
Greenwich Academic Literature Archive (GALA)
– the University of Greenwich open access repository

http://gala.gre.ac.uk

__

Citation:

Lawrence, Peter James (1994) Mesh generation by domain bisection. PhD thesis, University of
Greenwich.

__

Please note that the full text version provided on GALA is the final published version awarded

by the university. “I certify that this work has not been accepted in substance for any degree,

and is not concurrently being submitted for any degree other than that of (name of research

degree) being studied at the University of Greenwich. I also declare that this work is the result

of my own investigations except where otherwise identified by references and that I have not

plagiarised the work of others”.

Lawrence, Peter James (1994) Mesh generation by domain bisection. ##thesis _type## ,

##institution##

Available at: http://gala.gre.ac.uk/6220/

__

Contact: gala@gre.ac.uk

http://gala.gre.ac.uk/
mailto:gala@gre.ac.uk

Mesh Generation By Domain Bisection

Peter James iLawrence

A thesis submitted in partial fulfilment of the

requirements of the University of Greenwich

for the degree of Doctor of Philosophy.

March 1994

This research programme was funded by SERC

Centre for Numerical Modelling and Process Analysis

School of Mathematics Statistics and Computing

University of Greenwich

London U.K.

,
V:

151445H-

____________________ ________Abstract

Abstract.

The research reported in this dissertation was undertaken to investigate efficient

computational methods of automatically generating three dimensional unstructured
tetrahedral meshes.

The work on two dimensional triangular unstructured grid generation by Lewis

and Robinson [LeR76] is first examined, in which a recursive bisection technique of

computational order nlog(n) was implemented. This technique is then extended to

incorporate new methods of geometry input and the automatic handling of multi-

connected regions. The method of two dimensional recursive mesh bisection is then

further modified to incorporate an improved strategy for the selection of bisections. This

enables an automatic nodal placement technique to be implemented in conjunction with

the grid generator. The dissertation then investigates methods of generating triangular

grids over parametric surfaces. This includes a new definition of surface Delaunay

triangulation with the extension of grid improvement techniques to surfaces.

Based on the assumption that all surface grids of objects form polyhedral
domains, a three dimensional mesh generation technique is derived. This technique is a
hybrid of recursive domain bisection coupled with a min-max heuristic triangulation

algorithm. This is done to achieve a computationlly efficient and reliable algorithm
coupled with a fast nodal placement technique. The algorithm generates three dimensional

unstructured tetrahedral grids over polyhedral domains with multi-connected regions in

an average computational order of less than nlog(n).

Acknowledgements

Acknowledgements

The author would like to express his gratitude to his supervisors, Professor M.

Cross and Professor M.G. Everett, who provided him with guidance and the opportunity

to work in a friendly environment.

Thanks also go out to the staff at the School of Mathematics, Statistics and

Computing, and to the postgraduates at the Centre for Numerical Modelling and Process

Analysis of the University of Greenwich, for their assistance and encouragement, and for

providing a good working environment.

Finally, the financial support provided by the Science and Engineering Research

Council is gratefully acknowledged.

n

Contents

Table of Contents

PART I INTRODUCTION AND OVERVIEW

Chapter 1: Introduction 2

1.1 Introduction 3

1.2 Problem reduction techniques 4

1.3 Why order of execution is important 7

Chapter 2: 3D Geometry,Visualization and

Element Shape Measures in Mesh Generation. 9

2.1 Geometry for mesh generation. 10

2.1.1 Constructive models (CSG) 10

2.1.2 Surface based models 11

2.2 Visualization of 3D geometry and meshes 12

2.3 Constructive Solid Geometry 15

2.4 Tetrahedral shape measures. 18

2.4.1 Solid angle 18

2.4.2 Tetrahedral goodness function 19

2.5 Summary 20

Chapter 3: Current major mesh generation techniques. 21

3.1 Introduction 22

3.2 Advancing front technique 23

3.3 Binary mesh operations. 24

3.4 Paving. 27

3.5 Delaunay triangulation. 28

3.5.1 Watson's Algorithm. 29

111

Contents

3.5.2 Topologically incompatibility in Delaunay grids. .. 30

3.6 Mesh Generation by Medial axis Subdivision. 32

3.7 Recursive Domain Bisection 33

3.7.1 Advantages and disadvantages 34

3.8 Triquamesh 35

3.9 Summary and conclusions 36

PART II: TWO DIMENSIONAL AND SURFACE MESH GENERATION

Chapter 4: 2D Mesh generation. 38

4.1 Introduction 39

4.2 Objectives 40

4.3 Recursive Domain Bisection 41

4.3.1 Choosing the bisection line 41

4.3.2 The actual split used 42

4.3.3 Domains of peculiarity 42

4.4 Grid quality improvements 43

4.4.1 Vertex swapping 43

4.4.2 Laplace's Smoothing 46

4.5 Preliminary extensions 47

4.5.1 Improved bisection algorithm 47

4.5.2 Preliminary nodal insertion routine 49

4.6 Subsequent extensions 53

4.6.1 Data input requirements 53

4.6.2 Nodal density calculation 54

4.6.3 Decomposition of regions into convex polygons .. 55

4.6.4 Decomposition of multiply connected regions .. 56

4.6.5 Nodal placement 57

4.6.6 The grid generator 60

4.6.7 Example problem 60

4.7 Higher polyhedral order 61

IV

Contents

4.7.1 Conversion of triangular elements to quadrilaterals .. 61

4.7.2 Walking method of generating quadrilaterals 61

4.7.3 Generation of high order polyhedral cells 62

4.8 Conclusions 65

4.8.1 Further extensions 65

Chapter 5: Generation of grids over surfaces. 66

5.1 Introduction. 67

5.2 Surface mesh generation on polyhedral domains 68

5.3 Meshing surfaces using Delaunay triangulation 70

5.3.1 Surface Delaunay triangulation example 81

5.4 Surface Laplace smoothing 83

5.4.1 Surface Laplace smoothing results 84

5.5 Vertex swapping on parametric surfaces 87

5.5.1 How to calculate surface error

5.5.2 What is the effect of the above method?

5.5.3 Surface vertex swapping Results 89

5.6 Conclusions 91

Part III THREE DIMENSIONAL MESH GENERATION

Chapter 6: 3D Mesh generation. 93

6.1 Introduction 94

6.2 The initial recursive bisection mesh generator 95

6.3 Geometry representation 96

6.3.1 Surface based models 96

6.3.2 Polyhedral domains 98

6.4 Bisection method 99

6.4.1 Selection of cut face 100

6.5 The sub-region problem 102

6.6 Problems with domain bisection 105

________ __________Contents

6.7 Decomposing polyhedral domains into convex regions .. 106

6.8 Generation of grids within sub-regions 107

6.9 Outline of final mesh generator and results 109

6.9.1 Input requirements 109

6.9.2 The mesh generator 109

6.10 Convex domain partitioning 110

6.10.1 Domain bisection Ill

6.10.2 Complex domain bisection 112

6.11 Convex domain shrinking and nodal placement 113

6.12 Geometry input requirements 114

6.13 Mesh generator's input format 116

6.14 Summary and conclusions 118

Chapter 7: 3D Mesh Generation Computational techniques. 119

7.1 Introduction 120

7.2 Data structures. 121

7.2.1 Data requirements of polyhedral domains 121

7.2.2 Detail description of stored data 122

7.3 Generation of cut planes 125

7.3.1 Polyhedral cut face 125

7.3.2 Polyhedral splitting algorithm 126

7.3.3 Edge following bisection method 132

7.3.4 Contour polyhedral splitting algorithm 137

7.4 Nodal placement using 3D convex domain shrinking 138

7.5 Three dimensional local transformations 141

7.6 Boundary constrained three dimensional triangulation 146

7.6.1 Local minima 149

7.7 Conclusions 151

Chapter 8: 3D Mesh Generation Results and Conclusions. 152

8.1 Introduction 153

VI

____ ____ ___________Contents

8.2 Basic examples 154

8.2.1 Three dimensional box with a cavity 155

8.2.2 A box with a cavity adjacent to another box 158

8.2.3 Three dimensional lug geometry 161

8.2.4 Cross section of a plane in a wind tunnel 164

8.3 Comparison examples 167

8.3.1 Normal offsetting technique 167

8.3.2 Mesh generation by binary mesh operations 169

8.3.3 Delaunay and Min-max triangulation 170

8.3.4 Finite Octree mesh generation 172

8.3.5 Summary 175

8.4 Further examples 176

8.4.1 Example simple plane model 176

8.4.2 Car model 179

8.4.3 Cross section of a car in a wind tunnel 182

8.5 Discussion of results 185

Chapter 9 Conclusion 186

9.0 Introduction 187

9.1 Conclusions 187

9.1.1 Preparation of geometry 187

9.1.2 Quality of algorithms and calculations 188

9.1.3 The importance of domain bisection 188

9.2 Summary of achievements and major contributions 188

9.2.1 Comparison with other methods 189

9.3 Further work and enhancements 190

9.3.1 Curved surface meshing 190

9.3.2 Combining the two bisection methods 190

9.3.3 Hexahedra mesh generation 191

9.3.4 Integration of a user nodal spacing on each sub-region 194

9.4 References 195

Vll

Al Calculating length of a side of an equilateral triangle given its area 208

A2 Calculating length of an edge of an equilateral

tetrahedral given its volume 209

A3 Inner and outer boundary 210

A4 Adjacent edge searching 211

A5 Numerical Precision 213

A6 Mesh Generator's modules 216

vni

This dissertation is divided into three parts, in which this section will give an

introduction to the aims and aspirations of the research. This section will also include an

overview of current techniques with a discussion of related topics.

Chapter 1

Chapter 1

Introduction.

Advances in engineering software, fuelled by hardware improvements, have led

to an increased desire to model more complex geometries. This has resulted in a bottle

neck of generating good quality three dimensional unstructured meshes for the analysis

of these domains using methods based upon Control-Volume and Finite Element

procedures.

Current 2D mesh generation methods tend to rely on interaction between the user

and the mesh generating software to produce well structured meshes; this is much more

difficult, and sometimes impossible with 3D mesh generation since there are still large

visualization problems to overcome. In Chapter 2 the problem of visualization of three

dimensional grids is discussed, together with how to evaluate grid quality before it is

utilized for any further computational purposes.

There have been several methods applied to the problem of generating three

dimensional meshes for complex geometries, such as the Advancing front [BoP91][Lo85],

Octree [ScS90] and Delaunay [CFF85] triangulation techniques. These methods tend to

be CPU intensive and often require large amounts of user interaction. A brief overview

of these techniques together with examples, are covered in Chapter 3.

The aim of the thesis is to present a computationally efficient, reliable and good

quality three dimensional mesh generation program using techniques that have an average

computational order of nlog(n). In Chapter 4 the method of "recursive domain bisection"

mesh generation by Lewis and Robinson [LeR76] is outlined along with the modifications

and extensions that have been applied.

Chapter 5 looks at the problem of generating grids over surfaces and outlines how

2D techniques can be extended. This chapter includes a new definition of parametric

surface Delaunay triangulation and various grid improvement techniques for surface

meshes.

Chapter 6, describes the initial attempt at recursive three dimensional mesh

generation and how these ideas have been modified to form the current fully working

technique. The following Chapter 7, describes the fundamental algorithms used in

conjunction with the mesh generator, presented in Chapter 6. A new direct boundary

constrained local min-max meshing algorithm, that is based on the Delaunay triangulation

algorithm by Joe [Joe89], is also described.

In Chapter 8, the thesis then presents some example geometries and grids, with

CPU times and various mesh quality measures. Overall conclusions and possible

extensions to hexahedral element generation are presented in Chapter 9.

The reduction of a model into simpler parts is fundamental to mesh generation.

This is reflected in many methods, such as Octree [ScS90] and Medial axis [GUP91],

which utilize a problem reduction technique to sub-divide the geometry into simpler

regions, to enable the generation of the final mesh.

Problem reduction techniques, such as the Quicksort [Hoa61], which apply

recursive methods to reduce the data space to sufficiently small segments so that a simple

algorithm may be applied, have traditionally been more computationally efficient than

alternative algorithms. The Quicksort is an order nlog(n) method [Hoa62], where the

problem of sorting a vector is reduced to sorting shorter and shorter vectors, until vectors

of length two are reached. These can then be sorted by one comparison and a conditional

interchange. Lewis and Robinson [LeR76] extended this idea to two dimensional

unstructured triangular grid generation, which resulted in a computationally efficient

algorithm of order nlog(n). This method of mesh generation, using their technique, forms

the fundamental idea behind this research and is briefly outlined here. A fuller description

is given in Chapter 3.

The method of Lewis and Robinson is a two dimensional technique, see Chapter

3 section 3.7. Since this thesis is primarily concerned with 3D geometry, the basic

approach is depicted in Figure 1.2.1 with a three dimensional domain. The basic

philosophy behind this technique for meshing a region R, see Figure 1.2. la, is as follows:

(a) Splitting R into two sub-regions^ and R2, by choosing a plane of best split.

A new boundary is generated across the interface of the regions to create two new

closed independent domains, Figure 1.2.1b.

(Note this initial cut has a zigzag appearance as the splitting routine follows a

path through the surface mesh closest to the cutting plane.)

(b) Now solve the triangulation problem for Rt and R2

Step a and b are applied recursively until tetrahedral domains are formed, as in

Figure 1.2.1c which contains no interior points, these being the elements of the mesh.

Tetrahedral elements which contain internal points and sub-region for which no valid

bisection exists, are dealt with by special algorithms. When all the sub-regions are

resolved into tetrahedral elements the mesh is complete, Figure 1.2. Id.

(a) Initial Domain

(b) Then apply first bi-section

on domain.

(c) Then keep on applying

bisections to domain.

(d) Until tetrahedra are formed.

Hence the final tetrahedral

unstructured mesh is

generated.

Most of the algorithms in this thesis have an order of execution that fall into the

following classes:

constant : Order 1
log log : O(lg Ig n)

linear : O(n)
n log n : O(n Ig n)

quadratic : O(n2)
cubic : O(n3)

exponential : O(2n)

The parameter n is a value that characterizes the size of the input to a given

algorithm, and if we say the algorithm runs to completion in O(f(n)) steps, we mean that

the actual number of steps executed is no more than a constant times f(n), for sufficiently

large «. It is important to gain an intuitive feeling for these classes in order to have a

comparative framework in which to understand performance properties of algorithms.

Figure 1.3.1 shows the above functions plotted against CPU.

-i

D
0_
O

4

Figure 1.3.1: functions of n operations against CPU time. Graphs are in ascending
order with O(lg Ig n) at front and O(n3) at back as in legend.

As can be deduced from the Figure 1.3.1, for small problems the order of the

algorithm is not important, but as the size of a problem increases the time difference

between routines can become significant. If we had a problem that required over a

million operations, a function of even O(n2) would take over 7000 times longer than an

O(n Ig n) process. Therefore, if the running time of an algorithm is characterized by an

exponential function, we cannot expect to solve practical problems of very large size. In

3D mesh generation even very modest problems are in the region of over a thousand

nodes, so an algorithm that is anywhere near exponential is not practical.

A major problem is that most algorithms often do not fall precisely into anyone

class. The order of most routines often depends to some degree on the form in which the

data is presented to them or the complexity of the particular problem they are applied to.

A common approach is to categorise an algorithm by its worst case and/or average

situation.

If for example we compare two routines the Quicksort [Hoa62] and the Heapsort

[Knu73], both these routines are reported to be of order n log(n) [ThoSO]. However, the

Quicksort is in fact only on average O(n log n) and is O(n2) steps in the worst case

where the initial distribution of the data is extremely random. The heapsort, on the other

hand, is a routine that has the advantage of being an O(n log n) sorting algorithm, whose

worst case performance is fairly close to its average performance [ThoSO]. Therefore, it

is often not just sufficient to quote the order of an algorithm, but also a standard

deviation to address the above issues to some extent.

Throughout this thesis, many CPU times will be presented in a graphical format,

and also may be accompanied with statistical analysis to address the above issues, at

least, to some extent.

Chapter 2

3D Geometry, Visualization

and

Element Shape Measures

in

Mesh Generation

The initial stage of an analysis of any model is the generation of the geometry.

In three dimensional geometry solid modelling, there are many different ways of

representing objects. The geometry representation of a model has a great effect on the

types and form of geometry operations that can be applied, and therefore has an effect

on the mesh generator. The mesh generator cannot be designed independent of the object

definition and the topic is, therefore, discussed in this section.

Many geometry representation techniques have emerged due to the difficulties of

perceiving a real physical object within the constraints of the virtual world of the

computer. However, recently two main approaches have dominated, namely, constructive

and surface representations.

All constructive models consider solids as point sets of E3 . Their basic idea is to

start from some sufficiently simple point sets that can be represented directly, and model

other point sets in terms of very general combinations of the simple sets.

The main technique in this class is constructive solid geometry (CSG) where

parameterized instances of solid primitives

and boolean

implemented.

set operations are

Figure 2.1.1 illustrates an engine

valve generated using boolean operations

applied to a set of primitives.

CSG modelling packages are often

a useful and fast way of generating many

machined parts. However, the user has no

direct access to individual half-spaces

(graphical primitives) and this can restrict

the designer. An example is in aircraft

design where curved surfaces on wings

can be difficult to model.

Union
 " /

Cylinder

Intersection ^ \\. Subtract

Cylinder Sphere
Torus

Figure 2.1.1 Binary tree of CSG model.

The surface based characterization of solids, looks at the boundary of a solid

object. The boundary is considered to consist of a collection of faces that are glued

together so that they form a complete, closing skin around an object. Figure 2.1.2A

illustrates a box object represented by a collection of polygon faces, Figure 2.1.2B shows

the same box with its faces separated.

Figure 2.1.2 Boundary model of a box.

Many boundary modelling packages also encompass curved surfaces. These

curved surfaces are often parametric patches that are manifolded together. Parametric

patches include bilinear surfaces [Dew88], coons patches [Gas83], cubic patches

[Dew88], Bezier surfaces [BaB83] etc, which can be defined using a number of control

points. Recently NURBS [Pie91] (Non-Uniform Rational B-Spline) surfaces have made

an impact in this area and are used widely in the aircraft and car industry.

A large number of objects can be represented using a boundary model technique,

but these models are often difficult to generate. To assist in the generation of these

models, research has been invested in new curved surface representations and a number

of CAD packages have been developed. Since many objects can be quickly represented

using CSG techniques, many modern boundary modelling packages incorporate some

CSG features and provide predefined surface primitives such as sphere, torus etc. This

has resulted in many hybrid modelling tools.

The type of model representation used affects the type and efficiency of

operations carried out on the domain. This in turn affects the reliability, speed and type

of mesh generation technique that can be applied to the region. A surface mesh is a

boundary model of a domain. Therefore, boundary surface representations of models

make a natural choice as the starting point of grid generation and many CSG models can

generate output in this format.

2.2

Visualization of geometry on the two dimensional device of a cathode ray tube

provides its own problems. Complex models that are highly re-entrant with many cavities

and sub-domains, such as those found in the casting industry, are difficult to perceive on

the computer screen, often requiring many different viewing angles of the model to be

displayed simultaneously. Frequently a number of slices through the domain are required

to show any hidden features and cavities. This problem is particularly acute in the

generation of geometry, in which the model has to be manipulated into a particular angle

and location before a new facet can be generated manually by the designer. Many other

fields, such as contouring [Sab85], have suffered from the problem of visualization.

A three dimensional mesh, especially an unstructured mesh, is a complex

geometry with many features hidden below the surface skin of the domain. A number of

techniques have been applied to try and display the hidden detail of a mesh. Such

techniques include domain slicing [Bur90] and element shrinking [Law91][TaA91], In

domain slicing a number of planes are passed through the domain to try and expose some

of the internal mesh features. However, this can present a false picture, depending on

how individual elements are bisected by the cutting plane, giving an impression of

regions of the mesh being of finer or coarser density than they really are. The method

of element shrinking reduces all the elements' size by a given amount c, but keeping their

centroids fixed. This results in small gaps being created between the elements. Both

methods do little more than prove the existence of a grid, they provide no information

on element quality and whether elements intersect.

A number of highly complex CAD and visualization packages have to be used in

the course of grid generation. Visualization of complex models has proven to be such a

difficulty that a new generation of packages have been developed to try and address some

of the above problems. The next two pages depict illustrations from apE [Bro92] and

AVS [Bro92], which are advanced visualization packages used throughout this thesis for

the generation of many of the illustrations. They are pipe line systems in which a user

builds up a network of operations that are required for a particular visualization task.

Figure 2.2.1: apE (Animation Production Environment) visualization package.

Figure 2.2.2: AVS (Advance Visualization System) package.

(CSG).

The geometry input format for the new bisection mesh generator is polyhedral

domains; the reason for this is discussed in Chapter 6. CSG Modelling packages are often

a useful and fast way of generating many machined parts, and they provide a convenient

method of output in the form of polyhedral surfaces. The drawback of using these

polyhedral domains generated in this fashion is that the polyhedral faces are often

degenerate and elongated. Sometimes the polyhedral faces can be of a magnitude that is

smaller than the element size required for the mesh. Even the order in which primitives

are combined have an effect on the form of polyhedral domains generated. Below are

three identical examples of a pipe like component generated by different combinations

of CSG operations and the resulting polyhedral domains generated.

Figure 2.3.1 : Three identical pipes with different polyhedral definitions; this is
especially prominent around top flange of pipes.

The figures generated in the above diagram were displayed without internal lines,

these are extra edges added to the domain by the CSG model to ensure that all faces are

valid planar polygon surfaces. In this particular modeller the polygon elements had to be

convex, since this speeds up most ray tracing and hidden line removal algorithms. Since

this simplification of the surfaces is for applications where the quality of the elements

is not essential, this often results in very poor surface elements (Figure 2.3.2).

This problem has often been encountered during this research. As a consequence,

several algorithms have been derived, which take a polyhedral domain and by joining

faces and swapping vertices improve the initial surface elements. This has worked to

some degree, but it is often almost impossible to remove all poorly defined elements.

The problem with most CSG modellers is that the

polyhedral domain sub-division is done for speed, rather

than for the quality of the bisected surfaces. The algorithm

used within these CSG packages, from the experiences

gained during this research, for polyhedral convex

subdivision are very similar to the algorithms used within

the mesh generation code. However, the grid generation

code is more selective about which bisection edge is usec

to divide the domain. Therefore, for most CSG packages
^Figure 2.3.2:Typicalonly a small modification is necessary to generate , , , . ' '.
polyhedral domain.

reasonable surface elements.

CSG software tools are often geared towards object visualization, therefore they

often incorporate utilities to aid in this task, such as tools to guide the resolution of

curved surfaces. The resolution parameter, for example, on a cylinder would increase/

decrease the number of polygons used to represent the outer perimeter, just as in the case

of a circle, the more straight lines used to represent it, the better the definition. This

resolution factor can, in effect, help to guide the meshing algorithm nodal placement.

Hence, if the designer had requested a higher definition on a surface they would probably

require a denser mesh over that region, and vice-versa for a coarser resolution factor.

The conclusion which can be drawn, from CSG geometry modellers is that they

tend to provide the necessary information for generating a three dimensional grid, but the

quality of the output often leaves a lot to be desired and generally requires some

manipulation. However, these problems could be overcome by a small modification to

the CAD package, to gear it more towards grid generation rather than just visualization.

CSG modellers have intrigued Software Engineers to such an extent, that there

is currently work being undertaken which integrates CSG directly with meshing routines

[Cox93]. This method which is called Domain Composition builds the mesh

simultaneously as the model is being created. Each primitive object has a predefined 3D

grid. For example, Figure 2.3.3, if we have a region D, which was formed by a Boolean

operation on the domain A and B. The mesh over the region D, is formed by taking the

original grids of A and B, and then applying the same Boolean operation with the use of

grid interpolations, where necessary. However, in Lee's thesis [LeeSl], he argues that this

technique is not a practical method for the generation of three dimensional meshes.

Figure 2.3.3 : Domain Composition

One of the main problems in tetrahedral mesh generation is how to measure the

quality of a mesh, since poorly shaped tetrahedra may cause numerical difficulties in the

under lying numerical technique, e.g finite element analysis. Papers on tetrahedral mesh

generation have used various quantities for measuring the shape or quality of tetrahedra.

In this section two approaches will be described.

In 2D triangulation mesh generation, the minimum interior angle of a triangulation

is a commonly used triangle shape measure. A natural extension of the minimum interior

angle to three dimensions is the minimum solid angle 0min.

Unlike a triangle a tetrahedron has many different angle measurements :

12 planar angles (three in each of the 4 faces),

6 dihedral angles (one at each of the 6 edges),

4 solid or dihedral angles at the vertices.

Figure 2.4.1 : tetrahedron

The solid angle fy at v, is the surface area formed by projecting each point on the

face not containing the vertex v, onto the surface of the unit sphere with v, at its centre.

However, for a tetrahedron the solid angle at D, Figure 2.4.1 can be computed as oc+p+y-

71 [BeySl], where oc,p and y are the dihedral angles at edges AD, DB and CD

respectively.

It can be shown [Gad52] thatO< J^_ 0,. < 2n . Therefore a very large solid angle,

near 27C, for a tetrahedron implies that there also exists a small solid angle, and this is

the reason why we only consider the minimum solid angle. Also if the tetrahedron is

regular, all face angles are rc/3 and all solid angles are the same.

An alternative way of measuring mesh quality is to use a tetrahedral goodness

function or Gamma value [ShL91]:

Where :

\ is the element's normalized shape parameter for tetrahedron i.

F is the volume of tetrahedron i.

is the surface area of tetrahedron i.

is a normalization factor[Sh!91] (374.123) which yields ̂ =1 for an

equilateral tetrahedron.

The above equation returns a value of 1 if the tetrahedron is equilateral. As the

tetrahedron deviates from the ideal shape so does the value of K-t , the larger the deviation

of \ from 1 the poorer the element quality. A \ value above 0.8 is considered to

represent an extremely good tetrahedral element [ShL91].

Both the tetrahedral "solid angle" and "goodness function" offer practical

measurements for measuring mesh quality. These measures are only a guide, and the only

true mesh quality test is to use the grid for analysis of the domain. However, they do

offer a quick quality measure and a means of comparing different grids over the same

geometry model. Throughout this thesis the results from the grid generator will be

presented using both the above tetrahedral shape measures.

2.5

The problem of representing complex three dimensional models has given rise to

a number of alternative techniques for the representation of geometry. The technique of

mesh generation must be considered in conjunction with various geometry

representations. A number of software tools have been developed for the generation and

representation of three dimensional geometries, however they are often not designed for

providing suitable geometry models for computational analysis.

Many problems exist in measuring the quality of three dimensional unstructured

grids, and visual techniques cannot practically be applied. Therefore, several

computational methods of measuring mesh quality do exist, of which two are described

in this Chapter. Opinion is still divided over which measure gives the best indication of

mesh quality, and research is being undertaken [LiJ93] to establish which technique is

best. However, these techniques can only provide an indication to the true mesh quality

and a means of comparing different grids over identical geometry.

Chapter 3

Chapter 3

Current Major Mesh Generation

Techniques.

page 21

Many techniques have already been applied to the problem of generating

unstructured grids over three dimensional geometry. This chapter will give a brief

overview of some of the major methods that have been examined during this research.

This chapter is not intended to be a complete overview of all current mesh generation,

but rather a subset of the techniques that have, with some degree of success, been applied

to 3D mesh generation and to some extent influenced the research described here. This

section will attempt to give the reader an idea of the philosophy behind these methods,

how they have been applied, together with their advantages and disadvantages.

Two techniques are covered in more depth, Delaunay [ScS90][ScS88][Joe86]

[CFF85][Law72] and Binary mesh operators [ShL91], since these methods have been

implemented in conjunction with the new bisection method, see Chapter 6. Delaunay is

of particular interest, as it is the technique that offers the best computational order of the

current mesh generation algorithms and forms part of many hybrid mesh generation

codes.

The chapter is completed with a description of mesh generation by Recursive

domain bisection [LeR76]. It is then concluded with a discussion of the problems of the

these techniques and discusses why mesh generation by recursive bisection offers a

practical solution.

Key Words: Advancing Front [BoP91][PPF85][Lo85], Delaunay triangulation [ScS90]

[ScS88][Joe86][CFF85][Law72], Binary mesh operators [SW91], Paving [BsC91],

Medial Axis [TPA93][TaA91][GuP91], Recursive domain bisection [LeR76].

22

The advancing front method has been extensively developed by workers such as
Lo [Lo85] and Peraire [PPF88].

Figure 3.2.1 : Advancing front technique in 2D from initial domain A to final mesh F.

The basic underlying concept of the advancing front [Lo85][LPG88] method is

illustrated in Figure 3.2.1 for the generation of a uniform size triangular mesh over a two

dimensional domain. The boundary of the domain to be meshed is first discretized. Points

are placed on the boundary, and contiguous points are joined by straight line segments

and assembled to form the initial generation front. At this stage the triangulation loop

begins. A side from the front is chosen and a triangle is generated that will have this

selected side as one edge. In generating this new triangle an interior node may be created

or an existing node in the front may be chosen. At this stage it is necessary to ensure that

the element generated does not intersect with any existing side in the front. After

generating the new element the front is conveniently updated in such a way that it always

contains the sides that are available to form a new triangle. The generation is completed

when no sides are left in the front.

This method has progressed over the years from a very high order method, above

n2, to around order nlogn, but still remains one of the most CPU expensive methods

because of the large number of surface intersections that have to be tested for.

23

Mesh generation by binary operations [ShL91][Wei88][Lo88][W6r83], is the

implementation of a limited set of geometry operations that are sufficient to generate a

complete grid in 2D or 3D. In 3D there are three basic operations that can be used to

generate a coarse grid: face removal, edge removal and vertex removal.

Face removal: Carves a tetrahedron from the object being triangulated by the

introduction of a new vertex in the interior of the domain.

Figure 3.3.1: Face removal

Edge removal: Carves a tetrahedron from the domain by selecting two adjacent non-

planar triangular faces and generates a new edge inside the domain.

Figure 3.3.2: Edge Removal.

Vertex removal: Carves a tetrahedron from the domain by removing one complex vertex

and all its associated edges. (Removes three adjacent faces from the domain)

Figure 3.3.3: Vertex Removal.

The method by Shephard and Lo [ShL91] applies these operations to generate

coarse grids that can be refined later. The algorithm gives each operator a priority based

on its ability to reduce the geometric complexity of the domain. The measure of the

geometric complexity is the number of topological entities in the geometric model and

their adjacencies. Therefore, the routine attempts to use vertex removal first on the

current geometry. However, if this cannot be applied, it then tries edge removal.

Subsequently if an edge removal fails, face removal is used, which is the only binary

operation that can be applied to any geometry. These set of binary operations are coupled

with an element shape control function in a bid to improve the quality of the final mesh.

Mesh generation by binary operations is strongly related to the advancing front

technique with similar draw backs in computational order. It could be argued that these

methods are identical except in the priority of applying the mesh operations, i.e

advancing front applies face removal to a domain first and if this does not generate any

acceptable elements the other binary operations are attempted.

25

Below is a list of the types of procedures involved in each binary operation.

Face removal:

Choose a polyhedral face.

Generate a point inside the domain.

Point is inward and normal to face.

Test to see if the line from the centre of face to the point, does not intersect any

other faces in the domain (may adjust position of point).

Test to see if lines from the nodes of face can be joined up to the new point.

Check newly formed surfaces are not too close to other surfaces in domain.

Check that the new domain does not contain any other domain points.

Check Gamma value* to see if a good tetrahedon was formed.

Check/correct direction of face normals, of the new face elements.

Edge removal:

Find two adjacent polyhedral faces.

Check that the edge joining non-common nodes is inside domains.

Check that the edge joining non-common nodes does not intersect

other polyhedral faces in domains.

Check that the new surfaces do not intersect any other surfaces.

Check that the new surfaces are not too close to other surfaces.

Correct the direction of polyhedral normal.

Check on Gamma value of the tetrahedron formed.

Vertex removal:

Find three polyhedral faces that are adjacent to each other.

Check to see that the domain does not contain any other nodes.

Check that the tetrahedron formed is inside domains.

Test to see if the new face is not too close to other faces in the domain.

Correct direction of the new face.

*Gamma value : Tetrahedral shape measure, see section 2.4.2.

The paving method, which has been primarily developed by Blacker and Stephenson

[BSC91] is depicted below.

11

Fixed nodes
Floating nodes

Figure 3.4.1 Example of paving from geometry (A) to mesh (C) [BSC91].

Paving begins with the input of one or more ordered, closed loops of connected

nodes, Figure 3.4.1 A. These loops form the boundary of the mesh and contain the fixed

nodes. During the mesh generation process, the paving technique always operates on the

boundaries of connected nodes referred to as paving boundaries. The paving boundaries

are transient in nature and progress as the mesh is generated, Figure 3.4.IB. A point is

selected on each paving boundary to start the element paving. The method then walks

around the domain, keeping the boundary to its right, generating elements. In Figure

3.4. IB the arrows on the elements' faces indicate the direction of element generation.

Each complete loop of elements is called a row. Rows are generated from a number of

portions. Once a row portion of elements is generated they are smoothed [BSC91], by

adjusting nodal positions to improve elements' shapes. If any of the newly generated

elements intersect with other rows of elements these are seamed or closed by connecting

opposing cells. After the completion of each row, it is adjusted to correct for small or

large elements, and again checked for intersection.

The paving method has a paving boundary that advances into the domain in a

similar way to the advancing front. Therefore, it inherits some of the computational and

27

intersection problems of the foresaid method. Unlike the previous techniques the paving

algorithm has the benefit that it generates quadrilaterals and in 3D hexahedral elements.

3.5

The Delaunay triangulation in 2D is a well researched method [Wat81],[ScS88]

and has been successful in that it has been shown to produce well structured meshes that

satisfy the min-max angle criterion

(optimal triangles).

The definition of Delaunay

triangulation is that the circumcircle of

any triangle i in the mesh, does not

contain any exterior vertices of the

element i. Figure 3.5.1. Illustration of circumcircle of
Delaunay triangle.

3D Delaunay triangulation consists of several tetrahedra in an array of points. The

four vertices of each tetrahedron lie on the surface of a sphere and no other vertex of the

array lies within that sphere. Delaunay triangulation in 3D does not in general satisfy the

min-max solid angle criterion and does not seem to satisfy any optimal angle condition.

In fact Cavendish [CFF85] reports the creation of slivers (tetrahedron with a small

volume, which is almost flat).

Circumsphere

Figure 3.5.2. Illustration of circumsphere of tetrahedral and a sliver element.

[SLH84].

The Delaunay triangulation has several degenerate cases and like all grid

generation methods, is subject to computer accumulated rounding errors. In 2D these

problems have been minimized by special ordering of nodes in the generation of the grid

and the use of a combination of both Watson's [WatSl] and Lawson's [Law72]

procedures to make the method more robust computationally. Watson's algorithm is

illustrated below: New (P)

Each node is taken in turn and inserted

into the mesh. A search for all the

elements whose circumcircle contains this

node (Figure 3.5.3) is made.

The method then removes these elements,

Figure 3.5.4, and the external boundaries

of the set of elements form a polygon.

The vertices of this polygon are then

joined to the newly inserted node. Which

then forms a new Delaunay triangulation

that includes the inserted node.

CIrcum-cIrctes

Figure 3.5.3. Insertion of Node.

Figure 3.5.4. shaded elements are removed.

Figure 3.5.5 Vertices of the polygon are
joined up to the new node.

In 3D Lawson's swapping algorithm cannot be used, but recent developments in

3D Delaunay triangulation by Joe [Joe89] using local transformation of tetrahedra (see

section 6.10 3D vertex swapping) have resulted in a very robust and fast method of

generating Delaunay meshes. The 3D method has a worst case computational order of

n2, however, on most practical cases it is of order nlog(n). Despite its computational

efficiency Delaunay triangulation in 3D does not generate well shaped elements [CFF85].

3.5.2

Delaunay triangulation is based solely on the location of the points of the domain

and higher order topological information does not affect the resulting computational

mesh. Therefore, the Delaunay triangulation of certain geometric models with particular

distributions of points will produce a mesh that is incompatible with the model's

topology.

To correct this problem, we have to search the geometry of the model for

intersection with the elements formed by the triangulation. Where elements intersect the

surface of the model, we introduce extra 'stitching points', to make the triangulation

conform to the geometry. This is illustrated in Figures 3.5.6 to 3.5.8.

Meshing the geometric model below

Figure 3.5.6 : Initial geometry

This results in a topologically incompatible mesh

Figure 3.5.7 : Initial Delaunay triangulation.

Resolved by introducing a stitching point

Figure 3.5.8 : Insertion of a stitch point

An alternative method is to force the Delaunay algorithm to generate only

geometry compatible meshes. This is achieved by ensuring that the nodes on the

boundary of the model form Delaunay edges [Joe86]. A Delaunay edge is defined as two

adjacent vertices on the boundary and the circum-circle through these two points does not

contain any other boundary vertices. Figure 3.5.9 illustrates the definition Delaunay edge

and shows how it can be used to spot areas of incompatibility.

Delaunay Not a Delaunay
Figure 3.5.9 Illustration of Delaunay and
non-Delaunay edges.

The medial axis subdivision is a relatively new and novel technique for generating

various types of grids using triangular and quadrilateral elements. Grids that have been

generated this way tend to be well structured and of high quality {Tarn and Armstrong

1991 [TaA91]}.

Figure 3.6.1 : Example of stages in mesh generation by medial axis subdivision.

The main concept behind this method, as the title suggests, is the generation of

the medial axis or Voronoi diagram of the domain that is shown in Figure 3.6.1 A. The

motivation behind the generation of this diagram is the belief that elements should flow

round the object in the general direction specified by the medial axis. The Medial axes

diagram is often generated by first triangulating the domain using Delaunay triangulation

and from this triangulation the Voronoi diagram is derived. Once the medial axis is

derived this is then processed first to remove concavities, Figure 3.6.IB and then chain

splitting , Figure 3.6.1C, to generate the sub-domains that can then be meshed with any

suitable mesh type and pattern to generate the final mesh Figure 3.6.4D.

32

3.7

Recursive domain bisection, is a method first implemented by Lewis and

Robinson [LeR76], which applies a 'problem-reduction' technique to triangulate domains.

This technique consists of dividing the original data space into disjointed segments, and

then solving the problem for each of the smaller segments. This technique is applied

recursively on each domain and its sub-domains until each data space is sufficiently small

for a very simple algorithm to be applied. This method is similar to the Quicksort

algorithm [ThoSO], where the problem of sorting vectors is reduced to sorting shorter and

shorter vectors, until vectors of length two are generated. These can then be sorted by

one comparison and a conditional interchange.

Therefore, the triangulation of region R (Figure 3.7.1 (a)) can be achieved by:

(a) Splitting R into two sub-regions, Rt and R2, by creating a new boundary

across the region.

(b) Solving the triangulation problem for Rj and R2 separately

(Figure 3.7.l(b)).

The new boundary has a zigzag appearance as it consists of the join of points lying near

a line that passes through two 'opposite' boundary points (Figure 4.7.l(c)).

Sub-domains are divided until triangles with no interior points are formed, these

being the elements of the triangulation; triangles containing interior points are split by

two lines joining an interior point to two vertices.

(a)

Figure 3.7.1 Splitting a region

There are usually numerous possibilities for the selection of a bisection line to

divide any arbitrary domain. Lewis and Robinson outline a method that attempts to divide

the domain into two 'circular equally sized halves', this is described in more detail in
Chapter 4.

The computation order of the above algorithm was shown by Lewis to be n log(n)

and in the worst case n2. The worst case scenario is based on the assumption that most

proposed splits of the region are invalid, so finding valid splits is the dominant part of

the algorithm. The worst case occurs on difficult geometries where the vertex removal

routine has to be used in the majority of bisections. However, it was shown that the ratio

between the main bisection routine and the simple vertex removal method is 1:10.

Therefore, we have a routine whose performance has a good average computational order.

However, this routine does not include a nodal placement method, all nodes have

to be provided prior to the grid generation. It was required that the user provided all

nodal position prior, either generated by hand or using a rudimentary nodal placement

algorithm [MLC83].

Multiply connected regions are

dealt with the manual addition of a cut

line (Figure 3.7.2), this decomposes the

region into simple polygons. However,

this could be overcome by the

introduction of an automatic method of

decomposing multiply connected regions

into simple polygons, as described by Joe

and Simpson [JoS86].

Figure 3.7.2 A multiply-connected region.

Triquamesh [SBS79][S1H82] is a mesh generator, developed in the early 80's,

which generates triangular and quadrilateral elements in 2D. The technique used in

Triquamesh is a recursive bisection method, and is similar to the technique used by

Lewis et al [LeR76], see Section 3.7. However, Schoofs et al [SBS79] used a different

heuristic, in Triquamesh, to guide the selection of bisections. Schoofs et al's technique

was to introduce a bisection which divides the largest "edge angle" in the domain. This

is repeated recursively on the resulting sub-domains, until sub-domains form triangular

regions, which are the elements of the mesh.

Triquamesh incorporates an automatic nodal placement technique, which generates

nodes automatically along each newly generated bisection edge. It is similar to the

method described in Chapter 4, section 4.5.2. It was not implemented in the new 2D

bisection technique described in the thesis, as it tends to needlessly over refine certain

regions within the domain, see Chapter 4 section 4.6.2.

Quadrilateral element generation, in Triquamesh, is achieved by converting each

triangular element into three quadrilaterals, see Chapter 4 section 4.7.1. This technique

was also dropped from the new bisection technique, described in this thesis, as it tends

to produce quadrilateral elements with poor aspect ratios, See Chapter 4 section 4.7.1.

In the paper by Sluiter[SlH82] Triquamesh was extended to 3D tetrahedral mesh

generation. However, the 3D domains it could handle were limited, since it could not

handle multi-connected regions. The tetrahedral meshes it generated were of poor quality,

since it had no tetrahedral optimization technique. 3D Triquamesh also generates

hexahedral elements, in a similar way to the 2D technique, by converting each

tetrahedron element to 4 hexahedral elements.

The 3D bisection mesh generator, described in this thesis, has overcome many of

the problems which were associated with the 3D Triquamesh, see Chapter 6. The 3D

mesh generation method, described in this thesis, can handle multi-connected regions and

has element optimization routines which improve the quality of the final tetrahedral mesh

(e.g local 3D min-max vertex transformations, see Chapter 7 section 7.5). The new mesh

generator, presented in this thesis, has an advanced nodal placement technique (Chapter

7 section 7.4) which avoids unnecessary over refinement of certain regions of the mesh,

unlike the technique implemented in Triquamesh.

The following methods, Advancing front, Binary mesh operations, Recursive

bisection and Paving methods require a large number of face, plane and line intersection

tests. Three dimensional plane and line intersection testing is notorious for problems with

computer arithmetic errors [For87], and forms a major area of research

[Sar83][Dew88][BoW83]. Therefore, we can conclude, just by probability, that the more

intersection tests carried out, the greater the chances of an incorrect geometry

interrogation. For example, if a comparison is made between an order nlogn method (2D

Recursive mesh bisection) and an order n2 method (2D Advancing front) using similar

algorithms for line, plane and surface intersections. The order n2 method would have a

larger probability of generating an invalid mesh than the order nlogn technique, since the

nlogn method requires fewer geometry tests for a similar sized problem.

Delaunay triangulation has the advantage of being a computationally efficient

algorithm, however the technique does not generate well shaped tetrahedral elements. In

fact, Delaunay triangulation in 3D is the method that is most likely to generate an invalid

grid. Delaunay triangulation suffers not just from computational rounding errors for

sphere point in-out tests, but also the algorithm does not consider any geometry

information or satisfies any min-max angle criterion. Mesh generation by Medial axis

often requires a Delaunay triangulation of the domain to enable the sub-division of the

geometry. Therefore, the Medial axis technique inherits its major problems from the

Delaunay algorithm.

Mesh generation by Recursive domain bisection is the only method that offers

geometry compatibility, together with computational efficiency. The computational

reliability of this algorithm is linked to its computational efficiency, requiring on average

less complex geometry tests than its counter part methods, such as Advancing front and

Paving algorithms.

The reader is referred to Chapter 8 section 8.2, for a further description of some

additional three dimensional meshing techniques.

The next two chapters will cover the initial developments of the bisection

algorithm in the 2D plane. This is then followed with a discussion of extending certain

mesh generation techniques to surfaces.

37

Chapter 4

Chapter 4

2D Mesh Generation.

The objectives of the meshing tool, are to provide a method of generating two

dimensional grids over a planar region. The true objective of the 2D grid generator was

to provide a platform to launch the 3D version. Therefore, it was necessary that the ideas

used were readily extendible to 3D.

The grid generator's requirements were to generate meshes that could be used for

initial computational purposes with limited user control over nodal placement.

Optimization of the mesh was to be left to other adaptive methods such as P, R or H

refinement techniques, see [Thm85], [EOD93], [LoS91], [Ran87] amongst others.

The Geometry input requirements are to model multi-connect domains, with holes,

interfaces and sub-domains, as illustrated in Figure 4.2.1.

Figure 4.2.1 Multi connected region. M1,M2,M3 and M4 are different materials.

This section will outline the fundamental algorithms behind the method of

Recursive bisection, Lewis and Robinson [LeR76], which was initially described in

Chapter 3.

There are usually numerous possibilities for the selections of a bisection line to

divide any arbitrary domain. Lewis and Robinson outline a method that attempts to divide

the domain into two 'circular equally sized halves'.

Not all possible splits are examined in this algorithm, for computational speed,

therefore the search is terminated when a number of solutions are found. The search is

organized so that splits between 'opposite' boundary points are tested first. Each possible

bisection line is given a weight depending on the function IlEb. II is the product of the

distance of the boundary points to the split line, Figure 4.3.1, b is the number of

boundary points and E is the minimum of:

(a) half of the average distance between the boundary points, and

(b) the distance from the split line of the nearest interior points contained within any

rectangle having the split line as a side, see Figure 4.3.2.

Figure 4.3.1 illustrates a domain with a possible

bisecting line that divides the region into T, and T2.

Si is the distance of boundary points in T2 from the

bisecting line.

dj is the distance of boundary points in T, from the

bisecting line.

Here HI = S { S2S3 and n2 = d^, hence IT = nin2. Figure 4.3.1 Calculating
weighting function.

Once a particular bisection of a region is selected, points on the interior, that lie

'close' to the proposed split line are included as part of the new boundaries. Selection

of points is done in such a manner to avoid long thin elements. The method used to sort

points into their respective halves tends to reveal, which points are close to the split line.

Points are chosen to be a member of the interface edge if:

(a) they lie within a rectangle with the split line as a side and,

(b) their distance from the split line is less than E defined above.

Figure 4.3.2 demonstrates which points to include

as part of the new boundary. Points P { and P3 would not

become part of the new boundary whilst P2 would. L!

and L2 form the outer edges of the rectangle.

SpHtLM

Figure 4.3.2 choosing new
boundary points.

If the current region has no possible bisection a cruder approach is adopted. The

binary mesh operation of vertex removal is applied, see Chapter 3 section 3.3, and the

split line is the join of a boundary point to its next but one neighbour. The actual split

made is such that the triangle cut off has its smallest angle maximised. Once the split is

chosen the code then proceeds as in section 4.3.2.

If the region to be split is simply a triangle containing interior points, then the

split is performed by joining two vertices of the triangle to one of the interior points. The

only extra boundary points are those that lie on the split.

There are numerous methods for taking a 2D grid and improving the quality of

elements for computational proposes. These methods include Laplace smoothing [KaE70],

Vertex swapping [Law77], local refinement and de-refinement to name but a few.

Lawson [Law77] showed that planar grids could be transformed to another by a finite set

of operations, this technique is used in most planar Delaunay triangulations. Lewis and

Robinson used a technique of vertex swapping [Law77] to improve the quality of their

grids. The following sections will outline two of the techniques used to improve the grids

generated. The reader should note that the following methods are of order nlogn, and

have been modified to optimize their execution rates.

Vertex swapping [Law77] of elements' faces is a well known technique used in

2D mesh generation to achieve local min-max or max-min angle criterion. This method

is based on the observation that there are two possible triangulations of a convex

quadrilateral. The better triangulation is the one that makes the resulting triangles most

equi-angular, as measured by the size of the smallest angle. For example, Figure 4.4.1

shows two adjacent triangles I and J that have been generated by some initial mesh

generator.

page 43

Figure 4.4.1 Two triangles with alternative vertex shown.

In Figure 4.4.1 the line P2P4 lies within the polygon formed by triangles I and J,

a new split of the quadrilateral P1P2P3P4 is possible, i.e. triangles P 1 P2^4 and P2P3P4 may

be formed. The smallest angle A of the original triangles and B the smallest angle of the

new triangles, may be calculated. No change is made if A > B, but if A < B the new

triangles replace I and J.

In the above method it has to be established which two triangles form a convex

quadrilateral. This section will describe a method that uses the fact that most meshes

have their elements' nodes stored in a fix order (counter clock-wise). This has been found

more reliable than other techniques that are based on testing which side of a line points

lay, like ray testing [Rog85] algorithms or special methods base on the geometry

uniqueness of a triangle [Sar83][Bow83]. For example, in Figure 4.4.2, the alternative

vertex P3Pj lies outside the quadrilateral which forms the triangles shown in Figure 4.4.3

i.e. triangle I is contained in J.
Alternative Vortex

Figure 4.4.2 Figure 4.4.3

The areas of the triangles P!P2P4 and P2P3P4, Figure 4.4.2 are both positive, since

both triangles' nodes are in counter clockwise order. However, the areas of triangles

P!P3P4 and P 1 P2P3 , Figure 4.4.3, have different signs. Triangle T, Figure 4.4.3 has a

negative area because it is contained inside triangle T, therefore its nodes are in

clockwise order, i.e. the quadrilateral P!P2P3P4 is not convex.

Therefore, from the above information we can derive a method of applying a

vertex swapping algorithm to an initial mesh as follows:

i) Repeat

ii) For each triangle,!, in the mesh do

iii) For each edge, EDGE, do

iv) Find neighbouring triangle J, on the edge IEDGE.

v) If triangle I and J form a convert quadrilateral then

vi) Find minimal angle of triangles I and J (MINI)

vii) Find minimum angle of the alternative triangles

	that can be formed with I and J (MIN2).

viii) If MIN2>MIN1 then swap vertex of triangles

viiii) endif

x) end for each edge...

xi) end for each triangle...

xii) until (No more swaps performed or maximum number of passes reached)

The above algorithm is a simplification, the full method includes a stack that stops

neighbouring pairs of triangles being tested more than once. It also stores which triangles

were affected by transformations on each pass of the algorithm, therefore on each

iteration it only examines elements that were swapped previously. Also it was found that

the above algorithm can further be improved by taking each triangle in turn and looking

at all its neighbouring elements first. If the triangle needs to have a vertex swapped we

choose the neighbouring element that forms the set of triangles with the maximum

minimum angle. Figure 4.4.4 shows a triangle with its neighbouring elements and

possible vertices swaps. This dramatically reduces the number of iterations required.

Because of finite precision of the

machine, oscillation of edges between

each pass can occur. Therefore, it was

required to store the minimum angle of

the grid on each pass. If there is only a

small change in this value between

consecutive iterations the routine

terminates.

Figure 4.4.4 Alternative vertex searching.

Laplace's smoothing [KaE70][Rec73][MeP77][Her77] is a simple but effective

method used in 2D and 3D mesh generation to improve the general shape of elements.

This is achived by removing some of the skewness of elements locally [W6r81]. In

Laplace smoothing each node is taken in turn and moved to a new location that is the

average of all the adjacent vertices positions.

Hence node's i location becomes :-

Pj= Z R/n1 j=i J

'R' is the set of size 'n' of all nodes directly connected

to Node i

'Rj' is a positional vector of node j in 'R'

'Pi' is a positional vector of node i

Laplace smoothing is a highly efficient algorithm that is applied iteratively until

there is only a small change in the nodal positions. However, two passes were found to

be sufficient for the majority of the meshes generated by the 2D mesh generator

presented in this Chapter.

It was found that the above two algorithms 4.4.1 and 4.4.2 are often enough to

convert most grids with badly shaped elements to reasonable quality. They have both

been shown to be of order n [LeR76] and add a very small overhead to any meshing

routine.

The initial aspirations were as follows:

(a) Use a superior bisection algorithm.

(b) To remove the requirement of adding a cut line to multiply connected regions.

(c) To enable the automatic generation of grid points.

(d) To generate a code that is so robust that could operate in single precision.

The above requirements were to enable the extension of the procedure to three

dimensions, and if the code could work in single precision in 2D, then the 3D version

would have a greater chance of working robustly on complex geometries.

The improved bisection algorithm is illustrated in Figure 4.5.1

Figure 4.5.1 Advance bisection routine.

The method of choosing the bisection line is the same as described in section

4.3.2. Once a cut line is selected the boundary segments are sorted to their respective

sides, Figure 4.5.2a, segments are the edges contained between two vertices. These edges

form two sets of boundary points, any boundary point that is contained within both

regions is a boundary interface node. The list of boundary interface nodes, are then sorted

into sequence along the interface, see Figure 4.5.2b. If the number of boundary interface

nodes is a multiple of two, the nodes can be joined in the following order to generate the

new edges, 1 to 2, 3 to 4 etc. However, if the number of boundary interface nodes is

odd, the interface is complex and this bisection line is rejected. The generation of a new

boundary is illustrated in Figures 4.5.2b and 4.5.2c.

47

1

1

(C)

Figure 4.5.2 Bisection of a multiply connected region.

The above technique has removed the requirement for the addition of a cut line

for multiply connected regions, described in section 4.4.3, see Figure 4.5.2. However,

this method does not consider any internal nodes, because of the difficulty of sorting

nodes into their respective regions. Nevertheless the algorithm is more reliable and fails

less often than the original method.

The requirement for the binary mesh operation of edge removal was also found

necessary. The region in Figure 4.5.3a was found to fail on both the mesh bisection and

vertex removal [section 4.3.4] algorithms. Edge removal is the selection of one edge and

a point, which may be internal to the domain or on an opposite boundary.

Figure 4.5.3b shows an element (j) generated by edge removal.

Figure 4.5.3 Edge removal.

The above two algorithms were implemented on a Sun Spare 4 using single

precision arithmetic in addition to other minor changes to the code. A simplistic data

format was used, which required the input of boundary nodes and connectivity.

The new bisection algorithm could not handle internal nodes. Therefore the first

solution was to generate the boundary constraint mesh, which is a grid generated from

just the boundary nodes. Then each internal node is taken in turn and inserted into the

mesh, using techniques derived from algorithms developed for planar Delaunay

triangulation [ScS86][SlH84][CeS85]. This algorithm is very simple and described as

follows:

(1) Take an internal node i.

(2) Search the mesh for triangle J which contains the node i.

(3) Join this node up to the three vertices of element / to form three new

triangles.

The above steps are simplified. In step (2) a method of element walking [S1H84]

is utilized to find the triangle J which contains the node i, which is an order nlog(n)

technique. It is also possible for the node /, in step (2), to co-inside with an edge or node

of an element, and this is also taken account of in the full algorithm.

A method of generating nodes simultaneously was then implemented, based on

the technique described by Connor [Con89]. The user provides the boundary nodes and

these guide the mesh generator's nodal placement algorithm. Therefore, if there is a fine

concentration of nodes around an area of the boundary, the internal mesh would reflect

this. Figure 4.5.4 illustrates the rudiments of the nodal placement algorithm. Figure

4.5.4A shows a bisection line and Figure 4.5.4B shows newly generated nodes along the

interface.

V V

Figure 4.5.4 : Simple nodal insertion routine.

When an interface is generated the boundary interface nodes are given a nodal

spacing. This spacing is calculated from the average distance of adjacent nodes. Nodes

are then generated along an interface element, the spacing of these nodes are interpolated

from the two nodal spacing values assigned to the end nodes. For example, if (j^ and fy

are the nodal spacing at two adjacent interface nodes and let t be the parameter location

between nodes i,j where t>0 and t<l. The nodal spacing at position t is then given by

^j+t^j-c));). However, before a new node is inserted into a grid, an additional check is

carried out to ensure that this point is not too close to other nodes in its subregion. This

occurs when the region is highly re-entrant, see Figure 4.5.4.

To illustrate the robustness of the initial code and its ability to cope with multiply

connected domains, the geometry in Figure 4.5.5 was used. The completed mesh is

illustrated in Figure 4.5.6; note that no internal points have been added.

Chapter 4

page SI

Figure 4.5.7 shows the British Isles grid generated using the nodal placement

algorithm, section 4.5.2, and Figure 4.5.8 shows the mesh after optimization.

Figure 4.5.7 : British Isle's mesh before optimization.

Figure 4.5.8: British Isle's mesh after optimization.

52

From the initial work carried out, it was soon established that a far more

sophisticated nodal placement algorithm was required, with improved geometry input

specifications.

It was found, for bench mark application, that a specific number of elements was

required rather than a nodal spacing. There is a need to cope with multi-materials, and

the following geometry input requirements were identified.

(a) The number of elements the mesh generator should generate for this problem.

(b) A list of boundary nodes of the domain/domains.

(c) The number of polygon regions in the model.

(d) Number of boundary nodes in each polygon domain.

(e) List of boundary nodes which form these regions

Two simple examples of typical data input follow:-

square with hole, adjacent to another square

SQUARE WITH HOLE ADJACENT TO ANOTHER SQUARE
50
103
44-4
0.00 0.00
1.0 0.0
1.0 1.0
0.0 1.0
2.0 0.0
2.0 1.0
0.25 0.25
0.75 0.25
0.75 0.75
0.25 0.75
1234
2563
7 89 10

 Number of elements required.
 Number of nodes, number of polygons.
 Number of nodes in each domain, negative if hole polygon.
 list of 10 nodes

-- Polygon outer Rl.
~ Polygon node list outer R2.
 Inner hole polygon of Rl.

53

2 : square with sub-domain inside, adjacent to another square.

SQUARE WITH SUB-DOMAIN ADJACENT TO ANOTHER SQUARE
50
103
444
0.00 0.00
1.0 0.0
1.0 1.0
0.0 1.0
2.0 0.0
2.0 1.0
0.25 0.25
0.75 0.25
0.75 0.75
0.25 0.75
1234
2563
789 10

 Number of elements required.
~ Number of nodes, number of polygons.
 Number of nodes in each domain.

 list of 10 nodes

 Polygon outer Rl.
~ Polygon node list outer R2.
 Inner polygon outer R3.

The above data format only handles linear elements, curved lines have to be

broken down into several line segments. However, the above format handles most cases

which have been provided by other co-workers [Cho93][Fry94] at the Centre for

Numerical Modelling and Process Analysis, University of Greenwich.

The new mesh generator identifies which polygons are internal and their

associated external counterparts. It also reorders the polygon list into anti-clockwise order

so the domain is always to the left as you travel round the boundary. The identification

of interface elements is also found so nodes generated on these elements' faces coincide

with both domains. However the boundary for sub-region R3, in example 2, is stored as

two lists one in anti-clockwise order and the other, clockwise with all nodes marked as

interface points.

The previous nodal placement algorithm tended to needlessly over refine certain

regions, also a method of generating grids where a certain number of elements is

specified was required. It was found that if a domain was broken down into several

simpler convex regions, these could be used to calculate the total area [Mid87] of the

domain. Once the total area is calculated a measure of the nodal spacing can be estimated

as follows:

Area of element = area of domain divided by number of required elements

Hence:

Nodal spacing = square root of four times area of element squared divided by root
three.

This equation calculates the length of an equilateral triangle's side.

Before the generation of nodes the region is first divided up into convex polygons.
The dividing of regions into convex parts is a well researched area with a large number

of papers published. The method which was selected is by Chazelle [Cha84] whose
algorithm has a linear computational order, see also [FeP75],[Sch78],[JoS86],[Lyu63]
[GiA81],[BaD92j.

It is vital that the selection of separators does not generate small angles and
narrow regions. It is also required that any newly generated nodes do not lie too close
to adjacent points. Let R be a simply connected region with vertices in counterclockwise
order. We then select a vertex v0 such that its interior angle is larger than 180 degrees.
An inner cone is defined as in Figure 4.6.1 which defines a section 3R of R. From 3R
it is found the subset VS visible section. In Figure 4.6.1 A VS =N0,N1 ,V5,V6,N2 where
NO,N! and N2 are used to define end points of visible polygons. Therefore, a point on VS
connected to v0 is a separator which resolves the reflex angle at v0.

V-

Figure 4.6.1 : (A) Full inner cone,(B) Inner cone restricted by vertex V2

55

cone

Regression of cpu on elements

P. o
6 -

3 -

0 -

15
(X 10000)

No. Elements

272

308

436

922

1508

4136

6160

12374

37224

45960

65978

88462

103582

122968

148814

CPU Time

0.20

0.21

0.25

0.28

0.30

0.70

0.77

2.48

5.30

5.83

7.43

9.07

10.12

11.5

13.18

Tri

8

32

50

98

162

200

242

288

392

450

512

578

648

722

800

882

1058

1250

1458

1682

Parametric Delaunay

Max ang

1.5708

2.49978

2.62658

2.64741

2.65236

2.64807

2.65338

2.6543

2.65678

2.6543

2.65762

2.65608

2.65774

2.65673

2.65947

2.6568

2.65656

2.65739

2.65842

2.659000

Min ang

0.67474

0.25173

0.21078

0.20684

0.20632

0.20453

0.20661

0.20399

0.20413

0.20761

0.20452

0.2074

0.20499

0.20654

0.20547

0.20612

0.20596

0.20596

0.20604

0.20619

Sur Err

0.19267

0.04913

0.03085

0.01597

0.00972

0.00793

0.00653

0.00551

0.00405

0.00352

0.0031

0.00274

0.00245

0.0022

0.00199

0.0018

0.0015

0.00127

0.00109

0.00094

Surface Delaunay

Max Ang

1.5708

1.8677

1.89385

1.93021

1.95157

1.96856

1.96375

1.96527

1.96439

1.97563

1.9799

1.99139

1.99912

2.00387

2.00775

2.01541

2.02436

2.03116

2.03802

2.0423

Min ang

0.67474

0.54352

0.47648

0.41602

0.36733

0.35228

0.34101

0.33231

0.31984

0.31524

0.31139

0.30812

0.30533

0.3029

0.30078

0.29892

0.29578

0.29326

0.29118

0.28944

Sur Err

0.19267

0.04849

0.03066

0.01586

0.00964

0.00786

0.00647

0.00547

0.00402

0.00349

0.00308

0.00272

0.00243

0.00218

0.00197

0.00178

0.00149

0.00126

0.00108

0.00094

240 -

2.00

1 00

1.20

080

0.40 -

0.00
0.00 ZOOM 400 00 600.00 800.00 1000.00 1200.00 1400 00 1600 00 1800.00

Number of elerntnt*
D Maundy max ADdounqy mln 6 Surface Detaunay max X Surface Dotaunoy mln

0.00 200.00 400.00 BOO.OO BOO.OO 1000.00 12OOOO 14OO 00 1000 00 100000
Number of dement*

D Error difference

Chapter 5

Regression of cpu tine on triangles

8

o. 0 4

ZZZZZ/ZZZ7ZZZ

4JOQ

cube with a cavity in, adjacent to another cube.
17 20 3 26 -- No. faces, No. nodes,

No. of polyhedra regions, No. of required elements.

-- nodes X Y Z.

.»...... /:....->

-- polyhedra faces.
-- number nodes in face, node list.

1
6

12

2
7

13

3
8

14

-- polyhedral domains.
4 5 11 -- number of faces, list of faces.
9 10 11

15 16 17 -- negative number of faces indicate a
polyhedral region

cavity

page 116

Re-entry box
12 16 1 26 -- No. of faces, No. of nodes

No. of required elements
 Nodes X,Y,Z

No. of Polyhedral domains,

0
1
1
0
0
0
1
1
1
0
0
0
0
0
0
0
0

.

.00000

.00000

.

.

,

.00000

.00000

.00000

.250000

.750000

.750000

.250000

.250000

.750000

.750000

.250000

0
0
1
1
0
1
1
1
0
0
0
0
0
0
0
0
0

.
^

.00000

.00000

.

.00000

.00000

.00000

.250000

.250000

.750000

.750000

.250000

.250000

.750000

.750000

0
0
0
0
1
1
0
1
1
0
0
0
0
1
1
1
1

.

.
f

t

.00000

.00000

.00000

.00000

.250000

.250000

.250000

.250000

.00000

.00000

.00000

.00000

4
4
4
4
4
4
4
4
4
4
4
4

1
1
3
2
1
5

9
11
10
12
13
16

4
5
4
3
2
6
10
12
11
16
14
13

3
6
6
7
8
7
11
16
15
13
10
14

2
4
7
8
5
8
12
15
14

9
9

15

-- polyhedra faces.
number nodes in face, node list.

12 123456789 10
-- Polyhedral domain face list

11 12 -- number of faces, list of faces.

Chapter 7

Predecessor
Vertex

Me Ighbour

Edge 2

Globa
Node

Number

Successor
Vertex

NeIghbour
Edge 1

Edge
Ang I e

/ *

5000 6000 7000 9000 9000 10000
Number of elements

u
a

£

&

-\

D

3

Geometry
Preparation

Convex
Domain

olloving
bisection

Nodal
Placement

2D Convex
nodal
placement

2D Node
Insertion

Node
Generator

3D Convex
nodal
placement

3D Node
Insertion

X

ecursive
bisection

Surface

3D
'Delaunay

ID

ecursive
isection

I
Binary
aesh.
operations

Optimization

2D Vertex
wapping

2D Laplace
smoothing

surface
Vertex
Swapping -P

^
O

Surface
Laplace
smoothing

D Vertex
vapping

D Laplace
moothing

ft>

aS"

