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Abstract

Initial work on mapping CFD codes onto parallel systems focused upon software which 

employed structured meshes. Increasingly, many large scale CFD codes are being based 

upon unstructured meshes. One of the key problem when implementing such large scale 

unstructured problems on a distributed memory machine is the question of how to 

partition the underlying computational domain efficiently. It is important that all 

processors are kept busy for as large a proportion of the time as possible and that the 

amount, level and frequency of communication should be kept to a minimum.

Proposed techniques for solving the mapping problem have separated out the solution into 

two distinct phases. The first phase is to partition the computational domain into cohesive 

sub-regions. The second phase consists of embedding these sub-regions onto the 

processors. However, it has been shown that performing these two operations in isolation 

can lead to poor mappings and much less optimal communication time.

In this thesis we develop a technique which simultaneously takes account of the processor 

topology whilst identifying the cohesive sub-regions. Our approach is based on an 

unstructured mesh decomposition method that was originally developed by Sadayappan 

et al [SER90] for a hypercube. This technique forms a basis for a method which enables 

a decomposition to an arbitrary number of processors on a specified processor network 

topology. Whilst partitioning the mesh, the optimisation method takes into account the 

processor topology by minimising the total interprocessor communication.

The problem with this technique is that it is not suitable for dealing with very large 

meshes since the calculations often require prodigious amounts of computing processing 

power.

The problem can be overcome by creating clusters of the original elements and using this 

to create a reduced network which is homomorphic to the original mesh. The technique

vi



can now be applied to the image network with comparative ease. The clusters are created 

using an efficient graph bisection method. The coarseness of the reduced mesh inevitably 

leads to a degradation of the solution. However, it is possible to refine the resultant 

partition to recapture some of the richness of the original mesh and hence achieve 

reasonable partitions.

One of the issues to be addressed is the level of granuality to obtain the best balance 

between computational efficiency and optimality of the solution. Some progress has been 

made in trying to find an answer to this important issue.

In this thesis, we show how the above technique can be effectively utilised in large scale 

computations. Results include testing the above technique on large scale meshes for 

complex flow domains.
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__________________________________________Chapter 1

1.1 Introduction

Many large scale computational problems are based on unstructured computational 

domains. By using unstructured meshes, this allows the code to cater for completely 

general geometries and hence a wide range of problems in both two and three space 

dimensions. Examples include unstructured grid calculations based on finite volume 

methods in computational fluid dynamics, or structural analysis problems based on finite 

element approximations.

Software packages have been developed with the intention of using the results of the 

analysis for solving such problems. Analysis is carried out for the selected input 

parameters and the results are interpreted for optimising a design. This iterative procedure 

requires interpretation of results and also uses a vast amount of time for solving a given 

problem. To reduce the computation time, various optimisation procedures have been 

incorporated into the code. One practicable approach is to use parallel computation 

techniques. Therefore, there is a demand for parallel computers and the development of 

parallel algorithms to execute on these computers.

One of the important problems to be addressed in this situation is to devise means of 

actually employing a sufficiently high fraction of the raw computational power of a 

parallel computer. Overheads due to interprocessor synchronisation and communication, 

processors sitting idle due to contention for shared hardware resources, and uneven load 

balancing in the distribution of computational load can lead to poor overall performance. 

To optimise the speedup of a parallel program on a parallel computer requires the 

mapping of the parallel tasks of the program among the processors such that the 

computational load is distributed as evenly as possible and at the same time minimising 

the amount of communication between the processors.

This thesis investigates mapping the tasks associated with the solution of unstructured 

grid problems to the processors of a parallel computer such that the execution time is 

minimised.
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1.2 Outline of Thesis

In the remainder of Chapter 1, we define terminology and notation for graph theory that 

is used throughout the thesis. We then discuss various parallel architectures and various 

configurations that can be used. The mapping problem is discussed with a short summary 

of existing methods.

In Chapter 2, we give a brief outline of some of the existing techniques for graph 

partitioning and embedding. These are methods that we have looked at extensively and 

discussions of the analysis of each method is given.

Chapter 3 discusses the Recursive Clustering algorithm which is a method based on the 

Kerninghan-Lin mincut algorithm [KL70]. We have modified the Recursive Clustering 

algorithm so that our needs are catered for and descriptions of these modifications are 

discussed in Chapter 4.

This new modified algorithm gives reliable decompositions but one drawback is the time 

taken to decompose the meshes. We have overcome this problem and discussions of how 

this is done can be seen in Chapter 5.

Finally, Chapter 6 shows the parallel efficiency of the decompositions used together with 

conclusions and discussions of further work.
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____________ ______ Chapter 1

1.3 Graph Theory

The following terminology and notation is used throughout this thesis [Wil85], [BM76]. 

A graph G is a pair of sets [V,E] where V is non-empty and E is a set of unordered pairs 

of elements of V. The elements of V are called the vertices of G and the elements of E 

are called the edges of E. VG is used to represent the vertices of G and EG is used to 

represent the edges of G. The symbols i)G and eG are used to denote the number of 

vertices and edges in G. If only one graph is being considered, then the letter G will be 

omitted from the symbols, and therefore we use V, E, \) and e instead of VG , EG, 1)G and

Two graphs G and H are said to be isomorphic if there is a one-one correspondence 

between their vertices which has the property that two vertices are joined by an edge in 

one graph if and only if the corresponding vertices are joined by an edge in the other.

Two vertices u, v of a graph G are adjacent if there is an edge joining them i.e. <u,v> 

e E.

With each <u,v> e EG, let there be associated an integer c(<u,v>), called its edge weight, 

and with each v e VG , let there be associated an integer w(v) called its vertex weight. 

Then G, together with these edges and vertex weights is called a weighted graph.

A vertex v and an edge e are incident if v is one of the vertices of e.

The degree pG(v) of a vertex v in G is the number of edges incident with v.

Figure 1.1 shows a graph G where i) = 8 and e = 14.
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Figure 1.1: A graph G with 8 vertices

To any graph G, there corresponds an adjacency matrix. This is the i) x \) matrix 

A(G)=[ajj], where a^ is the number of edges joining YJ and YJ. The Laplacian matrix of 

a graph G is defined as L(G)=[ljj] where l ij=aij for i^j and l y =-pG(Vi) for each YJ e V.

Figure 1.2 shows the adjacency matrix and the Laplacian matrix for the graph G shown 

in Figure 1.1.
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Figure 1.2 Adjacency matrix and Laplacian matrix of the graph G shown in 

Figure 1.1
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____________ ____________Chapter 1

A directed graph (digraph) D=(V,E) is a graph whose edges are ordered pairs of vertices. 

With each digraph D we can associate a graph G on the same vertex set; corresponding 

to each directed edge of D, there is an edge of G with the same ends.

A network N is defined to be a weighted digraph with two distinguished subsets of 

vertices, X and Y, which are assumed to be disjoint and nonempty. 

The vertices in X are the sources and those in Y are the sinks of N. The edge weight C 

of each edge is a non-negative integer called the capacity.

A cutset in a network N is a set of edges which when removed disconnects the source 

nodes from the sink nodes.

The weight of a cutset is equal to the sum of the capacities of the edges in the cutset. 

The Max-Flow Min-Cut theorem [FF62] states that the value of a maximum flow in a 

network is equal to the weight of a minimum cutset of that network.
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1.4 Parallel Architectures

The availability of relatively cheap and efficient microprocessors has produced a 

tremendous upsurge in the development of parallel computers [Car88], [Cri88], [Duc86]. 

These computers now consist of numerous (up to thousands) of processors. These 

processors usually have reduced instruction sets and are frequently referred to as 

processing elements (PEs). This section gives a brief overview of some of the models 

that exist.

The SISD (Single Instruction Stream, Single data Stream) is the original von Neumann 

model of computation where only one instruction is processed at a time on a single item 

of data. Some parallelism may occur in the internal operations of such machines, for 

example, parallel loading and storing of data items along with actual arithmetic 

operations.

The MISD (Multiple Instruction Stream, Single Data Stream) performs several 

instructions simultaneously on a single stream of data. Strictly speaking, this category 

could contain the operation of internally parallel SISD architectures and pipeline 

processors, but since the user's understanding of computer architectures is in our interest, 

neither is included.

Computer architectures such as the SIMD (Single Instruction Stream, Multiple Data 

Stream) commonly known as vector or pipeline computer architectures. A SIMD 

computational model corresponds to a single stream of instructions each of which is 

applied to multiple data items.

A broad definition of a vector processor is where each processing element allows a 

sequence of identical operations at the same time but acts upon different sets of data. 

This type of operations is often featured in operations involving vectors of data.
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With pipeline processors, overlapping in the execution of instructions is permitted. The 

data enters the pipeline at the processing element performing the first stage of the 

operation, passing through the other processing elements until finally arriving at the last 

one for the final stage of the operation. Parallelism is achieved when several data items 

pass through such a pipeline, but with each item passing through different stages at the 

same time. It is important that every processing element in the pipeline is kept busy in 

order to achieve a significant speed-up. This is accomplished by passing several data 

items that need the same overall operation to be performed on them through the same 

pipeline. This is typical for vector operations where the data passing through the pipeline 

consists of each consecutive element of the vector(s) concerned.

1.5 MIMD Multiple Instruction Stream, Multiple Data Stream

This type of machine is the one that we are focusing on and it typically consists of a 

number of processing units each capable of executing its own program on separate sets 

of data. All the processing units are interconnected and to achieve parallelism, the overall 

task must be broken down into a group of many sub-tasks .

There are various designs of MIMD machines with a major distinguishing feature being 

the interconnection network. The two extreme classes of machines are discussed, namely 

the shared memory systems and distributed memory systems [Cri88].

Shared memory systems use a shared global memory that is accessible from every 

processing unit via a communication bus. The processors can be considered identical 

(providing the processors are of the same type) and the programmer need not be 

concerned with the issue of mapping which task of the computation onto which processor 

since communication between any pairs of processors is the same. Problems occur with 

such systems when large number of processors are used since the communication bus 

hardware becomes a bottleneck when many processors request access to the global 

memory. Another disadvantage is that the bus only permits one processor to access the
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global memory at any time. Thus if many pairs of processors require interaction on a 

pair-wise basis, they will have to do so in sequence rather than in parallel. Figure 1.3 

shows an example of a shared memory system.

Distributed memory systems consists of processing elements which have their own local 

memory unit. The processors are joined by an interconnection network so an overall task 

can be performed on by many processors and data can be sent from one processor to 

another. With this type of machine, the processors do not have to fight for access to the 

shared global memory and the communication bus does not become a bottleneck, but data 

traffic bottlenecks can occur with a large processor network. Unlike the shared memory 

system, task to processor allocation is not arbitrary and a task should be placed on a 

processor that either holds the data to be accessed or can access the data through as short 

as possible a communications route. The program data should, if possible, be divided 

over all the local memories with a minimum of duplication to ensure efficiency of such 

a system. Figure 1.4 shows an example of a distributed memory system.

PVM (Parallel Virtual machine) [SHH94] from ORNL has become a de-facto standard 

for message-passing systems and because it is freely available, it has spread all over the 

academic community and beyond. PVM has been ported to a big variety of currently 

available machines ranging from workstations to MPP-systems. The highlight of PVM 

is its usability in heterogeneous environments. However, its functionality is limited. 

As a consequence, the international initiative MPI (Message Passing Interface) [Hem94] 

was started in 1992 by the Center for Research in Parallel Computing at Rice University 

and Oak Ridge National laboratory. The goal is to define a message passing interface 

which will then be implemented and supported by all hardware manufacturers. It was not 

the design goal to support low-level features to be used by parallelising compilers. The 

focus of MPI is the point-to-point communication between pairs of processors, and 

collective communication within process groups. More advanced concepts allow creating 

those groups, and giving them topological structure.
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Interconnection Network

P E : Processing Unit 
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Figure 1.4: Distributed Memory System
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1.6 Processor Configurations

The processor network used can be in a number of different configurations [Car88]. The 

configuration chosen should be influenced by the data access structure of the code 

concerned. The amount of communication time acquired can be minimised by a sensible 

choice of network configuration. Examples of network configurations are shown in Figure 

1.5.

(a)

(b)

(c)

Figure 1.5: Processor Configurations 

(a) Chain; (b) Grid; (c) 3 Way Hypercube
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1.7 Parallel Performance Measurement

There are two practical ways in which performance of software on parallel systems can 

be measured. The first is speedup (Sp) which is defined as:-

~ _ Time on a single processor 
Time on p processors

Sp gives the number of times faster the software executes on p processors as opposed to 

the execution on a single processor [HJ81], However, there are two possible single 

processor times that can be used, both carrying slightly different information about the 

software.

Firstly, if the single processor time is that of the best serial version, using optimal serial 

algorithms, then the speedup signifies the advantage of using a parallel machine rather 

than a serial machine. If the algorithms used for the parallel version are different to those 

in serial, then the speedup figure can be reduced because the serial performance may be 

sacrificed for the parallel nature of the new algorithm. The second single processor time 

that can be used is that of the parallel version being run on a single processor. This 

speedup represents the performance of a parallel machine as more processors are used 

and not performance over serial because any serial version should always use the best 

serial algorithms available.

Efficiency is the second measure of performance of software on MIMD machines and 

this is a measure of how well an application uses the available computer power. Again, 

there are two types that can be used. The first is known as efficiency percentage (Ep) and 

it is given by :

Ep = * 100 = sPeeduP on P processors

Ep indicates the percentage of available processor time which has been beneficially used,
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j-, Total Idle Time ^ Ep = \ 
Total Processor Time

1.8 Control Volume Unstructured Grid Methods

1.8.1 Introduction
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1.8.2 Vertex Centred Approach

Figure 1.6: Finite element mesh
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Fig 1.7: Vertex-Centred Mesh-Control Volume
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1.8.3 Cell-Centred Approach

Fig 1.8: Cell-Centred Mesh-Control Volume
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1.9 The Mapping Problem

1.9.1 Statement of Problem

timecomn + iimecomp
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1.9.2 Objectives
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1.10 Summary of Existing Methods

1.10.1 Graph Partitioning Problem
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1.10.2 Graph Embedding Problem
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(a) Communication cost = 70

(b) Communication cost = 60

(c) Communication cost = 60

Figure 1.9: Possible 4-way partitions of a 40x20 grid with processor topology.
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1.10.3. Prior work on the Mapping Problem

Figure 1.10: A network flow graph constructed from a task graph with two vertices.
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2.1 Introduction

2.2 Nearest Neighbour 

2.2.1 Introduction
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2.2.2 Regular Grids

2.2.2.1 One Dimensional Strip Partitioning
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Precmon

Fig 2.1: Example of one-dimensional strip partitioning
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2.2.3 Non Regular Grids
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Figure 2.3: Example of a one-dimensional non-regular graph
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Figure 2.4: A simple mesh illustrating the limitation of 
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2.3 Recursive Spectral Bisection 

2.3.1. Introduction

2.3.2 The Laplacian Matrix
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2.3.3 The Fiedler Vector
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a) Original mesh b) Partition into two using RSB

Figure 2.5: A simple mesh illustrating the RSB producing disconnected sub-domains

tn Pi10 r

Figure 2.6: Recursive Spectral Bisection Algorithm.
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2.3.4 Analysis of Method

2.3.5 Multilevel Recursive Spectral Bisection
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2.4 Combinatorial Optimisation Methods

2.4.1 Introduction
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2.4.2 General Formulation
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