
Greenwich Academic Literature Archive (GALA)
– the University of Greenwich open access repository

http://gala.gre.ac.uk

__

Citation:

Leslie, Robert (1997) An evaluation of load sharing algorithms for heterogeneous distributed systems.
PhD thesis, University of Greenwich.

__

Please note that the full text version provided on GALA is the final published version awarded

by the university. “I certify that this work has not been accepted in substance for any degree,

and is not concurrently being submitted for any degree other than that of (name of research

degree) being studied at the University of Greenwich. I also declare that this work is the result

of my own investigations except where otherwise identified by references and that I have not

plagiarised the work of others”.

Leslie, Robert (1997) An evaluation of load sharing algorithms for heterogeneous distributed systems.

##thesis _type## , ##institution##

Available at: http://gala.gre.ac.uk/6224/

__

Contact: gala@gre.ac.uk

http://gala.gre.ac.uk/
mailto:gala@gre.ac.uk

1359498

FOR USE IN THE
LIBRARY ONLY

AN EVALUATION OF LOAD SHARING

ALGORITHMS FOR HETEROGENEOUS

DISTRIBUTED SYSTEMS

ROBERT LESLIE

A thesis submitted in partial fulfilment of the

requirements of the University of Greenwich

for the Degree of Doctor of Philosophy

September 1997

V
I

Abstract

Distributed systems offer the ability to execute a job at other nodes than the

originating one. Load sharing algorithms use this ability to distribute work around the

system in order to achieve greater efficiency. This is reflected in substantially reduced

response times. In the majority of studies the systems on which load sharing has been

evaluated have been homogeneous in nature. This thesis considers load sharing in

heterogeneous systems, in which the heterogeneity is exhibited in the processing power

of the constituent nodes.

Existing algorithms areevaluated and improved ones proposed most of the

performance analysis is done through simulation. A model of diskless workstations

communicating and transferring jobs by Remote Procedure Call is used. All assumptions

about the overheads of inter-node communication are based upon measurements made

on the university networks.

The comparison of algorithms identifies those characteristics that offer improved

performance in heterogeneous systems. The level of system information required for

transfer is investigated and an optimum found. Judicious use of the collected information

via algorithm design is shown to account for much of the improvement. However

detailed examination of algorithm behaviour compared with that of a 'optimum' load

sharing scenario reveals that there are occasions when full use of all the information

available is not beneficial. Investigations are carried out on the most promising

algorithms to assess their adaptability, scalability and stability under a variety of differing

conditions. The standard definitions of load balancing and load sharing are shown not to

apply when considering heterogeneous systems.

To validate the assumptions in the simulation model a load sharing scenario was

implemented on a network of Sun workstations at the University. While the scope of the

implementation was somewhat limited by lack of resources, it does demonstrate the

relative ease with which the algorithms can be implemented without alteration of the

operating system code or modification at the kernel level.

Acknowledgements

During the years of my PhD programme I have had assistance and

encouragement from many quarters and in a multitude of different forms. However it is

without doubt that I single out my supervisor Dr Sati McKenzie as the individual to

whom I am in the greatest debt. For her guidance, suggestions and powers of motivation

I offer my warmest gratitude.

I would also like to thank my long suffering fiancee Fiona Newman for her

understanding throughout the last few years. Combined with her material help in

allowing me to use her car and laptop, both invaluable aids in the latter stages of my

work. Peter Logie is another to whom I owe thanks, as he sacrificed his surfing so that I

could use his modem.

At the University of Greenwich I have received technical help, advice and

support from many sources. In particular Dr Chris Woollard my second supervisor who

allowed me to access his knowledge of Distributed Systems. For technical help

concerning the Universities computing resources I thank lan Lee. Former research

students who gave me the benefit of their knowledge and experience were Wasim Naqvi,

Garrett Kearney and Peter Smith.

This work was conducted with the aid of a research studentship from the

Engineering and Physical Sciences Research Council and help from the University of

Greenwich. I would also like to mention my current employers Tertio Ltd, who have

been very understanding in my first few months of employment.

Finally I'd like to thank the members of my family who have done so much to

help me while I've been conducting my research. My parents for their constant support

and encouragement. Plus my brother and sister who gave me the final impetus to finish.

II

Table Of Contents

ABSTRACT...!

ACKNOWLEDGEMENTS...II

TABLE OF CONTENTS ... Ill

1. INTRODUCTION...1

1.1 DISTRIBUTED SYSTEMS ..1

1.1.1 What is a Distributed System ? ..1

1.1.2 Performance Improvements Via Load Sharing..2

1.2 THE EVOLUTION OF LOAD SHARING ALGORITHMS - A SUMMARY.4

1.3 THE PROBLEM. ...5

1.3.1 Unanswered Questions...5

1.3.2 Aims...?

1.4 CONTRIBUTION OF THE THESIS ...8

1.5 LAYOUT OF THE THESIS ...9

2. SURVEY OF RELATED RESEARCH...11

2.1 QUALITATIVE ANALYSIS - THE TAXONOMICAL APPROACH................................11

2.1.1 Initiation... 13

2.1.2 Transfer Policy ... 14

2.1.3 Information Policy.. 16

2.1.4 Location Policy ..18

2.2 SYSTEM MODEL..21

2.2.1 Network Topology...21

2.2.2 Heterogeneity of nodes...22

2.2.3 System Load...23

2.2.4 Overheads..24

2.3 ALGORITHM EVALUATION ...24

III

2.3.1 Evaluation Techniques..25

2.3.2 Performance Metrics...26

3. SCOPE OF THE PRESENT WORK ..27

3.1 INTRODUCTION..^?

3.2 SYSTEM MODEL..28

3.2.1 Aspects of Heterogeneity..28

3.2.2 System Loading Conditions ..31

3.2.3 Overheads Due to Remote Procedure Calls...32

3.3 ALGORITHMS EVALUATED ...36

3.2.1 Transfer Policy ...36

3.3.2 Information Policy..37

3.3.3 Location Policy ..37

3.3.4 Description of the Algorithms...38

3.5 SIMULATION ...41

3.6 MEASUREMENT ..42

4. DISCRETE EVENT SIMULATION..43

4.1 SYSTEM MODEL..43

4.1.1 Processes at a Node..43

4.1.2 Inter Process Communication ...44

4.1.3 Additional Functions Required..44

4.2MODSIM...45

4.2.1 Object Oriented Features..46

4.2.2 Simulation Utilities...47

4.2.3 Standard Libraries ..49

4.3 SIMULATION MODEL..50

4.3.1 The MAIN Module : loadshare...53

4.3.2 The GenesisObj Object...54

4.3.3 The NodeObj Object...56

4.3.4 NodeObj Method : GenerateJobs..58

4.3.5 NodeObj Methods : Process* ..59

4.3.6 NodeObj Methods To Achieve Inter-node Communication.............................61

IV

4.3.7 NodeObj Methods : ExecuteJob* ...61

4.3.8 StopAllObj...63

4.4 VALIDATION AND VERIFICATION OF THE SIMULATION MODEL..........................63

4.4.1 Verification ..63

4.4.2 Validation...64

4.4.3 Calibration..66

5. IMPLEMENTING THE LOAD SHARING SCENARIO68

5.1 INTRODUCTION ...68

5.2 OVERVIEW OF IMPLEMENTATION CODE..69

5.2.1 Generatejobs.c..71

5.2.2 Processjobs.c..72

5.2.3 ExecuteJob.c ..75

5.2.4 ServeProbe.c..75

5.2.5 Remxclient.c...76

5.2.6 Remxserver.c..77

5.3 CRUCIAL ELEMENTS OF THE IMPLEMENTATION CODE78

5.3.1 Random Number Generation ..78

5.3.2 Inter Process Communication ...79

5.3.3 The Process Lifecycle...80

5.3.4 Implementation Specific RPC Features ...82

6. EXPERIMENTAL RESULTS..86

6.1 INTRODUCTION ...86

6.2 COMPARISON OF ALGORITHMS..87

6.2.1 Simulation Parameters..87

6.2.2 Bounds on Performance..87

6.2.3 Algorithms Proposed Primarily for use in Homogeneous Systems90

6.2.3 Algorithms Designed Specifically for Heterogeneous Systems.........................94

6.2.4 Comparison..99

6.3 FURTHER INVESTIGATIONS INTO THE BEHAVIOUR OF ALGORITHMS104

6.3.1 Adaptability, Scalability and Stability .. 104

6.3.2 18:2 Split Systems.. 105

V

6.3.3 Varying the Offered Load... 107

6.3.4 Larger 12:8 systems - Scalability... 109

6.3.5 The Effect of System Parameters on Load Sharing Performance 113

6.4 IMPLEMENTATION RESULTS... 114

6.4.1 Practical Limitations and Parameters Used.. 114

6.4.2 Measurement Results For a Heterogeneous System 115

6.4.3 Implementation Results From a Homogeneous System 119

7. CLOSING REMARKS ... 123

7.1 SUMMARY OF ALGORITHMS INVESTIGATED .. 123

7.2CONCLUSIONS...124

7.3 FURTHER WORK... 128

BIBLIOGRAPHY...130

APPENDIX 1. SIMULATION CODE...A

Al.l DEFINITION MODULE ...A

A1.2. IMPLEMENTATION MODULE.. B

A1.3. MAIN MODULE ..N

APPENDIX 2. IMPLEMENTATION CODE ... P

A2.1 GENERATEJOBS.C ... P

A2.2PROCESSJOBS.C...R

A2.3. EXECUTEJOB.C ..V

A2.4. SERVEPROBE.C ... W

A2.5. REMXCLIENT.C..X

A2.6. REMXSERVER.C ...X

APPENDIX 3. CONFERENCE PAPERS BASED ON THIS WORK.....................Z

VI

List of Figures
Figure 1.1 The Potential For Performance Enhancement Via Load Sharing ______________3

Figure 2.1 A Taxonomy of Load Sharing Algorithms __________________________12

Figure 2.2 The SHORTEST algorithm in three policies _________________________19

Figure 3.1 Squared Coefficient of Variance of System Processing Power _______________29

Figure 3.2 Skewness of System Processing Power____________________________29

Figure 3.3 The Operations involved in a Remote Procedure Call____________________33

Figure 3.4 Average Probe Response Times ________________________________34

Figure 3.5 The Effect of Changing Load on RPC Response Time ____________________36

Figure 4.1 MODS1M Pending List Structure _______________________________49

Figure 4.2 A Distributed System as an Aggregated Object ________________________57

Figure 4.3 Component Analysis of an Aggregated Node _________________________52

Figure 4.5 Full Structure ofGenesisObj Object______________________________55

Figure 4.6 Full Structure of the NodeObj__________________________________57

Figure 4.7 Schematic of Method Interaction ________________________________55

Figure 5.1 Implementation Process Relationships _____________________________70

Figure 5.2 GenerateJobs.c (Psuedo Code) _________________________________72

Figure 5.3 Processjobs.c (Pseudo Code) __________________________________ 73

Figure 5.4 Executejob.c (Pseudo Code) ___________________________________75

Figure 5.5 Serveprobe.c (Pseudo Code) ___________________________________76

Figure 5.6 Remxclient.c (Pseudo Code) ___________________________________77

Figure 5.7 Remxserver.c (Pseudo Code)___________________________________77

Figure 5.8 Inverse Transformation Method ________________________________78

Figure 5.9 The Process Lifecycle and it's use in Collecting Job Response Time____________81

Figure S.lOa An Iterative Server Dealing With Multiple Requests ____________________83

Figure 5.1 Ob A Concurrent Server Dealing With Multiple Requests __________________83

Figure 6.2 Average Response Time With No Load Sharing _______________________88

Figure 6.2a IDEAL Workload Allocation, Low System Utilisation____________________88

Figure 6.2b IDEAL Workload Allocation, Medium System Utilisation _________________89

Figure 6.2c IDEAL Workload Allocation, High System Utilisation ___________________89

Figure 6.3a RANDOM Algorithm Performance - Low System Utilisation _______________91

Figure 6.3a RANDOM Algorithm Performance - Medium System Utilisation ____________91

Figure 6.4a SHORTEST Probe Limit Comparison - Low System Utilisation _____________92

Figure 6.4b SHORTEST Probe Limit Comparison - Medium System Utilisation ___________93

Figure 6.4c SHORTEST Probe Limit Comparison - High System Utilisation _____________93

Figure 6.5 SHORTEST Algorithm Performance ______________________________94

Figure 6.6a HETRO Probe Limit Comparison - Low System Utilisation ________________95

Figure 6.6b HETRO Probe Limit Comparison- Medium System Utilisation ______________95

VII

Figure 6.6c METRO Probe Limit Comparison - High System Utilisation_______________95

Figure 6.7, HETRO v SHORTEST Algorithm Performance_______________________96

Figure 6.8 HETQL Probe Limit Comparison - High System Utilisation ________________97

Figure 6.9 HETQL Algorithm Performance _______________________________97

Figure 6.10 HQNIT Probe Limit Comparison - High System Utilisation________________98

Figure 6.11 HQNIT Algorithm Performance _______________________________99

Figure 6.12a Algorithm Comparison - Low System Utilisation_____________________99

Figure 6.12b Algorithm Comparison - Medium System Utilisation __________________100

Figure 6.12c Algorithm Comparison - High System Utilisation ____________________100

Figure 6.13 HETQL and HQNIT Performance in a 18: 2 Split System _______________106

Figure 6.14a Half Low Power Nodes With No Offered Load ______________________108

Figure 6.14b All Low Power Nodes With No Offered Load_______________________108

Figure 15a 40 Node System [24:16], Algorithm Performance Comparison ______________110

Figure 15b. 80 Node System [48:32], Algorithm Performance Comparison ______________110

Figure 16a. HETQL 40 Node Probe Limit Comparison, High System Utilisation __________111

Figure 16b. HQNIT40 Node Probe Limit Comparison, High System Utilisation __________111

Figure 16c. HETQL 80 Node Probe Limit Comparison, High System Utilisation__________ 111

Figure 16d. HQNIT 80 Node Probe Limit Comparison, High System Utilisation __________112

VIII

List of Tables
Table LI Configurational Heterogeneity in a Distributed System ____________________7

Table 3.1 System Composition With nodes divided 12 : 8 ________________________30

Table 4.1 Summary of Object Functions _________________________________53

Table 4.2 Run to Completion and Pre-emptive Scheduling Response Times _____________62

Table 6.1 System Composition With Nodes Divided 12 : 8 _______________________86

Table 6.1 Simulation Parameters in Algorithm Comparison_______________________87

Table 6.3 Transfer and Processing Statistics ______________________________ 707

Table 6.4 System composition With Nodes Split 18 : 2 _________________________106

Table 6.5c Implementation System Composition ____________________________777

Table 6.5b Simulation Results__777

Table 6.5c Implementation Results_____________________________________777

Table 6.6 Load Sharing ___775

Table 6.7Homogeneous System Simulation /Implementation Comparison _____________779

IX

1. Introduction

1.1 Distributed Systems

1.1.1 What is a Distributed System ?

The history of distributed systems (in this work the terms distributed system and

distributed computing system are assumed to be analogous) began in the 1970's and was

enabled by two parallel developments. The arrival of VLSI technology saw a move from

the mainframe computer through mini and micro computing to the workstation/PC

environment so common today. This change could not have occurred in isolation but was

coupled with the improvement in communication technology that enabled the

establishment of local and wide area networks (LANs & WANs). This combination

proved an economic means of providing users with an independent computing resource

at geographically distinct locations but still giving access to a wide range of facilities.

Whilst not ending the reign of the mainframe, distributed systems have evolved to meet

the changing demands of the user.

All distributed systems should display the same core characteristics of

transparency, modularity, scalability, reliability and availability to varying degrees. This

will be determined by the individual state of the system and design decisions taken to

handle the tasks presented to it. Unfortunately these are about the only points on which a

general definition is applicable. Such a definition under which all distributed systems

could be clustered is given in [Cou94], "A distributed system consists of a collection of

autonomous computers linked by a computer network and equipped with distributed

system software". The distinction between different types of distributed system is made

by Tanenbaum [Tan85] with the use of the terms, distributed operating system and

network operating system. A distributed operating system is defined as one that performs

1. Introduction

like a conventional one but runs over multiple computers. Conversely a network

operating system is constructed of computers all running their own independent

operating system and co-operating together to utilise the resources available in the

system.

A distributed operating system would need to employ extensive system software

in order to function whereas a network operating system may only employ it in some

areas of resource allocation. In this study the emphasis will be on network operating

systems, although load sharing in distributed operating systems will also be discussed, as

many of the ideas developed for use with the latter are still applicable to the more loosely

coupled environment. The focus on network operating systems is because they are more

readily available for research purposes, have established communication protocols and

are becoming ever more popular. The term distributed system will be used to refer to all

systems unless a distinction is deemed necessary. However a modified version of the

quoted definition is proposed, "A distributed system consists of a collection of

autonomous computing resources linked by a communications network and equipped

with some distributed system software at least part of which operates transparently". The

proviso of some element of transparency is needed as the benefits of load sharing can

easily be negated if system users are involved with its operation.

1.1.2 Performance Improvements Via Load Sharing.

In a distributed system there is a high probability that at any point in time some of

its constituent computing resources (nodes) will be highly utilised whilst others will be

idle or lightly loaded, [Liv82, The89, Muk91]. By using the ability of distributed systems

to execute jobs at other than their originating node, work can be transferred from one

node to another in order to achieve an improvement in overall system performance. This

approach can be referred to as load sharing or load balancing[Eag86a, Kru87, Zho87].

Load balancing has been used to refer to algorithms that attempt to equalise workload

amongst the nodes, whilst load sharing algorithms attempt to ensure no node is idle. In

this work the term load sharing has been adopted but it will be used in a broader sense,

namely attempts to improve system performance by re-distributing some of the

workload.

The granularity of the workload will influence its possible re-distribution from

one node to another and any possibility for parallelism in the system [Kle85]. At the

1. Introduction

coarsest level of granularity is a job arriving at a node, incrementally finer is the division

of a job to its component processes. Initially the job will be in the form of one process,

but during its lifetime more processes may be created by the original to carry out various

tasks associated with the job. Load sharing at process level after a job has begun

execution will create obstacles to subsequent inter-process communication (IPC),

especially in the workstation environment where the operating system has not been

specifically designed with this in mind. For this reason only job scheduling will be

considered. The possibilities for overall system performance improvement can be

investigated and demonstrated to a satisfactory standard at this level of granularity. The

problem of parallel processing in a distributed system is best suited to one running a

distributed operating system, especially where the whole of the system resources can be

dedicated to one problem if need be. The relatively cheap distributed system is used to

emulate the working of a more powerful but expensive single machine.

The generally accepted measure for performance improvement, but not the only

one, is the reduction in average response time for jobs in the system. The response time

of a job is the period from which it arrives in the system for processing until it has been

processed and the result communicated back to the originator. The scope for

improvement in a system can be demonstrated with the use of two measures. These are

the no load-sharing case (M/M/1), used as a minimum and the multiserver case

(M/M/K), often used as an indication of the limit to possible achievable performance.

Consider a system of 20 identical nodes, all experiencing the same degree of utilisation.

0.4 0.5 0.6

System Load

Figure 1.1 The Potential For Performance Enhancement Via Load Sharing.

1. Introduction

The service times of jobs are exponentially distributed about an average of 1. Job

interarrival times are also exponentially distributed, but are varied to give different

system loads. Possible improvement is shown in Figure 1, as the area between the curves.

1.2 The Evolution of Load Sharing Algorithms - A Summary.

Load sharing has its origins in the task allocation algorithms of early distributed

systems. These systems bore little resemblance to the workstation based ones of today.

One example [Cho79] has all jobs arriving at one central dispatcher for allocation to the

various nodes comprising the rest of the system. However a basic differentiation between

the two classes of load sharing is made. The first class uses the simplest algorithms to

implement, whose operation is based solely on past system performance. The second

group is more sophisticated being based on the current state of the system These classes

are respectively referred to by the terms static and dynamic. Occasionally dynamic

algorithms are referred to as adaptive. With the increasing flexibility of distributed

systems in the 1980's it became acknowledged that static algorithms would be of limited

use [Tan85a, Wan85,Eag86a] as they could not react to changes in system state.

The task of load sharing became accepted as the re-distribution of work in a

system, where work could arrive at any node. The initial placement of tasks from a

central point has become a separate art, although the fields of interest will occasionally

overlap. The division of dynamic algorithms into separate policies [Eag86a] can be seen

as a milestone in their development, enabling the concentration of effort into

investigating particular characteristics and more concise descriptions of results. Initially

only a transfer and location policy were thought necessary. With time the use of three

policies became commonly accepted, the transfer, location and information policies.

Question addressed by these policies are shown below:

 Transfer policy - when should a job be considered eligible for transfer.

 Location policy - where should an eligible job be transferred.

 Information policy - when and how is information on the system state gathered.

Over the last decade a multitude of possible algorithms have been suggested and

evaluated. Some of the relevant questions are:

Source or server initiation : Whether an overloaded node should seek an under

utilised one to which the job could be transferred or vice versa [Mir89a, Kru94].

 Load indices : Which is the best means for measuring the load at a node [Fer87,

Kun91].

 Decision making : Should decisions be made in a distributed or centralised manner

[Zho88,The89].

In general most of the algorithms suggested have been evaluated on

homogeneous systems. Where heterogeneity is considered, it is often only in the

workload offered to each node rather than the system composition. Until the 1990's

systems combining heterogeneous but co-operative nodes were quite rare. This is

reflected in the lack of work tackling this aspect of the load sharing. More recently

heterogeneity has become of far greater concern with the rapid development in

workstation technology leading to a proliferation of different types on the same

communications network. Obviously load sharing, by simple job transfer, is not possible

in cases of architectural or operating system heterogeneity. However by far the most

common type is configurational where the technique is applicable. In some studies all

aspects of diversity, CPU speed, I/O capabilities, memory are taken into account [Bak92,

Ald93]. Others use just server rate or processing power and uses this solely to

differentiate between nodes [Mah93, Wan94].

There may still be much debate about the details of implementing load sharing

schemes, but there is general consensus about the properties required. An algorithm

should be adaptable, scaleable, stable, fault tolerant and transparent to the system

[Kre92], whilst still enhancing system performance. These are of course a set of ideal

requirements and have yet to be met.

1.3 The Problem.

1.3.1 Unanswered Questions.

The history of load sharing algorithms, is almost as long as that of the distributed

systems on which they are implemented. As the design, capabilities and expectations of

the systems have evolved so have the techniques for optimal load sharing. The vast

majority of algorithms are aimed at and adapted to systems of homogeneous nodes.

These algorithms when applied to heterogeneous systems exhibit several weaknesses

leading to sub-optimal performance improvement. The algorithms specifically designed

for a heterogeneous environment are still heavily influenced by the ideas pervasive in

early work. An investigation is needed to establish if the assumption made in these

established algorithms are all still applicable.

Heterogeneity in a system may be exhibited in a number of ways, configurational,

architectural and operating system [Zho93]. With architectural and operating system

heterogeneity the possibilities for load sharing are extremely limited if available at all.

Differences in machine architecture will make the execution of the same code impossible

and differences in operating systems may mean the same services, i.e. systems calls, are

not available on all machines. Configurational heterogeneity offers more scope for load

sharing as the machines involved will be fundamentally similar. They will differ in CPU

speed, memory availability and other factors contributing to total processing power.

The introduction of standards in the 1980's has seen the interoperability of

different machines increase. Of particular importance have been the attempts at

establishing a portable operating system through the POSIX standards [IEEE90], which

have been used by the X/OPEN organisation in the construction of their Common

Application Environment (CAE). As a CAE becomes more globally accepted the

portability it offers will increase the scope of configurational heterogeneity [Gra92].

Hence the increasing importance of heterogeneity while sharing computational resources

with the use of load sharing algorithms. Table 1.1 shows the different UNIX based

machines on one of the LAN's at the University of Greenwich. All the machines on this

network originate from the same manufactuer, Sun Microsystems. Their processing

power is indicated by results from the set of benchmarks used by the System

Performance Evaluation Co-operative [SPE96] that measure multi-tasking throughput

for integer code and floating point code (SPEC/p). Ratings in each category

are relative to the performance of a VAX 11/780 , given a nominal rating of 24. The

results shown are those achieved with the SPEC92 benchmark set. A new set of

benchmarks SPEC95 is now in use by the organisation but results for all the machines on

the LAN are not available for this newer group of tests. An anonymous quote sums up

the usefulness of these figures, "While no benchmark can fully characterise overall

system performance, the results of a variety of realistic benchmarks can give valuable

insight into expected real performance".

int fp

Table 1.1 Configurational Heterogeneity in a Distributed System.

Previous studies have used many different means of assessing proposed

algorithms, examples of which are: queuing network analysis, simulation and

implementation. Of these simulation is the most flexible but may still leave doubts about

the practicality and validity of any assumptions. Some factors are impractical to simulate

on a large scale, one in particular being the underlying effect of any traffic generated by

the implementing of the load sharing algorithm itself. Implementation can provide the

answer to such questions but can be hampered through a lack of resources available for

the project. Not many researchers are fortunate enough to have a network to themselves.

1.3.2 Aims

The aim of this work is to find answers to some of the questions raised in the

previous section. This is accomplished as follows:

 Existing load sharing algorithms are investigated by simulation modelling. The

simulation model is made as realistic as possible. Model assumptions such as

communication overheads are based on experimental measurements.

Based on the above studies, new algorithms are proposed which are effective in a

heterogeneous environment. These are evaluated by simulation.

 An implementation of the simulated system is carried out. This will aid in validating

the model and facilitate examination of factors which cannot be readily simulated,

such as algorithm overhead and the effect of the extra communication traffic

generated. The building of a working implementation will also ensure that any

algorithms proposed are inherently practical.

1.4 Contribution of the Thesis

 An investigation of current load sharing algorithms when applied to heterogeneous

systems. Heterogeneity is exhibited in the relative processing power of the nodes. This

has led to the identification of characteristics that were responsible for the sub-optimal

performance of the algorithms. The investigation was carried out with the use of a

simulation model, which was constructed using communication overheads based upon

measurements made over the university's local area networks.

 New algorithms are proposed which are better suited to a heterogeneous

environment. The performance of the algorithms is evaluated using the simulation

model. All algorithms take into account the restrictions imposed by the normal

operating conditions of an existing distributed system.

 Validation of the simulation is accomplished through building an implementation of

the simulation model on the university networks. The implementation is also used to

test the underlying behaviour of the communication network and overheads of the

algorithms that it is not feasible to simulate.

1.5 Layout of the Thesis

Chapter 1, Introduction:

Presents a background to the work covered in the thesis, indicating the

problem that is to be tackled and possible solutions A general statement of

the contribution of this thesis is given.

Chapter 2. Survey of related research:

The current research in the load sharing field can be divided into three

principal sections. First the algorithms that control the manner in which load

sharing is performed. Secondly the type of system on which the algorithms

are implemented and investigated. Finally, the means by which the algorithms

are evaluated.

Chapter 3. Scope of the present work:

Describes the approach to load sharing adopted in this work. The main

emphasis is on heterogeneous systems and the way in which heterogeneity

will influence algorithm design. The algorithms investigated are described in

full as are the various system models used. Both simulation and measurement

are presented as means of evaluating the algorithms.

Chapter 4. Discrete event simulation:

The chief method of investigating the load sharing algorithms presented is

through a simulation model. The translation of a real system into a practical

simulation model is described, with particular emphasis on the design

decisions taken. Full implementation details are also presented, based on the

object oriented simulation facilities offered by the MODSIM language used.

Chapter 5 Implementing the load sharing scenario:

The load sharing scenario was constructed as a means of validating both the

assumptions made in developing the simulation model and the results it

provided. The system was implemented on a network of workstations. Both

network and system programming had to be used and the routines used are

described in full. Particular attention is given to problems raised by the

physical environment as opposed to the simulation model.

Chapter 6. Experimental Results:

The performance of the load sharing algorithms described in Chapter 3 over

a variety of heterogeneous systems is evaluated using the simulation model.

The charcteristics of each are described and analyzed. Those algorithms that

are most suited to the heterogeneous environment are subjected to further

investigation to discover their properties in the areas of adaptability,

scalability and stability. Validation of the simulation assumptions and its

subsequent results is performed via the implementation scenario.

Chapter 7. Final Remarks:

This chapter presents a summary of the experimental results and the

conclusions that can be drawn from them. The conclusions cover both a

comparison of algorithms for heterogeneous distributed systems and the

validation of these algorithms. Ideas for furthering the work reported

conclude the chapter. They have been suggested during the course of the

research or prompted by recent technlogical devlopments.

2. Survey of Related Research

2.1 Qualitative Analysis - The Taxonomical Approach

The system of classification proposed in Casavant's taxonomy [Cas88], is, as the

title suggests aimed at a broad range of distributed systems. Of the scheduling tasks

considered load sharing is only one of many. The taxonomy must therefore be refined in

order to describe succinctly the area in question. Most of the classification groups are

still applicable and are used in the scheme shown in Figure 2.

Load sharing algorithms can be static or dynamic in operation. The static variety

employs historical system performance data whereas dynamic algorithms can use

information on the current system state in decision making. A distributed algorithm is

implemented at every node in the system. A centralised one is only fully implemented on

one node. The centralisation can encompass the full decision making process or just the

gathering of information on system state. Co-operation implies that system state

information is exchanged between the nodes. An optimal algorithm attempts to use all

available information in its decision making. However as this is often impossible or

computationally difficult the sub-optimal class covers those algorithms using only enough

information to give an acceptable degree of performance improvement.

Static algorithms, as their name implies do not change whilst the system is

running. All load sharing decisions are made using information based upon

relevant system data, examples of which are: average loading statistics, node processing

power and network communication speed. Therefore they cannot be centralised as this

would imply that nodes were exchanging information with a central node which would

make decisions based on the information gathered there. The most rudimentary static

algorithm is the allocation of machines to staff in any organisation. The most powerful

machines would be allocated to those persons with greatest computing demands

indicated by previous workload statistics. Unfortunately powerful machines can still lie

11

under-utilised all summer on professorial tables and so a more sophisticated solution is

called for. Random splitting algorithms [Ni81] distribute jobs according to a given

probability distribution. A variation on this is the cyclic splitting [YumSl] algorithm that

distributes jobs on a cyclic schedule in an attempt to avoid temporary congestion. An

alternative example, "the optimal static load balancing algorithm" was proposed by

Tantawi & Towsley [Tan85] and simplified by Kirn & Kameda [Kim92a]. OR techniques

are used to calculate an optimum load for each node dependent upon processing power

and communication rates in the system.

load sharing

dynamic static

distributed centralised distributed

non co-operative co-operative non co-operative

sub-optimal optimal optimal sub-optimal

Figure 2.1 A Taxonomy of Load Sharing Algorithms.

Although these algorithms have achieved improvements over the no load sharing

case, they are limited in their effectiveness as they cannot react to changes in the system

state, in particular short term fluctuations in system load. Nor do they exhibit any

scalability in respect of system size or constitution. For these reasons work over the last

decade has been concentrated in the field of dynamic algorithms.

12

The first branch in the taxonomy of dynamic algorithms separates them into

distributed and centralised classes. Two centralised algorithms were proposed and

evaluated by Zhou [Zho87]. CENTRAL had both centralised information gathering and

decision making. GLOBAL centralised the information and periodically broadcast it to

all nodes allowing them to make a decision as to any transfer of jobs. Of the two

centralised algorithms, CENTRAL was considered the best, although its performance

was not dramatically better than that of comparable distributed algorithms. A comparison

of CENTRAL and an equivalent distributed algorithm [The89] indicated that the

simplicity of implementation of the latter can be an advantage. Other work has

highlighted further potential weaknesses of centralised algorithms, notably bottlenecks

forming at the central node and the vulnerability of the systems load sharing capabilities

if this node fails [Ald92, Ber93]. These factors have lead to the conclusion that

centralised solutions are better suited to multi-processor configurations, rather than

distributed systems.

The suitability of distributed dynamic algorithms to the load sharing problem is

reflected in the large body of work in this field. These algorithms and the techniques

used for their evaluation will be described in the rest of this chapter. The three policies

and question of initiation raised in section 1.3 will provide a discussion framework

2.1.1 Initiation

The concept of load sharing can be viewed from two opposite directions. The

first is from the perspective of an over-loaded node, which will seek to send some of its

work for processing elsewhere. The second is that of an under-loaded or idle node,

which can advertise its services or actively seek more work. Therefore an algorithm can

be initiated at the sender, receiver or both. The terms source and server initiated are

sometimes used to represent the same concepts. Initiation will occur on change of state,

i.e. a job arrives or finishes.

The assumption here is that all the nodes involved operate in a multiprogrammed

mode, which is in modern workstations. What will limit the initiation options

are the job migration facilities available. Job migration is the ability to stop an executing

job and move its whole context to enable continuing execution at another site. This is by

no means a trivial task [Art89], but is an essential requirement for receiver initiated

schemes. These are invoked when the completion of a job puts a node in a state that it is

2.

ready to receive more work from a heavily loaded one. It is highly unlikely this event will

correspond with the arrival of a job at another node, hence only jobs that have already

begun execution will be candidates for transfer.

In several distributed operating systems the ability to migrate processes is

available [Bis95]. For the network operating system environment with which we are

concerned, the Condor system [Epe95, Tan95] does offer migration facilities outside the

kernel. Unfortunately this system has limitations and cannot deal with all types of

process, in particular communicating processes. The lack of ability to deal with a job that

spawns new processes places severe restrictions on any form of receiver initiated load

sharing algorithm. Sender initiation, prompted by the arrival of a new job, relies on initial

job placement occurring before the start of execution. This type of operation can be

supported by any distributed system worthy of the name.

Studies have been performed to compare sender and receiver initiated policies.

Simulation and network analysis techniques are used, where the effect of job migration

can conveniently be represented by a time delay. The results are inconclusive with some

[Eag88, Dan95] preferring sender initiated algorithms. Others [Kru88, Mir89a] conclude

that receiver initiated algorithms perform best at high system loads, with the reservation

that their performance is highly dependent upon the costs of migration. The

RESERVATION algorithm [Eag86b] is receiver initiated but does not involve job

migration as lightly loaded nodes reserve the next job arriving at a heavily loaded one.

This approach was not successful with the algorithm being out performed by simple

sender initiated ones. Intuitively one would expect receiver initiated algorithms to

perform best at high loads as the chance of finding a heavily loaded node is high. A

combination of initiation policies is used in the "Symmetrically Initiated" algorithm

[Kru94], where lightly loaded nodes use receiver initiation and heavily loaded ones

sender initiation.

With the difficulty in implementing full process migration and lack of evidence

that receiver initiated algorithms offer a significant performance improvement, analysis

will focus on sender initiated solutions.

2.1.2 Transfer Policy

In order to describe and facilitate the comparison of load sharing algorithms, they

are separated into component parts or policies. The use of policies was introduced by

14

2.

Eager et al [Eag86a], who used two: transfer and location. The trend now is to use

three: transfer, information and location [Zho88, Gha90, Bak92, Ber93, Mah93, Kru94,

Ben95].

In many ways transfer policy can be thought of as the first stage of an algorithm.

It is the transfer policy which decides whether a job should be executed locally or made

available to be transferred to another node for execution. The type of transfer policy

varies in the literature, but the most widely used is the Threshold, based upon local

queue length. As a new job arrives at a node, the CPU queue length at that node is

examined. If accepting the new job for processing would cause the set threshold to be

exceeded then the job is eligible for transfer. Eligibility for transfer does not imply that

the job must be transferred only that the other policies of the algorithm will be invoked.

The problem with use of a fixed threshold is that the optimum value changes with system

load [Eag86a]. As the system load increases, chances of finding a lightly loaded machine

decrease and therefore a higher threshold would be more appropriate. However this is

not necessarily the case in heterogeneous systems which Eager did not investigate.

As an alternative to a fixed threshold a dynamic one was suggested in [Gha90].

The load at neighbouring nodes is used in calculating the transfer threshold when load

sharing is initiated. Another alternative is a form of global threshold [Sta84], where each

node asseses the loading across the system by exchanging information with its

neighbours. If system loading is below or above predefined levels then no attempt is

made to transfer any jobs. In both cases the communications network envisaged was

based upon point to point links. This type of fixed structure allowed neighbours to be

clearly defined and limited broadcasts to a small subset of the network involved. In the

fully connected LAN's prevalent today broadcasting load statistics can be performed

simply but each node in the system will incur overhead on receipt of the data. Even in

systems where multicasting is considered [WIL95]the thresholds used in transfer policy

have been fixed. Therefore in this work the use of a dynamic threshold is considered to

be impractical. It would require each node to possess the ability to estimate overall

system load in the short term at an economic cost.

The performance of a good transfer policy is dependent on a reliable measure of

workload at a node. An accurate estimate would be obtained if the service time of each

job at a node were known. Unless the work on a system was of a repetitive batch variety

15

2.

this is not possible. The load index should be simple, instantaneously available and enable

comparison between nodes. Several possible indices have been investigated [Fer87,

Kun91] that are generally available on UNIX based machines:

 Ready to run queue length

 60 second load average

 CPU utilisation, 10 seconds and 60 seconds average

 5 seconds system call rate

 CPU context switch rate

 Available memory

Of these, the ready to run queue length consistently outperformed the rest. No

improvement was achieved by using an index that combined any two of these indices

[Kun91] even when the best two were used. Although these results are for homogeneous

systems they can be extrapolated to heterogeneous systems, when attention is paid to

relative processing powers.

Stability is an important property of any load sharing algorithm [Sta85], and it

can be adversely effected if processor thrashing is allowed. This phenomenon occurs at

high system utilisation, when jobs are continually transferred and never executed. A

simple cure is to put a limit on the number of transfers a job can experience. This has

become known as the transfer limit [Eag86a].

One further procedure can be included in the transfer policy of an algorithm,

that is to filter out jobs ineligible for transfer. This is normally done on the grounds that

jobs of short duration should not be transferred. A simple enough task when using a

simulation model [Zhou88]. Without the ability to assess the service time of a job this is

impossible to accomplish in a transparent manner and so in the majority of studies it has

been ignored.

2.1.3 Information Policy

Eager's definition of location policy, the policy which decides where a job eligible

for transfer should be transferred to, included the means of acquiring the information on

which to base the decision. Now the norm is to divide this into location and information

policies, the latter concerning the acquisition of information upon which to base

decisions.

16

2.

Two strategies are possible, broadcast and probing. Broadcast can be

periodic [Sta84, Ald92], with each node broadcasting its load to all the other nodes in the

system at regular intervals,. Alternatively it can be event driven, by a node state change.

The state change could be the arrival of a job eligible for transfer, upon which the source

node will broadcast a request for state information from other nodes in the

system.[Cas87]. Or any change in loading at any node may be broadcast [Sta84].

The most obvious problem with any broadcast based policy is the large amount of

communication traffic that will be generated. A periodic broadcast will create extra

traffic with no guarantee that the information is needed, but increasing the time interval

between broadcasts may lead to inaccurate placement decisions based upon out of date

information. Source initiated broadcasting although furnishing more accurate state

information will lead to periods of intense activity on the communication network as all

nodes try to respond concurrently. The advantage of using broadcast techniques are that

an image of the whole system can be formed and idle nodes located, assuming that the

state information used is still accurate. How great an advantage this is depends on the

demands of stability. If distinct nodes make decisions based on the same information

they will all come to the same conclusion. Underloaded nodes can become swamped with

jobs transferred from many different overloaded ones, leading to performance

degeneration.

Probing or polling, is event driven and so all information gathered will be as

current as possible. A communication delay will be unavoidable but will be tiny in

comparison to job service time and so it is unlikely that state information will be

obsolete. It is normal for only a small subset of the available nodes to be probed, referred

to as the probe limit. These are picked at random by the instigating node. Whether all the

nodes up to the probe limit are probed is at the discretion of the location policy.

Research into systems of homogeneous nodes has shown that probing 10% - 15% of the

total system provides optimum results [Phi90, Ben94], even if communication costs are

assumed to be negligible [Eag86a]. In reality these costs cannot be ignored, and the

relatively small number of probes has the advantage of much lower communication

overhead than broadcast.

17

2.

General comparisons of these two means of information dissemination have been

made. Probing has been shown to be the most efficient at low to moderate system loads

and broadcast at high loads [Mah93].

2.1.4 Location Policy

The final task for a load sharing algorithm is to use available state information in

deciding the destination of an eligible job The possibility of a node rejecting a transferred

job is not discussed as the mechanism to allow this type of negotiation would add

considerable overhead, which is better invested in making the best possible initial

placement.

The simplest location policy is one which uses no state information at all,

randomly selecting another node to accept the job, such as RANDOM [Eag86a, Zho88].

Although very simple, this form of "blind" [Ber93] location policy can exhibit substantial

performance improvement over the no load sharing case at all levels of system load when

implemented on homogeneous systems. Performance on heterogeneous systems is

discussed in later chapters of this thesis.

A strategy common in early work is to identify the lowest loaded node and move

jobs there from an overloaded one. [Sta84]. In a homogeneous system this can easily be

identified as the node with shortest queue length. This is simple enough to determine if a

global picture of the system is available, as with a broadcast information policy. However

if probing is used a measure is needed to determine if a particular node is suitable. As

selecting the lightest loaded is impossible unless all nodes are probed. Two methods are

available, incorporated as the location policies of the THRESHOLD and SHORTEST

algorithms [Eag86a, Phi90].

The first as its name implies is based upon a threshold, often of the same value as

that used in the transfer policy. For example a threshold of 2 may be used, so that a node

will only consider a job eligible for transfer if its own load is greater than 2 and will

consider another node a possible recipient if it has a load of less than 2, in the knowledge

that transfer will not degrade the response time of the job in question. The number of

nodes probed is limited by a set probing limit. On detecting a suitable node transfer will

occur immediately. If the probe limit is reached before a suitable candidate is discovered

then the job in question is executed locally.

18

2.

The second strategy also uses a threshold but rather than transferring to the first

suitable node discovered attempts to find the node with the shortest run queue. So even

if a suitable node is discovered, probing continues up to the probe limit in search of a

more lightly loaded destination.

In either of the two location policies if an idle node is probed then the job can be

immediately transferred, as no more suitable node could possibly be found. Of the two

policies SHORTEST has been shown to have a slight edge in performance. Figure 2.2

shows how this algorithm works.

Job
arrives

Figure 2.2 The SHORTEST algorithm in three policies.

As an alternative to a fixed threshold a bias can be employed. A suitable node will

be one whose load is less than the overloaded one by the set bias [Sta84, Cas87]. The

size of the bias may reflect the cost of job transfer, a large bias reflecting a high transfer

cost [Rom91].

19

2.

In a heterogeneous environment the use of queue length alone can still be

effective [Bau89] but the majority of current work has attempted to show sensitivity to

the differing service rates at nodes. To accomplish this some form of rating must be

assigned to each node. If a mixture of CPU queue length, memory capabilities and I/O

speed is used [Ald92, Zho93, Shi94] then prior knowledge of job requirements is needed

in order to assess the relative merits of each factor. To avoid this requirement an overall

measure of server rate or processing speed can be used [Mir89b, Bak92, Wan94] with

which a number of different location policies have been proposed. All of these will in

some way attempt to account for the inequality in processing speed by making job

transfer easier from slow nodes to more powerful ones.

Mirchandey [Mir89b] uses a set of pre-determined thresholds. A node will only

respond positively to a probe from an overloaded machine if its local load is currently

less than its own threshold. Fast nodes will have high thresholds and slow nodes low

ones. These are the same thresholds used in the transfer policy. A similar scheme is used

by Baker [Bak92] although there is more differentiation between nodes. Set thresholds

are used but the load value returned by a probed node is its local queue length divided by

its threshold. If the product is less than unity transfer can take place. The advantage is

that comparison of prospective destinations is allowed. While exhibiting some sensitivity

to system heterogeneity, there can be problems due to a lack of load sharing between

group of fast nodes all of the same power as they all have high transfer thresholds. Also

there is little adaptability in these policies. If new nodes are introduced to the system, the

ratio of thresholds may need altering which cannot be done dynamically.

A more flexible method is to use the ratio of relative processing powers. Wang

[Wan94] suggests that a powerful node will accept work if its local load is less than a

threshold based on proportional processing power of the two communicating nodes. No

mechanism is provided to compare two nodes both capable of accepting a job.

Wang's algorithm does not allow the transfer of jobs from fast to slow nodes.

While this avoids the problem of selecting idle but slow nodes it may lead to missed

opportunities for load sharing. Zhou [Zho93] uses various load indices in the location

decision one of which is ready to run queue length. The load at a remote node is scaled

according to its relative CPU speed (cycles per second) rather than processing power

(MIPs). But before scaling the remote load is incremented to account for the effect of the

20

2.

job if it was transferred. This has the effect of stopping inefficient transfers to idle but

slow nodes. Fixed thresholds are still used for comparison purposes once the remote load

has been scaled, combined with use of the other indices.

2.2 System Model

Once a load sharing algorithm has been developed, it can be evaluated by

studying its performance on a given system model. The system model used will naturally

have a great influence on perceived performance. In cases where algorithms have been

studied through implementation, this is normally used in conjunction with, and as an aid

to constructing a valid model. Unfortunately no standard model is available and those

used in previous studies have varied enormously. The differences fall into the following

categories:

 Network topology

 Heterogeneity of nodes

 System load

 Overheads

2.2.1 Network Topology

All distributed systems will use a communications network through which to

function. The size of the network can vary from a localised environment to national or

international proportions. This study will concentrate on the former and the related Local

Area Networks (LAN's). Load sharing is possible over a much larger scale [Epe95] but

only in a limited form, as the lengthy communications delay inherent in WAN's will add

a significant overhead.

Algorithms have been evaluated on networks that were not fully connected

[Sta84, Cas87], and this was reflected in their design. The LAN's in general use today

have bus and ring topologies. These can all be considered as fully connected in that the

average communication time between any pair of nodes will be the same. Due to this fact

the design and evaluation of load sharing algorithms is not normally effected by the lower

level (MAC) operation of the LAN in use. A rare exception [Kim92b] was developed

specifically for a network using the CSMA/CD protocol. With this is mind any system

21

2.

model used will only need to consider differences in communication speeds. As

mentioned in 1.2.2, the effect of the extra traffic due to load sharing algorithms, on data

transfer rates, can only be investigated through implementation and measurement..

The issue of inter-net load sharing between LAN's was addressed in [Ban89],

assuming that inter-net communications has a considerably higher cost than intra-net

communications. It concludes that no advantage is to be gained by inter-net load sharing.

Another factor against inter-net sharing is the use of common data stored on file-servers

within individual LAN's Transferring the job to another LAN would incur considerable

extra cost.

2.2.2 Heterogeneity of nodes

As noted in 2.1.4 configurational heterogeneity can be exhibited in many ways. If

all of these factors are implemented in the model it becomes very complex and limits

soon arise to its scalability. A more practical method of expressing heterogeneity in a

node is to use just one parameter, processing speed. Although jobs may have a variety of

requirements in terms of CPU usage, memory and disk I/O, these cannot easily be

estimated at run-time. It is a reasonable assumption that in general relative CPU speeds

and memory capability of workstations will be comparable. It is unlikely that a

manufacturer will supply a fast CPU with slow or insufficient memory. With regard to

disk I/O, the diskless workstation is becoming more popular in networked systems due

to ease of management of a central file server.

The model should be flexible enough to allow the evaluation of any algorithm

over systems with differing configurational heterogeneity. If systems can exhibit different

levels of heterogeneity the question arises as to what metric to use in characterising it.

This question is not often tackled, but a simple ratio of processing power has been

suggested [Mah93]. This approach cannot cover all cases, for instance when relative

processing power is unchanged, but proportions of nodes with different speeds is, or

when more than two types of nodes are concerned. A more sophisticated measure using

skewness and variance of distribution of processing power can be devised. This is based

on recent work by Sarraf [Sar95] in which a means of describing offered workload on a

LAN is presented.

22

2.

2.2.3 System Load

In order to assess the scalability of any algorithm it must be evaluated on a

system with variable system load (overall utilisation). The question of interest is how the

system load should be spread amongst the individual nodes and how it will be

represented in service and interarrival time distributions.

When examining performance on a homogeneous system the load at each node

can be the same. This is a reasonable assumption and is the scheme used in many system

models proposed in the literature [Eag86a, Zho88]. Early work tended to consider only

homogeneous loading as it was felt adequate to test the basic characteristics of an

algorithm. However in order to meet rudimentary adaptability requirements an algorithm

should be able to cope with some degree of heterogeneity in loading at the nodes

[Kru94, Kar95].

When considering heterogeneous systems there are three possible loading

representations. The homogeneous case, where each node experiences the same offered

load, holds less water, although it is still used [Mah93]. Another possibility is that of

proportional loading [Mir89b]. The offered load at a node is proportional to the

processing power of that node. This is the natural extension of the loading patterns used

in most studies of homogeneous systems. Lastly the heterogeneous situation where the

offered load at a node bears no relation to its processing power is a possible scenario but

as yet has not been explored in any depth.

Another characteristic of the load originating at each node is the distribution of

interarrival times and job service times. In the majority of cases, where a workload must

be created the use of an exponential distribution has sufficed for the interarrival time. A

trace driven workload is used by Zhou [Zho88] in an attempt to reproduce true system

conditions. This idea has not been followed in any later work as it is considered too

restrictive, being based on the characteristics of just one machine. Use of a hyper-

exponential interarrival time distributions has been investigated by Dandamudi [Dan95].

The algorithms investigated showed little relative sensitivity to the increase in job arrival

clustering although response times did increase, not an unexpected result.

With regard to the distribution of job service times, there has been a little

variation in the literature. Kruger and Livny [Kru87, Kru88] expound the virtues of a

hyper-exponential distribution in accurately representing true service rates. But in a later

23

2.

paper [Kru94] returned to use of the exponential distribution. The hyper exponential case

has also been explored more recently [Ben93, Dan95] in both instances it was reported

that the relative performance of the algorithms studied was unaffected in comparison to

the situation when using an exponential service time distribution. The bulk of system

models use an exponential distribution.

2.2.4 Overheads

No dynamic algorithm can operate without imposing an extra overhead on the

system, as state information must be collected and used in the chosen algorithm. There is

also the cost of transferring a job, in whatever context, to consider. The only algorithms

that are assessed with no regard for overhead are those aiming to give a lower bound on

performance, with which to correlate other results. Examples of these are LB2 [Sta84]

andNoCost [Zhou88].

Job transfer cost will depend upon the file service implemented. In a networked

UNIX based workstation (often diskless) environment it is common for files to be stored

remotely on a dedicated file server. Therefore on transferring a job only a command line

need be passed between nodes, which can be represented by a fixed cost[Bak92, Kru94,

Dan95]. If files are stored locally then the cost of transferring a job will be increased as

these files will consequently be accessed remotely rather than locally. This extra cost is

normally represented as a percentage of job service time [Eag86a, Mir89b, Phi90]. When

this is the case and transfer costs can be very high the cost of information dissemination

is considered negligible and ignored. Otherwise a fixed cost will be allocated to each

probe or broadcast, depending on the information policy used.

All the costs associated with extra communication due to algorithm operation are

modelled as delay at the CPU. In more sophisticated system models the costs to both

sending and receiving nodes are taken into account, whereas earlier ones assumed all the

overhead was borne at the sender. As dynamic load sharing algorithms are very simple in

operation, the CPU cycles used by the algorithm for non-communication related

activities are ignored in all but a very few cases.

2.3 Algorithm Evaluation

The first two sections of this chapter have described different types of load

sharing algorithm and the system models on which they can be evaluated. There remains

24

2.

the question of which techniques can be used to perform the evaluation and what metric

should be used to judge performance.

2.3.1 Evaluation Techniques

The three standard techniques [Kan92] for studying system performance have all

been applied in the evaluation of load sharing algorithms: analytical modelling, simulation

and measurement. Analytical modelling in the form of queuing network analysis has been

used in the past but always in conjunction with simulation, in that results have been

checked against those achieved by simulation. The advantages offered are simplicity and

speed. These were particularly useful when the processing power available for simulation

purposes was at a premium. Generally the mathematical approach has been used in

evaluating general algorithm performance on simple system models [Eag86a, Mir89a], or

where the load sharing algorithm is based upon the underlying network protocol and so

is too complicated to simulate [Kim92b]. Approximations will always be made in an

analytical model to ensure it remains tractable and this can lead to unreliable results in

some situations. One common assumption made is that each node is independent of

others, a method of decompostion that is asympotically exact as the number of nodes

tends to infinity. In general a system of less than fifteen nodes is considered too small.

A comparison [Eag86b] of simulation and analytical results showed discrepancies at high

system loads.

With the understanding gained of the general behaviour of algorithms over

homogeneous systems, more complex models were introduced to represent the

distributed systems involved more accurately. Factors previously considered negligible

were now included, in particular the overhead associated with inter node communication.

These considerations along with the introduction of heterogeneity, in both offered load

and processing power, made analytical models ever more intractable.

It is arguable that the growth in system model complexity was prompted by the

rapid increase in computing power available to researchers. This in turn led to the

increased use of simulation as an evaluation method. Whatever the motivation simulation

has become the most popular technique for the evaluation of load sharing algorithms.

Unfortunately there are still practical limits to system size and complexity. The

simulation of systems of over 20 nodes is rare. Zhou had a system of a maximum 49

nodes but only conducted short runs using systems of this size [Zho88]. Ghafor studied a

25

2.

35 node system but it was not frilly connected [Gha90]. Aldy [Ald92] considers many

different parameters in algorithm operation and system model but restricts his studies to

a network of 3 nodes.

Measurement is thought of as the most fundamental technique in performance

evaluation. It is needed to some extent for both analytical modelling and simulation, as a

means of establishing initial parameters such as communication overheads. For this

purpose a full scale implementation is not needed as the required details may be obtained

from an existing system. Measurement of algorithm performance will need a full

implementation. The greatest problem here is the availability of resources and so

implementation is often on a small scale, 3 and 11 nodes [Bau89], 6 nodes [Zho87].

2.3.2 Performance Metrics

To arrive at the best metric of performance, the purpose of the system must be

examined. Should it deal with a large number of real time jobs then meeting deadlines

will be of utmost importance. The primary goal of a load sharing algorithm in such an

environment would be to minimise the rate of job loss due to deadline expiry [Sri92,

Hou94].

A typical network operating system with different workstations will normally

handle a wide variety of jobs but their completion time is not ultimately crucial. For

systems without such restrictions Kleinrock [Kle76] suggests, "The average response

time for a job requiring seconds of processing is the single most important

performance measure". The response time of a job is the time from when it enters the

system for processing to when it leaves the system with all its associated tasks

completed.This is the metric adopted in all previous load sharing studies not involving

real time jobs.

Other metrics have been suggested, Kruger and Livny [Kru87] proposed a

measure of fairness, Wait-Ratio. Which is the waiting time of a job relative to its service

demands. The aim in a "fair" system was that all jobs should experience the same wait

ratio. While this metric may be of some value in sequential FCFS systems it is less

applicable in the multiprogramming systems that have become the norm [Tan87] and has

not been adopted in later work.

26

3. Scope of the Present Work

3.1 Introduction

For the purpose of algorithm evaluation a system model is required. The

structure of the model and rationale behind its construction are described in this chapter.

Particular attention is paid to establishing differing levels of heterogeneity in the model in

order to provide a wide variety of operating conditions. A number of loading conditions

are possible with the model, varying both in overall system utilisation and loading

patterns across the system. Construction of any accurate model of a distributed system is

not possible without knowledge of the overhead involved in the operation of the system.

An investigation into the costs of Remote Procedure Calls (RPC's) is presented. These

costs are used as the basis of system overhead as RPC's are used for performing many of

the functions underlying load sharing activities.

One of the aims of this work is to investigate the effects of heterogeneity on the

performance of load sharing algorithms. But as the survey in Chapter 2 has shown there

is a large choice of algorithms. Even if the area of study is restricted to dynamic

distributed algorithms, it is not practical or desirable to evaluate them all. So criteria have

to be established, to select suitable algorithms or individual policies. The primary rule

that will be used is that implementation of the algorithms should be possible on a

standard network of workstations. This will exclude the use of pre-emptive strategies

that involve process migration. A process in this sense is a job which has begun

execution. Concentrating on just non pre-emptive sender initiated algorithms is not felt

to be unduly restructive. They are the same type used by Eager [Eag86a] and Zhou

[Zho88] in their work on homogeneous systems, and their contribution to the field is still

held in high regard.

3.2 System Model

The system model adopted for this study is based upon a network of

workstations on a LAN. The use of LAN's implies that the nodes are on a fully

connected network. All the workstations on the LAN are assumed to be diskless, with all

files stored on a central file server. The file server is used solely as a central repository

for data. None of the system's workload originates or executes on the file server.

Therefore the transfer of a job that has not begun execution will entail no overhead due

to the movement of job related data.

The bulk of algorithm evaluation is carried out on a system of 20 nodes. Systems

of this size have been used in many previous studies [Eag86a, Mir89b, Ben93, Kru94]

and are assumed to be an adequate testbed for load sharing algorithms. A larger system

of 40 nodes will be considered in order to assess the scalability of algorithms. Due to

limited resources validation and verification through implementation was not possible for

systems any larger than 20 nodes.

The client-server model is often used to describe a distributed system and is

adopted here. A busy node can be thought of as a prospective client and an idle or lightly

loaded node as a prospective server. The objective of a load sharing algorithm to identify

the latter to the former and facilitate any subsequent job transfer.

In the UNIX workstation environment considered in this study the client and

server will both be processes running on distinct machines. In order to communicate with

each other some form of inter-process communication (IPC) must be used. IPC across a

network is by no means a trivial matter but it can be greatly simplified with the use of the

remote procedure call (RFC). RFC facilities are now widely available on distributed

systems and easily accommodate the needs of a load sharing algorithm, by offering a

machine independent communication mechanism [Blo92].

3.2.1 Aspects of Heterogeneity

The main direction of this work is in investigating the effects of system heterogeneity on

load sharing algorithms. In order to evaluate several systems there must be a means of

ordering them. A possible means is to use the squared Coefficient of Variance (CV) of

28

processing powers of the nodes. The larger the CV the greater the degree of system

heterogeneity. A homogeneous system will have a CV of zero.

number of classes in system, / = number of nodes in class i, */ = power of nodes in

class i

cv =
(M 2 -\i*)

where
i

and

Figure 3.1 Squared Coefficient of Variance of System Processing Power

However its is possible for two different systems to have the same CV. Consider

2 systems of 20 nodes with the same total processing power, A3/B3 and A7/B7 in Table

3.1. The nodes in these systems are split into two groups, with 12 in one group and 8 in

the other. In one system the larger group of nodes has 30% less than the processing

power it would possess in a homogeneous system, whilst in the other system the same

group has 30% more. The CV will be the same for two different systems.

To differentiate the between the two examples and give a better measure of

degree of heterogeneity the skewness of processing power can be used in combination

with CV. A positive skew will indicate that the less powerful nodes (less powerful than

the average for the system) are in the majority. Conversely a negative skew will indicate

that the powerful nodes form the majority in the system.

SKEW =

Figure 3.2 Skewness of System Processing Power

In this study both the CV and skewness will be used to characterise the degree of

heterogeneity of a system. All of the systems investigated will have the same total

processing power but this will be distributed in a variety of ways. If overall processing

29

power in not maintained at the same level, comparison of results from different system is

not valid. The systems nodes will be split into two groups of 12 and 8 nodes, as

illustrated in the previous example. For ease of reference the majority group will be

known as group A and the minority group B. Total power of the system is set at 20. In

total 10 systems will be used. The composition of each is shown in Table 3.1. The

division of processing power in this manner gives a broad spectrum of systems on which

evaluation is made. Relative processing power of the nodes is varied between 1 : 1.5 and

1 :66.

Systems in which the group sizes are very different give less variation. Consider

a system in which the groups of nodes are split 18:2. Negative skew values are possible

but not to any great degree. Even if the majority group has 99% of total processing

power the skew is slight. When the minority group has the lions share the degree of

heterogeneity rises rapidly. This configuration is used but only to assess algorithm

adaptability.

While the present study was restricted to the systems with two types of node

predominantly those defined in Table 3.1, the measure of heterogeneity adopted here can

be used in the more general situation where there is more variety in node power. The

present study was limited to the 12:8 and 18:2 split only due to restrictions of time and

resources.

Al
A2
A3
A4
A5
A6
A7
A8
A9

A10

Power

0.350
0.417
0.500
0.667
0.830
1.167
1.330
1.500
1.583
1.650

Fraction
of total
power
0.21
0.25
0.30
0.40
0.50
0.70
0.80
0.90
0.95
0.99

Bl
B2
B3
B4
B5
B6
B7
B8
B9

BIO

Power

1.975
1.875
1.750
1.500
1.250
0.750
0.500
0.250
0.125
0.025

Fraction
of total
power
0.79
0.75
0.7
0.6
0.5
0.3
0.2
0.1

0.05
0.01

skew

0.206
0.149
0.094
0.028
0.004
-0.004
-0.028
-0.094
-0.149
-0.206

cv

0.634
0.510
0.375
0.167
0.042
0.042
0.167
0.375
0.510
0.634

Table 3.1 System Composition With nodes divided 12 : 8

3.2.2 System Loading Conditions

The commonest method of load distribution in previous work has been a

homogeneous distribution across the system. In a heterogeneous system this is not a safe

assumption. It is highly unlikely that a powerful workstation will experience the same

offered workload as a much slower counterpart. Even if workstations are office based

and so accessible by only specified users the ability to logon remotely and execute work

on other machines on the same system is widely available. In fact any system in which

these activities were not allowed would not lend itself to load sharing anyway. Another

possibility is that of remote users, gaining access via modem connections, i.e.

researchers working from home. They are most likely to concentrate their efforts on the

powerful machines in the system. These ideas do not contradict the principle of

transparency, for it is not possible to hide the relative capabilities of machines from any

user group.

Assuming that more powerful nodes do experience a heavier workload then the

further assumption that load may be in proportion to processing power seems fair and

has been adopted in other studies [Mir89b]. This is really just an extension of the

principle used in homogeneous studies. Proportional loading will be used in the main in

this study with job interarrival time being inversely proportional to processing power.

Other cases are included for the purpose of judging algorithm adaptability in coping with

more random loading patterns. In some cases a proportion of the nodes will experience

no offered load at all.

The average service time of all jobs is 10 seconds on a node of processing power

equal to 1. The actual service time will of course vary depending upon the executing

node. In other work the trend has been to use anonymous "time units" rather than

seconds, but the overheads in this study are based upon measurements of RFC timings

where the relevant units are seconds. Some attempts at measurement of service times

have been made [Zhou87, Zhou88, Kara95] and these range from 1.5 to 7.5 seconds.

Three levels of overall system utilisation are used in the evaluation. These are

50%, 70% and 90%. Corresponding to light, medium and high loading conditions

[Kar95]. Load sharing at system loads of less than 50% gives little performance

improvement over the no load sharing case except in cases of extreme loading patterns.

31

The system loading level is modified by changing the job interarrival time. Job service

time is the same for all levels of system load and across all types of node.

3.2.3 Overheads Due to Remote Procedure Calls

The overhead incurred due to load sharing activity can be divided into three

parts:

 The cost of information dissemination.

 The cost of transferring a job from one node to another.

 The CPU cost of algorithm decisions.

A primary requirement of any evaluation study that does not use measurement on

a real implementation is that these overheads are accurately estimated. All

communication between nodes will take place with the use of RPC's and so the cost of

executing these is the basis for the estimates used in this study. Job transfer is also

achieved by the use of an RFC, with no other costs, as the use of diskless workstations is

assumed. As the algorithms proposed are simple in operation requiring very few

instructions to be performed outside of those connected with the RFC mechanism the

CPU cost of implementing them will be ignored.

Figure 3.3 shows the sequence of operations connected with a RFC. The diagram

is not to scale but it does illustrate the delays that are inherent in any RFC. There is an

initial delay on the client side as the client stub marshals the arguments of the local

procedure call into a network message, followed by a network delay in transmitting the

message. On the server side a server stub converts the arguments from the network

message and makes a local procedure call to execute the server function. After the server

function has been completed the return values are converted into another network

message and sent back to the client stub which converts them back. Again network and

processing delays are incurred in the course of these actions. There is the possibility that

the client and server can both be on the same node in which case no network delay

would be experienced, but as this will not occur in the load sharing environment it will

not be discussed any further.

32

A

Client
Program

^

Client
Machine

B

Program
continue;

<E

IFF

A^C«-TTV*n.

:|

jl
; ;;.."

RFC request^
"^^^-^

illI1ĵ
:i

Return reply j

ll

Sii»«itt««^«««

Server
Service Machine
Daemo

n

^ Invoke

 , 1 Service

1 fc
Call Service

. Return _
(^ Answer

D 1
^ Request

Service
Executes

r

Completed

Figure 3.3 The Operations involved in a Remote Procedure Call

For the purpose estimating overhead it is not necessary to determine the cost

each operation in a RFC. All that is needed is the response time the RFC which will

be fully added to the eventual response time the job eligible for transfer, plus the total

delay incurred by both client and server. The total delay of a probe to an eligible job is

the time delay from A - F as shown on Figure 3.3. This is the total time needed to

execute the RFC. An assumption made here is that probes are not executed in parallel

and so the delay experienced is directly proportional to the number of probes used. The

client (probing node) does not have to lie idle for the whole of this period and can

process jobs for the period indicated by the broken line. Therefore the total delay to the

client is equal to (A - F) - (B - E). The server (node probed) will experience a delay

equivalent to the time period from C - D. Therefore any jobs executing on the server

machine will all experience a delay equivalent to the time taken to respond to the RPC.

The overhead in transferring a job is estimated in the same manner as the transfer

is accomplished using a RPC. However the delay in executing the server procedure, in

this case the job itself, will be much more significant.

The overhead estimates used in this study are based upon measurements made on

a LAN at the university. The action of probing was simulated by running a client process

that would at one minute intervals send a RPC that would read a value from memory on

the server machine. This operation was carried out 20 consecutive times to minimise the

timing overhead. Measurements were taken over a period of 3 days. Five machines were

used, a SS5 70 (Mars) sending RPC's to itself another SS5 70 (Saturn), SS10 40

(Westar), Classic (Barry) and IPX (Terry). The average response times for each machine

are shown in Figure 3.4.

0.035 T

Barry Classic Mars SS5 70 Saturn SS5 70 Terry IPX WestarSS1040

Figure 3.4 Average Probe Response Times

Mars has a significantly lower response time because the RPC in its case is

between two processes on the same machine. By comparing the response times of Mars

and Saturn it is possible to get an idea of the delay due to transportation across the

network, approximately 10 ms. The delay experienced will depend upon both the

communicating machines. The network delay can be assumed to be constant across all

nodes, although it will of course change with network utilisation. Attempting to account

for the different delays according to machine pair would entail extra processing for each

probe made and so hamper simulation studies. As the probes are random a balanced

combination can be expected so one set of values for RFC overhead are used. The

overhead estimates used are:

Probing: 10 ms to client node

10 ms to server node

30 ms per job

Job Transfer 10 ms to client node

10 ms to server node

30 ms per job

An assumption inherent in the above timings is that the operations involved in a

RPC are evenly divided between the client and server as they perform symmetrical

operations. The delay due to the server procedure when probing is performed is

negligible, measurable in microseconds rather than milliseconds. The server procedure

delay in job transfer is separately accounted for when job processing starts.

The effects of varying load are shown in Figure 3.5. RPC's are sent from Westar

(SS10) to Terry (IPX) in the same manner as for the 5 machine test reported earlier.

Results were gathered over a week but during this time the load on both machines was

varied from an idle state to a utilisation as reported by the UNIX system call of

over 6, i.e. 6 jobs were in the ready to run queue. The changes in loading were not

observed to have any effect on the RPC response time. The peaks shown are caused by

the heavy network traffic during system backup which is conducted during the small

hours every night.

The independence of RPC response time from loading conditions can be

explained by the scheduling policy implemented on the workstations. Any new process or

in the case of the server stub one that has only used the CPU lightly will obtain a higher

scheduling priority and so rapid access to processing facilities [Sun90]. Therefore the

timings proposed will be used at all levels of system utilisation.

 Response Time Load at Terry Load at Westar

Hour ending

Figure 3.5 The Effect of Changing Load on RFC Response Time.

3.3 Algorithms Evaluated

The load sharing algorithms evaluated in this study are listed in section 3.2.4.

Before this is a description of the transfer, location and information policies used in them

and the rationale behind their selection.

3.2.1 Transfer Policy

The selection of which jobs to consider for transfer begins with the arrival of a

job at a node. This job is not necessarily new to the system but may have been

transferred from another node. In order to prevent the possibility of instability due to

thrashing a transfer limit will be put on each job. All the algorithms evaluated will have a

transfer limit of one, ensuring that any transferred job is executed on its the first

destination node.

All locally originating jobs will initially be considered eligible for transfer. It may

well be better to process very short jobs locally, as the mere cost of transfer may make

36

load sharing inefficient. Unfortunately there is no way of knowing service time in

advance. The relative performance of the algorithms will not be effected by this decision,

except for the IDEAL algorithm which is used as an upper bound on performance.

A Threshold is used to determine if a new job should be considered eligible for

transfer. The threshold will be based solely on local load at the time of job arrival. The

metric by which local load is judged will be the number of jobs currently executing

locally or in the ready to run queue. A simple but effective measure for workstations

such as, Sun 2 [Fer87], and Sun 3/50 [Kun91]. The optimum threshold length is

investigated in the course of the study.

3.3.2 Information Policy

Apart from a version of the RANDOM algorithm [Eag86a] which operates

without any system state information except local loading, the dissemination of system

state information will be accomplished with the use of probes (polling individual nodes).

The alternative broadcast has been discussed in section 2.1.3. Use of broadcast has been

limited and it is not a popular choice when considering fully connected networks, due to

the associated high overhead with little perceived benefit. All recent load sharing

algorithms use probing of some form.

Selection of the nodes to be probed will be made on a random basis as jobs

eligible for transfer are identified. This will ensure that the information collected will be

as current as possible. The use of prior information in the selection of nodes to be probed

has been investigated [Shi92]. Increased performance was noted at system loads of

greater than 85%, due to a greater efficiency of probing. However the transfer policy

used was somewhat questionable with the threshold not varying with load. Whilst noting

the potential of intelligent probes a random policy is considered adequate for this study.

3.3.3 Location Policy

A variety of location policies will be investigated in the algorithms evaluated.

This is the area in which they display the greatest diversity. The simplest policy is that of

blind location, where a suitable node is selected at random. This strategy has been used

as a benchmark in many studies of homogeneous systems [Eag86a, Zhou88, Kre92].

Thresholds based on remote loading have been widely used in previous work

such as the SHORTEST and THRESHOLD algorithms [Eag86a]. Proposed for use on

homogeneous systems they are tested on the heterogeneous systems used in this work.

Of more relevance are the location policies primarily designed for use where the

processing speeds of nodes differ.

All the algorithms proposed in this study use a load index which is the ready to

run queue length weighted by the relative processing power of the remote node. The use

of fixed thresholds is investigated as well as that of flexible thresholds, where the remote

load is compared with the local load in deciding whether to select the node probed. The

mechanics behind these variations in location policy, which are kept simple to avoid the

imposition of excessive overhead, are detailed in the next section, where all the

algorithms evaluated are described.

3.3.4 Description of the Algorithms

The five algorithms on which this study concentrates are described below. Their

descriptions are divided into Transfer, Information and Location policies (TP, IP, LP).

With the exception of threshold levels, the values of parameters such as probe and

transfer limits are postponed until later chapters.

The measures used to give upper and lower bounds on response times are the

M/M1 and IDEAL scenarios respectively. The M/M/1 or no load sharing case was

illustrated in Figure 1.1. The only complication for heterogeneous systems is that a

response time must be calculated for each type of server and the weighted average

computed. The IDEAL case used to reach a lower bound is based on the simulation of an

idealised load sharing scheme, in which complete knowledge of queue length and job

sizes at all nodes is assumed available and each job is sent to the node where it will be

completed in the least possible time. Once a job has been sent to a node it cannot be

migrated. Transfer and information costs are assumed to be zero. This is the same

principle as the M/M/K scheme shown in Figure 1, but by utilising knowledge of job

service times a truly optimal solution can be reached. The results of simulation of the

IDEAL algorithm provide interesting information on the optimum distribution of

workload.

RANDOM:

TP - A fixed threshold is used. If the arrival of a job causes the local load to reach or

exceed the set threshold and the job has not been transferred more times than its

transfer limit, then that job is considered eligible for transfer.

IP - No information policy is needed as no system state information is used in the

location policy.

LP - A node is picked at random and the current eligible job is transferred to it.

SHORTEST:

TP - A fixed threshold is used, set at 1 for system utilisations up to 70% and 2 for

higher. If the arrival of a job causes the local load to reach or exceed the set

threshold and the job has not been transferred more times than its transfer limit,

then that job is considered eligible for transfer.

IP - Nodes are selected at random and probed, in response to which they return their

load, the total number of jobs in the ready to run queue. Probing continues until the

number of nodes probed reaches the probe limit, unless an idle node is located.

LP - If an idle node is located, the current eligible job is transferred to it immediately.

Otherwise when the probe limit is reached, the job is sent to the node with the

lowest load, provided that load is less than the threshold used in the transfer policy.

HETRO: (Attempts to account for system heterogeneity)

TP - A fixed threshold is used, set at 1 for system utilisations up to 70% and 2 for

higher. If the arrival of a job causes the local load to reach or exceed the set

threshold and the job has not been transferred more times than its transfer limit,

then that job is considered eligible for transfer.

IP - Uses a weighted load in its Location policy, this entails the Information policy

gathering details of a remote node's load and processing power. Probing continues

up to the probe limit unless an idle node is located. The weighted load is calculated

as:

local_ powerweighted_ load = remote_ load
remote_ power

39

LP - If an idle node is located the current eligible job is transferred to it immediately.

Otherwise when the probe limit is reached the job is sent to the node with the

lowest weighted load provided that load is less than the threshold used in the

transfer policy.

HETQL: (Accounts for heterogeneity and uses local queue length in location policy)

TP - All jobs that have not exceeded their transfer limit are considered eligible for

transfer if the local node is busy, i.e. has a load of one, no matter what the system

utilisation.

IP - Uses a weighted load in its Location policy, this entails the Information policy

gathering details of a remote nodes load and processing power. Probing continues

up to the probe limit unless an idle node is located. The weighted load is calculated

power
weighted_ load = remote_ load

remote_ power

LP - If an idle node is located the current eligible job is transferred to it immediately.

Otherwise when the probe limit is reached the job is sent to the node with the

lowest weighted load provided that load is less than the local load as measured by

ready to run queue length

HQNIT: (Accounts for heterogeneity, uses queue length and no immediate idle transfer)

TP - All jobs that have not exceeded their transfer limit are considered eligible for

transfer if the local node is busy, i.e. has a load of one, no matter what the system

utilisation.

IP - Uses a weighted load that takes into account the effect of possible job transferral in

its location policy, this entails the information policy gathering details of a remote

nodes load and processing power. Probing continues up to the probe limit. The

weighted load is calculated as:

local_ powerweighted_ load = remote_ load +
remote oowerremote_ power

LP - The newly arrived job is used in calculation of the local load. Transfer will not

occur until the probe limit is reached, as no node will have a weighted load of zero.

The eligible job will be transferred to the node with the lowest weighted load if:

weighted_ load

This ensures that jobs will only be transfered to less powerful nodes if they will

complete more quickly.

3.5 Simulation

The simulation of systems can be divided into two categories, continuous

simulation and discrete event simulation. The approach taken is normally determined by

the nature of the system to be evaluated. Continuous simulation is normally applied to

systems in which state variables are continuously changing with respect to time. This is

not the case in a distributed computer system where the state of the system will only

change at discrete points in time on the occurrence of an event. Hence the type of

simulation used in the evaluation of load sharing algorithms will be of the discrete event

variety.

The simulation model used in this study is constructed using the MODSIM II

programming language released by the CACI Products Company. This is an object

oriented programming language that provides direct support for discrete event

simulation. There are two approaches to discrete event simulation, the event oriented

approach requires each event to be a separately coded activity. However MODSIM

adopts the process approach with groups of related activities grouped together and the

possibility of the process suspending execution when needed. The uses of processes

eases the construction of larger models by simplifying the logical flow of the program.

Most simulations will attempt to discover the steady state behaviour of the

systems investigated. Initial conditions will correspond to that of an idle system and so an

initialisation 'warming up' phase is included and only after this has expired are results

collected. Total run length is at least 10 times that of the initialisation phase, depending

upon the level of system utilisation. A higher utilisation will give an effectively longer run

as more jobs will be processed. Although the results collected are in the form of discrete

time data, i.e. average job response time, the simulation runs are stopped at specified

clock times as determining total system job output during simulation is easily

41

accomplished. However the length of the simulations is such that any discrepancy

between the total number of jobs offered in different replications is considered negligible.

Standard error for all results is less than 5% at the 95% confidence level.

3.6 Measurement

Measurement is carried out on a working implementation of the same system as

that modelled by simulation. This provides a means of verifying the model by ensuring

that the features used in the simulation can actually be implemented on a real system. The

results of the measurement are used in validating the simulation assumptions and results.

In particular the assumptions about network behaviour and the effect of the added traffic

due to load sharing activity.

The machines used were a mixture of Sun workstations all running the Solaris 2

operating system. All the machines were located on the same LAN. RPC's were used as

the only means of communication between the machines. Two server procedures were

needed for each machine one to handle probes, the other to handle transferred jobs. The

code implemented operated outside the kernel, as any other approach would have

necessitated full super-user control of each machine. This was not possible as the

machines used were part of the general computing resource of the university.

The workload offered was all of the same type varying only in execution time.

Although entirely CPU based this was not seen to be a handicap as the object was merely

to affect the processing speed of other jobs currently executing. No discernible overhead

was experienced due to collecting results, as they were only written to file at the end of

each measurement period.

42

4. Discrete Event Simulation

4.1 System Model

The same system model is used as the basis for all the simulations performed. It

consists of a collection of nodes communicating across a network. Any degree of

heterogeneity in the system is exhibited solely in the processing power of the nodes The

relative processing power of each node is known and does not vary during operation. All

inter-node communication is performed through the use of RPC's, the durations of which

are known and are independent of individual node processing power.

The functionality of each node is identical and based around a set of core

operations. A stream of jobs is generated locally to represent the offered workload. As

each job is generated a decision is made as to whether it should be executed locally

(added to the local quue) or made available for possible transfer to another node for

execution. Information on processing power and current load is passed between nodes

on request. Transfer decisions can then be made based upon the information gathered.

Each node has the facility to send jobs to and receive jobs from others in the system. On

reception of a job a node adds it to the local queue for subsequent execution. Jobs in the

local queue are executed on a First Come First Served (FCFS) basis.

4.1.1 Processes at a Node

The functionality of the nodes can be divided into more specific processes than

the general description above. These are detailed below:

 Generation of offered load - The jobs generated at each node have an exponentially

distributed interarrival and service time. All nodes generate jobs with the same

average servicetime. However, in order to ensure each node has the same initial

utilisation the average interarrival time is inversely proportional to its processing

power.

43

 Transfer policy - As jobs are generated at a node they must be assigned for local

execution or allocated for possible transfer. This decision will be based upon the

current load at the node concerned.

 Information policy - Once a job has been allocated for possible transfer, information

on the system state is gathered to use in the location decision. Only partial knowledge

of the system state is needed and this is gathered through the use of probes to

randomly selected nodes.

 Probe response - Complementary to the information policy is a mechanism to answer

incoming probes.

 Location policy - Using the information gathered via probes around the system a load

sharing decision is made as to the execution location of the job.

 Job transfer - When selected due to the operation of a load sharing algorithm a job

will be transferred to another node.

 Job reception - On reception of an incoming job the destination node adds it to the

local queuefor execution locally.

 Job execution - Jobs in the local queue are executed immediately on arrival in the

queue. When the local queue is empty the execution process will wait for a signal

indicating a new arrival.

4.1.2 Inter Process Communication

Communication between processes takes place on both an intra and inter node

basis. Inter node communication is based on message passing, implemented entirely with

the use of RPC's. Although it is possible to use RPC's as a means of intra-node

communication they are too expensive, in terms of overhead to be of practical in this

model. Two methods of intra-node communication are employed. Shared memory allows

two or more processes to access the same information. Software interrupts in the form of

signals allow processes to co-ordinate activities between each other.

4.1.3 Additional Functions Required

In addition to the core processes described in section 4.1.1 some extra functions

are needed for a model from which useful results can be derived.

 Input parameters - A means of inputting variable parameters is needed. This allows

the model to be flexible enough to handle a wide variety of possible scenarios.

 Initialise and start - All of the pre-built constructs used in the model must be initialised

to the correct value before the commencement of any system activity. In the case of

the model used in this study where the activities of several separate entities are

interwoven, it is essential that all entities are also fully initialised before system activity

starts.

 Statistics - Routines are provided for the collection of a number of different statistics.

The most important is the average response time at each node. That is the time from a

job's arrival in the system until the end of execution. Other statistics must also be

collected not only to allow a greater understanding of the effect of differing input

parameters and load sharing algorithms, but to aid in verifying that the simulation

model is operating in the manner intended.

 Termination - at the end of the a pre-determined period the model must be halted.

This has to be an orderly operation not just to ensure that the simulation period is

strictly observed, but also to prevent any data being lost by the uncoordinated

termination of any objects.

4.2 MODSIM

MODSIM is a high level special purpose simulation language. Although it can be

used as a general purpose computing language, it is aimed at the construction of

simulation models. There are many similarities between MODSIM and Modula-2, in

syntax, data types and control structures. The differences are most apparent when

considering the object oriented features and simulation utilities that are provided by

MODSIM. All the standard object oriented properties are supported, such as inheritance,

encapsulation and polymorphism. These are combined with extensive library modules

which provide a large number of constructed objects to help in the writing of discrete

event oriented simulations. Using object oriented techniques to develop these types of

simulations has a history of over 30 years. One of the first object oriented programming

languages to be developed for discrete event simulations was SIMULA, which became

available in the 1960's.

As befits a modular language modules can be separately compiled. Compilation in

all forms is handled by MSCOMP, MODSIM's compilation manager [CAC93a].

MSCOMP first uses the MODSIM compiler to produce a 'C' code version of the

original MODSIM source code. This is then compiled using the standard 'C compiler

available. In this case it was the Sun UNIX compiler. Should more than one module be

used MSCOMP automatically performs any linking that is needed to give the final

executable code.

4.2.1 Object Oriented Features

The objects around which object oriented programming is based are the

combination of data structures, and operations which can manipulate that data. Different

categories of object are referred to as classes or types and individual examples as

instances or objects. A definition of these concepts is offered by Booch, "An object has

state, behaviour and identity: the structure and behaviour of similar objects are defined in

their common class: the terms instance and object are interchangeable" [Boo91].

MODSIM uses the terms fields and methods for the two properties that define an

object's type. These terms are synonymous with attribute and operation [Gra94, Rum91]

The fields are used to represent the state an object is in and the methods are a means of

describing the behaviour of an object. The packaging together of state and behaviour in

this manner is known as encapsulation. The object becomes self-contained and immune

from corruption from outside sources as only its own methods are permitted to alter its

fields. MODSIM does allow an object to access the fields of another. A field may be any

permissible variable including an object.

MODSIM supports the idea of polymorphism, where operations of the same

name may perform different actions when performed by different objects. The term

method ties an operation to a particular object. The ability for an object to be based on a

another previously defined object and then inherit all of the earlier objects properties is

available. This sharing of fields and methods is known as inheritance. Although the

properties of polymorphism and inheritance are not utilised in the model developed they

are noted here as they do enhance the language.

Communication between objects is possible through the use of message passing.

This is a means by which one object can request to invoke the methods of another.

Invoking an object's methods can only be performed in MODSIM by message passing.

The message passed is a request for an object to perform a method. If parameters are

expected by the requested method then these are passed in the message as well.

46

The modular design of MODSIM allows the construction of models using

constructs from various different sources. However it is possible to have all the code in

one MAIN module although this is only advisable for relatively simple programs. The

MAIN module can import various constructs from the supplied library modules or these

constructs can be used in creation of user defined constructs, as is the case in non-trivial

programming. These new constructs can be defined in the MAIN program but the norm

is to create new library modules.

A library module is comprised of two separate parts, the DEFINITION and

IMPLEMENTATION modules. The DEFINITION module contains a declaration of all

the constants, types, procedures and variables that are importable by any other module,

but no executable code. This is the public section of the module providing adequate

information for any future user. The actual implementation details of all procedures and

objects are included in the IMPLEMENTATION module. These details are considered

private as knowledge of them is not necessary for users of the modules facilities. Each

part of the same library module will have the same identifier but a different prefix, D or I,

for DEFINITION or IMPLEMENTATION module respectively. A MAIN module is

prefixed by M and all modules have the extension '.mod'.

4.2.2 Simulation Utilities

MODSIM takes a process oriented approach to discrete event simulation as

opposed to an event oriented approach. In an event oriented system each event is

considered as a single activity during which no time can pass This can lead to problems

with larger models as the flow of logic becomes more complex. Whereas in a process

oriented model the process is a sequence of events or activities all pertaining to a

particular entity. The processes are implemented as routines in which time can elapse.

This simplifies matters by allowing the behaviour of an object to be described via the

routines. In MODSIM these routines are known as the methods, introduced in the

previous chapter.

Three different types are available to describe an objects behaviour : ASK, TELL

and WAITFOR. The ASK method is used to perform a synchronous operation such as

obtain the value of a state variable contained in an objects fields. No simulation time can

be associated with an ASK method, i.e. performing an ASK method occurs

instantaneously in terms of the overall simulation. To pass time a TELL method must be

used, during the execution of which the simulation clock can be advanced. Because there

is no guarantee that a TELL method will ever return it must be used asychronously and

so no TELL method can return a value. The third method WAITFOR does provide for

both passing simulation time and returning variables, but as it is not implemented in the

model used for this study it will not be discussed further.

The processes around which a MODSIM simulation is based must have the

ability to interact with each other. This is provided in two ways. First a method can wait

for an event to occur as signalled by a trigger object (TriggerObj). Alternatively an

executing method can be explicitly interrupted by another causing the "ON

INTERRUPT" clause of the method to be executed.

Interrupts of the form provided by a TriggerObj are essential in a system

involving queues. Without them any method waiting for an empty queue to receive a new

member would have to be constantly checking the queue's contents. This would lead to a

tremendous waste of CPU time and extend considerably the time to complete any

simulation. The Fire method of a TriggerObj is constructed so that it only has effect if

the object it is directed at is actually waiting for it. So there is no danger of queued

signals negating method synchronisation.

In order to keep track of all the existing objects and ensure their activities are

scheduled correctly MODSIM keeps a "pending list" of object instances. This list

contains all objects with scheduled activities and is ordered by the imminency of those

activities. Should an object have more than one scheduled activity this is shown in its

own activity list. This leads to the formation of a two-dimensional list an example of

which is shown in Figure 4.1.

As activities in the list are executed the list is resorted so that the most imminent

activity is at the head. Only TELL activities are put in the pending list. ASK methods are

executed immediately. After the completion of an activity simulation time is advanced to

the time of the next scheduled activity. The timing procedure finishes when either the

pending list is empty or on the execution of the "StopSimulation" command.

Another simulation oriented problem dealt with by MODSIM is the collection of

statistics. A set of monitor objects are specifically provided for this task. Depending on

how they are declared monitor objects either invoke specified methods on being

referenced (right monitored) or when modified (left monitored). All the statistical

monitors are left monitored, recalculating a set of standard statistical values (count,

mean, standard deviation , ..etc.) every time the monitored variable is modified. The set

of statistical monitors allows real or integer variables to be weighted against time, or not,

as the situation demands.

Pending List

ActOl

13.3

Activity
List

ActlO

15.6

Figure 4.1 MODSIM Pending List Structure

Random number generation is also catered for by MODSIM. The RandObj object

can be imported from library and will provide a series of randomly generated numbers.

There are a number of possible probability distributions available, including the uniform

and exponential distributions used in the model for this work. A means of varying the

initial seed provided to the random number generators is available. This allows any

number of objects to access independent and discrete sets of random variables.

4.2.3 Standard Libraries

MODSIM provides a number of built in procedures to cover many of the

requirements of a simulation model. But these represent only a small portion of the

available set. The others along with extra constants, types and all the pre-defined objects

49

are available via the standard libraries, fully catalogued in the reference manual

[CACc93].

There are ten standard libraries available with MODSIM II. Four were utilised in

the construction of the model described in this chapter. A brief summary of these is

presented below:

 ListMod : This library contains the objects and composite objects that can be used to

group records and objects. The data structures that can be imported include lists,

stacks and queues. Ample means to manipulate these data structures are provided by

the methods of the relevant object.

 RandMod : As its name suggests this library's facilities are concerned with random

number generation. It only contains one object, RandomObj. With many methods to

allow different distributions of random numbers to be sampled. There are also some

procedures available i.e. FetchSeed, which provides pre-defined seeds.

 SimMod : Time dependent features are the area for which this library's contents are

intended. Without the SimTime procedure which returns the current simulation time it

would be impossible to gather any meaningful statistics from a model. Procedures to

start, stop and change the flow of simulations are also available, as is the TriggerObj

vital in co-ordinating activities.

 StatMod : All the objects that can be used as monitored variables for the collection of

statistics are defined in this library.

4.3 Simulation Model

Techniques such as object oriented analysis have been widely used in developing

discrete event simulation models, as they provide a natural way to map the real world

system onto a simulation model. This fact may appear obvious when the model is to be

constructed in an object oriented language like MODSIM. However the outcome of any

analysis should be tempered by the goals of the simulation. A detailed analysis may

provide an exact mapping but implementation may not be possible or desirable.

Any system can be viewed at various levels of abstraction, the degree of

granularity increasing until every process occurring in the real system is modelled. This

should be avoided if possible. Only the features that are relevant to the simulation

objectives need be incorporated. Once identified they should be implemented at as high a

level as possible without losing any of their functionality. In addition the simulation

model will need to include a number of extra features intrinsic to the task of simulation.

These will provide for initialisation, reporting and termination.

To describe the design stages and implementation of the simulation model

adopted in this study the object oriented notation associated with the Object Modelling

Technique (OMT) [Rum91] is used.

Viewing the system to be simulated at the highest level of abstraction it can be

seen as an aggregation of its constituent sub-systems or objects, shown in Figure 4.2.

Each object is represented as having a multiplicity of association of one, except for the

node object of which there must be at least 2 to form a distributed system. The offered

load in this view represents the total workload experienced by the system in question.

Distributed
System

2+

Offered Load Node Network Server

Figure 4.2 A Distributed System as an Aggregated Object.

Although all of the objects in Figure 4.2 are present in the system model it is not

necessary to include them all in the simulation model. The server is needed as it has been

assumed that all the nodes are diskless workstations and job transfer is simply a matter of

sending an command line instruction. Modelling it would be pointless and any delay in

retrieving data can be assumed to be part of the total job service time. Similarly explicit

modelling of the underlying communication network can be avoided by representing its

effect with fixed communication delays. The impact of the extra traffic due to load

sharing activities is of interest but modelling the network at the required level to examine

it is too complex to incorporate into any useful simulation. The offered load is made up

of jobs originating at individual nodes. It is therefore more appropriate to consider it at a

lower level of abstraction as a component of the node object.

51

The system's nodes can therefore become the basis of the model, they in turn can

be visualised as aggregated objects. The significant components are shown in Figure 4.3

Distributed
System

Node

Load Sharing
Facility

Offered Load CPU Comms Handler

Figure 4.3 Component Analysis of an Aggregated Node.

Each component could be modelled as a separate object. However since the

functions they will perform are not going to be simulated in detail it was felt they could

be more simply implemented as methods of the node object.

Whilst the node object is the most important element of the simulation model,

some additional objects had to be defined to provide the added functionality required to

administer the simulation environment. The added features allow initialisation, data

collection and orderly shutdown of a simulation. A brief summary of the object types

used is given in Table 4.1.

The simulation program itself consists of a MAIN module, loadshare and a library

module, Hetrodelaylib. The latter is in two parts. Dhetrodelaylib is the DEFINITION

module of the library which contains all the type, variable and object definitions, with the

IMPLEMENTATION module, Ihetrodelaylib containing all the object implementation

details. All global variables are declared in the DEFINITION module as this makes them

available to the other two modules.

Object Type

NodeObj

GenesisObj

StopAllObj

Functions performed

Generate local load, invoke load sharing algorithms, transfer jobs,
execute jobs, compile local statistics, remove local data structures.
Initialise system and individual nodes, activate individual nodes,
collate batch statistics, collate overall statistics at simulation end,
remove global data stuctures
Perform orderly shutdown of activities on individual nodes, stop
simulation.

Table 4.1 Summary of Object Functions

4.3.1 The MAIN Module : loadshare

Jain states that a discrete event simulation needs a component that co-ordinates

the routines constituting it [Jai91]. He even refers to it as the main program. This is the

role of the loadshare program. Figure 4.4 portrays the operation of the program via

pseudo code.

The initial purpose of the loadshare module is to allow all necessary variables,

types and objects to be imported, followed by the input of variable parameters, normally

via a batch file. Each set of parameter values is iterated over a number of repetitions.

Every repetition uses a different seed. The iterations are typically of duration 60,000

seconds, split into batches of 5,000seconds. Statistics are gathered after each batch and

at the end of each run.

At the end of each batch, the average response time for all jobs completed in that

batch is calculated. For this study average response time is the duration between the

point at which a job arrives in the system to it being executed and the result being

communicated to the original node. Batch statistics are used primarily in the verification

and validation of the simulation. A more comprehensive set of statistics is gathered at the

end of each full run. These include:

 Overall system average response time.

 Individual node average response time.

 Number of jobs originating at each node.

 Number and average length of jobs not eligible for transfer executed at origin.

 Number and average length of eligible jobs refused transfer and executed at origin.

 Number and average length of jobs transferred.

53

START
Import global variables from Hetrodelaylib
Import modsim utilities from standard libraries
Set global constants
Input variable parameters (runtime, batchtime, probelimits, threshold, algorithm)

LOOP (system utilisation varies according to input parameter)
LOOP (Probelimit min to max)

LOOP (desired repetitions each with a different seed)
Calculate E(ta)
Create new instances of GenesisObj & StopAIIObj
Invoke initialisation and activation of nodes, passing necessary parameters to

instance of GenesisObj
Invoke instance of StopAIIObj to cease simulation after runtime
Invoke instance of GenesisObj to collect and output simulation statistics
Remove instances of GenesisObj & StopAIIObj

END LOOP
END LOOP

END LOOP
END

Figure 4.4 Mloadshare.mod (Pseudo code)

The three objects that comprise the simulation model are: GenesisObj, NodeObj

and StopAIIObj. These are the objects that loadshare co-ordinates. They will be

described in the following sections.

4.3.2 The GenesisObj Object

The GenesisObj object as its name suggests, creates the simulation system and

initialises activities at all the constituent nodes. To accomplish this it is passed details of

the system constitution and an initial seed by loadshare. As GenesisObj creates all the

nodes it makes an ideal candidate for collating performance statistics when the simulation

finishes. The system nodes form an array that is resident in its own address space. The

full structure of the GenesisObj, with methods and fields is shown in Figure 4.5.

InitialiseNodes handles the creation of all the nodes, performing a separate FOR

loop for each type of node to be implemented. Once a new node instance is created, the

node is assigned a processing power and ID. By using global array element numbers the

individual nodes can easily identify each other with the minimum simulation overhead.

After creating a random seed the method then initialises the various NodeObj methods

that will run continuously for the length of the simulation. The loop at the end of this

method and the Batchresults method were used in compiling the ensemble averages

needed for simulation output analysis. They have no effect upon the results gathered or

54

operation of the simulation model. Neither passes any simulation time or affects any of

the statistical counters used in the compilation of run end results.

GenesisObj

OverallRT : SREAL
OverallBAT : SREAL
ASK MEHOD InitialiseNodes (IN defarray : HetroArray ;
IN seed : INTEGER)
ASK METHOD PerfStats () : REAL
ASK MEHOD ObjTerminate
ASK METHOD BatchresultsQ : REAL

2
RandomObi

ASK METHOD SetSeed (IN newseed : INTEGER)
ASK MEHOD InitialiseNodes (IN mean : REAL)

Figure 4.5 Full Structure of GenesisObj Object

The Perfstats method operates only after simulation activity has ceased, but it is

of considerable importance as it compiles the final simulation statistics. The overall

average response time for the system simulated is returned to the MAIN module. In its

calculation several other useful metrics, pertaining to each individual node, are arrived at.

These metrics are printed to stdout, which is then redirected to a file. All the metrics

calculated by this method were listed in the previous section.

Last of GenesisObj's methods is ObjTerminate. This method is a special feature

of MODSIM. If it exists it is called before an object instance is deallocated. Thus

allowing any 'cleanup' operations to be performed. In the case of GenesisObj this

method disposes of all components that will consume memory. This action is essential if

batches of simulation are performed, otherwise there is a danger of available memory

running short if it is not de-allocated as simulation runs finish.

4.3.3 The NodeObj Object

Four areas of activity are needed in each node. These were identified in Figure

4.3. Three can be fully contained in single methods. However the constraints of object

oriented programming forced the communications facilities to be spread across several

methods. The association between the analysis results and methods used in the actual

model is as follows :

 Offered Load - GenerateJobs

 Load Sharing Facility - Process*

 CPU - Execute*

 Communications Handler Transmit

Receive

ReceiveJob

Process* and Execute* are starred to indicate that there is more than one version

of the relevant method available. Only one of which is used in any single simulation run.

The full structure of the NodeObj as illustrated in Figure 4.6, shows other

methods apart than those used to accomplish the four core tasks. These are used in

initialisation, and housekeeping. They have no effect upon the simulation whilst it is in

normal operation. A quick scan of the definition of a NodeObj seems to reveal a myriad

of fields, but in fact only three of them are truly fields/attributes in the object oriented

sense. Two of these, nodepower and JobQ.numberln, are the metrics communicated

between nodes in implementing the information policy of various load sharing

algorithms. The other, responseT, is the main performance metric returned to GenesisObj

to be used in compilation of overall system performance. Nodepower (REAL) and

JobQ.numberln (INTEGER), represent the processing power and current load of a node

respectively. Whereas responseT is a statistical monitor object (SREAL) which stores the

overall statistics on all jobs executed at the node.

56

NodeObi
nodepower : REAL
responseT : SREAL
JobQ.numberln : INTEGER

ASK METHOD Objlnit;
TELL METHOD Generate Jobs(IN a : INTEGER);
TELL METHOD ProcessRandom;
TELL METHOD ProcessShortest;
TELL METHOD ProcessHETRO;
TELL METHOD ProcessHETQL;
TELL METHOD ProcessHQNIT;
ASK METHOD UpdateRT;
ASK METHOD ReceiveJob(IN job : JobType);
TELL METHOD Transmit(IN job : JobType);
TELL METHOD Receive;
TELL METHOD Executejob;
ASK METHOD AssignID(IN i : INTEGER; IN power : REAL);
ASK METHOD Removejobs;
ASK METHOD Obj Terminate;

1 1
RandomObj

ASK METHOD SetSeed(IN seed: INTEGER);
ASK METHOD Exponential(IN mean : REAL) : REAL;

QueueList

4
TriggerOb.i

ASK METHOD Receive;
ASK METHOD Fire;

4

numberln : INTEGER
ASK METHOD Add(IN job : JobType);
ASK METHOD First : JobType;
ASK METHOD Remove : JobType;

Figure 4.6 Full Structure of the NodeObj

Each NodeObj instance has four queue structures and associated TriggerObj's.

The queues are used to store jobs as they pass from one state to another between

generation and final execution. Their specific use is as follows:

 IpQ - used to queue jobs that are eligible for possible transfer.

 rxQ - used as a buffer for jobs that have been transferred from another node.

 jobQ - used to queue jobs that have been allocated for execution at a node.

 txQ - only used by ProcessRandom, as a buffer for jobs that are to be transferred.

The associated TriggerObj of the same name and suffix sig has its Release

method activated when a job is added to a queue.

To aid the understanding of the main methods used in the NodeObj and to

complement the forthcoming description Figure 4.7 shows a schematic of their

interaction.

Transferred from
another node

rxQ

Generatejobs

Receive TransferPolicy

JobQ

Process*
Information &
Location Policy

Execute* LOCAL NODE

REMOTE NODE

To IpQ 4-

Transmit

Transfer to another

rxQ

Receive

TojobQ

Figure 4.7 Schematic of Method Interaction

4.3.4 NodeObj Method : Generatejobs

The main function of Generatejobs is to provide a stream of JobTypes,

representing the locally generated load. This method will continue for the length of the

simulation. The mean interarrival time is calculated from the required utilisation and the

power of the node. Actual interarrival times are assumed to be exponentially distributed.

Job service times are also assumed to be exponentially distributed. The initial mean

service time is the same for all nodes regardless of power. However actual service time

for a job may change if it transferred to another node for execution.

As stated in chapter 3 this study will not investigate the possibility of using a

transfer limit of greater than one. Thus any jobs transferred must be executed at their

first destination node. With this in mind the transfer policy of the load sharing algorithm

is only applied as jobs are generated in the system. This saves simulation overhead in two

way, firstly transfer policy is performed in a minimum of instructions and secondly after

any transfer no overhead is incurred in checking whether transfer policy should be

applied again.

The load at a node is effectively the size of the ready to run queue (JobQ). This

queue also contains any currently executing job, which will not be removed until it's

execution has completed. A newly arrived job is considered eligible for transfer if

accepting it for execution would cause the current load to exceed a threshold level. The

value of the threshold will vary according to the algorithm in question. To curtail

unnecessary overhead the number in the JobQ is compared directly with the set threshold

and so the new job can be considered eligible for transfer if the threshold is merely

equalled. If this is the case the new job is added to the queue of jobs for which the

information and location policies of the load sharing algorithm will be performed. A

software interrupt in the form of a TriggerObj (Ipsig) Release method is used to signal

this fact to the relevant Process* method.

Should the job be accepted for processing at its initial point of entry to the system

it is added to the JobQ discussed earlier, but only after its true service time with relation

to the power of the node has been calculated and substituted for the original servicetime.

The Release method of another TriggerObj (sig) is used in alerting the Execute method

of the node that a new job has arrived in the JobQ.

4.3.5 NodeObj Methods : Process*

Originally the process methods were designed to fulfil the full load sharing

component of the model. But as was explained in the previous section the transfer policy

has been moved for the sake of economy. However the remainder of load sharing

activities are accomplished through these methods. There are five process methods as

each is the equivalent of a different algorithm. Algorithm and process method are linked

by the suffix to the process keyword, e.g., ProcessRandom implements the Random

algorithm. The actual method used is selected at the outset of the simulation. Only one

method is used for the whole of any run.

59

All the different process methods have the same basic structure. An endless loop,

that is either executing load sharing policies or waiting for a TriggerObj (Ipsig) to

'Release', indicating that a new job eligible for possible transfer has arrived at the node.

Jobs eligible for transfer are taken from the IpQ on a FIFO basis and are processed

sequentially. If the queue was dispensed with and the Process methods called directly

from the GenerateJobs methods then concurrent execution of process methods could

arise. The result of which would be that the full delay due to load sharing would not be

accounted for.

The simplest of these methods is ProcessRandom. As no information policy is

used in a Random algorithm the only property required is the ability to select a node at

random. This is accomplished via a RandomObj (globalrandom) and provided the

randomly picked destination node is not the same as the sender the job is sent to it. The

transfer of the job starts with the transmit method described in the next section. The time

taken in randomly selecting a destination node is considered negligible. For this reason

no simulation time is passed in this method.

ProcessShortest involves many of the activities at the core of all the other

Process methods. Firstly a sequence of randomly generated possible destinations is

needed, the total number is dependent upon probe limit. To generate these a procedure

called UniqueRandom is used. All possible destinations are unique and stored in an array.

One is used in each repetition of a loop that carries out location policy. The maximum

number of repetitions is defined by the probe limit. The gathering of system information

imposes overhead on both nodes involved as well as the delay to the eligible job of RPC

activity. The effect of these overheads is to delay the execution of any jobs currently

executing on the respective systems. These delays are effected by interrupting the

ExecuteJobs method and causing the 'ON INTERRUPT' statements to be executed. If a

job is currently executing it is delayed by extending its servicetime.

Only the best results in the form of current lightest discovered load are stored

(minload), together with the node involved (mindest). Where lightest load is a

combination of load and nodepower as it is in all the heterogeneous algorithms this is

calculated as the information is gathered and stored in 'minload'. The Shortest algorithm

allows immediate transfer to any node that is discovered to be idle. So its Process

method checks at the end of each information policy loop to see if an idle node has been

probed and transfers the job if this is the case. Should idle transfer not be allowed as with

HQNIT, all probing loops must be executed before a job could be transferred.

After probing has completed and assuming the job has not been transferred the

minload value is compared to a metric level. This may take the form of a fixed threshold

(Shortest, HETRO) or the length of local jobQ (HETQ, HQNIT). If minload is the lesser

of the two values the job is transferred to the destination stored in mindest. This will

involve the use of the communications methods. Otherwise it is added to the local jobQ

for local execution, a TriggerObj (sig) is used to signal the event.

4.3.6 NodeObj Methods To Achieve Inter-node Communication

Three methods are used in the process of transferring jobs between nodes :

Transmit, Receive and ReceiveJob. Transmit is only essential when simulating the

Random algorithm.

The ProcessRandom passes no simulation time and so if no mechanism were used

to queue jobs, they could be transmitted concurrently and the full cost of transmission

would not be effected. The Transmit method takes jobs from the transmit queue and

forwards them to the node specified in the jobs destination field. Delay to the nodes

involved is achieved in the same manner as when probing, by interrupting the ExecuteJob

method of the communicating nodes. Finally some time is passed in the method itself, the

delay to the queue of jobs waiting for transmission. For other Process methods there is

no possibility of jobs competing for transmission facilities as they are spaced far enough

apart by the execution of their Location policies. This means it is safe to place the code

contained in Transmit inside the Process method after dispensing with the procedures to

manipulate txQ.

ReceiveJob is used as a form of buffer to process incoming jobs, as they could

arrive from many different sources at the same time. ReceiveJobs puts them all in a

queue for Receive to actually execute the delay to the transmitted job. This mechanism

ensures that each job experiences the correct transmission delay.

4.3.7 NodeObj Methods : ExecuteJob*

The only function of the CPU in the simulation model is to execute the jobs

found in the jobQ. This is handled by the ExecuteJob* methods. Two ExecuteJob

methods were implemented to cover both of the general job scheduling strategies, run to

61

completion and pre-emptive scheduling [Tan87]. Run to completion will be referred to as

sequential execution and is implemented by ExecuteJob. Pre-emptive scheduling is more

commonly known as multi-programmed operation and is implemented by

ExecuteJobMulti. The one prevalent in the workstation environment is

multiprogramming, in which various schemes for scheduling the workload have been

proposed [Bac86]. Even the most simple, round robin, involves a very high overhead

when attempting to simulate it. Round robin scheduling is used in ExecuteJobMulti. The

more sophisticated scheduling algorithms suggested by Bach and actually inplemented on

Sun workstations are based upon priority schemes. These are not viable to implement via

simulation due to their complexity.

The structure of the ExecuteJob method is a familiar one, an infinite loop

processing the contents of a queue or waiting for a signal that another job has arrived in

the queue. Processing a job merely involves executing a WAIT DURATION loop for the

time specified by a job's servicetime. Should the method be interrupted whilst in the

WAIT loop then the jobs unexpired servicetime is calculated and the loop started again.

Once a job's servicetime has expired statistics are updated and any memory allocated to

the job record is de-allocated. Contrasting with the operations involved in

ExecuteMultiJob shows why the latter has such high associated overhead. Using a

quantum of 100ms [Bac86] would involve a job of average servicetime looping through

one hundred times, before any consideration of possible interrupts.

This high overhead begs the question of whether the simulation of

multiprogrammed scheduling is necessary for the purposes of this investigation.

Kleinrock [Kle76] shows that although multiprogrammed scheduling gives fairer

treatment to individual jobs no advantage is gained in overall average response time.

Table 4.2 shows a comparison of results from simulations using both ExecuteJob and

ExecuteJobMulti methods. The systems investigated are homogeneous in nature, and the

SHORTEST algorithm is used.

Table 4.2 Run to Completion and Pre-emptive Scheduling Response Times.

62

The question of whether average queue size is affected by the scheduling method

is addressed by Little's result, in which it is seen that queue size is related solely to

average arrival rate and response time.

All simulations using the ExecuteJobMulti method took at least ten times as long

as their sequentially scheduled counterparts. As no significant difference was observed

between the two, the quicker version (ExecuteJob) was used in the simulations, for

which results are presented in Chapter 6.

4.3.8 StopAllObj

The third and last object constructed and used in the simulation model is the

StopAllObj. Not unsurprisingly this object is called to stop the active part of the model

when simulation time has expired. This is achieved through the use of StopAllObj's only

method, Finish. To allow the orderly disposal of the memory allocated for each NodeObj

some administration must be performed before the StopSimulation command is issued.

This involves forcing some of the methods in continuous loops to exit them, thereby

guaranteeing that all the TriggerObj's used can be disposed of.

4.4 Validation and Verification of the Simulation Model

One of the most vital processes involved in the development of any model is to

ensure that it is a significantly accurate representation of the system it represents. For

only when this has been shown can the results provided by the model be held considered

credible. Verification and validation are the means by which a satisfactory level of

credibility can be established.

4.4.1 Verification

The verification of a model is the process of checking that the model has been

built right [Ban96]. From the design stage a conceptual model of the system will have

been developed. The design of this conceptual model and any assumption made must be

reflected in the final implementation. The validity of any assumptions made is not

questioned in the verification process, but left to validation.

Verification can also be thought of as debugging [Jai91]. This idea is particularly

relevant to the simulation model described in this chapter as various software engineering

debugging techniques were used in the verification process. The methods used and the

63

subsequent results are detailed below. The combination of the results gained led to the

conclusion that the model was suitably verified.

 A flow diagram was drawn, Figure 4.7. This showed each logical stage in the

operation of the system model after initialisation. The methods of the NodeObj object

were then constructed to fulfil the operations outlined in the diagram

 The code was at all times well commented enabling others who were not involved in

its construction to be able to check its logical flow and ability to perform the functions

desired. This method of verification was enhanced by the assistance of experts in the

area of computer simulation and distributed systems who read through the code

during model development. Their questions would often reveal any discrepancies

between the conceptual model and that implemented.

 Simplified runs of the model were performed, allowing implementation details to be

checked on a step by step basis. Print statements made it possible to see the changes

that occurred to model variables with each occurrence of an event.

 A wide variety of input parameters were used to test the reasonableness of the model.

These included, runtime, interarrival time, job servicetime, power of nodes and

number of nodes. Small changes in input parameters had little effect on the end result,

whereas large changes did have a noticeable effect.

 During and at the conclusion of each simulation run a number of statistics were

gathered in addition to those of primary interest. These ancillary results were used to

assert the reasonableness of the model by checking for consistency across a set of

values, i.e. nodes of the same power.

 Each simulation run was executed a number of times with different seeds for any

random number generators, to ensure that the results were independent of the seed

used.

4.4.2 Validation

The validation of a model consists of comparing its behaviour to that of a real

system. The aim of which is to ensure that the model if structured correctly and based

upon valid assumptions should accurately represent the system it is modelling.

64

A three step approach to validation was developed by Naylor and Finger

[Nay67]. This has been widely accepted as a suitable general technique, [Jai91, Ban96]

and is used in validating the load sharing model. The three steps involved are:

1. Build a model with high face validity.

2. Ensure all assumptions made are reasonable.

3. Validate input output transformations.

The first step can also be referred to as utilising expert intuition. For the model

should appear at face value to be reasonable to experts in the field in which it is to be

used. The same experts should also look at the model output and check for

reasonableness. During the development of the load sharing it was periodically examined

by people knowledgeable in both the fields of distributed systems and communications.

With the conclusion that the model appeared to be a accurate representation of the

subject system. A further check on face validity is to use sensitivity analysis. Where the

model should behave in the expected way if input values change. The impact of differing

input parameters was judged to follow the accepted norm in the cases where previous

experience could be called upon.

The assumptions made in the construction of a simulation model fall into two

general categories. Structural assumptions are those concerning simplifications or

abstractions of how the real system actually operates. An example in this study would be

the assumption that the time to execute an RFC could be fixed for all nodes. The

validation for these assumptions was contained in the arguments of Chapter 3 and design

analysis earlier in this chapter. The second category of model assumptions are those

about the data used, in both the constitution of the model and input parameters, i.e.,

number of nodes, initial loading, system utilisation and job servicetime. Validation of

data assumptions is difficult in the load sharing case as working implementations are rare.

So where possible earlier research in the field has been used in formulating parameters.

This is combined with using a wide set of input values and model scenarios to negate the

effect of any bias due to a lack of hard data.

The validation of input output transformations can be regarded as the truest test

of a model. For on completion it would prove that the model could provide accurate

predictions of the operation of the system it simulates. Ideally the conditions simulated

65

will be readily encountered in the real world to provide results for comparison. If this is

not to be the case historical data sets can be used in the validation process. Unfortunately

these forms of direct validation are limited by a lack of load sharing implementations.

However some alternatives are available and these have been used in the validation

process.

Queuing theory can be used in determining response times for M/M/1 systems. A

close correlation was observed between these results and those derived from the model

with no load sharing implemented. As this was constant with a variety of input

parameters it could be used to validate some of the core model functions, such as load

generation and execution. Also available for comparison were the results in the literature.

In many homogeneous systems the results derived by other researchers had been

generally accepted as true. The model with a change of input parameters could duplicate

this earlier work. By reaching the same conclusions as in the reported work the load

sharing capabilities of the model were proved. To validate the heterogeneous aspects of

the model was more difficult, prompting the implementation described in the next

chapter. While the implementation itself is still a type of model the consistency of results,

provides validation of both approaches.

4.4.3 Calibration

When dealing with the verification and validation of a simulation model, the

subject would be incomplete if some attention were not paid to the process of arriving at

the general simulation parameters. Calibration as this process is known [Ban96] will run

in tandem with validation. Calibration involves refining a model's general simulation

parameters, with the aim that the model's results will reflect the steady state performance

of the system simulated. The parameters investigated in the calibration period were:

 Run length

 Initialisation period

 Number of repetitions

The first task in deciding upon the run length of a simulation is to determine the

form of the output data. There are two possible types, discrete and continuous time data

[Ban96]. The former occurs when output data comes in the form (Yl, Y2Yn,} an

66

example of which would be the response time of jobs. Whereas the latter's output data

comes in the form {Y(t), 0 < t < TE } an example of which is average queue length for or

at a resource. The period of a simulation run in which discrete time data is collected

would normally be determined by a set number of intervals i.e., total number of jobs

processed in a system. Continuous time data is best collected over a set period of time.

Although the primary objective of the simulation model is to determine the

average job response time in systems the run lengths are determined by a fixed time

period. This is because is not practical to limit simulations to a set number of jobs.

Calculating when the finishing point occurred with many job generating sources would

involve considerable extra overhead. Instead the run length is determined by a set time

period. The time period is sufficiently long enough to ensure that the number of discrete

events between simulations varies by only a very small proportion.

For the purposes of determining a sufficient run length sample runs were analysed

using their ensemble averages. Ensemble averages are obtained by splitting each run into

a set of equal periods known as batches, after a number of replications the mean of each

batch is calculated, the result is the ensemble average for that batch. Each replication

uses a different seed so that each batch and associate ensemble average will be

independent. This negates the correlation between batches in the same run.

The ensemble averages were plotted against the upper and lower 95% confidence

levels. This enabled various factors to be investigated. Firstly no substantial initialisation

bias was observed. At batch intervals of 5000 seconds, even at low levels of system

utilisation steady state performance was soon reached. Therefore an initialisation period

of 5,000 seconds was considered adequate to bring the system to a steady state.

The number of repetitions used was five and this felt appropriate for all

subsequent runs. The total length of the run was guided by the recommendation that a

suitable number of batches was between 10 and 30 [Ban96]. The number selected was

12, giving a total simulation time of 60,000 seconds of which the first 5,000 were

disregarded. At low levels of system utilisation this run length would allow tens of

thousands of jobs to be processed in the standard system of 20 nodes.

67

5. Implementing the Load Sharing Scenario

5.1 Introduction

The implementation of a load sharing scenario was undertaken as a means of

validating and verifying the simulation studies performed. This is needed both for the

assumptions made in model construction and the results obtained. The design of the

implementation follows the general structure of the model described in Chapter 4.

However some deviation was unavoidable as a UNIX workstation is not as flexible as a

simulation language. Where this has taken place will be highlighted in the forthcoming

chapter.

The code used on all the workstations comprising the implemented system is

identical. The only aspect where a case for variation exists is in the power rating of each

machine, which varies according to individual processing power. However the

duplication of code could lead to the introduction of errors and so machine type is

determined at start-up and a hard coded value for power rating used according to the

result. Originally processing power is determined by executing the same simple loop on

each class of machine. After many thousands of iterations time is measured and the

power rating set accordingly. This value is used in the information policy of the load

sharing algorithms investigated as well as the generation of the offered load at each node.

The mean interarrival rate is inversely proportional to the power rating. As in the

simulation model this ensures that all machines have an equal original utilisation.

The system for which the implementation code is designed is a network of Sun

workstations. All of the workstations use the SunOS 5.x operating system [Sun92],

based on the System V Release 4 (SVR4) UNIX operating system. All the code used is

written in the 'C programming language [Ker84]. The code is non-obtrusive in

operation and as such requires no rebuilding of the kernel or other operations requiring

68

5.

super-user permissions. A fully commented listing of all the code used is available in

Appendix 2.

This chapter will give an overview of the operation of, and interaction between,

the processes constituting the implementation. In particular attention will be focused on

areas that forced deviation from the simulation design or are integral to the operation of

the system.

5.2 Overview of Implementation Code

The implementation code is organised into seven distinct files. These take the

form of header file (hetro.h) and six separate programs. The header file contains all

constant declarations relating to the implementation, thereby allowing changes to be

made quickly and in a consistent manner. There are also a number of function definitions

contained in the header file.

All six of the programs listed below are used to generate a different process.

 generate] obs.c -^

processjobs.c -^

execute] ob.c -^

serveprobe.c -^

remxclient.c -^

remxserver.c "

Where possible the process generated has the same name as its equivalent method

in the simulation model object, NodeObj. All inter-node communication is carried out

with the use of the Remote Procedure Call (RFC). This is the primary function of the

latter three programs.

The load sharing scenario is started by one process an instance of

which must be invoked on each of the workstations involved. This process will spawn

and immediately and after a brief initialisation

sequence. The only purpose of after its initial stages is to provide a stream

of "jobs", representing the offered workload to a node, for to deal with..

The processes and are RFC servers, used to handle

incoming RPC's from prospective clients and will run continuously. Also running

continuously are the processes and

69

;generatejob I

;Disk

processjobs

executejobs I

remxclient

exi 1

sta us

serveprobe

remxserver

executejobs

Figure 5.1 Implementation Process Relationships

5.2.1 Generatejobs.c

START
Spawn and execute serveprobe - RPC server to answer incoming probes
Spawn and execute remxserver - RPC server to execute incoming jobs
Determine node type and assign node power
Initialise random number generators, ts and ta parameters
Generate unique seed
Initialise random number generator
Create, if not already in existence, and attach shared memory segment
Spawn and execute processjobs - The process that initially handles all
generated jobs
LOOP

generate interarrival time
sleep for interarrival time
assign job length and creation time
place job record in shared memory segment
send signal (SIGUSR1) to processjobs

END LOOP
END

Signal (sigusrl) - catch SIGUSR1 from processjobs, write stats and exit
Signal (sigusr2) - catch SIGUSR2 from processjobs

Figure Generatejobs.c (Psuedo Code)

Processjobs.c

START
Initialise linked lists for job details
Initialise and attach shared memory segment with same id as that used by
generatejobs
Determine node type and assign node power
Set first report period
Send signal to wake-up generatejobs
LOOP

IF shared memory segment is empty
pause waiting for signal from generatejobs

ELSE
IF local load > threshold value

initiaite HQNIT load sharing policies via IsalgQ
END IF
IF suitable destination node is discovered

spawn and execute remxclient
ELSE

spawn and execute executejob
increment local load

END IF
store job details in link list

ENFIF
END LOOP

END
bignai (sigusri) eaten signal trom generatejobs indicating a new job nas oeen

generated.
Signal (sigcld) Catch death of child signal indicating a child process has

terminated. The process will be from executejob (locally executed
job) or remxclient (remotely executed job). Determine exit status of
child process, current time and ID. Store these details in a link list

Signal (sigalrm) Timer alarm, write report period stats to file and reset alarm for
another period. If run time has expired send signal to generatejobs
and write contents of link lists to permenant storage.

IsalgQ Randomly pick nodes for probing. Probe via RPC mechanism and
implement HQNIT location policy on results returned. Repeat until
probe limit is reached. Return result to main program indicating
whether a suitable node has been discovered.

Figure 5.3 Processjobs.c (Pseudo Code)

5.2.3 Executejob.c

START
Attach and initialise shared memory segment with same id as generatejobs
Calculate number of loops in proportion to job size
REPEAT

perform simple arithmetic tasks
UNTIL repetitions completed
Decrement local load
Exit

END

Figure 5.4 Executejob.c (Pseudo Code)

5.2.4 ServeProbe.c

START
IF called for the first time

Attach and initialise shared memory segment with same id as generatejobs
Determine machine name and assign node power

END IF
Put nodepower and load into the data structure specified in RFC definition
Return data structure to calling RPC

END

Figure Serveprobe.c (Pseudo Code)

Remxclientc

START
Call remxserver procedure on remote machine
Pass servicetime of job to remote server
Exit with exitsatatus set according to result

END

Figure 5.6 Remxclient.c (Pseudo Code)

5.2.6 Remxserver.c

START
IF called for first time

Attach and initialise shared memoty segment with same id as generatejobs
END IF
Increment local load
Spawn executejobs
Wait for executejobs to finish
Return control back to calling remxclient process

END

Figure 5.7 Remxserver.c (Pseudo Code)

5.3 Crucial Elements of the Implementation Code

5.3.1 Random Number Generation

x = -A, * In [R]

Figure 5.8 Inverse Transformation Method

5.3.2 Inter Process Communication

5.3.3 The Process Lifecycle

write to file write to file

fork() &
execlpO

Executejob

Processjobs ,

Signal handler

exit status &
SIGCLD

return
control

exit status &
SIGCLD

fork() &
execlpO

Remxclient

exit status &
SIGCLD

send
RFC

Remxserver

execlpO

fork()

Remxserver

Executejob

Figure 5.9 The Process Lifecycle and it's use in Collecting Job Response Time

5.3.4 Implementation Specific RFC Features

Client C "*' Server"'"'""''

ICHentStub - , - , , I |ServerSttit)> - - -

Client B

ClientStub

Client A

- ClientStub

Figure 5.10a An Iterative Server Dealing with Multiple Requests

Client C

ClientStub ServerSJtub

Server
Server

ServerStub
ierverStubr

JerverStub

Client B

ClientStub

Client A

ClientStub

Figure 5.10b A Concurrent Server Dealing With Multiple Requests

6. Experimental Results

6.1 Introduction

Table 6.1 System Composition With Nodes Divided 12:8

6.2 Comparison of Algorithms

6.2.1 Simulation Parameters

Table 6.2 Simulation Parameters in Algorithm Comparison

6.2.2 Bounds on Performance

Figure 6.1 Average Response Time With No Load Sharing

IDEAL

Load balancing line

Figure 6.2a IDEAL Workload Allocation, Low System Utilisation

Load balancing line

Figure 6.2b IDEAL Workload Allocation, Medium System Utilisation

Load balancing line

Figure 6.2c IDEAL Workload Allocation, High System Utilisation

6.2.3 Algorithms Proposed Primarily for use in Homogeneous Systems

CO

CO

&

Figure 6.3a RANDOM Algorithm Performance - Low System Utilisation

CO

t/3

Figure 6.3b RANDOM Algorithm Performance - Medium System Utilisation

Figure 6.3c RANDOM Algorithm Performance - High System Utilisation

Figure 6.4a SHORTEST Probe Limit Comparison - Low System Utilisation

Figure 6.4b SHORTEST Probe Limit Comparison - Medium System Utilisation

Figure 6.4c SHORTEST Probe Limit Comparison - High System Utilisation

Figure 6.5 SHORTEST Algorithm Performance

6.2.3 Algorithms Designed Specifically for Heterogeneous Systems

Figure 6.6a HETRO Probe Limit Comparison - Low System Utilisation

Figure 6.6b HETRO Probe Limit Comparison- Medium System Utilisation

Figure 6.6c HETRO Probe Limit Comparison - High System Utilisation

a
o

Figure 6.8 HETQL Probe Limit Comparison - High System Utilisation

Figure 6.9 HETQL Algorithm Performance

<o

Figure 6.10 HQNIT Probe Limit Comparison - High System Utilisation

0>

Figure 6.11 HQNIT Algorithm Performance

6.2.4 Comparison

a

Figure 6.12a Algorithm Comparison - Low System Utilisation

0)

Figure 6.12b Algorithm Comparison - Medium System Utilisation

Figure 6.12c Algorithm Comparison - High System Utilisation

Table 6.3 Transfer and Processing Statistics

6.3 Further Investigations Into The Behaviour of Algorithms

6.3.1 Adaptability, Scalability and Stability

6.3.2 18:2 Split Systems

Table 6.4 System composition With Nodes Split 18 : 2

a o
Cfl

Figure 6.13 HETQL and HQNIT Performance in a 18 : 2 Split System

6.3.3 Varying the Offered Load

C/5

06

Figure 6.14a Half Low Power Nodes With No Offered Load

Figure 6.14b All Low Power Nodes With No Offered Load

6.3.4 Larger 12:8 systems - Scalability

Figure 15a 40 Node System [24:16], Algorithm Performance Comparison

Figure 15b. 80 Node System Algorithm Performance Comparison

Figure 16a. HETQL 40 Node Probe Limit Comparison, High System Utilisation

Figure 16b. HQNIT 40 Node Probe Limit Comparison, High System Utilisation

Figure 16c. HETQL 80 Node Probe Limit Comparison, High System Utilisation

Figure 16d. HQNIT 80 Node Probe Limit Comparison, High System Utilisation

6.3.5 The Effect of System Parameters on Load Sharing Performance

6.4 Implementation Results

6.4.1 Practical Limitations and Parameters Used

6.4.2 Measurement Results For a Heterogeneous System

A
Power
1.395

Fraction of total
power
0.84 B

Power
0.405

Fraction of total
power
0.16

Skew
-0.047

cv
0.236

Table 6.5a Implementation System Composition

Simulation
Utilisation

Low

Medium

High

Response Time

10.15 +/-0.06

12.18 +/-0.10

20.84 4/-0.58

A
B
A
B
A
B

Executed
at origin %

39
11
20
9
4
5

Refused
Transfer %

9
0
21
0
30
0

Transferred
%
36
5

43
7
50
11

Processed
at %

89
11
90
10
88
12

Table 6.5b Simulation Results

Implementation
Utilisation

Low

Medium

High

Response Time

10.28 47-0.14

12.79 47-0.21

22.05 47-0.61

A
B
A
B
A
B

Executed
at origin %

38
11
19
9
3
5

Refused
Transfer %

11
0
21
0
29
0

Transferred
%
35
5
44
7
52
11

Processed
at %

89
11
90
10
87
13

Table 6.5c Implementation Results

Table 6.6 Load Sharing Overheads

6.4.3 Implementation Results From a Homogeneous System

Table 6.7 Homogeneous System Simulation / Implementation Comparison

{Module in which all model definitions are made}

(structure used to represent a job}

{genesis object used to initialise, start and collect final statistics from the simulation model}

{node object used to perform all the actions required from a node}

{queue of job types}

{object to cease simulation}

{procedure used by load sharing algorithm methods to select nodes for probing}

{procedure used during initialisation to select load sharing algorithm to use}

{Global variables }

{Creates new random number generator with seed passed down. Creates array of nodes the size of the desired system

and then creates the actual nodes themselves. A node needs an ID and to be given a power rating. The random number

generator is used to derive a seed for each node which is used in its Generatejob method. Other methods to run constantly

are started as well The Process procedure selects and starts the desired algorithm type. The loop at the end of this

method is used for collecting the batch results needed in determining initialisation period and run length.}

{method that performas initialisation of all nodes in the system}

{for each group of different powered nodes}
{for each node in a group}
{initialise node values}

{start methods to run for duration}

{loop used in compiling batch times}

{end of initialisation method}

{This Method is needed to collect batch statistics}

{The number of jobs executed in the system during this batch are are totalled up}

{ Each nodes contribution to the average response time is calculated and added to the total, after which the statistical object
is reset for the next batch}

{The average response time for the batch is returned to the calling object}

{end of method}

(The method which collates statistics on the total simulation run time}

{The number of jobs executed in the system during the total run time are are totalled up}

{The contribution of each node to the metrics collected is calculated and printed out)

{Lists average response times and total number of jobs executed at node}

{Lists average response times and total number of jobs originating at node}

{ Lists number of and average lengths of jobs executed at origin)

{Lists number of and average lengths of jobs executed at origin but refused transfer}

{Lists number of and average lengths of jobs that have been transferred to other nodes}

{Lists number of and average lengths of jobs that have been received from other nodes}

)

{return overall average response time to calling object genesisObj}

{method to free all memory associated with the genesisObj after run-time has expired)

{end of genesisObj}

{Before nodeObj starts objects it uses as triggers and queues are initialised}

{triggers}

{queues}

{Jobs are generated at each node and then the threshold at each node is checked if the threshold is not exceeded by the
arrival of a new job the job is added to the local queue for execution, otherwise it is placed in the queue of the Process
method selected in Initialisenodes. In effect the transfer policy is carried out here}

{Interrarrival time is in direct proportion to nodepower, this ensures that the original utilisation at each node is the same.}

{Exponentially distributed interarhval times are equivalent to poission arrival rate}

{A newjob is created and its arrival time and service time are stored in the record structure}

{The transfer policy, based around a simple pre- determined threshold. If the job is considered eligble for transfer it is added
to the Process queue and a signal released to indicate this fact}

{ get original job length for statistical purposes and then calculate actual servicetime on executing machine. The job is then
added to the queue for execution and a signal sent to indicate this fact}

{Random algorithm or blind location, without the use of any system state information the eligble job is sent to a randomly
picked node for execution.}

{If there are jobs waiting to be processed, pick any node at random and send the job to that node for processing. Otherwise
wait for the signal that jobs are waiting to be processed. A queue (txQ) is used to buffer jobs and prevent the possibility of
concurrent transmission The means of picking a ranom node is unsophisticated in design as normally it will be successful
on the first attempt}

{ A location and information policy developed for homogeneous systems}

{create array for random numbers}

{get random numbers}

{probing effects both local and remote node as well as the current job}

{if the remote nodes load is less than the threshold it becomes a possible destination for the current job}

{if the remote node is idle the current job is immediately transferred to it}

{transmit job to selected node}

(exit construct as job processing finished}

{after probe limit has expired if no suitable node has been found add job to local processing queue}

{otherwise send to least busy node found}

{Transmit job to selected node}

{This version works the same way as Shortest but instead of raw ready to run queue length a value weighted by the

respective powers of the nodes concerned is used}

{ Similar in operation to the METRO method the difference lying in the the use of local load queue length instead of a
threshold value in the location policy. }

{The queue length at the local node is used rather than a fixed threshold in the location decision.a form of bias is
implemented but only in the sense that the execution times at each node are compared transfer occuring if a remote node
has a shorter predicted execution time. Immediate transfer to an idle node is not possible, the full probe limit is used and only
then is the location decision made }

{local load incremented by 1 to account for eligible job}

{remote load calculated with the eligible job accounted for}

(Update best possible destination if suitable node found}

:-

{if a suitable node has been discovered (sent=1) the the eligible job is dispatched to it}

{This method called by transmit, adds a job to a nodes recieve queue and releases a trigger to tell the node to examine its
recieve queue if it is not currently doing so. This method is needed to buffer jobs they are put in an orderly queue by
receive. }

{This is where the original length is collected and new servicetime calculated, for all transferred jobs}

{ This method is constantly running and processes the contents of a nodes transmit queue, or waits for a trigger to signal
that a job has entered the transmit queue. On interrupt the WAIT is exited enabling the tXsig trigger to be DISPOSED of}

(This method is constantly running and processes the contents of a nodes recieve queue, or waits for a trigger to signal
that a job has entered the recieve queue. When a job is recieved it is passed to the ExecuteJob method of that node to be
executed or transferred if threshold is exceeded and transfertag limit is not. On interrupt the WAIT is exited enabling the
Xsia triq'qer to be DISPOSED of. In this version the idea of a transfer tag is not implemented, jobs must be implemented on

the node they are transferred to.}

{ This method runs continuously simulating the execution of jobs as they reach the node. This is the FCFS version where
jobs are executed sequentially. Theeffect of having to deal with RPC activity is implemented by adding the delayto the
unexpiredjob servicetime}

{continue until job service time is fully expired)

{continue until job service time is fully expired}

{recalculate unexpired servicetime}

{update statistical counters}

MULTIPROGRAMMING VERSION This method runs continuously simulating the execution of jobs as they reach the

node, multiprogramming version

<>

{stats on jobs executed at a node are collected as well as those originating at a node)

{ This method is used to initialise a node with its ID number and power)

{ At the end of each simulation the first job in the transmit queue must be removed, but as it will be in another nodes recieve
queue must not be DISPOSED of, all other jobs in the queue can be DISPOSED of)

{ This method DISPOSES of any items using up memory at the end of each simulation run.}

{Jobs assigned for local processing are removed from thejob.Q}

{The first node in the system prompts a system wide removal of jobs from tx.Q's)

{With the transmit queues empty any jobs in the rx.Q's can be removed}

{ This object has one method that stops the simulation although first it must interrupt certain methods in each node object to

allow the DISPOSAL of the various triggers used}

{A procedure to generate a set of unique nodes to probe}

{ A procedure to generate a set of unique nodes to probe}

{initialise array contain a set of integers}

{ensure it is impossible to pick the source node as a destination}
:-

{pick random number}
(put selected nodelD into array}

{remove selected nodelD from choice}

{select algorithm to use for length of run}

{user input of run parameters }
{runtime}

{30 ms delay due to rpc}
{30 ms delay due to rpc }
{10 ms delay in answering rpc }

{initialise node array}
{for each different group of nodes}

(user input expected number of nodes in group)

{user input expected power of nodes in group}

{user input more run time parameters
)

/'signal functions 7

/" create RPC server that services probes 7

create RPC server that services remote execution 7

retreive node description 7

catch death of processjobs 7
catch synchronisation signal 7

use seed based upon clocktime 7

ensure seed is unique 7

r

node_power '/

interarrival time to be proportional to node power 7

initialisation entry point for random number generator 7

/"attach shm segment using default values for shmaddr and shmfig to allow compiler to decide Iocation7

struture pointer assigned to start of shm segment 7

make sure location empty 7
fix start of segment 7
fix end of segment 7

create processjobs process 7

wait for signal that processjobs has been sucessfully created 7

endless loop to generate jobs 7
{

end of segment 7
go back to start 7

calculate exponentially distributed ta 7

convert to

calculate exponentially distributed ts and store in shm 7

job starttime7

increment pointer to next location 7
/'make sure location empty 7

signal to proccessjobs 7

signal handler to catch end of run signal from processjobs 7

check signal type 7

/* prints jobs generated stats to file 7

/'stops process 7
}

P signal handler to catch synchronisation signal from processjobs 7

PROCESSJOBS. C7

signal handlers 7

pointer to start of list 7
list_ptr points to address of list, to allow manipulation of address' 7

catch death of child signals 7
catch signals to the process 7
catch alarm signals 7

/* try to create shm segment, if it is already in existence get shmid 7

attach shm using default values for shmaddr and shmfig to allow compiler to decide Iocation7

make sure location empty 7
get area for storage of local Ioad7

fix start of segment, use first location for local load 7
/* fix end of sement 7

/" set alarm for next report period 7

get host details7
/" assign relevant node_power 7

endless loop getting job details from shm 7

end of segment 7
go back to start 7

record null no new jobs have been created7

until signal 7

get job duration 7
r update minload 7

/* Invoke load sharing 7

execute job remotely 7

/'if fork fails7

initiate remote execution for job 7

execute job locally 7
{

/"increment local load 7

if fork fails7
{

spawn process to execute for job length 7

add job details to linked list for later processing 7

set record to null 7
go to next record 7

/' signal handler to catch SIGUSR1 from generatejobs, does not perform any other function 7

signal handler to catch death of child signals from terminating executejob processes 7

get pid of terminated process and store in termination record*/

determine exit status of terminated process and store in termination record 7

increment job finished count 7

should load fall below 0 record fact in error file 7

(

get current time and store in termination record 7

put termination record in linked list 7

signal handler to run set routines at alarm periods 7

r initialise pathnames for results 7

open results file for node 7
nodename 7
repetition number 7

/'jobs received 7
/'jobs finished 7

current load 7
/'jobs transferred from other nodes 7
/* times load sharing invoked 7

increment time passed 7
incremen t report period 7

if run time expired 7

{

/" get id of generatejobs 7
signal to generatejobs 7

initialise pointer to start of finished jobs linked list 7
initialise pointer to start of created jobs linked list 7

open file to write input jobs records to 7
while linked list not empty 7

{
copy record from linked list 7

/" write record to file 7

while linked list not empty 7

{
copy record from linked list 7

/' write record to file 7

if run time not reached 7
reset alarm to end of next report period 7

/' Isalg is the function that actually carries out load sharing. If an appropriate node is discovered then destination _node is
changed to point to it Otherwise the value will remain as NULL. This function sends out probes in the form of RPC's to
randomly selected nodes. The results of these probes, load and power are used to generate a weighted load, which IS then
compared to the local load or lowest weighted load so far discovered. Should an RFC fail for any reason it is ignored and

the next one is started. 7

pointer to time structure 7

/* get randomly picked nodes'/
for set number of probes 7

(
/* create client handle, contacts remote portmapper and gets tcp port for server 7

if remote portmapper contacted successfully*/
{

set probe timeout 7
initiate remote procedure caH7

if remote procedure seccessfully completed 7
{

/'just in case load is negative 7

calculate weighted load 7

if currently probed node is least loaded 7
{

I*

r attempt to create shared memory segment if it is already in existance get the segment id 7

attach the shared memory segment 7

initialise local load 7

get service time of job from arguement passed to process 7

convert service time to correct length, 60 loops = 1 second on machine of rating 17

loopno must be an integer 7

on the first call to the procedure 7

/' try to create shm segment, if it is already in existance get shmid 7

attach the shared memory segment 1

initialise local load 7

get host defajls
assign relevant node power 7

put ,oad in resu,ts structure

put power in results structure

return results structure

convert servicetime string to float 7

create client handle, contacts remote portmapper and gets tcp port for server 7

if remote portmapper contacted successfully7

timeout set to run time 7

set execution timeout 7
initiate remote procedure call'/

if RPC successful 7

{
r remove client handle 7

exit with status for successful remote job execution 7

/"exit with status indicating timeout 7

r exit with status indicating server unreachable 7

on first call of procedure 7
(
/' try to create shm segment, if it is already in existance get shmid 7

attach the shared memory segment 7

initialise local load 7

initialise remote jobs received count 7

get host details 7

convert servicetime to string format 7

increment local load 7
increment remote jobs received count 7

fork new process 7

spawn process to execute for ts 7

wait for child process to terminate 7

return to calling process 7

a

weigh ted_ load -
local_ power

remote_ power
* remote_ load

CO
O

o
o

TO

Load balancing line

0.2

Fraction of power

Load balancing line

Fraction of power

25 T

-0.2 -0.1 0 0.1

Degreee of Heterogeneity

0

A6

Load balancing line

Fraction of power

-0.2 -0.1 0 0.1

Degreee of Heterogeneity

0.2

-0.1 0 0.1

Degreee of Heterogeneity

(0

0)

(A
0)

Degreee of Heterogeneity

CO

0)

0>
(0

Q.
(A
0)

CC

Degreee of Heterogeneity

CO

Degreee of Heterogeneity

Distrib. Syst. Engineering,

IEEE Trans on Software
Engineering,

IEEE Transactions on Parallel and
Distributed Systems,

Proc. 7th Int. Conf. on Distrib.
Computing Syst,

Proc. 7th Int. Conf. on Distrib. Computing Syst,

Proc. 2nd Communication Networks Symposium,

Int. J. Systems Sci. ,

IEEE Transactions on Computers,

Proc. 8th Int. Conf. on
Distrib. Computing Syst,

IEEE Trans. on Software Eng,

Software Practice and Experience, 1993,

Proc. Performance 87
12th IF IP Int. Proc. on Computer performance,

IEEE Trans on Software Engineering,

Proc. 9th Int. Conf.

Distrib. Computing Syst.,

Computer Networks Architecture and Applications,

Proc. Second

Communication Networks Symposium,

Technical Report Ir02,

0.00

