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Summary

A large body of data is analysed of the flow of concentrated sewage sludge through straight 
pipes. Mathematical models are obtained of the laminar and turbulent flow of each main 
category of sewage sludge. The sludges are modelled as time-independent, non-Newtonian 
relations between shear stress, rate of shearing strain, and solids concentration. Due to the 
inhomogeneity of sewage sludge, error analysis becomes pivotal to the data analysis, and 
options are examined for reducing the error of each model with one or more user-fitted 
parameters.

Parameter estimation is discussed for viscous, time-independent, non-Newtonian, laminar and 
turbulent flow models. Due to extensive requirements of the data analysis, the parameter 
estimation methods are robust, and generally suitable for any shear flow relation. The 
difficulties of estimating parameters of shear flow models from pipe flow data are addressed.

Numerical algorithms are presented for modelling the flow of time-independent, non- 
Newtonian, viscous fluids through a straight pipe. Laminar, critical and turbulent flow 
algorithms are developed to offer predictions such as pressure gradient, mean cross-sectional 
velocity, and the velocity distribution. To handle the requirements of the data analysis, the 
algorithms impose few restrictions on the type of shear flow relation, the flow velocity, and 
the pipe diameter. Suitable pipe flow equations are chosen, and are manipulated 
mathematically into forms that would yield robust and efficient schemes. The appropriate 
use of numerical methods for the algorithms is investigated.

Mathematical models of sludge are for use by the sewage industry to give an idea of the flow 
behaviour of sludges for any relevant application. The parameter estimation techniques and 
pipe flow algorithms are not constrained to any particular pipe, fluid or flow conditions, so 
they would be useful for any relevant application.



Acknowledgements

I would like to thank my academic supervisors Dr. D. Edwards and Prof. K. Pericleous for 
their considerable help and guidance throughout the research. Gratitude also extends to my 
industrial supervisor Dr. J. Dudley for his support with the industrial requirements of the 
research.

I would like to thank my original academic supervisors Dr. C. Richards and Dr. S. Salvini 
for launching the project; my original industrial supervisor Dr. G. Hoyland has also been of 
great help. Appreciation extends to the Science and Engineering Research Council and the 
Water Research Centre for financially supporting the project.



Contents

1 Introduction 1
1.1 Sewage Sludge 1
1.2 Background 5
1.3 Objectives and Assumptions 9
1.4 Presentation of Thesis 10

2 Rheological Considerations 11
2.1 General Classification 11
2.2 Reynolds Stress 16
2.3 Solids Concentration Relations 17

3 The Data 19
3.1 Data Sample 19
3.2 Sludge Categories 20
3.3 Data Entry 21
3.4 Time Dependency 22
3.5 Evidence of Wall Slippage 25
3.6 Solids Concentration 26

4 Pipe Flow Equations 28
4.1 Governing Equations 28

4.1.1 Dimensionless Forms 29
4.2 Laminar Flow Equations 30

4.2.1 Velocity Distribution 33
4.3 Critical Flow Equations 36
4.4 Turbulent Flow Equations 39

4.4.1 Pipe Roughness 45
4.4.2 Solids Concentration Relations 46

4.5 Wall Slippage Equations 46

5 Pipe Flow Modelling 48
5.1 Laminar Flow Modelling 48

5.1.1 Mean Cross-Sectional Velocity 49
5.1.2 Pressure Gradient 53
5.1.3 Velocity Distribution 58

5.1.4 Scope of Use 63



VI

5.2 Critical Flow Modelling
5.2.1 Critical Rate of Shear
5.2.2 Critical Mean Cross-Sectional Velocity
5.2.3 Scope of Use

5.3 Turbulent Flow Modelling
5.3.1 Mean Cross-Sectional Velocity
5.3.2 Pressure Gradient
5.3.3 Velocity Distribution
5.3.4 Scope of Use

5.4 Wall Slippage Modelling
5.5 Conclusions

64

65
71
71
72

74

77

79

81

82

83

6 Parameter Estimation
6.1 Laminar Flow Case

6.1.1 General Bingham Case
6.1.2 Log General Bingham Case

6.2 Turbulent Flow Case
6.3 General Case
6.4 Confidence Intervals
6.5 Conclusions

84
84
89
90
91
92
93
94

7 Data Analysis
7.1 Laminar Flow Analysis
7.2 Critical Flow Assessment
7.3 Turbulent Flow Analysis
7.4 Friction Plots
7.5 Conclusions

95
95

110
115
122

136

8 Effect of Solids Concentration
8.1 Laminar Flow

8.1.1 Effect of Sludge Type
8.1.2 Effect of Volume Fraction of Solids
8.1.3 Generalised Model
8.1.4 Error Analysis

8.2 Turbulent Flow
8.2.1 Effect of Volume Fraction of Solids
8.2.2 Generalised Model
8.2.3 Error Analysis

137
137
138
138
145
149
151
152
154
156



Vll

9 Conclusions 157
9.1 The Algorithms 157

9.1.1 Scope of Use 157
9.1.2 Efficiency 158

9.2 Data Analysis 158
9.2.1 Laminar Flow Analysis 159
9.2.2 Critical Flow Assessment 160
9.2.3 Turbulent Flow Analysis 161

9.3 Epilogue 162

10 References 163

11 Nomenclature 169

Appendix A The Methods 174
A.I Integration Methods Adaptive 174
A.2 Levenberg-Marquardt's Method 175 
A. 3 Minimisation using Quadratic Interpolation 176
A.4 Muller's Method 176 
A.5 Newton's Method for Two-Variable Functions 177
A.6 Runge-Kutta Fehlberg's Method 177

Appendix B The Software 179
B.I Introduction 179
B.2 Pipe Flow Routines 180
B.3 Data Reduction Routines 186
B.4 Volume Fraction Routines 192
B.5 General Method Routines 194



1 Introduction

1.1 Sewage Sludge

Sewage originates from domestic waste, industrial waste and storm water (see Figure 1-1). 
Domestic waste is produced by every household where each person per day typically discards 
several hundred litres of dirty water, several hundred grams of human effluent, and some 
fibrous material. Human effluent, which has an insignificant regional variation, typically 
accounts for about half of the solids content of a sludge; the rest is mostly accounted for by 
industrial waste, which varies considerably with region and time. Examples of industrial 
waste include coal dust, wood or paper fibre, clay, grease and oil. Storm water, which 
varies greatly with both time and season, may or may not have its own disposal system. A 
trait of storm water is the considerable amount of dirt, grit and pebbles that it washes into 
the system. Finally, climate and climatic history affect the biochemical makeup and flow 
rate of sewage flowing through a sewer.
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Figure 1-1 Sewage treatment



Sewage enters a sewage plant (or sewerage) as a very dilute mixture of human, industrial and 

natural waste. A preliminary treatment involves removing most of the water content to yield 

a much thicker, more concentrated sludge. There is an important distinction between raw 

sewage that flows through the sewers, and the concentrated sewage that is handled and 

treated at a sewage plant. Raw sewage is essentially dirty water that flows through a sewer 

with considerable volumetric throughput, though not usually at full capacity; this is a major 

industry that has received extensive research(1) . Concentrated sewage, on the other hand, 

is the largely dewatered product of raw sewage, and is transported within the plant through 

pipelines running at full capacity with a considerable reduction in volumetric throughput. 

Since concentrated sewage is a far less major part of the industry than raw sewage, 

considerably less research has gone into it. This research focuses only on concentrated 

sewage sludge so only the full pipe situation applies.

Once raw sewage reaches a plant, treatment can vary considerably from one region to 

another. There are, of course, common principles such as the dewatering and disposal of 

the effluent, but there is much variation in the way these things are achieved. One factor is 

the expense and availability of land. Where land is expensive such as London much of 

the treatment is done underground; where land is cheap normally in rural country  

treatment can be carried out in large pools. Any further reference to sewage in this report 

will mean the concentrated sewage that is handled and transported at a sewerage.

of sewage sludge involves the removal of large objects, grit, and 

fibrous materials using bar screens and grit settling tanks. This safeguards against pump 

damage and pipe blockage, thus prolonging the operating life of the equipment. The 

remaining process involves removing the solids from the water, and includes handling sewage 

sludges of about five percent solids by mass. Broadly speaking, these sludges fall into three 

categories:

(i) Primary sludge,
(ii) Activated sludge,
(iii) Digested sludge.

is created from the first stage of sedimentation and is comprised of organic 

matter of a large distribution of particle sizes. which contains much living 

and dead bacteria, comes from the second stage of treatment, and has a small distribution of 

particle sizes. having a small particle size distribution is a sludge 

that has been stabilised by bacteria metabolising the organic material under aerobic or 

anaerobic conditions. This classification of concentrated sludges is a broad generalisation 

as plant design and treatment procedure can vary so much from one region to another. All 

three of these categories are relevant to this research.



Sewage sludge consists of solid particles suspended in a liquid medium which is mostly 

water. Babbitt and Caldwell(2) identified many factors that affect the flow of sludge, such 

as solids concentration, particle size distribution, nature of liquid medium, temperature, 

degree of agitation and gas content. The one factor that considerably affects sludge flow is 

the concentration of solids present(3> 4) which can vary between about three to fifteen percent 

by mass. The particles have a size distribution that reduces with each stage of treatment. 

Primary sludge contains particles up to a centimetre in diameter, and for activated and 

digested sludges, the particles having been reduced to less than a millimetre (the difference 

between a relish and a ketchup provides a suitable analogy).

Sewage plants operate using positive displacement pumps where a sludge throughput is 

specified; smaller plants might run on peristaltic pumps like those used in kidney machines, 

and larger plants might run on piston pumps. These positive displacement pumps cause 

pulsating flow that is necessarily damped to reduce equipment wear. Due to the amount of 

grit and fibrous material in the system, impeller-style pumps are never installed. Sewage can 

be pumped at distances of anything from a metre or less to a kilometre or more in a pipe that 

can vary from one to several centimetres in diameter. The shorter distances might occur 

within a plant building and the longer distances occur between buildings sometimes separated 

by some distance even roads. Pipelines are kept straight wherever possible, though pipe 

bends and other fittings are certainly used. Choosing the size of pump to fit an application 

can be a tortuous task. There have been occasions when a particular pump size was 

estimated to be easily powerful enough to transport a particular sludge, yet when installed, 

was not even able to overcome the yield resistance of the fluid. In such cases, the expense 

of dismantling the pump and installing a different one has been incurred; on occasion, even 

a second attempt has failed. On the other hand, if an oversized pump had been fitted, then 

unnecessary expense would have been wasted on outlay and running costs.

The reason for the difficulties of modelling sewage sludge lie in the extreme complexity of 

its flow behaviour and the extreme variation of its constituents. There is an informal edict 

in the industry that every sample of sewage examined is different, even from the same batch. 

Some sludges with a low moisture content can be quite liquid while others with an even 

higher content may essentially act as a solid mass(5). If a sludge is left undisturbed for 

several days it often has an initial resistance to flow, and gauging this resistance becomes an 

important criterion when installing a pump. Once this initial resistance is overcome, the 

sludge will flow more readily (much like the behaviour of a ketchup) until at high shear, the 

viscosity of water is approached. Sewage will recover this initial viscosity in a time- 

dependent process that varies from being almost instantaneous to several days. From the 

discussion given so far, it is clear that the flow behaviour of concentrated sewage sludge is 

extremely complex.



A fluid with a constant viscosity over the applicable range is known as a fluid. 
But a fluid (such as concentrated sewage sludge) whose laminar flow viscosity is related to 
shear or time is known as a fluid. Like a Newtonian fluid, a non-Newtonian 
fluid can exhibit (or streamline) flow at low shear, and (or chaotic) flow 
at higher shear. There is a transitional region for which the flow is neither laminar nor fully- 
developed turbulent. The concept of flow is useful where the fluid flows at the upper 
bound of laminar flow. The ideal rate at which to pump sewage is often at its critical rate 
since its apparent laminar flow viscosity is at its minimum, and since energy loss due to 
turbulent flow is non-existent. However, it is unlikely that the critical conditions of the 
sewage would just happen to occur within the operating limits of the pump.

Sewage sludge is usually characterised by the two parameter Bingham model or the three 
parameter general Bingham model(6) . Both of these models have one parameter to describe 
an initial resistance to shear, and the latter model has a further parameter to describe the 
decrease (or increase) of viscosity under increasing shear. In 1939, Babbitt and Caldwell*2) 
showed that sewage sludge could be described by the Bingham model, and other 
researchers(3$ 4) have since followed suit. In 1970, Cheng(7) reported that the Warren Spring 
Laboratories had been using the general Bingham model to characterise sludge, and Frost(8) 
followed suit. For a general Bingham fluid, Hey wood(9) offers an extensive summary of 
pipeline design procedures.

There are many practical problems with measuring the viscometric properties of a 
concentrated sewage sludge. Due to the lumpiness and handling difficulties of sludge 
(particularly primary), conventional viscometers such as capillary, concentric cylinder, or 
cone-and-plate are impractical to use. Therefore tubes and pipes are often used where the 
diameter is appreciably bigger than the particle sizes of the sludge. (Note that there is no 
formal distinction between capillaries, tubes and pipes, so the terms are used here to give an 
idea of their scale.)

Many engineering tasks in a sewage plant require on-the-job predictions such as those used 
for pump installation. Design procedures are often conducted with a limited amount of 
information. The sludge type is always known and the mass solids concentration is easy to 
obtain, but the viscometric properties of a sludge are often guesswork. Sometimes a simple 
on-site test is possible such as pumping the sludge through an installed pipeline at a given 
flow rate to obtain one or perhaps two measurements but any detailed analysis is usually 
impractical.

One of the reasons for the failure of a design procedure such as pump installation results 
from rough predictions without knowledge of their accuracy. For an on-site design 
procedure, any guide for making a prediction could be valuable however rough that guide



may be. For instance, if only the sludge type and the solids concentration are known about 
a sludge, then a very rough prediction with a large associated error could be invaluable. 
With each successive piece of information such as a pressure drop reading at a given flow 
rate it should possible to reduce the error of a prediction. Rheological modelling of sewage 
sludge with its corresponding error analysis shall be a topic of this research.

1.2 Background

This research has been conducted in collaboration with the Water Research Centre (WRC) 
at Swindon, UK. The formal objectives arose from informal discussions with a senior 
engineer at WRC. Before these formal objectives are presented, some of the informal 
background will be discussed to clarify their purpose. The literature reveals a surprising lack 
of basic Theological data on sewage sludge, and in England alone has been largely restricted 
to investigations by Johnson a/(10), Binnie and partners(11), and to some extent Hayes 

The data of Johnson involves the laminar, transitional and turbulent flow of sewage 
sludge through straight pipes. Frost analysed some of the data, and as a result, produced a 
widely used report(8) on the flow of sewage sludge through straight pipes. The report is 
based on an engineering approach for pipeline predictions using graphical methods and 
tables. Some of the data used in this research are the same as those used by Frost.

In the longer term, WRC were interested in modelling the flow of sewage sludge in 
geometries more complex than straight pipes, such as pipe bends, pipe fittings, and sewage 
stirring tanks. Such modelling requires two- or three-dimensional flow fields with laminar 
or turbulent flow regimes (or often a mixture of the two). At that time, there was (and still 
is) a growing interest and accessibility of computational fluid dynamics (CFD) codes such 
as Phoenics(13) (based on the Simplest algorithm of Patankar and Spalding(14' 15) ). Simplest 
numerically solves the Navier-Stokes equations(16) over a domain that has been divided up 
into control volumes (a la finite volumes from which the Navier-Stokes equations are 
derived). All variables are treated on a local basis where scalar quantities (such as density 
and viscosity) reside within the control volume, and the velocity vectors reside on the 
boundaries of the control volume. The Phoenics code allows for the Theological model and 
any of the property variables of the fluid to be defined on a volume-by-volume basis within 
program subroutines of the code. The time-independent, viscous flow of sewage sludge in 
complex geometries using CFD codes requires Theological models of sewage sludge, and this 
is one of the main objectives of this research. WRC have since commissioned the sewage 
stirring tank to be modelled(17) using the Phoenics code. Further examples of CFD used for 
industrial and environmental modelling of non-Newtonian fluid flows are given by Pericleous 
and Patel(18). The latest advances in finite element and finite volume methods of non- 
Newtonian flows has been the subject of a recent workshop(19).



Shear flow relations were required for modelling the laminar and turbulent flow of sewage 

sludge for many suitable geometrical configurations. The widely used Metzner-Reed(20) 

friction plot would have been inappropriate in this case as it is only relevant for pipe flow 

geometries. Similarly, the Dodge-Metzner relation(21) between friction factor and Reynolds 

number for turbulent flow would have been equally restrictive. Nevertheless, it was noted 

that since the data were of pipe flow, friction plots could be created and compared with 

frictional versions of the Theological models. Furthermore, it was stressed that generality 

took priority over accuracy, so a few all-encompassing, powerful models with realistic (albeit 

large) standard errors were required. It was then decided that each model would have an 

associated standard error which would decrease as more information about the sludge became 

available. Such models are not only useful for larger modelling applications, but also on-the- 

job calculations discussed in the previous section.

It was decided that the flow behaviour of sewage sludge could be modelled using the 

extensive tube and pipe flow data. However, it was clear that before any serious analysis 

could proceed, the laminar, transitional and turbulent flow of a non-Newtonian fluid through 

straight tubes and pipes had to be modelled. This objective was to be considered a by- 

product of the data analysis, though one to be taken seriously so that it could, for instance, 

be easily extended to include fixtures and fittings. Furthermore, the data discussed at the 

beginning of this section are all based on pipes with smooth walls, so pipe roughness was to 

be of cursory interest.

It was decided that the modelling should focus on the relationship between pressure per unit 

length of pipe and mean cross-sectional velocity of the fluid, as this was essentially how the 

WRC data were measured. (Sewage is transported using peristaltic pumps, which means that 

pressure gradient is the unknown quantity. However mean cross-sectional velocity 

predictions are often needed too.) With this simple model, a prediction can be made for any 

angle of pipe by introducing a simple extra term to account for the effect of gravity(22). 

Furthermore, it is assumed that the flow is axially symmetric an assumption that is 

particularly questionable with horizontal flow. This is unfortunate as horizontal flow is far 

more common than vertical flow in the slurry industry as a whole. Vertical flows occur in 

well drilling (particularly for oil) where the gravitational effect often dominates the pressure 

gradient, especially when the solids density is significantly different from that of the liquid 

medium(23).

Even though the body of data is large, it is restricted in many respects. Modelling 

assumptions had to be made particularly about the nature of the fluid and the way it flowed 

through the pipes. The assumptions were that sewage sludge is pseudo-homogeneous (ie 

smooth a crude assumption, particularly for primary sludge) and time-independent ie its 

apparent viscosity does not change with time. The question arose as to whether any serious



models could be formulated from such crude assumptions. However, it was made clear that, 

for process design purposes, conservative estimates of a sludge were required; for instance, 

the predictions had to be of a sludge at its least agitated where its apparent viscosity would 

be at its greatest.

In question of the pseudohomogeneous assumption, it is known that the average concentration 

of solids decrease close to the pipe wall, partly because of the finite sizes of the particles and 

partly because the solid particles tend to migrate radially inwards when the fluid flows. 

These effects are often misleadingly termed as 'wall slippage' as they can be realistically 

modelled as a discontinuity of the rate of shear at the pipe wall. During a WRC meeting, 

it was pointed out that the data were inadequate to model wall slippage, but a no-slip 

assumption would anyhow be less significant than the time-independent assumption. 

However, if significant wall slippage was to be ignored, then tubes with narrower diameters 

would show a reduced apparent viscosity of the sludge, and low predictions of the pressure 

gradient would generally result.

For straight pipe flow modelling to commence, it became clear that models of the viscous 

flow of time-independent pseudohomogeneous suspensions were required. For the laminar 

flow model, a relation between shear stress and rate of shearing strain, either of the explicit 

form or of the implicit form r) = 0 was considered appropriate(24). There is 

a choice between many such relations ranging from well-established empirical models to 

more recent models with a theoretical basis to them. There has never been a clear-cut choice 

between them, and even if there ever was, something better could always come along.

To resolve the problem of the bewildering choice of Theological models, a novel suggestion 

was put forward: to allow the end-user of the algorithm to define the shear flow relation, 

such as through a program subroutine. Some shear flow relations have already been resolved 

for pipe flow geometry (see, for instance, Chapter 5 of Grovier and Aziz (24)), and these 

formulae can usually be evaluated directly or using a simple iterative procedure. With a 

user-definable relation, it became clear that more elaborate numerical methods would be 

required, though not nearly as complex as those normally used for computational fluid 

dynamics.

Nothing concrete was decided about the critical and turbulent flow models to use. These 

models are often based on the laminar shear flow relation (to be defined by the end-user), 

so a similar approach with the numerical methods was deemed necessary. It was suggested 

that well-established models based on the fewest possible assumptions should be considered. 

For turbulent flow, Prandtl-style shear flow models(25) were noted as being of particular 

interest since they contained a quadratic shear rate term (ie where is the 

laminar shear stress), and could be treated like an extended version of a laminar flow model.
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An obvious contender was the non-Newtonian turbulent flow model proposed by Hanks(26) 

as it was based on few underlying assumptions. In fact, turbulent flow models such as this 
are often much purer in form than friction factor relations, such as the well known non- 
Newtonian turbulence model proposed by Torrance(27). This is based on the same mixing 
length model as Hanks but makes several simplifying assumptions when integrating the 
velocity profile.

Current literature tends to suggest that numerical procedures are used for complex pipe flow 
situations rather than the relatively simple ones of this research. For instance, lagrangian 
numerical simulation(28) has been used to model the conveying of dry solids through a pipe 
where the flow is necessarily pulsating. Transient flow of liquid through a pipe has been 
modelled using the method of characteristics(29) where the continuity and momentum partial 
differential equations reduce to ordinary differential equations along characteristic lines. 
Direct numerical simulation(30' 31) has been used to examine fully-developed turbulent flow 
of a fluid through a pipe using finite volume techniques.

In terms of unsettled solids, there is much in the literature about hindered settling; an 
excellent review of the subject is given by Khan and Richardson(32). In comparison, there 
is little about hindered settling in a non-Newtonian medium, but recent work includes that 
of Chhabra In turbulent flow, the solids do not always settle because they are held 
in suspension by eddy diffusivity (34). This effect has recently been modelled using lagrangian 
statistics(35) to describe the concentration profile of the suspension. There is precious little 
in the literature about the effects of solid suspensions on the rheology of a fluid, and these 
effects are of fundamental importance to this work. A brief summary of slurry pipe flow for 
both coarse and fine particles was recently offered by Bouzaiene and Hassani(36). Einstein(37) 
derived a theoretical relation between solids concentration and Newtonian viscosity of a non- 
interacting particle suspension. Thomas treated the interaction of particles(38) and the 
extension to non-Newtonian fluids (39) in an empirical way. A plot of particular Theological 
parameters against solids concentration can be useful. For several different sewage sludge 
types, such plots are offered by Dick and Ewing(40), Mulbarger 0/(3) and Carthew 0/ (4) . 
Frost(8) presented his relations in tabular form.

For this research, it was clear that the Theological models would need to be a function of 
solids concentration $, so that the laminar flow relation would take a form such as 
r = g(<y; $), and the turbulent flow relation would take a form such as p/2($)72. 
These relations, to be derived from the pipe flow data, were to be ultimately used to model 
more complicated flow fields of sewage sludge. These fields are of no explicit interest to 
this work, needless to say that any of the pipe flow assumptions would need to hold on a 
local basis of these more complex geometries (for instance, they would have to hold within 
a control volume). These assumptions would require the flow to be steady, viscous, and



pseudohomogeneous on a local basis. The assumption that body forces (such as gravity) have 
a negligible effect on the pseudohomogeneity of the fluid would have to be adhered to. 
Furthermore, the rate of shear for any part of a geometry would have to lie within the range 
determined from the pipe flow data, and separate ranges would apply to the laminar and 
turbulent flow regimes.

1.3 Objectives and Assumptions

The background to the formal objectives was discussed in the previous subsection. The three 
main objectives are now given as follows:

(a) To design and implement numerical algorithms for modelling the flow of a non- 
Newtonian fluid through a straight pipe. The assumptions are:

  The pipe is straight, smooth and running at full capacity.
  The fluid is viscous, pseudohomogeneous and time-independent.
  The flow fields may be laminar, transitional or turbulent.
  There may be slippage of fluid at the pipe wall.

The algorithms must depend on a relation between shear stress and rate of shearing strain to 
characterise the fluid, but must not be limited to an actual choice of function. Therefore, the 
shear flow function may either be of the explicit form #(7), or of the implicit form 
G(7, r) = 0, and would be specified by the end-user. The algorithms are to solve for any 
pipe diameter and appropriate choice of shear flow function, offering predictions such as 
mean cross-sectional velocity, pressure gradient and radial velocity distribution (as a set of 
points). The algorithms must also extend to critical flow predictions such as the critical 
velocity and critical pressure gradient. The limitations of each algorithm must be specified.

The algorithms will not allow for time-dependent, inhomogeneous fluids (although wall 
slippage is strictly an inhomogeneous effect), and pipe roughness (usually affecting turbulent 
flow).

(b) To analyse a large body of concentrated sewage sludge data from several different 
regions in the south of England. The data are of the flow at full capacity of primary, 
activated and digested sludges through straight, smooth pipes (sometimes of varying 
diameter), where the flow regimes include laminar, transitional and turbulent. Analysis is 
required to:

  use the algorithms and assumptions of part (a) to analyse the data;
  identify and implement the necessary statistical tools to perform the data analysis;
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  statistically determine the most suitable models (such as Theological models) of the 

data, and examine their suitability and limitations both analytically and graphically;

  compare the results with those of other researchers in the field, exploiting in 

particular the widely used friction plots for straight pipe flow.

(c) To derive generalised Theological models that account for factors such as sludge type 

and solids concentration. The laminar flow model is to take a form such as T = #(7; $) 

where $ is solids concentration, and a turbulent flow relation is to take a form such as 

/2( >)72. The objectives of this task are to

  use graphical and statistical methods to derive each generalised model;

  estimate the standard error on each of the models derived;

  identify user-fitting parameters that would reduce the standard error of the 

generalised models;
  define the applicable range of each model.

1.4 Presentation of Thesis

The body of the thesis is conceptually divided into three main parts: review, mathematical 

modelling and data analysis. The review is covered by the first four chapters, placing the 

problem in context with other work, introducing the data to be analysed, and discussing some 

pipe flow models. The development of the numerical algorithms is discussed in Chapters 5 

and 6, and is original work. Relevant mathematical equations are rearranged and numerical 

methods are tested for their suitability. These algorithms are not presented in a computer- 

oriented way, so any software discussion or computer terminology will be dealt with in the 

appendices. The analysis of data is presented in Chapters and 8, and is also original work; 

this is the statistical part of the thesis that ties in with the work of the preceding Chapters. 

Chapter 9 concludes the thesis.
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2 Rheological Considerations

2.1 General Classification

Rheology is the study of the deformation of fluids, where a fluid may be viewed as a 

substance that exhibits continuous deformation for some range of shearing stresses. Fluid 

deformation is best perceived by its behaviour between two parallel plates separated by a 

distance (see Figure 2-1). The lower plate is stationary, and the upper plate moves at a 

uniform speed AM through the action of a force Under steady conditions where the flow 

is laminar (or streamline), the force per unit area of the plate is related to the velocity 

gradient by
/Aw\ /o i\*rr-)' (2<1) 
v Ay'

where is some function. For the expression to be valid for any geometry, the velocity 

gradient is defined on a local basis. is defined to be the force per unit area,

<2- 2)

and the velocity gradient is the 

dw _ d 
dy " df

dx (2.3)

Figure 2-1 The deformation of 
a fluid between parallel plates 
separated by distance Ay. The 
top plate area moves at speed 
Aw under an applied force 

Since shear strain is often denoted by 7, and the rate of shearing strain by 7, this equation 

can be equivalently expressed as
(2.4)d

For a time-independent, non-Newtonian, viscous fluid, Equation (2.1) is therefore generalised 

as
<2- 5>

and shall be referred to as the laminar Sometimes, this function is 

modelled as a two-variable function of the form

G(7, = 0. (2- 6>
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For a fluid, shear stress is a linear relation of rate of shearing strain (or shear 
rate),

T =

where the constant of proportionality is known as the of the fluid. This model  
which was first proposed by Newton   is shown in Figure 2-2. Whereas this relation is 
defined by the single parameter ju, a time-independent non-Newtonian viscous fluid requires 
at least two parameters.

It is possible to sub-divide time-independent non-Newtonian viscous fluids into those that 
exhibit a yield resistance to shearing, and those that do not. For the former category, a yield 
stress is to be overcome if the fluid is to flow. The fluid has the simplest 
relationship of this category; it is a linear relation between shear stress and rate of shear 
defined as

T = Ty + ^7, (2.8)

where is the and 17 is the known as the For a zero yield 
stress, it is clear that the Bingham plastic model becomes Newtonian and becomes the 
Newtonian viscosity.

A fluid that has no yield stress, but whose gradient of the shear flow function decreases with 
increasing shear rate until a limiting slope is reached, is known as fluid. The 

model is widely used to describe the flow behaviour of these fluids, and has the 
relation

1, <2- 9)

where and are known as the and respectively. 
The popularity of this model has been sustained by the convenience with which and can 
be estimated from a log-log plot of shear flow data. In practice, the power law model fits 
soundly to the curved part of a pseudoplastic relationship, and although it does not model the 
limiting viscosity (the limiting viscosity of a sludge is roughly that of the liquid medium), 
these conditions are not often attained in reality. For 1, the power law model becomes 
Newtonian where corresponds to the Newtonian viscosity. The departure of from unity 
is therefore an indication of the departure of the fluid from being Newtonian. The power law 
model is widely renowned for describing pseudoplastic fluids with remarkable accuracy. 
However, the model is empirical, and as such fails to model pseudoplastics under very low 
or very high shear. The viscosity can be defined as the gradient of the shear flow function. 
For low shear or high shear, the viscosity of a pseudoplastic is constant and can therefore 
be regarded as Newtonian. At low shear, this viscosity is generally very high though finite, 
but the power law models this as infinite. For suspensions under high shear, the viscosity 
roughly tends to that of the liquid medium, and for sewage this is mostly water. It is
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intuitively clear that the viscosity of a suspension could never be less than that of the liquid 

medium, but the power law model describes a vanishingly small viscosity. Nevertheless, the 

accuracy of the model is guaranteed for all but the most extreme of applications.

A fluid that has no yield stress, but whose gradient of the shear flow function increases with 

increasing shear rate, is known as fluid. A dilatant fluid can be represented with a 

power law model where 1. These fluids are rarely encountered in practice.

A fluid has both a yield stress and a decreasing gradient of the shear flow 

function for increasing shear rate; it is a hybrid of the Bingham and pseudoplastic fluids. 

This is often represented by the model (6) , which is given as

T =

The general Bingham model is, in fact, much less frequently used than both the power law 

and Bingham models since two parameters are often enough to model a fluid. Nevertheless, 

some complex mixtures require a three parameter model. The general Bingham model 

describes yield pseudoplastic fluids with good accuracy, but fails for very high shear. 

Defining the viscosity as the gradient of the shear flow function, the viscosity of a yield 

pseudoplastic is constant for high shear, and can therefore be regarded as Newtonian. But 

much like the power law model, the general Bingham model erroneously describes a 

vanishingly small viscosity under high shear.

Figure 2-2 portrays the shear flow curves for time-independent, non-Newtonian, viscous 

fluids. Regarding these Theological models, whereas viscosity /*, coefficient of rigidity 17, 

and yield stress can be regarded as properties of their respective fluids, consistency 

coefficient and consistency index are truly empirical parameters. There are some shear 

flow models of pseudoplastic fluids that have a theoretical basis to them that can be regarded 

as One such model is the Eyring-Prandtl equation (41' 42) based on the kinetic

Yield pseudoplastic

Bingham
Dilatant
Pseudoplastic
Newtonian

wa" 

*M

rate of shearing strain, 7 

Figure 2-2 Shear flow diagrams of some time-independent non-Newtonian fluids.
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theory of liquids, which is given as

r = sinlT 1 (2.11)

where and are coefficients characteristic of the fluid. Another well-known model 
founded on theory is the Carreau model (43) given by

This equation has a viscosity /* 0 for low shear rates, which is a measured quantity rather than 
a fitted quantity. X is a characteristic time and is a measure of the rate of change of 
viscosity with shear rate in the shear thinning region. It is interesting to note that Equations 
(2.11) and (2. 12) are completely different in form  Equation (2. 1 1) is an inverse hyperbolic 
sine model and Equation (2.12) is a power law model  yet both equations are based on 
theory to model pseudoplastic fluids. Both equations were derived from the macroscopic 
considerations of molecules, but each using different underlying assumptions.

The Meter model (44) is an example of an implicit shear flow function for modelling 
pseudoplastics. It is a versatile four-parameter equation given by

oo

rm

Unlike the power law model, it describes constant viscosities for both very low and very high 
shear and ̂  respectively. These are measured quantities rather than fitted quantities. 

is the shear stress for which the viscosity is (/x0 + /*«).

So far, only time-independent fluids have been discussed where the fluid response is rapid 
enough to be considered as instantaneous. However, a fluid that exhibits changes in its 
rheology over time is a time-dependent fluid. For a fluid, the 'viscosity' 
decreases under shear stress followed by a gradual recovery when the stress is removed. 
None-the-less, the time-dependency of a fluid is a matter of subjectivity as a pseudoplastic 
fluid could be considered as thixotropic with a very rapid recovery time. Taking the other 
extreme, recovery may be slow enough to consider the changes in the fluid as irreversible. 
For a fluid, the 'viscosity' increases under shear stress followed by a gradual 

decline when the stress is removed. These fluids are relatively rare. Figure 2-3 offers a 
general classification of the fluids discussed so far.

A crude explanation of the flow behaviour of pseudohomogeneous fluids is obtained by 
considering the interaction of the solid particles in suspension(45). The solid particles form 
a three-dimensional, solid elastic network (see Figure 2-4) that can withstand shearing
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Newtonian
Non- 

Newtonian

Time- 

independent

Bingham 
plastic

Time- 

dependent

Pseudoplastic
Yield 

pseudoplastic
Dilatant Thixotropic Rheopectic

Figure 2-3 Classification of pseudohomogeneous viscous fluids

stresses below the yield stress. Once the yield resistance to shearing is overcome, the 
particle network breaks up into particle agglomerates, which continue to break up at higher 
shear rates. The solid particles reassemble into a network, which can happen very rapidly 
(milliseconds) for a 'time-independent' fluid, or very slowly (days) in the case of a 
thixotropic fluid.

Figure 2-4 The breakdown of 
a complex fluid under shear. 
The solid particles form a 
structure within the liquid 
medium that decays under 
shear stress.

Although viscosity is strictly the concept of a Newtonian fluid, there have been many 
definitions of a generalised viscosity for non-Newtonian fluids. An intuitive definition of 
viscosity is the gradient of the shear function given as

dr (2.14)

Since this is difficult to work with mathematically, an apparent viscosity is a widely used 
alternative,

M, =  £  (2-15)
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The viscosity of a pseudoplastic fluid is constant for very low and very high shear, sc 
Equations (2.14) and (2.15) are identical at these limits. It is much easier to picture a 
viscometric relationship than a shear flow relationship, but viscosity has no meaning for a 
Bingham plastic where the fluid is solid below a certain yield stress. For these fluids, shear 
stress is related to the of shearing strain for the fluid regions, and to shear strain for the 
solid regions. The former can be modelled by Equation (2.5), and the latter can be modelled 
by a function of the form

T =

where 7 without the dot is strain rather than strain rate. Although the concept of viscosity 
is difficult to apply to Bingham fluids, this is not the case with pseudoplastic fluids. For 
instance, the Carreau equation (2.12) is often expressed as the apparent viscosity

- 1

2.2 Reynolds Stress

For steady turbulent flow, the instantaneous velocity at a point is not constant as for laminar 
flow, but fluctuates randomly about a mean value. For ̂ -directional flow, but conveniently 
considering the fluctuations in two-dimensions, the instantaneous velocities in the and 

r

directions are respectively given by

" = (2.17)

V = V7 ,

where is the mean velocity, and and are the fluctuating components. Placing 
Equations (2.17) into the time-averaged momentum equation yields the turbulent stress term

known as the 

theory(25) is one of the simplest for estimating the Reynolds stress. 
The theory is based on the assumption that a fluid element, displaced in the transverse 
direction due to turbulent motion, transfers its Jt-momentum to the new location. The 
transverse displacement is known as the mixing length. Prandtl assumed that the standard 
deviations of the and ̂ -direction velocity fluctuations are equal to the product of a mixing 
length and a velocity gradient, ie

(2-19) 
dv
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From Equation (2.18), this then gives the Reynolds stress as

(2-20) 

Since the mixing length varies with distance from the wall, a simple assumption is a linear 
variation, ie

where is a universal constant taken to be 0.36. Van Driest (46) extended the model to 
include a wall damping factor, giving

(2.22)

where is constant. Experimentally, damping has been found to be a function of the 
Reynolds number, so Gill and Scher(47) refined the mixing length model to give

/ -*ik (2.23) / = e r),

where
Re* - a

and

Re* -

is the maximum value of >>, and is a friction velocity given as The constant 
the critical value of Re* was taken to be 60, and constant was determined 

experimentally to be 22.

Now total stress is just the sum of the laminar (or viscous) stress and the Reynolds stress, 
and is given by

+ (2.24)

If Re* is little larger than its critical value c, then the viscous stress term dominates 
Equation (2.24), whereas if Re* is much larger than a, then the Reynolds stress dominates 
Equation (2.24). The mixing length model defined by Equation (2.23) is therefore valid for 
laminar-turbulent transitional flow and fully-developed turbulent flow. In Chapter 4, the 
discussion will be extended to time-independent, non-Newtonian, viscous flow through a 
pipe, which will be especially relevant to our application.

2.3 Solids Concentration Relations

In general, shear stress is related to rate of shear and other properties of a liquid suspension 
such as solids concentration, particle size distribution, and particle shape etc. Although
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considerable effort has been spent in looking for an exact relationship between these 
variables(24), due to the inherent complexities of the system, there has been very little 
progress in establishing one. The differences between Equations (2.11) and (2.12) are 
therefore due to the particular assumptions on which each model is based.

The laminar flow viscosity of a suspension of rigid spheres was the subject of a theoretical 
analysis of Einstein(37), who derived the equation

+ 2.5$), (2.25)

where is the viscosity of the mixture, ju, is the viscosity of the liquid, and $ is the volume 
fraction of solids. The equation which was derived on the assumption that there were no 
particle interactions is accurate for suspensions of less than about two percent by volume. 
A more complex empirical relation derived by Thomas(38) is

2.5* + 10.05 $2 + 0.00273 e16'6 *), (2.26)

and agrees with data for suspensions of up to twenty percent by volume. The main drawback 
of the two models is that they do not account for particle agglomeration and are therefore 
only relevant for Newtonian fluids.

For a Bingham fluid, Thomas(39) obtained relations that may be applied to a broad range of 
materials. These are given as

(2.27)

and
*2* 28^ rj = . 

These relations are valid for suspensions of up to twenty three percent by volume. 
Relationships between volume fraction of solids and Theological parameters are often 
expressed graphically rather than functionally. For an activated sewage sludge, Dick and 
Ewing (40) offer a plot of yield stress against solids concentration from three different sewage 
plants, each crudely exhibiting a different linear relation on a log-linear scale, thus suggesting 
an exponential relationship between yield stress and solids concentration. For primary, 
secondary and digested sludges, Mulbarger 0/ (3) offer plots of yield stress and coefficient 
of rigidity against solids concentration on a log-linear scale. There is an immense amount 
of scatter, particularly for yield stress, making it difficult to establish any specific relation 
between each parameter and solids concentration. Carthew a/(4) extended the plots of 
Mulbarger with there own data. On these log-linear plots of yield stress and coefficient of 
rigidity, the correlations that are almost linear, suggesting exponential relations between these 
parameters with solids concentration. A main objective of this research is to examine the 
behaviour of Theological parameters with solids concentration. Firstly, however, an 
introduction of the data to be analysed is the subject of the next chapter.
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3 The Data

This chapter briefly introduces an extensive body of sewage sludge flow data on which this 

research is primarily centred. The objectives are not to present all of the data, but a 
selection of it that includes a sample of typical data, an illustration of time-dependency, a 

sample of unusual data, evidence of wall slippage, and the effect of solids concentration. 
The data(10) were compiled from viscometric measurements of concentrated sewage sludge 
originating from several different regions of England (mainly the south), and with varying 
solids concentration. The data were recorded at the Warren Spring Laboratories for the 
Water Research Centre during October 1978 to May 1980. The measurements are of two 
types: full-scale pipeline that includes the entire laminar, transitional and turbulent flow 
regimes, and tube viscometry, that generally includes the laminar flow regime only. For a 
pipe flow test, the sewage was pumped from a tank, through a straight smooth pipe, into a 
sump, and sometimes recirculated back to the tank. The tube viscometric measurements 
were generally recorded before, during and after each pump-pipe trial. The pipe was of 
length 21m and diameter 104.3 mm from which pressure gradient readings of known flow 
rate were taken along a 9 m section. The tube was usually of 26.65 mm diameter.

3.1 Data Sample

A fairly typical set of data is illustrated by Figures 3-1 and 3-2 and is of a digested sludge 
from Perry Oaks. The second figure is of four pipe flow tests where the sludge is 
recirculated from the sump back to the tank in each case. The first of the figures shows the 
three tube flow tests recorded before, during, and after the pump-pipe trial respectively. As 
noted in the introduction to this chapter, whereas the tube flow measurements only generally 
include the laminar flow regime, the pipe flow measurements include the laminar, transitional 

and turbulent flow regimes.

Sewage sludge can be lumpy and difficult to manage, so this is why tubes and pipes have 

been effectively used as viscometers. Consequently, the tube flow data are given as pseudo- 
shear flow data namely wall stress versus pseudo-shear rate For a Newtonian 
fluid, the pseudo-shear flow relationship is, in fact, the same as the true shear flow 
relationship (this will be further discussed in Chapter 4). For a non-Newtonian fluid, 

although the pseudo-shear flow relationship is not the same as the true shear flow 
relationship, it can, none-the-less, be regarded as comparable. For instance, Figure 3-1 
shows that the viscosity of the sludge decreases with increasing shear (pseudoplasticity), and 

that there is a yield stress to the sludge which is given at the intersection of the curve with 

the wall stress axis.

Pipe flow data are given as hydraulic gradient / versus mean cross-sectional velocity 

measurements. The more familiar friction plots are used in this report where the coefficient
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tube flow test: 
o before pumping 

o during pumping 
a after pumping

Figure 3-1 Tube flow tests 
of a digested sludge from 
Perry Oaks taken before, 
during and after the pump- 
pipe trials.
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Figure 3-2 Four pipe flow 
tests of the sludge sample of 
Figure 3-1. Notice the 
'smooth' transition from 
laminar to turbulent flow of 
the first test.

of friction is given by

where is the acceleration due to gravity. For pipe flow data such as Figure 3-2, the critical 
point is sometimes conspicuous as it is the point where the gradient changes discontinuously. 
However, looking at the first pipe flow result in isolation, there is a smooth transition from 
laminar to turbulent flow making a qualitative assessment of the critical point difficult. Most 

other sludge tests from this data body admit this smooth transitional region.

3.2 Sludge Categories

Figures 3-1 and 3-2 showed the data of just one set out of a total of nearly one hundred sets. 

This gives some idea of the enormity of the data body, and may give the impression that it



21

is very extensive. However, the possible sources of sewage sludge variation are themselves 

numerous. The three main variants of a sewage sludge that were included in the 

measurements are: region (town and county of origin), sludge type (primary, activated or 

digested), and solids concentration by mass. These three variants are all likely to affect the 

flow behaviour of a sludge. Summaries of these are as follows:

1. Region Regional variation arises from industrial content and sewage plant design. 

Industrial content, hence regional variation, can vary considerably with time.

2. Sludge type is raw untreated sludge; is sludge that 

has been broken down by bacteria in large open pools; is sludge that has 

undergone decomposition in large tanks.

3. Solids concentration by mass This varies with a maximum of twelve percent. 

Solids concentration was artificially varied by successively diluting the sludge with water in 

the test laboratory.

Table 3-1 lists the three variants region, sludge type and solids concentration for each 

batch of sludge tested. Also included is the total pseudo-shear rate range over which 

the measurements were made. Note that, although there is a total of 96 data sets, there is 

only one batch of activated sludge and the other batches came from a limited number of 

regions. Although Figures 3-1 and 3-2 portray a typical data set, it would be misleading to 

suggest that all of the data sets contain the same type and number of tests. Some of the other 

data include variations such as sludge density, pipe diameter, and time dependency.

Table 3-1 Short summary of the Water Research Centre data

Region

Bedlow
Rye Meads
Mansfield
Southern!
Southend
Ipswich
Maple Lodge
Letchworth
Perry Oaks
Perry Oaks
Perry Oaks

Sludge type

Primary
Primary
Primary
Primary
Primary
Primary
Activated
Digested
Digested
Digested
Digested

Total

No of Sets

1
1
1
1
7
7

10
8
2
7

51

96

Solids range

3.0%
4.1%
7.6%
6.9%

3.5 - 8.9%
2.6 - 6.4%
1.3-6.4%
1.8-5.8%
5.2 - 6.5%
4.5 - 6.5%
3.7-12.0%

71.3- 382
17.3- 587
80.9- 959

163.5-1523
20.5 - 1476
5.9- 959
2.3-1339
4.4 - 2278
1.0-1943
2.0- 859
1.3-2474

3.3 Data Entry

The data were supplied from the Water Research Centre in text form rather than in computer 

compatible media. There was no access to a text scanner, though even if there had been, the
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text was so small and illegible that a scanner was unlikely to have been helpful. All the text 

therefore had to be entered manually on to a PC. The data were structured into a format that 

enabled it to be accessed directly from computer files. This was to enable the data to be 

graphically displayed or plotted, and subsequently analysed. A file structure was constructed 

to cater for each and every type of test, and considering the diversity of the data, this was 

not a simple problem.

3.4 Time Dependency

The data of the laboratory report contain much evidence that sewage sludge is thixotropic. 

Figure 3-3 shows the 'gelling' effect of a digested sludge from Perry Oaks that has been 

tested over a several day period. Notice that the apparent viscosity of the sludge increases 

as time progresses. The effect is not very pronounced, but the viscosity increase is more 

notable at first, reaching a limiting viscosity with time.

+* 
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Digested sludge 
from Perry Oaks left 
standing for indicated time 
period.
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Figure 3-4 is another such plot tested over a similar time span, though measured in hours. 

In this case the effect is less pronounced but still observable. The reason for the difference 

between the figures is not clear as both sludge samples are from the same batch. However, 

the first sample has a concentration of 12 percent solids by weight and the second sample has 

been diluted to 8.6 percent. It would be reasonable to suggest that the thicker sludge is more 

thixotropic than the thinner sludge, but the sample history would have to be considered also.

Figures 3-5 and 3-6 are tube flow measurements of a Perry Oaks digested sludge with a mass 

solids content of 6.5 percent. Both figures are measurements of the same batch of sludge 

but recorded on different days. The first figure shows that there is a radical difference in

w

2 8

O Q 
5

pseudo-shear rate -i

Q 
O

Q

pseudo-shear rate -i

3-5 Tube flow data of a digested sludge from Perry Oaks recorded 
on different days. The first figure shows that there is a radical difference of viscosity 
as a result of pumping; the second figure shows the difference to be negligible.



the apparent viscosity of the sludge before and after the pump-pipe trial, but the second 

figure shows that there is virtually no change in viscosity as a result of pumping. Again, 

there is no way of quantifying these effects for the data; there is no way of knowing the 

exact shear history of any particular sludge batch, or for that matter, any particular volume 

of sludge. It would be consistent with the laboratory record to suggest that, whereas the first 

test was conducted on undisturbed sludge, the second test was conducted on agitated sludge. 

There is one effect that is invariably consistent with all data: a sludge before pumping is 

more viscous during pumping, and similarly, a sludge during pumping is more 

viscous after pumping.

Now referring to Figures 3-7 and 3-8. These are plots of some tube flow data from a 

Southend primary sludge, and are rather unusual. Considering the first of the figures, there 

is a gradient change consistent with a regime change from laminar to turbulent flow. 

Although this change was questioned on the merit of a single outlying point of datum, the

V)

+* 
V)

4.2--

-i

Figure 3-7 Although tube 
flow data in general are 
laminar, there are some 
non-laminar measurements 
in these data of a primary 
sludge from southend.

a 

8.2--

-i

3-8 Tube flow data 
of a primary sludge from 
Southend appear to be all 
laminar before the pump- 
pipe trials, but not all 

95o laminar during and after the 
pump-pipe trials.
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outlying point does however mark the beginning of a gradient increase in the plot. To accept 
the gradient increase as part of the laminar flow regime would be to accept that the sludge 
had shear thickening properties (thicker at higher shear rates). Since none of the data of the 
laboratory report support this conjecture, the gradient increase must be due to a change of 
flow regime.

Figure 3-8 the second of the figures is a particularly interesting example. The tube flow 
measurements were taken, as usual, before, during and after pumping and, as usual, on the 
same day. Whereas the test taken before pumping shows an expected decrease in gradient, 
the tests taken during and after pumping show a marked increase in the gradient. As with 
the previous figure, a gradient increase can only be due to a laminar to turbulent change of 
flow regime. This explanation is validated by noting that tube flow data includes the laminar 
flow range; if this had been the case before pumping, then the same range used during and 
after pumping would result in a laminar-turbulent change of flow regime. Figure 3-8 clearly 
shows that the sludge experienced shear thinning, generally becoming much thinner during 
and after pumping, which resulted in an early onset of the laminar-turbulent change of 
regime. The only alternative explanation is that the fluid transformed from a shear thinning 
fluid before pumping to a shear thickening fluid during and after pumping; a scenario that 
is totally implausible.

Although it may seem like trivial observations are being made about the data, a main 
objective is to obtain laminar flow models from laminar flow data only. Not to recognise 
any turbulent flow data would result in erroneous laminar flow functions being modelled on 
it. Since there are vast amounts of data, another main objective is to automatically produce 
shear flow function parameters from the raw data with the aid of a computer program. This 
is regarded as a potential blind procedure that requires careful overseeing.

3.5 Evidence of Wall Slippage

Wall slippage occurs when there is a finite velocity of fluid at a wall. A formal treatment 
of this effect will be given in the next chapter, but for the moment, it is adequate to say that 
pipe wall slip is a function of both wall stress and pipe diameter. Such an effect can be 
identified by plotting the pseudo-shear flow data at each diameter; if the curves coincide then 
there would be no wall slippage, but if the curves are different, wall slippage would be 
present. Very few tests were conducted on pipe diameter variation and all of them used 
digested sludge only. The one result of any real significance is shown by Figure 3-9 of a 
digested sludge from Perry Oaks at 8.8 percent concentration by mass. The tests are plotted 
in the order they were conducted but notice that the same pipe diameter is used in two of the 
tests. A close examination of these limited data shows that there is a consistent correlation 
between pipe diameter and apparent viscosity the larger the diameter the greater the
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pipe diameter: 
x 18.85 mm 
o 26.65 mm 
o 12.52 mm 
o 18.85 mm

Variation of 
pipe diameter on a digested 
sludge from Perry Oaks.

viscosity. The figure also shows that there is a difference, though lesser in extent, between 
the two tests of the same diameter. From this plot it can be concluded that wall slippage 
occurs. Unfortunately, it is not possible to gauge the effect of different sludge types at 
different solids concentrations, all of which are likely to have an effect. Wall slippage can 
also be examined by comparing the tube flow data with the pipe flow data since the diameters 
of these tests are considerably different. Unfortunately, besides there being only two 
diameters to compare, much of the pipe flow data are non-laminar. Nevertheless, wall 
slippage should affect the accuracy of a scale-up prediction, and such an appraisal will be 
given in Chapter 7.

3.6 Solids Concentration

Overleaf, Figures 3-10, 3-11 and 3-12 show the variation of solids concentration by mass for 
tube flow measurements of primary, activated and digested sludges respectively. For 
consistency, all the tube flow measurements have been chosen before pumping, and for each 
sludge type, the data are from the same batch, but successively diluted over a period of 
several days. It can clearly be seen that solids concentration has a dramatic effect on the 
viscosity of a sludge; an increase in sludge concentration radically increases the overall 
sludge viscosity. It can also be observed that the effect is non-linear; the rate of increase of 
viscosity increases with solids concentration. Other effects such as shear thinning would also 
be present, though even in the most extreme case (see Figure 3-5) it can be seen that shear 
thinning is still a relatively minor effect. It must therefore be concluded that a sewage sludge 
model should account for the effects of solids concentration the subject of Chapter 8. 
Firstly though, the necessary algorithms for modelling pipe flow are addressed in the next 

chapter.
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Maple Lodge.

solids concentration: 

x 12.00% 

Q 10.00% 

o 7.86% 
a 4.27%

Variation of 
viscosity with solids 
concentration by mass for a 
digested sludge from Perry 
Oaks respectively.

0.33E3 0.66E3 0.99E3 I.32E3 I.65E3

pseudo-shear rate (8£//£>)/s-i
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4 Pipe Flow Equations

In the previous chapter, it was remarked that sewage sludge is lumpy and difficult to manage, 
so the viscometry was conducted by the sewage industry using pipes and tubes. As a result, 
the flow behaviour of sewage sludge has to be deduced from pipe flow data. This chapter 
reviews mathematical models of the flow of time-independent, non-Newtonian, viscous fluids 
through a straight pipe where laminar, critical and turbulent flow regimes are considered in 
turn. The fluid will primarily be regarded as pseudohomogeneous, but in the final section, 
wall slippage will be considered. The equations of particular relevance are given in borders, 
and the other equations either highlight the development of the material, or provide useful 
analytical solutions to which numerical approximations can be compared later.

4.1 Governing Equations

Consider the flow of fluid through a straight pipe as illustrated by Figure 4-1.

Pipe and flow 
parameters.

For fully-developed flow, it may be assumed that the radial and angular velocity components 
are zero, and that the only stress component acts in the axial direction on a surface normal 
to the radial direction. With these assumptions in mind, the equations of motion (48) are given
by

/ -equation:     = 0,

^-equation: =0, (4.1) 

Id,, z-equation:   =     (rr).
dr

Without loss of generality, may include a gravity term where, for instance, the pipe flow 
is non-horizontal. The first two expressions show that only, and therefore

(4.2) 
z

Using the initial condition = 0 at r = 0, the third expression integrates to give

AP (43) __. 
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At r = this gives the following relationship between wall stress and pressure gradient:

2 

The above equation pair can be combined to give a linear relationship between shear stress

and radial distance, which is

(4.5)

Since Equations (4. 1) are in terms of shear stress, the equations so far make no assumptions 

about the rheology of the fluid being used. These equations are valid for any fluid, and will 

often be referred to in the following discussion of laminar, critical and turbulent flow.

4.1.1 Dimensionless Forms

Flow equations can be expressed as relationships between dimensionless groups (49) that are 

especially useful for defining graphical or empirical relationships of a flow situation. Since 

the objectives of this research are to use well-heeled numerical methods to model the flow 

equations, these dimensionless groups are less useful. In other words, rather than depend 

on graphical relations between dimensionless groups, the emphasis will be on providing PC 

based computer algorithms to perform the calculations. However, dimensionless groups are 

more than just a convenient way of expressing flow relations as they can, for instance, be 

used to identify the critical point that divides the laminar flow regime from the transitional/ 

turbulent flow regime. In this subsection, three widely used dimensionless groups will be 

introduced: the Fanning friction factor, the Reynolds number and the Hedstrom number. The 

latter two groups were originally derived for specific fluid types, but extension to other fluids 

will be discussed later on in this chapter.

The Fanning friction factor is a dimensionless group defined as the following ratio between 

frictional forces to inertial forces:

(4' 6) 

2

Notice that this ratio is indicative of the relative importance of the wall stress with respect 

to the kinetic energy per unit volume of fluid.

The Reynolds number for a Newtonian fluid is defined as the dimensionless group

Re = £^, (4.7)

and is a measure of the ratio of inertial forces, to viscous forces, In 1883, 

Reynolds conducted some classical experiments of Newtonian fluid flow through pipes, and
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showed that fluid flow may either exhibit laminar or turbulent motion. For low Reynolds 
numbers of less than about 2 100, the viscous forces dominate the inertial forces, and laminar 
(or streamlined) flow prevails. However, for high Reynolds numbers greater than about 
4000, the inertial forces dominate the viscous forces and, as reviewed in Section 2.2, 
turbulent flow prevails. For intermediate Reynolds numbers, fluid flows in a transitional 
state between laminar and turbulent flow.

The Hedstrom number (50) is a group that accounts for the yield stress of a fluid. For 
Bingham fluids, r = r + 777, Hedstrom used dimensional analysis(49) to show that the 
friction factor has the functional form

</>(

where the first of these groups is known as the Hedstrom number, He. The second of these 
groups has the form of a Reynolds number, and can be considered as a Reynolds number for 
Bingham fluids.

4.2 Laminar Flow Equations

For steady flow through a pipe, the volumetric flow rate is

+ 7rr (4.9)

where is the mean cross-sectional velocity, is the radial distance, is the velocity at 
r, and is the radius of the plug core. The two parts of the right-hand side of the equation 
define the fluid and solid regions of the flow respectively. In practice, a relation between 
pressure per unit length of pipe, and mean cross-sectional velocity, is required. 
However, the relation between the pipe wall stress, , and a defined as

8f7 (4.10)

is equivalent, but much more convenient to work with.

Integrating Equation (4.9), combining it with Equations (4.5) and (4.10), and using 
-dw/dr = 7, yields

r =
  K

(4.11)
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The rate of shear term, 7, can be eliminated from this equation with a relevant Theological 
equation, such as one of the equations (2.7) to (2.13). This gives a relation known as the 

between the pipe wall stress and the pseudo-shear rate. The 
pseudo-shear flow function is a pipe flow equivalent of the true shear flow function; the 
former models the viscosity within a pipe and the latter models the viscosity between parallel 
plates.

For the Newtonian case, using Equation (2.7) to eliminating 7 from Equation (4.11) gives 
the Hagen-Poiseuille equation,

(4.12)

Via Equations (4.4) and (4.10), this establishes a relation between pressure gradient and 
mean cross-sectional velocity. It is no coincidence that this equation has the same form as 
the corresponding shear flow function T = ^7 as it is from this equation that F is normally 
defined. It therefore follows that F = 7^ for Newtonian fluids, though this is not generally 
true for other fluids.

Using Equations (4.6) and (4.7), a well-known relationship between/and Re is revealed by 
Equation (4.12), and is given by

/=il (4.13) 
Re

This is significant as it defines a theoretical relation between/and Re for the laminar flow 
of a Newtonian fluid through a straight pipe. This has been the impetus for obtaining semi- 
empirical relations between/and Re for turbulent flow, and some of these relations will be 
discussed in Section 4.4.

For the Bingham case, using Equation (2.8) to eliminate 7 from Equation (4.11) gives the 
Buckingham(51) equation,

r = _ 1 (4.14)

It is apparent that, via Equations (4.10) and (4.4), this equation can be used to directly 
evaluate the mean cross-sectional velocity for a given pressure gradient. For the inverse 
problem where is known and is required, an iterative scheme is needed. However, 
if the ratio is small, the quartic term can be neglected to give the explicit 
approximation

,r. (4-15)

The yield stress of this equation is (4/3)^ which is a contradiction in terms since it should 
be TV . None-the-less, Equation (4.15) is a good approximation of Equation (4.14) for higher
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values of F. Equation (4.15) is also often expressed as the following dynamic head loss per 

unit length of pipe,

= 32 (4.16)

For the power law case, combining Equations (2.9) and (4.11) yields

1 (4.17)

The functional form of this equation is similar to Equation (2.9), which is convenient as the 
consistency coefficient and consistency index can be estimated from this equation using 
a log-log plot of the pipe flow data.

For the general Bingham case, combining Equations (2.10) and (4.11) gives

M'-yV*
1 2n+1 1 T,

.18)

For 1, this equation reduces to the Buckingham equation and, like the Buckingham 
equation, the mean cross-sectional velocity can be estimated directly for a given pressure 
gradient, but the inverse procedure would require an iterative scheme. There is also an 
approximation to Equation (4.18) analogous to Equation (4.15) for the Buckingham equation. 
This is given as

1
1

3« + 1 I", (4.19)

and can be evaluated directly for Likewise, although the yield stress is incorrectly 

given as (3/z + +1), this equation is suitable for higher values of pseudo-shear rate.

For the Meter model, Equations (2.13) and (4.11) give

a + 3

+ 3 1

a - I
(4.20)

The term is usually very small, and neglected to yield a good first order approximation.
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For any pseudoplastic fluid, Equation (4.11) can be differentiated with respect to and 
rearranged to give the Mooney-Rabinowitsch(52' 53) equation,

*v_  1
4«7 r, (4.21)

where
/ dlnr,,=   

dlnF

This equation gives a relation between the wall shear rate and the pseudo-shear rate where 
is the slope of the log-log pseudo-shear flow function. Thus from a practical viewpoint, 

values of n 7 can be estimated from a log-log plot of the pipe flow data, and used to estimate 
corresponding values of Metzner and Reed(20) carried the approach further by writing

(4.22)

Taking and = + l)/4n]", this equation reduces to Equation (4.17).

4.2.1 Velocity Distribution

In this subsection, the velocity distribution the distribution of axial direction velocity 

against radial distance is considered. The rate of shearing strain, defined to be positive, 

is 7 = -dw/dr. Assuming the no-slip condition 0, this integrates to give

= 7 dr (4.23)

Considering the linear relation between r and defined by Equation (4.5), 7 can be 

eliminated from this equation using a Theological equation such as one of the equations (2.7) 

to (2.13).

For the Newtonian case, substituting Equations (2.7) and (4.5) into (4.23) gives the velocity 

distribution

(4.24)1 -

where is the mean cross-sectional velocity, clearly has a parabolic profile as illustrated 

by Figure 4-2.
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For the Bingham case, an unsheared solid plug core is retained at the centre of the pipe 
surrounded by a region of sheared fluid. Now the radius of the plug core is given from 
Equation (4.5) as

(4.25)

where r is the yield stress. For the sheared part of the velocity distribution where   , 
combining Equation (4.23) with (2.8) and (4.5) gives

1 - (4.26)

Substituting Equation (4.25) into this equation gives the velocity of the plug core,

1 -i (4.27)

The velocity profile is shown on Figure 4-2 where the flat part of the profile represents the 
solid plug core and the curved part of the profile represents the sheared fluid. Equation 
(4.25) implies that the plug core diminishes in size at higher shear without ever completely 
disappearing.

4-2 Some laminar 
flow velocity profiles of 
non-Newtonian fluids. The 
dashed lines mark the solid 
core boundaries of Bing- 
ham and general Bingham 
fluids.

For the power law case, placing Equations (2.9) and (4.5) into (4.23) gives the velocity 

distribution

+ T
+ 1

1 -
+ 1" 

(4.28)

where is the mean cross-sectional velocity.
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Figure 4-3 illustrates the effect of on the profile. For 1, the profile is the parabola 

defined by a Newtonian fluid. For 1, the profile becomes flatter than a parabola, until 

approaches zero where plug flow results. For 1, the profile becomes sharper than a 

parabola, until approaches infinity where a triangular profile results.

Some laminar 
flow velocity profiles of 
power law fluids.

radial position, 

For the general Bingham case, substituting Equations (2.10) and (4.5) into (4.23) gives the 

velocity distribution

«(r) = 
+ 1 

1
_ (4.29)

where is the radius of the plug core. The velocity of the plug core is obtained from this 

equation at whereupon the second term disappears. The velocity profile (see Figure 

4-2) has the combined features of the Bingham and power law profiles: a flat region that 

represents the plug core, and a curved region that represents the sheared fluid surrounding 

the plug core.

For the Meter model, Equations (2.13), (4.5) and (4.23) combine to give

1-S2 i-(~r' 
\«'

ia -

1. "0 1 "»

1
+ _

a

' T/?^

. T>».

a - 1

_ JJ-Jfl .1 (4.30)

1 2'

The term is usually very small, and neglected to yield a good first order approximation.
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4.3 Critical flow Equations

Ryan and Johnson(54) proposed a stability parameter based on small fluctuations about a mean 
velocity. The stability parameter is the ratio of the rate of energy supplied by the 
fluctuations to the rate the energy is dissipated, and is given as

(4.31)

where is density, «(r) is the velocity distribution, is the pipe radius, -dw/dr, and 
is the pipe wall stress, f is zero at the pipe wall and at the pipe centre line, but reaches 

a unique maximum value Z at some radial point. Unlike the Reynolds number, the stability 
parameter is applicable to non-Newtonian fluids, though it can be interpreted as proportional 
to the Reynolds number (4.7) for point values of The parameter has been successful 
when tested on much data of Bingham plastic fluids (55), and pseudoplastic fluids (56). Further 
confidence in its applicability comes from Hanks (57) who took a completely different 
approach to derive a generalised stability parameter applicable to any geometry which 
becomes equivalent to Ryan and Johnson's for pipe flow geometry.

For a Newtonian fluid, applying the Hagen-Poiseuille equation (4.12) and the Newtonian 
velocity distribution (4.24) to Equation (4.31), the maximum value of £ occurs at the point 

1A/3, and is given by

(4.32)Z = Re
27

where Re is the Reynolds number. Critical flow is the upper bound of laminar flow the 
point at which laminar flow becomes unstable. If the critical Reynolds number is taken to 
be Rec = 2100, then the critical value of Z is

808. (4.33)

For Z < Zc , the flow can be regarded as laminar, and for Z > Zc , the flow becomes 
unstable and can be regarded as non-laminar.

The stability parameter could be used in its naked form, but is often instead used to derive 
more meaningful non-Newtonian Reynolds numbers and critical quantities. For a Bingham 
plastic fluid, Hanks and Pratt(55) defined a modified Reynolds number as

(4.34)

where the coefficient of rigidity r? replaces the Newtonian viscosity p. Although this
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Reynolds number clearly resembles the Newtonian Reynolds number (4.7), it does not, 
incidentally, satisfy the generalised Reynolds number proposed by Metzner and Reed(20). 
Using analysis based on the Ryan and Johnson stability parameter, Hanks showed that the 
critical Reynolds number is no longer the constant value 2100, but an expression in terms 
of a dimensionless group called the Hedstrom number(50). This expression is given as

He L 4, 1 <4- 35) 

where the Hedstrom number is

He - (4.36)

c = is the ratio of yield stress to critical wall stress defined by the relation

He = 16800    if    . (4.37)
(1 -

£c may be obtained from this equation using an iterative scheme, and used to estimate (Re5 )c 
from Equation (4.35). Alternatively, £c could be used to estimate a critical pressure gradient 
from Equation (4.4), or a critical velocity using the Buckingham (51) equation (4.14).

For the power law case, Hanks and Christiansen (56) defined a Reynolds number from the 
generalised Reynolds number of Metzner and Reed (20) :

* (4.38)
2 

This expression can also, incidentally, be obtained from Newtonian Re by substituting the 
Newtonian viscosity /* with the effective viscosity(58) Using the Ryan and 
Johnson stability criterion of Equations (4.31) and (4.33), critical Rep becomes

(Rep) c = + 2)^, (4-39) 
(3/i + I)2

and reduces to the Newtonian critical Re, 2100, for n = 1. A critical velocity can be 
obtained from these equations, but a critical pressure gradient also requires Equation (4.17).

For the general Bingham case, Hanks and Ricks(59) combined the definition of a Reynolds 
numbers for the Bingham plastic fluid and the power law fluid to give

+ 2

This expression has the same form as Equation (4.38), but whereas for a general Bingham



fluid reduces to Bingham TJ for 1, AT for a power law fluid reduces to Newtonian /* for 

1. Using the Ryan and Johnson stability criterion, Hanks and Ricks obtained an 

expression for the critical Reynolds number, which is

(4.41)

where £c = is the ratio of yield stress to critical wall stress defined by the relation

HeGB
3232 (4.42)

and is the following Hedstrom number modified for a general Bingham fluid:

He

Analogous to the Bingham case, £c may be obtained from these equations using an iterative 

scheme and used to estimate from Equation (4.41). Alternatively, £c could be used 

to estimate a critical pressure gradient from Equation (4.4), or a critical velocity using 

Equation (4.18).

Slatter and Lazarus(60) reverted to the original Newtonian interpretation of the Reynolds 

number as the ratio of inertial to viscous forces to derive the following general Bingham 

Reynolds number:
Re _ __8_P 

General Bingham pipe flow has a plug core an indisputable fact for upper bound laminar 

flow. Slatter(61) later modified this Reynolds number to account for the plug core as follows:

Re5 =

+ 
(4.45)

where is the mean cross-sectional velocity of the annular flow, and is the diameter 

of plug flow. Both these Reynolds numbers are assumed to have a critical value the same 

as a Newtonian Reynolds number, ie 2100.

For critical flow specifically of a general Bingham liquid, there seems to be little else in the 

literature. Slatter correctly points out that some general Bingham Reynolds numbers do not
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have a yield stress, and therefore do not account for the plug core. For Equation (4.40) this 

is true, but does not matter since the corresponding critical relation, Equation (4.41), is not 

constant and accounts for the yield stress via the Hedstrom number. The key point is that 

defining a Reynolds number can, to some degree, be an arbitrary process because it is the 

critical flow relation that determines the stability criterion.

For any pseudoplastic fluid in general, Metzner and Reed combined Equations (4.13), (4.6) 

and (4.22) to derive a generalised Reynolds number, which is given as

(4-46)

and as with Equation (4.21) 

4.4 Turbulent Flow Equations

Consider the turbulent flow of a fluid through a straight pipe. Equation (4.13) gives the 

relationship between the friction factor and the Reynolds number for laminar pipe flow. This 

relation is / = 16/Re, and has been the impetus for obtaining semi-empirical relationships 

between /and Re for turbulent flow. For a Newtonian fluid, notice that these turbulent flow 

relations would be a function of viscosity (via the Reynolds number), which is a laminar flow 

parameter. For non-Newtonian fluids in general, turbulent flow modelling is often based on 

the parameters of the laminar flow model.

For a Newtonian fluid, Blasius(62) obtained a simple, but widely used equation from a 

friction plot  a plot of /against Re. This is given as

/= 0.079 Re'0' 25 , (4-47) 

and is suitable for Re = 3000 to 100000.

Von Karman (63) obtained a relationship between/ and Re based on the turbulent flow velocity 

distribution proposed by Prandtl (25). This equation  which includes two constants determined 

by Nikuradse (64)  is given as

L = 4.01og10(Re^) - 0.40, (4.48)

and is suitable for Re = 3000 to 3000000. Clapp(65) followed a similar approach to obtain 

the relation

_L = 4.531og10(Rey/O - 2.3. (4.49)



For a general Bingham fluid Torrance(27) extended Clapp's equation to give

4- 53 2.75 0.45, (4.50)

where Rer is a modified Reynolds number defined as

_ r/2-nr)nRe7 = (4.51)

This equation reduces to Equation (4.49) for r = 0 and for 1.

Slatter(66) argued that a particle suspension has a similar effect on the velocity profile of a 
slurry as wall roughness has on the velocity profile of a Newtonian fluid. With this assump- 
tion, plug flow does not occur, and this is borne out by experimental evidence (67' 68). The 
advantage of the method is that wall roughness has been well researched, so derivation of a 
model was made less daunting. Slatter defined a particle roughness Reynolds number as

Re =
(4.52)

where is the representative particle diameter and is the friction velocity 
IfRer < 3.32 then

- = 2.5 In . 2.51n(Rer ) + 1.75, (4.53)

and if Rer > 3.32 then
 , = 2.5 In [/*

I I + 4.75. 
a. (4.54)

Although the slurry data that Slatter used are of a fairly broad spread, these equations give 
a good representation of the data.

Conventional wisdom has it that a plug core always survives for the turbulent flow of a fluid 
with a yield stress; this must be the case if the turbulent fluctuations are assumed to be 
infinitesimal. Although the experimental evidence seems to contradict the idea of a plug 
core, this evidence could hardly be extrapolated to all flow rates for all complex mixtures. 
For this research, there are no available data of the velocity distributions of a flow situation. 
Nevertheless, this is unimportant for our modelling requirements. For instance, the 
magnitude of a mean cross-sectional velocity prediction would come largely from the region 
of high shear; the remaining 'core' region of a low shear or zero shear would have relatively 
little significance on the prediction. In fact, there is nothing in the objectives that requires 
an explicit knowledge of the velocity profile.
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The turbulent flow models discussed so far are only relevant for a pipe geometry. Many of 
these models are based on integration of the velocity distribution with several simplifying 
assumptions to obtain simple relations. A more direct, though less simple procedure for 
modelling turbulent flow is obtained by integrating the velocity distribution given by Equation 
(4.23). The velocity distribution was given as

= Udr, (4.55)

which integrates to give a relationship between the pseudo-shear rate and wall stress. This 
has already been defined by Equation (4.11) as

I (4.56)

The mixing length model (2.23) is a shear flow relation, where the mixing length parameter 
was defined for Newtonian fluids only. Using with Equation (4.5), Hanks(69) 
proposed a pipe version of this equation, which is given as

/ = [l - T 1 N -*('--)!
1 - e v V

.. 

»
(4.57)

where 0 has been redefined for the appropriate fluid type (see proceeding sections). This 
model has had success when tested on much data of Newtonian fluids(69), Bingham plastic 
fluids (70), and pseudoplastic fluids (71).

For the Newtonian case, Hanks(69) defined of the mixing length model (4.57) to be

where

= Revf,

which is a slight modification to Equation (2.23) such that is the critical value of and 
is given by 2100 xV(16/2100) = 183. For pipe flow, dw/dy becomes-dw/dr, which is the 
rate of shearing strain. Therefore, Equations (2.7) and (2.24) give a total stress as

M7 + P/272- (4'58)

This equation is a quadratic shear flow function, and can be rearranged in terms of 7(7) and 
substituted into Equation (4.56). Since Equation (4.56) cannot be integrated analytically, an



integration method would be required to estimate F and hence the mean cross-sectional 
velocity To obtain a pressure gradient prediction via wall stress , an inverse procedure 
would have to be employed. Unlike a laminar shear flow function, the shear flow relation 
now becomes a function of 7, r and meaning that the Mooney-Rabinowitsch equation 
(4.21) is irrelevant for this case. Equation (4.58) can be rearranged as the two-variable 
function 7(7, and substituted into Equation (4.56). A search method and an integration 
method would be required to solve the equation for ; the solution procedure would not be 
simple.

To obtain a turbulent flow velocity distribution of a Newtonian fluid, 7(7) can be substituted 
into Equation (4.55) and, via the linear relation (4.5), can used to calculate point values of 
«(r) via an iterative scheme. Figure 4-4 compares the laminar and turbulent flow velocity 
profiles of a Newtonian fluid. The turbulent flow profile is expectedly flatter than the 
laminar flow profile as energy is dissipated as random velocity fluctuations.

Velocity 
profiles of a Newtonian 
fluid. Turbulent flow has a 
much flatter profile than 
the laminar flow 
equivalent.

For the Bingham case, the shear flow function becomes

= 777 + p (4.59)

Hanks and Dadia(70) redefined of the mixing length model (4.57) to be

, 

where

(4.60)

Re.vf,

is a Reynolds number based on Bingham flow defined by Equation (4.34). Critical



Refi , required to calculate , is given by Equation (4.35), and critical/can be calculated 
from Equation (4.6) using the critical flow equations of Section 4.3. Hanks(26) found to 
no longer be constant as in the Newtonian case, but the following function of the Hedstrom 
number:

£(He) = 22 1 + 0.00352 He
(1 + 0.000504 He)2 _

(4.61)

where He is defined by Equation (4.36). For He = 0, Equation (4.61) clearly reduces to 
= 22 for a Newtonian fluid. Like the Newtonian case, Equation (4.59) is quadratic in 7, 

and pipe flow estimates can be obtained in much the same way.

For the power law case, the shear flow function becomes

/22.p7 (4.62)

Hanks and Ricks (71) redefined 0 of the mixing length model (4.57) to be

(4.63)

where
"3/1 + 11

1 
Rep r /]

16

2 - n- 1 

and Rep is a Reynolds number based on a power law fluid defined by Equation (4.38). 
reduces to Newtonian for 1. Critical Rep , required to calculate is given by 
Equation (4.39), and critical/is given as/c = Vt 16/(ReP)c ]. For a power law fluid version 
of Hanks and Ricks obtained the following function of consistency index:

22 (4.64)

where for 1 this reduces to 22, the Newtonian value of Unlike the Bingham case, 
Equation (4.62) cannot be directly expressed in terms of 7, but is a three-valued function of 
the form #(7, r, A numerical scheme to solve for pressure gradient would therefore 
be very complicated. However, Hanks and Ricks presented methods for obtaining dimen- 
sionless plots such as friction plots for a particular fluid type.

For the general Bingham case, the shear flow function becomes

+ +

Hanks (26) redefined of the mixing length model (4.57) to be

(4.65)

(4.66)
HeGB )



where

= + 1
'GB

2 - m

and RecB is a Reynolds number based on a general Bingham fluid as defined by Equation 
(4.40). Critical ReG5 , required to calculate )c , is given by Equation (4.41), and critical 
/can be calculated from Equation (4.6) using the critical flow equations of Section 4.3. For 
a general Bingham version of Hanks suggested using the product of for the Bingham and 
power law cases, which is

HeG ) = 22 1
0.00352 He

(1 + 0.000504 He 

though this conjecture was not verified for any data. Solution methods and design procedures 
for a general Bingham fluid are essentially the same as for a power law fluid. The laminar 
and turbulent flow velocity profiles for the general Bingham case are compared on Figure 
4-5. Notice that the size of the unsheared core is reduced for the higher shear required of 
turbulent flow.

Velocity prof- 
iles of a general Bingham 
fluid. Notice that the solid 
core reduces in size at 
higher shear.

radial position, 

For any pseudoplastic fluid in general, Dodge and Metzner(21) obtained the following 
turbulent equation based on the Metzner and Reed generalized Reynolds number (4.46):

1 -n ~~2

where
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Equation (4.68) is suitable for values of from 0.36 to 1.0, and from 2900 to 

36000, and reduces to Nikuradse's equation (4.48) for = 1.

Tarn and Tiu (72) derived a simpler expression by considering the relation between two other 

dimensionless groups, namely a loss coefficient(73)

(4.69)

and the modified Reynolds number

Re

The wall viscosity is defined as and from Equations (4.21) and (4.22) is

(4.71)

The relationship between and Re ** is

= 3.96 X 10'2 Re (4.72)

where «' = 0.4 to 1.35, and reduces to the Blasius equation (4.47) for 1. Tarn and 

Tiu's work also extends to ducts of arbitrary cross-section.

Dziubinski(74) took a similar approach but converted the final expression back into the usual 

frictional form:

/ = 0.01382
3/i' Hh r

4/z'

-3.5

exp 1.745
+ 1

where ReM/f is the Metzner-Reed Reynolds number given by Equation (4.46).

4.4.1 Pipe Roughness

For this research, the impetus for pipe flow modelling is primarily to analyse the data. All 

of the data of this research are of smooth pipe flow, so pipe roughness is of no direct 

concern to us. Pipe roughness can significantly affect the turbulent flow of a fluid, and a 

straightforward way of dealing with this is to use the Moody chart(75). This chart is only 

applicable to Newtonian fluids, but can be extended to non-Newtonian fluids(24). The method 

involves calculating the pressure gradient prediction for a smooth pipe, and multiplying the 

result with an adjustment factor. This factor is calculated from the Moody chart as the ratio 

of the friction factor for a rough pipe to the friction factor for a smooth pipe at the non- 

Newtonian Reynolds number instead of the Newtonian Reynolds number.
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4.4.2 Solids Concentration Relations

For the turbulent flow of sewage sludge through straight pipes, Frost(8) has developed 

empirical relations between the sludge-to-water head loss ratio, HLR, and the concentration 

of solids in percent by mass, For a primary sludge,

HLR = 1.0,

where the solids concentration which is independent of the head loss ratio has a range of 

about 2 to 6 percent by mass. For an activated sludge

HLR = 0.88 + 0.24CW , 

where the range of is about 0.5 to 4 percent. For digested sludge

HLR = 0.80 + 0.160^, 

where the range of is about 1.5 to 6 percent.

These models are markedly different to those of the previous sections in that they are 
empirical models of the effect of solids concentration. The main objectives of this research 
are to derive models that are based on the analysis of the previous sections but include the 

effect of solids concentration.

4.5 Wall Slippage Equations

So far in this chapter, the assumption has been of the flow of a smooth, pseudohomogeneous 

fluid through a straight pipe. Wall slippage is a misleading term used to describe the 

separation of solids from the liquid medium close to the pipe wall, and is therefore a basic 
inhomogeneous model (76). Separation occurs during flow, firstly because the particles tend 
to migrate radially inwards towards the region of higher shear, and secondly because the 
finite sizes of particles cause a decreasing solids concentration of fluid close to the wall. 

These effects can be realistically modelled as a discontinuity of the rate of shear at the pipe 

wall. The assumption is that wall slippage is suppressed for rough pipes (77), and being more 

significant at low shear (78), the effect is less important for turbulent flow. The assumption 

of this chapter has so far been of a zero fluid velocity at the pipe wall, ie = 0, but now 

a slip velocity can be introduced such that This slip velocity has been found to 

be a function of both wall stress and pipe diameter D (78), and is typically modelled as

*, (4.74) 
1 

where and 0 are constants established from data, frequently lies between one and two.



Equation (4.11) gave a relationship between pseudo-shear rate F and wall stress relevant 

for both laminar and turbulent flow. Adding a slip pseudo-shear rate, Ts = to this 

equation yields

r =
D

(4.75)

For laminar flow, this equation reduces to a version of the Mooney-Rabinowitsch equation 

(4.21) adapted for wall slip, and is given by

1 - r,), (4.76)

where
.. =

dln(T -

Extending a quantity to allow for wall slippage can often be trivial. For instance, the 

velocity distribution given by Equation (4.23) can be redefined as

Similarly, a critical velocity can be redefined as

+ 

Wall slip modelling will be a topic of the next chapter.



5 Pipe Flow Modelling

In this chapter, a discussion is given of the mathematical modelling of time-independent non- 
Newtonian viscous fluids through a straight pipe. Algorithms are presented of laminar, 
critical and turbulent flow, and velocity distributions. The fluid will primarily be regarded 
as pseudohomogeneous, but in the final section, wall slip will be introduced into the model. 
The work takes the first step away from graphical methods or simple iterative methods, and 
towards more complex numerical solutions. The numerics are still relatively simple 
compared to those of computational fluid dynamics discussed in Chapter 1 where complex 
three-dimensional geometries with complex flow fields are solved. Judging by the literature, 
the work is original as numerical methods have only been derived for the complex pipe flow 
situations discussed in Chapter 1, such as the transient flow of a liquid in a pipe(29), or the 
numerical simulation of turbulent flow through a pipe(30> 31).

In the previous chapter, models were reviewed of straight pipe flow for yield pseudoplastic 
fluids with a particular shear flow function. In this chapter, algorithms are derived for such 
a system that permits the end-user to define shear flow function (though how this 
function would be specified ie as a program subroutine is of no particular concern to this 
research). The flexibility of the methods are still comparable to friction plots since on-the- 
job predictions can now be made using notebook computers which have become widely 
available. The Water Research Centre also wishes to extend the algorithms to include pipe 
bends and other fittings enabling pipe networks to be defined. This chapter does not use any 
computer terminology. However, the algorithms have been implemented in Fortran 77 and 
Appendix B gives the subroutine declaration (name and argument list) of each associated 

algorithm of this chapter.

5 . 1 Laminar Flow Modelling

The (the relationship between shear stress and rate of shearing strain) was 

discussed in Section 2.1, and is either of the explicit form

G(7, = 0. (5 '2)
or the implicit form

Every numerical algorithm discussed in this chapter will require a shear flow relation of one 
of the above two forms, so before discussing any algorithm in detail, brief consideration will 
be given to the difference between the explicit and implicit cases. In particular, a numerical 
algorithm that requires an evaluation of an explicit function would receive a value of r for 
a given 7, but for an implicit function, both values of 7 and would be required for an
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evaluation. It could be possible to adapt any numerical algorithm that uses Equation (5.1) 

to be compatible with Equation (5.2); this would be achieved by numerically solving 

Equation (5.2) for r at each given value of 7. An algorithm for the implicit case could thus 

be extended to the explicit case by employing an extra numerical method; although such an 

adaption would be easy to effect, it could seriously jeopardise the efficiency of an algorithm. 

Therefore, the explicit and implicit cases of an algorithm will be given separate treatment.

Consider the laminar flow of a time-independent non-Newtonian viscous fluid through a 

straight pipe. The relationship between pressure gradient and mean cross-sectional velocity 

is more conveniently expressed as a a relationship between wall 

shear stress and a pseudo-shear rate. Such relationships were discussed in Section 4.2 for 

specific time-independent non-Newtonian viscous fluids, but all have been derived from the 

general relation, Equation (4.11), which was given as

(5 ' 3)

where is the shear stress at the pipe wall,

and F is a pseudo-shear rate,

(5.4)

T = (5.5) 

It should be appreciated that any successful numerical algorithm of this equation would also 

be applicable to the Hagen-Poiseuille equation (4.12) for Newtonian fluids, and the 

Buckingham(51) equation (4.14) for Bingham fluids etc. Such equations, which are special 

cases of Equation (5.3), will be useful for checking the validity and accuracy of any 

numerical algorithm.

5.1.1 Mean Cross-Sectional Velocity

For predictions of mean cross-sectional velocity, an algorithm is required for numerical 

estimates of Equation (5.3). Since the body of the equation is an integral, a suitable 

integration method would presumably be a useful starting point. The integrand, however, 

suggests that things are not so straightforward; for an explicit function of type (5.1), the 

function inverse, 7 = g~ V), becomes part of the integrand. If the inversion is considered 

independently, then a function inversion method would be employed; the method would be 

invoked for each and every integrand evaluation. The numerical algorithm of Equation (5.3) 

would thus require method nesting: a function inversion method nested within an integration
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method. Such method nesting would be computationally expensive and not simple to 
implement, so serious consideration needs to be given to simplify the approach. An obvious 
solution is to consider rearrangements of Equation (5.3) that would yield a simpler algorithm.

Since the integrand is a multiple of two parts, an arrangement using integration by parts can 
be attempted. From Equation (5.3) this is given as

r = 4 r d

ri I d^

V"

3

which integrates by parts to give

1 *
(5.6)

This arrangement of Equation (5.3) is advantageous; it has effectively transferred the inverse 
function outside of the integrand so that the shear flow function needs inverting only once 
for the wall value 7^. This would be performed independent of, and before the integration. 
The algorithm is therefore a favourable one-tiered system of two distinct methods as opposed 
to the two-tiered system of nested methods considered earlier.

Having defined the basic structure of the algorithm itself, the next task is to embody some 
suitable methods. For the inversion, Muller's bracketing method (A.4: Appendix A, 
Section 4) is used, and for the integration, three methods are compared: adaptive versions 
of Trapezium, Simpson and Boole (methods that are two-, three-, and five-point respectively. 
See (A.I)). The accuracy of a scheme is user-defined with a relative tolerance check e. For 
instance, the convergence criterion |*f - *,- _ 11/|*,-| < e applied to a converging sequence 
jc,-, i = 1,2,... will result in an estimate of AC with a relative accuracy of at least 

The required accuracy of a scheme would undoubtedly affect its efficiency, although a way 
of defining the efficiency of a scheme is needed. Timings are not a good idea as they are 
machine dependent. The number of iterations is problem dependent as it hinges on what is 
being iterated (this could be anything from a simple function to another scheme). These 
problems can be avoided by choosing the number of evaluations of the shear flow function 
as the measure of efficiency, and this is the measure that shall be adopted.

Although one might intuitively expect Boole's five-point method to outperform the others, 
this is not actually the case. Consider the example of the flow of a general Bingham fluid 
through a straight pipe. Arbitrarily take the shear flow function to be r = 10 + Vr with a 
wall stress of = 25 Pa and a relative tolerance check of e = 5 x 10'5 . The following table 
gives estimates of the pseudo-shear rate (the star signifies an estimate) with the number of 

evaluations of the shear flow function used to obtain it.
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Method r*/s-1 No. of evaluations

Trapezium 132.4800 55

Simpson 132.4804 45

Boole 132.4805 65

It is worth first checking the estimates against the true value given by Equation (4.18) for 

a general Bingham fluid. Setting r^ = 25 Pa, 10 Pa, 1 Pa s, 0.5 and evaluating 

Equation (4.18) using a pocket calculator, a pseudo-shear rate of exactly T = 132.48 s'1 is 

obtained. All of the estimates are correct to the required four significant figures, and for this 

particular case, it can be seen that Simpson's method is the most efficient. In fact, tested on 

some other examples, Simpson's method is generally the most efficient typically requiring 

three dozen evaluations of the shear flow function. The Trapezium method is less efficient 

because it is of a lower order, and conversely Boole's method is less efficient because it 

requires more points for an area estimate. It is fair to say that all three methods work 

perfectly well and efficiently, so there is not that much to choose between them. The 

efficiency tests have helped to put the problem into perspective, but for the rest of the 

chapter, less emphasis will be given to efficiency.

For many engineering applications, a four significant figure accuracy is unlikely to be 

required. However, the accuracy of a scheme is, for instance, determined by the number 

of iterations or steps taken, and not by the complexity of the scheme (this scheme is 

relatively simple). When testing a scheme, it is often much easier to detect a fault with the 

logistics when a result is accurate. Furthermore, a scheme such as this needs to be accurate 

when it is used as part of something bigger, such as parameter estimation scheme, as it is 

important to avoid error accumulation within the bigger scheme. Finally, if a scheme is used 

for data analysis, the final result may be sensitive to a particular predicted value. For 

instance, if a critical flow prediction is too large, a turbulent flow point may be detrimentally 

included in the laminar flow analysis. Therefore, all of the schemes of this chapter will be 

tested for accuracy. Figure 5-1 illustrates the final version of the algorithm in the form of 

a structured chart(79).

For implicit shear flow functions of type (5.2), things become a little less straightforward. 

In this case, both Equations (5.3) and (5.6) have integrands with implicit variables: for the 

first equation, the integrand is a function of T, whereas for the second, the integrand is a 

function of 7. An algorithm based on either equation would require a method to solve 

Equation (5.2) for 7 or r to be nested within an integration method. Since this is 

undesirable, a rearrangement is again needed that would alleviate the problem; this time, 

none can be found. Since algorithms based on Equations (5.3) and (5.6) would both have
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Laminar Mean 
Cross-Sect. Velocity

AP/L

Invert (5.1)

Muller's method

Calculate 
integral of (5.6)

Simpson's method

Evaluate (5.1)
Evaluate 

integrand of (5.6)

Evaluate (5.1)

The algorithm to predict the mean cross-sectional velocity for the laminar 
flow of a tune-independent, non-Newtonian, viscous fluid through a straight pipe.

similar structures, both are implemented to compare their efficiencies. In devising an 
algorithm for Equation (5.6), the obvious thing is done in extending the explicit case to deal 
with implicit shear flow functions. This is accomplished by nesting a method to solve 
Equation (5.2) for values of within the integration method. The algorithm for Equation 
(5.3), although similar, is derived from scratch, though this time a method to solve Equation 
(5.2) for values of 7 is nested within the integration method. Adaptive Simpson's method 
is used in both algorithms for the integration, and Muller's method is used as the nested 
method in both cases. Relative tolerance checks are used, though since Muller's method is 
nested, its tolerance is further reduced by a factor of ten. Tested on some data, Equation 
(5.6) proves to yield a more efficient algorithm than Equation (5.3) sometimes by orders 
of magnitude. Equation (5.6) is therefore endorsed for the purpose.

As an example of the implicit case, the Meter model (2.13) can be used with the following 
arbitrarily chosen values: ^ = 1 Pas, ̂  = .001 Pas, 10Pa, = 1.5. Using the 
algorithm with a wall stress of = 25 Pa and a relative tolerance check of e = 5 x 10'5 , a
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pseudo-shear rate estimate of T* = 60.0514 s'1 is obtained in 119 function evaluations. This 

estimate needs some verification, so it can be compared to the first order approximation 

given by Equation (4.20). Placing 25 Pa into Equation (4.20) yields T » 60.0513 s'1 , 

which agrees with the estimate to at least four significant figures. One might have expected 

the first order approximation to fare worse than this, but this approximation is accurate for 

small /ioo/^o- For this example, the algorithm requires 119 evaluations of the shear flow 

function, which compares to 45 evaluations for the general Bingham example. In general, 

the algorithm for the implicit case loses ground on method nesting, typically requiring three 

times as many shear flow function evaluations as the explicit case.

5.1.2 Pressure Gradient

A pressure gradient prediction is essentially the inverse of a velocity prediction. Evaluating 

Equation (5.6) for F to obtain a velocity prediction is straightforward enough, but in order 

to obtain a pressure gradient prediction, the equation would have to be solved for 7^. 

Viewed as 1X7^), Equation (5.6) is an integral, but viewed as 7^(F), the equation becomes 

an with a variable upper limit of integration. This equation could still be 

solved with a root-finding method, but every iteration of this method would require a re- 

evaluation of the integral. In essence, the integration method would be nested within the 

root-finding method, and since this would be a computationally expensive option, a better 

alternative shall be sought.

As discussed in Section 4.2, the Mooney-Rabinowitsch (52> 53) equation (4.21) is an alternative 

arrangement of Equation (5.3), and when arranged as a linear differential equation, becomes

, r^CO) = TV . (5.7) 
- 3F 

This is therefore Equation (5.3) or (5.6) set up as an initial value problem (IVP) of the form 

=/(*, However, as a function of T and this equation is not entirely 

satisfactory as it contains the inverse of the shear flow function 7^ = So, after 

giving the problem some consideration, Equation (5.7) is transformed to be a function of T 

and by dividing both sides of the equation by the derivative of the shear flow function at 

the pipe wall, 

dr

Although this equation has a derivative term, it is easier to deal with in terms of numerical 

methods than Equation (5.7) which contains the inverse of the shear flow function. The 

derivative term, dr^/d^, on the right hand side of Equation (5.8) is the derivative of the 

shear flow function at the pipe wall. If the derivative is not specified by the end-user, a
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fresh estimate of this derivative is required for every evaluation of the right-hand side of the 

equation, so the following forward difference formula is used

  (5.9)

Runge-Kutta Fehlberg's fifth-order method (A.6), which has automatic step-size control, is 

used to solve Equation (5.8). However, the functional part of the equation (the right-hand 

side) cannot be evaluated at the initial value (F = 0, 7^ = 0) as the denominator would 

always be zero and the numerator would be zero for functions without a yield stress. This 

is no real problem as a standard approach to this situation is to choose an arbitrarily small 

starting value that is smaller than the required tolerance. In our case, for instance, consider 

a relative tolerance check of e. If an arbitrary starting value for (F, 7^) is chosen to be 

(el1 , eF), from Equation (4.21) it is clear that 7* < F for all pseudoplastic fluids, and that 

F contributes relatively less than e to the final error.

For example, consider again the general Bingham fluid 10 + ^7, a pseudo-shear rate of 

F = 100 s"1 , and Fehlberg's method with a relative tolerance check of e = 5 X 10"5 . Using 

the above criterion, the starting value is (F0 = 5 x 10"3 s"1 , (7^)0 = 5 x 10"3 s"1 ). The 

method takes 35 steps to reach the solution where the first and last five steps are shown in 

the following table:

m

0
1
2
3
4

31
32
33
34
35

r/s- 1

5.0000 x 10- 3
5.0010 x 1C' 3
5.0037 x IO- 3
5.0078 x 10- 3
5.0147 x 10- 3

14.0829
24.1760
42.1578
75.3325

100.0000

Vs- 1

5.0000 x
5.2614 x
5.8227 x
6.4957 x
7.4134 x

34.4542
53.2627
84.2983

137.8183
175.9859

io- 3
io- 3
io- 3
io- 3
io- 3

Although a solution is reached, this is still slow for a fifth-order method. The objectives of 

this research require data analysis and parameter estimation of an extensive set of pipe flow 

data, so it is worth trying to improve the scheme. Fehlberg's method has an automatic step- 

size control, so there is no way of improving the efficiency in that respect. The idea of 

using a starting value closer to the solution can be examined. Since Eq's (5.6) and (5.8) are
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completely different arrangements of the same equation, this advantage can be exploited in 

a major way. Values of F and 7^ that satisfy Equation (5.6) will also, of course, satisfy 

Equation (5.8). If, for Fehlberg's scheme, a starting value of 7^ is known to be relatively 

close to the solution, then the corresponding value of can be calculated (to within the 

required relative tolerance) from Equation (5.6) using numerical integration (such as the 

scheme presented in the previous subsection). Since F will make a far better starting value 

for than the original eF, it shall be chosen in preference.

In terms of the example, the initial rate of shear is now set to (7^)0 = 100 s"1 , and Equation 

(5.6) is used to find the corresponding value of F0 to within the required tolerance. 

Fehlberg's method is then employed and, as shown in the following table, takes just one step 

to reach the solution.

m

0
1

F/s' 1

51.6669
100.0000

7*/s- !

100.0000
175.9856

Many other test cases were tried using this method and, by virtue of the excellent starting 

value, a solution was usually reached in just one step. As the step size was often big for the 

method, Fehlberg is therefore not too powerful for the job. The number of steps of a 

method is a good measure of efficiency as the computation of a step is bound to vary 

considerably between methods. Using the measure adopted by this research, the number of 

shear flow function evaluations (with the difference formula (5.9) implemented) is 52. In 

fact, for any test problem, the algorithm typically requires about 50 evaluations of the shear 

flow function.

For completeness, it is worth checking the solution of the above table against the pipe flow 

Equation (4.18) for a general Bingham fluid. However, cannot be obtained from Equation 

(4.18) directly, so it is instead preferable to substitute in our estimate of into the equation 

to yield an estimate of F, which can be compared to the original value of F = 100.0000 s'1 . 

Firstly, (10 + ̂ 175.986) Pa = 23.2660 Pa. Furthermore, = 10 Pa, 1 Pa s and 

0.5, so evaluating Equation (4.18) using a pocket calculator yields an estimate of F* = 

100.0000 s" 1 , which is wholly valid. A more systematic validation of the algorithm will be 

discussed in Subsection 5.1.4.

For an implicit shear flow function, both Equations (5.7) and (5.8) become implicit. 

However, the extra derivative term of Equation (5.8) now makes it less appealing to use as 

an algorithm than Equation (5.7). To solve Equation (5.7), Runge-Kutta Fehlberg's method
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is used (as with Equation (5.8)). For the nested method required to solve Equation (5.2) for 
values of 7^ and (see Figure 5-2), Muller's bracketing method (A.4) is used. Being 
nested, the tolerance of Muller is naturally reduced, using the factor ten. The starting value 
needs consideration as the solution variable is now wall shear stress rather than wall shear 
rate as in the explicit case. F made a good starting value for 7^ , but it may not be so close 
to a solution for However, the problem is overcome by numerically solving the shear 
flow function at 7^ = F to obtain an initial value for that is reasonably close to the 
solution. As with the explicit case, Equation (5.6) can then be numerically integrated at 
7rt = F to yield the corresponding value of F0 . Analogous to the explicit case, the resulting 
initial value (r0 , (r^)0 ) would satisfy Equation (5.7) to within the required tolerance.

As an example of the implicit case, the Meter model (2.13) can again be used with the 
following arbitrarily chosen values: /x0 = IPas, ̂  = .001 Pas, 10 Pa, 1.5. Using 
the algorithm with a pseudo-shear rate of F = 100 s"1 , and a relative tolerance check of 
e = 5 x 10~5 , Fehlberg's method takes just one step to reach the solution (see table below).

0
1

r/s~l

92.7802
100.0000

VPa

34.9232
36.9745

This solution needs some verification. A first order approximation of F for the Meter fluid 
is given by Equation (4.20). Placing our estimate of which is 36.9745 Pa into Equation 
(4.20) yields F* « 99.9996 s"1 (an approximation based on an estimate) which agrees with 
F to four significant figures. One might have expected the first order approximation to fare 
worse than this, but as mentioned in the previous subsection, this approximation is accurate 
for small //x0 . For this example, the algorithm required 116 evaluations of the shear flow 
function, which compares to 52 evaluations for the general Bingham example.

For any test problem in general, the implicit case typically makes eighty to one hundred and 
fifty evaluations of the shear flow function about three times as many as the explicit case. 
Suspicions arose as one would not expect the implicit case to fare three times as badly: both 
algorithms use Fehlberg's method and both algorithms require method nesting (forward 
differencing for the explicit case and root-finding for the implicit case). However, it should 
be noticed that Equation (5.8) is dimensionless doubtlessly making the equation well-behaved 

in terms of convergence.

As a point of interest, if the derivative term of Equation (5.8) is known by the end user, it 
would show more promise for an algorithm than Equation (5.7). Is it possible to obtain the
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Evaluate RHS 
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5-2 The algorithm to predict the 
pressure gradient for the laminar flow of a 
time-independent, non-Newtonian, viscous 
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body of which is shown on the right) is 
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derivative term of Equation (5.8) from Equation (5.2)? Applying the chain rule to the 

derivative with the observation that the total differential of the implicit shear flow function 

is zero, dG = 0, we have

So the answer is yes, the user would need to only specify the partial derivatives of the shear 

flow function with respect to rate of shear and shear stress.

5.1.3 Velocity Distribution

Subsection 4.2.1 gave a general discussion of fully-developed velocity profiles: for 

Newtonian fluids, the velocity profile is parabolic; for pseudoplastic fluids, the velocity 

profile is flatter than a parabola, whereas for dilatant fluids, the velocity profile is sharper. 

It was also asserted that a fluid with a yield stress always (at least theoretically) flows with 

an unsheared solid plug core. The radius of the solid core is surprisingly simple to 

formulate. From Equation (4.5), the linear relationship between and is

(5-10)

therefore the radius of the plug core is given by

= (5.11)

For the sheared region of fluid where , the velocity distribution is calculated from the 

definition of the rate of shear, 7 = -dw/dr. Assuming 0 (no slippage against the pipe

wall), this integrates to give

[-ydr. (5.12)

For the core region of the fluid where , the velocity profile is flat and the velocity has 

constant maximum value the value of Equation (5.12) evaluated at 

If the shear flow function is of the explicit type, then the required relationship between 7 

and of Equation (5.12) is given via Equations (5.1) and (5.10). However, the integrand 

of Equation (5.12) contains the inverse of the shear flow function 7 = Since a 

similar problem arose with the mean cross-sectional velocity case, this problem can be dealt 

with in much the same way. Equation (5.12) can be rearranged as

dr .
f-^ 
J d7
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which integrates by parts to give

frd-y.

This velocity distribution would be of practical use (for velocity profile plots etc) at a set of 
equally spaced radial points. Since the initial condition = 0 is at the pipe wall, the 

following 'discretisation' of from the wall to the centre line can be chosen:

r = 5 = 12 (5-14)

Let us assume that the first points of the distribution define the sheared region of fluid, 
whereas the subsequent + 1 to points of the distribution define the plug core. Point 
values of Equation (5.13) are given by

From this equation, it can clearly been seen that the range of integration for the 1th point 
to 7j? ) covers much of the range of integration for the 5th point (7, to 7^). From, a 

computational viewpoint, it would be much more economical to calculate an 5th integral for 
the range 7, to 7, _ (noting that is less than 7, _ ) and augment this value to a running 
total. Effecting these changes to the equation above yields

- - /  5 = 2,..,r, (5.15)

where
T, - i

Equation (5. 15) requires an inversion of the shear flow function for the pipe wall value 7 
and (considering the relationship between and defined by (5. 10)) for each 7^ . For these 
inversions, Muller's bracketing method (A. 4) is used.

Consider Equation (5. 16). For any value of 5, the region of integration is likely to be small. 
On this premise, it would be logical to suggest that the discrete points of the integration 
method should match those of the velocity distribution. However, since the integration 
method would become inextricably embedded within the velocity distribution scheme, this 
would not be a good idea from a design viewpoint. For the algorithm to be modular, 
flexible, and easy to understand, the integration should be performed independently on each 
and every interval of the velocity distribution. Using the test data, adaptive versions of the 
Trapezium, Simpson and Boole methods (A.I)  two-, three-, and five-point methods 
respectively  are compared. For a distribution of many points  hence small intervals  a
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powerful integration method is found to be unnecessary, whereas for a distribution of few 

points hence large intervals a powerful method is found to be desirable. As it transpires, 

this is no problem as the integration methods (as discussed in (A.I)) initially check using 

lower-point methods. Our implementation of adaptive Simpson's method, for instance, does 

an initial check of two Trapezium estimates against a Simpson estimate. For Boole's 

method, a further initial check of Simpson against Boole is conducted. Such initial checks 

provide the necessary computational economy for integration over relatively small intervals. 

It has thus been found that our implementation of Boole's method is well suited to any given 

number of velocity distribution points. For distributions of few points, the algorithm 

typically requires about fifty to eighty shear flow function evaluations, whereas for 

distributions of many points, the number of shear flow function evaluations is about seven 

to ten times the number of distribution points, and there is no considerable difference in the 

efficiency of the algorithm for any particular test problem. The final version of the 

algorithm is illustrated by Figure 5-3.

The velocity profiles of Figure 4-2 were all created using this algorithm by defining each 

curve as a series of straight lines joining a set of closely spaced points. As an example, 

consider the general Bingham fluid r = 10 + Vr with a mean cross-sectional velocity of 

1ms'1 and a pipe of diameter of 0.04m. The numerical estimates can be 

compared with the analytical values of Equation (4.29). Taking a relative tolerance check 

of e = 5 x 10~5 and 11 profile points, the following table gives the estimates in the 

starred column and the actual values in the far right column.

£

1

2
3
4
5
6
7
8
9

10
11

r 5 /mm

20.
18.
16.
14.
12.
10.

8.
6.
4.
2.
0.

u*(r s )lms~ l

0.000000
0.552613
0.934939
1.178344
1.314194
1.373857
1.388716
1.389164
1.389164
1.389164
1.389164

M(r,)/ms-

0.000000
0.552613
0.934939
1.178344
1.314194
1.373856
1.388696
1.389109
1.389109
1.389109
1.389109

There is a plug core of about 7 mm which explains why the last values are the same. The 

numerical estimates are all accurate to the required four significant figures, but notice that 

the estimates become less accurate further from the wall where error from the numerical 

integration accumulates.
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Evaluate (5.4)

Laminar 

Velocity Distribution

The algorithm to predict the 
velocity distribution for the laminar flow of 
a time-independent non-Newtonian viscous 

fluid through a straight pipe.

Evaluate (5.1)

Calculate (5.16)

Boole's method

Evaluate 

integrand of (5.16)

Evaluate (5.1) Evaluate (5.10)
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For implicit shear flow functions of type (5.2), either Equation (5.12) or (5.13) can be used 

for an algorithm. However, via Equation (5.10), they are both handicapped with implicit 

integrands so, from this perspective, there is nothing to choose between them. Analogous 

to the implicit case of mean cross-sectional velocity, algorithms can be developed for both 

equations to compare their efficiencies. The algorithm for Equation (5.13) is an extension 

of the explicit case. Boole's method is used for the integration, and Muller's method is used 

to solve Equation (5.2) for values of 7 or r. Since Muller's method is nested, the tolerance 

is, as usual, reduced by a factor of ten. Tested on some data, the algorithm based on (5.12) 

proves to be about twice as efficient as the algorithm based on (5.13) and, much as expected, 

two and a half times less efficient than the explicit case.

As an example, the Meter model (2.13) can again be used with the following values: 

Mo = IPas, /*« = .001 Pas, rm = 10Pa, = 1.5, and compared to the first order 

approximation given by Equation (4.30). Taking a pipe diameter of 0.04 m, a mean 

cross-sectional velocity of 1 m s'1 , and a relative tolerance check of e = 5 x 10'5 , the 

following table compares the numerical estimates (marked with a star) with the first order 

approximations.

s

1
2
3
4
5
6
7

8
9

10
11

r s /mm

20.
18.
16.
14.
12.
10.

8.
6.
4.
2.
0.

u*(r,)/ms' 1

0.000000
0.405299
0.754099
1.048914
1.292422
1 .487504
1.637295
1.745267
1.815375
1.852335
1.862499

M^/m s~

0.000000
0.405297
0.754095
1.048908
1.292416
1.487496
1.637286
1.745258
1.815364
1.852325
1.862479

The values all compare to four significant figures, which is more than one might expect when 

comparing an estimate with a first order approximation. As mentioned earlier in the chapter 

however, such first order approximations are good for small /*

For completeness, Figure 5-4 compares the general Bingham profile with the Meter profile 

generated from the above two tables. However, the smooth curve appearance has been 

achieved using twice as many points. Note that these profiles are based on two completely 

different hypothetical shear flow models, but they could both conceivably represent thick
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sludges. The profiles are of comparable size, as one would expect, since the mean cross- 
sectional velocity is 1 m s" 1 in both cases.

V)

Laminar 
flow velocity profiles 
of a general Bingham 
fluid and a Meter fluid.

10.0 

radial position, r/mm

20.0

5.1.4 Scope of Use

The limitations of an algorithm are difficult to define since many of the variables and 
parameters are interdependent. The general Bingham model (2.10) is a particular example 
of an explicit shear flow function, and given as

This is an empirical relation, and being a good model of any time-independent, non- 
Newtonian, viscous fluid makes it an excellent choice for validation. Section 4.2 discussed 
the equations for laminar flow of a general Bingham fluid (and its special cases) through a 
straight pipe; they are straightforward, and can be evaluated directly, or using a simple 
iterative method.

The second validation procedure requires inverting a prediction to see if it reverts back to 
its original value. For instance, a mean cross-sectional velocity value can be used to make 
a pressure gradient prediction which, in turn, can be used to make a mean cross-sectional 
prediction which is then compared to its original value.

After some exploratory tests using the two validation methods, the scope of the algorithms 
are presented in Table 5-1, but there may be some absurd combinations of these values that 
may not actually meet the required tolerance. Since the usable parameter ranges are so 
extensive, they would easily encompass any real life problem. The algorithms may seem
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excessively robust for their application, but this is not the case. An objective of this research 
is to perform extensive parameter estimation on the data discussed in Chapter 3, and the 
corresponding method may require the parameters to wildly fluctuate before an optimum 
solution is reached.

Usable ranges of the parameters for the laminar flow algorithms

Parameter Range

10-3 -103

(AP/L)/Pa m-1 1(T3 - 109
10~3 - 103

0-106
IQ-6 - 106

0.1-2.0

The efficiency of an algorithm is defined as the total number of shear flow function 
evaluations made by the algorithm. Table 5-2 gives the order of magnitude of efficiency for 
each algorithm.

5-2 The number of the shear flow function evaluations in orders of magnitude 
made by each algorithm.

Estimate

Mean velocity /m s"1
Pressure grad/Pa m'1
Velocity dist'n/m s'1

Explicit

10 - 102
10 - 102

102

Implicit

102
102
102

5.2 Critical Flow Modelling

Critical flow is the upper bound of laminar flow; the point at which laminar flow becomes 
unstable. As discussed in Chapter 1, the end-user must be allowed to specify their own 
choice of shear flow relation for an algorithm, so a suitable choice of critical flow model 
needs to be selected. From Section 4.3, this rules out any model derived for a specific fluid 
type, such as the Reynolds number of Slatter derived for a general Bingham fluid (see 
Equation (4.45)). The clear favourite is the Ryan and Johnson stability parameter(54) as not 
only is it completely general, but as discussed at the beginning of Section 4.3, has been 
widely tested on many fluid types.
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Unlike laminar flow, critical flow is a two-variable problem; for a given pipe diameter and 
fluid type, the critical flow conditions occur at a particular mean cross-sectional velocity and 
pressure drop. As with the laminar flow case, the shear flow function is either of the explicit 
form

<5 ' 17)

or the implicit form
G(-y, r) = 0, <5 - 18)

and will be treated as separate cases.

Critical flow predictions of non-Newtonian fluids can be made using the Ryan and 
Johnson (54) general stability parameter, which was discussed in Section 4.3. For straight 
pipe flow, this is

r(r) = (5 

where «(r) is the velocity distribution, f is zero at the pipe wall and at the pipe centre line, 
but reaches a unique maximum value Z at some radial point. Z may be used like a 
generalised Reynolds number whose is 808: if Z < 808, the flow is laminar, 
whereas if Z > 808, the flow is non-laminar. By basic turning point techniques, the radial 
point at which {" has a maximum is the solution of the equation

= 0, (5.20) 
dr

which can be substituted into Equation (5.19) to obtain Z.

The stability parameter should give results consistent with the Reynolds number (4.7) for 
Newtonian fluids, and should also be consistent with, for instance, the Reynolds number for 
power law fluids (4.38) at critical flow (4.39). Such equations are discussed in Section 4.3 
and are special cases of Equation (5. 19); they will be useful for checking the validity of any 
algorithm based on Equation (5.19).

5.2.1 Critical Rate of Shear

A generally more useful prediction to the one discussed so far is the the 
wall stress that has a Z value of 808. This is the inverse problem where instead of obtaining 
Z for a given , is obtained for a given Z. In the former case, Z would be calculated for 
a particular , then compared to its critical value 808, but in the latter case, Z would be set 
to its critical value in order to obtain the critical There is an important distinction here 
since the first sort of prediction depends on a particular flow and is compared with a critical 
flow criterion, whereas the second sort of prediction is derived at critical flow conditions 

only.
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Critical wall stress could accordingly be found by numerically solving Equation (5.19) 
for whilst, for each iteration, solving Equation (5.20) for Since this approach would, 
however, yield a computationally expensive algorithm, the problem needs to be viewed from 
a different perspective. Equations (5.19) and (5.20) can be validly regarded as a pair of two 
equations with two unknowns; the unknowns being and Moreover, since Equation 
(4.5) relates to shear stress through the simple expression

f - (5- 21)
the two independent variables can both be regarded as stress terms, namely shear stress at 
the pipe wall and shear stress at a radial point. This observation enables the two equations 
to be perceive as functions of shear flow variables only. Worthwhile though this observation 
is, for explicit shear flow functions of type (5.17), there is the unnecessary complexity of the 
equation pair expressed in terms of stresses. The problem is that the rate of shear variables, 
7 and 7^, of the equation pair are shear flow function inversions. After giving the problem 
some thought, the equation pair can be transformed to functions of the rate of shear 
variables, 7 and 7^, themselves. Setting up Equations (5.19) and (5.20) as a homogeneous 
pair of the form

f(7) = 0, (5 - 22>

we have
.,. . . P"(7, 7/?)*7 Rns /i(7, 7*) =         - 808,

(5.23) 

, 7*) = «(7, 7*) - T2-.

The velocity distribution, w, is given by Equation (5.13), and arranged in terms of the shear 
rate variables, is

(5.24)

The above equations are thus rid of the shear flow function inversions that afflicted the 
original equations. Equation (5.24) is particularly fascinating as the lower and upper limits 
of integration are the two independent variables; the integral varies at both limits! To see 
if these equations could be simplified further, all conceivable transformations were applied 
with the result that no transformation could be found where, for instance, one of the 
variables could be directly eliminated. It must therefore be assumed that the equations cannot 
be further simplified.

To solve Equation (5.22), general Newton's method (A.5) is used. Pertinent to our problem, 
this method becomes

[m + 1] = [m] _ y-1 (^fftW), (5.25)
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where / is the Jacobian matrix whose elements are

_ P*

~       

(5.26)

a/2 . 2 d2r ~. dr
721 = -r = -7   -r - 37    ,d-y2

There is an assortment of derivatives of the shear flow function to estimate. Finite 

differences are chosen whose relative accuracy converges with the solution. These are

__, 
A-y[m]

A ;n
(5-27)

^
A7[m] A7[/" " 1] (A7[m]

where A7[m] = 7[m] - 1] , and similarly for 7^ and 

For the mth iteration of Newton's method, Equation (5.24) requires integration of r from 

to 7fl [m] . Hindsight shows that there is actually no a need to integrate over the entire range, 
but only the difference from the m - 1th interval (see Figures 5-5 and 5-6). The mth integral 

value is thus calculated as

Boole's method (A.I) is used for the integration with a relative tolerance check, and since 

the method is nested within Newton's method, its tolerance is fittingly reduced by a factor 

of ten. It has already been pointed out that the two limits of integration are the solution 

variables. This means that, in general, the region of integration of Equation (5.28) becomes 

relatively smaller as convergence of Newton's method is met. To make the computation 

equivalently less intensive, a two-pronged attack is made on the problem: firstly, the 

convergence criterion of the integration is set to be relative to the current running total /m] , 

and secondly, our implementation of adaptive Boole's five-point method makes initial 

estimates using the Trapezium two-point method and Simpson's three-point method; simply 

stated, low powered methods are used for the relatively small intervals of integration.
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Evaluate (5.28)

Calculate left 
integral of (5.28)
Boole's method

Calculate right 
integral of (5.28)
Boole's method

Evaluate (5.17) Evaluate (5.17)

5-5 A schema 
representing the converging 
limits of integration of 
Equation (5.24) to the 
critical flow solution 
(7c,<T*)c)ofEq's(5.23).

The algorithm 
of Equation (5.28) where 
the total integral / is updat- 
ed by the new integrals 
and 72

The final version of the algorithm is illustrated by Figure 5-7 overleaf.

As an example, consider again the flow of the general Bingham fluid T = 10 + Vr of density 

1000 kg/m3 through a pipe of diameter = 0.1 m. Using a relative tolerance check of 

e = 5 X 10"5 , the scheme takes 9 iterations to reach convergence (see table below). The 

final wall rate estimate gives a wall stress estimate of )c* = 29.0584 Pa and a mean cross- 

sectional velocity estimate of 2.83919 m s"1 .

m
7/s' 1

0
201.431 
201.834

1
201.500 
333.981

2
195.812 
358.125

3
197.715 
363.078

4
196.959 
363.147

m
7/s- 1

5
197.225 
363.152

6
197.123 
363.153

7
197.160 
363.153

8
197.146 
363.153

9
197.151 
363.153



Estimate 

derivatives of (5.26)

See Fig. 5-6

5-7 The algorithm to predict the mean cross-sectional velocity for the critical flow 

of a time-independent, non-Newtonian, viscous fluid through a straight pipe.



The estimates can be checked against the critical flow equations for a general Bingham 
fluid Equations (4.40) to (4.43). Normally an iterative scheme would be used to solve 
Equations (4.42) and (4.43) for f c = , and this value would then be substituted into 
Equation (4.41) to derive a critical Reynolds number. However, by substituting our 
estimates for and £c into the four equations, each dimensionless pair should have 
comparable values. These comparisons are presented in the table below where the estimates 
are given stars. The Second Hedstrom number is therefore a true value.

Equation Estimate

(4.40) Re* = 3825.97
(4.41) Rec* = 3825.95
(4.42) He* = 10000.00
(4.43) He = 10000.00

It can be seen that the values compare comfortably to the required four significant figures, 
which is wholly acceptable. For this particular example, the algorithm made 128 evaluations 
of the shear flow function and is the type of efficiency achieved for other test cases as well. 
A more systematic validation of the algorithm will be discussed in Subsection 5.2.3.

For implicit shear flow functions of type (5.18), no simpler way of dealing with the problem 
can be found than by extending the explicit case. Whereas values of and can be 
evaluated directly from Equation (5.17), they must be solved for when using Equation (5.18). 
For this, Muller's bracketing method (A.4) is used. This involves method nesting of up to 
three levels, so the relative tolerance of each successive level is reduced by a factor of ten.

As an example, consider again the Meter model (2.13) with the following values: 
= IPas,^ = -001Pas,rm = 10Pa,0 = 1.5. Take a density of = 1000 kg/m3 , a pipe 

of diameter 0.1 m, and a relative tolerance check of e = 5 x 10'5 . For the Meter 
model, there is no known Ryan and Johnson critical flow equation of a simplified form. 
Nevertheless, there are other clever ways of checking the algorithm. Although the algorithm 
solves for shear rate and wall rate, rather than examine the convergence of these two 
variables, the corresponding stability parameter ftr) and its derivative df/dr can be examined 
instead; by virtue of Equations (5.19) and (5.20), they should converge to 808 and zero 
respectively. Note that the stability parameter is not often used in this basic form.

The table overleaf shows that the variables do indeed converge as anticipated. The 
magnitude of the derivative decreases to a point where it is relatively much smaller than at 
first The radial point of instability is also given; its final estimate is about two-thirds of the
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m

0
1
2
3
4
5
6
7
8

r/mm

49.9275
42.1450
34.6571
33.1338
32.6367
32.7237
32.6933
32.7004
32.6984

M

6.082
629.132
685.811
805.206
807.358
807.976
807.998
808.000
808.000

dr/dr

-8.37267 x 104
-9.65606 x 103
-9.19683X10 3
-6.62480 x 102
4.42269 x 10 1

-3.17143X10 1
6.87284 x 10°

-2.00439 x 10°
4.90311 x 1Q- 1

way out from the pipe axis. In terms of efficiency, the algorithm makes 431 evaluations of 
the shear flow function which compares to the 128 evaluations made for the general Bingham 
model. In general, the implicit case requires about three times as many evaluations as the 
explicit case.

5.2.2 Critical Mean Cross-Sectional Velocity

So far, the critical rate of shear predictions have been discussed; values that are generally 
impractical as they stand. Of particular interest is the critical mean cross-sectional velocity 

, and since critical flow is laminar flow at the upper bound, can be calculated from 

Equation (5.6) at (T/?)C .

5.2.3 Scope of Use

An indication of the scope of the critical flow algorithms is, like the laminar flow case, 
accomplished using the general Bingham shear flow function (2.10),

Section 4.3 discussed the equations for critical flow of a general Bingham fluid (and its 
special cases) through a straight pipe; they are fairly straightforward, and are suitable for 
validating the critical flow algorithms. After some exploratory analysis, the usable parameter 
ranges are extensive and are given by Table 5-3, but some absurd combinations of these 
values may not actually meet the required tolerance. Critical flow conditions are not always 
possible for a dilatant fluid (where 1) since shear thickening may develop faster than 

flow instability.
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5-3 Usable ranges of the parameters for the laminar flow algorithms

Parameter Range

1Q-3 - 103

/Pa 0 - 103
10-6 - 103

0.1-1.0

The efficiency of an algorithm is defined as the total number of shear flow function 
evaluations made by the algorithm. Table 5-4 gives the order of magnitude of efficiency for 
each algorithm.

The number of the shear flow function evaluations in orders of magnitude 
made by each algorithm.

Estimate Explicit Implicit

Mean velocity/ms'1 i 2 
Pressure grad/Pa m" 1 /

5.3 Turbulent Flow Modelling

Many models have been developed for the turbulent flow of non-Newtonian fluids through 
a straight pipe. As discussed in Chapter 1, there is a need for a turbulent shear flow 
function, so this rules out the friction relations discussed in Section 4.4 such as Dodge- 
Metzner(21) and Torrance(27). The model proposed by Hanks(26) was suggested as a good 
choice since it is based on few underlying assumptions, and is suitable for both transitional 
and turbulent flow. In fact, the widely used Torrance relation is based on the same mixing 
length model as Hanks but without the Van Driest(46) wall damping factor, and several 
further simplifying assumptions were made when integrating the velocity profile. A factional 
relation can still be obtained from the model of Hanks, so a comparison with other fractional 

relations will be discussed in Chapter 7.

From the viewpoint of creating an algorithm, there is a continuity in basing both the laminar 
and turbulent flow models on a shear flow function, but there is a difference of form; the 
turbulent flow model includes a term given as a function of wall distance. 
Consequently, the laminar flow algorithms are not wholly applicable to the turbulent flow 
case a difficulty that is to be addressed. The main problem with the model of Hanks is that



it is restricted to general Bingham fluids only. Yet our objectives are to allow for any time- 

independent non-Newtonian viscous fluid, so a way of generalising the model will be 

considered.

The turbulent shear flow function, Equation (2.24), is the sum of the laminar and turbulent 

stresses, given as
+ (5.29)

The laminar stress term is given from the laminar shear flow function which is, as usual,

either of the explicit form
(5.30)

or of the implicit form
G(7, 0, (5.31)

though in this case, the subscript has been used to signify a laminar stress. Since Equation 

(5.29) is a shear flow function, (4.11) which was used for the 

laminar flow modelling is still applicable. The equation, which relates the mean cross- 

sectional velocity to the pressure gradient, is given by

r = 4 (5 - 32)

where is the shear stress at the pipe wall,

J-£-' /c

and F is a pseudo-shear rate,

A full discussion of the model proposed by Hanks was given in Section 4.4. As noted 

already, the model is restricted to general Bingham fluids with the shear flow function (2.10),

namely
(5.35)

This defines the laminar stress term of Equation (5.29), though in our case, any equation of 

the form (5.30) or (5.31) would be permitted. Now, the turbulent stress term of Equation

(5.29) is given as
7 r

where / is a mixing length defined as

r = p, (5-36)

= 1 --! i - (5.37)
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and

, _ .ox p. 35)
HeG5)

is relevant to general Bingham fluids only as contains parameters of Equation (5.35) 
as does its critical value The parameter is empirical, and Hanks defined to be 
a relation of both the consistency index «, and a general Bingham Hedstrom number 
Since is empirical, it has the advantage in that specific relationships for can be derived 
for specific fluid types. An objective of this research is to develop relationships for based 
on the data of Chapter 3.

Since the turbulent stress component (5.36) contains the parameters and of the 
general Bingham function, the parameters can be rewritten more generally as functions of 
Equations (5.30) and (5.31). If the shear flow function is of the explicit type (5.30), the 
parameters of Equation (5.35) can be expressed as the following functions of 7:

(5 ' 39)

where the derivative term dg/d7 is simply the derivative of the shear flow function. If the 
shear flow function is of the implicit type (5.31), the derivative term dg/d7 is no longer 
relevant, but since the total differential of the implicit shear flow function is zero, dG = 0, 
the chain rule can be applied to give an equivalent partial derivative term. The general 
Bingham parameters of Equation (5.35) can therefore be rearranged as the following 
functions of 7 and 

G(0, 0,

r) = -_r_^/

where the derivatives are the partial derivatives of the shear flow function with respect to rate 

of shear and shear stress.

5.3.1 Mean Cross-Sectional Velocity

For turbulent flow predictions of mean cross-sectional velocity (7, Equation (5.32) can be 
used. For known wall stress , close examination of Equations (5.29) to (5.31) and (5.36)
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reveal that the turbulent shear flow function is implicit, and of the form

#(7, r) = 0. <5 - 41)

This is true regardless of whether the laminar stress component is explicit or implicit. The 

equations are therefore of the same form as the laminar flow equations for the implicit case 

discussed in Subsection 5.1.1. Referring back to the laminar flow case, two algorithms were 

compared, one based on the flow equation given here as Equation (5.32), and the other based 

on a rearrangement of it, namely Equation (5.6). For the turbulent flow case, the same 
comparisons can be made.

For the integration required of these equations, Simpson's method (A. 1) is used. Since the 

integrands of these equations are functions of 7 and r, Muller's bracketing method (A.4) is 

used to solve Equation (5.41) for values of 7 or r as necessary. This method is a nested 

method as Equation (5.41) is solved for each and every integrand evaluation required of 

Simpson's method. The tolerance of Muller's method is therefore reduced over Simpson by 
a factor of ten.

The derivative terms of Equations (5.39) and (5.40) also need considering. The derivative 

term of Equation (5.39) is the derivative dg/d7 of the shear flow function (5.30). If this is 

undefined, then the following forward difference formula can be used

+ A-y) -
(5.42)

The derivative terms of Equation (5.40) are the partial derivatives dG/dr of the 
implicit shear flow function (5.31). If these are undefined, then the following forward 

difference formulae can be used:

^ G(7 + A-y, r) - r)

^ A^ (5.43) 
_ G(7, r + Ar) - G(-y, r)

dr Ar

The computational efficiency of each algorithm is measured by the number of evaluations of 
the turbulent shear flow function (5.41). One would expect the efficiencies of the two 
turbulent flow algorithms to differ by a similar relative amount as their laminar flow 

counterparts. This is not borne out by observation. For the turbulent flow case, an 

algorithm based on Equation (5.32) proves significantly more efficient than an algorithm 

based on the rearranged version of it, whereas for the laminar flow case, the converse was 

true. This is most likely to be due to the nature of the shear flow functions used; for the 

laminar flow case, the function always decreases for an increasing rate of shear, whereas for 

the turbulent flow case, the function may become anything up to a quadratic in rate of shear



76

AP/L

Evaluate (5.33)

Turbulent Mean 
Cross-Sect. Velocity

Evaluate (5.32)

Calculate 
integral of (5.32)
Simpspn's method

Evaluate 
integrand of (5.32)

Evaluate (5.34)

Evaluate (5.30)

5-8 The algorithm to 
predict the mean cross-sectional 
velocity for the turbulent flow of a 
time-independent, non-Newtonian, 
viscous fluid through a straight 
pipe.

Evaluate (4.66) Evaluate (5.37)



(see Equation (5.36)). The final algorithm, as illustrated by Figure 5-8, typically requires 
about three hundred evaluations of the turbulent shear flow function, though this depends on 
the nature of flow; for near-critical flow, the algorithm requires about one hundred 
evaluations, whereas for fully-developed turbulent flow, the algorithm requires about eight 
hundred evaluations.

As an example, consider the flow of the usual general Bingham test case fluid, 10 
through a pipe. To make sure that turbulent conditions are met, take a large wall stress of 

100 Pa and a small pipe diameter of 0.04 m. These conditions give a critical wall stress 
of about 42 Pa indicating that the turbulent flow is fairly well developed. Using a relative 
tolerance check of e = 5 x 10~5 , the mean cross-sectional velocity estimate 
8.22619 m s'1 is given after 480 shear flow function evaluations. There is no direct way of 
validating this estimate, but bear in mind that this scheme is essentially the same as the 
laminar flow scheme for implicit functions that has already been validated. However, the 
scheme of the next subsection is the inverse of this scheme, so the estimate of from this 
scheme can be used by the next scheme to calculate an estimate of which can be 
compared to its original value of 100 Pa. This idea will be explored in the next subsection.

5.3.2 Pressure Gradient

A turbulent flow prediction of the pressure gradient is essentially the inverse of a velocity 
prediction. The velocity prediction algorithm, as discussed in the previous subsection, 
estimates F from Equation (5.32) given wall stress . The pressure gradient algorithm must 
now Eq. (5.32) for given T. In this case, the variable features in the turbulent 
shear flow function, Equation (5.41) now making it a function of three variables of the form

0. (5.44)

An algorithm to solve Equation (5.32) for could be derived by attaching a front-end, root- 
finding method to the mean cross-sectional velocity algorithm. Since there are already two 
levels of method nesting for the velocity algorithm, a third level would produce an inefficient 
algorithm. For the laminar flow case, the Mooney-Rabinowitsch equation (a differential 
equation version of (5.32)) was used. However, since the turbulent shear flow function 
above is also a function of , there is no Mooney-Rabinowitsch equivalent to this problem. 
After much investigation, nothing better can be offered than the three-tiered scheme.

Muller's method (A. 4) is used as the front-end solver to the mean cross-sectional velocity 
algorithm. Incidentally, Muller's method is also used in the body of the algorithm, so it 
becomes nested within itself. The applications are different though since the method is used 
for root-finding in the mean cross-sectional velocity algorithm, and for inversion in the front- 
end solver. For an overall relative tolerance of 5 X 10"5 , the algorithm typically requires
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three thousand evaluations of the turbulent shear flow function. As with the mean cross- 

sectional velocity algorithm, efficiency is better for near-critical flow (making about one 

thousand function evaluations) than for fully-developed turbulent flow (making several 

thousand function evaluations). It should be noted that in terms of computer efficiency, the 

algorithm never took more than a second or two on an IBM compatible PC with a Pentium 

processor (several seconds on a 386/387 processor). For a single prediction, this caused no 

problem, but for multiple predictions or large-scale parameter estimation (such as of the data 

presented in Chapter 3) efficiency becomes a priority. The final version of the algorithm is 

illustrated by Figure 5-9.

The example of the previous subsection can be validated using this scheme by inverting the 

mean cross-sectional velocity estimate of the previous scheme to see if the original wall stress 

value is recovered. Just to recap, the previous example used the general Bingham model 

10 + Vr with a pipe diameter of 0.04 m. A wall stress value of 100 Pa yielded a 

mean cross-sectional velocity estimate of 8.22619 m s-1 . Now using the same model 

and pipe diameter with this scheme, taking a relative tolerance check of e = 5 x 10"5 and 

a mean cross-sectional velocity of 8.22619 m s'1 yields a wall stress estimate of = 

100.0005 Pa. This matches the original value to within the required four significant figures 

taking 4787 evaluations of the shear flow function to do so.

Evaluate (5.34)

Turbulent 
Pressure Gradient

Evaluate (5.32) 

(See Fig. 5-8)

Evaluate (5.33)

The algorithm to predict the pressure gradient for the turbulent flow of 
a time-independent, non-Newtonian, viscous fluid through a straight pipe.
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5.3.3 Velocity Distribution

Consider the velocity distribution of the turbulent flow of a fluid through a straight pipe. 

Using the turbulent shear flow function proposed by Hanks (26), much of the laminar flow 

analysis of Subsection 5.1.3 remains applicable. A fluid with a yield stress theoretically 

flows with an unsheared solid plug core, the radius of which is given by Equation (5.11). 

For the sheared region of fluid, , the velocity distribution was given by Equation 
(5. 12) as

= Udr, (5.45)
r

where = 0. To tie this equation in with the shear variables 7 and T, there is a linear 
relationship between r and r, which was given by Equation (5.10) as

i   

Examination of Equations (5.29) to (5.31) and (5.36) show that, in this case, the turbulent 
shear flow function is of the implicit form defined by Equation (5.41). This, again, reduces 
the analysis to that of laminar flow for implicit shear flow functions. However, the laminar 
flow algorithm worked best for a rearrangement of Equation (5.45), but for the turbulent 
flow case, an algorithm based directly on Equation (5.45) shall also be considered.

Our objectives are to represent the velocity distribution at a set of equally spaced radial 

points. These are given by

= *J^, 5 = 1,2,_,W. (5.47)

Assume that the first points of the distribution define the sheared region of the fluid, and 
the subsequent 1 to W points of the distribution define the solid plug core. Point values 

of Equation (5.45) are therefore given as

It is clear that the regions of integration overlap for each successive so we instead use

(5.48)

For this equation, is linearly related to shear stress through Equation (5.46), whereas the 

integrand which is the rate of shear 7 is related to r through the turbulent shear flow 

function (5.41).



Turbulent 
Velocity Distribution

Invoke (5.47)

Discretisation

over 

Evaluate (5.48)

r

Calculate 
integral of (5.48)
Boole's method

Evaluate 
integrand of (5.48)

Evaluate (5.46) Solve (5.41)

Muller's method

Evaluate (5.41) 
(See Fig. 5-8)

The algorithm to predict the velocity distribution for the turbulent flow 
of a time-independent, non-Newtonian, viscous fluid through a straight pipe.
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For the integration, Boole's five-point method (A. 1) is used the same implementation as for 

the laminar flow case. This has a computational safeguard for relatively small intervals by 

using initial tests of Trapezium two-point and Simpson three-point estimates. For the 

integrand, Muller's bracketing method (A.4) is used as a nested method to solve the turbulent 

shear flow function for values of 7. Using a relative tolerance check of 5 x 10"5, the 

algorithm requires a few hundred evaluations of the turbulent shear flow function. For near- 

critical predictions, the algorithm proves more efficient, requiring a couple of hundred 

evaluations, whereas for fully-developed turbulence, the algorithm requires about one 

thousand evaluations. The final algorithm is illustrated by Figure 5-10 on the previous page.

There is no simple way of validating this scheme, but it is essentially the same as the laminar 

flow scheme for implicit functions which has already been validated. The turbulent flow 

velocity profiles of Figures 4-4 and 4-5 were both created using this scheme by defining each 

curve as a series of straight lines joining a set of closely spaced points.

5.3.4 Scope of Use

An indication of the scope of the turbulent flow algorithms is again accomplished by using 

the general Bingham shear flow function (2.10),

+ 

Section 4.4 discussed the equations for the turbulent flow of a general Bingham fluid (and 

its special cases) through a straight pipe. On the whole, the solution procedure to these 

equations would be no different from the general case under consideration so they would be 

of limited use for validation. There are, however, useful exceptions such as the Bingham 

turbulent flow function (4.59) which is quadratic in 7. The second validation procedure (as 

discussed for laminar flow) requires inverting a prediction to see if it reverts back to its 

original value, and is particularly useful in this case.

Using the validation procedures, Table 5-5 gives a general idea of the usable ranges of 

parameters. Although the ranges are not as extensive as for the laminar and critical flow 

algorithms, they are generally suitable for any practical problem. It would be true to say that 

the required tolerance is generally met, and if not, a reasonably accurate answer is almost 

always given. Some inaccuracy does occur for a small percentage of predictions, probably 

because of the inherent complexity and generality of the algorithms. Anyhow, an end-user 

could easily validate their own prediction using the inversion method.

The efficiency of an algorithm is defined as the total number of shear flow function 

evaluations made by the algorithm. Table 5-6 gives the order of magnitude of efficiency for 

each algorithm.



5-5 A general guide to 
the parameter ranges for the 
turbulent flow algorithms

Parameter

s'1

(AP/L)/Pa

Range

io-3 - io3 
io-3 - io9
ID'2 - 10 

0-100 
10'6 - IO6 

0.3 - 1.0

The number of the shear 
flow function evaluations in orders of 
magnitude made by each algorithm.

Estimate

Mean velocity/m 
Pressure grad/Pa m~l 
Velocity dist'n/m s'1

Efficiency

102 - IO3
103 - IO4 
IO2 - IO3

5.4 Wall Slippage Modelling

Wall slip of the flow of a suspension through a straight pipe was discussed in Section 4.5. 
This can be typically modelled using a slip velocity as a function of both shear stress and 
pipe diameter such as Equation (4.74),

(5.49)

where and j8 are constants established from data. This was used in the derivation of a 
relation between pseudo-shear rate F and wall stress given by Equation (4.75) as

F =     +   
n<* + 1 3 I '

(5.50)

The schemes for modelling laminar and turbulent flow using this equation remain unchanged 
as the extra term contains no new variables to solve for. Laminar flow was better modelled 
using the Mooney-Rabinowitsch equation; the wall slip version was defined by Equation

(4.76) as

+ 1 (5.51)

where

dln(F -

and F = 8C/ With some straightforward manipulation, Equation (5.51) can be 
rearranged as the linear differential equation

(5.52)
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which is the same as Equation (5.8) with a slip term included. This equation can also be 
obtained by differentiating Equation (5.50) with respect to and rearranging. It should be 
appreciated that TR and I\ are themselves both function of 7^ via the shear flow function.

Consider the first example of the chapter: laminar flow of the general Bingham fluid 
10 + Vr through a straight pipe. A wall stress value of Pa yielded a pseudo- 

shear rate value of T = 132.48 s'1 . This is essentially an evaluation of the right-hand term 
of Equation (5.50). Taking a pipe diameter of 0. 1 m and slip parameters of 1 and 
0 = .001, the slip term of Equation (5.50) is, after a simple calculation, 20 s'1 . The total 
pseudo-shear rate evaluation for Equation (5.50) is therefore T = 152.48 -1 . So far, this is 
not very exciting, but the problem can be inverted using Equation (5.52) to see if the wall 
stress estimate matches the original value of 25 Pa. Of course, the slip term of 
Equation (5.52) is now unknown as it is a function of , which is effectively the solution 
variable. The scheme for numerically solving Equation (5.52) remains the same as the 
Runge-Kutta Fehlberg scheme of Subsect. 5. 1 .2. The starting value idea remains unchanged. 
From Equation (5.51) it is clear that (^)0 = (T - F5 ) would lie reasonably close to the 
solution; the corresponding value of F0 would then be estimated from Equation (5.50). 
Taking a relative tolerance check of e = 5 X 10~5 , and using the appropriate values and 
function above, the scheme gives a wall stress estimate of 25.0000 Pa, which lies well 
within the required four significant figure accuracy. Much as expected, the scheme is still 
efficient taking one step of Fehlberg 's method and 52 evaluations of the shear flow function.

5.5 Conclusions

In this chapter, a discussion has been given of the mathematical modelling of time- 
independent, non-Newtonian, viscous fluids through a straight pipe for any explicit or 
implicit shear flow function. Algorithms have been presented of laminar, critical and 
turbulent flow, and velocity distributions. The algorithms have been extensively tested on 
the three parameter general Bingham shear flow function as it is a good model of any time- 
independent, non-Newtonian, viscous fluid. Examples using the implicit Meter shear flow 
function have also been included. The laminar and critical flow algorithms have been valid- 
ated way beyond any practical range (Tables 5-1 and 5-3) which is desirable for data analysis 
(Chapters 7 and 8) where robust pipe-to-shear transformations are required. Critical flow 
does not always occur for dilatant fluids as shear thickening may develop faster than flow 
instability. The turbulent flow algorithms were found to be less extensive (see Table 5-5) 
than those of the laminar and critical flow, though the required tolerance was generally met 
for any realistic test case. In the final section of this chapter, wall slippage was introduced 
into the models without affecting either the basic structure or the efficiency of any of the 
algorithms. The next chapter discusses the development and implementation of parameter 
estimation algorithms where the algorithms of this chapter will be extensively utilised.



6 Parameter Estimation

This chapter discusses the parameter estimation for Theological models of time-independent, 
non-Newtonian, viscous fluids. The work is original as parameter estimation of pipe flow 

data for any Theological model is considered. There is precious little in the literature about 
estimating Theological parameters, which is hardly surprising since methods for obtaining 
least-squares (or other) estimates are well-established(80). However, there is the added 
complication that, for practical reasons, the viscometry of sewage sludge is often conducted 

in tubes or pipes. Due to the pipe geometry, the parameters must be estimated through the 
Mooney-Rabinowitsch correlation (4.21). Frost(8) resolved this problem for general Bingham 
fluids by using a second order approximation on a log-log transformation of the data. For 
a specific model like the general Bingham model, such a simplification may be possible, but 
the objectives of this research are to consider any Theological model either laminar or 
turbulent. This has the advantage, for instance, that the analysis could be easily repeated at 
a later date using a different Theological model. In fact, the method could be used for the 
analysis of any pipe flow data for any choice of Theological model. This chapter does not 
use any computer terminology. However, the algorithms have been implemented in Fortran 
77 and Appendix B gives the subroutine declaration (name and argument list) of each 
associated algorithm of this chapter.

6.1 Laminar Flow Case

The shear flow function is a relationship between shear stress and rate of shear 7. 
Including the fitting parameters a, an explicit shear flow function is of the form

of), (6.1)

and an implicit shear flow functions is of the form

G(7, a) = 0. (6.2)

To illustrate the nature of the problem, consider the hypothetical situation where parameter 
estimation of either of the above two functions was carried out on a set of shear flow 
coordinates (7 , r ),y = 1,2,...,M. The problem would be geometrically independent, and 
therefore straightforward. To obtain estimates of the parameters, the relevant shear flow 
function would be fitted directly to the coordinates.

In practice, however, the problem is complicated by data which comes from pipes, and are 
therefore geometrically dependent; they are given as pseudo-shear flow coordinates, 
(r (r ) ),y = 1,2,...,M, or similar. The pseudo-shear flow function (discussed in Section 

4.2) could be fitted; this is a relationship of the form

, a) = 0, (6.3)
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where the shear stress at the pipe wall is

'«= s^. <6-4>
and the pseudo-shear rate is

r = (6.5)

Primarily, this equation can be viewed as a relationship between the pressure gradient 

and mean cross-sectional velocity of a pipe flow situation.

Fitting a pseudo-shear flow function to pseudo-shear flow data is suitable for some shear flow 

functions such as the power law function, r = as the related pseudo-shear flow function 

is of the similar simple form, The parameters and can first be 

estimated, then can be calculated from and For the general Bingham model, 

= things are less straightforward; the corresponding pseudo-shear flow function 

(see Equation 4.18) is elaborate and non-linear. Unlike the power law model, the pseudo- 

shear flow function of the general Bingham model bears no similarity to its corresponding 

shear flow function. For other explicit and implicit models, the problem becomes more 

difficult since the pseudo-shear flow function may not be expressible as a simple implicit 

function of type (6.3). Another drawback of parameter estimation from the pseudo-shear 

flow function is that, even if the function is known for a particular model, a transformation 

of the shear flow function itself may be required. For instance, a log transformation of the 

general Bingham model is log(r - nlog^, and pseudo-shear flow function 

corresponding to this model would bear no resemblance to that of the non-transformed 

general-Bingham model.

The first approach to the problem is perhaps the most obvious: the Mooney- 

Rabinowitsch(52> 53) differential equation (4.21) or any of its rearrangements can be 

regarded as a generalised pseudo-shear flow function. Therefore, the shear flow function 

parameters could be estimated from such an equation. In essence, the approach would mean 

fitting an equation such as the Mooney-Rabinowitsch equation to the data an approach that 

would be difficult, but still possible. The approach, however, suffers from a drawback: there 

is no obvious way of dealing with transformations, such as the log-log transformation, of the 

shear flow function.

For the second approach, the problem is partitioned as follows:

1) Attain geometrical independence by transforming the set of pseudo-shear flow 

data coordinates to a set of shear flow data coordinates.

2) Once geometrical independence has been attained, fit the shear flow function 

to the resulting shear flow data coordinates.
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The algorithm would be iterative and somewhat more elaborate than this, but it acts as a 
general outline. Step 1 can be achieved by making laminar flow predictions of the data; an 
algorithm for making such laminar flow predictions was presented in Section 5.1 and was 
essentially based on the Mooney-Rabinowitsch equation. Once geometrical independence has 

been achieved, Step 2 becomes the same as the hypothetical situation discussed earlier. To 
pose the algorithm in more formal terms: for each pseudo-shear rate data value r; , a 
prediction of the corresponding wall shear rate value (7^) can be made. However, to make 
laminar flow predictions, the parameters a of the shear flow function are needed. For the 
first iteration, guesses of the fitting parameters are used with each r. to make the initial 
laminar flow predictions of (7^-, 1,2,...,M. The shear flow function is then fitted to 
estimates of the shear flow coordinates 1,2,...,M, to give a fresh estimate 
of a a process that is repeated to convergence. The algorithm is illustrated by Figure 6-1.

Laminar Function 
Parameter Est'n

Estimate a of (6.3)

Simple iteration

a

over

Estimate of (6.6)

Transform 
coordinates

Iteration

Solve (6.8)

Lev-Marqu's method

overy

Laminar flow

prediction
See Fig. 5-2

The algorithm for 
estimating the parameters of a 
laminar shear flow function.

Evaluate (6.6)
Estimate 

derivative of (6.9)
Fwddiff(6.10)
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Notice that, for each iteration, the algorithm makes successive transformations (namely 

laminar flow predictions) of the independent variable The dependent variable 

however, remains unaffected, enabling the assumptions of an estimating method  such as the 

least squares method  to remain valid. The algorithm is nested, iterating a at the top-level 

and estimating a at the lower-level. Using a itself as the convergence criterion at either of 

the levels would be unwise for obvious reasons. For convergence of the top-level method, 

the standard error between the 1th and mm estimates of the shear rate points ), , 

1,2,...,M, are compared using a relative convergence criterion. For the lower-level 

method, the same convergence criterion is used, but on the dependent variable rather than 

the independent variable 7^ using a factor-of-ten reduction of tolerance. One of the great 

advantages of the algorithm is that it effectively separates the parameter estimation of the 

shear flow function from the transformation of the pseudo-shear flow function. If a 

transformation of the shear flow function is to be required (such as the log transformation), 

then this can be regarded as secondary to the pipe-to-shear transformation.

At the core of the algorithm is the method of estimating shear flow function parameters from 

a set of shear flow coordinates. For this, are chosen. For 

convenience, we denote

which are the wth estimates of the wall shear rate values, and

which are the wall stress values.

For the explicit case, Equation (6.1) can be written as

a). <6- 6>

The error sum of squares is the sum of squares of each data value minus the predicted value, 

and is given as

£ ty - a)]2. (6-7)
i

The least squares estimates of a are given at the minimum value of with respect to a; they 

are given by the solution of the equations

= 0, l,2,...,fi, (6.8)

where

and the hat is used to signify estimates.



Equation (6.8) is a system of equations in unknowns. To solve this system, Levenberg- 
Marquardt's method (A.2: Appendix A, Section 2) is used. The derivatives of Equation 
(6.9) are the partial derivatives of the shear flow function with respect to each of its 
parameters. If these derivatives are undefined then the following forward difference 
formulae would be used:

For the implicit case, Equation (6.2) can be written as

G(x, v; a) = 0.

The value of at jcy can no longer be evaluated directly from this equation, so a method to 
solve for y can be used. Letting y   to be the value of at , we have

«) = 0, = 1,...,M, (6.12) 

and the error sum of squares becomes

= E ty - (6- 13)
= 1

Minimizing this equation with respect to a, the least squares estimates are given by the 
solution of

= 0, * = 1,2,...,0, (6.14)

where

and the hat is used to signify estimates. The derivatives are the partial derivatives of with 
respect to each of the shear flow function parameters, but evaluated at As y is implicitly 
defined via (6.12), these derivatives are not available directly, so applying the chain rule to 
the partial derivatives of implicit functions (81) gives

(6.16) 

Since the function is explicit in terms and a, the partial derivatives are now definable.

Equation (6.14) is a system of equations in unknowns. To solve this system, 
Levenberg-Marquardt's method (A.2) is again used. The nested method used to solve 
Equation (6.12) for specific values of y is Muller's method (A.4) with a reduction of the 

a tolerance by a factor of ten. Computations of the derivative terms of Equation (6.16) 
also a nested part of the main method. If these derivatives are undefined, then the

man 
are
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following forward difference formulae can be used:

. 1...C/.

(6.17)

Gfr, y + Ay; «) - Gfo, y; «)
Ay

6.1.1 General Bingham Case

In this section, fitting the general Bingham model to shear flow data shall be discussed. This 

particular example of an explicit shear flow function has been singled out as the choice of 

model used for analysing the data (to be discussed in the next chapter). The general 

Bingham model is an interesting case as Levenberg-Marquardt's method is not needed, but 

the rest of the algorithm  the pipe-to-shear transformation  remains unchanged. Since the 

general Bingham function is really the only model under consideration, one might ask why 

algorithms have been developed to utilise any appropriate explicit or implicit shear flow 

function: why have these general cases been considered? Apart from the obvious  satisfying 

the objectives  there are many other reasons for working with the general case. Firstly, in 

Chapter 8, the general Bingham model will be extended as a function of solids concentration, 

effectively resulting in an entirely new function with a completely different pseudo-shear flow 

function. Secondly, when the general Bingham model is fitted to a data set, to satisfy the 

requirements of the residual analysis, a transformation may be required (82) (this will be a 

topic of the next chapter). Although the general Bingham model will conceptually be 

unaffected by the transformation, it will strictly be a different function, and its corresponding 

pseudo-shear flow function will be completely different. Thirdly, any further work may 

repeat the data analysis using functions other than the general Bingham model; working with 

the general case now would avoid much repetition of the developmental work. It should 

further be noted that an algorithm based exclusively on the general Bingham model is not 

likely to be trivial anyway, so the advantages of working with the general case are 

considerable.

The problem is to fit the general Bingham model

(6.18)

to a set of shear flow coordinates (7,, T; ), = 1,2,...,M. Notice that for constant n, the 

problem reduces to that of linear regression (83). The error sum of squares is

(
M _ 
E fy" - *"> E 

= 2,      (6' 19)
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where r is the average value of r, and similarly for 7". The solution of the equation pair

(6.20)

yield the least squares estimates
M _ E <*; -  >--) E fr/ -

where the hat is used to distinguish the parameters as estimates. For fixed «, the problem 
becomes a linear regression one where the parameters are explicitly given. But when fitting 
the general Bingham model, must be treated as variable, so a solution is also required of

= 0. (6.22) 

Since there is no obvious analytical solution for Newton's method is used to solve this 
equation. For this case, it is

+ i] = n[m] _ (6 23)

where the derivatives are themselves functions of «, and are evaluated at each 

6.1.2 Log General Bingham Case

A log version of the general Bingham model is given as

log(r - wlog7. (6.24)

This would be fitted to log values of the shear flow coordinates, ie (log 7,-, log(r,- - 
l,2,...,Af. In this case, if the parameter is considered constant, the equation is linear 

in terms of the log variables. Using linear regression, estimates for log£ and can be 

obtained. However, is variable, so the equation

= 0, (6.25)

must also be solved. This bears much analogy to the non-transformed case, so Newton's 
method is likewise employed to solve the equation for 
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It should be appreciated that, although the log general Bingham model is conceptually the 

same as the ordinary version, they are strictly different functions. The equations that yield 

the least squares estimates would be different, and therefore some differences would be 

expected of the estimates of , and themselves, though the differences would probably 

be minimal. The better model to use ordinary or transformed depends on the spread of 

residuals. Both models are to be used to analyse the data discussed in Chapter 3, the results 

of which will be discussed in Section 7.1.

6.2 Turbulent Flow Case

The turbulent shear flow function proposed by Hanks (26) (discussed in Section 4.4) is an 

implicit function of shear stress and rate of shear. The turbulent flow model has a single 

fitting parameter of its own, so it is of the form

#(7, 0. <6- 26>

The turbulent flow case bares much analogy to the laminar flow case for implicit functions, 

but because turbulent predictions are so computationally intensive, and because the turbulent 

shear flow function has only one fitting parameter, it merits its own special consideration. 

The pseudo-shear flow function for turbulence would be of a similar form to the laminar 

Equation (6.3), but with the one parameter:

co(T, = 0. (6.27) 

For convenience, denote

= 

which are the wall shear rate values, and

which are the mth estimates of the wall stress values. Equation (6.26) now becomes

= 0. 

Letting to be the value of at , the error sum of squares is

£ (6-29)

The objectives are to find the value of that yields the minimum error, There are 

alternative ways of minimising the error, such as equating the derivative of (6.29) to zero, 

or just simply searching for the minimum. As there is only one parameter to estimate, the 

search option is considered to be better. Since turbulent flow predictions are computationally 

intensive, it is sensible to use an effective search method; this is chosen to be quadratic
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interpolation (A. 3) to successively reduce the interval containing the minimum to 
convergence. The final algorithm is shown by Figure 6-2.

Turbulent Function 
Parameter Est'n

1
Estimate of (6.27)

Quadratic interpolation

Transform 
coordinates

Iteration

overy

Turbulent flow
prediction

See Fig. 5-9

over [m]

Estimate of (6.28)

Evaluate (6.29)

The algorithm for 
estimating the parameter of a
turbulent shear flow function.

6.3 General Case

This chapter has so far only considered parameter estimation for a single sludge sample test. 
But there are three sludge types-primary, activated and digested-and many sludge samples 
to consider. For each sludge type, let there be i = !,...,# samples of sludge and; = 1,...,M,. 
viscometric measurements of each sample. First consider a model for the ith sludge sample 
of a particular sludge type. For dependent variable v, the error sum of squares is given as

',= £
1

(6.30)

where is the predicted model.



93 

The standard error of this model is given as

(6.31)r^e'

where is the number of parameters of the model.

Now consider a model for a particular sludge type. The error sum of squares of the 

model can be partitioned into the error the sludge samples, and the error each 

sludge sample. In terms of error sum of squares this equates to

(6.32) 

Algebraically, each of these terms are given by

= £ £ Cfy - 

£ AM - ?)2, <6'33>
i = 1

V^ V^ V^ / ^ \2
= >£.= > > (v.. - V-) , 

vv ^^ i Z-^ ^^ v iy '
i=l i = 1 = 1

where is the overall predicted model for the sludge type, and is the predicted model of 

the ith sludge sample. The total standard error for this model is given by

(6.34)

6.4 Confidence Intervals

Individual predictions, such as obtaining a pressure gradient from a given mean cross- 

sectional velocity, were discussed in Chapter 5. Such predictions can be made using the 

estimated values of the parameters. A confidence interval is a statistical interval of 

confidence on a prediction. Confidence intervals can be very important for fluids such as 

sewage sludge since there may be large random errors when measuring the viscosity of 

sludge.

A 100(1 - confidence interval for a prediction *0 of a regression curve(83) such as 

Equation (6.6) or (6.11) is given by

?0 ± 'a/2; X 5» (6-35)
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where is the predicted model, is the number of measured values, is the number of 
parameters of the model, and is the statistic. 5, the standard error between the data and 
the fitted curve, is given as

(6.36)

For statistical reasons, this is strictly a but the term 
is used here for clarity. This model assumes that the confidence interval is constant for the 
whole range, and ignores the variation associated with the predicted curve J itself. To 
have include this variation would have made the confidence interval a function of jc, narrower 
at the centre of the range, and wider at the extremities. The analysis for this effect would 
have been difficult for the types of non-linear functions that we are dealing with. Since the 
variance of the data is expectedly greater than that of the predicted curve, the variance of the 
predicted curve has been excluded to greatly simplify the analysis. A further advantage of 
the confidence interval being independent of is that transformations can be applied to the 

variable without affecting the interval.

6.5 Conclusions

This chapter discussed the development of algorithms for the parameter estimation of laminar 
and turbulent flow models. Three models have been discussed in particular: the general 
Bingham model, the log general Bingham model and a turbulent flow model. The extensive 
use of these models to examine the data discussed in Chapter 3 will be the subject of the next 
chapter. Parameter estimation for the general case has also been discussed, and the extensive 
use of these algorithms to yield models as a function of volume fraction of solids will be the 
topic of Chapter 8.
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7 Data Analysis

This chapter discusses the analysis of concentrated sewage sludge flow data of the laboratory 
report(10) using the algorithms developed in Chapters 5 and 6. As mentioned in Chapter 3 
(where a discussion was given of the data), sludge is lumpy and inhomogeneous, so tubes and 
pipes were used to measure the viscosity of the sewage. The objectives of this part of the 
research are to obtain laminar, critical and turbulent flow models of each sludge type. For 
the analysis of the laminar flow data, the three parameter general Bingham shear flow 
function (2.10) is fitted to all of the sound laminar flow data, and statistical tests are 
conducted to see if all three parameters of the model are necessary; if they are not, then the 
modelling can be greatly simplified. For the critical flow analysis, the predictions of the 
Ryan and Johnson(54) stability parameter (4.31) are qualitatively assessed for pipe flow data 
and, to a lesser extent, tube flow data that extend into the transitional regime. For the 
turbulent flow analysis, the model proposed by Hanks(26) is fitted to all of the sound 
turbulent flow data, and is based on the three parameters of the general Bingham model and 
one further fitting parameter of its own. Error and residual analysis will be used extensively 
to gauge the accuracy and validity of a model, and admit any transformations required. 
Outlier analysis will also be conducted (to detect and remove irregular data) using both 
qualitative and statistical techniques. Since the body of data is not extensive enough (see 
Chapter 3), time dependent and wall slippage effects will be excluded from the analysis.

Statistical packages were considered for analysing the data, such as Glim, Genstat or SPSS, 
but since the data requires far more than standard statistical methods, these packages were 
deemed to be inadequate. For instance, the analysis of the laminar flow data requires 
schemes for predicting both laminar pipe flow and critical flow. Much of the analysis 
involves combining the schemes of Chapters 5 and 6 whilst including some basic statistical 
methods, such as analysis of variance. The task in hand therefore involves combining a wide 
selection of simple tools to perform a difficult task, and most of the tools used for the 
analysis are not offered by any statistical package.

7.1 Laminar Flow Analysis

For the laminar flow analysis, the tube flow data are of relevance as they mainly cover the 
laminar flow regime (the pipe flow data give more emphasis to the transitional and turbulent 
flow regimes). The tube flow data are given as pseudo-shear flow data (wall stress, 
versus pseudo-shear rate, and as they stand, are of little practical value since they 
depend on the pipe diameter. However, the objective is to achieve geometrical independence 
by modelling the true shear flow function on the pseudo-shear flow data using the methods 
presented in Chapter 6.
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Observations made in Chapter 3 of the pseudo-shear flow data were that sewage sludge 
exhibits pseudoplastic behaviour (the viscosity of the sludge decreases with increasing shear) 
and that it has a yield stress (an initial yield resistance to shearing). With reference to 
Chapter 2, there are many possible shear flow functions that would model these effects. 
However, the three parameter General Bingham model will now be used for the data analysis 
as it is well-established and widely used. It has limitations for very low and very high shear 
which are not expected to be violated by the data. None-the-less, to be prudent, the model 
shall be graphically appraised for the lowest and highest shear rate values of the data. The 
general Bingham model shall be compared with its special cases; collectively these are

General Bingham: (7.1)

Power law: = (7-2)

Bingham: r = 177, (7.3)

Newtonian: = (7.4)

The power law parameters and are purely empirical since they are conventionally 
obtained by fitting a straight line through a log-log plot of the data (the curved part of a shear 
flow relationship depends on so many factors that a completely theoretical function has never 
been derived). In contrast, yield stress , coefficient of rigidity TJ, and viscosity /* can be 
considered as actual properties of the fluid itself.

The first stage of the analysis involves fitting the general Bingham model to all of the sound 
tube flow data and examining the residuals. At this stage, the objectives are to establish the 
suitability of the general Bingham model for the tube flow data, so there would be no point 
in being selective about the type of tube flow data to analyse. It also follows that, if the 
general Bingham model fails the assumptions required of the least squares model, then there 
would be no point in using any of the special cases of the general Bingham model. This is 
because the residuals of any of the special cases would, at best, be as good as the general 
Bingham model. A full discussion of a least squares fit of the general Bingham model to a 
set of data points was given in Section 6.1.1. To ensure that the least squares method is 
employed correctly, residual analysis is carried out at each stage of the analysis. Now, the 
residuals are the difference between the observed and the fitted values, and for pseudo-shear 

flow data, are given as

where is they'th observation of the wall stress and the hat quantity denotes theyth 
prediction. The assumptions for the residuals of a least squares fit are that they follow a 
normal distribution about the independent axis, and have a constant variance (83).
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Figures 7-1 and 7-2 show tube flow data of a sludge from Letch worth and its corresponding 
residual plot. Since only the laminar flow regime is of concern, Figure 7-1 includes the 
critical velocity prediction (ideally, the horizonal scale of the two plots should have been 
matched to make comparison of the two graphs easier). The residual plot (Figure 7-2) shows 
that there is no systematic increase, decrease or interdependence of the residuals, hence the 
residual assumptions are valid. Since there were several hundred such sludge samples to 
check, a computer program was written to access, fit and display the residual plots for any 
selected sludge sample. It was found that the other residual plots were equally sound, so on 
this evidence, the general Bingham function (7.1) is considered to be a sound model.

2.7--

0.4E3 0.6E3

(8L//D)/s-i

critical prediction

Tube flow data 
of a digested sludge from 
Letchworth with a critical 
velocity prediction based on 
Ryan and Johnson's stability 
parameter.

1.45E-2

O.I3E-2--

280 420

(8C//D)/s-i

7-2 The residual 
plot of the general Bingham 
model fitted to the data of 
Figure 7-1.

For any particular sample, the residual analysis is therefore a success and can be regarded 
as the residual analysis each sample. However, the second stage of the analysis (the 
subject of the next chapter) is to introduce solids concentration into the model in order to 
obtain a generalised shear flow function for each sludge type. For this to be feasible, the
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residual analysis must also be carried out the sludge samples. For least squares 
estimates to be valid on a global scale, the standard errors between each general Bingham 
fit must be independent and have a constant spread. In fact, the constant value about the 
spread of standard errors can be regarded as a global standard error. A convenient way of 
examining this is to plot the standard error of each fit (defined by Equation (6.36)) against 
their respective wall stress means. Another computer program was written to perform this 
analysis where a particular sludge batch or sludge type could be selected. The standard 
errors of digested, activated and primary sludges for the tube flow data are shown on Figures 
7-3, 7-4 and 7-5 respectively.

Without loss of generality, Figure 7-3 includes only a batch of Perry Oaks digested sludge 
as there were so many points on the complete plot that they fused together into a black mass. 
The three figures show that the standard errors are clearly non-constant, particularly digested 
sludge. The results indicate that the greater the range of data for a particular sludge, the 
greater the variation within the data. It may be generally true that higher wall stress values 
have larger residuals.

The problem of having a set of non-constant standard deviations is solved by applying a 
(82). Since the relationship between and is roughly 

linear, a log-log transformation of the data would be appropriate (82). For the general 
Bingham model (7.1), this transformation is given as

# + wlog107. (7.6)

This is not quite a pure log transformation of the general Bingham model since the yield 
stress has been moved to the left-hand side; the advantages of this simplification are self- 
evident. Note that this is, of course, still the general Bingham model, but rearranged in a 
different form.

As with the ordinary general Bingham model, the analysis now involves fitting the log 
general Bingham model to all of the sound tube flow data, and examine the residuals. A full 
discussion of a least squares fit of the log general Bingham model to a set of data points was 
given in Section 6.1.2. It is convenient to use the notation Iog10(r - ) so that the error 
sum of squares for the ith sludge sample (Section 6.3) is given as

M,

*, - E % - (7- 7)

where the hat denotes a prediction. Least squares estimates of , and are obtained from 
minimizing Equation (7.7) with respect to each of these parameters. Estimates of the 
parameters for this log model are expected to be similar to those of the ordinary version, but 
the residuals of each fit and the standard errors between these fits are expected to be 

generally different.
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As with the ordinary general Bingham model, residual analysis has to be repeated for the log 

general Bingham model for all of the sound tube flow data. Analogous to Equation (7.5), 

the residuals of the log model are redefined as

The least-squares assumptions for the residuals must apply; they must follow a normal 

distribution about the independent axis and have a constant variance. The computer program 

that was used to perform residual analysis on the ordinary model was modified to also apply 

to the log model. Figure 7-6 now shows the residuals of the log fit to the data of Figure 7-1 , 

and since the plot shows that there is no systematic increase, decrease or interdependence of 

the residuals, on this evidence, the log general Bingham model (7.6) is sound.

A residual plot 
of the log general Bingham 
model fitted to the data of 
Figure 7-1.

pseudo-shear rate 

Residual analysis must also include the detection and removal of outliers; Figure 7-7 a tube 

flow test of a Perry Oaks digested sludge is such an example. Unless there was either a 

clear typing error in the laboratory report, or a mistake on our behalf entering the data, it 

is not possible to determine the reason for the outlier. Outliers may represent a genuine, if 

not haphazard property of the sludge. Since sewage sludge is lumpy and ill-behaved, some 

outliers in the data are to be expected. For Figure 7-7, the tube's inside diameter is only 

12.52 mm rather narrow for carrying out viscometric measurements. Anyway, such values 

are either erroneous or unquantifiable and have to be removed.

To identify outliers, the tetf (84) is used. This involves 

the residuals by dividing each residual with its respective standard error. This 

yields residuals that are expectedly from the (or student) distribution. The residuals are, 

however, studentised by dividing each; th residual with the; th value missing from 

its respective standard error. A residual is thus assumed to be an outlier unless otherwise
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tested. For a set of (x,, y;.), = 1 ,...,M data points, the statistic of the; th point is therefore

where the hat denotes a prediction. Conveniently, is the standard error of the model 
with they th value missing, and when multiplied with the right-hand term of the denominator, 
gives the standard error of the individual residual itself. The term

is known as the leverage of they th value.

The residual analysis program was extended to identify the outliers automatically, and give 
user-control over their fate. The program which uses a distribution to give 
confidence on any outlier detected several possible outliers. Figure 7-8 shows the residual 
plot for the data of Figure 7-7, and for the least squares assumptions to be valid, the 
residuals should be normally distributed and spread evenly about the shear rate axis. For this 
case, the absolute value of the statistic is 7.11, and the critical value of the distribution 
is 1.89; the outlier is so extreme that the other residuals arc over the horizontal axis. Having 
removed the outlier, the updated residual plot is shown in Figure 7-10 where the residuals 
are now evenly spread around the horizonal axis.

0.63E3

pseudo-shear rate (8t//£>)/s

7-7 Tube flow data 
of a digested sludge from 
Perry Oaks. One of the 
values is a suspected outlier.

Figure 7-9 shows the accuracy of the fit of the predicted shear flow model for the data of 
Figure 7-7, and with reference to Equation (7.6), the gradient of the curve is and the 
intercept of the curve is Iog10£. However, it should be noted that the data of Figure 7-9 are 
not the raw data, but a of the log shear flow data. In other words the independent 
variable has been given a log pipe-to-shear transformation to make the data linear. Whereas
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