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Abstract

The research work presented herein addresses time representation and temporal reasoning in 

the domain of artificial intelligence. A general temporal theory, as an extension of Alien and 

Hayes', Gallon's and Vilain's theories, is proposed which treats both time intervals and time 

points on an equal footing; that is, both intervals and points are taken as primitive time 

elements in the theory. This means that neither do intervals have to be constructed out of 

points, nor do points have to be created as some limiting construction of intervals. This 

approach is different from that of Ladkin, of Van Beek, of Dechter, Meiri and Pearl, and of 

Maiocchi, which is either to construct intervals out of points, or to treat points and intervals 

separately.

The theory is presented in terms of a series of axioms which characterise a single temporal 

relation, "meets", over time elements. The axiomatisation allows non-linear time structures 

such as branching time and parallel time, and additional axioms specifying the linearity and 

density of time are specially presented. A formal characterisation for the open and closed 

nature of primitive intervals, which has been a problematic question of time representation 

in artificial intelligence, is provided in terms of the "meets" relation. It is shown to be 

consistent with the conventional definitions of open/closed intervals which are constructed out 

of points.

It is also shown that this general theory is powerful enough to subsume some representative 

temporal theories, such as Alien and Hayes's interval based theory, Bruce's and McDermott's 

point based theories, and the interval and point based theory of Vilain, and of Gallon.
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A finite time network based on the theory is specially addressed, where a consistency checker 

in two different forms is provided for cases with, and without, duration reasoning, 

respectively.

Utilising the time axiomatisation, the syntax and semantics of a temporal logic for reasoning 

about propositions whose truth values are associated with particular intervals/points are 

explicitly defined. It is shown that the logic is more expressive than that of some existing 

systems, such as Alien's interval-based logic, the revised theory proposed by Gallon, 

Shoham's point-based interval logic, and Haugh's MTA based logic; and the corresponding 

problems with these systems are satisfactorily solved.

Finally, as an application of the temporal theory, a new architecture for a temporal database 

system which allows the expression of relative temporal knowledge of data transaction and 

data validity times is proposed. A general retrieval mechanism is presented for a database 

with a purely qualitative temporal component which allows queries with temporal constraints 

in terms of any logical combination of Alien's temporal relations. To reduce the 

computational complexity of the consistency checking algorithm when quantitative time 

duration knowledge is added, a class of databases, termed time-limited databases, is 

introduced. This class allows absolute-time-stamped and relative time information in a form 

which is suitable for many practical applications, where qualitative temporal information is 

only occasionally needed, and the efficient retrieval mechanisms for absolute-time-stamped 

databases may be adopted.

in
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Introduction

CHAPTER 1

INTRODUCTION

"What, then is time?

If no one asks me, I know;

but if I want to explain it to a questioner, I don't know."

Augustine of Hippo 

(Confessions XI, XIV)

1.1 The Roles of Temporal Reasoning

The above quotation reflects the fact that humans have a natural perception of the effects of 

this cosmic reality but are unable to answer the philosophical question of "what there is". 

From a computing perspective this question could be transformed to a more tractable formal 

question of naming and quantification, that is, to the assertion "there is something such that 

... " [ThL91].

Since the early 70s, the study of time has increasingly become an important part of research 

efforts in a variety of strands within computer science. Notably, researchers have seen that
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reasoning about and with time is a task with wide application in many problems in the 

domain of both artificial intelligence and software engineering. As Galton points out in 

[Gal87], this has come about because computer science as a whole is both highly formal and 

deeply rooted in the practice of everyday life, so that a formalism designed to handle the 

pervasive feature of time has an important natural role in many fields. In the review paper 

of temporal logics [Lon89], D. Long categorises areas requiring temporal reasoning as:

(1) temporal database management

(2) predication

(3) planning

(4) explanation

(5) learning new physics

(6) natural language understanding

(7) historical reconstruction

1.2 The Problems

Within the last two decades, many systems have been proposed for capturing the temporal 

aspects of events and processes in computer based systems. Generally speaking, all 

temporal systems must rely on an assumed theory which satisfies some intuitive notions of 

time. For some systems this underlying theoretical basis is formally described, and for others 

it remains assumed as intuitively agreed. In analyzing the theoretical basis of temporal 

systems, there are three items which must be related: the theory, the model, and the real
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world. According to Funk's definition [Fun83], a theory is a collection of statements about 

a subject domain, and a model of a theory is a structure in which the statements of the theory 

are interpreted as true. In addition, if the model is to be of use in some practical domain, then 

the real world must also be taken as a model of the theory.

Hence, when designing a system for temporal reasoning, we are firstly faced with a choice 

of the underling time structure. The most common theoretical basis is the standard time point 

system assumed by classical physics. In this theory, the time domain consists of a continuum 

of time points, isomorphic to the real line. Point-based intervals are constructed from points, 

and the duration of an interval is the real number difference of its left and right end-points. 

There is a weight of historical evidence to convince us that most everyday phenomena are 

models of this theory. However, recent research has shown that, for many applications, 

particularly those in artificial intelligence and natural language understanding, the time-point 

system is not ideal for either the expression of temporal facts, or for the storage and 

organisation of incomplete temporal knowledge, which is strictly relative (e.g., A is before 

B) and has little relation to absolute time points. For these applications, other theories have 

been proposed; for example, based on time intervals as primitive rather than time points.

In his series of papers [A1181,83,84], Alien has given a compelling argument which leads to 

the approach that takes time intervals as primitive rather than constructing them out of points. 

Alien argues that, if intervals are constructed out of points, such as those in the systems of 

Bruce [Bru72], of Beek [Bee89,92], and of Ladkin [Lad86,92], one must address the annoying 

question of whether the end-points are in the intervals or not, seemingly without any 

satisfactory solution: If intervals are all closed then adjacent intervals have end-points in
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common, which when adjacent intervals correspond to states of truth and falsehood of some 

property, can lead to situations in which a property is both true and false at an instant. 

Similarly, if intervals are all open, there will be points at which the truth or falsity of a 

property will be undefined. The solution in which intervals are all taken as semi-open (e.g., 

see the definition of intervals in Maiocchi's TSOS [Mai92]), so that they sit conveniently next 

to one another, seems arbitrary in choice of "left-closed/right-open" and "left-open/right- 

closed", and this arbitrariness is intuitively unsatisfactory.

There are some problems with Alien's theory which explicitly excludes time points, or, later, 

addresses them at a subsidiary status. As argued by Galton, the major problem with a purely 

interval-based theory, excluding time points, is that it is inadequate for reasoning correctly 

about continuous change [Gal90]. Vilain and Kautz [Vil82,ViK86], as well as Galton [Gal90], 

have proposed revised systems to address both time intervals and time points. However, some 

problems still exist. For Vilain's system, the inadequacy of Alien's theory for reasoning about 

continuous change still remain, since the case that a time point standing between two time 

intervals, that is, immediately after one and immediately before another one, is not 

satisfactorily addressed. Gallon's argument that time points should be treated on the same 

footing as time intervals is indeed very suggestive. However, in his revised system [Gal90], 

although Galton attempts to reject as meaningless the question whether or not a given point 

is part of a given interval, he retains the idea of there being a point at the place where two 

intervals meet. This may lead back to the original problem that Alien, and Galton himself, 

try to avoid: viz do properties ascribed to the intervals apply to the point or not? For example, 

how do we express the situation that a light is turned on, if one must address the point p at 

which interval i meets interval j, where i refers to LightjOff, and j refers to Light_Onl
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Additionally, for computer based temporal systems, the question of consistency is a major 

issue that must be concerned. Generally speaking, a database may be taken as a finite set of 

temporal knowledge, and hence the temporal reasoner needs only deal with a finite number 

of time elements. However, the inferencing mechanisms which may be used to derive facts 

from the database must rely on an underlying theoretical basis, insofar that the complete 

axiomatisation is needed to prove some corresponding consistency algorithms.

Finally, the characterisation for the open and closed nature of primitive intervals is another 

problematic question of time representation and temporal reasoning. If such a characterisation 

is formally given, intuitively, it should be consistent with the conventional definitions of 

open/closed intervals which are constructed out of points.

1.3 Contributions of the Thesis

The main contribution of this thesis is the development of a general temporal theory which 

may be seen as an extension of Alien and Haves' and Vilain's corresponding theories. This 

new theory axiomatises both intervals and points as primitive time elements on an abstractly 

equal footing, and hence is more expressive than some existing representative temporal 

theories, such as Bruce's [Bru72] and McDermott's [Mcd82] point-based theories, Alien and 

Hayes's interval-based theory [A1183,Alh85,89], Gallon's revised temporal theory [Gal90], and 

the interval & point-based theory of Vilain and Kautz [Vil82,ViK85], while their appealing 

characteristics are retained.



An advantage of the new theory is that it optionally allows time structures such as 

and etc. Formal characterisations for these issues are given by means 

of some correspondingly additional axioms. On the other hand, the axiomatisation provides 

a satisfactory characterisation for the and nature of primitive intervals, which has 

been a problematic question of time representation in many incomplete knowledge systems.

For computer based systems, the concept of a finite time network based on the general theory 

is introduced. A formal graphical representation of a finite time network is given. In term of 

this graphical representation, the necessary and sufficient condition for the consistency of a 

time network are provided in two forms for cases with, and without duration reasoning, 

respectively.

For temporal reasoning about propositions whose truth values are associated with particular 

intervals/points, a temporal logic is presented based on the new time axiomatisation. The 

syntax and semantics for the logic are explicitly defined. It is shown that the logic is more 

expressive than that of some existing systems, such as Alien's interval-based logic [A1184], 

Gallon's revised theory [Gal90], Shoham's point-based interval logic [Sho87a,b], and Haugh's 

MTA based logic [Hau87]; and the corresponding problems with these temporal systems are 

satisfactorily solved.

Finally, as an application of the temporal theory, a new architecture for a temporal database 

system which allows the expression of relative temporal knowledge of data transaction and 

data validity times is proposed. A general retrieval mechanism is presented for a database 

with a purely qualitative temporal component which allows queries with temporal constraints



in terms of any logical combination of Alien's temporal relations. To reduce the 

computational complexity of the consistency checking algorithm when quantitative time 

duration knowledge is added, a class of databases, termed time-limited databases, is 

introduced. This class allows absolute-time-stamped and relative time information in a form 

which is suitable for many practical applications, where qualitative temporal information is 

only occasionally needed, and the efficient retrieval mechanisms for absolute-time-stamped 

databases may be adopted.

1.4 Outline of the Thesis

An outline of the rest of the thesis is as follows. In chapter 2, we address some major issues 

about the nature of time. A review of some representative temporal systems is given in 

chapter 3. In chapter 4, a general time theory is proposed. Chapter 5 examines different 

models of the theory, and shows that some representative temporal systems may be derived 

from the general theory. As applied to computer based systems, a finite time network based 

on the theory is specially addressed. In chapter 6, the syntax and semantics for a temporal 

logic utilising the time axiomatisation are presented; and a categorization of temporal 

propositions is provided. Chapter 7 introduces a new architecture for a temporal database 

system, which allows the expression of both qualitative and quantitative temporal knowledge 

of data transaction and data validity times. Finally, chapter 8 provides a summary and some 

concluding remarks.

In this thesis, we will be using the first-order predicate calculus with equality throughout, with
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the following conventions:

A and,

v or,

v exclusive-or

=» implication,

<=> equivalence,

3 existential quantifier,

31 uniquely existential quantifier,

V universal quantifier,

-i negation.



CHAPTER 2

MAJOR ISSUES ABOUT THE NATURE OF TIME

When designing a system for temporal reasoning, we are faced with a choice of the underling 

time structure. The theoretical nature of time is a question with a long philosophical tradition 

and the literature is full of disputes and contradictory theories. This contrasts sharply with the 

commonly held view of time, which allows people to cope easily with time in their everyday 

life - for different objectives or motivations, different people may have different approaches. 

In the past two decades, many temporal systems have been proposed to address the problem 

of modelling human temporal concepts in a natural way. These models are similar in many 

respects, but there are subtle differences in terminology and basic theory which derive from 

the differences in approach. Generally speaking, there are several major issues which should 

be addressed in terms of the theoretical basis of proposed systems.

2.1 The Primitive Nature of Time

This is the issue of what should be taken as the primitive elements of time. Abstractly, there 

are three known choices: points, intervals, or both. The prevalent mathematical picture of time 

is that of a set of points without duration. This point view of time is an extremely abstract 

conception, not to be encountered in ordinary situations. For instance, even expressions such
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as "the exact time of birth" refer to some small intervals with positive length, rather than to 

zero-length points. As another tradition, interval structure has been proposed repeatedly in 

many temporal systems. There are two fundamentally different treatments of interval based 

systems. In the first, intervals are assumed to be constructed out of points, and hence, the 

corresponding systems may be considered as models of point-based time theories. An example 

of this is the of Bruce's model for temporal references [Bru72]. However, as 

mentioned in the introduction (section 1.2), modelling intervals by taking their end-points can 

lead to the end-points problem. The second treatment takes intervals as primitive objects 

without any definitions of the "end-point" and "internal-point" structures. In Alien's interval 

based temporal theory (see [A1183,84] and [A1H89]), time intervals are taken as primitive, 

while points are relegated to a subsidiary status as "meeting places" of intervals. Other 

theories, e.g. that of Vilain [Vil82], and that addressed in this thesis, treat both intervals and 

points as primitive on an equal footing.

Although there is something counter-intuitive about treating time as a point-based system, 

Boyer [Boy59] advances the view that such a departure from primary intuitions is fruitful for 

many applications and necessary for the advance of science. Hence, by and large, scientists 

and philosophers of various persuasions have managed to live with this point view of time. 

However, there are advocates of the use of intervals instead of points as primitive. The 

justification provided by them is that the interval representation is more suitable because:

It allows imprecision and uncertainty of temporal information;

It allows the grain of reasoning to be varied;
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It can be understood more easily by humans.

For instance, linguists are finding that the semantics of temporal discourse is more easily 

explained in terms of intervals than of points. We may say that:

1) It took him about 15 minutes to cross the river.

2) He read a book for two hours before going to bed yesterday.

Additionally, since neither the starting-time nor the finishing-time of the process of "crossing- 

river", "reading-book", or "going-to-bed" is explicitly expressed, it is easier to characterise 

these processes with primitive intervals than points or point-based intervals.

2.2 Order Relations

Whatever primitive time elements are taken, all time systems must adopt axioms defining 

some sort of order relation. Two fundamental issues are associated with time ordering: the 

linearity of the time axis and the density of time elements. We address these issues as 

follows:

2.2.1 Linearity of time

This issue refers to whether the time axis can be always considered as or 
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Linear structure corresponds to the classical physical model of time, where there is total order 

over time elements. An example of this structure is that of the real line. The majority of time 

modelling approaches consider the time axis as being linear. However, non-linear time 

structures have also been proposed, where the fundamental order relation allows topologies 

such as and etc. Branching time has been 

proposed as a useful model to handle possible worlds [Mcd82], uncertainty about the past or 

the future and the effects of alternative actions when planning. Unfortunately, as reviewed by 

D. Long in [Lon89], branching time does not succeed very well in capturing the fact that of 

all possible futures or pasts there is precisely one future and past, while all the others 

will always remain hypothetical (further discussion will be given in section 3.3). As for the 

parallel time lines, they are proposed as a way of modelling separate parallel and 

asynchronous processes, and hence, parallel model can be used in developing logics for 

reasoning about parallel computation and concurrent processes. Circular time is another 

interesting possibility in which past, present and future coalesce. It can be used in modelling 

the behaviour of repetitive, cyclical processes, for example the repetition of cycles in the 

traffic signals at a road junction [Lon89],

2.2.2 Density of time

The density question is associated with the discreteness versus denseness of time. It depends 

on the type of primitives assumed for the system. For interval based systems, a dense system 

is taken to be one where every interval is (infinitely) decomposable. For point based systems, 

a dense system is one in which between any two points on the same time line, there is a third. 

As an alternative assumption, some approaches assume that time is discrete, in which each
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time element (possibly except the first and last) is "sandwiched" between unique previous and 

next time elements [Gal90a]. There are many applications in which time can be naturally and 

conveniently considered to be discrete - in reasoning about computation, for example, time 

can be modelled as CPU clock-ticks. The reason has been summarised by Theodoulidis and 

Loucopoulos [ThL91] as follow:

  references concerning time in database systems are usually made in discrete terms, 

e.g. hiring occur daily;

  when references to locations in time are made, their representation must be finite, 

e.g. in a computer system or on a piece of paper;

  from a modelling point of view time intervals may be considered to be point like 

in discrete terms. (E.g., in the form of a discrete time-sampling system with variable 

sampling times [Km'92])

The main argument in favour of density for time is that it corresponds to both the usual 

intuitive structure for time and also the conventional model of time adopted in classical 

physics. Dense model of time seems necessary in modelling continuous change since the 

concept of continuously itself presupposes a dense time system. However, in the case of 

finite computation, it will only be needed to identify and reason about a finite set of temporal 

data. The fact that taking a database as a finite set of temporal knowledge has no bearing on 

the density question at all, which is a question of the assumed theory only. This theoretical 

issue impinges upon the inferencing mechanisms which may be used to derive facts from the
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database, insofar that the density assumption is needed to establish certain consistency proofs.

2.3 Open and Closed Nature of Intervals

There is a conventional way to characterise the and nature of point-based 

intervals. If an interval includes its left end-point (right end-point), it will be then considered 

as left (right) closed. Otherwise, it is left (right) open. However, when intervals are taken as 

primitive, there are no definitions about their end-points. Hence, to allow successful modelling 

of the open and closed nature of these primitive intervals, points must taken as primitive as 

well, on an equal footing to intervals; and, axioms axiomatising the order relation between 

intervals and points should be properly introduced in the corresponding theory. Additionally, 

the interpretation of the open and closed nature of primitive intervals should intuitively be in 

line with the conventional meaning of the open and closed nature for point-based intervals.

2.4 Duration Reasoning

In most applications, it is expected that a temporal system can support duration reasoning. For 

example, if it is known that interval Ia and interval Ib start together and that the duration of 

la is greater than duration of Ib, we may infer that Ib finishes before I.. This inference can be 

made by use of duration knowledge.

The duration assignment to time elements may be characterised by a function from the set of
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time elements to R/, the set of non-negative real numbers. Intuitively, of course, the duration 

of time points should be zero, while the durations of time intervals are positive. For point- 

based intervals, such as Bruce's [Bru72], their durations may be derived from 

the distance between their left end-point and right end-point. Given a duration assignment 

over time elements, some corresponding operators, such as may be required to be 

defined, providing consistency of the whole system.
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CHAPTER 3

LITERATURE SURVEY

Since the early 70s, many temporal systems have been proposed to address the problem of 

modelling human temporal concepts in a natural way. These systems are similar in many 

respects, but there are subtle differences in terminology and basic theory which derive from 

the differences in approach. In this chapter, we review some representative temporal systems, 

according to three fundamental considerations:

  For all of the systems which we shall consider, there 

exists an underlying theoretical basis. For some systems this basis is formally 

described, and for others it remains assumed as intuitively agreed.

  From the point of view of computer 

databases, it would be impossible/unnecessary to address all times. Hence, the 

computer based system may be viewed as another model of the theory, in the form of 

a finite database of temporal facts. Given that the model is incomplete (in terms of a 

partial knowledge) by reason of storage limitations, there is a drive for efficient 

storage and retrieval of incomplete temporal knowledge. Expressive modelling 

languages allow the storage of temporal information which is incomplete in various 

fashions.
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  Deductive inference may be 

performed on the stored data, with reference to the underlying theory, so that any fact 

which can be proved from the axioms of the theory and the stored temporal database 

may be assumed true by inference. In this way, the axioms plus database may be 

viewed as a deductive database from which facts may be retrieved by inference.

3.1 Bruce's 

An early attempt at mechanizing part of the understanding of time within an artificial 

intelligence context was Bruce's model for temporal references [Bru72]. In this system a 

formal framework, based upon first-order logic, is established for the analysis of tenses, time 

relations, and other references to time in natural language. The axioms of the framework are 

based on the following definitions: A is a pair, <), where is a set 

whose elements are called and < is a partial order over Because there is 

nothing that has been defined about other than that it is partially ordered by <, the theory 

allows linear time or branching time, discrete time or dense time. The theory is thus more 

general than that for the standard point-based system, and inferencing mechanisms must be 

built on weaker axioms.

Bruce then defines point-based intervals, termed as chains which are convex 

in the sense that there are no points missing within the chains, where a chain is a totally 

ordered subset of The related issues about time-segments, such as: density, 

linearity, boundedness, may hence be derived from the corresponding issues of the time-points
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which make up the time-segments. The ordering relations between segments are also inherited 

from the partial order over the time points. Bruce gives seven binary relations between 

which can be derived from the ordering relations over their greatest lower bounds 

and the least upper bounds: and 

In terms of these binary relations, a is defined as a special n-ary relation 

on time-segments with the following form:

R1_R2_..._Rn. 1(S1,S2,...,Sn) = R1

where each Sj is a time-segment and Ri is a binary relation between St and Si+1 . Sx is called 

the S2, ..., S^ are called the and Sn is called the 

For example, the following sentence

He will have been going to be going to go

has the tense

where St is the time of speech, S2, S3, S4 are reference times, and S5 is the time of event.

Bruce provides a natural language system, termed which consists of a simple 

English sentence parser, a theorem prover, and a database of facts and events. The system
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accepts facts about events from the user and the information which is given by tense and time 

relations can be combined with other facts to allow inferences about the temporal ordering 

of events.

However, as argued by Gallon, there are some limitations with Bruce's deriving 

in part from the over-simple nature of its translation procedure [Gal87]. Additionally, no 

consistency checker for the system has been explicitly provided and there are some difficulties 

in dealing with the treatment of open or closed intervals, that is, the end-points problem (see 

section 1.2). Mechanisms for duration reasoning are not specified, although these may be 

defined by introducing a mapping from the time-points to the reals.

3.2 The of Kahn and Gorrv

In order to store, retrieve, and reason about temporal information, Kahn and Gorry [KaG77] 

have designed and implemented a module, called to maintain separate 

mechanisms for dealing with dated and undated information. The time specialist is endowed 

with the capacity to order temporal facts in three major ways:

(1) relating events to 

(2) relating events to special 

(3) relating events together into 
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The time specialist can answer different types of questions such as:

  Did event X happen at time expression T?

  When did event X happen?

  What happened at time expression T?

The time specialist can check the consistency of the latest fact with facts previously accepted, 

and try to resolve inconsistencies through interaction with the user. In such an interaction, the 

user may withdraw either the new fact, or some old facts whose removal would lead to 

consistency. However, removing old facts may involve undoing some prior deductions. In 

order to be able to do this, a deduced fact is marked by those facts used to deduce it.

However, even if the time specialist is able to make deductions and check whether they are 

consistent with the facts known in the data base, it is weak if the time indications are fuzzy: 

fuzziness needs to be represented by means of plus/minus error intervals for the dates of 

events, and for the lengths of times between two events. Additionally, since each of the three 

methods to organize temporal statements has its own special data structures and routines to 

work with those structures, for a given set of temporal facts, it is the user, unfortunately, not 

the time specialist, who has to choose the most appropriate methods.

No formal theory is stated as a basis for the time specialist. The basis for temporal reasoning 

is contained in the algorithms which make up the system.
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3.3 The Temporal Theory of McDermott

McDermott [Mcd82] has developed a first-order temporal logic to provide a versatile 

"common-sense" theory for time: reasoning about causality, reasoning about continuous 

change, and planning actions. In accordance with the "naive physics" advocated by Hayes 

[Hay? 8], McDermott adopts an infinite collection of states as the primitive temporal elements 

and added several crucial axioms: Every state has a time of occurrence, J(s), a real number 

called its Time is assumed to be a continuum, with an infinite numbers of states 

between any two distinct states, where states are partially ordered by the order 

relation "<"; and the future (not the past) is branching, that is, there are many possible futures 

branching forward in time from the present. Each single branch, called a consists 

of a connected series of states and is isomorphic to the real line. Developing his theory, 

Mcdermott examines three major problems that a temporal reasoning system must face: 

reasoning about causality, reasoning about continuous change, and planning actions.

McDermott's system has formal axioms with time-points (states) and reals as primitives. The 

theory assumes a partial ordering relation, which gives rise to branching time. Reasoning is 

via the assumed theory of the real numbers, and no special mechanisms are needed. We can 

represent a time state, s, as the pair (Cs, t), where t = d(s) and Cs is the set of chronicles that 

s belongs to. Possible events may be associated with time states.

For illustration, we shall consider the example of a man called John, planning a trip to the 

theatre. He may go by train or by bus. We may assume that a decision will be made to go 

by train or bus. If the decision is made to go by train at time state s^.^, where d(strainl ) = tp
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then John will arrive at the theatre at state s^,^, and the play will start at state strain3, where 

d(strain3) = tg. All of these time states lie on a chronicle c^. Alternatively, if the decision is 

made to go by bus at state s^, where dCs^) = then he will arrive at the theatre at state 

s^, and the play will start at state s^, where dCs^) t3. All of these time states lie on 

chronicle cbus. These events and states may be represented by the following data:

(decides-to-take-train, 

(arrives-at-theatre-by-train, 

(play-starts, c^, t3)

(decides-to-take-bus, cbus,

(arrives-at-theatre-by-bus, cbus,

(play-starts, cbus, t3)

Here, s^ has been represented by the pair (c^, tj, s^ by (c^, t^) etc

In this example, illustrated in Figure 3.3(1), we see that time states divide into two separate 

chronicles c^ and c^, from the state s0 which may corresponds to finishing supper, as a 

result of the John's decision. Although it is obviously possible for us to compare times on 

different chronicles by means of the t component, McDermott uses the relation 

over time states which is restricted to states on the same chronicle. This is to prevent us from 

making "no later than" comparisons for events which cannot both occur in reality. For 

example, we are not allowed to ask whether he arrives at the theatre by bus before he arrives 

by train, since he cannot do both. These two events are said to be in different possible worlds
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(i.e. chronicles).

S train 1

Straln2 Strains
Ctraln

Cbus

Figure 3.3(1)

McDermott also provides axioms which ensure that chronicles branch only into the future, and 

this limits the expressiveness of the logic. For, in the example, we have the event "play starts" 

on two different chronicles which cannot be compared. Using McDermott's logic we must 

view these as two separate events: "play starts after John's arrival by train", and "play starts 

after John's arrival by bus". Intuitively, we may judge that the play is independent of John. 

However, it is not obvious how this independence may be shown in McDermott's system, 

since we are not allowed to join two chronicles at the state where the play starts.

It is in fact arguable whether we need to consider time as branching in order to model 

possible worlds. In fact, it is possible to conceptualise the world number, or chronicle, as 

related to the event data, and not to the time. For example, we can regard the predicate:

(decides-to-take-train, 'train'

as relating:
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(event, possible_world, time) 

rather than:

(event, time_state)

In this case, time elements are standard linear dense time points, and the axioms for 

chronicles can be specified independently of those for time.

3.4 The Interval Logic of Alien

Alien introduced his temporal logic in order to provide a framework for the naive treatment 

of two major subareas of artificial intelligence: natural language processing and problem 

solving. Instead of adopting time points (or states which are associated with time points), he 

takes intervals as the primitive temporal quantity, as being the natural means of human 

reference to time. As an example, in [A1183], Alien gives the following story:

In this account we can identify several time intervals, e.g.: the time Ernie was in the room, 

the time between entering the room and picking up each cup, the time between putting down 

the cups and leaving the room, and many others. However, the claim is that intervals are 

sufficient for modelling all the temporal references in human accounts such as this. Even 

references to apparent point events, such as the time Ernie entered the room, or the time that
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he put down a cup, are best modelled as small time intervals. The argument is put forward 

that all apparently instantaneous events can be decomposed further if we examine them more 

closely. For example, "entering the room" may be decomposed into: opening the door, moving 

through the doorway, and closing the door. And again, "opening the door" can be decomposed 

into turning the handle and pushing the door open. As Alien puts it [A1183]:

In order to express temporal ordering of time intervals, Alien takes as primitive a set of nine 

(mutually exclusive) basic binary relations between any two intervals [A1181], extended later 

to thirteen [A1183]: 

These are based on Bruce's seven 

relationships, but whereas Bruce's relations were derived from the order within a point-based 

theory, Alien's are taken as primitive.

These relationships were later formally defined in terms of the single primitive relation 

by Alien and Hayes [A1H85,89]. This is done by positing the existence of related 

intervals. For example:

<=> A 

The set of axioms that axiomatise the primitive relation over time intervals is 

proposed first in [A1H85], and then revised in [A1H89], as follows:
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i,j,k,le A A 

<M2> Vi,j,k,l l(wm,s(i,j) A 

A

(N.B. "v" means exclusive disjunction.)

<M3>

<M4> Vj,k l(3i,lel(me^^(i,j) A A me^f5(i,k) A 

j=k)

(N.B. "j = k" means j and k represent the same time element.)

<M5> Vije =>

3ke IVm,ne I(m^e^(m,i) A 

Axiom <M1> states that the "place" where two intervals meet is unique and closely associated 

with the intervals. The role of <M2> is to ensure that meeting places are totally ordered. 

<M3> makes every interval have at least one neighbouring interval preceding it, and another 

succeeding. <M4> simply says that there is only one time interval between any two meeting 

places. Finally, <M5> states that if two meeting places are separated by a sequence of



intervals, then there is an interval which connects these two meeting places. Hence, with 

axiom <M4> and the definition of equality, for any two adjacent intervals, i and j, the ordered 

union of i and j, written i © j, is designed.

A limitation of Alien and Haves' theory, noted by Tsang [Tsa87], is that the axioms are not 

primitive enough for extensions. For example, it might be hoped that linearity can be removed 

from the axiomatisation in order to address the issues such as branching time and parallel 

time, etc. In fact, Tsang points out that it is difficult to see which of Alien and Haves' axioms 

entails linearity. Alien and Hayes conclude that the linearity assumption is characterised by 

means of axiom <M4> in the revised version of the set of their axioms [A1H89]. However, 

it is indeed axiom <M2>, rather than <M4>, that entails the linearity of time. In fact, if we 

remove <M2> from the set of axioms, then the time may be circular, parallel, branching, as 

shown in Figure 3.4(1). In this graphical representation, the arcs of the graph represent time 

intervals, and the relation is represented by i being in-arc and j being out-arc to a 

common node:

circular time parallel time

branching time

Figure 3.4(1)
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Another limitation of Alien and Hayes' time theory is that it takes only intervals, rather than 

points, as primitive time elements, although points are later introduced as the 

of intervals, or as a maximal set, termed of intervals that share a common intersection, 

at a subsidiary status within the theory. Alien's original contention is that nothing can be true 

at a point, for a point is not an entity at which things happen or are true [A1183]. However, 

as Galton shows in his critical examination of Alien's interval logic [Gal90b], Alien's theory 

of time based on only time intervals is not adequate, as it stands, for reasoning correctly about 

continuous change.

To characterise the times that some events occupy, in [A1H89], Alien and Hayes 

introduce the idea of very short intervals, called A moment is simply a non- 

decomposable time interval. The important distinction between moments and points is: 

although being non-decomposable, moments are defined by having extent and by means of 

having distinct beginning and ending points (just as for other intervals) [A1H89], while points 

are defined by having no extent.

However, Alien and Hayes' revised time theory that addresses moments as well is still not 

adequate for reasoning correctly about continuous change. We may illuminate the problem 

involved with reference to time points by means of the following example of a ball thrown 

vertically into the air: The motion may be described qualitatively by the use of two intervals, 

interval i where the ball is going up, and interval j where the ball is coming down. According 

to classical physics, there is a point where the ball is stationary. As Alien suggested, in the 

interval calculus, we may assume that there is a very small interval, that is, a moment, where 

the ball is stationary. But this does not seem tenable, being inconsistent with the laws of
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classical physics, no matter how small the interval.

Relating to the "meets" relation, another obvious difference between points and moments is 

that moments can meet other intervals, and hence stand between them, while points are not 

treated as primitive objects and cannot meet anything. However, as Alien and Hayes 

themselves point out, a theory incorporating granularity involves introducing a 

that defines when two times are indistinguishable. For example, two intervals, i and 

j, might be indistinguishable if their beginning points are at most a moment apart, and 

likewise for their end points. To ensure that the tolerance relation is an equivalence relation, 

Alien and Hayes propose axiom <M6>, which insists that moments never meet:

<M6> Vm,ne A =» 

where is defined by:

Vme <=> -clije I(m = i © j))

Alien and Hayes declare that their formulation permits either discrete or continuous time 

models, as well as more exotic models that may alternate between continuous and discrete 

stretches of time. Unfortunately, axiom <M6> leads to another limitation to the primitive time 

elements: for any interval, either it is non-decomposable, that is, a moment, or it must be 

infinitely decomposable. For, if it is only finitely decomposable, then it must be the sum of 

a finite number of moments which would meet one another, contrary to <M6>. This precludes 

discrete models from the theory containing axiom <M6>. In addition, dense models of the
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theory, i.e where all intervals are infinitely decomposable, permit no moments at all, so that 

<M6> is only vacuously true. Hence models of the theory including <M6> which contain 

moments can be neither solely dense nor solely discrete!

In Alien's system [A1181,83], consistency checking is performed by formation of the transitive 

closure, according to a transitivity table with 144 entries which describes the composition of 

the thirteen (mutually exclusive) relations. If no conflict is found according to the exclusivity, 

then the system is consistent. For example, for the system:

we may use the transitivity entry:

to deduce that and no inconsistency arises. However, from:

we can deduce Hence we have two distinct relations between a and b, 

and 4/ter(a,b), which are not allowed due to the exclusivity of these temporal relations. In this 

way, reasoning in Alien's system relies on the propagation of temporal relations using the 

transitivity table, in a search for inconsistency.
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Alien and Hayes show that the transitivity table in [A1183] is a result of the their axioms in 

[A1H89], following the intuitive reasoning by possible cases which was used to construct the 

table originally. Additionally, Alien [A1183] has suggested that duration reasoning may also 

be incorporated into the interval-based system by giving examples of rules for duration 

reasoning. For example:

v v =>

However no comprehensive mechanism has been proposed, and hence the duration reasoning 

is rather weak.

3.5 Vilain's Temporal System

Noting that intervals are not the only mechanism by which human beings understand time, 

another common construct being that of time points, Vilain and Kautz [Vil82,ViK86]] propose 

a system which handles time points in much the same way that it handles intervals. The logic 

of points is arrived at by expanding Alien's logic of intervals: adding new primitive relations 

and composition rules over them to Alien's interval logic. The new primitive relations may 

be classified into three groups:

Point-Point: {Equal, Before, After}

which relate points to other points;
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Interval-Point: 

which relate intervals to points;

Point-Interval: 

which relate points to intervals.

The mechanism by which Vilain's system makes deductions about points is an extension of 

that which it uses to make deductions about intervals. In an approach similar to that of Alien, 

the system maintains a "complete picture" of all relations over intervals and points by means 

of a transitive closure operation. The operation is performed over the expanded set of 

composition rules in the newer logic.

However there is a critical omission from the primitive relations between points and intervals 

in Vilain's system; for the relation is defined only between intervals and is not 

allowed between points and intervals. Hence, the problems in modelling continuous change 

by Alien's system mentioned by Gallon in [Gal90b] still exist in Vilain's system. For 

example, the system is still not capable of modelling the processes of a ball thrown vertically 

into the air: Let interval ij refer to point p refer to and interval 

i2 refer to On the one hand, it is easy to see that p is neither in i x nor i2. 

On the other hand, according to Vilain's classifications of relations over points and interval, 

point p is not allowed to meet or be met-by any interval. Hence, we deduce that p is after ij 

and before i2, that is, there is another time element between ij and p, and another time 

element between p and i2. This is obviously contrary to our intuition of the processes.
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3.6 Kowalski and Sergot's Event Calculus

The of Kowalski and Sergot [KoS86] is an approach for representing and 

reasoning about time and events within a logic programming framework. It is based in part 

on the situation calculus [McC63,McH69], but focuses on the concept of events as highlighted 

in semantic network representations of case semantics (see [Kow92]). Its main intended 

application is the representation of events in updating databases and discourse representation.

Primitives of the theory are events, which are considered to be structureless "points" in time, 

where "point" is used here only to convey the lack of internal structure. Events start and 

finish periods of time, during which states are maintained. Events are considered to be after 

the time periods that they finish and before the time periods that they start, not fully 

contained within either of these periods.

Using an example about project assignments, Sadri [Sad87] illustrates a number of the general 

characteristics of the event calculus:

(1) Event descriptions can be assimilated in any order, independent of the order in 

which events actually take place;

(2) Events can be used for temporal references and need not be associated with 

absolute times;

(3) Events can be simultaneous;

(4) Events can be partially ordered;

(5) All updates are additive. The effect of deletion is obtained by adding information
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about the end of periods;

(6) The event calculus rules are in Horn clause logic augmented with negation by 

failure; 

and

(7) The event calculus allows events to be input with incomplete descriptions.

In [Kow92], Kowalski specially investigates the case of the event calculus connected with 

database updates. The way in which relational databases, historical databases, modal logic, 

and the situation calculus deal with database updates is discussed in detail. It is claimed that 

the event calculus may overcome the computational aspects of the frame problem in the 

situation calculus, and it is hoped to achieve the efficiency obtainable with "destructive 

assignment" in relational databases (see [Kow92]). Bernard et. al. [BBG91] have recently 

presented an adaptation of the event calculus to the problem of determining the temporal 

structure of operations that must be performed during the realization of some complex 

objectives. An extension to Kowalski's event calculus model is proposed by Borillo and 

Gaume [BoG90], by means of the additional spatial component, and the introduction of 

uncertainty and a general abstract relation among propositions.

The formal theory of Kowalski and Sergot's may be taken as the Horn clause 

logic plus negation by failure. The event calculus rules can be run as a logic program in 

However, the use of negation by failure introduces a procedural element into the 

axioms. In this respect, the system is thus akin to the time specialist, in that the theory is 

presented in terms of algorithms.
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3.7 Dechter. Meiri and Pearl's TCSP

Dechter, Meiri and Pearl [DMP91] have presented a unified approach to temporal reasoning 

based on constraint-network formalism. In this framework of temporal constraint satisfaction 

problems variables represent time points, and temporal information is represented by 

a set of unary and binary constraints, each specifying a set of permitted intervals. The unique 

feature of this framework lies in permitting the processing of metric information, namely, 

assessments of time differences between events. Algorithms are presented for performing 

some reasoning tasks, such as finding all feasible times that a given event can occur, finding 

all possible relationships between two given events, and generating one or more scenarios 

consistent with the information provided. A involves a set of variables, ..., Xn, 

having continuous domains; each variable represents a time point. Each constraint is 

represented by a set of intervals: {1^ ...,! }, where these intervals are similar to Bruce's time- 

segments, that is, they are point-based, may be closed, open, or semi-open. A simple temporal 

problem is a in which all constraints specify a single interval. The duration of 

an interval may be defined by the distance between its greatest lower bound and least upper 

bound. Relations between intervals, such as the thirteen relations defined by Alien, may be 

derived from the known total order relation among their greatest lower bound and least upper 

bound. The consistency checking for a is transformed to a corresponding examination 

of its graphic representation.

The theory is formally stated, with points and real numbers as primitives, and intervals being 

constructed out of points. It assumes a dense set of time-elements, but time may be branching. 

Duration reasoning is encompassed by the system, by means of a consistency checking
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algorithm. The limitation of the model is it's assumption that all the addressed point- 

based intervals have the same open/closed nature, that is, either interval are all assumed to 

be closed, or they are all assumed to be open, or all assumed to be semi-open. This 

assumption can lead to problems: if intervals are all closed then adjacent intervals have 

ending-points in common, which, when adjacent intervals correspond to states of truth and 

falsehood of some property, can lead to situations in which a property is both true and false 

at an instant. Similarly, if intervals are all open, there will be points at which the truth or 

falsity of a property will be undefined. The solution in which intervals are all taken as semi- 

open, so that they sit conveniently next to one another, seems arbitrary and unsatisfactory (see 

[A1183,Gal90]).

3,8. Bacchus, Tenenberg and Koomen's 

Bacchus, Tenenberg and Koomen present a many-sorted temporal logic, termed 

[BTK91], for reasoning about propositions whose truth values might change as a function of 

time. In order to provide a clear semantics and a well-studied proof theory, they partition both 

the universe of discourse and the symbols of their language into two sorts, temporal and non- 

temporal, by which time is given a special syntactic and semantic status without having to 

resort to reification. In propositions are associated with time objects by including 

temporal arguments to the functions and predicates, where terms and wffs are defined in the 

standard fashion, with the only restriction being that arguments of the correct sort must be 

given for each function and predicate.
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Actually, is sorted in much the same way as Shoham's [Sho87a,b]. Unlike 

Shoham's first-order logic in which propositions are expressed just with respect to a pair of 

time points (denoting a time interval), propositions in can be expressed and interpreted 

with respect to any number of temporal arguments: there is neither a syntactic commitment 

to the number of temporal objects that any function or predicate may depend upon, nor is 

there any commitment to interpreting the temporal objects as either intervals or points.

It is interesting to noted that, in their paper [BTK91], Bacchus et. al. have shown that 

Shoham's logic can in fact be subsumed by by defining two transformations, a syntactic 

transformation, rcsyn, and a semantic transformation, rcsem. 7csyn maps sentences of Shoham's 

logic to sentences of while 7tsem maps models of Shoham's logic to models of 

Additionally, they argue that Shoham's categorization of propositions over point-based time 

intervals may also be translated to and the ontology of is richer since it allows 

time intervals to be the primitive temporal objects rather than being defined as pairs of time 

points.

The major difficulty involved in reasoning in a system lies in reasoning with the 

temporal terms, when the complexity of reasoning is highly dependent on the nature of the 

temporal domain. However, in there is no axiomatisation characterising the time 

structure. This question is left open, so that the temporal domain of may be defined to 

be any temporal structure which can be characterised by a set of axioms, for example that of 

Bruce [Bru72], of Alien and Hayes [A1H89], or of McDermott [Mcd82]. A complete proof 

theory may then be generated by adding the axioms for the temporal domain to the 

fundamental axiomatisation of the logic.
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3.9 Beck's Temporal Framework

In [Bee89,90,92], Beek has separately proposed an interval-based framework, /A, and point- 

based framework, PA, for representing and reasoning about incomplete and indefinite 

qualitative temporal information. Two fundamental reasoning tasks that arise in applications 

of these frameworks are addressed: Given possible indefinite and incomplete knowledge of 

the relations between some intervals or between some points,

(i) find a scenario that is consistent with the information provided;

(ii) find the feasible relations between all pairs of the intervals or points.

Following from the approach of Dechter et al. [DMP91], and Ladkin and Maddux [Lad87,92], 

the reasoning tasks are formalized as binary constraint satisfaction problems. An /A 

is a network of binary constraints where the variables represent time intervals, the domains 

of the variables are the set of ordered pairs of rational numbers {(s,e) | s < e}, with s and 

e representing the starting and ending points of the intervals, respectively, and the binary 

constraints between variables are represented implicitly by sets of temporal relations over 

intervals introduced by Alien [A1183]. However, these interval relations are induced from the 

order relation between the starting and ending points of the corresponding intervals. Hence, 

the interval-based framework is similar to that of Dechter et al., with intervals being 

defined in terms of points. Since the rationals are adopted in /A as the underlying 

representation of time, the time is hence dense, linear, and unbounded. A PA is a
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network of binary constraints where the variables represent time points, the domains of the 

variables are the set of rational numbers, and the binary constraints between variables are 

represented implicitly by sets of the basic point relations proposed in Vilain and Kautz's point 

algebra [ViK86].

For the point-base framework and the restricted but useful "pointable" version of the interval- 

based framework, computationally efficient procedures for finding a consistent scenario and 

for finding the feasible relations are given, which are marked improvements over the 

previously known algorithms.

It is interesting to note that the frameworks, and deal with temporal relations between 

intervals, and relations between points separately, that is, the interval-based framework 

deals with the thirteen temporal relations (defined by Alien [A1183]) between intervals only, 

while the point-based framework deals with temporal relations between points only, which 

are addressed in Vilain and Kautz's point algebra [ViK86]. Relations between intervals and 

points, such as that proposed in [Vil82], are not addressed at all. Again, like Dechter et al.'s 

framework, time intervals are not defined as primitive. Indeed, time intervals, and temporal 

relations between intervals are defined in terms of points (rationals) and the corresponding 

order relations between points.

3.10 Maiocchi's TSOS

(Temporal Semantic Office Systems) is a system for reasoning about time, presented
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recently by Maiocchi [Mai92]. In the temporal domains on which temporal data may 

be specified in the model are: time points, time intervals, and time extensions. However, only 

discrete points are taken as primitive time elements, from which other temporal concepts, such 

as, time intervals and durations are derived. This treatment is quite similar to that of Bruce 

[Bru72], although in [Bru72] some issues such as durations are not explicitly addressed. In 

particular, in time intervals are defined as point-pairs, which are all closed in their 

and open in their and each time interval is connected. However, as 

mentioned in [A1183] and [Lon89], this approach seems arbitrary and unsatisfactory. A time 

extension denotes a set of consecutive time points at the minimum level of abstraction (quanta 

of time which is dependent on the application domain). Time concepts such as the distance 

of a time point from another time point, the duration of a time interval, and dates are then 

specified in terms of time extensions. For example, "one week" and two days" are time 

extensions.

In the concepts of and of are introduced as the basic 

elements to which temporal information is associated. Instantaneous events are used to model 

data to which a single time point is associated, and therefore they are considered 

instantaneous in the temporal framework of reference for the systems. Propositions model data 

valid over a time span.

can be integrated as a time expert in environments designed for broader problem- 

solving domains. It allows users to infer further information on the temporal data stored in 

the database through a set of deduction rules handing various aspects of time. To handle 

imprecise time, supports the concepts of and 
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for propositions, where temporal modalities characterise the possibility of specifying whether 

a piece of information is always true within a time interval or whether it is only sometimes 

true, and the capability of answering about the possibility and the necessity of the validity of 

some information at a given time. The main mechanism for temporal data maintenance 

supported by is the managements of valid time and transaction time (see [SnA86] and 

[Sri88]).
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CHAPTER 4

A GENERAL TIME THEORY

As discussed in section 3.4, Alien and Hayes' time theory is not primitive enough for 

extensions [Tsa87], and is not adequate for reasoning correctly about continuous change 

[Gal90]. Although Vilain's system [Vil82] takes both points and intervals as primitive, it is 

still not possible to characterise the open and closed nature of intervals, and hence, it is still 

not adequate for reasoning correctly about continuous change. In this chapter, we propose a 

general axiomatic framework to serve as an unifying basis for most of representative temporal 

models in artificial intelligence. The axioms may be seen as an extension of Alien and Hayes' 

theory [A1H89], to take both intervals and points as primitive objects on an equal footing. 

This approach is different from that of Vilain and Kautz [ViK86], of Dechter et al. [DMP91], 

of Ladkin [Lad92], and of Beek [Bee92], which either construct intervals out of points, or 

treat points and intervals separately.

We present the main body of the axiomatisation in section 4.1. These axioms are independent 

of the specification of density and linearity. Additional axioms are provided in section 4.2 to 

specify the linearity and density of time, and, formal definitions are also given for the open 

and closed nature of primitive intervals. A classification of all possible temporal relations over 

intervals and points is presented in section 4.3.
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4.1 An Axiomatisation of Time based on Intervals and Points

The new general time theory may be seen as an extension of Alien and Hayes' axiomatisation 

[A1H89], by means of some additional axioms relating to the inclusion of time points as 

primitive elements, and generalisation of Alien and Hayes' axiomatisation by removing the 

linearity of time in order to allow non-linear time structures such as branching time, parallel 

time, etc.

We start the formal theory by posing a nonempty set, T, of objects that we shall call time- 

elements, and a function, from T to R/, the set of non-negative real numbers. A time- 

element, t, is called a (time) interval if 0, otherwise, t is called a (time) point. 

According to this classification, the set of time-elements, T, may be expressed as T = I u P, 

where I is the set of intervals, and P is the set of points. As in Alien and Hayes' approach, 

at this early stage we do not make any commitment as to whether all time intervals are 

decomposable or not. The density question will be addressed by further axioms.

In order to define the primitive order over time elements, we adopt Alien and Hayes' 

axiomatisation for the single relation between intervals while the axiom characterising 

the linearity will not be included in the first place. Since the time elements may now be not 

only intervals but also points, some critical axioms are necessary relating to the treatment of 

points. The whole set of axioms for the relation over T are listed below, where 

axioms <A1>, <A2>, <A3> and <A4> correspond to Alien and Hayes' <M1>, <M3>, <M4> 

and <M5> in the above section, respectively:
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Vtl ,t2,t3,t4  A

<A2> VteT3t',t"<=T(meett(t',t) A

<A3>

A A weetoCt^t")) => t =

<A4>

3teTVt',t"eT( A 

=> A

N.B. For any two time elements, tj and t^ such that axioms <A4> and 

<A3> ensure that there is a unique time element corresponding to the ordered union 

of tt and tz, which is indicated as i © j, and which always implies that 

<A5> VtteTmeetett => t l v

<A6>

Axiom <A5> is based on the intuition that points will not meet other points, that is, between 

any two time points, there is a time interval. This is indeed very similar to Alien and Hayes' 

<M6> which states that moments never meet other moments. However, although <M6> 

appears to bring little benefit in the form that is presented in [A1H89], dealing with moments, 

it can be seen that <A5> plays a critical role in the general theory proposed in this chapter,
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as it is applied to In this case the axiom does not limit the interval structure 

at all: unlike <M6>, <A5> does not imply the limitation that any decomposable interval must 

be infinitely decomposable. Additionally, axiom <A5> does not affect whether the set of 

points is dense or not. This issue will be depend on a further assumption ensuring that 

"within" any time interval, there is a time point (see section 6). Axiom <A6> ensures that the 

addition operation, "©", over time elements is consistent with the function which we 

shall call the duration assignment over T.

This is the complete fundamental set of axioms concerning the relation. We denote this 

set as A, and use a pair, to represent the temporal frame defined by the 

axiomatisation.

4.2 Some Further Issues

The axiomatisation proposed in the above section defines a general temporal frame based on 

both intervals and points as primitive objects. In this section, we address some further issues 

relating to the structure of the frame.

4.2.1 Open and closed nature of intervals

Although intervals are taken in the theory as primitive, that is there are no definitions about 

the end-points for intervals, the axiomatisation allows the expression of the "open" and
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"closed" nature of intervals. For example, to represent the process of the ball thrown into the 

air (see section 3.4), we may relate and 

to interval i lf point p, and interval i2, respectively, where miitt(ii»p)» Intuitively, 

t = p © relates to In Figure 4.2.1(1), since lj has 

point p as its immediate successor, we may view i t as "right-open" at p, and similarly, i2 as 

"left-open" at p. (For clarity, we denote points with bold arcs.) Since interval t (= p © i2) and 

point p have the same immediate predecessor (ij) we may view t as "left-closed" at p.

Figure 4.2.1(1)

Formally, the open and closed nature of primitive intervals may be defined as follows:

interval i is left-open at point p iff 

i);

interval i is right-open at point p iff
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interval i is left-closed at point p iff 

A

interval i is right-closed at point p iff

It is easy to see that "left-open" and "left-closed" (symmetrically, "right-open" and "right- 

closed") are exclusive to each other under the axiomatisation. In fact, if interval i is left-open 

at point PJ, and left-closed at point p2, then by the above definition, we get:

A A raeete(i',p2), where i'el

Hence, by axiom <A1> we can infer that which contradicts axiom <A5>

The above interpretation of the "open" and "closed" nature of primitive intervals is in fact in 

line with the conventional meaning of the open and closed nature for point-based intervals. 

For instance, point-based interval (pt , p2] is "left-open" at point , since intuitively px is an 

immediate predecessor of interval (pj, p2]; similarly, (p^ p2] is "right-closed" at p2, since both 

point p2 and interval (p^ p2] have the same immediate successor, (p2, _}.

4.2.2 Linearity of time

Time is usually considered as having a structure. This corresponds to the classical 

physical model of time, where the structure is that of the real line, extending indefinitely in
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both directions.

The (full) linearity of a temporal frame can be characterised by adding an axiom, 

» to A, the set of axioms proposed in section 4.1:

Vt1,t2,t3,t4eT(m^W(t1 ,t2) A

v3t' A 

,t") A 

N.B. The axiom <ALineai> is in fact the axiom <M2> (see section 2) for Alien and 

Hayes' interval-based theory. The "exclusive ors" in this axiom have some quite 

powerful consequences. In particular, they ensure that there can be no circular, 

parallel, and branching times. For instance, the following lemmas are straightforward 

(see [A1H89]):

Vte 

<Lemma2> 

<Lemma3> VtG T-.3t'e

which ensure that there is no possibility of circular time.

However, without <ALineai>, a temporal frame usually allows branching into both the past and
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the future. Branching temporal frames offer a way to handle possible worlds, uncertainty 

about the past or the future and the effects of alternative actions when planning. A temporal 

frame which allows branching into the future but not into the past is called left-linear (see 

Figure 4.2.2(1)). This may be characterised by adding to A, the axiom <AL.Linear>, rather than 

the stronger axiom <ALineai>:

A A A 

A ,t4)) 

,t") A 

left-linear time

Figure 4.2.2(1)

Analogously, right-linearity is defined by means axiom <AR.Lineai>:
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Vt,t1 ,t2,t3,t4  T(miitt(t,ti) A A A

v3t'  T(m^tt(tlf t') A 

v3t"eT(weete(t3,t") A

As Galton puts it in [Gal90a], it is interesting to note that left-linearity and right-linearity 

together just fail to imply (full) linearity, the exception being the case of parallel time lines 

as shown in Figure 4.2.2(2).

tim

Figure 4.2.2(2)

Parallel temporal frames provide a way of modelling separate and asynchronous processes, 

and might prove useful in developing logics for reasoning about parallel computation and 

concurrent processes.

4.2.3 Dense and discrete time

According to Axiom <A2>, for each time-element t, there is a time-element which 
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it, and another one which it Therefore, in particular, axiom <A4> and <A5> 

additionally ensure that, between any two distinct time points on the same time line, there is 

always a time interval. However, for time intervals, can we always assume that any interval 

can be decomposed into two distinct contiguous intervals? If so, we say that the set of time 

elements forms a dense system.

We may use the following axiom to characterise the density of a temporal frame (T,

<A>Dense

We can show that axiom <ADense> implies that each time interval can be decomposed into two 

distinct contiguous intervals. In fact, assume interval i = ^ © if tj is a point, then by axiom 

<A5>, tj must be an interval; hence, by <ADense>, tj = t' © t". By <A4> and <A3>, we get 

i = tx © t' © t". Since ̂  is a point, axiom <A5> implies that t' must be an interval; hence 

t! © t' is an interval. If t" is an interval then we have proved that i can be decomposed into 

two intervals, i t and t", where i t = tx © t'; in the case that t" is a point, <ADense> implies that 

t' = t1 * © V, and again, since ̂  and t" are points, from <A5> we can infer that both tt ' and 

V must be intervals; hence i = Ji © J2> where Ji = t' © t/, and j 2 = t>' © t" are two intervals. 

Similar discussion applies to the case that t^ is a point which implies that tt must be an 

interval.

In fact, it will turn out that we may need a slightly stronger axiom to characterise a temporal 

frame in which there is always a time point during any time interval. We introduce it as
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below:

= ^ © p

N.B. By consideration of axioms <A2> and <A5>, we can infer that axiom <AP.Dense> 

ensures that between any two distinct time points on the same time line, there is a 

third. It is easy to show that axiom <AP.Dense> is stronger than axiom <ADense>, that is, 

<Ap.DenSe> implies <ADense>, but not vice versa. (E.g., if we let

P = 0 and I = { [a,b) | a,beR,a < b }, 

then we get a time frame which satisfies <ADense> but not <AP.Dense>.)

The discreteness of a temporal frame can be characterised by means of adding two 

axioms, <AL.Discrete> and <AR.Discrete> to A:

= t> © t3))

j = © t3))

Axiom <AL.Discrete> entails the left-discreteness of a temporal frame by means of asserting that 

for each time element, there is a non-decomposable time element which is immediately before 

it; similarly, Axiom <AR.Discrete> entails the right-discreteness by means of asserting that for
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each time element, there is a non-decomposable time element which is immediately after it. 

Consider the case in which the set of time points is empty: by taking t to be a non- 

decomposable interval (or moment, termed by Alien and Hayes) in the above axioms, since 

tx is by definition a moment we see that <AL.Discrete> or <AR.Discrete> implies that each moment 

has a predecessor moment or successor moment respectively. Hence, Alien and Hayes' <M6> 

is inconsistent with the discreteness axioms.

It is interesting to note that there may exist temporal frames in which some intervals are finite 

sums of moments (see next chapter). This case is axiomatically consistent with our axiom 

<A5>, but not consistent with Alien and Hayes' <M6>, which implies that each decomposable 

interval must be infinitely decomposable.

4.3 Derived Temporal Relations over Time Elements

In terms of the primitive relation we may induce the complete set of possible 

relationships over time elements by means of the following definitions, including the 

relation itself:

<=> t, = t^

<=> 3t,t',t"eT(t, = t' 8 t A t> = t 0 t"),
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= tt © t),

<=> 3t',t"eT(t> = t' © tj 8 t"),

= t 0 t^,

<=>

It is interesting to note that, since points are allowed now, the above 13 relations have 

somewhat different "feel" to Alien's 13 temporal relations between intervals. For instance, if 

i, and i2 are open intervals separated by a point p, then we have although this 

situation looks very like ij i 2 in Alien's system. Again, if i t is right-closed, and i 2 is 

left-closed at point p, respectively, according to the above definitions, we have 

but again it "looks" like the two intervals meeting. Additionally, from the above definitions,



any open interval is its closure. What all this means is that, taking both intervals and 

points as primitive time-elements, we have more than 13 significantly different relationships 

to considered, because, for example, from almost any point of view, the first case mentioned 

above (i.e., miito(i lyp) A is no more similar to the case of two intervals separated 

by a third interval (a necessary condition of in Alien's system) than it is to the case 

of two intervals strictly meeting.

On the other hand, as Alien and Hayes show in [A1H89], all the thirteen relations may hold 

in the case that only intervals are taken as time elements. However, when we examine the 

general case where elements may also be points, some of these relationships hold and some 

do not hold.

For example, let pe P:

may hold for time elements ̂e T according to the axiomatisation.

However, consider the following case:

<=> Bt,t',t"(=T(p = t' 0 t A tj = t 0 t"),

On the one hand, by axiom <A6>, dwr(p) = Jwr(t') + and the assumption that p is a 

point gives:

dwr(p) = 0 (1)



On the other hand, axiom <A5> ensures that at least one of t' and t is an interval, hence:

') + 0 (2)

(1) and (2) show that can not hold.

It is straightforward to prove in a similar fashion that all the possible relations over intervals 

and points may be classified into the following four groups:

which relate points to other points;

which relate intervals to intervals;

which relate points to intervals;



______________________57

which relate intervals to points.

N.B. According to the above classification, there are totally 30 possible temporal 

relations over time-elements which may be both intervals and points. However, in 

[Vil82,ViK86], Vilain and Kautz have just proposed 26 of these 30 temporal relations. 

There is a critical omission from the primitive relations between points and intervals 

in Vilain's system, for the relation is defined only between intervals and is 

not allowed between points and intervals. This omission leads to some difficulties in 

modelling the "open" and "closed" nature of intervals, and in reasoning correctly about 

continuous change. For example, how to express the motion of a ball thrown into the 

air (see section 3.4)?
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Since the time theory proposed in chapter 4 characterises a very general temporal structure, 

we may interpret the axiomatisation in various temporal models: dense or discrete, linear or 

branching, interval-based, point-based, or interval and point-based, etc.

As an example of dense and linear models of the axiomatisation, consider an "obvious" 

interpretation in which the set of time points, P, is the set of all real numbers; and the set of 

time intervals, I, is the set of periods which are constructions over all possible point-pairs, 

p!,p2eP such that p! < p2, with the following structures:

(p1 ,p2,open,open) reR | ft < r < p2 },

(p,,p2,open,closed) { reR | pj < r < p2 },

(p,,p2,closed,open) { reR | P! < r < p2 ),
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(p1,p2,closed,closed) reR | r < p2 },

where "<" and "<" are the ordinary ordering relations over the set, R, of real numbers.

N.B. Here, we represent the interval structure by means of the extra primitives: left- 

type, 1, and right-type, r, which take values from a set {open, closed}. There 

are thus four types of intervals based on points. For convenience of expression, we 

may identify a point p with (p,p,closect,closed), that is, a special segment whose left 

end-point and right end-point are identical, with "closed" type for both left-type and 

right-type.

The duration assignment function, can be simply defined by:

p2 -

We may define the relation over time elements as following:

(p21,p22,!2,r2))

Pi2 = p2i A ri = °Pen A ^2 = closed 

v pn = p21 A TJ = closed A 12 = open

It is easy to see that this model satisfies axioms <A1> - <A6>. Additionally, the (full) 

linearity axiom, <ALineai>, and the dense axiom, <ADense>, are also satisfied. Hence, the above 

structure forms a dense and linear temporal model of the theory.
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5.2 

A discrete model satisfying axioms <A1> - <A6>, <ALineai>, <AL.Discrete> and <AR.Discrete> can 

be constructed by simply limiting all elements of P to be integers in the model presented in 

the above section, although the internal points of intervals are still reals. It is interesting to 

note that in such a discrete model, although points never meet each other, intervals are not 

necessarily infinitely decomposable. For instance, according to our axiomatisation, interval 

(6,8,open,closed) can be only decomposed into at most four (atomic) time elements:

(6,8,open,closed) =

(6,7,open,open) 

0 (7,7,closed,closed) 

© (7,8,open,open) 

© (8,8,closed,closed)

However, this model will not be valid for Alien and Haves' axiomatisation including <M6> 

(see section 3.4), which implies that if an interval is decomposable then it must be infinitely 

decomposable. (Otherwise, if it is only finitely decomposable, then it must be the sum of a 

finite number of moments which would meet one another, contrary to <M6>.)

N.B. As mentioned in section 3.4, in order to interpret Alien and Haves' axioms in 

discrete models, their axiom <M6> must be excluded. In another word, axiom <M6> 

is inconsistent with discrete times. However, the above example shows that the axiom 

<A5> in our axiomatisation can be satisfied by discrete models.
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5.3 Temporal System as Subsumed Models

In what follows, we shall show that our axiomatisation is powerful enough to subsume many 

representative temporal systems, such as: the point based systems of Bruce, of McDermott, 

Alien's logic of intervals and Gallon's revised theory, and the point and interval based 

theories of Vilain, of Knight and Ma.

5.3.1 Bruce's point-based system

Bruce's is simply a set of time points with a partial order (see section 3.1). In our 

theory, we may define a partial order, "<", over the set of points, P, as:

p2 <=» ^Mflp 1,p2 v

where and are introduced as in section 4.3. Hence, the sub-frame, (P,<), of the 

temporal frame (T, defined by the axiomatisation, forms a temporal system of Bruce.

In a similar way, we may define Bruce's 7 binary relations over (see [Bru72]), 

in terms of the temporal relations over intervals introduced in section 4.3.

N.B. As discussed in the introduction, the temporal theories of Ladkin [Lad86,87,92], 

of Dechter et al. [DMP91], and of Maiocchi [Mai92] are similar to that of Bruce in 

the sense that intervals are defined to be constructed out of points. Hence, in a similar 

way, we may induce the corresponding time model for each of these temporal



frameworks.

5.3.2 

McDermott's theory assumes a ordering relation over a dense collection of 

states (points), which is axiomatised to give rise to a left linear (branching into future) time 

structure (see section 3.3). Consider the temporal frame axiomatised by axioms <A1>-<A6>, 

<AL.iinear>' ^d the stronger dense axiom <AP.Dcnse>. As for Bruce's partial order, we may also 

define the "no later than" relation over time points in terms of relations and In 

this way, we may take McDermott's time structure as a model of the above theory by 

addressing only time points and the "no later than" relation, while the left-linearity axiom 

<AL.linear> axiomatises the characteristic that time branches only in future for McDermott's 

logic.

Since the axiomatisation proposed in this paper may be seen as an extension of Alien and 

Hayes' interval based temporal theory [A1H89], it is straightforward to subsume Alien and 

Hayes' theory by taking the set of time points to be empty, and including the linearity axiom 

<ALinear> in the fundamental axiomatisation. Of course, in this case, axiom <A5> will become 

vacuous.

N.B. Further examination of Alien's interval based temporal logic and Gallon's 

corresponding revisions will be given later in next chapter (6.3.2).



Vilain's system based on both intervals and points is arrived at by expanding Alien's 13 

temporal relations over intervals to 26, which are primitively defined to relate points to points, 

intervals to intervals, intervals to points, and points to intervals (see section 4.3). It is 

interesting to note that Vilain's 26 temporal relations form a subset of the set of 30 relations 

we introduced in section 4.3. The four relations missing from Vilain's system are: 

that relate points to intervals, and that relate intervals to points (see 

N.B. in section 4.3). Hence, if we employ the following more strict axiom instead of <A5>:

then we get Vilain's temporal system. The above axiom ensures that if two time elements 

meet each other, then both of them must be intervals.

In this section, we concentrate on a special finite model of the theory. The choice of 

finiteness of time elements in this model is forced by the practicality of the computer based 

modelling approach. Ordinarily, in computer systems, we have to store information as a 

discrete (finite) set, and so the semantics of any database of time elements will naturally 

assume a well-order at some fundamental level. Hence, the computer-based temporal system 

may be viewed as another model of the theory, in the form of a finite (discrete) set of
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temporal facts.

5.4.1 Definitions of a finite time network

Assume is a temporal frame satisfying axioms <A1> - <A6>, ALinear, <AL.Discrete> and 

<AR.Discrete>. The discreteness property of the temporal frame allows us to form a nonempty 

finite set E c T = I u P, such that:

i) E = (t,, tz, ..., tj;

ii) i = 1, 2, ..., m-1;

iii) => tjG I v ti+1e I.

These theorems precisely characterise a finite series, E, of time elements, which is to 

an of the set of natural numbers with the natural order (see [Lip64]), with an 

relation. Additionally, it is easy to see that the limitation of axioms 

<A4>, <A5> and <A6> onto E well define the CE of E, under the binary operations 

of combining adjacent time elements and corresponding addition of duration. For convenience, 

we call (E, AfE, and (CE, Mc, Z)E), the 

corresponding to (E, ME, £>E), where Mc are the relations, DE, Dc are the 

over E and CE, respectively. It is clear that the limitation of Mc to E is ME, and 

the limitation of Dc to E is £>E.

The set CE includes E and all the intervals and points which can be formed from it by means 

of © and +. However, in an application neither the fundamental set E nor the complete set
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may be known. A database of "facts" about will express knowledge that is incomplete 

in several ways. For example, the database may contain knowledge of duration assignments 

for only some of its elements, and may have incomplete knowledge about the relation. 

In addition, the database will often contain redundancy, as when facts are known about two 

elements without the knowledge that they are actually identical. For example, we may know 

that and = 1, without knowing that a and c are the same element. To allow 

for possible duplicate elements, the basic structure of the database is that of a bag, rather than 

a set.

Accordingly, we use a triad (K, MK , DKO) to denote an where:

i) K = K! Id K2 U...U Kp, where K, c K,+1 c CE, i = 1,..., p-1; and "U" represents 

the (For bag notation adopted here, see [Dil90]);

ii) MK = M| K1 UM|K2 U...UM|Kp;

iii) DKO c Ac = ^|KI W ^1x2 W   W ^|KP'» nere» "c" represents the relation.

Nb. i) expresses our knowledge of what time elements are there;

ii) expresses our knowledge as to how the time elements in K meet each other;

iii) expresses our knowledge of duration over a sub-bag KO of K.



In this section, we introduce a formal graphical representation of the time network 

characterised above. The graph is one in which time elements are represented by directed 

arcs. The relations are represented by the nodes of the graph: if then kt is 

the in-arc to a node, and k2 is the out-arc from the node. All time elements which are known 

to meet k2 will be in-arcs to the node, and all time elements which kj meets will be out-arcs 

from the node. Although this representation is intuitively straightforward, the following formal 

definition of nodes is more involved.

Some difficulty is encountered for nodes with only in or out arcs (since in a finite model, 

there are some time elements in the network that seems to be the "earliest" or the "latest" 

ones, although in the theory, axiom <A2> assumes that time does not start or stop), but this 

can be resolved by extending the equivalence relation defined below to include these, by 

means of the final clause in and 

In order to give a proper definition of the nodes of the graph, at first, we define two kinds 

of equivalence relations over time elements, and in the following meaning:

j k2 <=> 3ke A weete(k2,k)) v kt = k2)

Vkj,k2e K(kj k2 <=> Bke KOneittCk.^) A we£te(k,k2)) v kj = k2)

Intuitively, designs a class of time elements known to meet a common element, and
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designs a class of time elements known to be met by a common element.

According to these two kinds of equivalence relations, we get the equivalence classes of time 

elements:

and

K**>Eq_out,l> **Eq_out,2> 

We can now define nodes as pairs of equivalence classes:

Node(Kx,KY) <=> in_Node(Kx,KY) v mid_Node(Kx,KY) v out_Node(Kx,KY), 

where

in_Node(0,KEq OUM) <=» Vk^ KEq ouM 

mid_Node(KEqJn4,KEq outj) 

out_Node(KEqlnJ,0)

As an example, consider knowledge represented by (K, MK , DKO), where:

= I k23), k24),

k35), m^e/5(k24, k45), k45), 

, k56), me^r5(k35, k57), k56) 

Z)KO=
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According to the equivalence relations, and defined above, we get the 

equivalence classes of the time elements in (K, MK , DKO) as below:

**-EqJn,l 

~ \ 

= \ 

^Eq_in,4 ~ \ 

**Eq_in,5 = 

*^EqJn,6 = \ 

and

\ 

**Eq_out,2 = \ 

\ 

\ 

Hence, we can form seven nodes, n^ n2, ..., and n7, in terms of seven pairs of equivalence

(KEqJn,5,0) and (KEqin>5,0), respectively.



Here, rij is a n2, n3, n4 and n5 are and n6 and n7 are Hence, 

the network may be represented by a graph as in Figure 5.4.2(1).

n4

O 
n1

k12

k45, d(k45)-1

k23 k57, d(k57)-0 

k35, d(k35)=1
n3

Figure 5.4.2(1)

To draw inferences from an incomplete time network (K, MK , £>KO)» we must rety on me 

assumed properties characterised by the definitions given in section 5.4.1. A consistency 

checker is needed which will establish whether a triad (K, MK , £>KO) is consistent with our 

basic assumptions about the time network.

In general, a triad (K, MK , DKO) is consistent if we can add to K and make any necessary 

equality assignments, and add to MK and to £>KO, so that the resulting triad (C, Mc, £>c) is the 

closure for some (E, £>E), under the binary operations of combining adjacent time

elements and corresponding addition of duration. A necessary and sufficient condition for
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consistency may be given in terms of the graphical representation introduced in the above 

section. For convenience, we adopt the notation that k^ represents an arc from node n4 to node 

, and dtj represents the duration of this arc. We let G be the graph of (K, £>KO).

Let Node = { nt , n2,...... , ns } be the nodes in GK. The network (K, MK, DKO) is consistent

if and only if:

(I) There is a solution (x^,, ... , xiqjq) for unknown durations (Xnjl , ... , X iqdq) which 

forms a DK 3 DKO, where xy > 0, such that:

(1.1) for each simple circuit in GK , the directed sum of weights is zero.

(1.2) dMr(kij) + dwr(kjh) > 0, for all i, j, h.

Otherwise, the network is inconsistent.

a) We first show that if (I) holds, then a function f of Node into R exists:

n (e Node) -----> f(n) (e R), such that:

(II. 1) If kjjG K, then:



(IL2) If ky^e K, then:

f(nh) - f(ni) > 0.

Nb. condition (n.2) implies that: k^e I v kjhe I, which is indeed the constraint iii) in 

section 5.4.1, stating that no two points meet each other.

To show this, we assume GK to be connected by means of (the extension to a graph 

with several connected components is straightforward ).

Let yy denote the duration assignment for k^e K, where

yM = dij? if dye^Ko; otherwise, yy = Xy.

Now take a directed spanning tree of GK (i.e. a tree joining all the nodes of GK, formed by 

removing some arcs from GK, where the directed arcs of the spanning tree are as same as 

those appearing in GK). Selecting any node n0 as origin, a unique semi-path is determined by 

the spanning tree between n0 and any other node n (Figure 5.4.3(1)). We may take f(n) as the 

directed sum of the weighted arcs from n0 to n along this path.

With this assignment, condition (II. 1) follows immediately for all arcs on the spanning tree. 

For any arc ky not on the spanning tree, we consider the circuit formed by k^ together with



Models of the theory

arc not on spanning tree

Figure 5.4.3(1)

the spanning tree. Applying condition (I.I), we have:

i.e. (II. 1) again holds.

Additionally, it is clear that condition (1.2) « (II.2).

b) We now show that f(n) may be used to construct (E, AfE, DE). In effect, the function 

assigns a time measure to the nodes. However, care must be taken to deal with points: if a 

number of nodes are assigned the same f(n), then we must be sure that we can construct an 

E without two consecutive points. In the procedure that follows, we show how this may be
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(1) Define equivalent classes N,, N2, ... , Nsl, s among Node so that: 

nt, nj belong to the same class Nr <=> f^) = f(nj);

(2) The nodes within any class N, are of three types:

(i) those that are in-nodes to zero duration arcs in K;

(ii) those that are out-nodes to zero duration arcs in K;

(iii) those that are not in- or out- nodes to zero duration arcs in K.

Condition 1.2 ensures that there are no nodes that are both in-node and out-node to two zero 

duration arcs. The in-node and out-node to a zero duration arc will be in the same equivalence 

class, and the in-node must be ordered before the out-node. Accordingly we subdivide each 

class N, into two subsets: N,1 containing nodes of type (i) and N,2 containing nodes of type 

(ii) and (iii).

(3) The graph of E is now formed over the set of subclasses as nodes. The successor relation 

is defined by the natural ordering of equivalence classes according to f, and by the rule that 

N,2 is the to N,1 . Duration assignment to E is defined by NJ+1)) = f(Nj+1) - 

f(Nj), where Nj+1 is the successor to Nj in GK .

c) Finally we show that (K, AfK, DKO) is in the closure of (E, AfE, DE). We let etare be the arc 

in the closure of E between node N,r and Nms. We make the following equality assignments 

over K:
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With this assignment, k^ is in the closure of E, and

f(Nms) - f(N,r) =

If (E, AfE, £>E) exist, and (K, MK , £>KO) is in the closure of (E, ME, £>E), then condition (I.I) 

holds straightforwardly, while constraint iii) implies condition (1.2).

we may use the example given in above section again to illustrate the procedure of 

establishing the fundamental triad (E, ME, DE):

There are two elementary circuits in GK to consider. Setting the directed sum of weights in 

each of these equal to zero, we get 2 independent constraints:

By inspection, one consistent solution is:

34) = 0, dwr(k23) = 1, 1, dwr(k12) = 0, 0.

(N.B. There may be other consistent solutions, for instance:
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0, dwr(k23) = 1.8, flfwKk^) = 1.8, dwr(k12) = 3, 10.)

Correspondingly, let = {n x , n2, n3, n4, n5, n6, n7 } be the nodes in graph (K, MK , £>KO), 

as shown in Figure 5.4.3(2):

n4

k24, d(k24)=1
k45, d(k45)=1

k56, d(k56)=0 0 
^^^ no

n1Q
k12, d(k12)-0

k23, d(k23)=1

k57, d(k57)' 

k35, d(k35)-1

n7

n3

Figure 5.4.3(2)

the function f of into R may be defined as:

f(nt ) = 0, f(n2) = 0, f(n3) = 1, f(n4) = 1, 

f(n5) = 2, f(n6) = 2, f(n7) = 2.

which satisfies conditions I.I and 1.2.

(1) equivalent classes:

N, = [ nlf n2 1,
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N2 = n3, n4 I, 

N3 = I n5, n^, n7 1;

(2) Nj

N22 =[n4 ], N31 =[n5 ], N32 = [ n6, n7

(3) E = {k 12, k23, k^, k45, k57 },

AfE = k23), k^), ^45), k57)}; 

{dwr(k 12)=0, dwr(k23)=l, ^wrCk^^O, dwr(k45)=l, dwr(k57)=0}.

It is easy to see (E, ME, £>E) satisfies the conditions given in section 5.4.1.

5.4.4 A limited case of the time network

In Alien's interval-based system, no comprehensive mechanism for duration reasoning has 

been proposed. In the case of modelling a finite set of temporal events, we may take Alien's 

system as a limited case of a time network defined above, which satisfies axiom <ALineai>, but 

without any actual duration constraints on time intervals. The differentiating property between 

intervals and points (and also "moments" as termed by Alien and Hayes [A1H89]) is that 

intervals are allowed to be decomposable, but points are not. We denote this limited model 

to be a triad (K, AfK , 0), or simply as a pair (K, MK), where K and MK are defined as in 

section 5.4.1, excluding anything related to duration reasoning.

A consistency checker for a limited time network (K, MK) may be given in terms of its 

graphical representation: let GK be the graph of (K, MK), then (K, AfK ) is consistent if and 

only if:
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(1.1) GKr is acyclic, where GKr is the associated formed from GK by 

merging two nodes connected by a point in GK and removing the corresponding arc.

(1.2) there are no nodes that are both in-node and out-node to two point-arcs in GK .

Otherwise, the network is inconsistent.

Since GKr is not cyclic, by a standard result in graph theory (see Car[79]), we can show that 

the nodes in GK can be numbered with integers so that the natural order of the integers is 

consistent with the relations of over the corresponding time elements. A procedure 

for this numbering for any acyclic graph GKr is:

i) Set variable n = 1

ii) Select any node in the reduced graph GKr without in-arc. Such a node exists since 

GKr is acyclic (See [Car79], or any standard text on graph theory).

iii) Number this node n.

iv) Remove this node and associated arcs from GKr to form graph GKr'. GKr' is also 

acyclic. Set GKr to GKn , increment n by 2 if the deleted node is formed from a pair 

of nodes in G, otherwise, increment n by 
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v) Repeat from ii) until GKr is empty.

vi) Form arcs between consecutive integer nodes. In the case that integer n+1 is 

missed between n and n+2 in the reduced graph GKr, then the consecutive integers n 

and n+1 are associated with the corresponding pair of nodes in GK, the (K, M K)-graph.

Then the arcs between consecutive integer nodes form the set E, and is formed by the 

natural order over these integers. Additionally, any element of K is an ordered union of some 

time elements in E. Finally, the closure (CE, Afc) can be formed under the binary operations 

of combining adjacent time elements. Hence, the network is consistent.

The necessity of the consistency condition is straightforward from axioms <A5> and <ALineai>.

Hence the proof of consistency is a test of the graph for the existence of a cycle.

As an example of the consistency checking, we take a case where a network (K, MK) is 

consistent if an element ta is not known to be a time point, but inconsistent if it is, where

MK = {meett(to,ta), tj}

If t is not known to be a point then the corresponding graph shown in Figure 5.4.4(1) is
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acyclic, and the network is consistent.

tb to

tn

Figure 5.4.4(1)

However, if ^e P, then we have the reduced graph in Figure 5.4.4(2), which is cyclic, and we 

deduce that the network is inconsistent.

to

reduced to
tn

Figure 5.4.4(2)

We can see why this is so intuitively by noticing that in Figure 5.4.4(1):
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This is consistent until we add the fact that ta is non-decomposable. Since equation ta = tb © 

tc states that ta is decomposable, we reach an inconsistency when tae P.

In Alien's system [A1183], consistency checking is performed by formation of the transitive 

closure, according to a transitivity table with 144 entries which describes the composition of 

the thirteen (mutually exclusive) relations [A1183]. If no conflict is found according to the 

exclusivity, then the system is consistent. Alien and Hayes show that the transitivity table is 

a result of their axioms in [A1H89], following the intuitivereasoning by possible cases which 

was used to construct the table originally. Using the consistency checker given above, we can 

provide a formal and intuitive proof of the correctness of Alien's transitivity table.

For example, consider the transitivity:

tb), tc).

Using the necessary and sufficient condition of consistency in terms of acyclicity of 

we can prove that the possible relation between ta and tc is tc), or tc), or 

tc), or tc), or tc), as follows:

tb) A tc)

t') A O A tc = tx © tb





Models of the theory 





Models of the theory

t2





Models of the theory



t1





Models of the theory

































J\Sj,...,Sn)) Sj), Sn)).





















x)} 



x) 



















Sp) 

















e) <& 

e) 





























meetS\ 



meetS\ 







Wl00t ittr\s 





















































111





















-rr





^^



(T,





Fig4.1 Before(p, tb )



Fig4.3 Overlaps(p, tb )




























































































































