
Greenwich Academic Literature Archive (GALA)
– the University of Greenwich open access repository

http://gala.gre.ac.uk

__

Citation:

Robbins, Phil (1995) The use of some non-minimal representations to improve the effectiveness of
genetic algorithms. PhD thesis, University of Greenwich.

__

Please note that the full text version provided on GALA is the final published version awarded

by the university. “I certify that this work has not been accepted in substance for any degree,

and is not concurrently being submitted for any degree other than that of (name of research

degree) being studied at the University of Greenwich. I also declare that this work is the result

of my own investigations except where otherwise identified by references and that I have not

plagiarised the work of others”.

Robbins, Phil (1995) The use of some non-minimal representations to improve the effectiveness of

genetic algorithms. ##thesis _type## , ##institution##

Available at: http://gala.gre.ac.uk/6281/

__

Contact: gala@gre.ac.uk

http://gala.gre.ac.uk/
mailto:gala@gre.ac.uk

1491497

THE USE OF SOME NON-MINIMAL REPRESENTATIONS TO

IMPROVE THE EFFECTIVENESS OF GENETIC ALGORITHMS

PHEL/ROBBINS

A thesis submitted in partial fulfilment of the

requirements of the University of Greenwich -? *»>

;l
for the Degree of Doctor of Philosophy

April 1995

Acknowledgements

Firstly, I would like to thank Dr Alan Soper of the School of Computing and Information Systems

at the University of Greenwich for supervising this project.

Professor Kevin Warwick of the Department of Cybernetics at the University of Reading acted as

external adviser in the final year. I am extremely grateful to him for his constructive criticism,

gruelling deadlines, and, perhaps most of all, for his encouragement and enthusiasm for this project.

Other members of staff at the University of Greenwich to whom I am indebted for constructive

criticism of the work, or for moral support, include Professor Brian Knight, Dr. Chris Woolard, Mrs

Kate Finney, Alex Frederic and Nicholas Dunleavy.

I would also like to thank EPSRC for funding the first three years of this work (October 1991 to

September 1994). From October 1994 onwards I was supported by an associate lectureship and

payments for additional part-time lecturing, provided by the University of Greenwich. In this

context, I am particularly grateful to Mr. Malcom Hudson, Head of Computing and Information

Systems, Mr. David Hunt, Head of Software Engineering, and Mr. John Kitto, Site Manager at the

Kings Hill Centre. Malcom Hudson also loaned me his personal computer for last year of the

project, for which I am also extremely grateful.

Thanks also go to the library staff at the University of Greenwich for the excellent service they have

provided.

Finally, I must thank Janet Lovell for her encouragement, constructive criticism and tolerance.

Abstract

In the imitation chromosome representation used in genetic algorithms, the number of genotypes

that map onto each phenotype varies greatly. This leads to an attractor in phenotype space which

impairs the performance of the genetic algorithm. The attractor is illustrated theoretically and

empirically. A new representation, called the length varying representation (LVR), allows imitation

chromosomes of varying length (and hence with a variety of attractors) to coexist. Chromosomes

whose lengths yield attractors close to optima come to dominate the population. The LVR is shown

to be more effective than the imitation representation against a variety of fitness functions. However,

the LVR preferentially converges towards the low end of phenotype space. The phenotype shift

representation (PSR), which retains the ability of the LVR to select for attractors that are close to

optima, whilst using a fixed length chromosome and thus avoiding the asymmetries inherent in the

LVR, is defined. The PSR is more effective than the LVR, and the results compare favourably with

previously published results from eight other algorithms. The internal operation of the PSR is

investigated. The PSR is extended to cover multi-dimensional problems.

The premise that improvements in performance may be attained by the insertion of introns, non-

coding sequences affecting linkage, into traditional bit string chromosomes is investigated. In this

investigation, using a population size of 50, there was no evidence of improvement in performance.

However, the position of the optima relative to the hamming cliffs is shown to have a major effect

on the performance of the genetic algorithm using the binary representation, and the inadequacy of

the traditional crossover and mutation operators in this context is demonstrated. Also, the

disallowance of duplicate population members was found to improve performance over the standard

generational replacement strategy in all trials.

Keywords

genetic algorithm, optimization, representations, imitation representation, attractor in imitation

space, cardinality, linkage, epistasis, introns, hamming cliff, reproduction strategies.

Contents

ACKNOWLEDGEMENTS......................................^

ABSTRACT..^

KEYWORDS...^

CONTENTS...^

INTRODUCTION..8

1. GENETIC ALGORITHM OVERVIEW... 11

1.1 Introduction to Genetic Algorithms.. 11

1.1.1 The Genetic Algorithm Process... 12

1.1.2 Characteristics of Genetic Algorithms... 17

1.2 Development of the Genetic Algorithm.. 21

1.3 Genetic Algorithm Theory...22

1.3.1 Schema Theorem .. 23

1.3.2 Building Block Hypothesis..26

1.3.3 Characterisation of Problem Domains ... 26

1.4 Extensions to the Traditional Genetic Algorithm... 28

1.4.1 Representations... 28

1.4.2 Operators..33

1.4.3 Parent Selection.. 38

1.4.4 Replacement Strategies ... 41

1.4.5 Maintenance of Sub-Populations... 43

1.4.6 Incorporation of Problem-Specific Knowledge.. 45

1.4.7 Adjustment of the Fitness Landscape... 45

1.4.8 Handling Constraints.. 47

1.5 Genetic Algorithms and Machine Learning.. 48

1.5.1 Classifier Systems...49

1.5.2 Genetic Programming... 50

1.6 Other Optimization Techniques... 50

1.6.1 Simulated Annealing... 50

1.6.2 Tabu Search.. 52

1.6.3 Hillclimbing.. 53

2. EXPLOITING THE ATTRACTOR IN UNITATION SPACE: THE LENGTH VARYING

AND PHENOTYPE SHIFT REPRESENTATIONS... 55

2.1 Introduction... 55

2.2 The AttractorinPhenotypeSpace..57

2.2.1 The Effect of the Attractor in Initialisation.. 58

2.2.2 The Effect of the Attractor Under Crossover and Mutation.. 59

2.2.3 The Effect of the Attractor on Convergence... 63

2.2.4 Summary... 71

2.3 Length Varying Chromosome Representation.. 74

2.3.1LVRRationale.. 74

2.3.2 LVROperators.. 75

2.3.3 Illustration of LVR Operation..77

2.3.4 LVR Results.. 81

2.3.5 Problems Inherent in the Length Varying Representation.. 83

2.3.6 Conclusion.. 89

2.4 Phenotype Shift Representation..90

2.4.1 Phenotype Shift Representation Chromosome.. 90

2.4.2 PSR Operators... 92

2.4.3 Illustration of PSR Operation..93

2.4.4 Phenotype Shift Representation Results... 96

2.4.5 Comparison of Phenotype Shift Representation Trap Function Results with those of Other

Studies...98

2.4.6 Summary... 102

2.5 Phenotype_Shift Gene Encoding.. 103

2.5.1 The Binary Phenotype Shift Representation... 103

2.6 Investigation into the Operation of the Phenotype Shift Representation.............................. 109

2.6.1 The Sum is Greater than The Parts.. 109

2.6.2 The Differing Roles of the Unitation Part and the Phenotype_Shift Gene..................... 114

2.6.3 Effect of Varying the Length of the Unitation Part... 119

2.6.4 Effect of Varying the Population Density... 125

2.6.5 Conclusion.. 140

2.7 Extension of the Phenotype Shift Representation for Multi-Dimensional Problems............. 142

2.7.1 Multi-Dimensional Phenotype Shift Representation Design Considerations................. 142

2.7.2 Multi-Dimensional Phenotype Shift Representation Results... 147

2.7.3 Summary... 159

3. INVESTIGATION INTO THE EFFECT OF INSERTING INTRONS INTO THE BINARY

STRING REPRESENTATION.. 161

3.1 Introduction... 161

3.1.1 Biological Background.. 162

3.1.2 Levenick's Experiments.. 164

3.2 Experiments Using Introns in Genetic Algorithms Optimizing Functions Other Than Mu. 170

3.2.1 Sum of Squares Function... 170

3.2.2 Sum of Differences Function... 192

3.2.3 Decoded Sum of Differences Function... 197

3.3 Conclusions... 201

4. CONCLUSION... 204

5. REFERENCES... 209

Introduction

An overview of this thesis is presented, and then the equipment and software used in its production

is described

Work Described in this Thesis

An introduction to the field of genetic algorithms is provided in Section 1 of this thesis. The

operation of the basic genetic algorithm is described, and then the development of the genetic

algorithm and its theoretical foundations are reviewed. Several researchers have extended the basic

genetic algorithm, and some of these extensions are described in Section 1.4. Although the work in

this thesis is very much geared towards the application of genetic algorithms to optimization

problems, the genetic algorithm has also been applied to machine learning, and this is the subject of

Section 1.5. Some other optimization techniques, against which the performance of the genetic

algorithm is often compared, and against which the genetic algorithm must compete effectively if it

is to be adopted in industrial applications, are reviewed in Section 1.6.

The unitation representation is a chromosome structure that can be processed by genetic algorithms,

and this representation, the associated problems, and some extensions made to the unitation

representation in order to avoid these problems, are the subject of Section 2 of this thesis. In Section

2.3, a variation on the unitation representation, the length varying representation, is defined,

implemented and tested. This representation is intended to avoid one of the major problems of the

unitation representation, namely a strong attractor in the centre of the solution (phenotype) space.

The length varying representation outperforms the unitation representation in the tests conducted.

However, subsequent analysis reveals that the length varying representation does, in fact, introduce

a (lesser) bias of its own.

A further representation, the phenotype shift representation, is defined and described in Section 2.4.

The phenotype shift representation retains the benefit of the length varying representation in

nullifying the attractor in phenotype space, and has the additional desirable characteristic of

permitting shorter chromosomes to be used. The phenotype shift representation outperforms the

8

length varying representation against the test functions used (except for one case in which the bias

inherent in the length varying representation gives that representation an advantage). Results

obtained with the phenotype shift representation against a set of test functions compare very

favourably with those obtained and published by other authors. An investigation into the internal

operation of the phenotype shift representation is carried out.

The definition of the phenotype shift representation is then extended to encompass multi-

dimensional problems, and the results obtained from this implementation against a set of test

functions are compared with those obtained from a binary representation.

The tests carried out against problems in one dimension did not uncover any bias whatsoever in the

phenotype shift representation. However, tests against the multi-dimensional functions suggest that

the performance of the phenotype shift representation, with respect to exact location of an optimum,

is impaired when that optimum is located on the boundary of legal phenotype space.

In Section 3 of this thesis, the original work described in (Levenick 1991) on the introduction of

introns (non-coding sequences) into the artificial chromosomes processed by genetic algorithms is

extended. In this thesis the effect of introns is studied in the context of genetic algorithms using

relatively small populations to optimize continuous functions. There are two objectives here. The

first is to investigate the efficacy of introducing introns in such circumstances. The second objective

is to contribute to the debate on alphabet cardinality (in this context the binary representation versus

the atomic integer representation).

The introduction of introns between the genes of the binary representation chromosome did not

result in a significant increase in performance.

When large numbers of introns were placed between the genes of a binary representation, the

probability of a crossover occurring within a gene reduces to the point where the crossover

characteristics of the binary representation become almost identical to those of the atomic integer

representation (in which each gene is represented by a single integer value, which cannot be split by

crossover). Tests revealed, however, that the atomic integer representation outperformed the binary

representation, even when large numbers of introns were used This led to the hypothesis that the

reason for the difference in performance between the two representations lay in the characteristics of

the mutation operators. A pseudo-binary mutation operator was incorporated into the atomic integer

representation, and, using this mutation operator, the atomic integer representation was not as

successful as it had been previously, and in fact there was no significant difference in the results

obtained using the atomic integer representation with the pseudo-binary mutation operator and the

binary representation.

Further analysis of the operation of the genetic algorithm using the binary representation revealed

that the problem is, at least in part, due to the inability of the binary mutation operator to effect a

transition from one side of a hamming cliff in binary space to a nearby position on the other side of

the hamming cliff.

Also in Section 3, generational reproduction without duplicates is implemented. In each and every

test, generational reproduction without duplicates was found to achieve greater success than

generational reproduction with duplicates, using the same parameters.

Equipment and Software Used in the Production of this Thesis

The work described in this thesis was done using IBM PC compatible computers.

The program code for the genetic algorithm implementations and subsequent processing of results

was written specifically for this thesis using Borland Pascal with Objects (version 7.0), which is an

object-oriented version of Pascal.

Microsoft Excel (versions 4.0 and 5.0) was used to collate results and to create the tables and graphs

presented in the thesis. Microsoft Word for Windows (versions 5 through to 6.0c) was used for the

production of the thesis document.

10

1. Genetic Algorithm Overview

1.1 Introduction to Genetic Algorithms

The genetic algorithm is a heuristic technique suited to searching search spaces in any number of

dimensions.

One definition of the word "heuristic", given in (Reeves 1993a), is as follows>

"A heuristic is a technique which seeks good (i.e. near-optimal) solutions at a

reasonable computational cost without being able to guarantee either feasibility or

optimaliry, or even in many cases to state how close to optimality a particular feasible

solution is."

Genetic algorithms, and heuristic techniques in general, therefore, do not guarantee to locate the

global optimum (although much of the current genetic algorithm research is involved in attempting

to improve performance in terms of locating better optima). Heuristic techniques are most

appropriate in situations where either no algorithmic strategy for finding the optimum is known, or

where the algorithmic strategy is too computationally expensive to be feasible.

The concept of the genetic algorithm was first introduced by John Holland (Holland 1975). The

model is based on concepts drawn from natural genetics and natural selection. Members of a

population of potential problem solutions are evaluated as to how well they solve the problem. This

is known as fitness. The members of a population then breed and mutate to create the next

generation. Selection for reproduction is by means of probabilities which depend, in some way, on

the relative fitnesses of the population members. After a number of generations, the populations

generally become converged around a peak of fitness in the search space.

11

1.1.1 The Genetic Algorithm Process

In this section, the operation of a simple genetic algorithm is described. However, before the

computer process can get to work, the means of representation of the potential solutions must be

decided upon.

In much traditional genetic algorithm research, a single integer is represented as a string of bits,

using a standard binary representation, such that

= b 0 2°+bI 2 1 +b2 2 2 +...+bn_ 2 2n- 2 +bn_ 1 2n- 1

where p is the integer value represented by the binary string, b, is the value of the i* bit,

and there are a total of n bits in the binary string.

Any number of integers may be represented as a concatenation of the binary strings representing the

individual integers.

The encoding of the potential solution is often referred to as the chromosome, and parts of the

chromosome that correspond to each solution variable are called genes (this nomenclature is drawn

from natural genetics). The (artificial) genetic material represented in the chromosome is referred to

as the genotype, and the value represented by the chromosome is referred to as the phenotype. The

mapping from genotype to phenotype is known, in genetic algorithm parlance, as decoding.

Once the representation has been decided upon, the operators to be used for producing offspring,

both by means of mating (sexual reproduction of two potential solutions) and mutation, have to be

defined.

The representation of the potential solutions and the operators used are crucial to the degree of

success that the genetic algorithm will attain in a given problem domain. Representations, operators,

and the effect that they can have on the success rate of the genetic algorithm, is the main theme of

this thesis. Discussion of these matters will, however, be deferred until later. The remainder of this

section describes in broad terms the main steps in a standard genetic algorithm.

12

Figure 1 illustrates the main steps in a simple genetic algorithm, each of which is described below.

 Generate the Initial Population

The population members of the first generation are created at this stage, often by a completely

random initialisation process. Using the example of a population of binary strings, each bit in each

population member would be randomly assigned the value of "1" or "0" with equal probability

independent of the setting of any other bit..

 Evaluate the Population Members

The fitness of each population member in turn is calculated. This process generally involves

decoding the genotype into the phenotype, and then applying some function (referred to as the

fitness function) to the phenotype to give the fitness of that population member.

 Sort the Population According to Fitness

Once the fitness of each population member has been calculated, the population is sorted into

descending order of fitness.

 Terminate

One must specify some condition under which the genetic algorithm will terminate. Often the

genetic algorithm is terminated after a certain number of generations. Other options include

terminating after a given number of (fitness) function evaluations, terminating when a population

member of a certain fitness is created, terminating when the population has converged to a certain

degree, or terminating at user request. Sometimes combinations of these conditions are used. For

example, in many of the tests reported in this thesis, the genetic algorithm was set to terminate

when either a population member having a specified fitness value was created, or when a certain

number of generations had passed.

13

Generate the Initial Population

Evaluate the Population Members

Sort the Population by Fitness

Terminate?

Create the Next Generation

Evaluate the Population Members

Sort the Population by Fitness

Finish

Fignre 1 - The Main Steps in a Genetic Algorithm

14

 Create the Next Generation

There are two stages involved in creating the next generation. Firstly, the members of the current

generation that are to act as parents are selected, and then the offspring are created from the parents.

These stages are described in the following sections.

 Selection

There are two opposing requirements of the selection procedure. On the one hand, the selection

scheme must permit effective exploration of the search space, whilst on the other hand the effective

exploitation of the most fit members of the population must also be achieved. An effective selection

scheme must be capable of "balancing or overcoming the conflict of exploration and exploitation

inherent in selection" (Goldberg and Deb 1991).

Exploitation is the notion that the more fit members of the population should be selected as parents

more often than those which are less fit. In this way the genetic algorithm exploits the information

already obtained about the search space (contained within the most fit members' chromosomes) to

converge around areas of high fitness. A high degree of selective pressure encourages exploitation.

However, the selection procedure must not give too much preference to the most fit members of the

population, as this will render the genetic algorithm incapable of performing an effective

exploration of the search space. If too much selective pressure is applied in this way, then the

genetic algorithm will converge too quickly (premature convergence), and there will be an increased

likelihood that the population may converge around a local maximum.

One often used selection method is to select an individual as a parent with a probability equal to its

own fitness divided by the sum of the fitnesses of all the members of the current generation. This

method of selection is known as "Roulette Wheel Selection". Several other selection algorithms have

been developed, and some of these are described in Section 1.4.3.

15

 Reproduction

Reproduction, in the context of genetic algorithms, is the means by which the offspring chromosome

is generated from the chromosome(s) of the parent(s). Often two types of reproduction are

incorporated in genetic algorithm implementations, mutation and crossover.

 Mutation

Mutation is an operator that produces one offspring chromosome from one parent chromosome by

changing it in some way. As an example, an often used mutation operator that applies to

chromosomes containing binary strings processes each bit in turn and may invert the bit, with a

probability which is specified as a parameter to the program.

 Crossover

Crossover operators generally create one or more offspring from two or more parents.

As an example, let us consider a simple crossover procedure which produces one offspring from two

parents (which have previously been selected as described in Section 0). A random number between

1 and the length of the chromosome minus 1 is generated. That number of bits are copied from one

parent into the child, and the remainder of the child's chromosome is copied from the other parent.

This process is illustrated in Figure 2.

Mutation is sometimes applied to the child chromosome after crossover.

Again, many variations of crossover have been defined. Some of these are described in

Section 1.4.2.

16

Parent 1 Chromosome

1 1 0 1 0 0 1

Parent 2 Chromosome

1 0 0 0 1 1 1

Partially Created Child Chromosome

0

Child Chromosome

1 1 0 0 1 1 1

Figure 2 - A Simple Crossover Process. The crossover point is indicated by a double line.

1.1.2 Characteristics of Genetic Algorithms

Genetic algorithms differ from most other optimization techniques in a variety of ways. These are

described in the following sections.

Use of an Encoding of the Parameter Set

Whereas the majority of other optimization techniques directly process the parameter set of the

problem, genetic algorithms process an encoding of the parameter set. As stated in Section 1.1.1, the

17

encoding must be decided upon before the genetic algorithm itself can be allowed to get to work on

the problem.

In much traditional genetic algorithm work, the parameter set is coded as a fixed length binary

string. This approach has the benefits that the same program can be used against a variety of

problem domains with very little modification (this property is referred to as robustness). Also, the

bulk of the theoretical foundation of genetic algorithms (see Section 1.3) assumes such a coding, and

indeed, the building block hypothesis (Section 1.3.2) suggests that such a low cardinality encoding

should yield better results than higher cardinality encodings. However, as discussed in Section 1.3,

the theoretical basis of genetic algorithms is not yet complete, and there is growing evidence that

higher cardinality encodings may often outperform this traditional encoding. Results obtained and

reported in Section 3.2.1 of this thesis suggest that the characteristics of the standard binary string

mutation operator is the cause of this effect in some cases. The basis of a theory for genetic

algorithms operating on higher cardinality encodings is presented in (Antonisse 1989).

 Parallelism in the Search Strategy

Because the genetic algorithm uses a population of individuals, there is a degree of parallelism1 in

the search process, whereas most other optimization techniques search from one position at a time,

and are therefore variations on the theme of local search.

Due to this parallelism, the genetic algorithm is particularly amenable to implementation on multi-

processor machines. Research into parallel genetic algorithms can be classified into three

approaches (Gordon and Whitley, 1993):-

'This is not the concept of implicit parallelism, which is introduced in Section 1.3.

18

 Global Models

Under this approach, a single genetic algorithm is run. Parallelism is used to increase efficiency by

"farming out" processor-intensive tasks such as fitness evaluation or offspring creation to multiple

processors.

 Island Models

Each processor maintains and evolves its own population of candidate solutions. Individuals are

periodically copied or transferred between the different populations. This is referred to as migration.

 Cellular Models

Cellular models are also known as massively-parallel models. In the cellular model, each and every

population member is assigned its own processor, and each is processed in parallel. The selection of

a population member with which an individual can mate is generally restricted to those population

members which are located within the neighbourhood of the individual. Cellular genetic algorithms

have been shown to be a class cellular automata (Whitley 1993).

 Genetic Algorithms Do Not Use Auxiliary Information About the

Problem Domain

Many optimization techniques require auxiliary information about the domain in which they are

operating, whereas the genetic algorithm simply requires an objective function. As pointed out by

Goldberg (1989), "every search problem has a metric (or metrics) relevant to the search".

Because genetic algorithms do not require auxiliary information, and because they do not require

any assumptions about the problem domain, genetic algorithms can be applied in situations where

the problem domain is poorly understood, or of a highly complex nature.

19

 Use of Probabilistic Transition Rules

The majority of optimization techniques move from one point to another in the search space by

means of deterministic transition rules. Genetic algorithms however explore the search space by

means of probabilistic transition rules as implemented in the form of the crossover and mutation

operators.

 Tolerance to Parameter Value Settings

The performance of a genetic algorithm against a specific problem can be fine-tuned by adjusting

the genetic algorithm's parameters. However, genetic algorithms display a high degree of tolerance

to their parameter settings, and often provide very acceptable results over a broad range of

parameter settings (Reeves 1993a).

 Genetic Algorithms Provide a Simple Interface To Existing Models

and Program Code

It is comparatively simple to interface a genetic algorithm to an existing model implemented as a

computer program, since all that is required is a means by which the genetic algorithm can specify

parameter sets to the model for evaluation, and a means to receive the result (fitness evaluation)

back from the model. This situation is aided by the fact that the genetic algorithm requires no

auxiliary information about the program domain. For example, in some previous research in which

a genetic algorithm was applied to the problem of defining suitable internal topologies for a neural

network (Robbins et al. 1993), we were able to use an existing neural network implementation with

no modification to the program source code.

 Genetic Algorithms are Amenable to Hybridization

Furthermore, as the genetic algorithm is itself simple, comprising as it does just a few clearly

defined steps, it is amenable to modification and hybridization to improve performance in a

particular problem domain. Although the simple, unmodified genetic algorithm attains highly

20

acceptable results in many areas, improvements in performance are often attained by incorporating

problem-specific knowledge or operators. As stated by Goldberg (1994):-

"many search domains have more competent local search heuristics than selection
plus mutation, and getting the best answer in the shortest time often recommends
combining the global perspective of the GA with the efficient local search of some
problem-specific technique."

Holland (1992) expresses much the same sentiment:-

"if a partial solution can be improved further by making small changes in a few
variables, it best to augment the genetic algorithm with other, more standard
methods."

The benefits of combining elements of local search algorithms, such as hillclimbing and tabu search

(see Section 1.6), into the genetic algorithm is currently being investigated by Reeves (Reeves 1994).

This is a different approach to that discussed by Goldberg and Holland above, as the local search is

made an integral part of the genetic algorithm, by means of a new crossover operator

(Neighbourhood Search Crossover (NSX)), and because the modification is not tailored to a specific

problem domain, but is intended to be of general applicability, having already been applied to

knapsack, flowshop sequencing and graph partitioning problems.

1.2 Development of the Genetic Algorithm

The genetic algorithm was not the first paradigm to draw its inspiration from nature's evolutionary

process.

Evolution strategies, developed by Schwefel in the 1960's, is a genetically inspired parameter

optimization technique, in which mutation is the main operator, and selection is entirely

deterministic. Evolution strategies use a real number representation.

In evolutionary programming (Fogel et al. 1966), the state transition tables of finite state machines

are evolved, with a view to solving predictive tasks in response to external stimuli received from the

environment. Evolutionary programming was later applied to optimization and machine learning

applications. The standard representation used in evolutionary programming is the set of real

21

numbers. Probabilistic selection is used, but there is no recombination operator, the evolution

relying solely on mutation.

Also in the early 1960's, John Holland, who had been investigating the mathematical analysis of

adaptation, formed the opinion that a major part of the power of evolution lay in recombination.

Retrospectively, he wrote (Holland 1992):-

"The first attempts to mesh computer science and evolution . . . fared poorly because
they followed the emphasis in biological texts of the time and relied on mutation
rather than mating to generate new gene combinations."

From this stand-point, Holland went on to develop the genetic algorithm and the classifier system

(Section 1.5.1), which is a genetically-based machine learning paradigm. Holland's book

"Adaptation in Natural and Artificial Systems" (Holland 1975), which documents his research of

the time, is still one of the most referenced texts in the field.

(Holland 1975) provides much theoretical analysis of the mechanisms by which the genetic

algorithm operates. However, this analysis has proved to be a very difficult task because, although

the actual algorithm is relatively simple, the way in which the chromosomes are processed is highly

complex. Development of the theory of genetic algorithms is an area of on-going research.

The first documented application of the genetic algorithm to optimization problems was de long's

Ph.D. thesis (de Jong 1975). Today, optimization is perhaps the most widely used application of

genetic algorithms, and it is towards optimization problems that this thesis is oriented.

1.3 Genetic Algorithm Theory

There has been much research into the theory of genetic algorithms. The traditional tenets of the

genetic algorithm theory are the schema theorem and the building block hypothesis, which are

discussed in Section 1.3.1 and Section 1.3.2 respectively. However, although the algorithm for the

genetic algorithm is comparatively simple, the processing of the (artificial) genetic material

performed by this algorithm is highly complex, and therefore "genetic algorithms are hard to design

and analyse" (Goldberg 1994). The schema theorem requires assumptions that cannot hold true in a

real implementation, and, as will be described in Section 1.3.2, even a simple genetic algorithm,

22

operating against a fitness function which was designed to investigate the fundamental operation of

the genetic algorithm, and the building block hypothesis in particular, did not perform as expected

Alternative approaches to the analysis of the genetic algorithm, not based on the schema theorem,

have been, and are currently being, explored. For example, both Walsh functions and Markov

Chains have been applied to the analysis of genetic algorithm behaviour (e.g. (Liepins and Vose

1991) and (Vose 1993)).

I believe that, whilst research into the workings of the genetic algorithm is necessary and that the

progress of research into, and implementation of, genetic algorithms is possibly being impaired by

the lack of established, reliable theory which is applicable in a practical sense (i.e. which is not

based on assumptions that cannot hold true in real applications), one needs to rely principally on

empirical results in the absence of such theory. Much of the research done so far by the genetic

algorithm community at large has taken this approach, and this is the approach that I have adopted

in Sections 2 and 3 of this thesis.

1.3.1 Schema Theorem

The concept of the schema and the schema theorem were developed by Holland (1975). The schema

theorem relates to a population of fixed size, in which each member contains a bit string

chromosome of length

A schema is a pattern or template that can match some chromosomes and not others. Schemata use

three characters, "0", "1" and "*". Positions in which a "0" or a "1" appear are referred to as

defined. "*" is a "don't care" symbol, which can match either of the other two values, and can be

thought of as analogous to the "_" symbol representing the anonymous variable in the Prolog

programming language.

2 The notion of the schema has subsequently been extended and generalised by various

authors (e.g. (Goldberg and Lingle 1985), (Radcliffe 1991)).

23

If a schema contains n "*"'s, then that schema can match 2n different chromosomes.

Two properties of a schema that are often referred to are order and defining length. The order of a

schema is simply the count of the defined positions in the schema. The order of a schema is

therefore a measure of how specific the schema is, and is useful in calculating the probability of the

schema being disrupted by a mutation operation. The defining length of a schema is calculated by

subtracting the position of the first "0" or "1" in the schema from the position of the last "0" or "1".

For example, the schema (**0*11*1*) has a defining length of 5 (i.e. 8 - 3)3 . The defining length of

a schema is a measure of its compactness, and can be used to calculate the probability of the schema

being broken by a crossover operation.

As a population of chromosomes is processed, many schemata are also being processed implicitly, as

each chromosome is an instance of very many schema. This concept of many schemata being

(usefully) processed as a by product of processing the chromosomes in the population was also

introduced in (Holland 1975) and was named "implicit parallelism". In (Holland 1975) an

expression for the rate of implicit parallelism was derived, but more recent research (Mitchell et al.

1992) suggests that the rate of implicit parallelism is somewhat lower than was previously thought,

due to collateral convergence.

Finally, the fitness of a schema at a given time is defined as the average fitness of all of the

chromosomes in the population that contain that schema.

3The defining length of a schema which contains only one specified position is always 0. However, I

can find no specific reference to the definition of a schema which contains nothing but "*"'s. It

would seem logical to assume that the defining length for this special case should be defined as 0

also.

24

The schema theorem, as stated succinctly in (Michalewicz 1992), is as follows:-

"Short, low-order, above-average schemata receive exponentially increasing trials in
subsequent generations of a genetic algorithm."4

Clearly, the implication of the schema theorem is that a schema which contributes to population

members of higher than average fitness will appear more often in the subsequent generation.

However, there are two assumptions in the derivation of the schema theorem which do not hold true

in real-life implementations. These assumptions are that the number of generations is unlimited, and

that the population size is also unlimited. However, because in real-life implementations these

assumptions never hold, stochastic sampling errors occur. Booker (1983) states the situation thus:-

"it [the genetic algorithm] still fails to live up to the high expectations engendered by
the theory. The problem is that, while the theory points to sampling rates and search
behaviour in the limit, any implementation uses a finite population or set of sampling
points. Estimates based on finite samples invariably have a sampling error and lead to
search trajectories different from those theoretically predicted."

It appears to me, therefore, that it is not reasonable to cite the schema theorem as the reason why

genetic algorithms work (as is so often done). In (Mitchell et al. 1992), a paper that was co-authored

by John Holland himself, the authors state that "the details of how a GA goes about searching a

given landscape are not well understood".

Furthermore, any derivations from the schema theorem must be seen as being built on foundations

made of sand, unless one is careful to make clear that the work is purely hypothetical. Nevertheless,

the schema theorem certainly does provide an enlightening viewpoint from which to consider the

genetic algorithm.

''The statistical calculations involved in deriving the schema theorem are not reproduced here. One

may refer to (Holland 1975), (Goldberg 1989) or (Michalewicz 1992) for these details.

25

1.3.2 Building Block Hypothesis

The building block hypothesis was also formulated by Holland (1975). A proof of the building block

hypothesis has not yet been derived (hence and the building block hypothesis should

therefore be treated as a hypothesis, whereas many researchers in the field of genetic algorithms

treat it as an "article of faith" (Michalewicz 1992) (Mitchell et al. 1992).

The building block hypothesis is stated clearly and concisely in (Mitchell et al. 1992):-

"New schemas are discovered by crossover, which combines instances of low-order
schemas (partial solutions or "building blocks") of estimated high fitness into higher-
order schemas (composite solutions)."

However, the notion of the genetic algorithm proceeding by combining low-order schemas of high

fitness into intermediate-level schemas of high fitness, implicit in the building block hypothesis, is

called into question by the results obtained in (Mitchell et al. 1992) and (Forrest and Mitchell 1993),

against functions which had been specifically designed to investigate the building block hypothesis.

In the conclusion of their paper, (Mitchell et al. 1992) write that "making the meaning of this

hypothesis more precise and characterising the types of landscapes on which it is valid remain open

topics of great importance."

My belief is that the building block hypothesis should not be treated as an "article of faith", but, like

the schema theorem, as an interesting perspective from which to view the genetic algorithm.

1.3.3 Characterisation of Problem Domains

Genetic algorithms work very well in optimizing some functions and extremely poorly on others.

The classification of problem domains, in an attempt to better understand what makes a given

problem easy or hard for a genetic algorithm, is a major research area. Two potentially important

classifications of problems domains are concerned with epistasis and deception.

26

 Epistasis

Almost all of the problems upon which genetic algorithms are applied are, to some extent,

non-linear. In other words, the benefit (in terms of fitness) of having a certain value at one locus is

highly dependant on the values contained in other loci. This inter-dependency is known as epistasis.

Clearly, some problems are more epistatic than others.

When two loci interact in such a fashion, it is important that the degree of linkage between these

loci is appropriate. If the linkage is too high, then it is difficult for the genetic algorithm to discover

good combinations of alleles in these loci, but if the degree of linkage is too low, then good

combinations will be disrupted too often by the crossover operator. To an extent, these problems may

be reduced by careful consideration of the coding and the relative positioning of the loci on the

chromosome. However, for all but the simplest problems the appropriate positioning of the loci is

not obvious, and, in many cases where the problem domain is very complex or poorly understood,

the designer of the genetic algorithm may not be aware of all of the interactions that occur between

the loci.

One possible solution to this problem is to permit the genetic algorithm itself to evolve suitable

orderings. This led Holland to define the unary inversion operator (Holland 1975). Two points on a

chromosome are randomly selected and then the ordering of the loci between them are reversed.

Whereas previously knowledge of the position of an allele on the chromosome allowed us to

interpret that allele, this is no longer the case when inversion is permitted. Instead, each allele must

be "tagged" with extra information that allows us to interpret it. Furthermore, the crossover operator

must be augmented to deal with non-homologous chromosomes. Notwithstanding the intuitive

appeal of the inversion operator, the review of some studies of inversion provided in (Goldberg

1989) does not indicate that inversion will yield improved performance in the majority of cases.

 Deception

The concept of deception is currently receiving much attention in this context. A deceptive problem

is one in which the combination of two relatively fit, disjoint, building blocks leads away from the

27

global optimum, towards a local optimum. By definition, a deceptive problem contradicts the

building block hypothesis.

The minimal deceptive problem, which is the smallest problem in which deception is possible and

consists of only two bits, is described in (Goldberg 1989).

The importance of deception in genetic algorithms is a subject of much debate. For example,

Whitley (1993) states that "the only problems which pose challenging optimization problems are

problems that involve some degree of deception" whereas Grefenstette (1993) claims that "deception

is neither necessary nor sufficient for problems to be difficult for GAs". Grefenstette argues that the

notion of deception is based on the building block hypothesis, which does not model the dynamic

behaviour of the GA, and that the genetic algorithm converges more rapidly with respect to some

hyperplane competitions than others, and that the collateral convergence in the rapidly-converging

hyperplanes biases the samples taken from the other hyperplanes. Furthermore, he argues that the

building block hypothesis does not take into account the variance of fitness within schemas, and that

the observed fitness of a schema is unlikely to be a good approximation of its static fitness, and that

therefore the building block hypothesis again cannot predict the increase of a schema in a

population. Grefenstette also provides details of an experiment in which a genetic algorithm is able

to solve a highly deceptive problem in every run.

1.4 Extensions to the Traditional Genetic Algorithm

In this section some of the extensions to the tradition genetic algorithm are discussed. As it would

almost certainly be impossible to cover such a vast area completely, the inclusion of some topics and

exclusion of others is, to some extent, arbitrary and subject to my personal biases and interests.

1.4.1 Representations

In the discussion so far, we have assumed that the potential solution has been represented in the

chromosome in the form of a binary string. This need not be the case, and, in fact, much research

has addressed the issue of effective encodings. In this section the importance of the coding is

discussed, and some alternative coding strategies are described.

28

 Importance of the Coding

The choice of the encoding used to represent potential problem solutions in the chromosomes of the

population members is crucial to the success or otherwise of the genetic algorithm in a given

problem domain. Evidence of this is widespread throughout the genetic algorithm literature. For

example, the following is taken from (de long and Spears 1993):-

"One of the most critical decisions made in applying evolutionary techniques to a
particular class of problems is the specification of the space to be explored by an EA5 .
This is accomplished by defining a mapping between points in the problem space and
points in an internal representation space."

 Unitation Representation

Under the imitation representation, the chromosome consists of a bit string, as is the case with the

traditional genetic algorithm. The difference lies in the mapping from the chromosome to the

solution space. In the imitation representation, the value represented by the chromosome is defined

to be the count of all the 'T"s in the chromosome, irrespective of their positions within the

chromosome. If a imitation chromosome is to be able to represent n distinct values, then the

chromosome must have length n-1. Clearly, more bits are required in a imitation chromosome than

are required in a traditional bit string representation to encode the same number of distinct values.

 Gray Coding

The Gray coding technique was introduced in (Hollstien 1971) to avoid the problematic

phenomenon known as hamming cliffs, which is inherent in the standard binary representation.

Hamming cliffs can be viewed as discontinuities in the binary representation. Using the standard

representation, values which are adjacent in phenotype space are often some way apart in genotype

space. For example, using an 8 bit representation, the bit string representing a phenotype of 127 is

01111111, but the genotype which decodes into 128 in phenotype space is 10000000. The number of

Evolutionary Algorithm.

29

bit positions in which the two bit strings differ is known as the hamming distance, which in the case

of this example is 8. Large hamming distances, such as the one in this example, are known as

hamming cliffs.

Reeves (1993a) writes that hamming cliffs are "a well-known practical problem with binary

coding", but that "most reported GA applications still appear to use the simple binary coding". In

Section 3.2.1 of this thesis, the detrimental effect of hamming cliffs is identified as a major

contributory factor to the poor performance of a genetic algorithm using the binary string

representation, relative to a genetic algorithm using an alternative encoding.

Gray codes avoid the problem of hamming cliffs by ensuring that the hamming distance between the

representations of two values which are adjacent in phenotype space is always one. Thus, it is always

possible to move from one phenotype to an adjacent phenotype via a single mutation operation,

which is not the case in the binary representation.

However, Gray codes do not ensure that the representations of values that are not adjacent in

phenotype space are separated by a hamming distance greater than one in genotype space. This

means that a mutation of one bit in a genotype using the gray coding can still cause a large change

in the phenotype.

It therefore appears that Gray coding is a partial solution to the problem of deriving a "well-

behaved" mapping from a bit string encoded genotype to phenotype.

One explanation of why Gray codes seem to be so little used is that there is no simple algorithm for

decoding a Gray code (Reeves 1993a). This means that implementations using gray codes will use

look-up tables for the mapping from Gray code to phenotype. Nevertheless, some researchers report

substantial improvements in their results when using Gray coding as opposed to the binary

representation (e.g. (Caruana and Schaffer 1988) and (Lucusias et al., 1991)).

30

 Atomic Representations of Higher Cardinality

Some researchers have discovered that improved results (over those obtained using the traditional

binary string representation) in certain domains can be obtained by using representations of higher

cardinality, such as integers or real values. The use of higher cardinality encodings reduces the

number of crossover points in a chromosome, and also means that crossover cannot occur within a

single gene.

There is much debate and on-going research into which type of encoding is the most effective. The

traditionalists maintain that the binary string representation must be superior because of the

availability of more artificial genetic material for schema processing using the lower cardinality

representation. However, Antonisse has re-interpreted the meaning of the "don't care" schema

symbol (*), and, as a result, has been able to show that higher cardinality representations are able to

process more schemata than is the binary representation (Antonisse 1989).

Those who favour the higher cardinality representations are also able to cite empirical evidence in

support of their case (e.g. (Michalewicz 1992), (Davis 1991)). In my own experience, I have

generally achieved better results from higher cardinality representations. Some (empirical) insight is

gained into this subject in Section 3.2.1 of this thesis, in which it appears that the difference in

results obtained by a binary string representation and a higher cardinality integer representation

against a set of test functions is actually due to the differences in the mutation operators used, and is

not directly due to the cardinality of the representation used.

Reeves (1993b) adds another dimension to this debate, in considering how the cardinality of the

representation affects the size of population required for effective search in a given domain. He

concludes that "in order to get the claimed benefit of using higher-cardinality alphabets, we need to

use much larger populations than for the equivalent binary-coded chromosomes". He also suggests

that higher mutation rates are required by higher cardinality representations.

31

More reliable theory on representational issues is clearly needed to help guide the choice of

representation for a given problem, but such theory has been difficult to obtain (de long and

Spears 1993).

 Non-Minimal Encodings

I refer to an encoding as if the chromosome structure into which the potential solution

is encoded is larger than it need be to represent the solution.

One example of a non-minimal coding is the insertion of introns (genetic material that has no

expression in the phenotype) into a chromosome which uses the bit string representation

(Levenick 1991). The effect of the introns is to modify the crossover probabilities between the parts

of the chromosome that do contribute toward the phenotype (exons). The introduction of introns

between the genes improves the performance of the genetic algorithm in Levenick's experiments

against a specially designed function which the traditional genetic algorithm finds very difficult to

optimize. Introns are further investigated in Section 3 of this thesis.

Matrix representations have been used to good effect in genetic algorithms designed to solve the

travelling salesman problem ((Michalewicz 1992) includes descriptions of three such schemes).

Such representations store a two-dimensional binary matrix in the chromosome, with an edge

between two cities being represented by a one in the appropriate position.

Since these matrices are sparse and there are also more concise representations which can be used to

represent a tour in the travelling salesman problem, I classify these as non-minimal representations.

The phenotype shift representation, which is developed in Section 2.4 of this thesis, is also a non-

minimal representation. In this representation, an atomic integer is appended onto a imitation

chromosome (in order to improve the performance of the genetic algorithm), even though the

imitation part is sufficient to fully represent the solution.

32

 Variable Length Encodings

Although the traditional genetic algorithm assumes that all chromosomes in the population will be

of the same length, there are some problem domains in which variable length encodings enable a

more natural representation of a solution. Using a variable length encoding necessitates the

definition and implementation of specialised operators, as the standard genetic algorithm operators

apply to encodings of uniform length.

An example of a fairly straightforward variable length encoding scheme and set of related operators

is reported in (Robbins et al. 1993), where a genetic algorithm is designed to define the internal

topology of a neural network and in which the chromosomes specify the number of hidden layers of

neurons and, for each hidden layer, the number of neurons in that layer. Three genetic algorithm

implementations which use variable length encodings are described in (Davis 1991).

A variable length encoding is also developed in Section 2.3 of this thesis, to improve upon the

performance of the unitation representation. In this case, however, this was later improved upon by

a fixed length, non-minimal encoding, as described in Section 2.4.

1.4.2 Operators

 Crossover Operators

The crossover operator described in Section 1.1.1 is known as a "one-point crossover". The one-

point crossover was originally defined by Holland (1975). However, variations on this theme have

been defined and shown to yield improved performance in certain domains. In the following two

sections, two widely-used refinements are described.

 Two-point crossover

Two crossover points are selected randomly in the two-point crossover (as the name implies). The

operation of the two-point crossover is illustrated in Figure 3.

33

Parent 1 Chromosome

1 1 0 1 0 0 1

Parent 2 Chromosome

1 0 0 0 1 1 1

The first three values are taken from Parent 1, yielding this partial child chromosome

0

The next two values are taken from Parent 2, yielding this partial child chromosome

1 1 0 0 1

The remaining values are taken from Parent 1. The completed child chromosome is shown below.

1 1 0 0 1 0 1

Figure 3 - Two-Point Crossover in which crossover points 3 and 5 have been randomly

selected. Crossover points are indicated by double lines in the diagrams.

The rationale behind the two-point crossover is that it should permit more effective schema

processing than the one-point crossover.

34

However, the disadvantage is that the two-point crossover is more disruptive, in that there is more

chance of good building blocks being destroyed by the crossover process.

 Uniform Crossover

The uniform crossover was introduced in (Syswerda 1989). Under the uniform crossover, there can

be any number of crossover points, from 0 through to one less than the number of positions in the

chromosome.

A template, of the same length as the chromosomes, is randomly filled with "0"'s and "l"'s. A "0"

signifies that the value in this position of the child's chromosome should be taken from the first

parent, and a "1" signifies that the value should be taken from the second parent. Figure 4 illustrates

the operation of the uniform crossover.

As with the two-point crossover, the rationale is that the uniform crossover should permit more

effective schema processing. Under the uniform crossover, any two schema that do not conflict (i.e.

which do not have opposing defined values in the same position) may be combined. Again, the

disadvantage is that, although there is great potential for effective recombination, this is

accompanied by a increased probability of good building blocks being destroyed.

The likelihood of a schema being disrupted by uniform crossover is not a function of its defining

length (as it is when using the standard or two-point crossovers) but is solely a function of its order.

The notion of a "good" ordering of genes, as discussed in Section 1.1.3, is not an issue when using

the uniform crossover, as every locus has the same degree of linkage with every other locus on the

chromosome, irrespective of their relative positions. Thus the onus on the designer to define a

"good" ordering of genes is removed when the uniform crossover is used, and the uniform crossover

may well be useful in problems where degree of epistasis between the various genes is not known or

is highly complex, or where the one- and two-point crossovers appear ineffective.

35

Parent 1 Chromosome

1 1 0 1 0 0 1

Parent 2 Chromosome

1 0 0 0 1 1 1

Let us assume following template is generated

0 1 1 0 1 0 0

Where a "0" appears in the template, the values are taken from Parent 1, yielding this partial child

chromosome

0

The remaining values are taken from Parent 2. The completed child chromosome is shown below.

1 0 0 1 1 0 1

Figure 4 - Uniform Crossover

36

Montana (1991) reports on a successful genetic algorithm implementation in which the uniform

crossover was employed, and a genetic algorithm using the uniform crossover is shown to

outperform a genetic algorithm using the two-point crossover against a relatively simple function of

two real numbers each encoded as 22 bits in (Davis 1991). However, Davis points out that other

researchers have experimented with the uniform crossover with little success, and suggests that the

differences in the findings may be due to the effect of the combination of the uniform crossover with

alternative replacement strategies.

 Mutation Operators

Holland (1975) was very much of the opinion that evolution's power is derived primarily from

recombination (crossover), and not from mutation. However, in his original formulation of the

genetic algorithm he still included a mutation operator, the rationale being that mutation is a type of

insurance against the premature loss of alleles6, an argument that is still being widely voiced

(e.g. (Goldberg 1989)).

The optimal bit-wise probability of mutation has not been established, and this parameter is often

determined by trial and error.

In (Holland 1975) a mutation rate which decreases deterministically over time is considered This

concept is analogous to the cooling of the temperature in simulated annealing. (Fogarty 1989)

further explores this notion, and reports some impressive results.

Back (1992) encodes mutation probabilities within the chromosomes of individual population

members. Mutation probabilities are randomised at initialisation, and are themselves subjected to

selection, crossover and mutation. In this way the genetic algorithm is able to select for suitable

6 If all population members were to have the same allele in a particular location, in the initial or any

other generation, then only one half of the search space could subsequently be reached by crossover

alone.

37

mutation rates. Back concludes that, by means of this process, "the algorithm balances well between

a mutation rate as high as needed for efficient search and as high as possible without destroying

useful information".

The use of higher cardinality alphabets and other chromosome representations clearly necessitates

the formulation of tailored mutation operators One approach is to utilise gaussian-like functions,

such that the probability of the mutation operator causing a small change is high, and increasingly

larger changes occur with reducing probabilities. Use of such mutation operators dates back to

Evolutionary Programming (Fogel et al. 1966), which was concerned with the evolution of the state

transition tables for finite state machines.

In the results presented in Section 3 of this thesis, a genetic algorithm using an atomic integer

representation performs more effectively than a genetic algorithm using the binary string

representation, against a set of test functions. It is shown that the difference in performance is, in

fact, due to the different characteristics of the mutation operators (the atomic integer representation

implementation utilised a gaussian-like mutation operator). Further investigation into this, along

with the consideration of alternative mutation operators for use with the binary string

representation, has been identified as an area for future research.

1.4.3 Parent Selection

An effective parent selection scheme is fundamental to the effective operation of the genetic

algorithm. As stated in (Goldberg & Deb 1991):-

"Selection is such a critical piece of the GA puzzle that better understanding at its
foundations can only help advance the state of genetic algorithm art"

In the following sections, some (of the many) selection schemes that have been proposed are

described and discussed.

 Roulette Wheel Selection

This is the original selection scheme proposed in (Holland 1975) This has already been described in

Section 1.1.1.

38

One of the main problems with this scheme is that, at the start of a program run, there is often a

tendency for one or two individuals to have much greater fitness than the rest of the population.

Such "super-individuals" are therefore selected for reproduction an inordinate number of times,

whilst the rest of the population receive relatively few opportunities to pass on their genetic material

into the next generation. This effect tends to lead to premature convergence, in which the population

converges around the optima to which the most fit members of the population are close (which may,

of course, be sub-optimal local optima).

Another problem that can occur with this selection procedure is described in (Davis 1991). If the

fitness function yields a range of values such that the numerical difference between areas of high

fitness and low fitness is a small proportion of the total fitness value, there is, in effect, very little

selection pressure applied to the population. For example, if the fitness values range from 1,850 to

1,900, there will be a lot less selective pressure than if the fitness values ranged from, say, 50 to 100.

This effect also becomes apparent, even in cases where the fitness function does yield a wide range

of values, later on in the run when the population has converged close to an optimum. All of the

population members, in this situation, will have similar fitness values, and therefore the most fit

members may not be selected as parents any significant number of times more than the least fit

members. As Goldberg (1989) puts it, "the survival of the fittest necessary for improvement becomes

a random walk among the mediocre". Scaling, ranking and windowing, techniques used to

counteract these phenomena, are described in the following sections.

 Fitness Scaling

Fitness scaling addresses the problems inherent in roulette wheel selection when applied to fitness as

outlined above. There are several variations on fitness scaling, of which linear fitness scaling is one

of the most simple and widely used

39

In linear fitness scaling, the scaled fitness (f), for each population member, is calculated from the

(raw) fitness of that population member by means of a linear equation of the following form:-

f=af + b

where a and b are constant in any one generation, but are re-calculated for each generation,

and f is the fitness of the individual.

Roulette wheel selection is applied to the population, not on the basis of the raw fitness values, but

on the scaled fitness values.

The constants a and b are calculated for each generation, after the raw fitnesses of the population

have been calculated, in such a way that a population member with average fitness will be expected

to be selected for reproduction once, and that the most fit member of the population will receive an

expected number of trials which is defined by the user. The mathematics of linear fitness scaling is

described in detail in (Goldberg 1989)

Fitness scaling ensures that the offspring of "super individuals" do not dominate the population in

the early stages of a run, leading to premature convergence, and that the same degree of competition

is maintained even when the population has become largely converged around an optimum.

 Ranking

Ranking (Baker 1985) addresses the same problems as does fitness scaling. Under a ranking

selection procedure, the population members are evaluated for fitness and sorted as before. However,

instead of using the fitness as the basis for selection, some function of the sorted position (or rank) is

used. The degree of selective pressure can be varied by amending this function. This scheme retains

the same differential of selection probabilities between the most fit and the least fit members of the

population throughout the run

Ranking is often criticised because the allocation of trials is divorced from fitness, and therefore

violates the schema theorem (e.g. (Michalewicz 1992)). However, Whitley (1989) analyses ranking

from a different perspective, and shows that this is, in fact, not the case.

40

Such discussions aside, several researchers have found that their results using ranking justify its

usage (e.g. (Reeves 1993a), (Whitley 1989)). In my own previous research, I have found that rank

based selection has given consistently better results than roulette wheel selection with or without

fitness scaling. In all of the experiments described in this thesis (with the exception of those

experiments described in Section 2.2.2, in which no externally applied selection pressure was

applied and all population members had equal probability of being selected for reproduction),

ranking has been used as the selection mechanism.

 Windowing

In the windowing selection scheme (Grefenstette 1986), a modified fitness value is calculated for

each individual by subtracting some base fitness value from the actual fitness value. Selection may

then be performed using the roulette wheel scheme operating on the modified fitness values. By

increasing the base fitness as the run progresses (perhaps by setting the base fitness equal to the raw

fitness of the least fit member of the current generation), the effect whereby the difference in fitness

between the extremes of the population reduces as the population converges, described in Section 0,

and which leads to almost random selection under the roulette wheel scheme operating on the raw

fitness values, can be reduced

1.4.4 Replacement Strategies

Replacement strategies dictate the way that newly created individuals arc assimilated into the

population. The following sections describe some alternative replacement strategies.

 Generational Reproduction

In the original work in (Holland 1975), the current generation, from which parents are selected, and

the next generation, into which newly created individuals are inserted, are disjoint When the next

generation has been filled, it becomes the current generation. This is known as generational

reproduction. Generational reproduction is the strategy used in most of the experiments described in

this thesis.

41

Elitism

Elitism (de long 1975) is an extension to generational reproduction. Under elitism, the best (most

fit) member of the current population is copied over, without any change such as mutation, into the

next generation. This ensures that the genetic material of the best member of the population is not

lost from the gene pool as a result of stochastic sampling errors, although this method does not, of

course, safeguard the genetic material of the other good population members. Using elitism, it is

guaranteed that the best member of the final generation must be the best solution found at any stage

during the program run.

 Steady-State Reproduction

Steady-state reproduction (Whitley 1988) differs from generational reproduction in that only one

population is maintained. A number of offspring are created in the usual way, and they are then

used to replace the worst population members. The number of offspring that are created in any one

batch is a user-defined parameter, but typically small values, such as 1 or 2 are used. This strategy

avoids the problem, inherent in generational approaches, of losing the genetic material contained

within some of the most fit members of the population due to sampling errors

 Steady-State Reproduction Without Duplicates

Duplicate population members appear in genetic algorithms. This is especially the case as the

population begins to converge. Davis (1991) reports that both Whitley and Syswerda have attained

worthwhile improvements in their genetic algorithms' success rates by disallowing duplicate

population members when using the steady-state reproduction scheme, although there is obviously a

processing overhead involved in checking for duplication.

 Generational Reproduction Without Duplicates

Davis (1991), whilst discussing steady-state reproduction in the context of disallowing duplicates,

writes :-

42

"It is not obvious how to use this technique with generational replacement, and I do
not know of anybody who has done so".

Neither has my own literature search located any reports of such an approach having been

previously used. However, in Section 3 of this thesis, I report the results of experiments in which

generational reproduction without duplicates was implemented. In each of the experiments

conducted, generational reproduction without duplicates performed significantly better than did the

genetic algorithm using standard generational reproduction.

 Termination With Prejudice

Termination with prejudice (Ackley 1987) is an enhancement on the steady-state reproduction

strategy, in which the population member to be deleted is decided probabilistically. A population

member's probability of deletion is dependant on the difference between its fitness and the average

fitness of the population.

1.4.5 Maintenance of Sub-Populations

When operating against a multi-modal function, the genetic algorithm will eventually converge

around one of the optima. However, it may be that we require to locate all, or at least, more than one

of the optima

One approach to this problem is to use an iterated technique, in which the algorithm is restarted

after finding one optimum, with a view to locating other optima in subsequent runs. The algorithm

described in (Beasley et al. 1993) (see Section 1.4.7) is an example of an iterative technique.

Another approach, modelled on nature, is to encourage the formation sub-populations7 around the

various optima. The following sections describe two such approaches.

7 A sub-population is a group of population members which are distinct from the other population

members in some respect. In this context, the sub-populations are distinct with respect to the region

in phenotype space in which they are located, or, more specifically, with respect to the optima

43

 Crowding

Crowding (de Jong 1975) uses steady-state reproduction, but with a modified replacement strategy

When a new population member has been created, the individual that is to be removed is selected as

follows. A subset of the entire population is randomly selected (the size of this subset is a user-

defined parameter to the algorithm). The individual within the subset of the population that most

closely resembles the new individual (with respect to hamming distance) is removed from the

population. In this way, new population members replace similar population members, permitting

the formation of sub-species in the population clustered around the optima.

 Sharing

A derated fitness function, in which an individual's fitness is reduced relative to its proximity to

other population members, lies at the heart of the concept of sharing (Goldberg and

Richardson 1987).

Each population member is evaluated for fitness as in the standard genetic algorithm. However, a

sharing function, which returns a summation of some function of the individual's proximity to each

other population member, is then applied. The derated fitness of the individual is then calculated as

a function of both the fitness function and the sharing function values for the individual, such that

the derated fitness value is reduced as the sharing function value is increased Selection for

reproduction is then done on the basis of the derated fitness function values of the population.

Using this scheme, the fitness available at an optimum in the search space is, to some extent, shared

amongst the population members clustered around that optimum Goldberg and Richardson are able

to show that sub-populations (of size proportionate to fitness) form around the optima of a multi-

modal function, and are maintained throughout the simulation.

around which they are grouped. The genetic algorithm does not explicitly treat the sub-populations -

members of the various sub-populations are stored together in the one population that is maintained

and processed by the genetic algorithm.

44

1.4.6 Incorporation of Problem-Specific Knowledge

Although some see the quality of robustness (Section 1.1.2) as one of the prime advantages of

genetic algorithms, many practitioners (e.g. (Davis 1991), (Goldberg 1994)) are of the opinion that,

in order to obtain performance from a genetic algorithm which is comparable with, or which will

exceed, the performance of existing methods specifically tailored to the problem domain, it is

necessary to hybridize the genetic algorithm. This movement away from the standard, robust,

genetic algorithm into the domain of customised adaptations of the genetic algorithm suited to

specific applications has been formalised in Michalewicz (1992) as '"evolution programs".

 Evolution Programs

Michalewicz (1992) introduces the concept of evolution programs. Whereas the traditional genetic

algorithm requires a mapping of the original form of the problem into a form amenable to

processing by the genetic algorithm (i.e. into the form of a binary string representation), evolution

programs do not require any change to the problem, but instead redefine the chromosome structure

and associated generic operators so that they operate on the original representation of the problem.

In other words, instead of transforming the problem to meet the genetic algorithm, the genetic

algorithm is transformed (into an evolution program) so that it can address the problem in its

original form.

Evolution programs, therefore, may use representations of higher cardinality than bit strings, and

may incorporate problem-specific knowledge in both the chromosome structure and the associated

genetic operators. To an extent, the evolution program concept is not new, but highlights and

formalises what many genetic algorithm practitioners have been doing for some while.

1.4.7 Adjustment of the Fitness Landscape

The problem of convergence to local optima may be addressed by manipulating the fitness landscape

in such a way that the fitness of the local optima is reduced, and so the population is no longer

trapped at the local optimum, and is able to continue the search for other optima.

45

Hillis (1990) reports on the introduction of parasites into the genetic algorithm. In this

implementation, the parasite population co-evolves with the population of problem solutions.

Parasites gain additional fitness by being close to members of the solution population, whereas the

fitness of the problem solutions is reduced by proximity to parasites. As the population of solutions

becomes converged around an optimum, the parasite population also begins to converge around the

optimum. The effect is that the fitness gained by the solution population by being close to that

optimum eventually is reduced, by the presence of more and more parasites, until the population

members move away and begin a search for other optima. Hillis reports that the runs in which

parasites were present produced consistently better results, and in a shorter amount of time, than

those without parasites.

In Robbins (1994), I describe two sets of experiments in which parasitism was introduced into an

artificial life simulation, in which the population evolves a communication protocol to assist in mate

finding. In the first set of experiments, population members are given the capacity to take on a

satellite parasite behaviour (as is observed in crickets in the natural world, for example). In the

second set of experiments, a species of parasite can be picked up by members of the primary

population if their mating strategy is inefficient. In both cases, the effect is to change the fitness

landscape, so that sub-optimal mating strategies are more heavily disadvantaged8 . Improved

communication protocols evolve when either type of parasitism is permitted.

The use of a fitness derating function is described in (Beasley et al. 1993). In this scheme, a genetic

algorithm is run. When the population has converged around an optimum, the fitness derating

function is applied to the fitness function, to produce a modified fitness function in which the fitness

of the located optimum, and the surrounding region, is reduced. The genetic algorithm is then re-

run, against the modified fitness function, and the process is repeated as many times as is required.

This approach is shown to achieve a much higher degree of success than is obtained by the standard

genetic algorithm in locating the global optima of a series of test functions which are known to be

8One could also view the effect of these approaches as a dynamic scaling of the fitness function.

46

difficult for a genetic algorithm, but at the cost of additional complexity of the algorithm and

increased computational load.

1.4.8 Handling Constraints

Problem solutions are often subject to constraints, and in some applications it is possible that genetic

operators applied to chromosomes representing feasible solutions will yield an infeasibk solution, in

that some constraint is violated

There are four main approaches to this problem, as discussed in the following sections.

 Re-define the Encoding or Genetic Operators

In some cases, it is possible to re-define the encoding, the genetic operators, or both, such that the

constraints cannot be violated.

Several examples of this approach have been applied to sequencing problems, such as the travelling

salesman problem. For example, several researchers (e.g. (Goldberg and Lingle 1985),

(Davis 1985)) have defined crossover operators which are guaranteed to yield legal solutions when

applied to the path representation, whereas the standard crossover often yields illegal tours.

 Discard Illegal Solutions

This is perhaps the most "obvious" solution to the problem. However, in highly-constrained

domains, this is not a practical option, as the number of chromosomes that would be discarded

would be so high as to cause unacceptable inefficiency. Another problem with this approach is that,

if a region of high fitness is close to an infeasible region (as is often the case), genetic operators

applied to individuals in the area of high fitness may often give rise to illegal solutions, which are

discarded. This in turn may lead the genetic algorithm to preferentially converge to lower optima

that are not so close to infeasible regions This phenomenon is observed in Section 2.3.5 of this

thesis

47

 Penalties

Illegal solutions may be subjected to penalty functions, which reduce their fitness. The illegal

solutions are then permitted to remain in the population. As pointed out in (Goldberg 1985), this

method essentially transforms a constrained problem into an unconstrained problem. The use of

penalty functions can be very effective when dealing with disjoint search spaces, as very many

illegal solutions are likely to be generated and unacceptable computational inefficiency could result

if each of these were discarded. However, the danger is that the choice of penalty function is, by

definition, arbitrary, and different penalty functions could well cause the genetic algorithm to tend

to converge to one optimum in preference to another of equal, or even higher, fitness.

 Repair

Repair algorithms may be applied to illegal solutions to transform them into legal solutions. There is

some debate as to whether such repaired solutions should be returned to the population, or simply

evaluated and then discarded. Results reported in (Orvosh and Davis 1993) show that incorporating

repaired chromosomes into the population with a 5% probability yielded better results than either

always discarding repaired chromosomes or always assimilating them into the population. However,

the authors do not put forward any explanation of why this should be the case.

1.5 Genetic Algorithms and Machine Learning

This thesis principally concentrates on the application of genetic algorithms to optimization

problems. The other main area of application is in machine learning, and this section briefly

describes the two main approaches to this subject.

48

1.5.1 Classifier Systems

The classifier system, which is a machine learning paradigm, was originally developed by

(Holland 1975)

A classifier is a rule, encoded as a condition part and an action part, in much the same way as the

production rule (if <condition> then <action>) used in many expert systems. Classifiers are coded as

bit strings.

Inputs to the system are received via detectors, and are then placed on the message list. The

classifiers are tested to see which classifiers match the codes on the message list. One (matching)

classifier is then selected to fire, and it either places its action part on the message list, or acts on the

environment by means of triggering an effector.

As an action taken by an effector may be the result of several classifiers chaining (by means of the

message board), a method of apportioning any credit received from the environment is required.

This is often achieved by means of the bucket brigade algorithm. The credit accumulated by a

classifier is referred to as its strength, and the strength of competing classifiers is used to resolve

conflicts when the condition part of two or more classifiers match a message on the message board.

New rules are periodically created, and unsuccessful rules removed, by means of a genetic algorithm

which runs against the classifier store. The genetic algorithm uses the classifiers' strengths as the

fitness measure.

Broadly speaking, there are two main approaches to coding classifier systems. "The Pitt Approach"

represents one complete rule set as an individual in a population of competing rule sets, whereas,

under "The Michigan Approach", each rule is an individual population member, and the entire

population represents one rule set.

It can be shown that any computer program can be represented as a set of classifiers.

49

1.5.2 Genetic Programming

Genetic programming is the art of creating computer programs by means of artificial evolution.

Most third generation languages would not appear amenable to this type of process, as the genetic

operators applied to legal programs would often lead to syntactically incorrect offspring programs.

However, programs written in Lisp (or a subset thereof) can be represented in non-linear, tree-like,

chromosomes, and syntactically correct offspring programs can be guaranteed if suitable crossover

and mutation operators are defined. Lisp has therefore become the "standard" language for generic

programming.

(Fujiki and Dickenson 1987) provide an early account of genetic programming, in which Lisp code

representing strategies for the prisoner's dilemma is evolved. The definitive work to date on genetic

programming is (Koza 1992), wherein the process is described in depth with many example Lisp

applications.

(Singleton 1994) describes how genetic programming can be applied to a simple interpreted

language that can be defined and extended by the user. The engine which drives this system is

written in C++. Development in this direction may well accelerate the acceptance of the genetic

programming paradigm in the commercial sector.

1.6 Other Optimization Techniques

Some alternative optimization techniques are described in the following sections. The genetic

algorithm must compete effectively in comparison with these techniques if it is to be adopted in real-

life applications.

1.6.1 Simulated Annealing

Simulated annealing was first proposed as an optimization method in (Kirkpatrick et al. 1983) A

less theoretical description of the approach is provided by Dowsland (1993)

50

The algorithm is inspired by the natural phenomenon of annealing, in which a material is melted

and then allowed to cool. The rationale is to allow moves to positions with lower fitness than the

current position with a probability that decreases as the simulation goes on, with a view to avoiding

the problem of becoming trapped at a local optimum which is inherent in most local search

strategies.

The algorithm of simulated annealing is started by selecting a random position in the search space.

A neighbouring position in the search space is then selected at random. If the fitness of the new

position is higher than that of the current position, we move to the new position. If the fitness of the

new position is lower than that of the current position, we only move to the new position with a

probability given by the following function:-

t c

where P is the probability of moving to the new position, f(pn) and f(pc) represent the fitnesses at the

new and current positions respectively, and tc is the current temperature. The temperature is initially

set to some (positive) value, and is decreased after each move, according to the value of a user

specified cooling parameter. The effect of this is that the probability of moving to a position with a

fitness value lower than that of the current position decreases as time progresses. These steps are

repeated until a (user defined) termination condition becomes true

Simulated annealing is a highly effective and widely used optimization technique, but requires

careful fine-tuning of the parameters. In particular, the value of the cooling parameter is highly

critical (Rayward-Smith 1994)

An extension to the basic concept of simulated annealing is iterated simulated annealing (ISA)

(Ackley 1987), a process whereby the standard simulated annealing algorithm is run repeatedly, in a

further attempt to avoid the problem of the system settling in an area of low fitness.

51

1.6.2 Tabu Search

Tabu search is another local search strategy. In tabu search, a list of operations which are not to be

done (which are tabu) is maintained. There are several variations on what should be incorporated

onto the tabu list, and this is one of the points that requires careful consideration prior to an

implementation. Two examples of tabu criteria are recency and frequency. A recency criteria may

disallow, for example, the mutation of a certain bit in the solution encoding from being mutated for

a certain time after it was last mutated. An example of a frequency criteria is that, say, an inversion

operation may not be performed on the same two locations in the solution encoding more than three

times in any 100 moves.

A random point in the solution space is selected as the starting point. A number of adjacent points

are then evaluated and placed in the candidate list. The best of these points is then selected. If the

operation which would generate the move to the best point in the candidate list is not tabu, or if the

fitness at the best point is higher than that at the current point (irrespective of the tabu list), then we

move to this best point, and the tabu list is updated. If a move were not effected, then another

candidate list is generated and the process is repeated.

There are many variations on the basic tabu search strategy. It is interesting to note that, in contrast

to all of the other search strategies described herein, tabu search need not be probabilistic. There are

some entirely deterministic variations on tabu search. A more detailed account of tabu search is

provided in (Glover and Laguna 1993).

In a comparative study of tabu search, simulated annealing and genetic algorithms,

Rayward-Smith (1994) states that, in his experience, tabu search is often the most effective of the

three algorithms, but "only after considerable implementation effort requiring sophisticated

expertise".

52

1.6.3 Hillclimbing

Using this algorithm, a random point is chosen in the solution space. The value of the fitness

function is evaluated for this point, and for all those adjacent to it9. If the best neighbouring position

has a higher fitness than the current position, we move to that position, and re-evaluate the

situation. The algorithm terminates when a point with higher fitness than all of its neighbours is

reached. This algorithm is guaranteed to find the optimum of a convex search space.

There are several variations on the theme of hillclimbing. Both simulated annealing and tabu search

can be viewed as variations on the basic hillclimbing algorithm. The following variations on the

theme are described in (Ackley 1987)10:-

 Iterated Hillclimbing - Steepest Ascent (IHC-SA)

A standard hillclimbing algorithm is repeated several times, each time starting from a different

initial position in the search space. This approach is very computationally expensive in domains of

many dimensions, due to the number of evaluations that are performed at each step.

 Iterated Hillclimbing - Next Ascent (IHC-NA)

IHC-NA is similar to the IHC-SA strategy, but has less computational expense than the MC-SA.

Instead of evaluating all adjacent points, the evaluation is stopped as soon as a point that has higher

fitness than the current point is located. The search is then continued from that point.

9 Tabu search can be viewed as a variation on hillclimbing, in which the neighbourhood is reduced.

10In Section 2.4.5, the results presented in (Ackley 1987) using these algorithms are compared to

those achieved using the phenotype shift representation, a chromosome representation developed in

this thesis.

53

In multi-dimensional problems, the search for a higher point commences by investigating the next

dimension after the one that was last investigated at the previous point. For example, if at the

previous point the move was made as a result of a change to the third dimension, then investigation

at the current point will commence with the forth dimension. When the final dimension is reached,

the search continues again with the first dimension.

 Stochastic Hillclimbing (SHC)

A neighbouring point in the search space is selected by changing the value of one of the solution

variables. The fitness at this point is evaluated and compared to that at the current point. A move is

made to the new point with a probability which is a function of the difference between the two

fitness values. This function is designed so that good uphill moves have a high probability of being

accepted, whereas downhill moves have a lower probability of acceptance. If a move is not made,

then another neighbouring point is chosen at random, and the process is repeated. This algorithm

does not terminate when an optimum is located (indeed, the algorithm does not check for such a

condition). It relies upon the probability function to permit moves away from an optimum to allow

the search for better optima to continue.

In SHC, the probability function which determines whether a move is to be accepted does not

change over time. In simulated annealing terminology, one might say that the temperature is fixed.

54

2. Exploiting the Attractor in Unitation Space: The Length Varying

and Phenotype Shift Representations

2.1 Introduction

The choice of chromosome representation in a genetic algorithm is known to have a major effect on

the quality of the solutions obtained, and much of the research in this field has therefore centred on

the specification of new representations and the analysis of the results obtained. In this part of the

thesis two new chromosomal structures (and associated operators), which avoid the major problems

inherent in the unitation representation, whilst retaining the main benefit of the representation, are

proposed and the results obtained are described and discussed.

In the unitation representation the genotype is a bit string, and the phenotype is defined as the count

of ones in the genotype. Fitness is a function of the phenotype.

The unitation representation has been used in research, primarily due to its simplicity. For example,

the unitation representation has been used in the analysis of deception (e.g. Deb and

Goldberg 1993), whereas (Srinivas and Patnaik 1993) have succeeded in creating a model which

represents exactly the mechanisms of the genetic algorithm using the unitation representation. The

unitation representation also has the very desirable property that the phenomenon of hamming cliffs,

which is a well known problem in the binary string representation (Reeves 1993a), is entirely

avoided in the unitation representation.

However, the unitation representation suffers from two major problems which preclude its use in

applications. The first of these is that, for all but the smallest of search spaces, the length of

unitation chromosome required is prohibitive. The second problem is that the number of different

genotypes that map onto a particular phenotype differs greatly between phenotypes, with the greatest

number of genotypes mapping onto the phenotype whose value is half the chromosome length.

55

Section 2.2 of this thesis demonstrates that this leads to the existence of a strong attractor8 at the

mid-point of phenotype space, which manifests itself as a tendency for the evolving population to be

pulled toward the centre of phenotype space. In the most extreme case, the attractor can cause the

population in a genetic algorithm to converge on a local optimum close to the centre of phenotype

space in preference to the global optimum which is further away from the centre of phenotype space.

In Section 2.3, a new representation designed to avoid the problems associated with the attractor in

imitation space is defined and its operation investigated. The length varying chromosome

representation (LVR) allows the lengths of the chromosomes, as well as the arrangement of O's and

1's within them, to evolve. This effectively allows each chromosome to define the extent of its

phenotype space, and hence the location of its phenotype space attractor. It is shown that the

populations converge to chromosome lengths whose attractors coincide or near-coincide with optima

in the fitness function. Because a large number of (different) attractors in phenotype space are

represented in an LVR population, the system no longer has a preference to converge on optima that

are close to the centre of the phenotype space. Indeed the system makes use of the (initially)

problematic attractors to its own advantage, in that selection favours chromosome lengths whose

attractors are located in the region of optima. The length varying chromosome representation is

shown to out-perform the standard imitation representation on a set of test functions.

The phenotype shift representation (PSR) is described and investigated in Section 2.4. This

representation was developed in order to avoid the difficulties inherent in using variable length

chromosomes, whilst retaining the advantages offered by the length varying representation with

respect to the attractors in phenotype space.

In the phenotype shift representation, an additional locus is appended to the standard imitation

chromosome. This locus, known as the phenotype_shift, encodes an integer value which may be

8The "attractor in mutation space" is an effect of the mapping from genotype to phenotype, and is

not the same concept as the "deceptive attractor" (e.g. Whitley 1991), which is a feature of a class of

fitness functions.

56

either positive or negative. When decoding a phenotype shift representation chromosome, the

number of 1's are added as they are under imitation, but then the value of the phenotype_shift is also

added to create the phenotype. The phenotype_shift is subject to genetic operators. The

phenotype_shift can be viewed as shifting the summation of the imitation part of the chromosome,

and with it the attractor, in phenotype space. Results show that the values of the phenotype_shifts

evolve so that chromosomes come to have attractors that are coincident, or near-coincident, to

optima on the fitness function. The phenotype shift representation is shown to perform more

effectively and more consistently than the length varying representation .

The definition of the phenotype shift representation is extended to encompass multi-dimensional

search spaces. The results obtained using this representation are compared to those obtained from a

genetic algorithm using an atomic integer representation.

2.2 The Attractor in Phenotype Space

This section demonstrates that there exists a force which acts upon a unitation population, pulling it

towards the centre of phenotype space. This thesis refers to this effect as the "attractor in phenotype

space".

When using the unitation representation, the phenotype is calculated by summing the number of

ones in the genotype (chromosome). If the genotype contains / loci, then the number of different

genotypes that map onto a single phenotype p is given by ^Cp, i.e. a simple combination of p from /.

A graphical representation of the number of genotypes that give rise to each phenotype for a

chromosome of length 20 is given in Figure 5.

57

To contrast the extremes of this distribution, there are 184,756 ways of representing a phenotype of

10 in a imitation chromosome of length 20, whereas there is only one way of representing a

phenotype of 0. It is this non-uniformity that is responsible for the attractor in phenotype space.

2.2.1 The Effect of the Attractor in Initialisation

A bit-wise random initialisation process, in which each gene is set to 0 or 1 with equal probability

independent of the setting of any other bit, is generally used to initialise a population of

chromosomes under the imitation representation. This gives the same probability distribution of

^AJWW

t" 180000

160000

$ 140000

Ij 120000

I 100000

1 80000u
^ 60000

40000 -

1 20000 i
ft . _ n

i

i i

t I

+ IJ.m* L_. 4. *

0 I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Phenotype

Figure 5 - Number of Mappings from Genotype to Phenotype

phenotypes in the initial population as that described above and illustrated in Figure 5, i.e.

When such an initialisation procedure is used, the genetic algorithm is influenced by the attractor in

phenotype space at the outset.

To avoid this, one could initialise each chromosome so that the probability of representing each

phenotype in that chromosome is equal (flat initialisation). However, as illustrated in Section 2.2.2

below, although this initially avoids the effect of the attractor, the problem is not solved because the

attractor continues to exert its influence during evolution implemented by crossover and mutation.

58

2.2.2 The Effect of the Attractor Under Crossover and Mutation

The attractor in phenotype space continues to exert a force when successive generations of

populations of unitation chromosomes are allowed to evolve by means of crossover and mutation.

The on-going effect of the attractor is demonstrated in a series of three experiments in which

populations have been allowed to evolve with no fitness function, and therefore no externally

applied selection pressure. Selection of parents for mating in these experiments was entirely

random.

In the first experiment, a population of chromosomes of length 20 was initialised with each bit in

each chromosome having an equal probability of being set to either 0 or 1 (a bit-wise random

initialisation process). As predicted, the initial populations were centred around the attractor in

phenotype space at 10, and, apart from a little random genetic drift, the populations remained

centred around the average phenotype of 10 as the runs progressed. The distributions of phenotypes

at generations 0 (immediately after initialisation), 75 and 400, aggregated over 100 separate runs of

the program, are shown in Figure 6.

These program runs used a population size of 128 and a probability of crossover of 0.6. The

probability of mutation during crossover was 0.001 (per bit) and the probability of mutation during

asexual reproduction was 0.01 (per bit). A higher mutation rate was used for asexual reproduction

as, in this case, mutation is the only operator applied. The same values were used for all of the

experiments described in this section.

59

Generation 0

2500

S 2000

1500

500

0 1 2 3 4 67 8 9 10 11 12 13 14 15 16 17 18 19 20

Phenotype

Generation 75

2500

2000

1500

u 1000

2 500

0

n

EL
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Phenotype

Generation 400

2500

C 2000

| 1500

'*-
h 100°

Z 500

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Phcnotype

Figure 6 The effect of the attractor on populations of unitation chromosomes initialised using

the bit-wise random initialisation procedure.

60

Phenotype

Generation 75

0 1 2 3 4 5 67 8 9 10 11 12 13 14 15 16 17 18 19 20

Phcnotype

Generation 400

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Phenotype

Figure 7 The effect of the attractor on populations of unitation chromosomes initialised using

the biased random initialisation procedure.

61

Generation 0

2500

2000

1500
6
v. 1000

500

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Phenotype

Generation 75

2500

2000

1500

g 1000

Z 500

I

Phenotype

Generation 400

2500

S 2000 o

3 1500

"S
h 100°

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Phenotype

Figure 8 The effect of the attractor on populations of unitation chromosomes initialised using

the flat random initialisation procedure.

In the second experiment, the chromosomes were seeded in such a way that each locus had a 0.95

probability of being set to 0 (biased initialisation). This was done to illustrate that the attractor in the

centre of the phenotype space was genuine and not simply an artefact of the bit-wise initialisation

62

procedure. As can be seen from Figure 7, the average phenotype of these populations started off very

low (as one would expect) but inexorably moved towards the centre of phenotype space.

In the third experiment the population was seeded so that each phenotype has an equal probability of

being represented in each chromosome (flat initialisation). As can be seen from Figure 8, these

populations start off with a diverse, approximately flat, distribution of phenotypes, but by generation

75 the populations are once again clustered in the centre of phenotype space, where they remain

until the end of the run.

2.2.3 The Effect of the Attractor on Convergence

The previous section demonstrates that the attractor in phenotype space exerts an influence on the

genetic algorithm under crossover and mutation, when there is no externally applied selection

pressure and mating is random.

This section demonstrates that the effect of the attractor is still felt even when a fitness function is

applied and the mating probability of an individual is related to its fitness, i.e. when selection

pressure is externally applied. Seven test functions are used for illustration. The same functions are

later used to test the length varying representation and the phenotype shift representation described

in Sections 2.3 and 2.4 respectively.

Function: SineC p / 54)

The following fitness function was defined for integral phenotypes in the range 0 to 300:-

f(p) = sinef P

where p represents the phenotype, and f(p) the fitness associated with phenotype p.

This function is illustrated in Figure 9. The global optimum in the discrete version of the function

used in the genetic algorithm runs is at p = 85. However, it should be noted that, in a continuous

version of this function, the global optimum is located at 84.8571. Therefore, the fitness at p = 84 is

63

greater than the fitness at p = 86, i.e. fitness, in the discrete version of the function, is not

symmetrical about the optimum, but, in the region of the optimum, is slightly higher at 85 - n than it

is at 85 + n.

A genetic algorithm using the imitation representation with chromosome length 300 was initialised

using bit-wise random initialisation and allowed to run on this function. This experiment was

carried out 500 times. In each case the population converged towards the optimum. In 490 of the

500 runs, it was found that the average phenotype in the final generation was greater than the

optimum phenotype of 85. The average phenotype was computed over all of the individual

chromosomes appearing in the final populations of all of the runs (i.e. 25,000 individuals). The

average phenotype was found to be 85.81. This value is slightly higher than the optimum phenotype

of 85.

One might have expected the average phenotype to be lower than, rather than higher than, 85, due

to the asymmetry of the function around the optimum. A possible explanation for the average

phenotypes of the final population being slightly higher than the global optimum is that (some or all

of) the populations had not completed their journey through phenotype space from the region of the

attractor at p = 150, where they were at the start of the run due to the effect of the attractor in the

initialisation process, to the optimum at p = 85 by the end of the run. However, I suggest that this is

not the case, but that the attractor in phenotype space is exerting an influence on the population,

pulling the population towards itself at the centre of phenotype space (at p=150). This view is

supported by the results of the following two experiments.

A similar experiment was carried out in which the initial populations were initialised such that each

bit had a 0.95 probability of being set to 0 (biased random initialisation). In 493 of the 500 runs the

average phenotype in the final generation was greater than the global optimum. The average

phenotype of members of all of the 500 final populations was 85.83, again higher than the global

optimum of 85.

250 300

Phenotype

Figure 9 The sine(p / 54) function.

This is a significant result because the population in this case was initialised so that the average

phenotype was less than the globally optimal phenotype. And yet the average of the phenotypes in

the final generations is again greater than the globally optimal phenotype.

This is consistent with the theory that the attractor in phenotype space exerts its influence on the

imitation population during evolution using crossover and mutation, even when the influence of the

attractor has been removed from the initialisation process and hence from the initial population. My

interpretation is that the population moves towards the position in phenotype space at which the

forces exerted by the fitness function and the attractor in phenotype space reached an equilibrium.

Finally, a third experiment in this series was conducted in which the populations were initialised

such that each phenotype had an equal probability of being represented in each chromosome (flat

random initialisation). In 475 of the 500 program runs the average of the phenotypes of the

members of the final generation was greater than the globally optimal phenotype. The average

phenotype of all of the final population members was calculated as 85.81. This result is again

consistent with the theory that the attractor in phenotype space exerts a pressure on the genetic

algorithm.

It is interesting to note the very small variation between the average phenotype of the final

generations in each of the three tests described in this section (85.81, 85.83 and 85.81 respectively),

65

despite the fact that the populations in the three tests were initialised with very different

distributions and locations in phenotype space. Each of these values are slightly higher than the

phenotype at the global optimum (85), despite the asymmetry of the function around the optimum,

consideration of which may lead one to have expected the average pnenotypes in the final

populations to be slightly less than the globally optimal phenotype. I propose that it is the influence

of the attractor in phenotype space that is responsible for this effect.

Function. Sine(0.06 * p) + Sine(0.08 * p)

Another fitness function was defined for phenotypes in the range 0 to 300 as follows:-

f (p) = sin e(0.06 * p) + sin e(0.08 * p)

where p represents the phenotype, and f(p) represents the fitness of phenotype p.

This function is represented graphically in Figure 10. The function has four maxima which are

listed in Table 1.

The genetic algorithm, with bit-wise random initialisation, was run with this fitness function 500

times. In 134 of these runs the population converged on optimum 2, and in each of the remaining

366 runs the population converged on optimum 3. On no occasion did the population converge on

the higher optima 1 and 4. It would appear that the pressure exerted by the attractor in the centre of

phenotype space (at p=150), both during initialisation and subsequent evolution, has been sufficient

to force the genetic algorithm to converge on one of the two optima that lie immediately on either

side of the attractor.

A set of 500 runs were performed with the population being initialised so that each phenotype had

an equal probability of being represented in each chromosome (flat initialisation). In these runs the

population converged to optimum 1 in 320 instances, to optimum 4 in 163 instances and to optimum

2 in the remaining 17 instances. These results are clearly an improvement over those obtained in the

runs where bit-wise random initialisation was used. This is due to the avoidance of the effect of the

attractor in the initialisation stage. Using the less naive initialisation one would expect a fair

300

Phenotype

Figure 10 - The sine(0.06 * p) + sine(0.08 * p) function.

proportion of the initial population to be close to each of the four optima, thereby greatly increasing

the likelihood of a sub-population forming around one of the optima which are higher but further

away from the attractor. However, the population did converge on optimum 4 (the second highest of

the four optima) a substantial number of times. It is possible that this is due to the effect of the

attractor during evolution, with optimum 4 being closer to the attractor than is optimum 1.

Optimum ID

1

2

3

4

Phenotype

22

108

169

248

Fitness Value

1.950869

0.902215

0.159736

1.572825

Table 1 - Optima in the sine(0.06 * p) + sine(0.08 * p) function.

67

Function: Two-Peak Trap

This function was originally devised by Ackley (1987) and is generally considered to be very

difficult to optimize using a genetic algorithm. The two-peak trap function is defined for phenotypes

in the range 0 to 20 as follows:-

0<p<15

200 (P-15), 15<p<20

where p represents the phenotype, and f(p) represents the fitness associated with the

phenotype p.

The two-peak trap function is illustrated in Figure 11.

Figure 11 - The two-peak trap function.

In 500 runs the genetic algorithm, using the standard imitation representation and initialising each

gene with equal probability of being set to 0 or 1, did not succeed in converging on the global

optimum of 200 at p=20 even once. In each run of the program the population converged to the local

optimum of 160 at p=0.

68

Another set of 500 runs, also using the standard imitation representation, but this time initialising

the chromosomes so that each phenotype had an equal probability of being represented, were

performed. In this case the population converged to the global optimum 203 times and to the local

optimum 297 times.

These results are consistent with the results described and interpretation proposed in Section 2.2.2

above.

Function: Fully Deceptive Two-Peak Trap

Although the two-peak trap function is difficult for genetic algorithms to optimize, subsequent

analysis of the function (Deb and Goldberg, 1991) has shown that the two-peak trap function is only

partially deceptive.

Beasley et al. (1993) use a fully deceptive version of the two-peak trap, which is defined as follows :-

0<p<15

15<p<20

where p represents the phenotype and f(p) represents the fitness value.

The genetic algorithm with standard initialisation was run against this fitness function 500 times,

and was again unable to converge on the global optimum even once.

Using the flat initialisation procedure, the genetic algorithm converged on the global optimum in 87

out of 500 runs.

Function: Reverse Two-Peak Trap

The two-peak trap function was rotated around p=10 in order to obtain the reverse two-peak trap

function. The aim in using the reverse version of the function was to bring to light any non-

uniformities that may be present in the way that the two extremes of the phenotype space (i.e. very

69

small and very large values of p) are handled by the chromosome representations and operators

used.

As with the two-peak trap, the genetic algorithm using the mutation representation and standard

initialisation failed to converge on the global optimum in any of 500 runs.

When the chromosomes were initialised so that each phenotype had an equal probability of being

represented, the genetic algorithm converged on the global optimum (now at p=0) in 209 runs out of

500. The genetic algorithm converged around the global optimum of the (non-reversed) two-peak

trap in 203 trials. As one would expect, there appears to be no significant asymmetry in the

treatment of the extremes of phenotype space when using the imitation representation.

Function. Central Two-Peak Trap

This function is also due to (Ackley 1987) and is defined as follows:-

o< P <io

10<p<16

16<p<20

where p represents the phenotype.

It can be seen from Figure 12 thai the global optimum is 200 at p=20, but a local optimum of 160 at

p=10 also exists.

The genetic algorithm, with standard unitation representation and bit-wise initialisation procedure

converged to the local optimum at p = 10 in every one of 500 runs. As with the two-peak trap

function, the standard unitation representation failed to locate the global optimum.

0 1 2 3 4 5 6 7 8 9 10

Phcnotype

Figure 12 - The central two-peak trap function

Another 500 runs were performed in which the flat random initialisation procedure was used. In this

case the genetic algorithm was successful in locating the global optimum 267 times out of 500.

Function: Reverse Central Two-Peak Trap

This function is the central two-peak trap function rotated around p=10. The motivation for creating

this fitness function is the same as that for the reverse two-peak trap function, i.e. to highlight any

asymmetries in the treatment of the two extremes of the solution space.

In 500 runs, the standard unitation representation was again not able to converge on the global

maximum. The unitation representation with flat initialisation converged on the global maximum in

268 of the 500 tests.

2.2.4 Summary

The existence of the attractor in phenotype space, which comes about as a result of the mapping

from unitation space to phenotype space, has been illustrated both theoretically and empirically. Its

effect has been demonstrated in experiments wherein no external selection pressure has been

applied, and yet the populations have always converged around the attractor at the centre of

phenotype space. In these experiments, three initialisation procedures were used, each giving very

71

different initial population distributions, and yet the outcome was always the same, i.e. that the

population converged around the attractor.

Selection pressure was applied in the form of the Sine(p / 54) function. Again, three initialisation

methods were used. In each case, the population converged close to the optimum, but in each case

the average phenotype in the final generation was slightly greater than the optimal phenotype,

despite the asymmetry of the function about the optimum, which one would expect to cause the

average phenotype to be slightly lower than the optimal phenotype. It appears that the population

average settles at a point at which the forces of the selection pressure and the attractor are in

equilibrium.

When tested against the Sine(0.06 * p) + Sine(0.08 * p) fitness function, the genetic algorithm,

when using the bit-wise initialisation procedure, converged on either optimum 2 or optimum 3

(which are located on either side of the attractor) in each test. The genetic algorithm did not once

converge on either of the two higher optima, which are located further away from the attractor. With

flat initialisation, (which avoids the effect of the attractor during initialisation) the performance was

greatly improved and in 320 of the 500 tests the population converged around optimum 1, the global

optimum. Even so, the genetic algorithm still converged around non-global optima in 180 tests

(38%).

The same pattern was evident in the results obtained against the five trap functions. In each case,

the genetic algorithm's success rate was improved by using the flat initialisation procedure, avoiding

the effect of the attractor at the initialisation stage. Although the results obtained with the trap

functions do not themselves prove the presence and effect of the attractor, they are entirely

consistent with the theory. Improvements in performance that are attained when using

representations that modify the location of the attractor, and which are described in Sections 2.3 and

2.4 below, will further suggest that the attractor in phenotype space is, at least partly, responsible for

the poor performance of the imitation representation against these functions.

It should be noted that, using the standard imitation representation, there was no significant

difference between the results obtained against the trap functions and those obtained against the

reversed versions of the functions.

2.3 Length Varying Chromosome Representation

In this section the rationale behind the length varying representation (LVR) is discussed, and then

the operators used are described. The operation of the LVR system is illustrated by examination of a

sample program run. Finally the results of applying the LVR to the test functions described above

are presented.

2.3.1 LVR Rationale

The objective in defining the length varying representation is to avoid the detrimental effect of the

attractor in phenotype space when using the imitation representation.

The LVR system allows chromosomes of varying lengths to co-exist in the population. As well as

allowing the arrangements of O's and 1 's within the members of the population to evolve, the LVR

system also allows chromosome lengths to evolve. Selection can now act not only upon the genes

(the 1's and O's) within the chromosomes, but also on the chromosome lengths themselves. It has

been shown that for a given chromosome length, /, there is an attractor in phenotype space at It

was expected that chromosome lengths which would give rise to attractors which coincide, or near-

coincide, with optima in the fitness landscape would be selected for, and would eventually dominate

the population. This proved to be the case.

It was also expected that, as the system is not limited to one (arbitrary) attractor at the centre of

phenotype space, the LVR system would be less likely than the standard imitation representation to

become trapped at local optima, as a result of this attractor. The results of the experiments indicate

that this expectation was also well-founded.

In optimization problems, the range of legal solutions is generally either explicitly or implicitly

stated. Let us assume that a fitness function is defined over the range 0 to n. In the standard

imitation representation, this leads to the natural representation of the chromosome as n bits.

However, in LVR we need to ensure that the chromosome length can evolve so that an attractor can

develop at any point in the (legal) phenotype space. This implies that chromosome lengths between

0 and 2n must be permitted.

Because we allow chromosome lengths to become greater than n, chromosomes which decode into

illegal phenotypes (i.e. greater than n) can, and do, occur from time to time as a result of crossover,

mutation, or even random initialisation. In this implementation such chromosomes are not repaired,

but they are immediately discarded and replacements generated.

2.3.2 LVR Operators

 Initialisation

In the LVR system, the population is seeded with members whose chromosomes are of varying

lengths. If the fitness function is defined over the range O..IL, then initial chromosome lengths are

randomised between 0 and 2n (thus permitting attractors in the range O..n). Once the chromosome

length of an individual has been established, the contents of each of the genes is randomised, with

an equal probability of being set to 0 or 1.

In the standard unitation representation, random bit-wise seeding generates a population centred

around the attractor. In LVR, there are a range of chromosome lengths in the initial population, and

therefore a range of attractors, which gives rise to a flatter, and more diverse, distribution of

phenotypes in that population.

 Crossover

The LVR crossover operator produces just one offspring.

Two parent chromosomes are selected (in the implementations described in this thesis, selection is

by ranking). The parent chromosomes may be of the same or different lengths, and the child is

assigned the length of one or other of its parents.

A crossover point, c, is chosen at random, subject to the constraint

0 < c < minimum(,

where /i and /2 are the lengths of the chromosomes of the parents.

The first c bits of one parent are then copied into the child chromosome, and the remaining bits are

copied from the other parent.

Figure 13 illustrates the crossover process.

Parent 1

Parent 2

Child

1

0

0

1

1

1

0

0

0

1

0

0

0

1

0

1

1

1

1

1

0

0

Figure 13 - The LVR crossover operator. In this example, the crossover is at point 4, as

indicated by the double lines.

If the chromosome length of either parent is 0, then the child created by the crossover operator also

has a chromosome length of 0.

A new population member created by crossover may then be subject to imitation locus mutation or

chromosome length mutation as described below.

76

 Unitation Locus Mutation

When a new population member is created, there is a small probability that one or more bits of the

chromosome may be inverted by imitation locus mutation. In the program runs described in this

paper, a mutation probability of 0.01 was used for population members that were created by copying

over from the previous generation. A lower probability of 0.001 was applied to the chromosomes of

population members that were created by crossover.

 Chromosome Length Mutation

The length of a new chromosome can be subjected to mutation, with equal chance of the

chromosome length being increased or decreased. In the simulations described in this paper, a

chromosome length mutation occurred with a probability of 0.001. Between 1 and 4 loci (each value

being selected with equal probability) could be added to, or removed from, the chromosome as a

result of this operator. If loci are to be added, some region of the chromosome is randomly selected

and then duplicated. If loci are to be removed, a randomly selected region of the chromosome is

simply deleted. If the length of the chromosome exceeds 2n as a result of this operator, it is

discarded and a replacement generated.

2.3.3 Illustration of LVR Operation

In this section the operation of the LVR system is illustrated by examining one typical sample run of

the program. The fitness function used is the sine(0.06 * p) + sine(0.08 * p) function (described

in Section 2.2).

The population was initialised as described above. The fitness function is defined for phenotypes in

the range 0 to 300, and so chromosome lengths between 0 and 600 were permitted.

Figure 13 provides a scatter diagram showing the relationship between phenotypes (p) and genotype

lengths (/) in the initial population. A variety of genotype lengths and phenotypes are present in the

population. It can be seen that the (p,/) pairs are distributed around the line described by the

relationship p = This is in keeping with the theory presented in Section 2.2, namely that for each

genotype length / there is a strong attractor in phenotype space at

Phenotype

Figure 14 - Relationship between phenotype and genotype length in a LVR population at

generation 0.

The situation after five generations is shown in Figure 15. The scatter diagram shows the

relationship between the phenotypes and the genotype lengths as before. The fitness function has

been overlaid on this data. The population has split into two distinct sub-populations. These sub-

populations are distinct both in terms of phenotype and of genotype length.

Figure 15 - Relationship between phenotype and genotype length in a LVR population at

generation 5, overlaid on the sine(0.06 * p) + sine(0.08 * p) fitness function.

78

One sub-population is centred around optimum 1 and the other is centred around optimum 4.

The sub-population around optimum 1 has a uniform genotype length of 52, giving an attractor at

p=26, which is close to the optimum which is located at p=22.

Three genotype lengths are present in the sub-population clustered at optimum 4. These genotype

lengths are 487, 510 and 517, giving rise to attractors at 243.5, 255 and 258.5 respectively. The

local optimum 4 is located at p=248.

These results show that the system is selecting for genotype lengths which give rise to attractors that

are near co-incident to the peaks of fitness. This is in accordance with the intuition behind the

original definition of the length varying representation. It is noteworthy that no member of the

initial population had a genotype length which would yield an attractor exactly co-incident with

either of these peaks of fitness (i.e. /=44 or 7=496).

Figure 16 shows the situation after 10 generations. The entire population is now situated around

optimum 1, and each genotype in the population is of length 52. The average phenotype over the

entire population is 25.06.

Phenotype

300

Figure 16 - Relationship between phenotype and genotype length in a LVR population at

generation 10, overlaid on the sine(0.06 * p) + sine(0.08 * p) fitness function.

79

phenotype
22
22_
21
23
23
23_
23_
24_
24_
24_
24_
24_
24
24
24
24_
24
24_
24
25_
25_
25_
25
25
25_
25
25
25
25
25
25
25_
26_
26
26
26
26
26_
26_
27.
27
27
27
27
27_
27
28_
28
28
28

fitness
1.951
.951
.946
.946
.946
.946
.946
.931
.931
.931
.931
.931
.931

1.931
1.931
1.931
1.931
1.931
1.931
.907
.907
.907
.907
.907
.907
.907
.907
.907
.907
.907
.907
.907
.873
.873

.873

.873

.873

.830

.830

.830
1.830
1.830
1.830
1.830
1.778
1.778
1.778
1.778

genotype length

.ii.inu....|...|.|.|...ii...|.

Table 2 - Genotypes present in an LVR population at generation 10.

Although the population has converged to a genotype length of 52, it is clear from examination of

the genotypes themselves (see Table 2) that the population is still some way from convergence in the

traditional sense of allelic uniformity. This implies that there is still the potential for the population

to farther evolve in the same way as would a population operating with a standard imitation

representation. This did indeed prove to be the case. At generation 15, each population member still

had a genotype length of 52, but the average phenotype over the whole population had become 21.%

(the global optimum is located at p=22).

80

2.3.4 LVR Results

Function: Sine(p / 54)

A genetic algorithm using LVR was run on this fitness function 500 times. The average phenotype

of all of the population members appearing in the final generations of all of the program runs was

84.80 (the global maximum for this function is at p=85). In 360 of the runs the population

converged to an average phenotype less than the global maximum and in 126 runs the average

phenotype of the population was greater than 85. These results are in accordance with expectations,

considering the asymmetry of the function around the optimum, as discussed in Section 2.2.3.

These results are reproduced in Table 3, along with the results obtained earlier for the imitation

representation when applied to this function. The table shows that, whereas the imitation

representation has been heavily influenced by the attractor in phenotype space irrespective of which

initialisation process was used (Section 2.2.3), the length varying representation has avoided this

problem.

Representation

Unitation, bit-wise
initialisation
Unitation, flat
initialisation
Unitation, biased
initialisation
Length varying

Average of all
phenotypes appearing
in the final
generations

85.83

85.81

85.83

84.80

Number of runs in
which the average of
the phenotypes
appearing in the final
generation was less
than the globally
optimal phenotype

9

22

7

360

Number of runs in
which the average of
the phenotypes
appearing in the final
generation was
greater than the
globally optimal
phenotype
490

475

493

126

Table 3 - Summary of results obtained with the sine(p / 54) fitness function.

81

Function: Sine(0.06 * p) + Sine(0.08 * p)

A series of 500 runs were conducted in which the length varying representation was applied to this

function. In 483 cases the population converged on the global optimum (optimum 1 at p=22) and in

the remaining 17 cases converged to second highest optimum (optimum 4 at p=248). These results

are tabulated, along with those obtained for the imitation representation, in Table 4.

Unitation, bit-wise initialisation
Unitation, flat initialisation
Length varying

Times
converged to
optimum 1
0
320
483

Times
converged to
optimum 2
134
17
0

Times
converged to
optimum 3
366
0
0

Times
converged to
optimum 4
0
163
17

Table 4 - Summary of results obtained with the sine(0.06 * p) + sine(0.08 * p) fitness

function.

Clearly, the length varying representation has been highly successful at locating the global

optimum, whereas the imitation representation has been adversely affected by the force exerted by

the attractor pulling towards the centre of phenotype space (located between optima 2 and 3), this

effect has been avoided by the length varying representation.

Function: Two-Peak Trap

When applied to the two-peak trap function, the genetic algorithm using the length varying

representation successfully converged on the global optimum 392 times out of 500. This is clearly a

great improvement over both the standard imitation representation with bit-wise initialisation which

failed to locate the global optimum in 500 attempts and the standard imitation with flat initialisation

which located the global optimum in 203 out of 500 program runs.

Function: Fully Deceptive Two-Peak Trap

The length varying representation converged on the global optimum in 261 out of 500 program

runs. This is again a substantial improvement over the 87 successes achieved by the standard

imitation representation using the flat initialisation procedure.

82

Function: Reverse Two-Peak Trap

The genetic algorithm using the length varying representation converged to the global optimum at

p=0 in 497 out of 500 runs. This is a vast improvement over the results obtained by the standard

imitation (0 successes) and imitation with flat initialisation (209 successful runs).

However, there is a marked discrepancy between the results achieved by the length varying

representation when applied to the two-peak trap (392 successes) and the reversed two-peak trap

(497 successes). This suggests an asymmetry in the dynamics of the operators of the length varying

representation when dealing with the two extremes of the phenotype range. This is discussed in

detail in Section 2.3.5 below.

Function: Central Two-Peak Trap

The length varying representation achieved a smaller but still valuable improvement over the

standard imitation representation when applied to the central two-peak function. In this case the

genetic algorithm using the length varying representation converged to the global optimum 362

times.

Function: Reverse Central Two-Peak Trap

In this case the genetic algorithm using the length varying representation converged on the global

optimum 495 times. Again, there is a strong disagreement between the results obtained for the

central two-peak trap and the reverse central two-peak trap function, which is indicative of an

asymmetry in the dynamics of the length varying representation.

2.3.5 Problems Inherent in the Length Varying Representation

Study of the results obtained with the length varying representation and further investigation

indicate that there are certain probkms inherent in the length varying representation. These are

discussed in the following sections.

83

LVR Attractor in Phenotype Space

Given a range of legal phenotypes from 0 to n, the length varying representation allows phenotype

lengths in the range 0 to 2n, so that chromosomes with attractors covering the entire range of legal

phenotype values can evolve (Section 2.3.1). However, under this scheme there is a great inequality

in the numbers of different genotypes that map onto each phenotype. The number of different

genotypes that map onto a given phenotype, g(p), can be calculated as follows :-

2n

The distribution of g(p) is illustrated in Figure 17, in which the highest permissible phenotype (n),

has been set at 16.

g

OH

|

|

OH

<N

Phenotype

Figure 17 - Number of possible mappings onto legal phenotypes using the LVR, with n = 16.

This result would suggest that the LVR attractor should be toward the high end of phenotype space,

i.e. where p s n, and yet the output from the program runs appears to indicate that the bias is

towards the low end of phenotype space, i.e. towards p = 0.

84

However, consideration of the initialisation procedure reveals that these mappings will not all occur

with equal probability. This is due to the varying chromosome lengths. When a chromosome is

initialised, each chromosome length may occur with equal probability. Once the chromosome length

has been decided upon, the individual bits within the chromosome are independently randomised,

and this gives rise to the various phenotypes according to the distribution described in Section 2.2.1.

And so, in LVR, the probability of a certain phenotype occurring in a particular member of the

initial population is not simply a function of the relative number of mappings from possible

genotypes onto that phenotype, but should be calculated using the sums of the probabilities of the

mappings from all possible genotypes onto the phenotype, i.e.

pg(p)=Z'

where pg(p) represents the sum of the probabilities (for all /) of the phenotype p being

represented.

For n = 16, this gives rise to the distribution shown in Figure 18. As can be seen from this figure,

the length varying representation does introduce an atrractor of its own towards the low end of

phenotype space, in the form of a negative bias at the high end of phenotype space. The worst case

ratio between the sums of the phenotype probabilities in the length varying representation is

pg(0): pg(n), which is:-

As n increases, pg(0) rapidly approaches two.

The worst case ratio in the standard imitation representation is p{ n/2) : p(0), which evaluates to

12,870 : 1 when n = 16. The effect of the LVR attractor is therefore far less intense than the effect of

the unitation attractor.

85

Phenotype

Figure 18 Sums of the probabilities of the possible mappings from genotype onto legal

phenotypes using the LVR, with n = 16.

A further experiment was conducted in which a genetic algorithm using LVR and operating with a

legal phenotype range of 0 to 20 was allowed to evolve over a period of 400 generations. Parent

selection was entirely random, i.e. there was no externally applied selection pressure. This was

repeated 500 times and the results averaged. The mean phenotype of all of the population members

appearing in the final generation of each of the program runs was 8.59, the average highest

phenotype in the final generation was 11.48 and the average lowest phenotype was 5.68. This

experiment confirms that the length varying representation does possess a tendency towards the low

end of phenotype space.

This asymmetry in the LVR dynamics is consistent with, and can account for, the differences in the

results obtained against the trap functions and their reversed counterparts, in which the length

varying representation was more successful at converging toward global optima at p = 0 than at

= 20.

86

 LVR Edge Effects

Examination of the results obtained with the LVR shows that the system performed much more

effectively on the reversed versions of the trap functions, i.e. where the global optimum is located at

the low end of phenotype space.

This is in accordance with the result described above, but may also be due in part to the asymmetries

inherent in the LVR with respect to the treatment of the two extremes of phenotype space.

Illegal phenotypes (which are beyond the range over which the fitness function is defined) are

discarded and not repaired. At the low end of phenotype space, there is no LVR operation that can

give rise to an illegal phenotype - it is not possible to get a negative phenotype. However, at the

other (high) end of phenotype space it is possible that crossover or mutation will produce a

phenotype which is too large (in the case of the trap functions considered here, greater than 20).

This effect is exacerbated by the fact that many of the chromosomes that are present in the

population and which map onto the high end of phenotype space will have attractors in that region,

and must therefore be long chromosomes. When a child chromosome with an illegal phenotype is

produced it is discarded immediately, and another attempt at creating a new population member is

made. It is clear therefore that although chromosomes which map onto the high end of the legal

phenotype space are selected as parents without prejudice in accordance with their relative fitness

and frequency within the population, their offspring will be discarded in a higher than average

number of cases, and so the number of offspring that will be produced at the high end of phenotype

space will be less than would be appropriate considering the relative fitness and frequencies of

potential parent chromosomes present in the population.

The net result of this effect is to penalise optima that lie near to the upper end of the legal phenotype

space. The size of the sub-population which will gather around such an optimum will not be

commensurate with the relative fitness of that optimum. In the cases of the two (non-reversed) trap

functions considered here the situation is worsened by the fact that their global optima are situated

at the highest points in legal phenotype space.

87

Table 5 shows the number of potential population members that were discarded during the LVR

runs because their phenotypes were too large.

Function
Two-peak Trap
Reverse Two-peak Trap
Central Two-peak Trap
Reverse Central Two-peak Trap

Number of Discarded Chromosomes
78,533
4,148

85,036
1,497

Table 5 - Number of population members discarded due to illegal phenotype§ u§ing the length

varying representation (summed over 500 program runs requiring a total of 127,500

population members with legal phenotypes to be generated).

 LVR Linkage Effects

The length of the chromosome affects the degree of linkage between the different loci on the

chromosome. Furthermore, the linkage between two loci on a chromosome will be dynamically

affected by the length of the chromosome with which that chromosome is partnered in crossover.

Whether this has a significant effect on the LVR, and indeed what such an effect would be, is

difficult to ascertain.

 Difficulties with Short Chromosomes

Short chromosomes contain less genetic material for the genetic algorithm to exploit in order to

explore the solution space.

In the case of the crossover operator, where the imitation part of the chromosome is very short there

is less possibility for variation amongst chromosomes. Therefore, as chromosome length decreases,

it becomes increasingly less probable that crossover will produce a new or unique chromosome.

Furthermore, whenever a chromosome of length 0 is selected as a parent, the child must also have a

chromosome of length 0. This allows the possibility of the chromosome length 0 to be represented

more frequently in the population than the fitness gained by a phenotype of 0 would generally

warrant.

88

 Mutation Rate Varying with Chromosome Length

Although the bit-wise mutation rate is defined as a constant over the entire range of chromosome

lengths, the chromosome-wise mutation rate varies in proportion to the chromosome length. The

effect of this is that the mutation operator will be less effective at exploring that part of the solution

space which is represented in the main by short chromosomes as the chromosome-wise mutation

rate will be very low. Conversely, the chromosome-wise mutation rate becomes greater with longer

chromosome lengths, and mutation may become excessively disruptive on long chromosomes.

 Implementation Issues

It is certainly less straightforward to implement a genetic algorithm which utilises chromosomes of

differing lengths than it is to implement one in which the chromosome length is uniform over the

entire population and over all generations. This may have an impact on any combination of

programmer time, memory requirements, and speed of operation.

2.3.6 Conclusion

The length varying representation described and tested in this section appears to be successful in

avoiding the problem of the attractor in phenotype space. Results show a significant improvement in

performance over the unitation representation in all of the tests carried out.

However, the length varying representation does introduce a bias of its own, preferentially

converging towards the low end of phenotype space. This was first observed by comparison of the

results obtained against the trap functions and their reversed derivatives, and then confirmed

theoretically. The theory shows that the attractor to which the length varying representation is

subject is several orders of magnitude less powerful than is the attractor which afflicts the standard

unitation representation.

In the following section, a new representation, inspired by the length varying representation, but

which avoids the problems which are inherent in it, is presented.

89

2.4 Phenotype Shift Representation

The objective in developing the phenotype shift representation was to retain the principal benefit of

the length varying representation, namely the exploitation of the attractor in unitation phenotype

space, but at the same time to avoid the side-effects that are introduced by the length varying

representation.

The phenotype shift representation chromosome structure and associated operators are described in

Sections 2.4.1 and 2.4.2, and the operation of the system is then illustrated by close examination of

one typical program run (Section 2.4.3). In Section 2.4.4 the results obtained from running the PSR

system against the test functions are presented and discussed, and in Section 2.4.5 these results are

compared with those attained in previous published studies.

The choice of encoding for the phenotype_shift gene is discussed in Section 2.5. Results obtained

when using a binary encoding for the phenotype_shift gene are compared with those presented in

Section 2.4.4, in which an atomic integer representation was used.

The internal operation of the phenotype shift representation is investigated in Section 2.6.

Section 2.7 further develops the phenotype shift representation to address multi-dimensional

problems.

2.4.1 Phenotype Shift Representation Chromosome

The PSR chromosome consists of two parts. The first is a fixed length encoding of O's and 1's

exactly as is used in the standard unitation system. This will be referred to as the unitation part of

the chromosome. The second part is a locus which stores one integer, and this has been named the

phenotype_shift.

To decode a PSR chromosome into its phenotype, the O's and 1's in the unitation part of the

chromosome are totalled in the same way as with the standard unitation, and then the value

90

contained in the phenotype shift locus is added. Thus the phenotype of a population member is

given by>

p = x, + x 2 +...+x,_, + x, +s

where p is the value of the phenotype, Xj is the value of the i 1*1 binary locus in the unitation part, / is

the number of binary loci in the unitation part of the chromosome (in PSR, 1 is the same for all

population members), and s is the value of the phenotype_shift gene.

The phenotype_shift is permitted to take on values in the range -/ to +n, where legal phenotypes

range from 0 to n.

The effect of the phenotype_shift can be viewed as analogous to the varying chromosome lengths in

the LVR, in that the system can select for different attractors by operating on the value of this locus.

Specifically, given a unitation part of length /, the unitation part of the chromosome will be subject

to an attractor at This is, of course, true for all population members. However, adding the value

of the phenotype_shift to the summation of the unitation genes, the attractor can be moved,

depending on the value of the phenotype_shift, to anywhere in the range to n+(//2).

Although a range of phenotype_shift values between and +(n would be sufficient to allow

the system to create an attractor at any location in (legal) phenotype space, a range of -/ to +n

ensures that the weighted sums of the probabilities of the mappings from all possible genotypes onto

each (legal) phenotype are the same. A range of to +(n - yields reducing probabilities

towards the two edges of phenotype space.

The phenotype_shift gene was encoded as a single atomic integer. In Section 2.5, a variation of the

phenotype shift representation using a traditional binary string representation for this gene is

described and the results compared with those attained using the atomic integer phenotype_shift

encoding.

A PSR chromosome may decode to a phenotype that lies outside the range of values for which the

fitness function is defined. Given that the fitness function is defined in the range O..n, PSR may

91

generate illegal phenotypes in the ranges -/ to -1 and n+1 to n+/. In either case, such a chromosome

is immediately discarded and a replacement is generated, from a newly selected set of parents.

Illegal chromosomes may be generated as a result of initialisation, crossover or mutation.

2.4.2 PSR Operators

 Initialisation

The length of the binary part of the chromosome (/) is set, for the entire population, according to the

range over which the fitness function is defined and the resolution required, as is the case in

standard unitation. The binary part of each PSR chromosome is seeded randomly (bit-wise random

initialisation), as is the case with LVR and with the standard unitation representation. Finally, the

phenotype_shifts are assigned random integer values between -/ and +n.

 Crossover

Crossover is done in two stages. Firstly, a standard one-point crossover as used in the canonical

genetic algorithm is applied on the unitation parts of the parent chromosomes. Secondly, the

phenotype shift from one (randomly-selected) parent is copied into the child9.

 Unitation Locus Mutation

Mutation is applied to the unitation part of the chromosome in the same way as with the length

varying representation (see Section 2.3).

9 It would have been simpler, from an implementation viewpoint, to always copy the

phenotype_shift gene from the parent that contributed the right-most part of the unitation part.

However, there is no apparent reason why the phenotype_shift part should be more tightly linked to

one end of the unitation part than the other, and so a random choice is made as to which parent

contributes the phenotype_shift gene.

92

 Phenotype_shift Mutation

Mutation is applied to the phenotype_shift with a low probability (0.001 was used in the runs

described in this thesis). If phenotype_shift mutation is to occur, a randomised integer in the range

-4 to +4 is generated. This value is then added to phenotype_shift If after mutation the value of the

phenotype_shift falls outside of the range -/ to +n, the population member is discarded and another

generated.

2.4.3 Illustration of PSR Operation

The sine(0.06 * p) + sine(0.08 * p) fitness function, which was described in Section 2.2.3, is

again used for the purpose of illustration.

The population was initialised as described in Section 2.4. The length of the unitation part of the

chromosomes, /, was set to 300. The phenotype_shifts were randomised in the range -300 to +300,

i.e. -/ to +n.

A scatter diagram illustrating the relationship between phenotype (p) and the value contained within

the phenotype_shift (s) for each population member immediately after initialisation is shown in

Figure 19. As one would expect, the (p,s) pairs are clustered around the line given by the equation

= - + s

93

150

100

50

0

-50

-150

150

100

50 100 XISO 200 250 3<0

-150

Phenotype

Figure 19 - Relationship between phenotype and phenotypejshift value in a PSR population at

generation 0.

A similar scatter diagram representing the population after 5 generations is presented in Figure 20.

The fitness function has been overlaid on this data. It is clear that the relationship between the

phenotype and the value of the phenotype_shift has been maintained under the genetic operators.

Phenotype

Figure 20 - Relationship between phenotype and phenotype shift value in a PSR population at

generation 5, overlaid on the sine(0.06 * p) + sine(0.08 * p) fitness function.

Figure 20 also clearly illustrates that the population has divided into two sub-populations, which are

distinct with respect to phenotype value and phenotype_shift value. One population is clustered

around optimum 1 and the other around optimum 4.

The members of the population around optimum 1 have phenotype_shift values of either -141, -138,

-126, -117 or -112, which give rise to attractors between 9 and 38 in phenotype space. Optimum 1

yields the peak fitness at p = 22. The sub-population around optimum 4 contains members with

phenotype_shift values of 99, 106, 108 and 114. Hence these population members have developed

attractors between 249 and 264 in phenotype space. The peak of fitness at optimum 4 is located at

p = 248.

These results indicate that the system is selecting for phenotype_shift values that give rise to

attractors close to the optima in the fitness function.

After 10 generations the situation is as illustrated in Figure 21. The population has converged to

optimum 1. Three different values for the phenotype_shift are present in the population, namely

-141, -126 and -117. The average of the phenotypes present in this generation is 22.62 (the peak of

fitness is at p=22).

150

2

1.5

1

0.5

)
-0.5

-1

-1.5

-2

Phenotype

Figure 21 - Relationship between phenotype and phenotype shift value in a PSR population at

generation 10, overlaid on the §ine(0.06 * p) + sine(0.08 * p) fitness function.

95

The population was also inspected after generation 15. The average phenotype has become 21.64.

The same three phenotype_shift values are present in the population, although the population has

become dominated by members whose phenotype_shift have the value -126, which is carried by 44

of the 50 population members. This yields an attractor at p = 24 in phenotype space. Inspection of

the population members' genotypes revealed that, although the population has very nearly

converged with respect to the phenotype_shift values, there is still much diversity present in the

imitation parts of the chromosomes.

2.4.4 Phenotype Shift Representation Results

Function: Sinef p / 54)

A genetic algorithm using the phenotype shift representation was applied to this function and the

results of 500 runs recorded. The average of all of the phenotypes appearing in the final generation

of all of the runs was 84.73, with 370 of the 500 runs converging to an average phenotype less than

the globally optimal phenotype of 85, and 126 converging to an average phenotype greater than the

optimum. These figures are similar to those obtained in Section 2.3.4 for the length varying

representation (84.80, 360 and 126 respectively). It was expected that the populations would

converge to average phenotypes slightly less than p=85 due to the asymmetry of the fitness function

around the optimum. Clearly the phenotype shift representation has avoided the detrimental effect of

the attractor in the centre of phenotype space, as did the length varying representation.

Function: Sinc(0.06 * p) + Sine(0.08 * p)

The phenotype shift representation was applied to this function in a series of 500 runs. The

population converged to optimum 1 in 490 of these runs, and to optimum 4 on the remaining 10

runs. This compares with the values of 483 and 17 obtained from the length varying representation.

Clearly both length varying representation and phenotype shift representation have been highly

successful at locating the global optimum and avoiding the detrimental effect of the attractor in the

centre of phenotype space which caused the standard unitation representation to converge on either

optimum 2 or 3.

96

Function: Two-Peak Trap

The phenotype shift representation was applied to the two-peak trap function. In 465 of the 500 runs

performed the program located the global optimum at p = 20. The length varying representation

successfully located the global optimum in 392 of 500 runs.

Function: Fully Deceptive Two-Peak Trap

The phenotype shift representation was successful in converging on the global optimum 355 out of

500 attempts (compared to the 261 successes achieved by the length varying representation).

Function: Reverse Two-Peak Trap

In 473 out of 500 runs the genetic algorithm using the phenotype shift representation was able to

converge on the global optimum of this function. The length varying representation succeeded in

converging on the global optimum 497 times out of 500. However, this exceptional result is due to

the inherent bias in the length varying representation, as described in Section 2.3.5 above. The

results obtained from the PSR on the reverse two-peak trap function are not significantly different

from those obtained on the original version of this function (±1.6%).

Function: Central Two-Peak Trap

The phenotype shift representation outperformed the length varying representation on this function,

locating the global optimum on 458 out of 500 attempts (as opposed to the 362 successes achieved

by the length varying representation).

Function: Reverse Central Two-Peak Trap

A genetic algorithm using the phenotype shift representation succeeded in converging on the local

optimum at p=0 in 458 out of 500 trials. As was the case with the reverse two-peak trap function,

the phenotype shift representation did not appear to do as well as the length varying representation

on this function, but the latter's exceptional performance on the two "reverse" trap functions is due

to the bias inherent in the length varying representation. The phenotype shift representation

performed equally well on the original and reversed versions of this function.

97

 Discussion of Results

The phenotype shift representation performed as well as the length varying representation on the

sine(0.06 * p) + sine(0.08 * p) function. It out-performed the length varying representation on the

two-peak trap and the central two-peak trap functions, converging on the global optimum in 93%

and 91.6% of the trials respectively. The phenotype shift representation was also the most successful

approach when applied to the fully deceptive two-peak trap function, but was, nevertheless,

successful in converging on the optimum in only 71% of the program runs.

There was no significant difference between the results attained against the trap functions and their

reversed counterparts. The bias towards the low end of phenotype space displayed by the length

varying representation has therefore been avoided in the phenotype shift representation. The results

obtained by the phenotype shift representation were consistently better than those obtained by the

length varying representation.

2.4.5 Comparison of Phenotype Shift Representation Trap Function Results with

those of Other Studies

In this section the results obtained from the phenotype shift representation on the trap functions are

compared with those reported in Ackley's (1987) comparative study and in Beasley et al.'s (1993)

description of their Sequential Niche Technique.

 Ackley's Comparative Study

Ackley (1987) reports on a comparative study of seven different algorithms, including hillclimbing,

variations on genetic algorithms and simulated annealing, and his own technique known as

stochastic iterated genetic hillclimbing (SIGH).

The results obtained by Ackley for the two-peak trap function, averaging the number of function

evaluations over 50 runs for each of the algorithms studied, are reproduced in Table 6, along with

the result obtained for the phenotype shift representation (averaged over 500 runs). In Ackley's

98

study, a test was terminated if the algorithm failed to locate the global optimum in one million

function evaluations.

SIGH appears to be the most successful algorithm on the two-peak trap, locating the global optimum

in 100% of the runs and needing, on average, only 780 function evaluations. PSR is the second most

effective in terms of the number of function evaluations required. However, as Ackley points out, the

Algorithm

Stochastic Iterated Genetic Hillclimbing
Phenotype Shift Representation
Iterated Hillclimbing - Steepest Ascent (MC-SA)
Iterated Hillclimbing - Next Ascent (IHC-NA)
Iterated Simulated Annealing
Stochastic Hillclimbing
Iterated Genetic Search - Uniform Combination
Iterated Genetic Search - Ordered Combination

Function
Evaluations
780
282610

3522
8808
154228
> 1.000,000

1 ,000,000
> 1,000,000

Table 6 - Number of function evaluations required by the PSR to locate the optimum of the

two-peak trap function, compared with the results published in AckJey's comparative study.

success of SIGH on this particular function is due to the fact that the algorithm contains a heuristic,

'Try the opposites of good points", which exploits the fact that the global optimum is situated at the

exact complement in phenotype space to the local optimum in this function. Once the SIGH

algorithm has located a local optimum, the algorithm is restarted, but with a negative bias applied to

the found local optimum, and a positive bias given to the complement of the located local optimum

(i.e. to the global optimum). Each time that the local optimum is located the system adds further

positive bias to the global optimum, and the process is repeated until the system does locate the

global optimum.

10Average of number of function evaluations over 500 program runs. This figure also

includes partial evaluations, where the fitness function is not evaluated because the chromosome is

illegal. For each program run there were, in fact, exactly 2550 full function evaluations, and an

average of 276 partial evaluations.

99

Ackley was aware that the success of the SIGH on the two-peak trap function was due to the global

optimum being located at the complement of the local optimum in phenotype space, an unusual

phenomenon, and defined the central two-peak trap in which this is not the case. In Ackley's

experiments with the central two-peak trap function, the hillclimbers (IHC-SA and IHC-NA) located

the global optimum in approximately the same number of function evaluations as were required for

the two-peak trap, but the remaining five algorithms (SIGH included) failed to locate the global

optimum in one million function evaluations. PSR required on average 2,781 function evaluations to

locate the global optimum in the central two-peak trap function with a 91.6% success rate.

 Sequential Niche Technique

Beasley et al. (1993) also applied their sequential niche technique to the trap functions. Results for

the sequential niche technique on the partially deceptive two-peak trap function were published for

various values of their maximum runs per sequence parameter. These results are summarised in

Table 7, along with the results obtained using the phenotype shift representation.

On the partially deceptive two-peak trap function the phenotype shift representation requires

significantly fewer function evaluations than does the sequential niche technique (in fact, the

number of function evaluations reported here for the phenotype shift is perhaps artificially high,

because the genetic algorithm was not programmed to stop when the population converged, but

instead it continued until 50 generations had been processed). The success rate attained by the

phenotype shift representation is only matched by the sequential niche technique when the

maximum runs per sequence parameter is set high, which increases the computational expense.

Algorithm

Sequential
Niche
Technique
Sequential
Niche
Technique
Sequential
Niche
Technique
Sequential
Niche
Technique
Phenotype
shift

Maximum
Runs per
Sequence
4

6

12

24

N/A

Success Rate

80%

78%

88%

90%

93%

Average Runs

5.0

5.7

6.3

7.1

N/A

Function
Evaluations
Expected
4,500

4,900

5,100

6,400

2,826 n

Standard
Deviation

1,900

2,900

3,000

9,100

54

Table 7 - Comparison of the results obtained for the Sequential Niche Technique and tbe PSR

when applied to the two-peak trap function.

The sequential niche technique does, however, outperform the phenotype shift representation on the

fully deceptive two-peak trap problem. Beasley et al. report that that there was no significant

difference between their results for the partially deceptive and fully deceptive versions of the

function. This is due to the way in which the technique works, in that when the genetic algorithm

locates an optimum, a fitness derating function reduces the level of fitness of that optimum, and then

the genetic algorithm is run again on the modified fitness function. Thus the increased degree of

fitness at the local optimum presents no real additional problem to the technique, and Beasley et al.

do in fact state that this perhaps made it slightly easier to locate the local optimum in the first place.

The sequential niche technique succeeded in locating the global optimum on the fully deceptive

function in the region of 78% of the trials, whereas the phenotype shift representation was successful

in 71% of its tests.

1 Again, this is the actual number of function evaluations.

101

Beasley et al. report that the sequential niche technique found the central two-peak trap function

easier than the two-peak trap problem. The optimum was located in an average of 3,000 function

evaluations. The phenotype shift representation required on average 2,731 function evaluations and

achieved a success rate of 91.6%. The success rate of the sequential niche technique on this function

was not documented.

2.4.6 Summary

As was the length varying representation, the phenotype shift representation has been successful in

avoiding the problems associated with the attractor in phenotype space.

The phenotype shift representation avoids many of the problems associated with the length varying

representation, and this is reflected in the two representations' relative performances, with the

phenotype shift representation attaining higher success rates than the length varying representation,

except in the cases in which the inherent bias of the length varying representation yields an

advantage.

The genetic algorithm using the phenotype shift representation also performs well against the trap

functions when compared to results published for other representations and algorithms, both in

terms of success rate and in terms of efficiency, as measured by the number of function evaluations.

102

2.5 Phenotvpe Shift Gene Encodin2

After the initial conception of the phenotype shift representation, which was intended to avoid the

problems inherent in the length varying representation, it was necessary to decide upon the encoding

of the phenotype_shift part. Two encodings were implemented.

The first encoding of the phenotype_shift gene is as a single atomic integer. The work presented so

far has used this encoding.

The second encoding is as a (traditional) binary string in which each locus represents a binary digit.

This variation has been named the binary phenotype shift representation.

In the remainder of this section, the binary phenotype shift representation and associated operators

are described. The results obtained from the binary phenotype shift representation are then

compared with those of the phenotype shift representation. The binary phenotype shift

representation performs less well overall than the phenotype shift representation. Finally some of

the possible reasons for this are discussed.

2.5.1 The Binary Phenotype Shift Representation

The binary phenotype shift representation chromosome consists of two parts. The first part (the

imitation part) is the same as that used in the phenotype shift representation. The second part, called

the binary phenotype_shift part, encodes the phenotype shift value as a traditional binary string.

For a given problem, the number of bits in which to encode the binary phenotype_shift gene must be

decided upon. As discussed in Section 2.4. 1, the phenotype shift must be capable of taking on values

in the range -/ to +n, i.e. / + n + 1 distinct values. A traditional binary chromosome of length b can

represent values in the range 0 to 2b-l, 2b distinct values. Therefore, the minimum number of bits, b,

that can be used to implement the binary phenotype_shift gene is the smallest integer value of b that

satisfies the inequality :-

2b

103

Since this is an inequality, it is possible that the range that can be represented in b binary bits is too

large. We could simply disallow values of the decoded binary string, d, which are greater than / + n .

However, I felt that it would be better to disallow values from both extremes of the range that can be

represented in b bits, in order to avoid any biases that could be introduced as a result of the

hamming cliffs in the binary representation. The value of the shifted decoded binary string, ds, can

be calculated as follows:-

ds = d - round
V

where round(x) returns the closest integer value to x, rounding up.

Values of the shifted decoded binary string that are less than 0 or greater than / + n are disallowed.

Finally, to calculate the value of the phenotype_shift part, ps, (which is added onto the imitation part

of the chromosome to obtain the phenotype) the (legal part of) the range that can be represented by

the shifted decoded binary string has to be mapped onto the range -/ to +n. This is effected by

subtracting 1 from the shifted decoded binary string, i.e.:-

ps- ds-1

Once the length of the bit string to be used to represent the binary phenotype_shift gene has been

calculated, this value is constant for all members of each generation.

Initialisation, crossover or mutation may create a binary phenotype_shift part whose shifted decoded

binary string value falls outside the range 0 to /+n. Such a binary phenotype_shift part is deemed to

be illegal, and the population member is discarded and a replacement is created.

The phenotype is calculated as the sum of the imitation part and the value of the phenotype_shift

part.

104

 Binary Phenotype Shift Representation Operators

Under the binary phenotype shift representation an individual is deemed illegal if either the shifted

decoded binary string is less than 0 or greater than / + n, or if the phenotype is not in the range 0 to

n.

All of the binary phenotype shift representation operators are capable of creating an individual

which is illegal. In such cases, the individual is discarded and a new replacement individual is

generated.

 Initialisation

The imitation part of the binary phenotype shift representation chromosome is initialised using bit-

wise initialisation. The binary phenotype_shift part is also initialised in a bit-wise fashion.

 Crossover

A standard single-point crossover is performed on the imitation parts of the parents to produce the

imitation part of the child. Another crossover is performed on the binary phenotype_shift parts of

the parents to create the binary phenotype_shift part of the child.

 Gene Value Mutation

Mutation is applied to the imitation part of the chromosome in the same way as in the length

varying and phenotype shift representations (Section 2.3.2).

« Binary Phenotype Shift Mutation

Mutation is applied to the binary phenotype_shift, with a probability of 0.001 per bit during

crossover and 0.01 per bit during copyover. These are the same probabilities as are used for gene

value mutation.

105

Binary Phenotype-Shift Representation Results

Function: Sinc(p / 54)

A genetic algorithm using the binary phenotype shift representation was run on the sine(p / 54)

fitness function. The results are presented in Table 8.

The binary phenotype shift representation was able to achieve an average phenotype in the final

generation of within ±1 of the global optimum at p = 85 in 388 out of the 500 runs performed,

whereas the phenotype shift representation achieved this in 485 runs. In this respect, the binary

phenotype shift representation has therefore been less effective than the phenotype shift

representation.

Average Phenotype in
last generation
<83
>= 83 and < 84
>= 84 and < 85
= 85

> 85 and <= 86
86 and <= 87

>87

PSR

0
15
355
4
126
0
0

BPSR

13
66
233
5
150
27
6

Table 8 Results obtained from the Phenotype Shift and Binary Phenotype Shift

Representations against the sine(p / 54) function.

Function: Sine(0.06 * p) + Sine(0.08 * p)

The binary phenotype shift representation was run against the Sine(0.06 * p) + Sine(0.08 * p)

function. The population converged around optimum 1, the global optimum, at p=22 in 478 out of

500 trials. In the 22 remaining trials the population converged around optimum 4, the second

highest optimum, at p=248. The phenotype shift representation converged to optimum 1 in 490 out

of 500 runs, and around optimum 4 in the other 10 runs. The performance of the binary phenotype

shift representation with this test function again appears to be slightly inferior to that of the

phenotype shift representation.

106

Trap Functions

The results obtained from the BPSR when run with the trap functions are summarised in Table 9.

Two-Peak Trap
Fully-Deceptive Two-
Peak Trap
Central Two-Peak Trap
Reverse Two-Peak Trap
Reverse Central Two-
Peak Trap

PSR
465
355

458
473
458

BPSR
400
158

431
412
388

Table 9 - Number of runs against the trap functions in which the population converged to the

global optimum.

The binary phenotype shift representation performed significantly worse than the phenotype shift

representation on all of the trap functions, and especially so on the fully-deceptive two-peak trap.

Furthermore, the binary phenotype shift representation results show more variation between results

for the original and the reversed trap functions than do the phenotype shift representation results.

Since the handling of the unitation part is the same in both representations, one must conclude that

the differences in the results obtained from the two representation is due to the encoding of the

phenotype_shift part. The poorer performance attained with the binary phenotype shift

representation may be due to irregularities inherent in the binary string representation (such as

hamming cliffs) and/or the nature of the binary string genetic operators12.

12Hamming cliffs and the properties of operators used in the traditional binary string representation

are discussed more fully in Section 3.2.1.

107

 Discussion of the Binary Phenotype Shift Representation Results

Overall the binary phenotype shift representation appears to perform less well than the phenotype

shift representation. There are also significant differences between the results achieved on the

original and reverse versions of the trap functions using this representation.

This is despite the facts that the binary phenorype_shift used in the binary phenotype shift

representation can represent all of the values that can be represented by the atomic integer

phenotype_shift used in the phenotype shift representation, and that the legal binary phenotype shift

values correspond to the mid-range of values that are represented in b bits. This minimises any

effects that would come about as a result of using a range of integers whose binary representations in

b bits would use more O's than 1's, which could instil in the mutation operator a tendency to

increase the magnitude of the phenotype shift. Furthermore, the distribution of hamming cliffs is as

symmetrical as possible in the range of binary strings that would decode into legal phenotype shift

values.

Since the binary phenotype shift representation performs less effectively than the phenotype shift

representation, it is the latter representation that is discussed, and later extended, in the following

sections.

108

2.6 Investigation into the Operation of the Phenotype Shift Representation

The operation of the phenotype shift representation was illustrated by examination of one program

run in Section 2.3. This section investigates the phenotype shift representation in more detail.

Sections 2.6.1 and 2.6.2 examine the differing roles played by the imitation and phenotype_shift

parts of the phenotype shift representation chromosomes as evolution progresses. Section 2.6.3

investigates the effect of varying the length of the imitation part. The effect of varying the

population density, i.e. the population size in relation to the interval over which the fitness function

is defined, is examined in Section 2.6.4.

2.6.1 The Sum is Greater than The Parts

A phenotype shift representation chromosome consists of two parts, the imitation part and the

phenotype_shift part. As a first step towards understanding the workings of the phenotype shift

representation, program runs were performed in which one of the two parts of the phenotype shift

representation was disabled.

When the phenotype_shift part is disabled, then we are left with a standard imitation chromosome.

Results for this representation have already been obtained and discussed (Section 2.2.3).

A set of program runs were performed in which the imitation part of the chromosome was disabled.

In these experiments the phenotype_shift was allowed to take values between -/ and +n (±20 for the

trap functions and ±300 for the sine and multi-modal sine functions). A constant of was added to

obtain the phenotype. Phenotypes which fell beyond the range 0 to n were disallowed, as is the case

under the standard phenotype shift representation.

The results obtained on the trap functions are summarised in Table 10.

As has already been observed, the imitation representation failed to converge towards the global

optimum in any of the 500 trials performed on each of the trap functions. The phenotype shift

representation with the imitation part disabled performs well on the partially-deceptive trap

functions, doing slightly better on average than the full phenotype shift representation. However, on

109

the fully-deceptive two-peak trap function, the phenotype shift representation with the imitation part

disabled clearly outperformed the full phenotype shift representation.

I hypothesised that the phenotype shift representation, with the imitation part disabled, performed so

well on the trap functions because of the high population size with respect to the phenotype range

(50:21). In order to test this theory, a variation on the two-peak trap function was defined.

Two-Peak Trap
Fully-Deceptive Two-Peak
Trap
Central Two-Peak Trap
Reverse Two-Peak Trap
Reverse Central Two-Peak
Trap

Unitation representation

0
0

0
0
0

Phenotype shift
representation,
imitation part
disabled
469
435

479
468
476

Phenotype shift
representation

465
355

458
473
458

Table 10 - Number of runs on the trap functions in which the population converged to the

global optimum.

The elongated two-peak trap function is similar to the two-peak trap function, but all of the constant

values are multiplied by 15. Therefore the phenotype range is 0 to 300, the local optimum has a

fitness value of 2,400 at p=0, the fitness function has a value of 0 at p=225, and the global optimum

has a fitness value of 3,000 at p=300.

Table 11 shows the results of a series of runs made using the elongated two-peak trap function. For

the tests on the elongated two-peak trap function, the imitation length in the full phenotype shift

representation was set to 300 (i.e. /=n).

110

A population member was, at
some time, located at the
global optimum at p=300
A population member in the
final generation is located at
the global optimum at p=300
Population has converged
towards the global optimum
(i.e. the average phenotype in
the final generation > 225)
Average standard deviation of
phenotypes in the final
generation

Unitation representation

0

0

0

2.65

Phenotype shift
representation,
imitation part
disabled
126

108

457

0.20

Phenotype shift
representation

476

474

474

1.97

Table 11. Results obtained for the elongated two-peak trap function

As can be seen from Table 11, the phenotype shift representation with the imitation part disabled

converged towards the global optimum in 457 out of 500 runs, whereas the full phenotype shift

representation converged to the global optimum in 474 trials. However, in only 108 runs did the

phenotype shift representation with the imitation part disabled succeed in having in the last

generation a population member located directly on the global optimum at p=300, whereas the

phenotype shift representation was successful in this respect in each run that did converge towards

the global optimum. The phenotype shift representation with the imitation part disabled produced, at

some point during the run, a population member directly located on the optimum in 126 of the tests,

whereas the full phenotype shift representation was successful in this respect in 476 of the tests.

The average standard deviation of phenotypes in the final generations of the runs of the phenotype

shift representation with the imitation part disabled was 0.20. This indicates that the comparatively

poor results are not due to the simulations not having been run for long enough for the phenotype

shift representation with the imitation part disabled to converge. In fact, the average standard

deviation for the full phenotype shift representation was significantly higher at 1.97, showing that

the full phenotype shift representation has maintained greater diversity in the final populations.

These results agree with the hypothesis that the phenotype shift representation with the unitation

part disabled performed so well on the original trap functions because of the high ratio of population

111

members to the number of legal phenotypes13. The full phenotype shift representation performed

marginally better on the original two-peak trap than it did on the extended two-peak trap function.

The performances of the full phenotype shift representation and the phenotype shift representation

with the imitation part disabled were compared on the sine(p / 54) function. These results are

summarised in Table 12.

Average phenotype in
last generation

<83
>= 83 and < 84
>= 84 and < 85
= 85
> 85 and <= 86
> 86 and <= 87
>87

Unitation representation

0
0
14
0
319
163
4

Phenotype shift
representation, imitation
part disabled
115
30
63
120
52
30
90

Phenotype shift
representation

0
17
333
10
139
1
0

Table 12 - Results obtained by the imitation representation, phenotype shift representation

with the imitation part disabled and full phenotype shift representation representations on the

§ine(p / 54) function.

The averagephenotype in the final generations of the runs using the full phenotype shift

representation is within ±1 of the global optimum in 482 out of 500 runs, whereas the phenotype

shift representation with the imitation part disabled achieves this in only 235 runs. This result is not

due to the phenotype shift representation with the imitation part disabled not having had enough

generations to converge. In fact the phenotype shift representation with the imitation part disabled

had fully converged (having a standard deviation of phenotypes in the final generation of 0.0) in 451

of these runs.

13The effect of varying the ratios of the population size to the magnitude of the range over which the

fitness function is defined to the length of the imitation parts is investigated in greater detail in

Section 2.6.4.

112

Both the imitation representation and the phenotype shift representation contained at least one

population member located directly on the optimum (at p=85) in the final generation in every run.

The phenotype shift representation with the imitation part disabled achieved this in only 135 runs.

In 342 of the 500 tests, the phenotype shift representation with the imitation part disabled failed to

locate the optimum in any generation.

Finally, the phenotype shift representation with the imitation part disabled was tested against the

Sine(0.06 * p) + Sine(0.08 * p) function. The phenotype shift representation with the imitation

part disabled converged around the global optimum at p=22 in 474 runs, around the second highest

optimum at p=248 in 25 runs, and around the third highest optimum at p= 108 in 1 run, whereas

the full phenotype shift representation converged around the highest optimum in 488 runs and the

second highest optimum in 12 runs. The phenotype shift representation with the imitation part

disabled discovered the global optimum in 437 runs, and the full phenotype shift representation

discovered the global optimum in 488 runs. The full phenotype shift representation has again been

more effective that the phenotype shift representation with the imitation part disabled.

Although the phenotype shift representation with the imitation part disabled appeared to perform

very well on the original trap functions where the ratio of population size to phenotype range is very

high, the full phenotype shift representation has consistently outperformed the phenotype shift

representation with the imitation part disabled on all of the functions when the population density

was not so high (i.e. the elongated two-peak trap, the sine(p / 54) and the sine(0.06 * p) +

sine(0.08 * p) functions).

This is due to the fact that the phenotype shift representation with the imitation part disabled is not

as capable as the full phenotype shift representation of effectively exploring a solution space. The

phenotype shift representation with the imitation part disabled relies on mutation for exploration (as

the phenotype_shift part is coded as a single atomic integer, and so there is no crossover operator

when using this representation), whereas the full phenotype shift representation exploits not only

mutation but also crossover and the abundance of (artificial) genetic material in the imitation part of

the chromosome to explore the solution space. The lack of genetic material is highlighted by the

113

high degree of convergence evident in final populations of the runs performed with the imitation

pan disabled.

2.6.2 The Differing Roles of the Unitation Part and the Phenotype_Shift Gene

Ten runs of the genetic algorithm using the phenotype shift representation with the sine(p / 54)

fitness function were performed in order to investigate the roles played by the unitation part and the

phenotype_shift gene in evolution and convergence.

Several measures of convergence have been examined. These are>

1. Generation of Phcnotvpe shift Convergence. Phenotype_shift values have been deemed to have

converged if either the entire population shared the same phenotype_shift gene value, or if

all population members, with the exception of one, shared the same phenotype_shift.

2. Number of Alleles Not Represented. This is based on the metric introduced by De Jong (1975).

The aim is to quantify the degree to which the gene pool had converged, by counting the

number of loci at which all population members have the same allele (0 or 1). If all

members of the population have the same allele in a given locus, then that locus is deemed

to have converged14.

14De Jong (1975) defines convergence in this context as occurring when 95% of the population

contain the same allele in a particular locus.

114

3. Unitation Conformity. This measure reflects the degree of variation that is present within all

imitation loci over the entire population. The measure of imitation conformity was defined

as follows :-

100* 2
conformity =

Z abs P' p

where / is the chromosome length, p is the population size, x^ is the value of the j gene on

the imitation part of the chromosome of the 1th population member. The conformity measure

yields values in the range 0 to 100, with a value of 100 signifying that the imitation parts of

the population are entirely converged, i.e. that all of the population have identical imitation

parts.

4. Standard Deviation of Phenotvpes. The lower the standard deviation of the phenotypes, the

greater the degree of phenotype convergence. This measure differs from those above in that

it applies to the phenotype and not the genotype. Since the genotype to phenotype mapping

in the phenotype shift representation is many to one, the standard deviation of phenotype

metric does not necessarily correlate with the convergence metrics defined over the

population genotypes.

Table 13 and Table 14 summarise the results obtained from ten runs.

Each run converged with phenotypes around the global optimum at p = 85.

The phenotype_shifts of the populations converged to values yielding attractors around the global

optimum. In nine of the runs, the phenotype_shifts of the whole population converged to a single

common value. The earliest convergence of phenotype_shift values occurred after 9 generations (run

4). In one run two phenotype_shift values (-60 and -62) co-existed in the population right through to

the end of the simulation (50 generations). There appears to be no correlation between the

generation of convergence of the phenotype_shift and the proximity of the attractor to the global

optimum, nor between the generation of convergence of the phenotype_shift and the proximity of

115

the mean phenotype to the global optimum in the final generation, nor between the generation of

convergence of the phenotype_shift values and the standard deviation of the phenotypes present in

the final generation.

Run Number
Generation of Phenotype shift convergence
Converged Phenotype shift value(s)
Attractor
abs(Optimum - Attractor)
Mean Phenotype, Generation 0
Mean Phenotype, Generation of
Phenotype_shift Convergence
Mean Phenotype, Final Generation
Optimum - Mean Phenotype, Final
Generation
Standard Deviation of Phenotypes,
Generation 0
Standard Deviation of Phenotypes,
Generation of Phenotype shift Convergence
Standard Deviation of Phenotypes, Final
Generation
Number of Alleles Not Represented,
Generation 0
Number of Alleles Not Represented,
Generation of Phenotype shift Convergence
Number of Alleles Not Represented, Final
Generation
Unitation Conformity, Generation 0
Unitation Conformity, Generation of
Phenotype_shift Convergence
Unitation Conformity, Final Generation

1
42
-53
97
12.1429
166.34
85.18

84.82
0.0371

99.41

2.95

2.72

0

80

76

11.01
72.75

72.28

2
19
-41

109
24.1429
124.56
85.70

85.68
-0.8229

84.68

4.88

3.08

0

80

101

10.60
72.00

80.24

3
21
-60
90
5.1429
170.90
85.28

84.70
0.1571

91.35

4.40

2.26

0

43

82

11.48
59.52

67.99

4
9
-69

81
3.8571
159.16
83.16

84.68
0.1771

88.39

4.41

2.17

0

41

120

11.24
63.71

82.29

5
20
-71
79
5.8571
145.10
84.06

84.88
-0.0229

82.73

2.89

2.63

0

61

110

11.73
66.65

79.89

Table 13 - Detailed results obtained from the phenotype shift representation against the

sine(p / 54) function (runs 1-5),

The unitation parts start to converge from the start of the simulation, but there is still a large degree

of diversity in the unitation parts even after convergence of the phenotype_shift parts. After the

phenotype_shift parts have converged, the unitation parts continue to converge. In six of the nine

runs in which the phenotype_shift parts converged, the number of alleles not represented in the

unitation parts increased between phenotype_shift convergence and the end of the simulation, and in

five of these runs the degree of conformity within the unitation parts also increased. The standard

deviation of the phenotypes reduced between phenotype_shift convergence and the final generation

in seven of the nine runs in which the phenotype_shift parts fully converged.

116

In six of the nine runs in which the phenotype_shift parts converged, the average phenotype in the

final generation is closer to the global optimum (located at 84.8571) than at the generation of

phenotype_shift convergence.

Run Number
Generation of Phenotype shift convergence
Converged Phenotype_shift value(s)

Attractor

abs(Optimum - Attractor)

Mean Phenotype, Generation 0
Mean Phenotype, Generation of
Phenotype_shift Convergence
Mean Phenotype, Final Generation
Optimum - Mean Phenotype, Final
Generation
Standard Deviation of Phenotypes,
Generation 0
Standard Deviation of Phenotypes,
Generation of Phenotype shift Convergence
Standard Deviation of Phenotypes, Final
Generation
Number of Alleles Not Represented,
Generation 0
Number of Alleles Not Represented,
Generation of Phenotype shift Convergence
Number of Alleles Not Represented, Final
Generation
Unitation Conformity, Generation 0
Unitation Conformity, Generation of
Phenotype_ shift Convergence
Unitation Conformity, Final Generation

6
36
-64

86

1.1429

170.70
84.62

85.14
0.2829

88.02

2.36

2.21

0

75

87

11.09
69.43

73.27

7
43
-75

75

9.8571

134.72
84.48

83.92
0.9371

90.00

2.49

3.53

0

80

70

11.90
77.32

68.69

8
26
-51

99

14.1429

131.12
85.32

84.86
-0.0029

92.80

1.87

2.13

0

84

101

11.55
73.31

69.99

9
30
-73

77

7.8571

148.88
84.82

84.34
0.5171

87.56

2.56

2.18

0

110

88

10.%
80.70

79.13

10
N/A
 60
-62
90
88
5.1429
3.1429
186.14

85.10
-0.2429

83.08

3.48

0

81

11.68

77.53

Table 14 - Detailed results obtained from the phenotype shift representation against the

sine(p / 54) function (runs 6-10).

It appears that under the phenotype shift representation the phenotype_shift parts converge to a

value located near to the optimum, and the unitation parts provide a degree of fine tuning to allow

117

the population to centre around the optimum15. Holland (1975) suggested that genetic algorithms

can be highly effective in locating optimal regions, but that it may be sometimes necessary to then

explore the region located by the GA using some other search method. Michalewicz (1992) has

addressed this issue in the context of a real-valued domain with the introduction of the non-uniform

mutation and non-uniform crossover operators which reduce their assortative effects as the evolution

progresses, effectively allowing the search to become more fine-grained. The phenotype shift

representation, by the use of the phenotype_shift gene to locate the region of the optimum and the

imitation part of the chromosome to hone in on the optimum, addresses the same issue in the context

of integer valued domains.

It should also be noted that even after 50 generations there is still diversity present in the imitation

parts of the chromosomes. On average the degree of conformity in the final population is 72.67 and

there are only 93.6 alleles not represented in the final population (the maximum number of alleles

that could be not represented is 300, i.e. either '0' or T at each locus). There is therefore still the

potential for further evolution. This suggests that the population could possibly converge even more

accurately on the global optimum given more generations. Alternatively, in a non-stationary

environment in which the location of the optimum varies over time, there is the potential for the

population to track the optimum in a manner that would not be possible if the population gene pool

were totally converged.

There appears to be a parallel with nature in that the whole population share common genetic values

for particularly significant features (in this case the phenotype_shift value) which define the general,

common features (i.e. the general region in which the population is located in phenotype space), and

that variation and individuality within the population is provided by the interaction of other genes

that modify the basic design (i.e. the imitation parts).

15Although it should be noted that the imitation part also has a part to play in the location of the

optimal region, as discussed in Section 2.6.1.

118

2.6.3 Effect of Varying the Length of the Unitation Part

In the experiments described so far, the length of the unitation part has been set to the same value as

the magnitude of the range over which the fitness function is defined (i.e. /=n).

Although this is a logical first step in investigating the phenotype shift representation, there is no

reason why these two values should be the same. Indeed, if we insist that /=n, then use of the

phenotype shift representation could become impractical on functions where n is large as the

unitation lengths may be too long with respect to processing speed and/or memory requirements.

In this section, the effect of varying the length of the unitation part is investigated.

Function: Sine(p/54)

Several different unitation lengths were tested against the sine(p/54) function. In each case the

phenotype_shift part was allowed to take values in the range from -/ to +n (i.e. from -1 to 300). The

results of these tests, calculated over 500 runs with each unitation length, are summarised in Table

15.

When using short unitation lengths, in the range of 0 to 25, the phenotype shift representation was

not always successful at locating exactly the optimum of this function. As unitation length increases,

performance in this respect improves until a 100% success rate is attained with a unitation length of

50. Longer unitation lengths were successful at locating the optimum at some point during each and

every trial.

It is also interesting to note that the optimum is discovered on average more quickly as the unitation

length is increased, even after the unitation length exceeds 50, the point after which all of the runs

did locate the optimum at some time during the test. As a uniform population size of 50 was used for

all of these runs, one must conclude that longer unitation lengths allow the genetic algorithm to

locate the optimum more efficiently. It again appears that longer unitation lengths permit more

effective exploration of the local region around the attractor.

119

Unitation
Length

0
5
10
15
20
25
50
100
150
200
250
300
400
500

Number of Runs
in which the
Optimum was
Discovered

436
474
481
492
498
498
500
500
500
500
500
500
500
500

Average
Generation of
Discovery of the
Optimum

17.63
9.80
8.06
6.41
5.53
4.82
4.36
3.11
2.89
2.78
2.64
2.41
2.43
2.40

Number of Runs
in which there
was at least One
Population
Member Located
at the Optimum in
the Final
Generation

416
470
479
491
497
498
500
500
500
500
500
500
500
499

Number of Runs
in which the
Average
Phenotype in the
Final Generation
was Within 1 of
Optimum

454
469
476
490
497
498
500
500
497
494
486
482
466
450

Average
Standard
Deviation
of
Phenotypes
in the
Final
Generation

0.18
0.26
0.33
0.38
0.43
0.49
0.82
1.41
1.77
2.07
2.33
2.51
2.94
3.36

Table 15 - Results obtained using various imitation lengths against the sine(p / 54) fitness

function.

The number of runs in which the average phenotype in the final generation was within ±1 of the

optimum increases as the imitation length is increased from 0, until 100% success in this respect is

attained with imitation lengths of 50 and 100. As the imitation length is further increased, the

number of runs in which the average phenotype in the final generation is within ±1 of the global

optimum decreases. Short imitation lengths have already been observed to be less effective at

accurately locating the optimum, possibly due to the relative paucity of genetic material available for

the exploration. The longer imitation lengths, which are most effective at locating the optimum, also

have relatively high diversity present in the final generations, as is witnessed by the values obtained

for the average standard deviation of phenotypes present in the final generation. This is almost

certainly the cause for the decrease in the number of runs in which the average phenotype in the

final generation is within ±1 of the global optimum as the imitation length is increased.

The higher variation present in the final generations of runs with longer imitation lengths may be in

part due to the fact that longer imitation lengths have an inherently higher chromosome-wise

120

mutation rate, since the bit-wise mutation rate is constant for all imitation lengths. Also, one would

generally expect that populations of longer chromosomes would converge less rapidly than those

using shorter chromosomes, all other factors being equal. It may therefore be the case that the longer

imitation lengths were not able to converge within the allotted 50 generations. In order to test this

hypothesis, an additional series of runs, with imitation lengths of 150, 300 and 400 were performed.

These tests were each permitted to continue until generation 100. The results from these runs are

tabulated in Table 16.

Unitation Length

150
300
400

Number of Runs in which the Average
Phenotype in the Final Generation was
within ±1 of the Global Optimum
498
479
462

Average Standard Deviation of
the Phenotypes Appearing in
Generation 100
1.75
2.49
2.92

Table 16 -. Comparison of the performances of the PSR with a variety of imitation part lengths

against the sine(p/54) fitness function, over 100 generations.

The average standard deviations of the phenotypes in the final generations were only slightly lower

in each case. This suggests that the populations were not able to converge significantly more

between generations 50 and 100. There were also only small differences in the number of times that

the average phenotype in the final generation was within ±1 of the global optimum, and, in fact, the

number of successes in this respect were actually less when the genetic algorithm was allowed to run

for 100 generations for imitation lengths of 300 and 400. These results suggest that the decline in

the number of runs in which the average phenotype in the final generation is within ±1 of the global

optimum as the imitation length is increased is not due to premature termination of the runs, but

rather is due to the additional diversity inherent in longer imitation lengths.

Function: Sine(0.06 * p) + Sine(0.08 * p)

Some tests were also performed against the sine(0.06 * p) + sine(0.08 * p) fitness function. These

results are tabulated in Table 17.

121

Unitation
Length

0
5
10
15
20
25
50
100
150
200
250
300
400
500

Number of Runs
in which the
Population
Converged
around the
Global Optimum

473
475
479
479
480
475
486
485
484
486
483
487
491
487

Number of Runs
in which the
Optimum was
Discovered

437
471
478
481
480
475
488
488
486
486
487
488
493
489

Average
Generation of
Discovery of the
Optimum

17.66
9.39
7.44
5.45
5.15
4.70
3.63
3.03
2.87
2.74
2.64
2.56
2.56
2.56

Number of
Runs in which
there was at
least One
Population
Member
Located at the
Optimum in
the Final
Generation

415
463
473
479
480
475
486
485
484
486
483
487
491
487

Number of
Runs in
which the
Average
Phenorype in
the Final
Generation
was Within
1 of the
Global
Optimum
455
466
473
479
480
475
486
484
480
479
474
476
450
436

Table 17 - Comparison of the performances of the PSR with a variety of imitation part lengths

against the sine(0.06 * p) + sine(0.08 * p) fitness function, over 50 generations.

The degree of success attained with respect to converging around the global optimum of the

sine(0.06 * p) sine(0.08 * p) function appears to increase as the imitation length is increased.

This again suggests that the imitation part of the phenotype shift representation has an important

role to play in the location of the optimal region.

Also, the number of runs in which the global optimum was discovered tends to increase as the

imitation length is increased, highlighting the part played by the imitation part of the phenotype

shift representation in exploring the general region around the attractor (as defined by the

phenotype_shift part). It is also interesting to note the comparatively low ratio of the number of runs

in which the optimum was discovered to the number of runs which converged towards the global

optimum when the imitation length was set to 0. This again emphasises the important role played by

the imitation part in exploring the region around the attractor.

122

The average number of generations before discovery of the global optimum again decreases as the

unitation length increases (up to a imitation length of 300 from which point the average generation

of discovery of the optimum remains constant at 2.56).

The number of runs in which the final population contains a member whose phenotype represents

the global optimum is low for unitation length of 0, when considered as ratio to the number of runs

in which the optimum was discovered. It appears that the unitation part of the phenotype shift

representation in some way facilitates the retention of a population member directly located at the

optimum, once the optimum has been discovered. Unitation lengths of 15 and greater are most

effective in this respect.

The number of runs in which the average phenotype in the final generation was within ±1 of the

global optimum increases as the unitation length is increased from 0, peaks within a unitation

length of 50, and then declines as the unitation length is further increased.

 Conclusion

One can draw several conclusions from the tests of various unitation lengths against the sine(p/54)

and the sine(0.06 * p) + sine(0.08 * p) fitness functions described above.

It appears that the longer the unitation length, the higher the degree of success in locating the global

optimum of the function. The unitation part therefore appears to play a major role in the exact

location of the optimum in the region of the attractor (which is defined by the phenotype_shift part).

Also, genetic algorithms using the phenotype shift representation take less generations, on average,

to exactly locate the global optimum of a function as the unitation length is increased.

The role of the phenotype shift part in locating the region of the global optimum is further

underlined by the fact that the genetic algorithm with a unitation length of 0 was considerably less

effective at converging toward the global optimum than was the phenotype shift representation,

using even modest unitation lengths. This indicates that the unitation part contributes, not only to

the location of the optimum in the region of the attractor, but also to the identification of the region

of the attractor.

123

More diversity is retained in the final populations which use longer imitation lengths. This does not

appear to be because the simulations were halted before the genetic algorithm had had sufficient

time to converge, as was illustrated by the fact that the final generations in the additional runs

against the sine(p/54) function, which were allowed to continue to generation 100, showed no

substantial decrease in diversity over that displayed in the final populations of the original tests,

which were terminated at generation 50. It would therefore appear that the phenotype shift

representation using longer imitation lengths inherently retains a higher degree of diversity. This

could possibly be due to the fact that, for a given bit-wise mutation rate, the chromosome-wise

mutation rate is proportional to the length of the imitation part.

The number of runs in which the average phenotype in the final generation is within ±1 of the

global optimum increases as the imitation length increases from 0 through to 50. This is as

expected, since the effectiveness of the phenotype shift representation in locating the optimum

increases as the imitation length is increased. Perhaps surprisingly, as the imitation length is

increased from around 100, the number of runs in which the average phenotype in the final

generation is within ±1 of the global optimum decreases. This effect is almost certainly due to the

fact that the degree of diversity present in final generation of a phenotype shift representation tends

to increase as the imitation length increases.

The additional diversity of phenotype shift representation populations with long imitation lengths,

coupled with the additional capability to move around the attractor defined by the phenotype shift

part, may well mean that the phenotype shift representation, with long imitation parts, would be

more capable of tracking (within the region around the attractor defined by the phenotype shift part)

a non-stationary fitness function. If the optimum of the function were to move too far away from the

attractor defined by the phenotype_shift part, and if the population phenotype_shift parts had all

converged into the same region, then one would expect that the population would be incapable of

124

continuing to follow the optimum (except in the unlikely event of one or several extremely fortuitous

mutations), and would, as a whole, suffer a decline in fitness16.

2.6.4 Effect of Varying the Population Density

In Section 2.6.1, a change in the population density (in the form of the ratio between the population

size and the number of permissible phenotype values) had a marked effect on the success of the

genetic algorithm, when the imitation part is disabled It has been widely noted that the choice of

population size can greatly affect the performance of a genetic algorithm, but as yet there is no

theory to determine the optimal population size for a given problem (de long and Spears, 1993).

However, research into this area is continuing (e.g. (Goldberg et al. 1993), (Reeves 1993b)).

In this section the effect of changing the population density is investigated in the context of the

choice of a suitable imitation length. The sine(0.06 * p) + sine(0.08 * p) fitness function is used

in this section because it allows examination of two important phenotype shift representation

performance criteria, namely the degree of success at locating the optimal region (i.e. convergence

around optimum 1) and accuracy (i.e. locating the optimum exactly). Performance on an extended

version of this function, the sine(0.03 * p) + sine(0.04 * p) function, is also examined.

Function: Sine(0.06 * p) Sinc(0.08 * p)

Three different population sizes, 25, 50 and 100, were tested against the sine(0.06 * p) +

sine(0.08 * p) fitness function. Each population size was tested with a variety of unitation lengths,

ranging from 0 to 500.

16There is a parallel here with the natural world, in which species adapt to an ecological niche, and

are able to sustain relatively small changes in their environment, but when a larger change occurs

sometimes a species cannot adapt sufficiently quickly, and therefore becomes extinct.

125

Firstly, the degree of success that each population size/imitation length pair achieved in converging

around the global optimum (i.e. the success achieved at locating the general region of the optimum)

was investigated. These results are tabulated in Table 18.

Table 18 - Number of runs converging towards the global optimum of the sine(0.06 * p) +

sine(0.08 * p) fitness function, varying unitation length with population sizes 25, 50 and 100.

From Table 18 one can see that the number of times that any given unitation length is successful in

converging around the global optimum increases as the population size increases. This is almost

certainly due to the fact that a larger population size decreases the stochastic sampling errors both at

initialisation and throughout the evolution process.

With a population size of 25, there is a general trend that the number of runs which converge

around the global optimum increases as the unitation length increases. The lowest success rate was

75.4% (unitation length 0) and the highest was 86.6% (unitation lengths 300 and 400).

In the runs with a population size of 50, all of the runs achieved a success rate of at least 94.6%, and

those which used a unitation length of 50 or greater achieved a success rate of at least

When the population was most dense, with a population size of 100, all of the runs were successful

in converging around the global optimum in at least 99.6% of the tests. Several of the longer

unitation lengths attained a success rate of 100%.

126

In the context of success in converging around the global optimum, there appears to be a strong

relationship between the population size and imitation length. The performance of the phenotype

shift representation with longer imitation lengths degrades more slowly as the population size

decreases. This may be due to the fact that a genetic algorithm operating on a small population with

a short imitation length has very little (artificial) genetic material with which to explore the solution

space. Also, the extent of the area of phenotype space surrounding an attractor defined by a given

phenotype_shift value that can be explored using the imitation part is greater with longer imitation

parts. Therefore sparse populations with short imitation lengths may only be capable of covering the

entire extent of phenotype space by mutation, which is an operator occurring with low probability

(and the chromosome-wise probability of mutation is lower with shorter imitation lengths) and

which is, in any case, a local operator (the maximum effect of any mutation operation in the

phenotype shift representation is phenotype_shift mutation which can shift the phenotype by up

to ±4).

To an extent, a small population size can be compensated for by using a long imitation length. This

would be a useful characteristic of the phenotype shift representation in applications where function

evaluations are, in some way, expensive. Examples of such applications include applications where

the computation required for function evaluation is lengthy, as in the structural noise control

problem described by Keane (1993), and engineering applications in which fitness evaluation has to

be performed by experiment, as discussed in (Reeves 1993a). Evolution of robot control mechanisms

may also be included in this category, as several researchers in the field of autonomous mobile

robots believe that it is necessary to test such mechanisms on real robots rather than in simulation

because it is an almost impossible task to model, with the required degree of accuracy, the physics of

the (real) world in which the robots will operate (e.g. (Brooks 1991), (Webb 1994)).

The results describing the number of times that the global optimum was located are reproduced in

Table 19. As with the number of times that the populations converged around the global optimum, it

is clear that the number of times that the global optimum was located increases, for any given

imitation length, as the population size is increased. Also, for a given population size, the number of

times that the optimum is located tends to increase as the imitation length is increased.

127

Table 19 - Number of runs in which the global optimum of the sine(0.06 * p) + sine(0.08 * p)

fitness function was located, varying imitation length with population sizes 25, SO and 100.

Figure 22 illustrates graphically the ratio between the number of times that the optimum was located

and the number of times that the population converged around the global optimum. With a

population size of 25, the phenotype shift representation is clearly not very effective at locating the

exact position of the optimum when the imitation length is short, even once the general region has

been located. When the population size is increased to 50, all populations with imitation length

greater than 0 are successful in locating the exact position of the optimum in over 99% of the runs

in which the population has converged around the global optimum. With a population size of 100,

most imitation lengths achieve a 100% success rate in this respect, and, even with a imitation length

of 0, 99.8% success was achieved.

128

II*
2 * a

SB* §^
O.8^2

^ BE

2 §

60

50

Unitation Length

Population Size 25 Population Size 50 AT-Population Size 100

Figure 22 - Ratio between the number of runs in which the global optimum of the

sine(0.06 * p) + sine(0.08 * p) fitness function was located and the number of runs which

converged towards the global optimum.

The average generation of discovery of the global optimum was also recorded. These results are

reproduced in Table 20. For any given unitation length, the average number of generations to

discovery of the global optimum decreases as the population size is increased. There is also a

general trend that for a given population size, the average number of generations to discovery of the

global optimum decreases as the unitation length is increased.

The number of runs in which the final generation contained at least one member whose phenotype

was directly located at the global optimum were noted. These results are tabulated in Table 21. The

degree of success attained in having, in the final generation, a population member whose phenotype

represents the global optimum increases as population size increases, for any given unitation length.

The general trend again appears that, for any given population size, success increases as the

unitation length is increased.

129

Unitation Length
0
5
10
15
20
25
50
100
150
200
250
300
400
500

Population Size 25
22.38
14.76
12.39
11.11
9.46
9.10
6.14
5.05
4.67
4.01
3.95
3.71
3.80
3.97

Population Size 50
17.66
9.39
7.44
5.45
5.15
4.70
3.63
3.03
2.87
2.74
2.47
2.56
2.56
2.56

Population Size 100
10.33
4.12
2.85
2.60
2.29
2.11
1.88
1.66
1.47
1.49
1.44
1.46
1.37
1.34

Table 20 - Average number of generations to discovery of the global optimum of sine(0.06 * p)

+ sine(0.08 * p) fitness function.

Table 21 also shows the ratio of the number of runs in which the final population contained at least

one member whose phenotype was directly located at the global optimum to the number of runs in

which the optimum was discovered at some point. This ratio reflects the degree to which the genetic

algorithm was able to retain a member at the global optimum, once the optimum had been

discovered. Again, success increases with population size for a given imitation length, and, for a

given population size, tends to increase as the mutation length is increased, with ratios close to 1

being attained for all but the shortest unitation lengths. It does, however, appear that, with a

population size of 25, the performance of the genetic algorithm, in this respect, may decline when

the unitation length is increased beyond 200.

The number of tests in which the average phenotype in the final generation was within ±1 of the

global optimum are presented in Table 22. These results are also presented as percentages of the

number of tests that did converge towards the global optimum. Figure 23 shows the percentages in

graphical form.

130

Unitation
Length
0
5
10
15
20
25
50
100
150
200
250
300
400
500

Number of Runs in which the Optimum
was Represented in the Final Generation

Population
Size 25
193
310
371
383
397
401
420
418
423
426
424
431
424
399

Population
Size 50
415
463
473
479
480
475
486
485
484
486
482
487
491
487

Population
Size 100
488
500
500
499
500
500
498
500
500
499
500
500
500
500

Ratio between the Number of Runs in
which the Optimum was Represented in
the Final Generation and the Number of
Runs in which the Optimum was
Located at Some Point During the Run
Population
Size 25
0.51
0.81
0.91
0.97
0.99
0.99
1.00
1.00
1.00
1.00
0.99
1.00
0.98
0.97

Population
Size 50
0.88
0.97
0.99

.00

.00

.00

.00

.00

.00

.00

.00

.00
1.00
1.00

Population
Size 100
0.98
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

Table 21 -. Number of runs in which the global optimum was represented in the final

generation, and the ratio between the number of runs in which the global optimum was

represented in the final generation and the number of runs in which the global optimum was

discovered at some point during the run.

The number of tests in which the average phenotype in the final generation was within ±1 of the

global optimum increases as the population size increases, for a given imitation length. However, for

a given population size, the number of runs whose average phenotype in the final generation is

within ±1 of the global optimum increases as the unitation length is increased, but only up to a

certain point, after which the number of runs with an average phenotype in the final generation

within ±1 of the optimum decreases. The same phenomena are also apparent when the figures are

considered as percentages of the number of runs that did converge around the global optimum (see

Figure 23). This effect has already been observed and discussed in Section 2.6.4. In this case, a

unitation length of 50 attained a 100% success rate with each population size tested.

131

Unitation
Length
0
5
10
15
20
25
50
100
150
200
250
300
400
500

Number of Runs in which the Average
Phenotype in the Final Generation was
Within 1 of the Global Optimum

Population
Size 25
259
320
373
384
394
400
420
417
412
402
394
380
369
340

Population
Size 50
455
466
473
479
480
475
486
484
480
479
474
476
450
436

Population
Size 100
495
499
500
499
500
500
498
499
498
496
497
498
494
479

Number of Runs in which the Average
Phenotype in the Final Generation was
Within 1 of the Global Optimum
Expressed as a Percentage of the Number
of Runs that did Converge Around the
Global Optimum
Population
Size 25
68.70
83.99
91.87
96.97
97.77
98.77
100.00
99.76
97.40
94.15
92.27
87.76
85.22
82.93

Population
Size 50
96.19
98.11
98.75
100.00
100.00
100.00
100.00
99.79
99.17
98.56
98.34
97.74
91.65
89.53

Population
Size 100
99.40
99.80
100.00
100.00
100.00
100.00
100.00
99.80
99.60
99.40
99.40
99.60
98.80
95.80

Table 22 -. Number of runs in which the average phenotype of the final population was within

±1 of the global optimum of the sine(0.06 * p) + sine< 0.08 * p) fitness function, varying

imitation length with population sizes 25,50 and 100.

Unitation Length

 B Population Size 25 <> Population Size 50 Population Size 100

Figure 23 - Number of runs in which the average phenotype of the final population was within

±1 of the global optimum of the sine(0.06 * p) + sine(0.08 * p) fitness function, expressed as a

percentage of the number of runs that converged towards the global optimum.

132

Function: Sine(0.03 * p) + Sine(0.04 * p)

The sine(0.03 * p) + sine(0.04 * p) fitness function, defined over the range 0 to 600, is essentially

the sine(0.06 * p) + sine(0.08 * p) fitness function scaled up by a factor of two along the

phenotype (x) axis. The aim in using this function is to investigate the effect of increasing the range

of permissible phenotypes on the results obtained by the phenotype shift representation using the

combinations of imitation length and population size used above.

Table 23 details the number of runs converging around the global optimum for each imitation

length/population size combination. The results previously described (Section 0) obtained against

the sine(0.06 * p) + sine(0.08 * p) function are reproduced on this table for comparison.

Table 23 - Number of runs converging towards the global optimum of the sine(0.03 * p) +

sine(0.04 * p) and the sine(0.06 * p) + sine(0.08 * p) fitness functions, varying imitation

length with population sizes 25,50 and 100.

As was the case with the sine(0.06 * p) + sine(0.08 * p) function, the degree of success achieved

in locating the region of the global optimum of the sine(0.03 * p) + sine(0.04 * p) function

increases as the population size increases for each imitation length. For population sizes of 25 and

133

50, the overall trend is for the number of successes to increase as the imitation length is increased,

again signifying that the imitation part contributes to the location of the global optimal region. With

a population size of 100, near optimal performance is attained across the range of imitation lengths

tested.

For a given imitation length, the degree of success in converging towards the global optimum is

generally higher with the original function, which is populated more densely than the extended

function. With population sizes of 50 and 100, the difference between the number of successes

appears to decrease as the imitation length is increased, whereas the disparity between the results

attained against the two functions with a population size of 25 does not appear to display such a

trend. Again, longer imitation lengths appear to be compensating, in part, for a less densely

populated solution space (i.e. for a lower ration of population size to number of possible

phenotypes).

It should be noted that it is in the tests in which a population size of 25 was used that the greatest

difference in the results obtained against the two functions is seen (up to 6.8%), and that with a

population size of 100 there is only an insignificant difference in the results (always less than

1.0%). For population sizes of 50 and 100, the difference in performance against the two functions

tends to decrease as the imitation length is increased.

The number of runs in which the global optimum of the sine(0.03 * p) + sine(0.04 * p) fitness

function was located are tabulated in Table 24. Again, the results obtained from the sine(0.06 * p)

+ sine(0.08 * p) fitness function are reproduced for comparison.

The number of times that the optimum of the sine(0.03 * p) + sine(0.04 * p) function was located

increased as the population size was increased, for each imitation length. For a given population

size, the number of times that the optimum was located tended to increase as the imitation length

was increased. These observations also held true for the results obtained with the sine(0.06 * p) +

sine(0.08 * p) fitness function.

134

Table 24 - Number of runs in which the global optima of the sine(0.03 * p) + sine(0.04 * p)

and the sine(0.06 * p) + sine(0.08 * p) fitness functions were located, varying imitation length

with population sizes 25,50 and 100.

It is interesting to note the differences between the number of times that the optimum was located

for the two functions. Figure 24 represents these differences graphically. For a given population size

and imitation length, the genetic algorithm tended, in general, to be more successful against the

sine(0.06 * p) + sine(0.08 * p) function. This is especially true for the shorter unitation lengths.

However, for each population size tested, the difference between the number of successes obtained

against the two versions of the function appears to decrease significantly as the unitation length is

increased. Again, it appears that a longer unitation length can be used to compensate, at least in

part, for a less dense population. Furthermore, it is the tests using a small population (25) whose

results are most affected by the change in fitness function.

135

r/5 *3
U

Figure 24 - Difference between the number of successes attained in locating the global

optimum of the sine(0.06 * p) + sine(0.08 * p) fitness function and the number of successes

attained against the sine(0.03 * 0) + sine (0.04 * p) fitness function.

Figure Ratio between the average generation of discovery of the optima of the

sine(0.06 * p) + sine(0.08 * p) and the sine(0.03 * p) + sine(0.04 * p) fitness functions.

Table 25 -. Average generation of discovery of the global optima of the sine(0.03 * p) +

sine(0.04 * p) and the sine(0.06 * p) + sine(0.08 * p) fitness functions were located, varying

imitation length with population sizes 25,50 and 100.

Table 26 - Number of runs in which the final population contained at least one member which

was located directly on the global optimum, as a percentage of the number of runs which

converged around the global optimum.

Table 27 - Number of runs in which the average phenotype of the final population was within

±1 of the global optimum of the sine(0.03 * p) + sine(0.04 * p) fitness function, varying

unitation length with population sizes 25,50 and 100.

Extension of the Phenotvnc Shift Representation for Multi-Dimensional

Problems

Figure 26 - Two contiguous phenotype shift representation genes placed on one chromosome.

Figure 27 - Two phenotype shift representation genes placed on one chromosome under the

non-contiguous scheme.

Table 28 - Final generation averages obtained against the sum of squares function.

Number of
Runs in which
Optimum was
Located

Average
generation of
first
appearance of
optimum

Number of
runs in which
optimum was
represented in
final
generation

Number of
runs in which
optimum was
represented in
final
generation as a
%age of the
number of
runs which did
locate the
optimum

Phenotype Shift Representations

Separate Non-
Assortative
Separate Assortative
Contiguous
Non-Contiguous

404

500
495
358

52.84

27.82
32.76
56.59

215

269
423
283

53.22

53.80
85.45
79.05

Binary String Representations

Separate Non-
Assortative
Separate Assortative
Contiguous

83

70
82

28.90

28.75
31.49

83

70
80

100.00

100.00
97.56

Table 29 - Results with respect to locating the optimum of the sum of squares function.

Table 30 - Final generation averages obtained against the sum of differences function.

152

Number of
Runs in which
Optimum was
Located

Average
generation of
first
appearance of
optimum

Number of
runs in which
optimum was
represented in
final
generation

Number of
runs in which
optimum was
represented in
final
generation as a
% age of the
number of
runs which did
locate the
optimum

Phenotype Shift Representations

Separate Non-
Assortative
Separate Assortative
Contiguous
Non-Contiguous

111

390
381
110

63.09

48.09
51.38
62.12

38

195
360
97

34.23

50.00
94.49
88.18

Binary String Representations

Separate Non-
Assortative
Separate Assortative
Contiguous

500

500
500

28.44

26.72
32.81

500

500
500

100.00

100.00
100.00

Table 31 - Results whh respect to locating the optimum of the sum of differences function.

Table 32 - Final generation averages obtained against the ummodal sum of differences

function.

Number of
Runs in
which
Optimum was
Located

Average
generation of
first
appearance of
optimum

Number of
runs in which
optimum was
represented
in final
generation

Number of
runs in which
optimum was
represented
in final
generation as
a %age of the
number of
mas which
did locate the
optimum

Phenotype Shift Representations

Separate Non-Assortative
Separate Assortative
Contiguous
Non-Contiguous

78
429
392
60

63.56
46.19
48.98
66 14

25
205
383
51

32.05
47.79
97.70
85.00

Binary String Representations

Separate Non-Assortative
Separate Assortative
Contiguous

500
500
500

27.45
24.90
31.31

500
500
500

100.00
100.00
100.00

Table 33 - Results with respect to locating the optimum of the unimodal sum of differences

function.

155

Figure 28 - The phenotype decoding function.

Table 34 - Final generation averages obtained against the decoded sum of differences function.

Number of Runs
in which
Optimum was
Located

Average
generation of
first appearance
of optimum

Number of runs
in which
optimum was
represented in
final generation

Number of runs
in which
optimum was
represented in
final generation
as a %age of the
number of runs
which did locate
the optimum

Phenotype Shift Representations

Separate Non-
Assortative
Separate
Assortative
Contiguous
Non-Contiguous

322

478

475
304

46.70

32.13

36.04
49.89

129

201

371
236

40.06

42.05

78.11
77.63

Binary String Representations

Separate Non-
Assortative
Separate
Assortative
Contiguous

171

156

139

32.27

31.42

34.14

164

154

138

95.91

98.72

99.28

Table 35 - Results with respect to locating the optimum of the decoded sum of differences

function.

2.7.3 Summary

3. Investigation into the Effect of Inserting Introns into the Binary

String Representation

3.1 Introduction

introns,

eukaryotes prokaryotes.

spacing DNA spacers.

Table 36 - Levenick's fitness function mu.

Table 37 - Number of times that Levenick's genetic algorithm located the global optimum of

the mu function (from Levenick 1991).

Table 38 - Results obtained against the mu function.

3.2 Experiments Using Introns in Genetic Algorithms Optimizing Functions

Other Than Mu

Table 45 - Number of runs in which all genes were

located on the same side of the hamming cliff, using

the atomic integer representation.

Figure 33 - Number of runs in which all genes were located on the same side of the hamming

cliff, using the atomic integer representation.

Table 46 - Comparison of the number of

successes achieved against the sum of

squares function when duplicate

generation members were allowed and

not allowed.

184

Figure 34 - Comparison of the number of successes achieved against the sum of squares

function when duplicate generation members were allowed and not allowed.

Figure 35 - Number of runs in which all genes were located on the same side of the hamming

cliff, using the binary string representation.

186

Table 47 - Number of runs in

which all genes were located

on the same side of the

hamming cliff, using the

binary string representation.

Table 48 - Number of runs in which the optimum of the sum of squares function was located.

Table 49 - Number of runs in which all

genes were located on the same side of

the hamming cliff, using the atomic

integer representation.

Figure 36 - Number of runs in whkb all genes were located on the same side of the hamming

cliff, using the atomic integer representation.

Table 50 - Number of runs in which a genetic algorithm, using the binary string

representation, located the optimum of the sum of differences function.

e 3 800 - -

Figure 37 - Number of runs in which a genetic algorithm, using the binary string

representation, located the optimum of the sum of differences function.

Table 51 - Number of runs in which a genetic algorithm, using the binary string

representation, located the optimum of the sum of differences function.

Figure 38 - Number of runs in which a genetic algorithm, using the binary string

representation, located the optimum of the sum of differences function.

Table 52 - Number of runs in which a genetic algorithm, using the binary string

representation, located the optimum of the decoded sum of differences function.

Figure 39 - Number of runs in which a genetic algorithm, using the binary string

representation, located the optimum of the decoded sum of differences function.

Table S3 - Number of runs in which a genetic algorithm, using the binary string

representation, located the optimum of the decoded sum of differences function.

Figure 40 - Number of runs in which a genetic algorithm, using the binary string

representation, located the optimum of the decoded sum of differences function.

Table 54 - Hamming cliffs adjacent to the optimal gene values in the decoded sum of differences

function.

3.3 Conclusions

4. Conclusion

5. References

