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Abstract

The research in this thesis is associated with different aspects of experimental 

analyses of structural dynamic systems and the correction of the correspond- 

ing mathematical models using the results of experimental investigations as a 

reference. A comprehensive finite-element model updating software technology 

is assembled and various novel features are implemented. The software tech- 

nology is integrated into an experimental test facility for structural dynamic 

identification and used in a number of real life aerospace applications which 

illustrate the advantages of the new features.

To improve the quality of the experimental reference data a novel non- 

iterative method for the computation of optimised multi-point excitation force 

vectors for Phase Resonance Testing is introduced. The method is unique in 

that it is based entirely on experimental data, allows to determine both the 

locations and force components resulting in the highest phase purity, and en- 

able to predict the corresponding mode indicator. A minimisation criterion for 

the real-part response of the test structure with respect to the total response 

is utilised and, unlike with the application of other methods, no further infor- 

mation such as a mass matrix from a finite-element model or assumptions on 

the structure's damping characteristics is required. Performance in compari- 

son to existing methods is assessed in a numerical study using an analytical 

eleven-degrees-of-freedom model. Successful applications to a simple labora- 

tory satellite structure and under realistic test conditions during the Ground 

Vibration Test on the European Space Agency's Polar Platform are described. 

Considerable improvements are achieved with respect to the phase purity of 

the identified mode shapes as compared to other methods or manual tuning
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strategies as well as the time and effort involved in the application during 

Ground Vibration Testing.

Various aspects regarding the application of iterative model updating meth- 

ods to aerospace-related test structures and live experimental data are dis- 

cussed. A new iterative correction parameter selection technique enabling to 

create a physically correct updated analytical model and a novel approach for 

the correction of structural components with viscous material properties are 

proposed. A finite-element model of the GARTEUR SM-AG19 laboratory test 

structure is updated using experimental modal data from a Ground Vibration 

Test. In order to assess the accuracy and physical consistency of the updated 

model a novel approach is applied where only a fraction of the mode shapes 

and natural frequencies from the experimental data base is used in the model 

correction process and analytical and experimental modal data beyond the 

range utilised for updating are correlated.

To evaluate the influence of experimental errors on the accuracy of finite- 

element model corrections a numerical simulation procedure is developed. The 

effects of measurement uncertainties on the substructure correction factors, 

natural frequency deviations, and mode shape correlation are investigated us- 

ing simulated experimental modal data. Various numerical models are gener- 

ated to study the effects of modelling error magnitudes and locations. As a 

result, the correction parameter uncertainty increases with the magnitude of 

the experimental errors and decreases with the number of modes involved in 

the updating process. Frequency errors, however, since they are not averaged 

during updating, must be measured with an adequately high precision.

Next, the updating procedure is applied to an authentic industrial aero- 

space structure. The finite-element model of the EC 135 helicopter is utilised 

and a novel technique for the parameterisation of substructures with non- 

isotropic material properties is suggested. Experimental modal parameters 

are extracted from frequency responses recorded during a Shake Test on the 

EC 135-S01 prototype. In this test case, the correction process involves the 

handling of a high degree of modal and spatial incompleteness in the experi-
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mental reference data. Accordingly, new effective strategies for the selection 

of updating parameters are developed which are both physically significant 

and likewise have a sufficient sensitivity with respect to the analytical modal 

parameters.

Finally, possible advantages of model updating in association with a model- 

based method for the identification and localisation of structural damage are 

investigated. A new technique for identifying and locating delamination dam- 

ages in carbon fibre reinforced polymers is introduced. The method is based 

on a correlation of damage-induced modal damping variations from an elasto- 

mechanic structure to the corresponding data from a numerical model in or- 

der to derive information on the damage location. Using a numerical model 

enables the location of damages in a three-dimensional structure from exper- 

imental data obtained with only a single response sensor. To acquire suffi- 

ciently accurate experimental data a novel criterion for the determination of 

most appropriate actuator and sensor positions and a polynomial curve fitting 

technique are suggested. It will be shown that in order to achieve a good 

location precision the numerical model must retain a high degree of accuracy 

and physical consistency.
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Chapter 1

Introduction

1.1 Background

Free harmonic oscillations of an elastic structure are completely determined by 

four modal parameters, the natural frequency, a damping parameter, the gen- 

eralised mass, and the mode shape [136]. A thorough knowledge of these modal 

parameters is a proven and efficient approach to understand and characterise 

the dynamic behaviour of an elastic structure in a structural dynamic inves- 

tigation. An accurate mathematical model constitutes a sound foundation for 

all forms of structural dynamic investigations, including

  the computation of forced dynamic responses,

  the assessment of structural modifications,

  the coupling of sub-components,

  the analysis of fluid-structure interactions, or

  the design of control algorithms.

Consequently, the identification of modal parameters is of major importance 

throughout the entire development phase of a structure.

In the past, engineers had to completely rely on the experimental iden- 

tification of modal parameters [136], whereas today, modal parameters are

1



identified by means of both analytical methods [138] (in the design stage us- 

ing mathematical models based on construction documents) and experimental 

techniques [138] (after completion of a prototype in a vibration test). The 

development of the finite-element method has allowed this procedure to be es- 

tablished for complex aerospace structures also. The numerical determination 

of dynamic properties of a structure based on the finite-element method now 

is a customary and readily applicable procedure [136].

The comparison and evaluation of analytical and experimental results en- 

ables the high degree of consistency and accuracy required with aerospace 

structures. In practice, however, differences are most likely to occur between 

the computed and the measured natural frequencies and mode shapes which 

hamper a direct correlation of results. The discrepancies are a result of the 

numerical model's sensitivity to structural modifications and modelling errors.

An obvious approach to obtain a more accurate representation of the actual 

structure is to combine the observations and results from experimental and 

numerical investigation approaches in order to correct the numerical model.

The grade of improvement that can be achieved through the application of 

model updating techniques is essentially determined by both the quality and 

quantity of the experimental data. As a result, experimental identification 

techniques play an important role in the optimisation process.

Additionally, the quality of the updated model essentially depends on the 

consistency between the selected correction parameters and the actual mod- 

elling errors, the parameter sensitivity with respect to the analytical modal 

properties, and the processing of experimental and analytical data in order to 

derive the necessary parameter modifications.

Accordingly, creating physically realistic and trustworthy mathematical 

models involves the optimisation of the experimental data quality, knowledge 

on the influence of experimental errors on the model corrections, and the se- 

lection of appropriate updating and process control parameters.

This thesis concerns the development of methods and application strategies 

which improve the data quality of experimental modal identification procedures



and allow model updating techniques to be applied to large industrial finite- 

element models in order to meet the requirements imposed by the increasing 

dynamic complexity of future aerospace structures.

1.2 Introduction to Structural Dynamics

1.2.1 Introduction

This section develops the basic equations of motion of a linear, time-invariant, 

viscously damped, elastic system. The spatial discretisation of the structural 

domain follows the displacement matrix formulation which is commonly found 

in standard works on structural dynamics using the finite-element method

[170].

1.2.2 Governing Equations

The universal law governing a solid continuum undergoing motion is given by 

Cauchy's equation

b + V.<r0- = pii, (1.1)

where b is the body force vector, &ij is the stress tensor, p is the material 

density, and ii is acceleration. In the theory of elasticity eq. (1.1) is variously 

described as the stress equation of small motions [47], the equation of equi- 

librium [159], or the equation of motion [63]. The term equation of dynamic 

equilibrium will be employed hereafter to distinguish the dynamic problems 

considered in this research from static structural problems.

Eq. (1.1) does not contain an explicit mechanism for the dissipation of en- 

ergy. This problem is most commonly solved by adding an ideal linear viscous 

damper [14, 30, 71] which opposes structural motion with a force proportional 

to velocity. Thus, the equation of dynamic equilibrium becomes

b + V   (Tij = pu + du , (1.2) 

where the constant d is the coefficient of viscous damping and u is velocity.



1.2.3 Constitutive Relationship for Stress and Strain

Based on the assumptions that:

  the stress applied to any solid is proportional to the strain it produces 

within the elastic limit for that solid (the ratio of longitudinal stress to 

strain being equal to Young's modulus of elasticity) and

  the total effect of a combination of loads applied to a body is the sum 

of the individual loads applied separately, provided that these effects are 

directly proportional to the loads which produced them and that the 

strains produced are small,

the generalised form of Hooke's law yields constitutive relationships between 

stresses and strains for the two fundamental cases of plane stress and plane 

strain. For the two-dimensional problem of an isotropic homogeneous material 

undergoing loading in the x, y-plane, where thermal effects are neglected and 

the strains are small [170], the following two cases are considered:

1. Plane Stress. Only the three components of stress and strain in the 

x, y-plane have to be taken into account as, by definition, all other com- 

ponents of stress are zero, i.e. axz = ayz = crz = 0. Hence, the stress 

vector is defined as <r = [<7x ,0>y ,a>zy] T and the stress-strain relationship 

is expressed in matrix form as

r i 

Oj,

XT

E

(1 - ̂ )

1 i/ 0 

i/ 1 0
A n l-i/

1 i

c

(1.3)

where E and v are Young's modulus and Poisson's ratio, respectively.

2. Plane Strain. In this case exz = eyz = tz = 0. However, a normal 

stress component exists in addition to the other three stress components. 

Hence, the stress vector becomes a = [crx ,cry ,crzi<Txy]T and the stress-



strain relationship is expressed in matrix form as

\

O

1   

~^ )
)

(1.4)

Thus, the constitutive relationship for an isotropic homogeneous material 

subjected to linear elastic strains is

(1.5)E(e   CQ) = 0 in

where the elastic strain at any instant in time may be represented by the 

difference of total strains and initial strains  Q. The augmented forms of the 

elasticity matrix [170] are defined as

E =
(1 - 

f 1

0

n

1

0

n

0

0

0

n

0

0

0
(1.6)

for plane stress and

(l + i/Xl-21/)

1   

1   

n n

z/

1

n

0 '

0

0
l-2i/

(1.7)

for plane strain.

1.2.4 Displacement Formulation

This work is based on a linear strain-displacement formulation using the as- 

sumption that the strains remain small.1 As a result, the strains may be

1 This assumption is considered to be valid for strains in the order of a few percent [47].



decomposed into a product of the matrix of linear operators L and the dis- 

placement vector u which enables the strains to be defined in the general 

displacement form as

  =

\

e,

e

£(«.)
^K)

0

A(u ) + 

0 \So;

0  

0 0

JL JL
Q -. Q _ 

-Lu (1.8)

with

\ ^ 
From eq. (1.8) the strain-displacement relation is given by

(1.9)

e - Lu = 0 n (1.10)

The boundary conditions on the surface F of the structural domain Q are de- 

scribed in terms of prescribed displacements on Fj/ and prescribed tractions 

on as follows:

u - Up = 0 on ,

T ^^ J ___ ,-v-^k I 1 
  Tip == u on i y .

The structural boundary is the union of the prescribed displacement and trac- 

tion boundaries, i.e. F = F^ U F^, and

(1.11)

(1.12)

is the matrix of outward normal operators, where n is the outward unit normal 

vector to the domain boundary with components and 

Applying the constitutive stress-strain equation (1.5) and the strain-dis- 

placement relation (1.10) to the traction boundary condition, eq. (1.11), gives 

the displacement formulation of the boundary conditions

T(ELu-Ee0) - tp = 0 on FT (1.13)



Using the same substitutions the equation of dynamic equilibrium (1.2) be-

comes

LT (ELu-Ee0)+b-pu-du = 0 in 17 . (1.14)

This form is known as the displacement formulation of the equation of motion. 

As a result, the general governing equation of motion of a solid continuum is 

given by

-Ee0)-b = 0 in ft (1.15)

with the boundary conditions

u   Up = 0 on , 

T(ELu-Ee0) - tp = 0 on TT .

1.2.5 Discretisation of the Displacement Equations

Applying the method of weighted residuals to eqs. (1.15) and (1.16) leads to

/ WT [L T (ELu - Ee0) + b - dfi 

Wj[T(ELu-Ee0)-tp]dr+ W£ (u - up)dF = 0 ,

(1.17)

where W denotes the weighting functions.

In order to satisfy the kinetic boundary condition Wj/ must be equal to 

zero on [170]. Additionally, since the weighting functions are arbitrary, 

WT =  W may be assumed. Therefore,

/> WT LT (ELu-Ee0)dft + 

WT T(ELu-Ee0)dr+ WT tp dr = 0. (1.18)

Since the surface of the structure is the union of the prescribed traction and 

displacement surfaces the first of the integrals along the traction surface in 

eq. (1.18) may be replaced with an integral along the surface and an integral 

along the prescribed displacement boundary, thus removing the displacements 

from the integral on the traction boundary. On rearrangement this gives:

/> WT LT (ELu-Ee0)dft+ / WT (b - pii - du)dQ 



- /WT T(ELu-Ee0)dr+ / WT T(ELu + Ee0)dr 

wT tp dr = o.

The application of Green's First Theorem to the first two integrals in eq. (1.19)

results in

WT (b - 

WT T(ELu-Ee0)dr+ WT tp dr = 0. (1.20)T

Eq. (1.20) permits discontinuous first derivatives of the displacements, thus 

being the weak form of eq. (1.17). Additionally, by choosing the weight- 

ing functions to be equal to the vector of virtual displacements, i.e. W = 

eq. (1.20) becomes equivalent to the Principle of Virtual Dis- 

placements formulation [170].

For the finite-element method of spatial discretisation the unknown dis- 

placements u may be approximated by

u u = , (1.21)

where Nj is a set of shape functions and are the displacements evaluated 

at the nodes Selecting an appropriate set of weighting functions Wj and 

applying the constitutive equation

<T0 = Ee0 (1.22) 

eq. (1.20) may be written as

W,T TELN?-udr = 

dr + / (L o-o dfi - / W,T To-0 dr 

(1.23)

1.2.6 The Equations of Motion

Using eq. (1.21) to approximate the displacements and combining all terms 

in eq. (1.23) yields the well-known compact matrix form of the second-order



differential equations of motion of an elastic system

M fi(t) + D u(t) + K (1.24) 

with

(1.25)

(1.26) 

= (L W;)T E L Nj dfi - WZT T E L N, dF , (1.27)

+ / (L Wf )T cr0 dO - / W,T T cr0 dr . (1.28) 
 /n ./iv.i

In eq. (1.24) u(t) is the global approximation to the vector of displacements2 , 

M, D, and K are the mass, viscous damping, and stiffness matrices, respec- 

tively, and is the equivalent global force vector.

1.2.7 Damping

Damping is the ability of a structure to dissipate energy and the basic mech- 

anisms by which damping is introduced into an elastic structure are:

1. Structural Damping. The friction between two contacting surfaces 

generates structural damping.

2. Material or Hysteretic Damping. Internal energy dissipation of the 

materials is responsible for material damping.

Fluid damping caused by dynamic drag, where energy is dissipated by the 

viscous and pressure drag on the surface of a structure as it moves relative 

to a surrounding fluid, is not significant with structural dynamic applications 

and therefore will not be regarded here. Typical aerospace materials like re- 

fined metals or carbon fibres also have low internal material damping. Hence,

2For simplicity reasons the tilda symbol will be omitted further on.
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structural damping remains as the primary mechanism for the dissipation of 

energy in aerospace structures.

In practice the physical damping of a structure ensures that its response to 

an expected excitation does not exceed acceptable limits. Increased damping 

reduces the response amplitudes such that vibrations and dynamic stresses are 

decreased. Hence, fatigue is lowered and the life of the structure is prolonged.

1.2.7.1 Structural Damping

Structural damping is most effective at low frequencies and the corresponding 

lower modes of vibration since it is only at these frequencies that the vibration 

amplitudes are large enough to create significant slip and energy dissipation 

between contacting surfaces. However, the structural damping inherent in a 

system generally is not known as knowledge of the associated physical dissipa- 

tive mechanisms is limited. Thus, structural damping is commonly modelled 

by an ideal viscous damper which opposes the motion of the structure by a 

force proportional to the velocity of the structure.

1.2.7.2 Rayleigh Damping

Rayleigh damping [145] represents viscous damping as a linear combination of 

the stiffness and mass matrices

/cK, (1.29)

where and are the stiffness and mass proportional damping constants. 

Eq. (1.29) is usually referred to as proportional damping approach. While there 

is no physical justification for this widely used approximation no significantly 

better linear model appears to be available so far [120].

Viscous damping may be introduced by means of specifying the viscous 

damping ratio which relates to the damping constants and frequency of 

vibration through

 » = 5 O"" + £)   d-30)
The damping constants are determined by choosing at two different frequen- 

cies and and solving the resulting pair of simultaneous equations for 

10



and «, where and are taken at the structure's lowest and highest natural 

frequencies of interest, respectively.

Hence, for general Rayleigh damping the amount of damping is controlled 

at these two frequencies but it is not controlled for any other modes. For 

stiffness proportional damping the damping ratio is directly proportional to 

the frequency of vibration. As a result, the highest modes of the system will 

be the most strongly damped. For mass proportional damping the damping 

ratio is inversely proportional to the frequency. Thus, the lowest modes will 

be damped most heavily.

1.2.8 Free Vibrations of the Undamped System

Free vibrations of the elastic system represented by eq. (1.24) occur when no 

external forces are applied within the time range of observation, i.e. f 0. 

The following sections cover analytical solutions for free vibrations of discrete 

elastic structures. First, the (unrealistic) undamped system is considered. The 

results, however, will be useful for the later modal treatment of real structures. 

Next, a generally damped system is studied.

Disregarding the damping forces D li(tf) in eq. (1.24) yields the equilibrium 

equations for free vibrations of an undamped system

Ku(t) = 0. (1.31) 

A fundamental solution for eq. (1.31) is given by

u(*) = ¥>«***, (1.32)

where is a time-invariant vector of deflection amplitudes and is an angular 

frequency. Introducing eq. (1.32) into eq. (1.31) leads to

(-a;2 M + K)<^ = 0. (1.33)

Eq. (1.33) is referred to as the general eigenvalue problem.

The fundamental solution, eq. (1.32), describes harmonic oscillations of the 

structure represented by the system matrices M and K. The vibrations are

11



a distinctive property of the structure as they are solely determined by the 

equilibrium of elastic forces and inertia forces which is maintained at each 

degree of freedom (DoF) and for every point in time.

1.2.8.1 Eigenvectors and Eigenvalues

Non-trivial solutions for eq. (1.33) are obtained when the determinant of co- 

efficients of the homogeneous equation system vanishes:

-o;2 M + K =0. (1.34)

Eq. (1.34) results in a polynomial in a;2 , the characteristic equation, the roots 

of which are called eigenvalues.3 Introducing a particular eigenvalue a;2 into 

eq. (1.33) allows to compute the corresponding eigenvector 

While the system matrices M and K represent the spatial model of the 

discrete elastic system the eigenvalues and eigenvectors constitute the modal 

model which contains the complete free vibration solution and helps to under- 

stand and control the dynamic phenomena encountered with vibration prob- 

lems.

1.2.8.2 Characteristic Eigenvector Properties

The eigenvectors with 1, ... , comprise various specific character- 

istics which will become useful in Chapter 3.

Generalised Quantities. When a;2 and are a solution of eq. (1.33), 

then

Left hand multiplication with gives

-a;2 M + 0 . (1.36)

The expression

(1.37)

3 With large structural systems the common practice is to directly derive a numerical 
solution from eq. (1.33).
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represents the kinetic energy accumulated in mode is called the gener- 

alised mass. The second expression in eq. (1.36), i.e.

(1.38)

is the potential or deformation energy contained in mode shape which is 

entitled the generalised stiffness. Both the absolute values of and 

depend on the normalisation of 

Eq. (1.36) may be rewritten to yield the Rayleigh quotient

..'-^K¥>". (1.39)

Orthogonality. Assuming a;2 and to be a solution of eq. (1.35), left hand 

multiplication with leads to the scalar expression

 a;2 <£>J M + y>J K 0 . (1-40)

Likewise, if and are a solution of eq. (1.35), pre-multiplication with 

returns
^ f^ / -t * *+ \

Computing the transpose of eq. (1.41)

O T^ T* T T ^x \

where MT = M and KT = K, and subtracting eq. (1.40) results in

\ X TV /r _ ^i /i o \

For 

(1.44)

Additionally, introducing eq. (1.44) into eq. (1.42) gives

<pjKy?r = 0. (1.45)

Eqs. (1.44) and (1.45) state that the eigenvectors of the undamped system 

are orthogonal with respect to both the mass and stiffness matrix. The ac- 

cording physical interpretation is, that no energy is transferred between mode 

shape and the inertia forces  o;2M or elastic forces K of mode r, i.e. 

each mode shape is completely uncoupled from all other vibration modes and 

therefore may be individually identified during an experimental analysis.

13



Free vibrations of a damped system are described by

M + D u(t) + K 0 . (1.46)

Again, the fundamental solution approach, eq. (1.32), is used. Introducing 

into eq. (1.46) yields the non-linear quadratic eigenvalue problem

( o;2 M + zo;D + K) 0 . (1-47)

As outlined in Section 1.2.8.1, non-trivial solutions are obtained when the 

determinant of coefficients of the homogeneous equation system vanishes:

In this case, however, the eigenvalues computed from eq. (1.48) are either 

real or take the form of conjugate complex pairs, where the imaginary part is 

the frequency of oscillation and the real part describes the decay behaviour of 

the respective mode shape. With stable, damped, elastic structures the real 

parts of the complex eigenvalues are always negative [55].

Again, the associated eigenvectors are obtained by individually intro- 

ducing the eigenvalues into eq. (1-47). In the most general case the eigen- 

vectors are complex which conveys the physical situation that the structure's 

individual degrees of freedom do not oscillate in phase. An orthogonality re- 

lation of the eigenvectors with respect to the system matrices M and K 

does not exist here, i.e. a coupling of all modes is constituted by the system's 

internal damping forces.

The initial impulse to assemble physical parameter matrices from measured 

modal quantities has been given by RODDEN [146] in 1967. One of the first

14
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systematic approaches, where an incomplete set of measured natural frequen- 

cies and mode shapes of a structure was used to improve stiffness and mass 

characteristics of a finite-element model, has been published by HERMAN and 

FLANNELLY [12] in 1971. In 1974, iterative procedures have been suggested by 

COLLINS, HART, HASSELMANN, and KENNEDY [26]. Other basic contribu- 

tions have been made by NATKE, COLLMANN, and ZIMMERMANN [128] (1974), 

NATKE [122] (1977), BARUCH [7, 8] (1978 & 1982), and HERMAN and WEI 

[13] (1981). Further methods for the correction of numerical models based on 

experimental data have been proposed, [59, 114, 24, 23, 25, 129, 166, 169]. 

Comparative investigations and individual results [123, 129, 166, 18, 148, 106] 

have shown that the updated numerical models occasionally yield similar 

modal parameters but do not maintain the physical significance of the cor- 

responding mass and stiffness matrices.4 On the other hand, the expectations 

and hopes were directed towards unveiling the modelling imprecision and errors 

of the numerical structural dynamic models. This objective has been achieved 

by coupling a physically significant mathematical model and the experimental 

modal parameters with the purpose of generating a model which incorporates 

the observations and results of both the analysis and experiment.

Early applications of computational model updating techniques to large 

structures, e.g. the Skylab space station (DEMCHAK and HARCROW [37]) or 

the Vereinigte Flugzeugwerke VFW 614 passenger aircraft (ZIMMERMANN, 

COLLMANN, and NATKE [171]), date back to the 1970's. During the last 

decade, applications to increasingly complex aerospace and automotive struc- 

tures have been published. Some examples are listed in Table 1.1.

With the iterative updating methods discussed here the correlation between 

measured modal data ze and the corresponding numerical modal predictions

4 The general correlation between the existence of a unique consistent solution and the 
physical meaning of the identified model parameters has been addressed by BERMAN and 
FLANNELLY [12] and BERMAN [11, 10].

15



Author(s)

BRUGHMANS, LEURIDAN, 

HRYCKO, WYZYKOWSKI

BRUGHMANS, LEURIDAN, 

BLAUWKAMP

CAESAR, ECKERT, 

WOHLER

SCHEDLINSKI, LINK, 

SCHONROCK

LINK, HANKE

SCHEDLINSKI

Year

1990

1993

1994

1998

1998

2000

Ref.

[17]

[16]

[20]

[151]

[103]

[149]

Structure

Boeing DeHavilland, 

DASH 8-300A Aircraft

General Motors, 

1991 Saturn Automobile Body

European Space Agency (ESA) 

CLUSTER Satellites

BMW Rolls Royce Jet Engine, 

Intermediate Casing

BMW Rolls Royce Jet Engine, 

High Pressure Turbine Casing & 

Rear Bearing Support Structure

BMW Automotive Transmission

Table 1.1: Model Updating Applications to Large-Scale Structures

za is determined by a penalty function of the form

(1.49)

with

and

j = [ A fl ,i , ¥>flfl , A fl)2 , y>fl)2 , . . . , Aa,jv , (1.51)

Depending on the individual optimisation objective the penalty functions may 

also contain Frequency Response Functions (FRF) [29, 52, 124, 117, 50, 152], 

which requires damping to be included in numerical model, or force residuals 

[29, 48, 9]. The majority of these approaches were discussed in the 1980's.

The state vector za relates the penalty function to the numerical model 

properties. As a result, eq. (1.49) is a - generally - non-linear function of the 

mathematical model's mass and stiffness properties. A linearised approxima- 

tion, which is usually derived from a truncated Taylor series expansion, allows 

to express the penalty function in terms of the unknown model parameters p 

and a sensitivity matrix G

Aer w G   Ap . (1.52)
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The sensitivity matrix G contains the derivatives of the analytical eigenval- 

ues and eigenvectors with respect to the correction factors p. Various methods 

have been proposed to compute the sensitivities from the modal data of the 

initial finite-element model. For the undamped structural eigenvalue problem 

expressions have been derived for the first derivatives of the eigenvalues by 

LINK [99] and for the eigenvectors by Fox and KAPOOR [49] and NELSON 

[130]. OJALVO [142], MILLS-CURRAN [112, 113], and DAILEY [31] have ex- 

tended NELSON'S method to deal with the case of repeated or closely spaced 

eigenvalues.

Due to the non-linearity of both the penalty function and sensitivity matrix 

with respect to the analytical mass and stiffness properties the minimisation 

of Ae, eq. (1.52), and computation of the related model parameters from

Ap-(GT G)-1 GT -A£ (1.53)

involves an iterative solution procedure and a numerical modal analysis at 

every iteration step. The model updating method applied within the scope of 

this research is introduced in Section 3.2.

In most practical cases the number of model parameters (the mass and stiffness 

values at each degree of freedom) will vastly exceed the number of measure- 

ments (the natural frequencies and mode shape deflection components). This 

leads to an under-determined equation system for the computation of the un- 

known model parameters and does not allow for a direct estimation of physical 

mass and stiffness properties. However, if a number of physical degrees of free- 

dom are combined to form a group or substructure and the mass and stiffness 

properties of the analytical model are utilised as initial data a correction fac- 

tor may be determined for each substructure and a rank deficiency of GT G 

is avoided. The parameters p now represent the correction factors for the 

individual substructures. To reduce the influence of noise in the measured 

data the number of correction parameters is usually chosen to be smaller than
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the number of measurements. The resulting equation system becomes over- 

determined and is solved by least squares approximations. This approach has 

been originally proposed by NATKE [128] in (1974).

Iterative methods enable a wide choice of model properties to be corrected. 

The definition of substructures, however, requires a profound knowledge of 

the actual modelling uncertainties. Otherwise, the updated model may well 

reproduce the experimental results but the modifications do not necessarily 

comprise the desired physical significance.

With the comparison of numerical and measured modal data in eq. (1.49) it is 

essential to correctly identify and individually allocated each analytical eigen- 

vector and associated eigenfrequency in za to the corresponding experimental 

mode shape and natural frequency in Simply arranging the eigenfrequen- 

cies in ascending order does not necessarily ensure the comparison of identical 

mode shapes since the order of modes obtained from the test and numerical 

estimates may be different due to errors in the mathematical model and be- 

cause the experimental data base may be incomplete, i.e. not all modes in 

the frequency range under investigation have been identified in the test (cf. 

Section 2.3.2). Further problems arise from the damping not being included 

in the mathematical model and errors in the measured data.

Initially, the problem has been addressed by ALLEMANG and BROWN [1] 

who have suggested a Modal Assurance Criterion

r,* = l, ... , (1.54)

to estimate the degree of correlation between analytical and experimental mode 

shape vectors. The essentially is the normalised scalar product of the 

vectors <pa>r and Values close to one indicate a good correlation of the 

two vectors while small values imply them to be orthogonal. Since a true
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orthogonality relation only exists with respect to the mass or stiffness matrix, 

eqs. (1.44) and (1.45), the MAC for dissimilar eigenvectors will not necessarily 

be exactly zero.5

The eigenvector and mode shape components must be identical in number and 

location to allow a direct comparison in eqs. (1.49) and (1.54). Adversely, 

the number of components in the experimental mode shape vectors usually is 

some orders of magnitude smaller than the number of degrees of freedom in 

the numerical model. Equal vector sizes may be achieved by either reducing 

the system matrices to the measured degrees of freedom or expanding the 

measured mode shapes to the size of the analytical model.

Model Reduction Methods. A simple and most popular method has been 

introduced by GuYAN [57] who has derived a transformation between the full 

state vector and the master co-ordinates by neglecting the inertia terms of 

the slave degrees of freedom in the equations of motion (1.24). Disregard- 

ing the inertia terms causes the eigenfrequencies of the reduced model to 

be higher than those of the full model. The static reduction may be mod- 

ified to include inertia forces at an appropriately chosen frequency An 

improvement to GUYAN'S static reduction method, where the inertia terms 

are included as pseudo static forces, has been introduced by O'C ALLAH AN 

[139]. O'CALLAHAN, AviTABiLE, and RIEMER [140] have used the computed 

eigenvectors to assemble a transformation between the master and slave co- 

ordinates. The reduced model exactly reproduces all eigenvectors and eigen- 

frequencies used in the transformation.

Mode Shape Expansion Methods. Mode shape expansion methods uti- 

lise the numerical model to obtain the missing information by either using the 

equations of motion to derive a relation between the unknown and the mea-

5In addition, the Co-Ordinate Modal Assurance Criterion [94] may be used to determine 
the correlation between two measurement locations for all the paired mode shapes.
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sured deflection components [88] 6 or expressing the measured mode shape as 

linear combination of the analytical eigenvectors [141, 108].

A comparison of reduction methods is provided in [5] and [6]. GYSIN [58] 

and IMREGUN and EWINS [67] have given examples of the practical application 

of mode shape expansion methods. IBRAHIM [66] has discussed model reduc- 

tion techniques and eigenvector expansion methods in the context of modal 

and FRF sensitivity techniques.

The main objectives of this thesis are:

  The development of a method, which improves data quality and helps to 

reduce testing time with experimental modal identification techniques, 

namely the Phase Resonance Method, in order to meet the requirements 

imposed by the increasing dynamic complexity, i.e. high modal density, 

non-proportional damping, or restricted accessibility, of future aerospace 

structures. This includes the implementation of the approach into the 

Ground Vibration Test Facility operated by the German Aerospace Re- 

search Establishment (DLR) and a performance evaluation on aerospace 

structures of varying dimensions.

  The development of techniques and application strategies which allow 

model updating to be applied to large-scale industrial finite-element mod- 

els. Here, the foremost concerns are the handling of experimental modal 

data exposed to random measurement errors, noise, modal and spatial 

incompleteness, or low phase purity of the measured mode shapes and 

the identification of updating parameters which are coherent with the 

actual modelling errors in the analytical system matrices thus leading to 

a physically consistent updated numerical model. Again, performance is 

evaluated on aerospace structures of varying size and complexity. Addi- 

tionally, the advantages of model updating in other fields of application

6This method is equivalent to an inverse Guyan reduction.
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are demonstrated. The problem of detecting structural damage is chosen 

for this purpose and the advantages of model updating on the damage 

localisation accuracy are investigated.

The subjects of research are arranged as follows:

Chapter 2 provides an introduction to the standard experimental modal 

identification techniques used. Two analysis methods, allowing to transform 

measured time domain response data into frequency domain modal parameters, 

are described. The main test hardware components for data acquisition are 

introduced and the experimental errors originating from both analysis methods 

and measurement techniques are reviewed. Finally, the Ground Vibration Test 

Facility operated by DLR's Institute for Aeroelasticity is introduced.

In Section 3.2 the basic model updating method is set out. The algorithm 

used here has been established in publications by NATKE [126] and LINK [106, 

99]. The model optimisation process is based on the minimisation of a residual 

involving measured and analytical modal data, where the latter are non-linear 

functions of the model's mass and stiffness properties. Linearisation of the 

residual using a truncated Taylor series expansion and introducing a Jacobian 

matrix allows to compute the unknown correction parameters. In order to 

reduce the influence of noise in the experimental data the number of parameters 

should always be smaller than the number of measurements. This results in 

an over-determined equation system which is solved in a least squares sense.

In Section 3.3 a new model-based method for the localisation of structural 

damage is introduced. The method uses measured Frequency Response Func- 

tions (FRF) and modal data from a finite-element model to derive information 

on the damage location on the structure under investigation. A localisation 

criterion based on a correlation of measured and analytical damage-induced 

damping deviations is proposed. Experimental modal damping factors are 

obtained from fitting the measured FRFs to quadratic polynomials. A stan- 

dard Rayleigh damping approach and an analytical damage model are used to 

generate numerical damping factors for the healthy and damaged states.
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A novel method for the computation of optimised excitation force vec- 

tors for Phase Resonance Testing is proposed in Section 3.4. Unlike other 

approaches, no numerical data or preliminary assessments on the structural 

damping are needed. The method processes measured structural responses 

from harmonic single-point excitations at selected exciter locations. A new 

feature is the superposition of the measured responses such that the real-part 

response is minimised with respect to the total response. In the associated 

eigenvalue problem the eigenvector related to the smallest eigenvalue is used 

to compute the unknown force vector components for an optimised multi-point 

excitation. A further novel element is the option to calculate a Mode Indicator 

Function (MIF) from the corresponding structural response which allows for 

an a-priori assessment of the mode isolation quality and selection of the most 

promising exciter configuration.

Section 4.2 gives an overview of principal aspects related to the practical 

application of the model updating method set out in Section 3.2. A labora- 

tory test structure has been selected for simplicity. Experimental modal data 

were identified from the structural model and the generation of a finite-element 

model suitable for model updating is described. The problem of finding updat- 

ing parameters which are consistent to the errors in the mathematical model 

and additionally satisfy existing mathematical constraints is discussed and 

a new knowledge-based strategy for selecting a set of physically significant 

correction parameters is introduced. To demonstrate the performance of the 

updating method the model correction process is restricted to a fraction of the 

modal parameters from the experimental data base and an original attempt 

is made to use the resulting validated model to predict the remaining modal 

data and FRFs.

In Section 4.3 a simulation study is developed to investigate the influence 

of errors resulting from inaccuracies in the test hardware and experimental 

identification methods on the accuracy of the model corrections. Different 

representative categories of experimental uncertainties are numerically mod- 

elled and added to simulated experimental modal data. Error magnitudes are
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varied and the effect on substructure correction factors, frequency deviations, 

and mode shape correlation is investigated. Different numerical models are 

used to evaluate the role of modelling error magnitudes and locations.

An application to a large-scale industrial finite-element model of the EC 135 

helicopter [39] is described in Section 5.2. The initial finite-element model 

has been provided by Eurocopter Deutschland [38] and experimental modal 

data have been extracted from a Shake Test on the EC 135-S01 prototype. 

With the fundamental importance of parameter selection in mind and to en- 

sure a significant influence on the helicopter's overall dynamic characteristics 

preference regarding the selection of updating substructures is given to those 

components which constitute the aircraft backbone structure. To avoid incon- 

sistencies of the material parameters and enable an efficient parameterisation 

in the MSC/NASTRAN  finite-element code a novel technique for the pa- 

rameterisation of non-isotropic material regions is proposed.

In Section 5.3 the beneficial effects of model updating on the localisation ac- 

curacy of the damage localisation method introduced in Section 3.3 is demon- 

strated. The finite-element model of a basic aircraft component is updated 

using experimental mode shapes and natural frequencies from the undamaged 

test structure and the damage localisation accuracy obtained with the ini- 

tial and updated models are compared. Preliminary investigations involve an 

optimisation of positions for the excitation device and response sensor in or- 

der to maximise the amount of data acquired from the test structure and an 

assessment of the method's spatial resolution.

Finally, in Section 5.4 the method for the computation of optimised ex- 

citation force vectors introduced in Section 3.4 is evaluated with respect to 

performance as compared to other force tuning approaches and the potential 

to improve the quality of experimental modal data. Of particular interest with 

regard to the modal testing of complex aerospace structures are the capabilities 

of handling a high modal density, non-proportional damping, and restricted ac- 

cessibility to the test structure. A mathematical model is used for comparison 

with other methods. To assess effects not represented within the analytical
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model, like structural non-linearity, eigenfrequency shifts due to incomplete 

excitation, or systematic and experimental errors, the method is applied to a 

laboratory test structure. The performance under realistic test conditions is 

investigated during the Ground Vibration Test on the Polar Platform (PPF) 

[144] space structure.
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The experimental identification of a structure's characteristic dynamic re- 

sponse is a vitally important step in finite-element model updating. The 

measurement and analysis techniques comprised in this chapter provide the 

experimental modal reference data which is used to modify the analytical sys- 

tem matrices in order to adjust the model's numerical dynamic response to 

the measured response of the real world structure.

The following sections cover the two main categories of analysis methods 

for transforming measured time domain structural responses into frequency 

domain data, describe the core components of standard data acquisition and 

pre-processing hardware, discuss the most significant sources of experimental 

errors, and introduce the Ground Vibration Test Facility operated by DLR's 

Institute for Aeroelasticity [68].

A comprehensive introduction to modal testing has been given by EWINS 

[44]. ALLEMANG, BROWN, and HOST [2] and SNOEYS, SAS, HEYLEN, and 

VAN DER AUWERAER [156] have also discussed various aspects of vibration 

testing.
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Although modal parameters can be identified directly from the measured ex- 

citation f(t) and structural response eq. (1.24), processing time domain 

data generally is not practical for typical structural systems because of the 

quantity of the experimental data involved and the computational effort and 

due to the difficult interpretation of the results. Therefore, the first step in the 

extraction of modal parameters from an experimental structural response is to 

convert the measured signal into the frequency domain where it is described 

by its constituent frequencies and corresponding magnitudes. This is usually 

achieved by means of a Fourier series expansion

/, \ ^0 . x ^ i   /o i\ni rt . f*r\Q s 7 \ £jm \, ]V'fr/ o /vl I J \ /j=i

where the periodic response which is sampled at discrete steps over 

a time period T, is represented by a finite number of spectral coefficients

]v
n=l

o  27T? 

n=l

Likewise, the transformation can be applied to the excitation force signal to 

compute the Frequency Response Function (FRF)

FRF(o;) = , (2.3)

where and are the Fourier transformations of the response and 

excitation force, respectively. Most post-processing methods use the Frequency 

Response Functions as input to compute experimental eigenfrequencies and 

mode shapes. They are commonly classified into Phase Separation Techniques 

and Phase Resonance Techniques [135].
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Phase separation methods [105, 92, 162] can work with either broadband (ran- 

dom or impact) or single frequency (sine-sweep or step-sine) excitation sig- 

nals. The real-part (in-phase with the excitation signal) and imaginary-part 

(in quadrature to the excitation signal) of the complex structural responses 

are measured and correlated to the excitation forces to compute FRFs. The 

experimental FRFs are fitted to a polynomial, where the frequency is used as 

variable. The polynomial coefficients are obtained from least squares approx- 

imation techniques. When all measured FRFs are used the methods produce 

global estimates of the natural frequencies and damping ratios.

A major problem with phase separation techniques is to determine the ac- 

tual number of modes in the frequency range under investigation when the 

natural frequencies are closely spaced or in the presence of noise in the mea- 

sured structural response signals. Also, local modes which only appear in a 

few FRFs may be difficult to identify.

A phase separation technique is used in Section 5.2 to extract experimental 

modal data from measured structural responses.

Classical phase resonance techniques are the most frequently applied testing 

methods in aerospace. Their historical development can be traced back to the 

1920's [53]. The methods are considered to be established and reliable.

The basic idea of phase resonance techniques is to balance the structure's 

internal damping forces Du(£) in eq. (1.24) by applying a suitable external 

excitation f(t). As a result, the structure oscillates in a pure natural mode 

which allows to directly identify the modal parameters of the corresponding 

undamped system.

Phase Resonance Methods (PRM) work with single frequency excitations 

which enables them to apply high excitation energy levels to the test struc- 

ture resulting in high signal to noise ratios. The methods can separate closely 

spaced natural frequencies through the use of phase-coherent multi-point exci-



tation force vectors. The force components are individually tuned for each of 

the neighbouring mode shapes in order to amplify the response of one mode 

while the other mode is simultaneously suppressed. Furthermore, Phase Res- 

onance Methods are essential for the investigation of non-linear systems.

The methods main disadvantage is the time-consuming force tuning pro- 

cess. To save precious testing time and exploit the full potential of the Phase 

Resonance Method, especially with respect to the quality of the experimental 

data, a systematic approach for tuning the excitation force vectors is proposed 

in Section 3.4, where an in-depth theoretical treatment of the Phase Reso- 

nance Method is provided. The force tuning method is tested and compared 

to other force tuning techniques in Section 5.4. The Phase Resonance Method 

is used to identify the experimental modal reference data for model updating 

in Sections 4.2, 5.2, and 5.4.

The test hardware enables the acquisition of the input data needed by the 

experimental modal analysis methods which were delineated in the previous 

section. The test hardware basically consists of three main components:

  excitation devices to apply excitation forces f to the test structure,

  sensors to measure the corresponding dynamic structural response u(t), 

and

  equipment to record and process the measured data.

Electromagnetic shakers are most commonly used as excitation devices in 

Phase Resonance Testing.1 Because of their advantages as to operation and 

handling they were chosen for all experimental investigations in Sections 4.2,

1 Other possible excitation devices are impact hammers, hydraulic shakers, or devices 
incorporating rotating eccentric masses.
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5.2, and 5.4. Shakers provide an output force proportional to a specified elec- 

tric input current. The input current generates a proportional magnetic field 

in a cylindrical moving coil which is located in a static, homogeneous, outer 

magnetic field. The axial force generated in the moving coil by the superposi- 

tion of magnetic fields is proportional to the input current. A stinger is used 

to feed the excitation force into the structure. Having a low bending stiffness 

the stinger ensures that structural movements at the excitation point are not 

constrained by the shaker. It should be noted, however, that the masses of the 

moving coil and stinger and the stiffness of the coil suspension result in a local 

perturbation of the structure.

With the exception of extremely low frequencies the structural response is usu- 

ally measured in terms of accelerations which are more convenient to convert 

into an electric signal than deflections or strains. Acceleration sensors basically 

consist of a seismic mass mounted on an elastic suspension. When the sensor 

is subjected to an acceleration the seismic mass executes forced vibrations at 

the frequency of excitation. The deflection amplitude is proportional to the 

external acceleration when the eigenfrequency of the sensor element is high 

compared to the excitation frequency.

The majority of transducers uses the piezoelectric effect [120], where a 

mechanical strain generates an electric charge. A signal conditioning unit 

converts the charge into a proportional voltage for further processing. Other 

transducer types use inductive or magneto-resistive principles to transform 

accelerations into electric signals.

As in the case of attaching shakers the mounting of sensors adds mass to the 

structure and changes the modal parameters. The sensor masses are considered 

as being part of the structure in any subsequent analysis. If the additional 

sensor masses are not acceptable, e.g. with light-weight structures or high 

accelerations, remote sensing devices such as optical or inductive transducers 

must be used.



Except for the investigations performed in Section 5.3, where a piezoelectric 

sensor and a laser Doppler scanning vibrometer were utilised, all structural res- 

ponses throughout this thesis were measured using magneto-resistive sensors. 

They are described in more detail in Section 2.4.1.

The initial stage in a post-processing chain is to amplify the transducer out- 

put signals to an appropriate voltage range, usually ±5 V or ±10 V, to reduce 

the sensitivity to perturbations which are likely to occur in the further pro- 

cessing steps. Some types of sensors, like strain gauges or magneto-resistive 

accelerometers, may also require a phantom power supply. The next step is to 

remove any noise and disturbances beyond the frequency range of interest by 

appropriate filtering.

Today, all subsequent processing steps are commonly performed digitally. 

The analog data is sampled at discrete time steps by an analog-to-digital con- 

verter. The sampling rate required to retrieve the analog signal from the digital 

data must be at least twice the maximum frequency of the analog signal. This 

condition is known as Shannon's sampling theorem. Higher-order low pass 

filters are used to remove all frequencies beyond half the sampling rate from 

the analog signal and prevent aliasing effects. Aliasing would cause frequen- 

cies above half the sampling rate to appear as spurious low frequencies in a 

subsequent digital-to-analog conversion.

The measured data is now prepared to be analysed by appropriate com- 

puter hardware using the methods introduced in Section 2.1. A mobile data 

acquisition and signal processing facility [32, 34] which is particularly designed 

for vibration testing of large aerospace structures is described in detail in the 

next section.

Additionally, the suspension system which supports the test structure and 

defines the test boundary conditions may be regarded as part of the test set-
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up. To acquire significant results the test should as closely as possible simulate 

the operating conditions of the respective structure.

For aircraft the free flight or so-called 'free-free' boundary conditions are 

approximated by a low-frequency suspension. The frequencies of the rigid body 

modes (RBM) of the suspended structure should be sufficiently smaller than 

the lowest elastic mode. A problem with these suspensions is their low stiffness 

resulting in large static deflections due to the structure's weight. Free-free 

boundary conditions were chosen for the test cases investigated in Sections 4.2 

and 5.2.

The most critical operating conditions for satellites, i.e. the highest struc- 

tural loads, occur during lift-off when the satellite is mounted to the pay load 

bay of a launch vehicle. Typically, the launcher has a considerably larger mass 

and stiffness and primarily behaves like a seismic foundation. Therefore, satel- 

lites are usually fixed at their base during vibration testing. This set-up was 

used with the test cases described in Sections 5.3 and 5.4.

Limitations of the test hardware and experimental identification methods dis- 

cussed in the previous sections lead to inevitable imperfections in the measured 

modal data. With respect to model updating applications the most significant 

errors are the phase purity of the measured mode shapes, modal and spatial 

incompleteness, and measurement noise. A short review of publications deal- 

ing with the problems of complex modes and incomplete data is provided in 

the following sections. Random measurement errors have been considered by 

various authors [62, 41, 42, 19]. Systematic studies, however, have not been 

performed in the past. An investigation on the influence of experimental errors 

on the finite-element model corrections is provided in Section 4.3.
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A fundamental inconsistency between the numerical analysis and modal iden- 

tification test arises from the damping distribution in the test structure which 

leads to complex experimental mode shapes. With the exception of Phase 

Resonance Testing [27] any realistic structure will exhibit complex modes, 

unless an appropriated multi-point excitation is used in the identification pro- 

cess. The problem has been reviewed by CAUGHEY and O'KELLY [21] and 

MITCHELL [115]. According to NIEDBAL [136] a comparison of real analytical 

and complex experimental modes must be avoided since it is likely to prevent 

any model improvements based on measured modal parameters. Therefore, the 

measured complex mode shapes should be converted into real modes [133,135]. 

IBRAHIM [65] has presented a method to transform complex modes into real 

modes by directly solving the equilibrium equations for the undamped sys- 

tem to obtain an estimate for which may then be used to compute 

the eigenvalue problem of the damped system. The method works well for 

weakly damped structures with phase angles close to zero or 180 degrees. An- 

other method proposed by NlEDBAL [134] involves writing the complex mode 

shapes in terms of the real mode shapes using a complex transformation. The 

transformation matrix is computed from the real and imaginary components of 

the complex mode shapes. The errors introduced by some of the mode shape 

conversion methods were analysed by SESTIERI and IBRAHIM [153].

The second problem is the incompleteness of the experimental modal data 

with respect to both the number of identified mode shapes and the number 

of measured degrees of freedom. Modal incompleteness is due to the fact 

that the number of measured mode shapes is limited, mainly by the frequency 

range of the test hardware and the critical modal density of the experimental 

modal analysis methods.2 Spatial incompleteness is caused by the number of

2 A useful comparison of measured and analytical modal data may additionally be re- 
stricted by the accuracy of the mathematical model.
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measured structural response components being smaller than the number of 

degrees of freedom in the numerical model.

The improvement of the stiffness and flexibility matrix based on an incom- 

plete number of measured natural frequencies using weighted least squares has 

been investigated by NATKE, COLLMANN, and ZIMMERMANN [128]. Problems 

associated with the derivation of analytical model properties from incomplete 

data have also been addressed by BERMAN and FLANNELLY [12], BERMAN 

[11], NATKE [124], and MOTTERSHEAD [116].

The Ground Vibration Test Facility, Figure 2.1, operated by DLR's Institute 

for Aeroelasticity forms a central part of the framework within which this 

research is conducted. The facility comprises the test hardware required to 

carry out experimental vibration analyses on complex aerospace structures. In 

recent years, the test facility was used for modal identification and dynamic 

qualification tests on most major European military and civil fixed wing air- 

craft, helicopters, satellites, and other space structures. To allow for world 

wide operation the measurement equipment is installed in two mobile, air- 

conditioned, standard freight containers: Approximately 800 sensor channels 

and 24 independent excitation channels are available. Excitation, vibration 

recording, and data processing are controlled by a process computer.

Five electromagnetic exciter types of various sizes and force amplitude levels 

are available. 24 excitation channels are controlled simultaneously by the test 

facility. On most structures only a few excitation points are needed to isolate 

a mode shape, yet, the large number of excitation channels helps to avoid the 

time-consuming rearrangement of shakers during a test.

The shakers were modified by DLR in order to minimise their vibrating 

mass, grounded stiffness, and internal friction. This diminishes any interaction
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Figure 2.1: Ground Vibration Test Facility operated by DLR
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Parameter

Type

Quantity

max. Force

max. Stroke

Vibrating Mass

Height

Diameter

Exciter Mass

Value

DLR

12

16 N

±10 mm

83 g

190mm

95 mm

4kg

Table 2.1: Exciter Specifications

between the shaker and test structure and allows to determine the excitation 

force directly by measuring the voice coil current. The technical data of the 

shakers are given in Table 2.1.

Each exciter is mounted on a tripod of variable height. A slide bearing 

support decouples the shaker from the tripod stiffness. The support can be 

rotated around two perpendicular axes allowing for a free excitation force ori- 

entation in space. Lightweight rods link the shakers to the excitation points on 

the structure. The excitation forces are transferred to the structure by vacuum 

shoes or, for special applications, custom made adapters.

A digital high resolution frequency generator provides the harmonic input 

signal for the amplifiers which drive the shakers. All shakers are operated at 

the same frequency and phase angle. Force levels for each individual excitation 

channel are set on a control board. For multi-point excitations all force levels 

can be adjusted proportionally to conveniently investigate non-linearity effects.

The test structure's dynamic response is measured by magneto-resistive ac- 

celeration sensors. The sensors were developed by DLR and are specifically 

designed for low-frequency applications and good linearity. They were manu- 

factured under license by Georg Wazau Mefi- und Priifsysteme GmbH, Berlin, 

Germany. Table 2.2 lists the key specifications.
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Parameter

Type

Quantity

Measuring Range

Sensitivity

Resolution

Frequency Range

Resonance Frequency

Amplitude Linearity

Transverse Sensitivity

Temperature Sensitivity

max. Acceleration

Length

Diameter

Mass

Value

Wazau (DLR)

800

±1000 m/s2

~0.5mV/g

0.01 m/s2

0-300 Hz

> 600 Hz

<2%

<2%

~ 0.1 %/°C

±5000 m/s2

30mm

8 mm

8g

Table 2.2: Sensor Specifications

Two-sided adhesive tape is used to attach the sensors to the test structure. 

The actual sensor element rotates in an outer holder to allow its individual 

measurement direction to be aligned independent of the local surface orienta- 

tion.

A SUN 20/2 workstation is used to control the excitation frequency and force 

amplitudes and to process the sensor data. Every sensor signal is split into 

its real (in phase with the excitation reference signal) and imaginary (±90 

degrees phase shift to the excitation signal) component by means of vector 

meters. The signals are then fed into a set of multi-channel A/D-converters 

and stored on the workstation's internal hard disk drive.

The control software was developed by DLR to meet the particular require- 

ments of Modal Survey Testing which include an automated data acquisition, 

online post-processing, display of results, and data storage. The following 

functions are implemented:
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  automated sine-sweep excitation in a given frequency band,

  display of Mode Indicator Function (MIF), eq. (3.54), versus excitation 

frequency,

  recording of Frequency Response Functions (FRF),

  acquisition of mode shape deflection amplitudes, generalised masses, and 

modal damping factors, and

  online display of mode shapes (static/animated).

The Ground Vibration Test Facility was used as data acquisition system 

for the majority of test cases discussed in Chapters 4 and 5. Normal modes 

and Frequency Response Functions were measured on the structural model 

(SM) used by the GARTEUR3 Action Group 19, Section 4.2. A Shake Test 

and modal identification were performed on the prototype of the Eurocopter 

EC 135 helicopter in Section 5.2. Modal parameters of a laboratory test struc- 

ture, Section 5.4.2, and the Polar Platform satellite developed by the European 

Space Agency (ESA), Section 5.4.3, were identified. Table 2.3 gives an overview 

of the applications within the scope of this thesis.

3Grroup for Aeronautical Research and Technology in Europe
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In this chapter the procedures utilised for the improvement of numerical models 

using experimental modal data, the localisation of structural damage, and 

the experimental identification of natural frequencies and mode shapes are 

developed.

The theoretical background of the model updating method introduced by 

NATKE [126] and LINK [106, 99] is outlined in Section 3.2. The method per- 

forms an implicit estimation of analytical model parameters based on a least 

squares approximation to experimental modal data. It is assumed that the 

system is passive and linear and that the analytical system matrices are real, 

symmetric, and positive definite. The existing finite-element analysis [101,102] 

and model optimisation [100] computer codes are used. This enables to focus 

attention on the application-related aspects of the updating problem which 

will be discussed in Chapters 4 and 5.

In Section 3.3 a novel concept for the identification and localisation of de- 

lamination damages in carbon fibre reinforced polymers (CFRP) is introduced. 

The method is based on the observation of damage-induced modal damping 

variations and a correlation of measured data to an analytical model. The ap- 

proach is unique in that it allows to locate damage in a three-dimensional struc- 

ture using data from only a single structural response sensor. A technique to
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accurately measure the damage-induced deviations of modal damping factors 

is developed and a correlation coefficient for modal vector analysis is adapted 

to enable the identification and localisation of the damage. In Section 5.3 a 

stringer-stiffened aircraft panel is used as a test structure to generate experi- 

mental data for an undamaged and damaged case and to assess the proposed 

concept.

A new method for the computation of optimised multi-point excitation 

force vectors, which are needed for an accurate and consistent identification 

of the natural modes of complex structures in Phase Resonance Testing, cf. 

Section 2.1.2, is presented in Section 3.4. The method performs a superposition 

of structural responses from a series of preliminary sweep runs in different 

exciter configurations in order to minimise the real-part response with respect 

to the total response. Unlike other approaches, it does not rely on numerical 

data or assessments on the structural damping. Optimised excitation forces are 

determined in a non-iterative procedure and the associated achievable phase 

purity is assessed. The updating algorithm is shown in Figure 3.1 and various 

test cases are discussed in Section 5.4.



As with all model updating techniques, the main objective of the iterative 

method used here is to improve the correlation between experimental data 

from a test structure and the corresponding analytical model. This is achieved 

through a variation of model parameters in order to minimise a penalty func- 

tion, which describes the deviations between measured and computed data. 

The model parameters are associated with properties of structural compo- 

nents which due to inaccurate modelling require correction. As a result of 

the penalty function's non-linearity with respect to the model parameters, the 

optimisation problem needs to be linearised and solved using an iterative pro- 

cedure.

A major advantage of iterative updating techniques, as opposed to direct 

methods, is their capability to maintain the initial coincidence between degrees 

of freedom within the system matrices. This allows for model corrections which 

do not only reproduce the experimental data but also are capable to improve 

the analytical model's physical significance and provide valuable information 

on the modelling of complicated details.

In order to attain a selective correction of those model components which are 

assumed to contain modelling errors the system matrices of the initial finite- 

element model K 0 and M 0 are superimposed with a set of submatrices K; and 

Mj, representing the uncertain model regions and properties, to define the 

improved mass and stiffness matrices

K =
z=l

(3.1)

M -

Any structural modification to the original model is introduced through dis- 

crete correction factors a, and for each submatrix.
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The submatrices and Mj may consist of individual or groups of finite 

elements. Due to the manifold connections between each submatrix and the 

adjacent finite-element mesh the submatrices can not be extracted directly 

from the full system matrices but have to be individually built as separate 

models.

As to start the optimisation from the original analytical model the initial 

values for the correction factors c^ and are set to zero. For physically 

meaningful corrections a; and /?j must assume values larger than minus one. 

Otherwise, the stiffness or mass within the corresponding substructure vanishes 

or becomes negative.

A residual or error vector constitutes the penalty function for the model 

corrections

e(p) zfl (p) . (3.2)

The state vector contains experimental data (e.g. modal, frequency response, 

or force residuals) while za(p) is the vector of corresponding analytical model 

data, therefore being a function of the correction factors

pT = (..., , ... , ,...)  (3- 3)

The residual vector represents the optimisation criterion for the model cor- 

rections. The best approximation to measured reference data corresponds to 

a minimum of the residual. A range of possible choices for residuals will be 

discussed in more detail in Section 3.2.2.

The objective of the updating process is to find the correction factors c^ 

and which minimise the error vector, eq. (3.2). The minimisation usually re- 

quires a least squares approximation of analytical to experimental data because 

the system to be solved is over-determined, i.e. the number of components in 

exceeds the number of parameters in p. This leads to an objective function

J(P)=eT We £ + PT Wp p, (3.4)

where and Wp are regular symmetric matrices for the residual and the 

parameter vectors, respectively. An appropriate choice of the weighting matri-



ces allows to focus the optimisation process on particularly important experi- 

mental data or substructures [118, 126, 99]. Minimising the objective function, 

eq. (3.4), simultaneously reduces the deviations between experimental and ana- 

lytical data and constrains parameter variations throughout the iteration by 

means of which the solution process is stabilised.

To find a minimum for the objective function the partial derivatives of J(p) 

with respect to the correction factors need to be computed. This requires the 

residual, eq. (3.2), to be linearised in p by means of a truncated Taylor series 

expansion:
ftefrA

(3-5)

where subscript denotes the iteration step and

e(pK ) = za(pK ) . 

Introducing the Jacobian matrix

dp1

and

Ap = p«+i - p« (3.7)

eq. (3.5) may be rewritten as

* e(p«) - Ap . (3.8)

The Jacobian matrix describes the influence of correction factor changes 

on the analytical data. Therefore, it is frequently called sensitivity matrix or 

gradient matrix. The modified objective function now reads

J(Ap) = ApT Gj)   We   Ap) + ApT Wp Ap . (3.9)

With the necessary conditions for the minimisation

dJ(Ap)
\ A / ___ -| = ° (3'10) 

eq. (3.9) becomes



dAp
J Ap + (GJ GK )T Ap

Solving for Ap yields a linear system of equations for the unknown correction 

factors:

Ap - (Gj + Wp)-1   Gj W£ (3.11)

_ i

The quality of the solution will essentially depend on the choice of correc- 

tion parameters, the weighting, and the residuals [107].

Computing the correction factors from eq. (3.11) requires the Jacobian matrix 

and error vector to be determined and the weighting matrices We and Wp to be 

chosen appropriately. The residual is selected according to the given updating 

problem and controls the nature and amount of experimental data by which the 

analytical model is updated. Possible choices are eigenvalue and eigenvector 

residuals as well as force or response residuals. Within the scope of this thesis 

further considerations will concentrate on corrections based on modal data. 

Therefore, only the expressions for eigenvalue and eigenvector residuals will be 

developed in detail. A comprehensive collection and discussion of residuals is 

given in [126].

In the following sections an undamped system with real eigenvectors and 

eigenvalues will be assumed. In addition, a precise allocation between mea- 

sured quantities and the corresponding numerical model quantities as outlined 

in Section 1.3.3 must be established.1

lfThe allocation of experimental and analytical data may change as the correction pro- 
ceeds. It has to be checked within each iteration step.



Updating the analytical model in order to reproduce measured natural fre- 

quencies requires a residual of the form:

\ A e,i - Aa>

A e,2 - A a>2(p)

,AT A a># (p)

(3.12)

where A e>n are the squares of experimental eigenfrequencies and A a>n are analy- 

tical eigenvalues. To ensure a correct allocation of corresponding measured and 

analytical values the respective mode shapes and eigenvectors have to be con- 

sidered. Pairing of natural frequencies and eigenvalues in ascending order alone 

does not necessarily lead to a comparison of equal modes (cf. Section 1.3.3). 

The associated gradient matrix

9Aa,2 

(3.13)

is derived from the eigenvalue problem for the updated analytical model

(3.14)

Partial differentiation with respect to the correction factors yields

-A«   ' v  -" ' "' 

Eqs. (3.15) contain the required derivatives and additionally the 

eigenvector derivatives which will be used in Section 3.2.2.2. Left 

hand multiplication with and writing eqs. (3.15) for the eigenvalue 

results in

a,r

= 0. (3.16)
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With the generalised mass, eq. (1.37), of mode 

(3.17)

and taking into account the symmetry of the system matrices

the eigenvalue derivatives are:

(3.18)

Using eqs. (3.1) the final expressions for stiffness matrix corrections

and for mass matrix corrections

Aa,r 

are obtained.

Eqs. (3.19) and (3.20) require an eigenvalue solution in order to determine 

the derivatives with respect to the correction factors. For each mode the gra- 

dients for stiffness corrections are proportional to the substructure's 

potential energy and the gradients for mass corrections 

are proportional to the substructure's kinetic energy y>J>r. M^ </9a>r , respectively.

Updating the system matrices with experimental eigenfrequencies also provides 

corrected eigenvectors. Their accuracy, however, is usually lower as if they were 

directly involved in the optimisation process. To generate an analytical model 

that properly reproduces measured mode shapes a modified residual is used:



Correctly computing the differences in eq. (3.21) requires all vectors and 

Va,n to De normalised in the same way.

Due to the limited number of sensors on the test structure the experimen- 

tal mode shapes usually contain a smaller number of deflection components 

than the eigenvectors from the analytical model. As a result, the error vector 

does only include the degrees of freedom corresponding to the measurement 

locations whereas at all other degrees of freedom no conditions have to be 

fulfilled.

The eigenvector derivatives in the gradient matrix

Va

are approximated by a series expansion of all eigenvectors

To compute the coefficients eq. (3.15) again is written for mode and 

multiplied by v?J)f , where 

T ,, T / ,+ ̂ * r

Applying eq. (3.23) while keeping in mind the eigenvector's orthogonality with 

respect to the mass matrix yields

T,x x K)   ^ -¥>fl|t ( -A a> 9K-W. 0.25)

Because of

fors/t

eq. (3.25) reduces to

(3.26)



Using the generalised quantities, eqs. (1.37) and (1.38),

M and K (3.27)

and A 0)t = the coefficients for Aa^ ^ A 0)T. are

3M 9K ' (3.28)

In order to avoid a division by zero no repeated eigenvalues are permitted in 

eq. (3.28).

The remaining coefficient is derived from the expression for the gener- 

alised mass, eq. (3.17), by partial differentiation with respect to the correction 

factors:

Replacing the partial derivatives by the series expansion, eq. (3.23), gives

2

and because of

2 v?^ M 0

the last coefficient is

With eqs. (3.28) and (3.29) all coefficients for eq. (3.23) are determined 

and the partial derivatives can be computed. For eq. (3.23) becomes

l 8=1

Using eq. (3.1) to simplify eqs. (3.28) and (3.29) gives

K for r

0 for 

Similarly, for eq. (3.23) becomes

W, (3.31)
S=l



where

Co = <

<pT.M,-<p,., for 

for 

again using eq. (3.23) for simplification.

Analogous to Section 3.2.2.1 a solution of the eigenvalue problem from the 

analytical model is required. Starting from this eigenvalue solution all partial 

eigenvector derivatives needed to assemble the gradient matrix are given by 

eqs. (3.30) and (3.31).

Since an updated numerical model is usually expected to match both the ex- 

perimental eigenfrequencies and the mode shapes the error vectors, eqs. (3.12) 

and (3.21), and gradient matrices, eqs. (3.13) and (3.22), are used to form joint 

expressions

= ( ^ ) (3.32) 
\ e"/

and

GA . (3.33)
G,,

Introducing eqs. (3.32) and (3.33) into eq. (3.11) unfortunately reveals that the 

products GT We G and We contain elements of dissimilar dimensions. 

To retain eqs. (3.32) and (3.33) in the given form the frequency differences 

in eq. (3.12) and the modal vector differences in eq. (3.21) are replaced with 

normalised expressions

and (<£e,n "~ ,

respectively, where l/A norm and l/ywm are suitable normalisation factors, e.g. 

the largest observed deviations between analytical and experimental data. Par- 

tial differentiation with respect to the correction factors according to eq. (3.6) 

reproduces identical normalisation factors l/A norm and l/<^norm in the respec- 

tive gradient matrix terms. As a result, the correction factors can be computed 

from eq. (3.11).
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This section has developed the procedures which will be applied in the pro- 

cess of improving finite-element models using experimental modal data as a 

reference.

The initial numerical model is parameterised by means of a superposition of 

the original system matrices and a set of correction submatrices which charac- 

terise the supposedly erroneous model regions, eq. (3.1), and enable a selective 

correction of existing modelling errors. The numerical model optimisation is 

controlled through a residual vector, eq. (3.2), containing the experimental and 

corresponding analytical vibration data toward which the model shall be im- 

proved. Since, in most cases the system to be solved is over-determined, i.e. the 

number of measurements exceeds the number of correction parameters, a least 

squares approximation, eq. (3.4), is utilised to find a minimum of the residual. 

As a result, a linear system of equations for the unknown correction factors, 

eq. (3.11), is obtained. Solving eq. (3.11) involves the definition of appropriate 

weighting matrices and the computation of a Jacobian matrix from analytical 

modal data, eqs. (3.13) and (3.22). Due to the residual's non-linearity with 

respect to the correction factors the model optimisation problem needs to be 

solved by means of an iterative procedure. The algorithm, made available as a 

computer code [100] from the Lightweight Structures and Structural Mechanics 

Laboratory, University of Kassel [96], is sketched in Figure 3.1.
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Figure 3.1: Updating Algorithm
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The occurrence of structural damage in elasto-mechanic structures is directly 

related to changes in their dynamic characteristics. Solving the inverse prob- 

lem, i.e. deriving reliable information on the damage location and size from 

experimental vibration data, has been a subject of research for decades. The 

initial impetus has come from the offshore industry [163, 110, 168, 28, 70] 

where the harsh mechanical and chemical environment requires a permanent 

observation of the structural integrity. Some contributions have also been 

made recently by the civil engineering community, e.g. [54, 45, 147]. Here, the 

surveillance of bridges and buildings and the assessment of earthquake damage 

are the most important subjects.

Major applications for damage detection methods are emerging in aero- 

space owing to the high operational safety standards and low level of redun- 

dancy in light-weight structures. Modal approaches appear particularly attrac- 

tive since, as a result of a local event (the damage), the structure's dynamic 

characteristics are affected globally. This allows to identify a damage from 

measurements in remote undamaged areas. Therefore, modal approaches are 

most suitable when the structural accessibility is limited and when no a-priori 

knowledge on the possible damage location is available.

Hence, the key task of modal damage diagnoses is to observe global phe- 

nomena and to identify the associated local events. The identification process 

usually involves a mathematical model of the examined structure. Using this 

model the relation between a damage and variations of the dynamic proper- 

ties is inverted mathematically. For most practical applications, however, only 

a finite-element model is available. In this case, information on the damage 

location is obtained from a comparison between analytical and experimental 

quantities.
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Among the most attractive new materials for aerospace applications are fi- 

bre reinforced polymers. Unfortunately, these fibre materials respond highly 

sensitive to surface impacts caused for example by projectiles or during main- 

tenance. If the energy of the impacting object exceeds a specific threshold the 

internal bonding between adjacent fibre layers is destroyed over a certain area 

around the impact location. In the delamination region the unbonded fibre 

layers are free to glide along the fibre plane directions which leads to a local 

reduction in shear stiffness and additional friction.

Generally, the damaged component's surface is left intact and the delam- 

ination remains invisible. Appropriate conventional inspection techniques are 

usually based on ultrasonic wave scan methods. Being time consuming and 

cost intensive the aircraft industry now is strongly interested in alternative 

methods.

Regarding the structures dynamic behaviour the decreased shear stiffness 

causes the natural frequencies to decline and the additional friction is perceived 

as an increased modal damping. Minor alterations also occur in the mode 

shapes. Yet, the influence of the damage is mainly restricted to its immediate 

vicinity and decreases rapidly with distance from the damage location [127]. 

Due to this, the monitoring of mode shape deflections would require a high 

sensor density which apparently is not very suitable for aerospace applications.

Despite some promising results [164, 111] the sensitivity of natural frequen- 

cies with respect to general structural damage typically is rather low. With 

delamination damages in particular, however, the increased damping is clearly 

observable [69]. Nonetheless, the amount of additional friction generated by 

the delamination depends on the distribution of shear deformations over the 

damaged area. Since the distribution of shear deformations varies within the 

global deflection field the increase of damping is a function of the damage 

location and depends on the mode shape.

Simple as it appears, no working method currently exists for structures 

exceeding the complexity of simple beams, especially when the experimental
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data is incomplete and contains measurement errors [22, 51, 165]. As in most 

inverse problems ill-conditioning is a major concern. To avoid this it is essen- 

tial to limit the localisation problem to its basic aspects, that is to reduce the 

number of unknown quantities such that only a minimum number of parame- 

ters need to be determined. Therefore, the investigations will be focussed on a 

single concentrated damage and linear behaviour is assumed before and after 

damage has occurred.

The localisation method proposed here [86, 87, 82] is based on observing 

the differences of modal damping between a healthy, i.e. undamaged, and a 

damaged configuration for a range of mode shapes and a subsequent compari- 

son of experimental and analytical data. Regarding the monitored test article 

this involves measuring the structural response and extracting damping factors 

(Section 3.3.2) for both the healthy and the damaged state. For the respective 

numerical model a damping distribution must be modelled (Section 3.3.3) and 

a realistic finite-element model of the delamination damage has to be gener- 

ated in order to derive analytical data for the healthy and the damaged state. 

The damage location, being unknown at this point, is the variable of the lo- 

calisation problem. Comparing experimental and analytical damage-induced 

damping deviations for a sufficient number of mode shapes (Section 3.3.4) re- 

veals that the correlation varies with the damage position in the finite-element 

model. The highest degree of similarity is associated with a coincidence of the 

damage position in the finite-element model and the real damage location on 

the test structure. The correlation coefficient is therefore used as the criterion 

to determine the damage location.

In Section 5.3 an application to to a stringer-stiffened fuselage panel made 

of carbon fibre reinforced polymers (CFRP) is described and the advantages 

of using an updated finite-element model are emphasised.

The extraction of experimental damping values from measured frequency re- 

sponse data is based on a polynomial curve fit. Assuming the damping to be
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sufficiently low and the resonance frequencies to be adequately spaced the mea- 

sured structural response in the vicinity of a resonance approximated by 

a proportionally damped one-degree-of-freedom system with mass m, damp- 

ing factor 97e>n, and eigenfrequency The system's response to a stationary 

harmonic excitation force f(<j) is given by

If f(o;) = the inverse response is a quadratic polynomial in

1 o /  «-x(3.35)

with the coefficients

2 /« o^\, 6n = , and cn =   o;n . (3.36)
I i i

Solving for yields the unknown damping factor:

  6n \   or (3.37)

The coefficients an, 6n , and cn are easily obtained from a polynomial curve fit 

around the resonance frequency 

Eqs. (3.37) allow to compute modal damping factors from experimental fre- 

quency response data. To derive the corresponding quantities from the analy- 

tical model a damping matrix is assembled from a linear superposition of the 

mass and stiffness matrices as outlined in Section 1.2.7.2. Rewriting eq. (1.29) 

using the generalised properties from eqs. (1.37) and (1.38) results in

+ (3.38) 

The damping factor of a given mode is defined as

39) 
^ J
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The proportionality constants and are chosen such that the 77a>n from the 

finite-element model provide the most accurate approximation to the measured 

modal damping values of the undamaged structure in a least squares sense.

The correlation of experimental and analytical data is based on the damage- 

induced differences of the damping factors obtained from eqs. (3.37) and (3.40). 

The deviation of measured damping factors is

(3.41)
'le,n

where denotes the measured damping value of mode for the healthy 

structure, whereas (xe) is the corresponding value after damage has oc- 

curred. The (unknown) damage location is described by the vector xe. For 

analytical damping deviations

with xa being the location vector for the modelled damage. Computing the 

deviations according to eqs. (3.41) and (3.42) requires response measurements 

on the healthy and the damaged structure and computing analytical damping 

factors for the healthy and damaged states, respectively.

Writing the modal damping deviations from a set of measured modes as 

a vector results in

Arj e(xe) =

^ A770)7v(xe) 

56



and, for the appropriate computed modes,

^ A77a)Ar (xa)

The experimental and analytical damping deviations are compared through a 

correlation coefficient for modal vector analysis [1]:

As the damage position in the finite-element model is varied the correlation 

between numerical and experimental data will also vary. Assuming that a 

sufficient number of modes is considered the correlation coefficient will have 

a unique maximum exactly when, and only when, xa approaches xe:

C(xa,xe)  max. xa -> xe . (3.46)

If C(xa,xe) has more than one local maximum the number of mode shapes 

needs to be increased to refine the spatial resolution.

Eq. (3.46) is the criterion to locate the damage on the test structure. It 

allows to identify a local event (the damage) from observing global charac- 

teristics, in this case the deviations of modal damping, at arbitrary sensor 

locations.

A new concept for identifying and localising delamination damages in CFRP is 

introduced. Processing damage-induced modal damping variations and corre- 

lating the experimental data to a mathematical model enables locating damage 

in a three-dimensional structure using a single structural response sensor. The 

method involves a novel technique for the extraction of modal damping factors 

from a measured structural response, a standard approach for the modelling of 

damping in the numerical model, and a newly developed localisation criterion 

based on the correlation of experimental and analytical data.
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In order to obtain sufficiently accurate modal damping measurements the 

structural response around each resonance frequency is approximated by a 

proportionally damped one-degree-of-freedom system. Now, the inverse of the 

response, eq. (3.35), is expressed as a quadratic polynomial in and the damp- 

ing factors can be computed from the coefficients of a polynomial curve fit.

The associated analytical modal damping factors are derived from a pro- 

portional damping approach, eq. (1.29), where a damping matrix is assembled 

from a linear superposition of mass and stiffness matrices given from the ex- 

isting numerical model.

Damage localisation is based on a comparison of measured and computed 

damage-induced modal damping variations utilising a correlation coefficient 

for modal vector analysis, eq. (3.45). The location of the structural damage 

is associated with the maximum in the correlation coefficient. An overview of 

the individual working phases is provided by the flow chart in Figure 3.2.
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Figure 3.2: Flow Chart of Damage Localisation Procedure
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Ground Vibration or Modal Survey Testing is a commonly applied procedure to 

investigate the dynamic characteristics of aerospace structures [44]. Typical 

applications for the experimental data gained from these tests are aeroelas- 

tic stability calculations, response analyses, and numerical model corrections 

[136]. Today, the Phase Resonance Method (PRM) provides a reliable tool for 

the experimental identification of the dynamic behaviour of elasto-mechanic 

structures [53]. Especially the method's ability to directly identify normal 

modes makes Phase Resonance Testing particularly suitable for acquiring the 

experimental reference data for model updating [136].

The PRM involves a direct measurement of modal parameters and there- 

fore allows for high-quality test results [120]. This, however, is associated 

with a major disadvantage: Phase resonance testing requires the use of an 

appropriated excitation force vector to balance the test structure's internal 

damping forces. The force tuning process results in an extended test duration 

as compared to other methods [132]. Further problems arise from the restricted 

accessibility of modern space structures due to their increasing complexity and 

dimensions [133].

Several systematic approaches for tuning the excitation forces have been 

suggested in the past, all having individual advantages and specific drawbacks. 

LEWIS and WRISLEY [93] have assumed the shaker force at a given location 

to be proportional to the product of local mass and deflection. TRAILL-NASH 

[161] has performed a superposition of structural responses to fulfil the phase 

resonance criterion. ASHER [4] has derived an admittance matrix from mea- 

sured structural responses to compute the unknown excitation force compo- 

nents. ANDERSON [3] has used the inverse of the modal force matrix. HUNT, 

VOLD, PETERSON, and WILLIAMS [64] and NIEDBAL and KLUSOWSKI [137] 

have applied different criteria to minimise the real-part response with respect 

to the total response.

The method proposed here [73, 84] is based entirely on experimental data. 

It does not require any additional information such as a mass matrix from a



finite-element model or assumptions on the structural damping. The locations 

and force components, which most appropriately match the phase resonance 

criterion, are determined in a single step and the corresponding Mode Indicator 

Function (MIF), eq. (3.54), is predicted. By applying the pre-computed force 

vector the time-consuming mode tuning process becomes dispensable and the 

test duration is reduced considerably while an optimum modal data quality is 

assured.

The following sections provide a brief introduction to the PRM and give a 

theoretical outline of the force tuning procedure. Applications to a laboratory 

test structure and to the European Space Agency's (ESA) Polar Platform 

satellite are described in Sections 5.4.2 and 5.4.3, respectively.

Starting from the dynamic equilibrium equations (1.24) introduced in Sec- 

tion 1.2.6

M + D + K (3.47)

the structural response to a forced sinusoidal excitation with all force compo- 

nents in phase such that:

(3.48)

is given by

(&(u) + 9(u)) (3.49)

with f as a vector of excitation force components, u as the vector of complex 

response amplitudes, and 9ft(u) and S(ii) as the corresponding real and imag- 

inary components. Introducing eqs. (3.48) and (3.49) into the equations of 

motion the real and imaginary parts of eq. (3.47) become

+ K) 8(u) - u;D 9(u) = f , (3.50) 

D + (-u;2M + K) 9(u) = 0 . (3.51)

Claiming the real part of the response vector 3ft(u) to be zero, which constitutes 

the necessary condition for the excitation of a normal mode, yields

~wD9f(u)=f, (3.52) 
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(-o;2M + K) 9f(u) = 0 . (3.53)

Hence, the real-part response vanishes precisely when the external excitation 

force is in balance with the internal damping forces of the test article, eq. (3.52), 

and when the imaginary response and excitation frequency fulfil the eigenprob- 

lem of the undamped system, eq. (3.53). In the close vicinity of a resonance 

the structure behaves like a one-degree-of-freedom system.2

From the physical view point the damping forces in eq. (3.47) cause a coup- 

ling of all existing eigenvectors. As a result, the structural response for each 

frequency is given by a superposition of all mode shapes. Compensating the 

damping forces by means of an excitation force vector according to eq. (3.52) 

removes the coupling and allows the system to oscillate in a single mode.

Accordingly, the test procedure is to adjust the individual excitation force 

components to the (unknown) damping forces and to simultaneously tune the 

excitation frequency until all real parts of the dynamic response are zero. Now, 

the eigenfrequency and natural mode shape may be recorded.

In order to check the phase resonance criterion 9ft(u) = 0 efficiently the 

Mode Indicator Function (MIF) proposed in [15] is used, where:

E \rr\S 

MIF = 1 - ̂        . (3.54)
v '

£ Iflml* 
m=l

When all real-part responses vanish and the test structure vibrates in a normal 

mode the mode indicator approaches a value of one.3 The Mode Indicator 

Function has a highly sensitive response to phase purity and has proven to be 

a powerful tool in conveniently identifying and isolating the normal modes of 

a complex structure.

Despite of the time-consuming force tuning process the Phase Resonance 

Method features several substantial advantages compared to other experimen- 

tal modal analysis methods:

2In particular, this requires a proportional damping of the form D = M + K, 
eq. (1.29).

3 Following a common practice the MIF-values will hereafter be multiplied by a factor of 
103 ,i.e. 0< MIF < 1,000.



  Mode shapes are measured directly without the need for any off-line 

post-processing.

  The results are available immediately and are verified while the test is 

still in progress.

  The method provides a high level of accuracy and the risk of missing a 

particular mode is small.

Since the selection of exciter configurations and tuning of force vector com- 

ponents constitute a major fraction of the total test duration various system- 

atic techniques, which allow the process to be automated, have been developed 

in the past. Today, the results of Modal Survey Tests are regularly used for 

updating of numerical models and the capability to improve the quality of the 

experimental modal data has become a new substantial aspect of all force tun- 

ing procedures. Typical contemporary aerospace structures usually possess a 

complex dynamic behaviour and a high modal density. As a result, suitable 

excitation force tuning methods are subject to the following requirements:

  The method must allow for a separation of mode shapes with closely 

spaced eigenfrequencies (e.g. symmetric/anti-symmetric wing bending 

modes of an aircraft). This involves a deliberate excitation of the chosen 

mode shape and simultaneously a suppression of the adjacent mode or 

modes.

  The excitation force vectors are incomplete, i.e. the number of force 

components is much smaller than the number of structural degrees of 

freedom.

  Due to potential restrictions regarding the application of excitation forces 

and the limited accessibility of structural components the force compo- 

nents are prescribed by the user.

  An acquisition of all modal parameters in a given frequency range must 

be possible.



  Minor deviations from the theoretical assumptions inherent in the Phase 

Resonance Method (e.g. non-linearities or an inhomogeneous damping 

distribution) must be tolerated.

The excitation force vector for each individual mode shape needs to be ad- 

justed according to eq. (3.52). As a result of the damping being continuously 

distributed over the structure only an approximate solution for a discrete force 

vector matching the phase resonance criterion may be found. However, experi- 

ence gained during numerous modal identification tests of different structures 

of varying nature and complexity has shown4 that in practical use a few ap- 

propriately placed exciters are sufficient. Still, the individual force amplitude 

components have to be tuned to the point where a good mode isolation is 

attained.

The first step in a Ground Vibration Test employing the Phase Resonance 

Method usually is to obtain response data from several sine-sweep runs at 

different exciter locations. The mode isolation process is then started based on 

the measured Mode Indicator Function values. The proposed method performs 

a superposition of structural responses from the different sweep runs so that 

a minimisation of the real-part response with respect to the total response 

is achieved. For each resonance r, i.e. each maximum of the MIF, the real 

and imaginary response vector components 5R(uc)r and for the exciter

configuration and the associated force vector fj? are recorded. The different 

response vectors are written as matrices

»(U)r , . . . , , . . . , 5R(u)r ] (3.55) 

and

9f(U)r = [ 3(u)J , . . . , 3(u)< , . . . , 9(u)rc ] . (3.56) 

For each mode a force vector must be found so that the real-part response is

4According to DLR's Ground Vibration Test Facility operation personnel.
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