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____________________ ________Abstract

Abstract.

The research reported in this dissertation was undertaken to investigate efficient 

computational methods of automatically generating three dimensional unstructured 
tetrahedral meshes.

The work on two dimensional triangular unstructured grid generation by Lewis 

and Robinson [LeR76] is first examined, in which a recursive bisection technique of 

computational order nlog(n) was implemented. This technique is then extended to 

incorporate new methods of geometry input and the automatic handling of multi- 

connected regions. The method of two dimensional recursive mesh bisection is then 

further modified to incorporate an improved strategy for the selection of bisections. This 

enables an automatic nodal placement technique to be implemented in conjunction with 

the grid generator. The dissertation then investigates methods of generating triangular 

grids over parametric surfaces. This includes a new definition of surface Delaunay 

triangulation with the extension of grid improvement techniques to surfaces.

Based on the assumption that all surface grids of objects form polyhedral 
domains, a three dimensional mesh generation technique is derived. This technique is a 
hybrid of recursive domain bisection coupled with a min-max heuristic triangulation 

algorithm. This is done to achieve a computationlly efficient and reliable algorithm 
coupled with a fast nodal placement technique. The algorithm generates three dimensional 

unstructured tetrahedral grids over polyhedral domains with multi-connected regions in 

an average computational order of less than nlog(n).
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This dissertation is divided into three parts, in which this section will give an 

introduction to the aims and aspirations of the research. This section will also include an 

overview of current techniques with a discussion of related topics.



Chapter 1

Chapter 1 

Introduction.



Advances in engineering software, fuelled by hardware improvements, have led 

to an increased desire to model more complex geometries. This has resulted in a bottle 

neck of generating good quality three dimensional unstructured meshes for the analysis 

of these domains using methods based upon Control-Volume and Finite Element 

procedures.

Current 2D mesh generation methods tend to rely on interaction between the user 

and the mesh generating software to produce well structured meshes; this is much more 

difficult, and sometimes impossible with 3D mesh generation since there are still large 

visualization problems to overcome. In Chapter 2 the problem of visualization of three 

dimensional grids is discussed, together with how to evaluate grid quality before it is 

utilized for any further computational purposes.

There have been several methods applied to the problem of generating three 

dimensional meshes for complex geometries, such as the Advancing front [BoP91][Lo85], 

Octree [ScS90] and Delaunay [CFF85] triangulation techniques. These methods tend to 

be CPU intensive and often require large amounts of user interaction. A brief overview 

of these techniques together with examples, are covered in Chapter 3.

The aim of the thesis is to present a computationally efficient, reliable and good 

quality three dimensional mesh generation program using techniques that have an average 

computational order of nlog(n). In Chapter 4 the method of "recursive domain bisection" 

mesh generation by Lewis and Robinson [LeR76] is outlined along with the modifications 

and extensions that have been applied.

Chapter 5 looks at the problem of generating grids over surfaces and outlines how 

2D techniques can be extended. This chapter includes a new definition of parametric 

surface Delaunay triangulation and various grid improvement techniques for surface 

meshes.



Chapter 6, describes the initial attempt at recursive three dimensional mesh 

generation and how these ideas have been modified to form the current fully working 

technique. The following Chapter 7, describes the fundamental algorithms used in 

conjunction with the mesh generator, presented in Chapter 6. A new direct boundary 

constrained local min-max meshing algorithm, that is based on the Delaunay triangulation 

algorithm by Joe [Joe89], is also described.

In Chapter 8, the thesis then presents some example geometries and grids, with 

CPU times and various mesh quality measures. Overall conclusions and possible 

extensions to hexahedral element generation are presented in Chapter 9.

The reduction of a model into simpler parts is fundamental to mesh generation. 

This is reflected in many methods, such as Octree [ScS90] and Medial axis [GUP91], 

which utilize a problem reduction technique to sub-divide the geometry into simpler 

regions, to enable the generation of the final mesh.

Problem reduction techniques, such as the Quicksort [Hoa61], which apply 

recursive methods to reduce the data space to sufficiently small segments so that a simple 

algorithm may be applied, have traditionally been more computationally efficient than 

alternative algorithms. The Quicksort is an order nlog(n) method [Hoa62], where the 

problem of sorting a vector is reduced to sorting shorter and shorter vectors, until vectors 

of length two are reached. These can then be sorted by one comparison and a conditional 

interchange. Lewis and Robinson [LeR76] extended this idea to two dimensional 

unstructured triangular grid generation, which resulted in a computationally efficient 

algorithm of order nlog(n). This method of mesh generation, using their technique, forms 

the fundamental idea behind this research and is briefly outlined here. A fuller description 

is given in Chapter 3.



The method of Lewis and Robinson is a two dimensional technique, see Chapter 

3 section 3.7. Since this thesis is primarily concerned with 3D geometry, the basic 

approach is depicted in Figure 1.2.1 with a three dimensional domain. The basic 

philosophy behind this technique for meshing a region R, see Figure 1.2. la, is as follows:

(a) Splitting R into two sub-regions^ and R2, by choosing a plane of best split.

A new boundary is generated across the interface of the regions to create two new 

closed independent domains, Figure 1.2.1b.

(Note this initial cut has a zigzag appearance as the splitting routine follows a 

path through the surface mesh closest to the cutting plane.)

(b) Now solve the triangulation problem for Rt and R2

Step a and b are applied recursively until tetrahedral domains are formed, as in 

Figure 1.2.1c which contains no interior points, these being the elements of the mesh. 

Tetrahedral elements which contain internal points and sub-region for which no valid 

bisection exists, are dealt with by special algorithms. When all the sub-regions are 

resolved into tetrahedral elements the mesh is complete, Figure 1.2. Id.



(a) Initial Domain

(b) Then apply first bi-section 

on domain.

(c) Then keep on applying 

bisections to domain.

(d) Until tetrahedra are formed. 

Hence the final tetrahedral 

unstructured mesh is 

generated.



Most of the algorithms in this thesis have an order of execution that fall into the 

following classes:

constant : Order 1 
log log : O(lg Ig n)

linear : O(n) 
n log n : O(n Ig n) 

quadratic : O(n2) 
cubic : O(n3) 

exponential : O(2n)

The parameter n is a value that characterizes the size of the input to a given 

algorithm, and if we say the algorithm runs to completion in O(f(n)) steps, we mean that 

the actual number of steps executed is no more than a constant times f(n), for sufficiently 

large «. It is important to gain an intuitive feeling for these classes in order to have a 

comparative framework in which to understand performance properties of algorithms. 

Figure 1.3.1 shows the above functions plotted against CPU.

-i

D 
0_ 
O

4

Figure 1.3.1: functions of n operations against CPU time. Graphs are in ascending
order with O(lg Ig n) at front and O(n3) at back as in legend.



As can be deduced from the Figure 1.3.1, for small problems the order of the 

algorithm is not important, but as the size of a problem increases the time difference 

between routines can become significant. If we had a problem that required over a 

million operations, a function of even O(n2) would take over 7000 times longer than an 

O(n Ig n) process. Therefore, if the running time of an algorithm is characterized by an 

exponential function, we cannot expect to solve practical problems of very large size. In 

3D mesh generation even very modest problems are in the region of over a thousand 

nodes, so an algorithm that is anywhere near exponential is not practical.

A major problem is that most algorithms often do not fall precisely into anyone 

class. The order of most routines often depends to some degree on the form in which the 

data is presented to them or the complexity of the particular problem they are applied to. 

A common approach is to categorise an algorithm by its worst case and/or average 

situation.

If for example we compare two routines the Quicksort [Hoa62] and the Heapsort 

[Knu73], both these routines are reported to be of order n log(n) [ThoSO]. However, the 

Quicksort is in fact only on average O(n log n) and is O(n2) steps in the worst case 

where the initial distribution of the data is extremely random. The heapsort, on the other 

hand, is a routine that has the advantage of being an O(n log n) sorting algorithm, whose 

worst case performance is fairly close to its average performance [ThoSO]. Therefore, it 

is often not just sufficient to quote the order of an algorithm, but also a standard 

deviation to address the above issues to some extent.

Throughout this thesis, many CPU times will be presented in a graphical format, 

and also may be accompanied with statistical analysis to address the above issues, at 

least, to some extent.



Chapter 2 

3D Geometry, Visualization

and 

Element Shape Measures

in

Mesh Generation



The initial stage of an analysis of any model is the generation of the geometry. 

In three dimensional geometry solid modelling, there are many different ways of 

representing objects. The geometry representation of a model has a great effect on the 

types and form of geometry operations that can be applied, and therefore has an effect 

on the mesh generator. The mesh generator cannot be designed independent of the object 

definition and the topic is, therefore, discussed in this section.

Many geometry representation techniques have emerged due to the difficulties of 

perceiving a real physical object within the constraints of the virtual world of the 

computer. However, recently two main approaches have dominated, namely, constructive 

and surface representations. 

All constructive models consider solids as point sets of E3 . Their basic idea is to 

start from some sufficiently simple point sets that can be represented directly, and model 

other point sets in terms of very general combinations of the simple sets.

The main technique in this class is constructive solid geometry (CSG) where 

parameterized instances of solid primitives

and boolean 

implemented.

set operations are

Figure 2.1.1 illustrates an engine 

valve generated using boolean operations 

applied to a set of primitives.

CSG modelling packages are often 

a useful and fast way of generating many 

machined parts. However, the user has no 

direct access to individual half-spaces 

(graphical primitives) and this can restrict 

the designer. An example is in aircraft 

design where curved surfaces on wings 

can be difficult to model.

Union
 " /

Cylinder

Intersection ^ \\. Subtract

Cylinder Sphere
Torus

Figure 2.1.1 Binary tree of CSG model.



The surface based characterization of solids, looks at the boundary of a solid 

object. The boundary is considered to consist of a collection of faces that are glued 

together so that they form a complete, closing skin around an object. Figure 2.1.2A 

illustrates a box object represented by a collection of polygon faces, Figure 2.1.2B shows 

the same box with its faces separated.

Figure 2.1.2 Boundary model of a box.

Many boundary modelling packages also encompass curved surfaces. These 

curved surfaces are often parametric patches that are manifolded together. Parametric 

patches include bilinear surfaces [Dew88], coons patches [Gas83], cubic patches 

[Dew88], Bezier surfaces [BaB83] etc, which can be defined using a number of control 

points. Recently NURBS [Pie91] (Non-Uniform Rational B-Spline) surfaces have made 

an impact in this area and are used widely in the aircraft and car industry.

A large number of objects can be represented using a boundary model technique, 

but these models are often difficult to generate. To assist in the generation of these 

models, research has been invested in new curved surface representations and a number 

of CAD packages have been developed. Since many objects can be quickly represented 

using CSG techniques, many modern boundary modelling packages incorporate some 

CSG features and provide predefined surface primitives such as sphere, torus etc. This 

has resulted in many hybrid modelling tools.



The type of model representation used affects the type and efficiency of 

operations carried out on the domain. This in turn affects the reliability, speed and type 

of mesh generation technique that can be applied to the region. A surface mesh is a 

boundary model of a domain. Therefore, boundary surface representations of models 

make a natural choice as the starting point of grid generation and many CSG models can 

generate output in this format.

2.2 

Visualization of geometry on the two dimensional device of a cathode ray tube 

provides its own problems. Complex models that are highly re-entrant with many cavities 

and sub-domains, such as those found in the casting industry, are difficult to perceive on 

the computer screen, often requiring many different viewing angles of the model to be 

displayed simultaneously. Frequently a number of slices through the domain are required 

to show any hidden features and cavities. This problem is particularly acute in the 

generation of geometry, in which the model has to be manipulated into a particular angle 

and location before a new facet can be generated manually by the designer. Many other 

fields, such as contouring [Sab85], have suffered from the problem of visualization.

A three dimensional mesh, especially an unstructured mesh, is a complex 

geometry with many features hidden below the surface skin of the domain. A number of 

techniques have been applied to try and display the hidden detail of a mesh. Such 

techniques include domain slicing [Bur90] and element shrinking [Law91][TaA91], In 

domain slicing a number of planes are passed through the domain to try and expose some 

of the internal mesh features. However, this can present a false picture, depending on 

how individual elements are bisected by the cutting plane, giving an impression of 

regions of the mesh being of finer or coarser density than they really are. The method 

of element shrinking reduces all the elements' size by a given amount c, but keeping their 

centroids fixed. This results in small gaps being created between the elements. Both 

methods do little more than prove the existence of a grid, they provide no information 

on element quality and whether elements intersect.



A number of highly complex CAD and visualization packages have to be used in 

the course of grid generation. Visualization of complex models has proven to be such a 

difficulty that a new generation of packages have been developed to try and address some 

of the above problems. The next two pages depict illustrations from apE [Bro92] and 

AVS [Bro92], which are advanced visualization packages used throughout this thesis for 

the generation of many of the illustrations. They are pipe line systems in which a user 

builds up a network of operations that are required for a particular visualization task.

Figure 2.2.1: apE (Animation Production Environment) visualization package.



Figure 2.2.2: AVS (Advance Visualization System) package.



(CSG).

The geometry input format for the new bisection mesh generator is polyhedral 

domains; the reason for this is discussed in Chapter 6. CSG Modelling packages are often 

a useful and fast way of generating many machined parts, and they provide a convenient 

method of output in the form of polyhedral surfaces. The drawback of using these 

polyhedral domains generated in this fashion is that the polyhedral faces are often 

degenerate and elongated. Sometimes the polyhedral faces can be of a magnitude that is 

smaller than the element size required for the mesh. Even the order in which primitives 

are combined have an effect on the form of polyhedral domains generated. Below are 

three identical examples of a pipe like component generated by different combinations 

of CSG operations and the resulting polyhedral domains generated.

Figure 2.3.1 : Three identical pipes with different polyhedral definitions; this is 
especially prominent around top flange of pipes.

The figures generated in the above diagram were displayed without internal lines, 

these are extra edges added to the domain by the CSG model to ensure that all faces are 

valid planar polygon surfaces. In this particular modeller the polygon elements had to be 

convex, since this speeds up most ray tracing and hidden line removal algorithms. Since 

this simplification of the surfaces is for applications where the quality of the elements 

is not essential, this often results in very poor surface elements (Figure 2.3.2).

This problem has often been encountered during this research. As a consequence, 

several algorithms have been derived, which take a polyhedral domain and by joining 

faces and swapping vertices improve the initial surface elements. This has worked to



some degree, but it is often almost impossible to remove all poorly defined elements.

The problem with most CSG modellers is that the 

polyhedral domain sub-division is done for speed, rather 

than for the quality of the bisected surfaces. The algorithm 

used within these CSG packages, from the experiences 

gained during this research, for polyhedral convex 

subdivision are very similar to the algorithms used within 

the mesh generation code. However, the grid generation 

code is more selective about which bisection edge is usec 

to divide the domain. Therefore, for most CSG packages
^Figure 2.3.2:Typicalonly a small modification is necessary to generate , , , . ' '.
polyhedral domain.

reasonable surface elements.

CSG software tools are often geared towards object visualization, therefore they 

often incorporate utilities to aid in this task, such as tools to guide the resolution of 

curved surfaces. The resolution parameter, for example, on a cylinder would increase/ 

decrease the number of polygons used to represent the outer perimeter, just as in the case 

of a circle, the more straight lines used to represent it, the better the definition. This 

resolution factor can, in effect, help to guide the meshing algorithm nodal placement. 

Hence, if the designer had requested a higher definition on a surface they would probably 

require a denser mesh over that region, and vice-versa for a coarser resolution factor.

The conclusion which can be drawn, from CSG geometry modellers is that they 

tend to provide the necessary information for generating a three dimensional grid, but the 

quality of the output often leaves a lot to be desired and generally requires some 

manipulation. However, these problems could be overcome by a small modification to 

the CAD package, to gear it more towards grid generation rather than just visualization.



CSG modellers have intrigued Software Engineers to such an extent, that there 

is currently work being undertaken which integrates CSG directly with meshing routines 

[Cox93]. This method which is called Domain Composition builds the mesh 

simultaneously as the model is being created. Each primitive object has a predefined 3D 

grid. For example, Figure 2.3.3, if we have a region D, which was formed by a Boolean 

operation on the domain A and B. The mesh over the region D, is formed by taking the 

original grids of A and B, and then applying the same Boolean operation with the use of 

grid interpolations, where necessary. However, in Lee's thesis [LeeSl], he argues that this 

technique is not a practical method for the generation of three dimensional meshes.

Figure 2.3.3 : Domain Composition



One of the main problems in tetrahedral mesh generation is how to measure the 

quality of a mesh, since poorly shaped tetrahedra may cause numerical difficulties in the 

under lying numerical technique, e.g finite element analysis. Papers on tetrahedral mesh 

generation have used various quantities for measuring the shape or quality of tetrahedra. 

In this section two approaches will be described. 

In 2D triangulation mesh generation, the minimum interior angle of a triangulation 

is a commonly used triangle shape measure. A natural extension of the minimum interior 

angle to three dimensions is the minimum solid angle 0min.

Unlike a triangle a tetrahedron has many different angle measurements : 

12 planar angles (three in each of the 4 faces), 

6 dihedral angles (one at each of the 6 edges), 

4 solid or dihedral angles at the vertices.

Figure 2.4.1 : tetrahedron

The solid angle fy at v, is the surface area formed by projecting each point on the 

face not containing the vertex v, onto the surface of the unit sphere with v, at its centre. 

However, for a tetrahedron the solid angle at D, Figure 2.4.1 can be computed as oc+p+y- 

71 [BeySl], where oc,p and y are the dihedral angles at edges AD, DB and CD 

respectively.



It can be shown [Gad52] thatO< J^_ 0,. < 2n . Therefore a very large solid angle,

near 27C, for a tetrahedron implies that there also exists a small solid angle, and this is 

the reason why we only consider the minimum solid angle. Also if the tetrahedron is 

regular, all face angles are rc/3 and all solid angles are the same.

An alternative way of measuring mesh quality is to use a tetrahedral goodness 

function or Gamma value [ShL91]:

Where :

\ is the element's normalized shape parameter for tetrahedron i. 

F is the volume of tetrahedron i.

is the surface area of tetrahedron i.

is a normalization factor[Sh!91] (374.123) which yields ̂  =1 for an

equilateral tetrahedron.

The above equation returns a value of 1 if the tetrahedron is equilateral. As the 

tetrahedron deviates from the ideal shape so does the value of K-t , the larger the deviation 

of \ from 1 the poorer the element quality. A \ value above 0.8 is considered to 

represent an extremely good tetrahedral element [ShL91].

Both the tetrahedral "solid angle" and "goodness function" offer practical 

measurements for measuring mesh quality. These measures are only a guide, and the only 

true mesh quality test is to use the grid for analysis of the domain. However, they do 

offer a quick quality measure and a means of comparing different grids over the same 

geometry model. Throughout this thesis the results from the grid generator will be 

presented using both the above tetrahedral shape measures.



2.5 

The problem of representing complex three dimensional models has given rise to 

a number of alternative techniques for the representation of geometry. The technique of 

mesh generation must be considered in conjunction with various geometry 

representations. A number of software tools have been developed for the generation and 

representation of three dimensional geometries, however they are often not designed for 

providing suitable geometry models for computational analysis.

Many problems exist in measuring the quality of three dimensional unstructured 

grids, and visual techniques cannot practically be applied. Therefore, several 

computational methods of measuring mesh quality do exist, of which two are described 

in this Chapter. Opinion is still divided over which measure gives the best indication of 

mesh quality, and research is being undertaken [LiJ93] to establish which technique is 

best. However, these techniques can only provide an indication to the true mesh quality 

and a means of comparing different grids over identical geometry.



Chapter 3

Chapter 3

Current Major Mesh Generation

Techniques.
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Many techniques have already been applied to the problem of generating 

unstructured grids over three dimensional geometry. This chapter will give a brief 

overview of some of the major methods that have been examined during this research. 

This chapter is not intended to be a complete overview of all current mesh generation, 

but rather a subset of the techniques that have, with some degree of success, been applied 

to 3D mesh generation and to some extent influenced the research described here. This 

section will attempt to give the reader an idea of the philosophy behind these methods, 

how they have been applied, together with their advantages and disadvantages.

Two techniques are covered in more depth, Delaunay [ScS90][ScS88][Joe86] 

[CFF85][Law72] and Binary mesh operators [ShL91], since these methods have been 

implemented in conjunction with the new bisection method, see Chapter 6. Delaunay is 

of particular interest, as it is the technique that offers the best computational order of the 

current mesh generation algorithms and forms part of many hybrid mesh generation 

codes.

The chapter is completed with a description of mesh generation by Recursive 

domain bisection [LeR76]. It is then concluded with a discussion of the problems of the 

these techniques and discusses why mesh generation by recursive bisection offers a 

practical solution.

Key Words: Advancing Front [BoP91][PPF85][Lo85], Delaunay triangulation [ScS90] 

[ScS88][Joe86][CFF85][Law72], Binary mesh operators [SW91], Paving [BsC91], 

Medial Axis [TPA93][TaA91][GuP91], Recursive domain bisection [LeR76].
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The advancing front method has been extensively developed by workers such as 
Lo [Lo85] and Peraire [PPF88].

Figure 3.2.1 : Advancing front technique in 2D from initial domain A to final mesh F.

The basic underlying concept of the advancing front [Lo85][LPG88] method is 

illustrated in Figure 3.2.1 for the generation of a uniform size triangular mesh over a two 

dimensional domain. The boundary of the domain to be meshed is first discretized. Points 

are placed on the boundary, and contiguous points are joined by straight line segments 

and assembled to form the initial generation front. At this stage the triangulation loop 

begins. A side from the front is chosen and a triangle is generated that will have this 

selected side as one edge. In generating this new triangle an interior node may be created 

or an existing node in the front may be chosen. At this stage it is necessary to ensure that 

the element generated does not intersect with any existing side in the front. After 

generating the new element the front is conveniently updated in such a way that it always 

contains the sides that are available to form a new triangle. The generation is completed 

when no sides are left in the front.

This method has progressed over the years from a very high order method, above 

n2, to around order nlogn, but still remains one of the most CPU expensive methods 

because of the large number of surface intersections that have to be tested for.
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______

Mesh generation by binary operations [ShL91][Wei88][Lo88][W6r83], is the 

implementation of a limited set of geometry operations that are sufficient to generate a 

complete grid in 2D or 3D. In 3D there are three basic operations that can be used to 

generate a coarse grid: face removal, edge removal and vertex removal. 

Face removal: Carves a tetrahedron from the object being triangulated by the 

introduction of a new vertex in the interior of the domain.

Figure 3.3.1: Face removal

Edge removal: Carves a tetrahedron from the domain by selecting two adjacent non- 

planar triangular faces and generates a new edge inside the domain.

Figure 3.3.2: Edge Removal.



Vertex removal: Carves a tetrahedron from the domain by removing one complex vertex 

and all its associated edges. (Removes three adjacent faces from the domain)

Figure 3.3.3: Vertex Removal.

The method by Shephard and Lo [ShL91] applies these operations to generate 

coarse grids that can be refined later. The algorithm gives each operator a priority based 

on its ability to reduce the geometric complexity of the domain. The measure of the 

geometric complexity is the number of topological entities in the geometric model and 

their adjacencies. Therefore, the routine attempts to use vertex removal first on the 

current geometry. However, if this cannot be applied, it then tries edge removal. 

Subsequently if an edge removal fails, face removal is used, which is the only binary 

operation that can be applied to any geometry. These set of binary operations are coupled 

with an element shape control function in a bid to improve the quality of the final mesh.

Mesh generation by binary operations is strongly related to the advancing front 

technique with similar draw backs in computational order. It could be argued that these 

methods are identical except in the priority of applying the mesh operations, i.e 

advancing front applies face removal to a domain first and if this does not generate any 

acceptable elements the other binary operations are attempted.
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Below is a list of the types of procedures involved in each binary operation.

Face removal:

Choose a polyhedral face. 

Generate a point inside the domain.

Point is inward and normal to face. 

Test to see if the line from the centre of face to the point, does not intersect any

other faces in the domain (may adjust position of point). 

Test to see if lines from the nodes of face can be joined up to the new point. 

Check newly formed surfaces are not too close to other surfaces in domain. 

Check that the new domain does not contain any other domain points. 

Check Gamma value* to see if a good tetrahedon was formed. 

Check/correct direction of face normals, of the new face elements.

Edge removal:

Find two adjacent polyhedral faces.

Check that the edge joining non-common nodes is inside domains.

Check that the edge joining non-common nodes does not intersect

other polyhedral faces in domains.

Check that the new surfaces do not intersect any other surfaces. 

Check that the new surfaces are not too close to other surfaces. 

Correct the direction of polyhedral normal. 

Check on Gamma value of the tetrahedron formed.

Vertex removal:

Find three polyhedral faces that are adjacent to each other.

Check to see that the domain does not contain any other nodes.

Check that the tetrahedron formed is inside domains.

Test to see if the new face is not too close to other faces in the domain.

Correct direction of the new face.

*Gamma value : Tetrahedral shape measure, see section 2.4.2.



The paving method, which has been primarily developed by Blacker and Stephenson 

[BSC91] is depicted below.

11

Fixed nodes 
Floating nodes

Figure 3.4.1 Example of paving from geometry (A) to mesh (C) [BSC91].

Paving begins with the input of one or more ordered, closed loops of connected 

nodes, Figure 3.4.1 A. These loops form the boundary of the mesh and contain the fixed 

nodes. During the mesh generation process, the paving technique always operates on the 

boundaries of connected nodes referred to as paving boundaries. The paving boundaries 

are transient in nature and progress as the mesh is generated, Figure 3.4.IB. A point is 

selected on each paving boundary to start the element paving. The method then walks 

around the domain, keeping the boundary to its right, generating elements. In Figure 

3.4. IB the arrows on the elements' faces indicate the direction of element generation. 

Each complete loop of elements is called a row. Rows are generated from a number of 

portions. Once a row portion of elements is generated they are smoothed [BSC91], by 

adjusting nodal positions to improve elements' shapes. If any of the newly generated 

elements intersect with other rows of elements these are seamed or closed by connecting 

opposing cells. After the completion of each row, it is adjusted to correct for small or 

large elements, and again checked for intersection.

The paving method has a paving boundary that advances into the domain in a 

similar way to the advancing front. Therefore, it inherits some of the computational and
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intersection problems of the foresaid method. Unlike the previous techniques the paving 

algorithm has the benefit that it generates quadrilaterals and in 3D hexahedral elements. 

3.5 

The Delaunay triangulation in 2D is a well researched method [Wat81],[ScS88] 

and has been successful in that it has been shown to produce well structured meshes that 

satisfy the min-max angle criterion 

(optimal triangles).

The definition of Delaunay 

triangulation is that the circumcircle of 

any triangle i in the mesh, does not 

contain any exterior vertices of the 

element i. Figure 3.5.1. Illustration of circumcircle of 
Delaunay triangle.

3D Delaunay triangulation consists of several tetrahedra in an array of points. The 

four vertices of each tetrahedron lie on the surface of a sphere and no other vertex of the 

array lies within that sphere. Delaunay triangulation in 3D does not in general satisfy the 

min-max solid angle criterion and does not seem to satisfy any optimal angle condition. 

In fact Cavendish [CFF85] reports the creation of slivers (tetrahedron with a small 

volume, which is almost flat).

Circumsphere

Figure 3.5.2. Illustration of circumsphere of tetrahedral and a sliver element.



[SLH84].

The Delaunay triangulation has several degenerate cases and like all grid 

generation methods, is subject to computer accumulated rounding errors. In 2D these 

problems have been minimized by special ordering of nodes in the generation of the grid 

and the use of a combination of both Watson's [WatSl] and Lawson's [Law72] 

procedures to make the method more robust computationally. Watson's algorithm is 

illustrated below: New (P)

Each node is taken in turn and inserted 

into the mesh. A search for all the 

elements whose circumcircle contains this 

node (Figure 3.5.3) is made.

The method then removes these elements, 

Figure 3.5.4, and the external boundaries 

of the set of elements form a polygon.

The vertices of this polygon are then 

joined to the newly inserted node. Which 

then forms a new Delaunay triangulation 

that includes the inserted node.

CIrcum-cIrctes

Figure 3.5.3. Insertion of Node.

Figure 3.5.4. shaded elements are removed.

Figure 3.5.5 Vertices of the polygon are 
joined up to the new node.



In 3D Lawson's swapping algorithm cannot be used, but recent developments in 

3D Delaunay triangulation by Joe [Joe89] using local transformation of tetrahedra (see 

section 6.10 3D vertex swapping) have resulted in a very robust and fast method of 

generating Delaunay meshes. The 3D method has a worst case computational order of 

n2, however, on most practical cases it is of order nlog(n). Despite its computational 

efficiency Delaunay triangulation in 3D does not generate well shaped elements [CFF85].

3.5.2 

Delaunay triangulation is based solely on the location of the points of the domain 

and higher order topological information does not affect the resulting computational 

mesh. Therefore, the Delaunay triangulation of certain geometric models with particular 

distributions of points will produce a mesh that is incompatible with the model's 

topology.

To correct this problem, we have to search the geometry of the model for 

intersection with the elements formed by the triangulation. Where elements intersect the 

surface of the model, we introduce extra 'stitching points', to make the triangulation 

conform to the geometry. This is illustrated in Figures 3.5.6 to 3.5.8.

Meshing the geometric model below

Figure 3.5.6 : Initial geometry 

This results in a topologically incompatible mesh

Figure 3.5.7 : Initial Delaunay triangulation.



Resolved by introducing a stitching point

Figure 3.5.8 : Insertion of a stitch point

An alternative method is to force the Delaunay algorithm to generate only 

geometry compatible meshes. This is achieved by ensuring that the nodes on the 

boundary of the model form Delaunay edges [Joe86]. A Delaunay edge is defined as two 

adjacent vertices on the boundary and the circum-circle through these two points does not 

contain any other boundary vertices. Figure 3.5.9 illustrates the definition Delaunay edge 

and shows how it can be used to spot areas of incompatibility.

Delaunay Not a Delaunay 
Figure 3.5.9 Illustration of Delaunay and 
non-Delaunay edges.



The medial axis subdivision is a relatively new and novel technique for generating 

various types of grids using triangular and quadrilateral elements. Grids that have been 

generated this way tend to be well structured and of high quality {Tarn and Armstrong 

1991 [TaA91]}.

Figure 3.6.1 : Example of stages in mesh generation by medial axis subdivision.

The main concept behind this method, as the title suggests, is the generation of 

the medial axis or Voronoi diagram of the domain that is shown in Figure 3.6.1 A. The 

motivation behind the generation of this diagram is the belief that elements should flow 

round the object in the general direction specified by the medial axis. The Medial axes 

diagram is often generated by first triangulating the domain using Delaunay triangulation 

and from this triangulation the Voronoi diagram is derived. Once the medial axis is 

derived this is then processed first to remove concavities, Figure 3.6.IB and then chain 

splitting , Figure 3.6.1C, to generate the sub-domains that can then be meshed with any 

suitable mesh type and pattern to generate the final mesh Figure 3.6.4D.
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3.7 

Recursive domain bisection, is a method first implemented by Lewis and 

Robinson [LeR76], which applies a 'problem-reduction' technique to triangulate domains. 

This technique consists of dividing the original data space into disjointed segments, and 

then solving the problem for each of the smaller segments. This technique is applied 

recursively on each domain and its sub-domains until each data space is sufficiently small 

for a very simple algorithm to be applied. This method is similar to the Quicksort 

algorithm [ThoSO], where the problem of sorting vectors is reduced to sorting shorter and 

shorter vectors, until vectors of length two are generated. These can then be sorted by 

one comparison and a conditional interchange.

Therefore, the triangulation of region R (Figure 3.7.1 (a)) can be achieved by:

(a) Splitting R into two sub-regions, Rt and R2, by creating a new boundary 

across the region.

(b) Solving the triangulation problem for Rj and R2 separately 

(Figure 3.7.l(b)).

The new boundary has a zigzag appearance as it consists of the join of points lying near 

a line that passes through two 'opposite' boundary points (Figure 4.7.l(c)).

Sub-domains are divided until triangles with no interior points are formed, these 

being the elements of the triangulation; triangles containing interior points are split by 

two lines joining an interior point to two vertices.

(a)

Figure 3.7.1 Splitting a region



There are usually numerous possibilities for the selection of a bisection line to 

divide any arbitrary domain. Lewis and Robinson outline a method that attempts to divide 

the domain into two 'circular equally sized halves', this is described in more detail in 
Chapter 4.

The computation order of the above algorithm was shown by Lewis to be n log(n) 

and in the worst case n2. The worst case scenario is based on the assumption that most 

proposed splits of the region are invalid, so finding valid splits is the dominant part of 

the algorithm. The worst case occurs on difficult geometries where the vertex removal 

routine has to be used in the majority of bisections. However, it was shown that the ratio 

between the main bisection routine and the simple vertex removal method is 1:10. 

Therefore, we have a routine whose performance has a good average computational order.

However, this routine does not include a nodal placement method, all nodes have 

to be provided prior to the grid generation. It was required that the user provided all 

nodal position prior, either generated by hand or using a rudimentary nodal placement 

algorithm [MLC83].

Multiply connected regions are 

dealt with the manual addition of a cut 

line (Figure 3.7.2), this decomposes the 

region into simple polygons. However, 

this could be overcome by the 

introduction of an automatic method of 

decomposing multiply connected regions 

into simple polygons, as described by Joe 

and Simpson [JoS86].

Figure 3.7.2 A multiply-connected region.



Triquamesh [SBS79][S1H82] is a mesh generator, developed in the early 80's, 

which generates triangular and quadrilateral elements in 2D. The technique used in 

Triquamesh is a recursive bisection method, and is similar to the technique used by 

Lewis et al [LeR76], see Section 3.7. However, Schoofs et al [SBS79] used a different 

heuristic, in Triquamesh, to guide the selection of bisections. Schoofs et al's technique 

was to introduce a bisection which divides the largest "edge angle" in the domain. This 

is repeated recursively on the resulting sub-domains, until sub-domains form triangular 

regions, which are the elements of the mesh.

Triquamesh incorporates an automatic nodal placement technique, which generates 

nodes automatically along each newly generated bisection edge. It is similar to the 

method described in Chapter 4, section 4.5.2. It was not implemented in the new 2D 

bisection technique described in the thesis, as it tends to needlessly over refine certain 

regions within the domain, see Chapter 4 section 4.6.2.

Quadrilateral element generation, in Triquamesh, is achieved by converting each 

triangular element into three quadrilaterals, see Chapter 4 section 4.7.1. This technique 

was also dropped from the new bisection technique, described in this thesis, as it tends 

to produce quadrilateral elements with poor aspect ratios, See Chapter 4 section 4.7.1.

In the paper by Sluiter[SlH82] Triquamesh was extended to 3D tetrahedral mesh 

generation. However, the 3D domains it could handle were limited, since it could not 

handle multi-connected regions. The tetrahedral meshes it generated were of poor quality, 

since it had no tetrahedral optimization technique. 3D Triquamesh also generates 

hexahedral elements, in a similar way to the 2D technique, by converting each 

tetrahedron element to 4 hexahedral elements.

The 3D bisection mesh generator, described in this thesis, has overcome many of 

the problems which were associated with the 3D Triquamesh, see Chapter 6. The 3D 

mesh generation method, described in this thesis, can handle multi-connected regions and 

has element optimization routines which improve the quality of the final tetrahedral mesh 

(e.g local 3D min-max vertex transformations, see Chapter 7 section 7.5). The new mesh 

generator, presented in this thesis, has an advanced nodal placement technique (Chapter 

7 section 7.4) which avoids unnecessary over refinement of certain regions of the mesh, 

unlike the technique implemented in Triquamesh.



The following methods, Advancing front, Binary mesh operations, Recursive 

bisection and Paving methods require a large number of face, plane and line intersection 

tests. Three dimensional plane and line intersection testing is notorious for problems with 

computer arithmetic errors [For87], and forms a major area of research 

[Sar83][Dew88][BoW83]. Therefore, we can conclude, just by probability, that the more 

intersection tests carried out, the greater the chances of an incorrect geometry 

interrogation. For example, if a comparison is made between an order nlogn method (2D 

Recursive mesh bisection) and an order n2 method (2D Advancing front) using similar 

algorithms for line, plane and surface intersections. The order n2 method would have a 

larger probability of generating an invalid mesh than the order nlogn technique, since the 

nlogn method requires fewer geometry tests for a similar sized problem.

Delaunay triangulation has the advantage of being a computationally efficient 

algorithm, however the technique does not generate well shaped tetrahedral elements. In 

fact, Delaunay triangulation in 3D is the method that is most likely to generate an invalid 

grid. Delaunay triangulation suffers not just from computational rounding errors for 

sphere point in-out tests, but also the algorithm does not consider any geometry 

information or satisfies any min-max angle criterion. Mesh generation by Medial axis 

often requires a Delaunay triangulation of the domain to enable the sub-division of the 

geometry. Therefore, the Medial axis technique inherits its major problems from the 

Delaunay algorithm.

Mesh generation by Recursive domain bisection is the only method that offers 

geometry compatibility, together with computational efficiency. The computational 

reliability of this algorithm is linked to its computational efficiency, requiring on average 

less complex geometry tests than its counter part methods, such as Advancing front and 

Paving algorithms.

The reader is referred to Chapter 8 section 8.2, for a further description of some 

additional three dimensional meshing techniques.



The next two chapters will cover the initial developments of the bisection 

algorithm in the 2D plane. This is then followed with a discussion of extending certain 

mesh generation techniques to surfaces.
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Chapter 4

Chapter 4 

2D Mesh Generation.





The objectives of the meshing tool, are to provide a method of generating two 

dimensional grids over a planar region. The true objective of the 2D grid generator was 

to provide a platform to launch the 3D version. Therefore, it was necessary that the ideas 

used were readily extendible to 3D.

The grid generator's requirements were to generate meshes that could be used for 

initial computational purposes with limited user control over nodal placement. 

Optimization of the mesh was to be left to other adaptive methods such as P, R or H 

refinement techniques, see [Thm85], [EOD93], [LoS91], [Ran87] amongst others.

The Geometry input requirements are to model multi-connect domains, with holes, 

interfaces and sub-domains, as illustrated in Figure 4.2.1.

Figure 4.2.1 Multi connected region. M1,M2,M3 and M4 are different materials.



This section will outline the fundamental algorithms behind the method of 

Recursive bisection, Lewis and Robinson [LeR76], which was initially described in 

Chapter 3.

There are usually numerous possibilities for the selections of a bisection line to 

divide any arbitrary domain. Lewis and Robinson outline a method that attempts to divide 

the domain into two 'circular equally sized halves'.

Not all possible splits are examined in this algorithm, for computational speed, 

therefore the search is terminated when a number of solutions are found. The search is 

organized so that splits between 'opposite' boundary points are tested first. Each possible 

bisection line is given a weight depending on the function IlEb. II is the product of the 

distance of the boundary points to the split line, Figure 4.3.1, b is the number of 

boundary points and E is the minimum of:

(a) half of the average distance between the boundary points, and

(b) the distance from the split line of the nearest interior points contained within any 

rectangle having the split line as a side, see Figure 4.3.2.

Figure 4.3.1 illustrates a domain with a possible

bisecting line that divides the region into T, and T2.

Si is the distance of boundary points in T2 from the

bisecting line.

dj is the distance of boundary points in T, from the

bisecting line.

Here HI = S { S2S3 and n2 = d^, hence IT = nin2. Figure 4.3.1 Calculating 
weighting function.



Once a particular bisection of a region is selected, points on the interior, that lie 

'close' to the proposed split line are included as part of the new boundaries. Selection 

of points is done in such a manner to avoid long thin elements. The method used to sort 

points into their respective halves tends to reveal, which points are close to the split line. 

Points are chosen to be a member of the interface edge if:

(a) they lie within a rectangle with the split line as a side and,

(b) their distance from the split line is less than E defined above.

Figure 4.3.2 demonstrates which points to include 

as part of the new boundary. Points P { and P3 would not 

become part of the new boundary whilst P2 would. L! 

and L2 form the outer edges of the rectangle.

SpHtLM

Figure 4.3.2 choosing new 
boundary points.

If the current region has no possible bisection a cruder approach is adopted. The 

binary mesh operation of vertex removal is applied, see Chapter 3 section 3.3, and the 

split line is the join of a boundary point to its next but one neighbour. The actual split 

made is such that the triangle cut off has its smallest angle maximised. Once the split is 

chosen the code then proceeds as in section 4.3.2.

If the region to be split is simply a triangle containing interior points, then the 

split is performed by joining two vertices of the triangle to one of the interior points. The 

only extra boundary points are those that lie on the split.



There are numerous methods for taking a 2D grid and improving the quality of 

elements for computational proposes. These methods include Laplace smoothing [KaE70], 

Vertex swapping [Law77], local refinement and de-refinement to name but a few. 

Lawson [Law77] showed that planar grids could be transformed to another by a finite set 

of operations, this technique is used in most planar Delaunay triangulations. Lewis and 

Robinson used a technique of vertex swapping [Law77] to improve the quality of their 

grids. The following sections will outline two of the techniques used to improve the grids 

generated. The reader should note that the following methods are of order nlogn, and 

have been modified to optimize their execution rates.

Vertex swapping [Law77] of elements' faces is a well known technique used in 

2D mesh generation to achieve local min-max or max-min angle criterion. This method 

is based on the observation that there are two possible triangulations of a convex 

quadrilateral. The better triangulation is the one that makes the resulting triangles most 

equi-angular, as measured by the size of the smallest angle. For example, Figure 4.4.1 

shows two adjacent triangles I and J that have been generated by some initial mesh 

generator.
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Figure 4.4.1 Two triangles with alternative vertex shown.

In Figure 4.4.1 the line P2P4 lies within the polygon formed by triangles I and J, 

a new split of the quadrilateral P1P2P3P4 is possible, i.e. triangles P 1 P2^4 and P2P3P4 may 

be formed. The smallest angle A of the original triangles and B the smallest angle of the 

new triangles, may be calculated. No change is made if A > B, but if A < B the new 

triangles replace I and J.

In the above method it has to be established which two triangles form a convex 

quadrilateral. This section will describe a method that uses the fact that most meshes 

have their elements' nodes stored in a fix order (counter clock-wise). This has been found 

more reliable than other techniques that are based on testing which side of a line points 

lay, like ray testing [Rog85] algorithms or special methods base on the geometry 

uniqueness of a triangle [Sar83][Bow83]. For example, in Figure 4.4.2, the alternative 

vertex P3Pj lies outside the quadrilateral which forms the triangles shown in Figure 4.4.3 

i.e. triangle I is contained in J.
Alternative Vortex

Figure 4.4.2 Figure 4.4.3



The areas of the triangles P!P2P4 and P2P3P4, Figure 4.4.2 are both positive, since 

both triangles' nodes are in counter clockwise order. However, the areas of triangles 

P!P3P4 and P 1 P2P3 , Figure 4.4.3, have different signs. Triangle T, Figure 4.4.3 has a 

negative area because it is contained inside triangle T, therefore its nodes are in 

clockwise order, i.e. the quadrilateral P!P2P3P4 is not convex.

Therefore, from the above information we can derive a method of applying a 

vertex swapping algorithm to an initial mesh as follows:

i) Repeat

ii) For each triangle,!, in the mesh do

iii) For each edge, EDGE, do

iv) Find neighbouring triangle J, on the edge IEDGE.

v) If triangle I and J form a convert quadrilateral then

vi) Find minimal angle of triangles I and J (MINI)

vii) Find minimum angle of the alternative triangles

	that can be formed with I and J (MIN2).

viii) If MIN2>MIN1 then swap vertex of triangles

viiii) endif

x) end for each edge...

xi) end for each triangle...

xii) until (No more swaps performed or maximum number of passes reached)

The above algorithm is a simplification, the full method includes a stack that stops 

neighbouring pairs of triangles being tested more than once. It also stores which triangles 

were affected by transformations on each pass of the algorithm, therefore on each 

iteration it only examines elements that were swapped previously. Also it was found that 

the above algorithm can further be improved by taking each triangle in turn and looking 

at all its neighbouring elements first. If the triangle needs to have a vertex swapped we 

choose the neighbouring element that forms the set of triangles with the maximum 

minimum angle. Figure 4.4.4 shows a triangle with its neighbouring elements and 

possible vertices swaps. This dramatically reduces the number of iterations required.



Because of finite precision of the 

machine, oscillation of edges between 

each pass can occur. Therefore, it was 

required to store the minimum angle of 

the grid on each pass. If there is only a 

small change in this value between 

consecutive iterations the routine 

terminates.

Figure 4.4.4 Alternative vertex searching.

Laplace's smoothing [KaE70][Rec73][MeP77][Her77] is a simple but effective 

method used in 2D and 3D mesh generation to improve the general shape of elements. 

This is achived by removing some of the skewness of elements locally [W6r81]. In 

Laplace smoothing each node is taken in turn and moved to a new location that is the 

average of all the adjacent vertices positions. 

Hence node's i location becomes :-

Pj= Z R/n1 j=i J

'R' is the set of size 'n' of all nodes directly connected

to Node i

'Rj' is a positional vector of node j in 'R' 

'Pi' is a positional vector of node i

Laplace smoothing is a highly efficient algorithm that is applied iteratively until 

there is only a small change in the nodal positions. However, two passes were found to 

be sufficient for the majority of the meshes generated by the 2D mesh generator 

presented in this Chapter.

It was found that the above two algorithms 4.4.1 and 4.4.2 are often enough to 

convert most grids with badly shaped elements to reasonable quality. They have both 

been shown to be of order n [LeR76] and add a very small overhead to any meshing 

routine.



The initial aspirations were as follows:

(a) Use a superior bisection algorithm.

(b) To remove the requirement of adding a cut line to multiply connected regions.

(c) To enable the automatic generation of grid points.

(d) To generate a code that is so robust that could operate in single precision. 

The above requirements were to enable the extension of the procedure to three 

dimensions, and if the code could work in single precision in 2D, then the 3D version 

would have a greater chance of working robustly on complex geometries.

The improved bisection algorithm is illustrated in Figure 4.5.1

Figure 4.5.1 Advance bisection routine.

The method of choosing the bisection line is the same as described in section 

4.3.2. Once a cut line is selected the boundary segments are sorted to their respective 

sides, Figure 4.5.2a, segments are the edges contained between two vertices. These edges 

form two sets of boundary points, any boundary point that is contained within both 

regions is a boundary interface node. The list of boundary interface nodes, are then sorted 

into sequence along the interface, see Figure 4.5.2b. If the number of boundary interface 

nodes is a multiple of two, the nodes can be joined in the following order to generate the 

new edges, 1 to 2, 3 to 4 etc. However, if the number of boundary interface nodes is 

odd, the interface is complex and this bisection line is rejected. The generation of a new 

boundary is illustrated in Figures 4.5.2b and 4.5.2c.
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1

(C)

Figure 4.5.2 Bisection of a multiply connected region.

The above technique has removed the requirement for the addition of a cut line 

for multiply connected regions, described in section 4.4.3, see Figure 4.5.2. However, 

this method does not consider any internal nodes, because of the difficulty of sorting 

nodes into their respective regions. Nevertheless the algorithm is more reliable and fails 

less often than the original method.

The requirement for the binary mesh operation of edge removal was also found 

necessary. The region in Figure 4.5.3a was found to fail on both the mesh bisection and 

vertex removal [section 4.3.4] algorithms. Edge removal is the selection of one edge and 

a point, which may be internal to the domain or on an opposite boundary. 

Figure 4.5.3b shows an element (j) generated by edge removal.

Figure 4.5.3 Edge removal.



The above two algorithms were implemented on a Sun Spare 4 using single 

precision arithmetic in addition to other minor changes to the code. A simplistic data 

format was used, which required the input of boundary nodes and connectivity.

The new bisection algorithm could not handle internal nodes. Therefore the first 

solution was to generate the boundary constraint mesh, which is a grid generated from 

just the boundary nodes. Then each internal node is taken in turn and inserted into the 

mesh, using techniques derived from algorithms developed for planar Delaunay 

triangulation [ScS86][SlH84][CeS85]. This algorithm is very simple and described as 

follows:

(1) Take an internal node i.

(2) Search the mesh for triangle J which contains the node i.

(3) Join this node up to the three vertices of element / to form three new 

triangles.

The above steps are simplified. In step (2) a method of element walking [S1H84] 

is utilized to find the triangle J which contains the node i, which is an order nlog(n) 

technique. It is also possible for the node /, in step (2), to co-inside with an edge or node 

of an element, and this is also taken account of in the full algorithm.

A method of generating nodes simultaneously was then implemented, based on 

the technique described by Connor [Con89]. The user provides the boundary nodes and 

these guide the mesh generator's nodal placement algorithm. Therefore, if there is a fine 

concentration of nodes around an area of the boundary, the internal mesh would reflect 

this. Figure 4.5.4 illustrates the rudiments of the nodal placement algorithm. Figure 

4.5.4A shows a bisection line and Figure 4.5.4B shows newly generated nodes along the 

interface.



V V

Figure 4.5.4 : Simple nodal insertion routine.

When an interface is generated the boundary interface nodes are given a nodal 

spacing. This spacing is calculated from the average distance of adjacent nodes. Nodes 

are then generated along an interface element, the spacing of these nodes are interpolated 

from the two nodal spacing values assigned to the end nodes. For example, if (j^ and fy 

are the nodal spacing at two adjacent interface nodes and let t be the parameter location 

between nodes i,j where t>0 and t<l. The nodal spacing at position t is then given by 

^j+t^j-c));). However, before a new node is inserted into a grid, an additional check is 

carried out to ensure that this point is not too close to other nodes in its subregion. This 

occurs when the region is highly re-entrant, see Figure 4.5.4.

To illustrate the robustness of the initial code and its ability to cope with multiply 

connected domains, the geometry in Figure 4.5.5 was used. The completed mesh is 

illustrated in Figure 4.5.6; note that no internal points have been added.
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Figure 4.5.7 shows the British Isles grid generated using the nodal placement 

algorithm, section 4.5.2, and Figure 4.5.8 shows the mesh after optimization.

Figure 4.5.7 : British Isle's mesh before optimization.

Figure 4.5.8: British Isle's mesh after optimization.
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From the initial work carried out, it was soon established that a far more 

sophisticated nodal placement algorithm was required, with improved geometry input 

specifications.

It was found, for bench mark application, that a specific number of elements was 

required rather than a nodal spacing. There is a need to cope with multi-materials, and 

the following geometry input requirements were identified.

(a) The number of elements the mesh generator should generate for this problem.

(b) A list of boundary nodes of the domain/domains.

(c) The number of polygon regions in the model.

(d) Number of boundary nodes in each polygon domain.

(e) List of boundary nodes which form these regions

Two simple examples of typical data input follow:- 

square with hole, adjacent to another square

SQUARE WITH HOLE ADJACENT TO ANOTHER SQUARE
50 
103 
44-4 
0.00 0.00 
1.0 0.0 
1.0 1.0 
0.0 1.0 
2.0 0.0 
2.0 1.0 
0.25 0.25 
0.75 0.25 
0.75 0.75 
0.25 0.75 
1234 
2563 
7 89 10

  Number of elements required.
  Number of nodes, number of polygons.
  Number of nodes in each domain, negative if hole polygon.
  list of 10 nodes

-- Polygon outer Rl.
~ Polygon node list outer R2.
  Inner hole polygon of Rl.
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2 : square with sub-domain inside, adjacent to another square.

SQUARE WITH SUB-DOMAIN ADJACENT TO ANOTHER SQUARE
50
103
444
0.00 0.00
1.0 0.0
1.0 1.0
0.0 1.0
2.0 0.0
2.0 1.0
0.25 0.25
0.75 0.25
0.75 0.75
0.25 0.75
1234
2563
789 10

  Number of elements required.
~ Number of nodes, number of polygons.
  Number of nodes in each domain.

  list of 10 nodes

  Polygon outer Rl.
~ Polygon node list outer R2.
  Inner polygon outer R3.

The above data format only handles linear elements, curved lines have to be 

broken down into several line segments. However, the above format handles most cases 

which have been provided by other co-workers [Cho93][Fry94] at the Centre for 

Numerical Modelling and Process Analysis, University of Greenwich.

The new mesh generator identifies which polygons are internal and their 

associated external counterparts. It also reorders the polygon list into anti-clockwise order 

so the domain is always to the left as you travel round the boundary. The identification 

of interface elements is also found so nodes generated on these elements' faces coincide 

with both domains. However the boundary for sub-region R3, in example 2, is stored as 

two lists one in anti-clockwise order and the other, clockwise with all nodes marked as 

interface points. 

The previous nodal placement algorithm tended to needlessly over refine certain 

regions, also a method of generating grids where a certain number of elements is 

specified was required. It was found that if a domain was broken down into several 

simpler convex regions, these could be used to calculate the total area [Mid87] of the 

domain. Once the total area is calculated a measure of the nodal spacing can be estimated 

as follows:

Area of element = area of domain divided by number of required elements



Hence:

Nodal spacing = square root of four times area of element squared divided by root
three.

This equation calculates the length of an equilateral triangle's side. 

Before the generation of nodes the region is first divided up into convex polygons. 
The dividing of regions into convex parts is a well researched area with a large number 

of papers published. The method which was selected is by Chazelle [Cha84] whose 
algorithm has a linear computational order, see also [FeP75],[Sch78],[JoS86],[Lyu63] 
[GiA81],[BaD92j.

It is vital that the selection of separators does not generate small angles and 
narrow regions. It is also required that any newly generated nodes do not lie too close 
to adjacent points. Let R be a simply connected region with vertices in counterclockwise 
order. We then select a vertex v0 such that its interior angle is larger than 180 degrees. 
An inner cone is defined as in Figure 4.6.1 which defines a section 3R of R. From 3R 
it is found the subset VS visible section. In Figure 4.6.1 A VS =N0,N1 ,V5,V6,N2 where 
NO,N! and N2 are used to define end points of visible polygons. Therefore, a point on VS 
connected to v0 is a separator which resolves the reflex angle at v0.

V-

Figure 4.6.1 : (A) Full inner cone,(B) Inner cone restricted by vertex V2
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cube with a cavity in, adjacent to another cube. 
17 20 3 26 -- No. faces, No. nodes,

No. of polyhedra regions, No. of required elements.

-- nodes X Y Z.

.»...... /:....-> 

-- polyhedra faces.
-- number nodes in face, node list.

1
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2
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3
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-- polyhedral domains. 
4 5 11 -- number of faces, list of faces. 
9 10 11

15 16 17 -- negative number of faces indicate a 
polyhedral region
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Re-entry box 
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-- Polyhedral domain face list 

11 12 -- number of faces, list of faces.
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