to reuse old cases. The only 

way to avoid extra work for the sake of CBR is by enabling the CBR system to use the 

information created by the designer during the design process. This research proposes an 

approach for capturing shape decomposition (Chapter 3), and classification process (Chapter 

4). Chapter 5 briefly presents how this information can be retrieved. Having this approach, 

Chapter 6 describes CBR-Shape System, a prototype implemented to test the proposed 

approach and Chapter seven concludes the thesis.

This chapter deals with current research, reviewing the case-based reasoning (CBR) literature 

as the main method to tackle the problem, based on the reuse of past cases and the use of a 

computer-aided design (CAD) tool to design the components.

CBR is a part of Artificial Intelligence (AI) which was discovered in the mid 90's, It can be 

used to review CAD documentation to produce plans and all types of engineering drawings ( 

which can mean producing all documents with the computer ) In addition to drawings, 

different bills of quantities are directly attached to all types of engineering drawings 

(architects, mechanic, electric, electronic works etc), and Visualization (Visual reasoning, 

e.g. thinking in shapes, forms and images) is a fundamental attribute of casting design, and 

therefore combining it with CBR may provide significant results both for the field of design 

thinking as well as for the field of Computer-aided Design (CAD). All these three elements 

combining together will have a high level benefit for the research and the knowledge above is 

of immediate interest in answering the research questions of this project. Also the information 

in this section can be of great importance for the usability of the produced software, and the 

options that need to be implemented.
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2.1 Overview of the research problem

The research focuses on the problem in metal casting designs. Jolly [Jolly, M. 1996] found in 

his survey that the foundry industry is looking for software that can not only predict problems 

that occur during metal solidification (such as shrinkage porosity) but also, having predicted 

these problems, propose intelligent solutions for the problems found.

2.2 Background of the problem

There are many problems faced by a casting design engineer, centring on the physical 

freezing processes. Foremost among these is shrinkage in the mould, which can give rise to 

porosity and areas of structural weakness [Campbell, 1991]. Other practical problems arise 

during pattern making and subsequent machining of the cast part. Many software tools have 

been developed to assist the designer to solve this problem.

2.2.1 Metal casting designs problem

Solid Shrinkage; is one of the problems in metal casting designs (often called patternmaker's 

shrink) occurs after the metal has completely solidified and is cooling to ambient 

temperature. Solid shrinkage changes the dimension of the casting from those in the mould to 

those dictated by the rate of solid shrinkage for the shapes see on Fig.2.0 (Aziz: 2004). 

Pouring; is another problem in metal castings are produced in moulds that must withstand the 

extremely high temperature of liquid metals. Interestingly, there really are not many choices 

of refractors to do the job. As a result, high molten metal temperatures are very important to 

casting geometry as well as what casting process should be used (Online).

The problem with casting is one of quality, which depends on the existence of casting design 

knowledge. The advantages of a CBR system have been introduced in this research as a help 

to solve casting designs problem cases in a CBR case-base contain detailed information on 

the design process for products. This is an advantage allowing CBR systems to realise casting 

know-how as a valuable asset [Mileman: 2000].
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Fig.2.0 shows the rate of solid shrinkage problem for the shape.
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2.3 Survey of Computer Aided Methods to Assist Casting 

Design.

Expert systems is one of Artificial Intelligent (AI) techniques, expert system is a system in 

which knowledge is represented as it is, possibly in the same form that it was extracted from 

an expert. In an expert system the represented knowledge should endeavour to solve 

problems in the same way as the expert knowledge source solved them. Computational Flow 

Dynamic (CFD) [Cleary et al.: 2003], is another tool using numerical methods representing 

the fundamental physical processes. Many researchers used this method for casting design 

problem and many applications have been developed for this problem. This method needs an 

expert with a high mathematical background to run and use the program. As such, this 

approach comes with a cost and great difficulty for the user, and the recent one, case-based 

reasoning (CBR) discovered early 90's and was raised by researches for the first time to 

solve this type of problem [Kolodner et al: 1994].

CBR is the cheap and easy way to run. More than half of the daily work done by designers is 

routine design that consists of modifying past work [Moore 1993]. It should be, therefore, of 

great use to create a case base in order to reuse old cases in similar future projects. 

Nevertheless, the methodology of case-based reasoning (CBR) in design is rarely used, 

probably due to the problems with structuring the database and finding easy ways for saving 

and reusing the information, i.e. the issue of standards for information exchange.

Case-based reasoning: (CBR) has been pointed out as a promising aid to help this situation. 

In order to be of practical use, however, a case-based reasoning design system has to be able 

to use the information that the designer creates during the design process [Kolodner et al: 

1994].

CBR can be used both when a domain is well and not so well understood. In the latter case it 

assumes the role of a generalised model. Provides for efficient solution generation and 

evaluation is based on the best cases available. Needs a means of evaluating its solutions, 

guiding its adaptation and knowing when two cases are similar. Next section is discussing on 

case-based reasoning in details.
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2.4 Case-Based Reasoning

This research used case-based reasoning to aid casting design. (CBR) provides case stories to 

help designers solve design problems. It provides designers with stories about previous 

successes and failures during the early phases of problem solving. It comprises case studies, 

shapes, images, text documents and photographs, and also includes a library containing 

design principles, previously encountered problems and resolutions to help designers 

anticipate and avoid conflicts among the service systems. Next section is on using case-based 

reasoning system.

2.4.1 Using Case-Based Reasoning

In this chapter review, we propose a method for the computer to presume interactively the 

design support method, in order to provide useful information for design based on the 

framework of CBR. CBR is decision-making, learning, and problem solving. Case-based 

reasoning methods generally have the following aims: to avoid preparing a priori fixed, 

detailed rules and knowledge sources: to provide flexible and various information through the 

modification; to add Case-based Reasoning Support Method Recognition and to extend 

knowledge sources step by step.

2.4.2 Case-Based Support in Casting Design

This section presents a number of CBR tools related to this area such as:

  CYCLOPS [Navinchandra 1991] which supports landscape layout.

  JANUS ([Fischer and Nakakoji 1991] is supporting kitchen design.

  FABEL [Consortium 1993] is supporting construction component.

  SEED [Flemming and Woodbury, 1995] is a system environment which aims at 

providing computational support for the early phases in building design. The next 

section introduces some models of CBR.
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2.4.3 Models of CBR

Oxman [Oxman: 1994] identifies four cognitive approaches for modelling design case 

knowledge:

Generic models: Knowledge is used to define classes of designs called generic designs. It is 

often convenient to make the generic nature of knowledge explicit. Rather than using 

grammatical rules, a design space may be defined in terms of a class description called a 

generic model.

Associative models: The associative mechanism is another key principle of cognition, which 

is present in design thinking. In associative reasoning concepts are linked on the basis of 

conceptual relations to form a structure of concepts. Historical styles such as Doric and 

Gothic also provide associative models. Doric gives democratic and Gothic religious, 

associations.

Exemplar models: In this approach it is attempted to re-use past knowledge rather than to 

generate new designs. The previous solution is adapted to the current situation. Previous 

knowledge is associated with specific design cases in which the knowledge is highly explicit. 

Casting designs are example-based and detailing is often based on the re-use of specific 

examples, which are exemplars, or examples that equate to models in the knowledge domain. 

Three broad classes of domain knowledge can be identified:

1. Procedural knowledge is a process or algorithm for design. The design of a staircase 

is an example where the calculations are based on floor to floor height, length of the 

stair run, and the tread riser relationships.

2. Causal knowledge is a detailed procedure for calculation. An example is the 

calculation and design of partitions for thermal or acoustic properties.

3. Behavioural knowledge is the understanding of the performance achieved by 

particular materials or by a particular configuration of elements in a building. This 

characterises much of the knowledge of building detailing.

The design precedent: the selection process of relevant ideas from prior designs in current- 

design situations has been termed precedent-based design. During the course of exploration
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of design ideas within precedents, designers are able to browse freely and associatively 

between multiple precedents in order to make relevant connections. This makes the discovery 

of unanticipated concepts possible in precedents. In precedent-based systems the ability to 

encode, search and extract design knowledge relevant to the problem at hand is significant.

For the problem domain of this research, design knowledge based on the domain of practical 

knowledge (exemplar model) seems to be the required solution. The next section presents a 

brief definition of CBR techniques and how they work.

2.4.4 Case-Based Reasoning techniques

Case-based reasoning (CBR) systems expertise is embodied in a case-based knowledge of 

past cases, rather than being encoded in classical rules. Each case typically contains a 

description of the problem, plus a solution and/or the outcome. The knowledge and reasoning 

process used by an expert to solve the problem is not recorded, but is implicit in the solution. 

To solve a current problem CBR techniques have been suggested and the lines below 

describe CBR methods.

All case-based reasoning methods have in common the following techniques:

To retrieve the most similar case (or cases), they compare the case to the case-based 

knowledge which they have stored in the past, by reusing the retrieved case to try to solve the 

current problem. Then they revise and adapt the proposed solution if necessary and what they 

retain will be the final solution as part of a new case.

There are a variety of different methods for organising, retrieving, utilising and indexing the 

knowledge retained in past cases.

Retrieving a case starts with a (possibly partial) problem description and ends when a best 

matching case has been found. The subtasks involve:

In identifying a set of relevant problem descriptors, matching the case and returning a set of 

sufficiently similar cases (given a similarity threshold of some kind); and selecting the best 

case from the set of cases returned.
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Some systems retrieve cases based largely on superficial syntactic similarities among 

problem descriptors, while advanced systems use semantic similarities.

Reusing the retrieved case solution in the context of the new case focuses on: identifying the 

differences between the retrieved and the current case; and identifying the part of a retrieved 

case which can be transferred to the new case. Generally the solution of the retrieved case is 

transferred to the new case directly as its solution case.

Revising the case solution generated by the reuse process is necessary when the solution 

proves incorrect. This provides an opportunity to learn from failure.

Retaining the case is the process of incorporating whatever is useful from the new case into 

the case base. This involves deciding what information to retain and in what form to retain it; 

how to index the case for future retrieval; and integrating the new case into the case-based 

knowledge. The concept of the CBR system used in this research more details on chapter 6.

2.4.5 Related Applications for casting design in general

Several software tools may be used to assist the methoding process. For the initial stages of 

methoding these tools need to be fast and easy to use: simple models based on the cooling 

modulus principle, or fast empirical mould-filling models. Amongst these are: SOLSTAR 

[SOL], which support the initial design stages, and slower, more detailed numerical models 

such as SIMULOR [SIM], which support the simulation stages. CRUSADER give numerical 

support on such aspects as feeder sizes and feeder-feeder distances, but do not attempt to give 

experiential advice on such elements as re-design for casting, or mould orientation. More 

advanced numerical software (SPH), using computational fluid dynamics techniques [Cleary 

et al.: 2003], which support the simulation stages of die filling predictions is very high and 

the last locations to fill correlate well with porosity void age observations made by 

manufactures of these components.

All people use CBR in one way or the other, in much of their on a daily basis reasoning. It's 

the natural way people solve any kind of problem in their life by remembering solved 

problem and reused when it needs. CBR is easy to understand, does not require a lot of 

knowledge and is easy to use.
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2.5 An Overview for Computer Aided Design (CAD)

The first articles concerning computer-aided design were published in 1961 and 1962. They 

referred to programs intended to produce plans and all type of engineering drawings. The 

intention was to describe a part of any tools as one graphical object. Despite the development 

from 1965 to 1975 programs were very difficult and awkward to use. That created a kind of 

"bad reputation" that followed CAD for years to come. CAD is designing where traditional 

tools are replaced with one system. CAD is a wide concept containing almost all features of 

information technology in design [Kiviniemi and Penttila 1995]. Without effective utilization, 

investments are useless and working shrinks to computer aided drafting. Insufficient 

capabilities shift attention from design to equipment and programs and the work itself suffers 

[Heikkonen 1995]. Also the wrong basis for CAD investments has led to poor results and 

caused a negative attitude towards information technology on a wider scale [Naaranoja 

1997]. CAD can mean producing all documents with the computer. In addition to drawings, 

different bills of quantities are directly attached into all types of engineering drawings 

(architectural, mechanical, electrical, electronic works etc). In reasonable CAD these bills of 

quantities can be produced straight from the database. Building specifications and other text 

documents are, however, produced with separate computer applications, at least so far 

[Kiviniemi & Penttila 1995]. The ideal situation from the design point of view would be the 

possibility to process in three-dimensional models, which almost exactly match the 

forthcoming shapes. Managing the model, especially geometrical its information is difficult 

and the size of the file will easily become too big to handle. In present applications there are 

two main solutions to treat the three dimensional information, namely, vector graphics 

objects and oriented objects.

The central concept in the object approach is that of the object. An object associates data and 

processes in a single entity, leaving only the interface visible from the outside. The object 

approach is characterised by the structuring of problems into object classes. But the domains 

where this approach is used require complex software. Lately it seems more and more 

applications are using vector-based graphics instead of objects-based, although in many cases 

there is a combination of solutions. Applications with vector graphics (e.g. AutoCAD) are 

based on graphical elements, vectors and lines and they generally use drawing programs. 

Most of the general application programs, like AutoCAD, have sub-applications, which
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utilise the environment in the main application (e.g. PomARK and ARKsystems, are special 

applications developed in architectural design and use the framework of AutoCAD). Almost 

all present applications are based on working on 2D levels, but in some programs the three- 

dimensional model evolves in the background and can be seen from another window. 3D- 

based models can be divided into wire-frame, solid, surface, space and rendered models. The 

majority of 3D applications can produce wire-frame or surface models, but no applications 

can make the space model. The wire frame consists of lines in the edges of the object, and 

the surface model is the surfaces of the object represented with visible lines. The space model 

describes the real object [Davies et al. 1991, Holvio 1993, and Medland 1988]. Rendering 

means producing coloured and shaded pictures. Colour, brightness, material and transparent 

features, lights and shadows are added into space models [Kiviniemi and Penttila 1995].

So after examining the currently available CAD technologies, the 2D-based approach using 

vector-based graphics seems to be the one recommended. The next section discusses the 

knowledge management.

2.6 Knowledge Management

The reason for having this section in this research is that it depends to a large extent on the 

availability of sound knowledge. And this knowledge was of immediate interest in answering 

the research questions of this project. Also the information in this section can be of great 

importance for the usability of the software produced and the options which need to be 

implemented.

If this information is not present then the designer cannot proceed. Whatever solution is 

finally proposed its success will depend to a large extent on the access to this kind of 

information. Implementation of this project's software solution would not be possible if 

certain shapes had not been studied for example the properties of shape. 

Nonaka [Nonaka: 1998] states that in an economy where the only certainty is uncertainty, the 

one source of lasting economical advantage is knowledge. Knowledge management (KM), as 

defined by the Gartner Group (www.gartnergroup.com), is a discipline with new processes 

and technologies that differentiate it from information management. New technologies are 

required to capture knowledge that was previously unspoken. And unspoken knowledge is
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embodied in the minds and expertise of individuals. Once captured, knowledge must be 

shared to add weight to its value and so that it can be reused in similar situations and 

contexts.

Knowledge is reasoning about information and data to actively enable performance problem 

solving, and decision-making, learning and teaching [Beckman: 1999]. Knowledge 

Management (KM) is the formulisation of and access to experience, knowledge, and 

expertise that create new capabilities enables superior performance, encourages innovation 

and enhances customer value. KM has emerged as an integrated, multi disciplinary and multi- 

lingual discipline providing methodologies and tools for identifying, eliciting, validating, 

structuring and deploying knowledge within the enterprise. From a management perspective, 

two major strands have developed within the discipline [Vergison, 2001]. The next section 

discusses the modelling approach in design.

2.6.2 Knowledge-Based Design

In this section the various Knowledge-Based Design approaches are investigated in an 

attempt to see which one would be more appropriate to use in the final solution proposed.

The first generation of Knowledge-Based Design Systems (KBDS) was characterised by the 

dominance of logic models and Rule-Based Systems then prevailing within expert systems 

technology. The paradigm of Knowledge Engineering (KE) appeared to be promising and 

relevant to design. (KE) turned out to be far more applicable to Knowledge Management 

(KM) than it is likely to form the holistic operational framework for globally enabled design 

and project environments. (KE) has limited use for the range and complexity of design tasks. 

Debenham [Debenham 1998:1] states that a unified KE methodology treats data, information 

and knowledge in a standardised mode.

However, with a few exceptions, models of expert knowledge appeared to have limited utility 

for the range and complexity of design tasks [Oxman: 1994]. An expert system is a system in 

which knowledge is represented as it is, possibly in the same form that it was extracted from 

an expert. In an expert system the represented knowledge should endeavour to solve 

problems in the same way as the expert knowledge source solved them. Debenham
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[Debenham 1998] defines a Knowledge-Based System as a system that represents an 

application containing a significant amount of real knowledge and has been designed, 

implemented and possibly maintained with due regard for the structure of the data, 

information and knowledge.

According to Debenham data is the set of fundamental, indivisible things information is the 

set of implicit associations between data things and Knowledge is the set of explicit 

associations between the information things and/or the data things [Debenham 1998:20].

[Debenham 1998:23] identifies differences between Knowledge-Based Systems and expert 

systems where as Expert Systems perform in the way of a particular trained expert. A 

knowledge-based system is not constrained in this way. In a knowledge-Based System the 

represented knowledge should be "modular" in the sense that it can easily be placed 

alongside knowledge extracted from another source.

Furthermore, Expert Systems do not necessarily interact with databases. In general, 

knowledge-based systems belong on the corporate system platform and should be integrated 

with all principal, corporate resources.

CAD/ Engineering researchers have been focusing their attention on the Knowing aspects of 

the design-case process since approximately 1990. They have been constructing models of 

design knowledge and reasoning that have not proved themselves for design applications of 

substance.

Due to the complexity of design, systems for design have often defined the task with artificial 

narrowness [Hinrichs 1991:3]. In AI, as in Fuzzy Set theory, limiting the universe of 

discourse or even closing it in an attempt to simplify the enormously complex design 

problems made progress in the past. To make the systems tractable the following typical four 

approaches were used [Hinrichs 1991:3]:

1. Selection. Select components to instantiate a skeletal design.

2. Configuration. Arrange a given set of components.

3. Parametric. Fix numeric parameters.

4. Constructive. Build up designs from components.
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Hinrichs observes the fact that if design problems are viewed as instances of the above- 

mentioned types; they can often be solved using efficient algorithms and heuristics. However, 

rigid classifications do not capture the flexibility that real designer's exhibit. In addition to 

the different types of design approaches, research has explored different approaches to the 

process of design. Hinrichs summarises some of these approaches as:

Pure synthesis: construct designs from the bottom up.

Hierarchical refinement: refine skeletal designs from the top down.

Transformational approach: mapping from equation to structure.

Case-Based Design: the case-based and analogical approaches assume that the problem

being solved is probably similar to one that was seen before.

Currently the most promising solution is the use of design cases (CBR). This has empirically 

validated successful and failed solutions to design problems from the past. If structured 

design methodologies are to be used, then any design knowledge generated should be stored 

in such as way as to expedite future designs. Then next section is discussion on Artificial 

Intelligence and design.

2.6.3 Artificial Intelligence and Design

Although in the late 1950s Alien Newell and Herbert Simon proved that computers could do 

more than calculate, and it was said that within a generation the problem of creating Artificial 

Intelligence would be substantially solved, the field of AI ran into unexpected difficulties. 

The trouble started with the failure of attempts to program an understanding of children's 

stories. The program lacked the common understanding sense of a four year old and no one 

knew how to give the program the background knowledge necessary for understanding even 

the simplest stories.

AI is based on the Cartesian idea that all understanding consists in forming and using 

appropriate symbolic representations. For Descartes, these representations were complex 

descriptions built up out of primitive ideas or elements. Dreyfus [Dreyfus- 1993: xi] states, 

"Common-sense understanding had to be represented as a huge data structure comprised of 

facts plus rules for relating and applying those facts."
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AI struggles to cope with essentially three main problems, [Dreyfus 1993: xviii]: 

How knowledge can be organised so that inferences can be made. Then how skills can be 

represented as knowing-mat; and how relevant knowledge can be brought to bear in 

particular situations.

(Dreyfus 1993: xxxix) "The point is that a manager's expertise and expertise in general, 

consists in being able to respond to the relevant facts. A computer can help by supplying 

more facts than the manager could possibly remember, but only experience enables the 

manager to see the current state of affairs as a specific situation and so see what is relevant. "

CAD researchers became interested in AI due to the frustrations with the unintelligent nature 

of commercial CAD systems. Even today CAD is contributing very little to the initial and 

most demanding stages of design. AI is generally concerned with tasks whose execution 

appears to involve some intelligence if done by humans. Design falls into this category.

AI research can be divided into two broad approaches.

1. Understanding of the human brain: computer models in this tradition represent a 

model or simulate human cognition and succeed to the degree to which they emulate 

human performance.

2. Intelligent systems: these are systems that perform intelligent tasks effectively 

without concerns for how faithfully the model simulates human performance or 

cognition acceptance.

Computers that work exactly like people are unlikely to do better than people. CAD tools, 

whether AI based or not, should always be seen as a complement to human designers, 

assisting them in tasks where they perform less well, but do not compete in areas that the 

human brain performs well.

Programs that assist in design are most useful in the following areas: they suggest 

possibilities to designers they have not thought of, and remind them of things they might have

forgotten.

The author will attempt to prove that, in addition to these two possibilities, a third option

exists. This is where intelligent components are used to facilitate the manipulation of
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complex design information in a convenient environment to facilitate concept selection and 

design experimentation during the early phases of design. During this phase the designer is 

often confronted with incomplete information and designs could very easily change. At the 

same time decisions taken during this phase will significantly influence operational 

characteristics. Next section is discussion on Visual reasoning.

2.7 Visual Reasoning

Visual reasoning (e.g. thinking in shapes, forms and images) is a fundamental attribute of 

shape designs, and therefore combining it with CBR may provide significant results both for 

the field of design thinking as well as for the field of Computer-Aided Design (CAD). All 

these three elements combining together will provide a high level of benefit for the research. 

When visual mental shapes are formed, the reasoning processes access the stored 

representation of the structure of an object in associative memory [Kosslyn and Osheron 

1995]. The ability to access the underlying structure, a concept, a schema, a drawing is 

significant for our ability to reformulate images/design. The reformulation of these visual 

images is one of the cognitive foundations of emergence in design [Oxman: 2001]. So from 

this, a system that would allow the images of these previous designs always to be there and to 

be looked up when needed would benefit a designer. Essentially, a design comes into being 

through the manipulation of non-verbal information: the visual is the way in which the 

designer knows, thinks and works. The centrality and power of visual reasoning as a 

cognitive mechanism makes design, in general, an ideal field for CBR.

Furthermore, it suggests interesting possibilities with respect to the incorporation of visual 

material in computerised design case libraries, and the potential to interact with and exploit 

visual case data in the process of computationally supported design. The concept of case 

bases for casting design needing visual and/or diagramming is supported by this 

consideration:

Firstly, most designers (painters and engineers) prefer to sketch than write down early design 

ideas. They sketch diagrams to explore possible adaptations of old cases to current design 

tasks. Secondly, design tasks that deal with layout configuration such as arranging 

components and region for shape often benefit from previous cases of success or failure.
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2.8 Conclusions of CBR and Related Issues

This chapter discusses why Case-Based Reasoning was reasonably used in this research. 

CBR should use the information created by the designer during the design process. This 

thesis suggests the Case-Based Reasoning approach. It has been shown that this allows us 

automatically to gain a new case, and match the similarity of cases. It also makes it possible 

to adapt old components to new cases using derivational replay. It is stated, in this thesis, that 

a conceptual framework is defined using a number of 2D cross sections or views. A number 

of views represented 3D shapes by cutting 3D shapes into dissimilarity views (CAD 

application) for target and it is shown how this can be captured. Although promising, issues 

regarding the shape matching of such a framework are indicated as the main approach. 

Kolodner [Kolodner, J.:1993] suggested CBR depends on the method of parameter 

adjustment for interpolating values in a new solution based on those from an old shape. In 

parameter adjustment, changes in parameters in an old solution are made in response to 

differences between problem specifications in an old and a new case.

2.9 Summary of literature review

Other approaches to assist casting design have been used. The literature shows the advantages 

and limitations of such approaches. CBR provides an alternative way to solve this problem. 

The research in CBR shows that although not a lot of applications have been pursued in the 

area of casting, the approach provides some advantages in managing casting design 

knowledge. Mileman [Mileman: thesis 2000] research has demonstrated the feasibility of a 

CBR system to assist the casting design process, but the work in that research did not show 

how the process can be automated and also had some limitations such as efficiency of 

retrieval and not dealing with 3D shapes. The research in this thesis aims to further the 

understanding on how CBR systems can be efficiently be used to retrieve and reuse useful 

and applicable information to assist real casting design processes.

The aim of this chapter was to establish the domain of this research by provide a concise 

overview about the research keywords in brief and in more details about the main research 

keyword namely; CBR and of the four main tasks involved in the CBR cycle, namely 

retrieval, reuse, revision, and retention. Rather than presenting a comprehensive survey, we
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have focused on a representative selection of work from the CBR literature in the past few 

decades. We have tried to strike a balance between research that can be seen as laying the 

foundations of CBR and more recent contributions. The fact that many of the cited papers 

were published in the last few years is also evidence of a significant amount of ongoing 

research activity. It should be clear from our discussion that much of the recent research has 

been motivated by an increased awareness of the limitations of traditional approaches to 

retrieval, reuse, and retention.
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Chapter 3

Shape Decomposition

In previous chapter the domain of this research was established that is the use of the Case- 

Based Reasoning (CBR) methodology to assist with casting design. The various well- 

established techniques such as Knowledge Management, Computer Aided Design (CAD), 

Knowledge-Based Design, Case-Based Reasoning, and more have been examined in an 

attempt to discover if improvements can be made to the early phases of casting design 

decision process.

The aim of this chapter is to discuss the design of an efficient algorithm automatically 

decomposing a number of 2D cross sections or 'views' of a 3D shape into generic connected 

components.

3.0 Overview of This Chapter

The body of this chapter is organised into eight sections and sub sections. They are explained 

briefly as follows:

Section 3.1 provides an introduction of the shape decomposition problem. Section 3.2 poses 

the background problem. In Section 3.3, there is an overview of shape description, which 

plays an important role in shape decomposition. Section 3.4 presents the key contribution to 

this chapter that is how shape partition algorithms can automate the casting design process. 

Section 3.5 gives an overview of related work and its relation to the current project. Section 

3.6 gives the details of an algorithm for shape decomposition. Sections 3.7, discusses the 

implementation and evaluation of the algorithm using a number of experiments. Section 3.8 

the conclusion of this chapter.
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3.1 Introduction

The aim of this chapter is to present a shape decomposition process that will aid the case- 

based reasoning (CBR) system. An algorithm has been designed to decompose a number of 

2D cross sections or views that represent 3D shapes into generically connected components. 

This method can assess the approximate shape, by breaking down the shape into subsets of 

disjointed components. This is done by projecting horizontal and vertical lines from vertex 

points. The algorithm (described in section 3.6) was tested on a large set of 2D cross section 

views that has been generated from real 3D shapes using a CAD application. Experimental 

results are presented in section 3.7 of this chapter. The experimental results demonstrate that 

the proposed shape decomposition algorithm can segment complicated shapes automatically 

and efficiently into meaningful connected components.

This research uses a number of 2D cross sections or views to represent 3D shapes. It would 

be more realistic to consider three-dimensional objects as these are the objects we encounter 

in our design environment. However, the study of 3D objects is much more difficult than that 

of 2D shapes. One reason for this is the ambiguity that results from the projection of the 3D 

object onto the 2D shape. Although easier than the 3D cases, the analysis of 2D shapes is still 

a very challenging and interesting problem. In addition, the ideas and methodology developed 

from analysing the 2D case could help in addressing the more general 3D case.

In fact, from investigatory work in the area [Knight, et al 1995] the casting engineers work 

with and reason using 2D shapes [Aziz casting design engineer private communication 2003]. 

A vast number of researchers (Mileman: 2000, Kotschi and Plutshack 1981) have simplified 

the evaluation of 3D shapes by using a slicing technique to simulate 3D shapes as 2D slices. 

Mileman assumed that only one 2D view represents a 3D shape, but in this research 3D 

shapes can be represented by one 2D view or a number of 2D views. (See on Fig.3.4).

For this research, two groups of 3D shapes are considered for the decomposition process:

(1) Axisymmetric Shapes and

(2) Arbitrary 3D Shapes (see Fig.3.4).
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The process proposed in this chapter starts with a shape decomposition of 3D models into 

a number of 2D cross-sections or views through CAD modelling. Next these 2D cross 

sections are automatically decomposed into the six generic components. The primitive 

components proposed by [Mileman: 2000], (Fig.3.0) the six generic components:

  L shaped (L)

  T shaped (T)

  X shaped (X), Tapers and two types of elements such as Bars (Type (A) and type (B)) 

and regions this part will be discussing in details in chapter 4 and chapter 5.

Bar

Taper (A)

Taper (B)

(L) (T) (X)

Fig.3.0.The six generic components: shows the proposed primitive components (L, T and X) 

and Bar and Tapers elements [Mileman, Thesis: 2000].

Over 100 3D shapes went through slicing process using CAD application, mapped into a 

number of 2D cross sections, which represented the 3D shapes. Those views were tested over 

the CBR-Shape system, developed at Greenwich University. Experiments were conducted on 

a large number of both artificial shapes and other 3D models provided by previous research. 

Experimental results demonstrated the performance and efficiency of the decomposing 

algorithm and the details for testing are given in the chapter evaluation.

3.2 The Background

The aim of this chapter is to discuss the analysis and design of an algorithm for the shape 

decomposition problem. It is one of the research questions: Can the decomposition process 

break down a given number of cross-sections or views into generic component types such as 

L-component, T-Component, X-component, Taper and bar element. [Mileman: 2000].
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Decomposition is achieved by automatically splitting the given shape into subsets of disjoint 

components until a primitive (Fig.3.0) is recognized, as illustrated in Figure 3.1 and see 

chapter 4 classifications. The shapes are constructed from geometric Rectangles and 

Triangles. They can be simple or complex, so their attributes be stored in a database for later 

retrieval for other uses.

CAD-Cut

H orizontal- Proj ec tion V e rtic al-Pro je c tion

Add st stem to the shape classification 
products. 
Chapter 4

Fig.3.1 Illustrates the hierarchal of 3D-2D for possible shape decomposition.

3.3 Shape Representation

Before designing the algorithm for the shape decomposition process, shapes need to be 

described. This section gives an overview for shape description in brief. Shape description 

plays an important role and it's a fundamental problem in shape recognition and engineering 

design perspective.

Various methods for shape description have been suggested through the years of research in 

engineering design and human perception, but none provide a complete and natural solution 

to the problem. Furthermore, this problem seems to be one of the most challenging problems, 

and is perhaps equivalent to the vision problem itself. The shape in this work refers to the 

outer form of the objects, or more specifically, to the geometry of an object in three 

dimensions, or to the bounding geometry of an object. In many two dimensional cross-section 

views, it should be capable of describing partially parts.

Figure 3.1 describes a shape in detail using geometrical information such as properties and 

structure of the shape as it is made up of vertices and edges. Vertices are used to determine 

the types of components (L_component, T_component, X_component and Taper component
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[Mileman: 2000]. Edges display the connections between the components, which give 

different types of elements such as Bars (Type (A) and Type (B)). The connection works as a 

bridge between the components and it means that the connectivity between the components 

plays an important role in shape recognition. This will be further discussing in details in 

Chapter 4, Figures 4.4 and 4.12.

Table-3.0 can be eliminated by letting the shape table reference the vertices (V) directly, 

rather than drawing up twice, because it is not realised that the same set of points has been 

visited before and that the edges, being connections, share two regions in between. We could 

go further and eliminate the (V's) table by listing the entire coordinate explicitly in the shape 

table, but this wastes space because the same points appear in the shape table several times.

Using all three tables also allows for certain kinds of error checking. We can confirm that 

each shape is closed, that each point in the V table is used in the edge table and each edge is 

used in the shape table.

A table also allows us to store additional information in the future like components that are 

sub classes for the shape. Each entry in the edge table could have a pointer back to the shapes 

that make use of it. This would allow for a quick look up of those edges (see steps in Fig.3.1).

V1 V2

shapel

E4

ES ve
EG

N/7

Fig.3.2 Shows description of 2D cross-section shape 1.0.
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Vertices^V)Jable^
V1=x1,^l ____
V2= x2, V2
V3= x3, y3
V4= x4, y4
V5= x5, y5
V61=x6, y6
V7= x7, y7
V8= x8, y8

Edges (E) table
E1=v1,v2
E2=v2, v3
E3=v3, v4
E4=v4, v5
E5=v5, v6
E6=v6, v7
E7=v7, v8
E8=v8, v1

Shape tabe
Shapel = E1, E2, E3, E4, E5, E6, E7 and
Component table = L-shaped or L-region

E8

Table-3.0 shows current research shape representation (analysis).

3.4 The Shape Decomposition Process

Many tasks in computer vision, computer graphics, and reverse engineering are performed on 

objects or models. Those object become more complex when the treated object geometry is 

complicated, for example, when it contains multiple components. Therefore, shape 

decomposition is attractive since it simplifies the problem with multi-part, complex objects 

into several sub problems dealing with their constituent single, much simpler shapes. In 

application areas of object recognition, shape description representation and object 

manipulation, shape decomposition is a crucial pre-processing step, and can further reduce 

the efforts involved with the original multi-part objects [Hoffhian D. and Richards W.:1984 

and Pentland A.: 1981]. While a significant amount of research for shape segmentation or 

decomposition of 2D shapes has been conducted over the last two decades [Hoffman et al 

2000], little effort has been made on shape segmentation of 3D models [Rom H. and Medioi 

G/.1994] Rom proposed "a framework consisting of decomposing 3D objects into single 

components and then describing those parts by higher-level primitives, such as generalised 

cylinders ". Additionally, this work is able to handle 3D shapes by using CAD packages to 

draw the shapes and the CAD slicing the shape into numbers of 2D cross-sections or views, 

even though 3Ds are the most dominating representation elements in the 3D computer 

graphics world. Wu [Wu K.:1997] presented a physics-based part segmentation approach.

The novelty of this method projecting (H) horizontal lines and (V) vertical lines; is that the 

shape's properties will be identified and all hidden geometrical information about the shape 

will appear and these new attributes determine the types of components by using this idea of 

projecting (H) and (V) from each vertex (Hotspot).
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Hotspot is an important point for decomposition which is made up from two connected 

original lines and only from this point the projecting lines (H) and (V) can go through. The 

original lines only concreted the boundary of the shape. (See Fig.3.7).

The advantage of shape segmentation is low computational cost in computing geometric 

shapes. Alternatively a surface segmentation method was proposed in [Mangan A. et al 

1999], based on either planar surfaces or arbitrary shapes. The disadvantage of this method is 

the limited usefulness of surfaces compared to equation parts in high-level tasks such as 

object recognition [Wu K.:1997]. For example, a 3D triangulated model composed of a cube 

and a cylinder will be segmented into six planar surfaces and a cylinder by the surface 

segmentation algorithm, while a part decomposition algorithm can decompose the model into 

its constituent parts (the current case divided into elements, components, and regions, a cube 

and a cylinder. In summary, there is a lack of part decomposition algorithms for handling 3D 

symmetric shapes based on projection analysis. However methods for handling number of 2D 

cross-section view segment models into types of components are useful. Therefore, in this 

thesis, we present the first attempt to decompose numbers of 2D cross sections or views into 

types of element, component, and region by techniques of horizontal, vertical and diagonal 

projections. The proposed algorithm is easy to implement, and it is able to handle a large 

number of 2D cross sections or views (2D views represents 3D shape).

A lot of the work discussed above has been conducted for the purpose of decomposition of 

shapes into generic components for various application areas. For the purposes of this 

research the required shape decomposition context is that of decomposition casting shapes 

into generic components to allow for the re-use of useful casting design knowledge through 

CBR retrieval of shapes based on similarity metrics. [Mileman: 2000] demonstrated the 

feasibility of this approach, but he used a manual approach to do this decomposition process. 

However, in order to produce useful CBR based casting design tools, it will be important to 

automate the decomposition process. This will make the tool effective and efficient in the 

creation of new target (query) cases and in the maintenance of the case base by the addition 

of new knowledge encoded in new cases.

In previous research Mileman [Mileman 2000] assumed that one 2D cross-section or view 

representing 3D shapes is enough to represent 3D shape. Although this is true for 

axisymmetric shapes, it is not true for a complex arbitrary 3D shapes. However there are
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many 3D complex shapes that can be viewed by a finite number of distinct sections, typically 

two to three. But slicing the 3D shape into numbers of 2D cross-sections or views we can 

elicit more details about the shape, such as structure and properties which may be different 

for each view section.

Furthermore, when the number of these 2D cross sections go through the decomposition 

process, new geometrical information or hidden information will appear because a 3D shapes 

is complex and we never know the internal geometrical information of the shape unless take 

the 3D shape through CAD application to sliced into different views to see the geometrical 

details that the engineers it does. 2D cross-sections or views are easier to display than 3D 

shapes [Kotchi and Plutshack 1981]. To do a complex 3D casting design, needs to cast 

several views in order to design a 3D casting shape an casting design expert poses[Aziz: 2003 

Jtherefore our 3D shapes represents by one or number of 2D cross-sections or views. The 

next section is discussion on the measurement of geometric internal information for 3D 

shapes

3.4.1 Measuring Geometric Internal information for the Shape

In the shape decomposition discussed in Section 3, the decomposition technique is based on 

the horizontal, vertical and diagonal projection method to decompose numbers of 2D cross- 

sections or views into different proposal components. The algorithm generates new points 

and new lines such as projected lines and projected points. All these new attributes are 

internal geometrical information for the 2D shape; they are considered to be the key attributes 

for improving the quality of the task; the internal is an adjunct of information of the shape 

can be blocks for measuring complexity internal attributes, and they are crucial for evaluating 

the efficacy of software methods. The next section discussion is on the feature extraction 

slicing.
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3.4.2 Feature Extraction Slicing

Preparations for the Shape Decomposition Process

This section gives some clarification about the 3D shapes. Ideally, 3D shapes are drawn using 

a CAD application that is one of the most advanced engineering applications [Manuel J.: 

2004], and using algorithm to generate CAD modules automatically. Then, selecting a high 

enough number of views for the shape, the system would cut these slices from CAD 

components, and the suggested decomposition process will break the 2D cross sections into 

identifiable elementary components.

In fact, the manuals on engineering design use many cross-sectional slices to see the 

geometrical information of the 3D shape to view other details. For example: civil engineers 

have to draw a 2D diagram to show the wall, details, doors and other information of the 

house. Slices are fundamental keys in processing shape decomposition for casting design 

problem. As tested in the section on shape decomposition, in our approach each 2D slice is 

used as a basic descriptive unit for testing. This is justified under the assumption that they 

(see Fig. 3.4) are approximately symmetrical. Thus each 2D cross-section slice is potentially 

equivalent to other slices, which is also useful in identifying other slices. Also 2D cross 

section shapes are easier to display than 3D shapes [Kotchi and Plutshack 1981]. The first 

step in this method is to extract a set of components with easily computed features from each 

2D slice. For more details see the chapter on similarity metrics. To justify the use of cross 

sections further, Fig. 3.5 "2D cross sections for 3D Mug and 3D shape drawing examples". 

This research deals with two types of 3D shapes, Axisymmetric Shapes and Arbitrary Shapes. 

A number of research projects [Kotchi and Plutshack 1981] have already investigated that 

one objective; a way to define the geometrical complexity of a 3D shape is to ask how many 

different cross sections are required to describe the shape. In the case of LIGA (is a model of 

shape), only one cross section is required (see Figure 3.3), thus surface micromachining, the 

primary MEMS (is a model of shape) process and three to five cross-sections are sufficient 

(see on Figure 3.4). EFAB (is a model of shape) shapes can be produced with such a high 

degree of complexity that hundreds or even thousands of cross sections are needed to 

describe them. Fig. 3.4 shows an extremely-complex device that might be fabricated with 

EFAB, giving a sense of what 3D dimensionality really means. Arbitrary 3D objects are 

what one sees when one lifts the hood of one's car observe the engine. Imagine an engineer at
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General Motors being asked to design car parts that need only a handful of cross sections to 

describe them! These are the kinds of constraints that developers of Microsystems have had 

to live with so far. The same situation holds true for complex casting designs.

Fig.3.3. 3D shape that can be described by a single 

cross section view.

Fig.3.4. An arbitrary 3D that requires many unique 

cross sections to describe it.
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3D Mug (Viewl and View2) for 2D cross-sections for 3D Mug

3D Shape 2D cross-section for the 3D shape

Fig.3.5 shows 2D cross sections for a 3D arbitrary shape for the mug.

Complex 3D shapes have one or more cross-sections or views. The other 3D axisymmetric 

shape has only one view. The next section presents an overview of the related work on shape 

decomposition which has been done in the past by other researchers.

3.5 Related Work

In this section work carried out by other researchers in this area is presented.

Decomposition of shapes is studied comprehensively in the computer vision community but 

there is still a lack of useful research, especially in the geometric shapes field. There are a 

number of problems that remain yet to be resolved, such as automating shape decomposition 

in an efficient way for casting design and finding useful methods for decomposition process 

Mileman [Mileman: 2000]developed a decomposition process by manually slicing the shape 

into connected and generic components and used projecting technique.
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Xuetao Li and Tong Wing Woon [Xuetao Li and long Wing Woon 2001], developed an 

efficient framework to decompose polygon meshes into components that adopts the idea of 

edge contraction a space sweeping to decompose into objects automatically. The generalised 

cylinders method [Binford T.O. 1971], Geon's [Biederman I. 1987], Super-quadric [Hertel S. 

et al, 1984] and their extensions were used in 2D images and range data.

Though these approaches focus on acquiring components with identical features, as in our 

approach, there are no important extensions to work on 3D shapes.

Another work on volumetric objects was presented by Gayvani [Gayvani and Silver 2000]. 

Decomposition of 3D (volume) digital shapes is based on a hierarchical decomposition 

method developed by [G. Borgefors et al, 1999].

Lopes [Lopes A. M. and Metha P.M.: 1994] used a method that it is quite closely related to 

our current decomposition shapes, but only horizontal projection has been used to partition a 

polygon into rectangles and L-shapes and the decomposition process done manually.

On object decomposition process in general, Tan [Tan T. S. et al 1999] argued that he 

achieved good results in decomposing objects through the use of vertex-based 

simplifications. This approach works well for geometric and inorganic models such as, bottle 

necks, helicopters and a donkey skeleton. However, some of these methods do not support 

geometric and inorganic shapes and were found to be unsuitable as these models do not have 

any clear boundaries among their parts or components.

[Simmons M. and Sequin H. C.: 1998] developed an automatic system to generate a 

hierarchical 2D object representation especially for geometric tasks. Their approach is based 

on the axial generation module that could be replaced by an alternate construction, like that 

used in producing cores [Burbeck A.C. and Pizer M.S.: 1995].

Lopes [Mario A. Lopes and Dineshp P. Methat 1994], presented two practical algorithms for 

partitioning circuit components, represented by rectilinear polygons, so that they can be 

stored, by using the L-shaped corner stitching data structure. That is, the algorithms 

decompose a simple polygon into a set of non-overlapping L-shapes and rectangles by using 

horizontal cuts only [Nahar and Sahni 1988]. Nahar studied this problem as well and 

presented an object (kv) algorithm to decompose a polygon with n vertices and (kv) vertical-

43



inversions into rectangles using horizontal cuts only. In the extension to corner stitching, it 

was proposed by Blust and Mehta [Blust and Mehta 1993] that the data structure stores L- 

shaped tiles (hexagons) in addition to rectangular tiles. This L-shaped variant of corner 

stitching was motivated by a need for a data structure that could store rectilinear shapes more 

general than rectangles [Shanbhag et al. 1994; Mehta et al. 1995]. L-shaped objects, in 

particular, have been studied in the context of floor planning [Wang and Wong 1990; Yeap 

and Sarrafzadeh 1993] and routing [Dai et al. 1985; Cai and Wong 1993]. Once again, 

because circuit components can be rectilinear polygons that are not rectangles or L-shapes, 

these components needed to be partitioned in order to be stored in the L-shaped corner 

stitching data structure. Furthermore, using horizontal cuts for partitioning is desirable, 

because it simplifies the implementation of the operations (which are now more complex than 

for the rectangular corner stitching data structure).

We note that this problem is different from the problem of decomposition for a rectilinear 

polygon into a minimum number of rectangles using both horizontal and vertical cuts, which 

has been studied extensively in the literature.

This motivated the need for fast and practical algorithms for decomposition shapes into sub- 

set disjoint types of rectangle shapes, using only horizontal and vertical projecting methods 

this methods have been introduced for current decomposition problem. The gain of projection 

methods is the increase in the number of components through vertical, horizontal and 

diagonal projections, to optimise the similarity during the shape comparison between 

properties of the source shape and the target shape. More details are given in chapter 5. The 

next section gives an overview of the algorithms.

3.6 An Overview of the algorithm for decomposition

In this section, a broad framework for the shape decomposition algorithm for casting designs 

is described.

An algorithm was devised to provide for the automatic decomposition of shapes into the 

generic components used in this research (Fig. 3.0 see the shape decomposition diagram). 

This algorithm starts by projecting horizontal and vertical lines from each *hotspot (for
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hotspot definition see section 3.6.1(i) algorithm) to the nearest existing original lines. This 

provides a decomposition of the area of the shape into a set of rectangles and triangles. These 

are then reconciled and their sides merged defined by only internal points that connect them. 

A set of rules then identifies each element as one of the generic components needed for the 

componentisation of the shape.

Finally, the components are created by adding "stems" where appropriate (typically to joins, 

such as L, T and X). Figure 3.5 shows an example of such decomposition. Observe the top 

left L-component. In the middle figure, the algorithm has identified a rectangle there. The 

rule that identifies this as an L-component relies on the fact that this rectangle has two 

adjacent sides (right and bottom) that are internal lines. This identifies the L-component from 

the hotspot. A hotspot is an important point for decomposition process, is made up from two 

connecting original lines more detail can be seen on section 3.6.1 Geometric Algorithm.

Fig.3. 6 shows an example of such decomposition produced by ShapeCBR.

An additional advantage of automating the decomposition into components is that the output 

of this process is not only the graph of connected components representing the structure of 

the shape, but also the association of each component with geometrical information 

describing the exact dimensions of the component (Fig 3.6 shows the type of connections 

between the components). This allows one to extend the definition of similarity between 

shapes, taking into consideration the actual geometry in addition to just the layout of the 

components in each shape.

Bar (A), is connector has two connections connected into two L-Components (see in 

Fig.3.6). This bar is not leaf it is a connector types of Bar.
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Bar (B), is a connector has only one connection. The other face is free: we call it a leaf as 

well and it is a connector element. Table 3-1 shows the connection types by a number of 

nodes which play an important role in object recognition.

Component types
B(a)

L-down

B(b)
L-up

No Of connection
1
2

2

2

Connection type to
L-down

B (b) & B (a)

L-down & L-up

B (a) & B (b)

Table-3.1 describes the casting design engineering method in details for the decomposition process.

The table above describes the component types in the first column to the left of the table and 

the middle column shows the number of connections between the components. For example 

the (1) represents the connector bar from type B and has only one connection. The last 

column shows the position of the component types. The next section is discussion on, shape 

decomposition algorithm for casting designs.

3.6.1 Decomposition Algorithm

The first step of the decomposition algorithm is primarily based on the identification of 

"Hotspots" for shapes. A "Hotspot" is an important point for decomposition process, is made 

up from two connecting original lines. This point only concerns internal geometrical 

information for the shape. A Hotspot is one of the vertices of the original point of a shape, 

and its position is different from other vertices, because it is only from these points that 

penetration into the inside of the shape. Once the Hotspot is found, it maybe possible, using 

the projection (horizontal and vertical) method to decompose the shapes into rectangles and 

rectangle primitive elements. (See on diagram 3.7 shows hotspot position and the internal 

geometrical information such as projection lines.)
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The Hotspot

Fig.3.7 the diagram shows only internal projection identifies the hotspot.

The main issue is to how to identify the hotspot. (See the definition on section 3.6.1).

To recognise the hotspots, it is essential to initialise the direction of reading the data for the

shape. Table 3-2 below, clarifies the entity of hotspot.

Direction (1) Clockwise Direction (2) anticlockwise
Non hotspot the points to be skipped

  Up »» Right

  Right >»down

  Down >»Left

  Left »»Up

Hotspot stores in hotspot collection

  .Left »»Down

  Up >»»Left

  Right »»Up

  Down >»Right

Table 3-2 shows the steps for skipped points by directions to identify the hotspots.

Table 3-2 shows the steps for identifying hotspots. The first column to the left represents the 

direction clockwise of reading data and the second to the right represents anticlockwise. The 

idea for this algorithm is to spot the hotspots. It's an important issue which will be dealing 

with the geometrical internal information of the shape. Figure 3.9 gives an overview of the 

shape decomposition algorithm and the hotspot. The next section explains the steps for the 

shape decomposition process and it illustrates the steps in a flowchart. Figure 3.8 shows the 

details for each step.



The algorithm steps for shape decomposition

Insert new case for decomposition

Read always two lines togather

Initialise the direction of reading 
data of the shape

Clockwise direction Anticlockwise direction

Check whether their connecting 
point is Hotspot or be skipped

Hotspots stores into Hotspots 
collection for recalling

For decomposition using projecting
techniques: 

Horizontal, vertical and diagonal

Outcomes: 
Rectangles and Triangles

End of decomposition

Fig.3.8 The Flow chart shows the Shape Decomposing Algorithm.



3.6.1.1 The discussion on the Algorithm

Read Lines: Firstly read the sets of lines (this research deals with both one set and two sets of 

shapes (cycle)); secondly read the first line (start point and end point) and thirdly read the 

second line, (start point and end point). Specify the direction of the reading data (direction (1) 

is clockwise and direction (2) is anticlockwise).

Take two success lines to check whether their connecting point is hotspot or to be skipped 

(skipped points are not hotspots and are simply concerned with the boundary of the shape).

This procedure is applied to the first set of points in the boundary of the shape. See Table 3-2 

for skipped points. See Fig 3.7 for more details.

The result is stored for all hotspots to hotspot collections storage, so that it can be recalled 

later. By projecting techniques: It starts by drawing two projecting lines (horizontal and 

vertical), from each hotspot, to the nearest existing original lines according to the direction of 

projecting.

The above method provides the decomposition of the area of the shape into a set of rectangles 

and recto-triangles. These are then ready and merged if sides defined by internal points only 

connect them. A set of rules then identifies each element as one of the generic components. 

Fig 3.9 shows the three green lines representing the projecting technique from two hotspots. 

The output for this projection deals with internal geometrical information.

ShapeCBR has been developed at the University of Greenwich and can automatically 

decompose shapes into disconnected components. An example shape in Figure 3.8 shows this 

process. The task for shape decomposition is to generate new internal and external 

information about the shape example and this information involves component identification. 

More details are given in chapter four shape classifications. The automating shape 

decomposition product can be listed as follows:

No. of original lines: 6, No. Of projected lines: 2, No. of constructed lines: 2.

No. of original (including original) points: 6, No. of projected points: 2.

No. of constructed points: 2, No. Of hotspots: 1, No. of Component: 1 type L-Component.

No. of components: 1 type L-Region = L-Core-bar = 2 Connector bars type (a).

49



Fig.3.9 illustrates three projecting lines (green) and two hotspots.

The next section presents a number of experiment processes to provide the information detail 

of the shape decomposition, and at the same time to prove the idea of the decomposition 

process.

The test is illustrated by examples. All shape examples have been drawn through CAD 

application packages and sliced into dissimilar views, shape decomposed automatically into 

rectangular components through ShapeCBR system. Section 3.7 shows experiments for the 

decomposition process and illustrates by shape examples, the shape automatically generated 

through the decomposition algorithm.

3.7 The Decomposition Experiments

In this section, the proposed part of the decomposition algorithm is tested on 100 2D cross- 

sections or views, which represent a 3D complex model. A computer is using the AutoCAD 

application to create models and slice them. An Example shape is shown in Figures 3.8 and 

3.9. View 1 of Mug (of Figure 3.9) made of Bars, L-junctions and T-Junctions.

An algorithm was devised to provide for the automatic decomposition of shapes into the 

generic components used in this research. This algorithm starts by projecting each vertex 

(Hotspot) to any side that is directly opposite to it. This provides a decomposition of the area 

of the shape into a set of rectangles and triangles. Then reconciled and merged if sides 

defined by internal points only connect them. A set of rules then identifies each element as 

one of the generic components needed for the componentisation of the shape. Finally, the



projected line is projected automatically, and the constructed line drawn themselves parallel 

to vertical projected and horizontal projected, then it "stems" where appropriate (typically to 

joins, such as L, T and X). Figure 3.10 and 3.8 shows examples of such decomposition. 

Notice the top left L component. In the middle figure, the algorithm has identified a rectangle 

there. The rule that identifies this as an L component on the fact that this rectangle has two 

adjacent sides (right and bottom) that are internal lines. This identifies the component as an 

L-component. See Table 3-3, which shows decomposition products from Fig 3.10 for shape 

Id number 85, and Table 3-4 which shows decomposition products from Fig 3.11 for arbitrary 

3D Shapes. These data are generated by the ShapeCBR system for the decomposing process 

that has been developed for this research.

It

Fig.3.10 Shows an example (1) for Shape Decomposition that is generated by the ShapeCBR System.

The original shape was axisymmetric 3D shape and has been sliced into views which are 

stored in the case base, ready for the decomposition process. The Figure 3.8 illustrates the 

process that have been generated by the decomposition algorithm as has been explained 

above and the geometrical details of the shape shows in Table 3-3. The first column to the left 

represents the Case ID of the shape, the middle column are the product of points and the last 

to the right displays the lines type. The projected lines represent constructed lines.
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Shapes Name Points type and numbers Line type and numbers

Shape ID = 85 No. of constructed lines: 10

No. of original (including proginal)

points: 16

No. of projected points: 8

No. of constructed points: 20

No. of hotspots: 6

No. of original lines: 16 

No. of projected lines: 10

Table-3.3 shows decomposition products from Fig. 3.10 for shape ID = 85 is one of the 100 cases that have been 
provided by the pervious research [Mileman: 2000].

Fig.3.11 Arbitrary 3D Shape (mug). Fig.3.12 view 1 (a). Fig.3.12 view2(b).

Fig 3.12 viewl (a)

No. of elements: 9
No. of connector bars: 3
No. of connector bars type A: 1
No. of connector bars type B: 2
No. of core-bars: 2
No. of L core-bars: 2
No. of T core-bars: 0
No. of X core-bars: 0
No. of Taper core-bars: 0
No. of stem bars: 4
No. of wings: 0_________

Fig 3.12 view 2(b)

No. of elements: 49
No. of connector bars: 15
No. of connector bars type A: 5
No. of connector bars type B: 10
No. of core-bars: 10
No. of L core-bars: 6
No. of T core-bars: 4
No. of X core-bars: 0
No. of Taper core-bars: 0
No. of stem bars: 24
No. of wings: 0__________

Table-3.4 shows decomposition products from Fig 3.9 for arbitrary 3D Shape.

The table above shows the products of Figure 3.11. The 3D shape has been sliced into 

different views as you see in the above figures. Table-3.4 shows the internal geometry that 

have been generated through the decomposition algorithm. The first column to the left 

presents the geometrical information for the Fig. 3.12 View 2 (a) and the next column to the 

right presents the geometrical information for the Fig.3.12 View 1 (b). The two views 

represent the 3D shape that has been illustrated in Figure 3.11 These two columns show all
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internal geometrical details that have been generated through the decomposition algorithm. 

The next section presents an evaluation of the decomposition algorithm.

3.7.1 Evaluation of the decomposition algorithm

Mileman used 100 cases for evaluation of his research. These were manually decomposed by 

him and evaluated against a casting domain expert. For this research, the same 100 cases 

were fed into Case CBR and the resulting decomposition was compared to the manual 

decomposition that Mileman conducted. The result was that in all of the 100 cases, the 

ShapeCBR decomposition is identical to the Mileman manual decomposition. The next 

section presents conclusions of this shape decomposition chapter.

3.8 Conclusions

This chapter proposes a method to decompose shapes into separate parts, based on horizontal 

and vertical projecting techniques. The Framework is to decompose objects, represented as a 

number of 2D cross-sectional views, which represent 3D shapes. For the decomposition 

process, algorithms have been designed to perform efficiently with no user involvement. 

Furthermore, the framework of the application has been implemented to decompose 2D 

cross-sectional shapes (representing 3D objects) as a demonstration of its effectiveness in 

shape decomposition. This is demonstrated by examples. The outcome of these 

decompositions can carry the research to a further step "Classification process". The next 

chapter deals with shape classification to recognise and classify the decomposition products 

into identifiable components such as Bar, L, T and X-components. This problem will be 

investigated in detail in the following chapter 4.



Chapter 4

Shape Classification

Chapter 3 discussed the design of an efficient algorithm to automatically decompose a 

number of 2D cross-sections or 'views' into generically connected components. The aim of 

Chapter 4 is to discuss the design of several algorithms that can automatically classify the 

product of the decomposition process into generically connected and identifiable 

components. The classification process is based on Hotspot identification and searching 

methods: for the classification process using the algorithm known as "Full-scan" , identify 

the structural components such known as L-component, T-component and X-component; for 

the classification process using the algorithm known as "Semi-scan" to identify element 

known as bar and taper component.

4.0 Introduction

The objective of this part of the research is based on the results from the decomposition 

method discussed in Chapter 3. This Chapter seeks to identify and classify the decomposed 

shapes produced by the decomposition method into the six generic components (Fig.4.3) 

identified in previous research [Mileman: 2000 and Biederman et al 1992]. It is then possible 

to define similarity metrics to assist in efficient shape retrieval containing the relevant casting 

design knowledge. The final stages of this process will be discussed in Chapter 5. The next 

section presents the background for the shape classification problem.

4.1 Background to the problem

This section deals with 3D shape classification task for Case-base reasoning (CBR). The 

majority of experts favour 2D views as a matter of course. For example, civil engineers draw 

a 3D perspective of a house mainly for customer visualization purposes. But for other details 

of the house, such as beams, polls, doors, windows, there is a need to breakdown the 3D 

perspective design into a number of 2D cross-sections or views. The same is true for complex 

3D casting designs [Aziz, M.: 2004]. (See the two examples below).



Fig.4.0 (a) represents an axisymmetric 3D casting design. Fig.4.0 (b) represents a cross- 

section for the casting design. This cross-section demonstrates the internal geometrical 

structure of the shape. For slicing process a CAD application have been used.

Fig.4.0 (a) shows an example of axisymmetric shape.

Fig.4.0 (b) illustrates the geometrical information for the above 3D.

As the first step, the decomposition process is a fundamental task in this research. Details of 

the decomposition process were given in the previous chapter. New generic components 

(rectangular and triangular) have been defined after applying shape decomposition on the 

shapes illustrated in Fig.4.1 and Fig.4.5 shows triangular component types. These represent 

structure of the shape and show internal geometrical information of the shape. This provides 

a possible solution in casting design for recognising the number of feeders and chills and 

other details of 3D objects. This chapter attempts to answer the second primary question of 

this research. Is possible to classify 3D shapes uniquely using generic components? (See on 

Fig. 4.3).
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4.1.1 The classification algorithms

1. The Hotspot algorithm:

Hotspot is made up from two connected original lines and this point only concerns internal 

geometrical information. The hotspot is one of the vertices of the original point of a shape, 

and its position is different from other vertices, because it is only from these points that 

penetration into the inside of the shape is possible by using the projecting method to 

decompose the shapes into rectangles and rectangle primitive elements. This algorithm starts 

by projecting horizontal and vertical lines from each hotspot to the nearest existing original 

lines.

2. The BarSpot algorithm:

BarSpot is defined as a bar primitive type of component that is created by projecting a 

horizontal and a vertical line from the first hotspot and each component can only have one 

Barspot. See on the Figure 4.8.

3. The Core-bars algorithm:

Each component has a core-bar and each core-bar has a number of hotspots from one hotspot, 

which must have up to four Hotspots. Each hotspot in the core-bar represents a type of 

component.

All these have been discussed in this research. The third (Core-bars) algorithm is the most 

relevant, understandable and efficient because this algorithm has been tested with 100 cases 

that have been provide by previous research Mileman and tested over ShapeCBR system and 

compared with the other two algorithms shows better results. Before we discuss the 

algorithms for classification, the task requires an overview for shape decomposing in the next 

section.
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4.2 An Overview of the Decomposition Method

Figure 4.1 illustrates the decomposition approach analysis. It shows the internal geometrical 

structure of 2D cross-section shape on the right side of the figure generated algorithm of 

shape decomposition. The figure shows the, original shape.

The green coloured lines and points show projected lines and the brown coloured lines and 

points are constructed lines, which are additional lines parallel to each projected line. Black 

lines are the original or boundary lines.

Fig.4.1 illustrates the shape decomposition process.

QVQO

Fig.4.2 illustrates original lines, projecting lines and constructed lines.

Figure 4.2 illustrates all types of lines that have been generated by the decomposition 

algorithm such as:

  Original lines (Black colour) are the boundary of the shape.



  Projected Lines (Green colour) have been created through by projecting horizontal 

line and vertical line from each hotspot.

  Projected points (Blue colour) have been crated by projected lines when the projected 

lines hit opposite side of the nearest wall inside the shape Fig.4.15.

  Constructed lines or stem (Brown colour) have been created during projecting lines 

operation give a formation of the shape Fig 4.23.

Each colour represents types of line and points and these new lines and points have been 

generated through the algorithms of decomposition process. The next section discusses the 

method of the Shape-CBR classification.

Through the above (Fig.4.1 and Fig.4.2) process, the system generates new internal 

geometrical information, or new attributes such as new lines (projected lines) and points 

(projected points). This new information could lead the identification of new objects by 

diagnosing the structures of the shape. Therefore, in this way we are led to finding a solution 

for the classification of shapes. This is achieved through the way internal lines (structures) 

have been connected, or structured, and knowing the relationship between the new 

information and the original details. These questions were raised in the discussion of the 

decomposition process, and thus needs to be answered.

In order to discuss further the classification approach it needs to define the basic constitution 

of the shapes for investigating aspects of 3D shapes and 2D cross sections, as well as how we 

can go in further to break down a shape into basic elementary shapes (that have been shown 

in Chapter 3) and identify all elements of that shape Fig. 4.19, components Fig. 4.24, regions 

Fig. 4.25-4.28 and finally the shape Fig. 4.16 itself.

The first basic constituent of a given shape is elements, which represent the basic foundation 

for components. This component depends on the number of lines. The definitions of our 2D 

cross-section shapes are composed of elementary 2D objects that call "elements". Elements 

are either rectangular or right-angled triangles. The next section analyses the products of the 

shape in detail, along with their definitions, such as the elements, components and regions. 

These products have been demonstrated by examples and are shown in figures and tables for 

each product.
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The products consist of elements, such as point types, line types, bar types, components, taper 

types and regions. However region type will not be covered in this research (future work). 

All example shapes within this chapter have been generated automatically from the 

ShapeCBR system, and their products can be seen in figures and tables in Chapter 4 and 

Chapter 5.

4.3 Analysis of the research Models

This section is a discussion on the first basic constituent of a given shape which is described 

in the following sections:

4.3.2 Elements

Fig 4.4 illustrates elements which are a collection of lines. During the decomposition and the 

classification process, new variant types of lines have been generated through the algorithm, 

namely constructed lines, projected lines and stem lines. 

The following paragraphs describe the elements of the components:

Types of lines: Original lines, projected lines, constructed lines and (stem) segment lines. 

The research proposes the following designation for variant types of elements: Table-4.0 

below analyses the types of Bar and Wing (see on Fig.4.5) which are the basic constituents of 

the shape:

Elements

Core-bar

Stem bar
Wing
Connector bar (A)
Connector bar (B)

No. of 

points

4

4
3
4
4

No. of 

Hotspot

4

0
0
0

No. of 

original lines

0

0
0
0
1

No. of 

segment lines

0

2

2
3

No. of 
Projected

lines

0

1
0
0
0

No. of 

constructed 

lines

4

1
0
2
1

Table-4.0 analyses the basic elementary constitution for the shape.

The first columns from the left of Table-4.0 shows the elements such as: Core-bar 

(rectangular), Stem (constructed) bar (rectangular) or bar made up with 4 constructed lines 

that have been generated during the projection of lines that are meant for recognition of
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elementary shape. Connector bars for types (A) and (B) are either rectangular and/or wing 

triangles.

4.3.3 Components

4.3.4 .1 Component definitions

Components are a subset of shapes, which contain many parts. Current research components 

are three structure components that have different definitions. Table 4-1 shows the products 

of individual components.

Two perpendicular projected lines build L-Core see Fig 4.4a

Two parallel projected lines build Tp-Core see Fig 4.5 b

One projected line + one original (diagonal) + one segment build Wing see Fig. 4.5 c.

Table-4.2 shows analysis of the component definitions:

Bar

Taper (A)

Taper (B)

(X)

Fig.4.3 shows the proposed primitive components (L, T and X) and Bar and Tapers elements. 

[Mileman, Thesis: 2000].

Components

L-Component
T-Component
X-Component

No.
Of
Points
6
8
12

No of
Hotspot

1
2
4

No. of
original lines

0
0
0

No. of
segments

4
5
8

No. of
Projected
lines
0
0
0

No. of
Constructed lines

2
3
4

Table-4.1 analyses the component types.

Table-4.1 shows the analysis of each type of component. The first column shows the 

component type products, the second shows the points, the third the Hotspot with their
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numbers, the fourth the original lines, the fifth the segment lines, the sixth the projected lines 

and the last column shows the constructed lines. All these products in the table above 

generated through the classification algorithms. Some definitions for the Table 4-2 and 

definitions of Bar (A) and Bar (B):

Original Line Segment lines Projected Lines

Constructed lines

bar
bar (A)

Fig.4.4 shows the research type components.

Fig.4.5 shows the dilierent lypes or iapers.
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Types of Taper 
Component

Tpl -Component

Tpl -Component

Flag-Component

Mushroom- 
Component
Flame 1- 
Component
Flame2- 
Component

No. of 
points

4

4

6

8

9

7

No. of 
Hotspot

1

2

1

2

4

2

No. of 
original 
lines

No. of 
segments

No. of 
Projected 
lines
1

2

2

3

4

2

No. of 
constructed 
lines
0

0

1

1

1

0

No. of Wings

1

2

1

2

3

3

Table-4.2 shows types of possible Taper Components (in current research only two types have been introduced 
which are Taper typel (fl) and Taper type2 (el).

The above table shows the analyses of tapers types. The first column shows the taper types 

product, the second shows the points, the third the Hotspot with their numbers, the fourth 

displays projected lines and the last column shows the numbers of wings and all these 

products have been generated automatically through the classification algorithms. This 

research is only dealing with two types of taper (Fig. 4.5 el and- fl).

4.4 Matching Algorithms for Classification

This section presents the methodology of shape classification by using the matching 

technique; we address the shape classification problem in this chapter.

The matching technique is a method to tackle the classification process, which leads towards 

the final goal; the shape retrieval using (CBR) method.

Several efficient algorithms have been designed for the classification processing 

automatically identifies individual identifiable component types. This classification process 

has been designed manually by [Mileman 2000]. The algorithms are:

A: Full-scan: Full scanning is a scanning method where all lines and points are searched, 

until the first hotspot is reached where a rectangle called a "Core-bar" created. Each 

component has a core-bar and each core-bar is made from one or more hotspots to must 

have up to 4 Hotspots.
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B: Semi scan: semi-scans are used for bar classifications. Semi scan, besides searching 

forwards and backwards on the same line for Hotspots to inform the previous component of 

any constructed lines shared between them and, also identifies elements such as bar This 

technique identifies two types of bars; the first type we called connector bar type (A) which, 

it links two structural components such as Ls, Ts, Tapers and Xs but the second type we 

called bar type (B), which has only one link to the structural components. These two 

algorithms will be discussed in section 4.6.1 and 4.6.2

A lot of the work discussed above has been conducted for the purpose of classifying shapes 

into generic types of component for various application areas. For the purposes of this 

research the required shape classification context is that of classifying casting shapes into 

generic types of component to allow for the re-use of useful casting design knowledge 

through CBR retrieval of similar shapes based on similarity metrics. Mileman [2000] 

demonstrated the feasibility of this approach, but he used a manual approach to this 

classification. However, in order to produce useful CBR based casting design tools, it will be 

important to automate the classification process. This will make the creation of new target 

(query) cases and maintenance of the case base more usable and efficient.

In the next section the second approach in the thesis called "classification method" is 

introduced and discussed. There are three algorithms associated with this method. Only the 

third algorithm has been implemented in the ShapeCBR system, the other two have been 

discussed to show that there are many way classify shapes.

4.5 The Algorithms for Classification- Process

In this research, three different algorithms have been designed, the reason being to 

demonstrate that there are many solutions for the particular problem. All three algorithms are 

primarily based on the identification of Hotspot for shapes, which are explained in chapter 

three.

Additionally, the steps for each algorithm have been explained in both theory and practice, 

through diagrams. But only the final one of these three has been implemented for the 

ShapeCBR system, as it is the most relevant and efficient algorithm that aids the research to
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final goal; shape retrieval using (CBR). The algorithms are introduced and explained in detail 

in sections 4.5.1, 4.5.2 and 4.5.3

4.5.1 The First Algorithm

This algorithm was the first suggestion by the author that was tried. The author thought it is 

relevant to add this to the ShapeCBR system, particularly for the shape classification process 

that identified component types and the attempt to answer the second (componentisation) 

question of this research.

The first step for this algorithm is primarily based on the identification of Hotspots for 

shapes. The hotspot process has already been explained in detail in Chapter3-p.47, with 

Figure 3.7 displaying a flow chart for the shape decomposition (hotspot algorithm). The type 

of components that have been suggested by [Mileman: 2000] and it can be identified through 

the number of Hotspots. For example, bar-components are made up of one hotspot. As shown 

in figure 4.6 (a), a bar component is made up of two parallel constructed lines, or one original 

line parallel to one constructed line. Figure 4.6 (b) shows that L-Components are made up of 

one vertical projected line adjacent to one horizontal line and connected by one hotspot. 

Figure 4.6 (c) shows that T-components are made up of one horizontal line, or one vertical 

line connected to an adjacent horizontal or vertical line, that are connected into two hotspot. 

Figure 4.6 (d) shows that X-components are made up of two horizontal lines or two vertical 

lines adjacent to two horizontal lines, or two vertical lines. Also, they are connected by four 

Hotspots. To conclude, Fig. 4.6 and Fig.4.7 summarises the factors that dictate the types of 

components, the first one being the number of Hotspot and the second being the type of 

connection between the neighbour lines. Additionally, the lines are shown to be either 

original or constructed lines.

<9-

a b c d

Fig.4.6 shows analysis types of components by the hotspot and their adjacent lines.
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The steps for the first Algorithm

L-shaped.

T-shaped.

X-shaped.



4.5.2 Second Algorithm

"BarSpot".



The steps for second algorithm



4.5.3 Third Algorithm

*hotspot 

*The hotspot is a critical point for both the 

decomposition process and the classification process. 

The Elements and the components for the Classification



Types of lines: 

Elements 

Components: 

4.6 Classification (Algorithms) Methods

"Core-bar" created. Each component has a 

core-bar and each core-bar is made from one or more hotspots to must have up to 4 

Hotspots. . 



How a core-bar draws itself:



A: Searching all points 

B: Semi scan: 



4.7 The primitive Components



Constructions of components are:

4.8 Classification Experiments
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As a result of this 

retrieval process, 



G = (V,E) 

E V V 

Usually, the term 

arc is used when the graph is directed, term edge is used when it is undirected. 
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ComponentType acompType \? i ,^^)- 

noTypes

, ,^ 2 
o-mcs 

mcs 

For larger graphs a 

strategy based on a preliminary comparison of node types and degree can help to reduce 

the search time. 
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For the general advice, four rules have been set up by the first expert "Mileman" thesis 

[2000] and the four rules are:





















































































































Appendix C Software Operations 

ShapeCBR-Decomposition and Classification Process 

ShapeCBR have been developed in visual basic 6 programming language at the 
Greenwich University. The system has been used to support research objectives. 

Appendix C presents the decomposition process by illustrating an example view for 
shape-Id 99. 

3D casting design have been drawn and sliced into dissimilar views by CAD application. 

1- The user insert a new case (view 99) into the system to find the most similar case from 
case base knowledge .The ShapeCBR system task is to do the following processing: 

... ShapeCBR For Decomposition Process X 

Fdes 
Input File 

Output File 

Onglnal 1 Decomposed I POints I Lines 1 Ingredients I Components I Regions I AnalySIS I 

D.ectlOn 01 Reading ClockWIse 
No of 2 
Set 1 stalts from ine 1 to line 16 
Set 2 stalts from in. 17 to I.,e 24 
No of ollQlnal points 24 
No of o'lQlnal,.,e, 24 

Shape "aft, from hne· I·5.12) · 1·1.121 Class O"glnal. 
Type Horizontal. Orrectron Rrght. Length. 4 

H 

B,owse 

810wse 

H 

H 

The figure above show the shape in the right side of the ShapeCBR system interface and 
it is ready to go through the decomposition process. 
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Pure synthesis: 

Hierarchical refinement: 

Transformational approach: 



Case-Based Design: 














