
Greenwich Academic Literature Archive (GALA)
– the University of Greenwich open access repository

http://gala.gre.ac.uk

__

Citation:

Jones, Beryl Wyn (1994) Mapping unstructured mesh codes onto local memory parallel architectures.
PhD thesis, University of Greenwich.

__

Please note that the full text version provided on GALA is the final published version awarded

by the university. “I certify that this work has not been accepted in substance for any degree,

and is not concurrently being submitted for any degree other than that of (name of research

degree) being studied at the University of Greenwich. I also declare that this work is the result

of my own investigations except where otherwise identified by references and that I have not

plagiarised the work of others”.

Jones, Beryl Wyn (1994) Mapping unstructured mesh codes onto local memory parallel architectures

. ##thesis _type## , ##institution##

Available at: http://gala.gre.ac.uk/6201/

__

Contact: gala@gre.ac.uk

http://gala.gre.ac.uk/
mailto:gala@gre.ac.uk

MAPPING UNSTRUCTURED MESH CODES ONTO LOCAL

MEMORY PARALLEL ARCHITECTURES

Beryl Wyn Jones

A thesis submitted in partial fulfilment of the

requirements of the University of Greenwich

for the degree of Doctor of Philosophy.

September 1994

This research programme was funded by SERC

Centre for Numerical Modelling and Process Analysis

School of Mathematics, Statistics and Computing

University of Greenwich

London U.K.

Contents

Table of Contents
Acknowledgements v

Abstract vi

Chapter 1: Introduction 1

1.1 Introduction 2

1.2 Outline of Thesis 3

1.3 Graph Theory 4

1.4 Parallel Architectures 7

1.5 MIMD Multiple Instruction Stream, Multiple Data Stream 8

1.6 Processor Configurations 12

1.7 Parallel Performance Measurement 13

1.8 Unstructured Control Volume Grid Methods 14

1.8.1 Introduction 14

1.8.2 Vertex Centred Approach 15

1.8.3 Cell Centred Approach 17

1.9 The Mapping Problem 18

1.9.1 Statement of Problem 18

1.9.2 Objectives 19

1.9.3 Complexity 19

1.10 Summary of Existing Methods 21

1.10.1 Graph Partitioning Problem 21

1.10.2 Graph Embedding Problem 23

1.10.3 Prior Work on the Mapping problem 26

Chapter 2: Overview of Existing Techniques 32

2.1 Introduction 33

2.2 Nearest neighbour 33

2.2.1 Introduction 33

2.2.2 Regular Grids 34

2.2.2.1 One Dimensional Strip Partitioning 34

Contents

2.2.2.2 Two Dimensional Strip Partitioning 36

2.2.3 Non Regular Grids 38

2.2.4 Analysis of Method 39

2.3 Recursive Spectral Bisection 41

2.3.1 Introduction 41

2.3.2 The Laplacian Matrix 41

2.3.3 The Feidler vector 42

2.3.4 Analysis of method 44

2.3.5 Multilevel Recursive Spectral Bisection 44

2.4 Combinatorial Optimisation Methods 45

2.4.1 Introduction 45

2.4.2 General Formulation 46

2.4.3 General Purpose Algorithms 47

2.4.4 Simulated Annealing 49

2.4.4.1 Introduction 49

2.4.4.2 Methodology 49

2.4.4.3 Addressing Graph Partitioning .. 50

2.4.4.4 Analysis of Method 51

2.4.5 Tabu Search 52

2.4.5.1 Introduction 52

2.4.5.2 Methodology 52

2.4.5.3 Analysis of Method 55

Chapter 3: Recursive Clustering Algorithm 57

3.1 Introduction 58

3.2 Kerninghan-Lin Graph Bisection Method 58

3.2.1 Definition of Problem 58

3.2.2 Analysis of Method 68

3.2.3 Running Time of the Algorithm 69

3.3 Using Recursive Clustering to Partition Unstructured Meshes 69

3.4 Cost Function 72

n

_____ ______________ ____________Contents

3.5 The Algorithm 73

Chapter 4: Extension of the Recursive Clustering Algorithm .. 79

4.1 Introduction 80

4.2 Eliminating Constraint of 2" Sub-meshes 80

4.3 Local Minima Trap 81

4.3.1 Type 1 81

4.3.2 Type 2 81

4.3.3 Renumbering Elements 83

4.3.4 Cuthill-McKee Algorithm 88

4.4 Specifying Processor Topology 94

4.5 The Algorithm 102

4.5.1 Routine "Input" 103

4.5.2 Routine "Form_Clusters" 104

4.5.3 Routine "Swapset" 105

4.5.4 Routine "Findg" 108

4.6 Test Cases 109

4.7 Larger Meshes 113

Chapter 5: Dealing with Large Meshes 117

5.1 Introduction 118

5.2 Creating Super-Elements 119

5.2.1 Recusive Graph Bisection 120

5.2.2 Image Network 124

5.3 Level of Granualarity 133

5.4 Conclusion 142

Chapter 6: Computational Results and Conclusions 143

6.1 Introduction 144

6.2 Parallelisation of UIFS 144

in

__ _______________ ______________Contents

6.3 Mesh Division 145

6.4 Efficiency of Parallel Solution 147

6.4.1 Simple 2D problem 147

6.4.2 Larger Meshes 151

6.5 Conclusions and Further Work 154

Appendix A 159

References 163

IV

Acknowledgements

I would like to thank my supervisors Professor Martin Everett and Professor Mark Cross

for their invaluable advice, encouragement and guidance received during the course of

this research.

I would also like to thank Steve Johnson for the indispensable discussions and assistance

at various stages of the research.

Peter Lawrence and Kevin McManus are also gratefully acknowledged.

Thanks also go to the staff at the School of Mathematics, Statistics and Computing and

to the postgraduates at the Centre for Numerical Modelling and Process Analysis of the

University of Greenwich for providing a good working environment.

Thanks also to Frank for those unforgettable three days at Prague.

Finally, the financial support provided by the Science and Engineering Research Council

is gratefully acknowledged.

Abstract

Initial work on mapping CFD codes onto parallel systems focused upon software which

employed structured meshes. Increasingly, many large scale CFD codes are being based

upon unstructured meshes. One of the key problem when implementing such large scale

unstructured problems on a distributed memory machine is the question of how to

partition the underlying computational domain efficiently. It is important that all

processors are kept busy for as large a proportion of the time as possible and that the

amount, level and frequency of communication should be kept to a minimum.

Proposed techniques for solving the mapping problem have separated out the solution into

two distinct phases. The first phase is to partition the computational domain into cohesive

sub-regions. The second phase consists of embedding these sub-regions onto the

processors. However, it has been shown that performing these two operations in isolation

can lead to poor mappings and much less optimal communication time.

In this thesis we develop a technique which simultaneously takes account of the processor

topology whilst identifying the cohesive sub-regions. Our approach is based on an

unstructured mesh decomposition method that was originally developed by Sadayappan

et al [SER90] for a hypercube. This technique forms a basis for a method which enables

a decomposition to an arbitrary number of processors on a specified processor network

topology. Whilst partitioning the mesh, the optimisation method takes into account the

processor topology by minimising the total interprocessor communication.

The problem with this technique is that it is not suitable for dealing with very large

meshes since the calculations often require prodigious amounts of computing processing

power.

The problem can be overcome by creating clusters of the original elements and using this

to create a reduced network which is homomorphic to the original mesh. The technique

vi

can now be applied to the image network with comparative ease. The clusters are created

using an efficient graph bisection method. The coarseness of the reduced mesh inevitably

leads to a degradation of the solution. However, it is possible to refine the resultant

partition to recapture some of the richness of the original mesh and hence achieve

reasonable partitions.

One of the issues to be addressed is the level of granuality to obtain the best balance

between computational efficiency and optimality of the solution. Some progress has been

made in trying to find an answer to this important issue.

In this thesis, we show how the above technique can be effectively utilised in large scale

computations. Results include testing the above technique on large scale meshes for

complex flow domains.

vn

To Dad

Gresyn blodeuyn mor deg

Ei ffoi cyn fo'i adeg

Vlll

Chapter 1

Chapter 1

Introduction

page 1

__Chapter 1

1.1 Introduction

Many large scale computational problems are based on unstructured computational

domains. By using unstructured meshes, this allows the code to cater for completely

general geometries and hence a wide range of problems in both two and three space

dimensions. Examples include unstructured grid calculations based on finite volume

methods in computational fluid dynamics, or structural analysis problems based on finite

element approximations.

Software packages have been developed with the intention of using the results of the

analysis for solving such problems. Analysis is carried out for the selected input

parameters and the results are interpreted for optimising a design. This iterative procedure

requires interpretation of results and also uses a vast amount of time for solving a given

problem. To reduce the computation time, various optimisation procedures have been

incorporated into the code. One practicable approach is to use parallel computation

techniques. Therefore, there is a demand for parallel computers and the development of

parallel algorithms to execute on these computers.

One of the important problems to be addressed in this situation is to devise means of

actually employing a sufficiently high fraction of the raw computational power of a

parallel computer. Overheads due to interprocessor synchronisation and communication,

processors sitting idle due to contention for shared hardware resources, and uneven load

balancing in the distribution of computational load can lead to poor overall performance.

To optimise the speedup of a parallel program on a parallel computer requires the

mapping of the parallel tasks of the program among the processors such that the

computational load is distributed as evenly as possible and at the same time minimising

the amount of communication between the processors.

This thesis investigates mapping the tasks associated with the solution of unstructured

grid problems to the processors of a parallel computer such that the execution time is

minimised.

page 2

__Chapter 1

1.2 Outline of Thesis

In the remainder of Chapter 1, we define terminology and notation for graph theory that

is used throughout the thesis. We then discuss various parallel architectures and various

configurations that can be used. The mapping problem is discussed with a short summary

of existing methods.

In Chapter 2, we give a brief outline of some of the existing techniques for graph

partitioning and embedding. These are methods that we have looked at extensively and

discussions of the analysis of each method is given.

Chapter 3 discusses the Recursive Clustering algorithm which is a method based on the

Kerninghan-Lin mincut algorithm [KL70]. We have modified the Recursive Clustering

algorithm so that our needs are catered for and descriptions of these modifications are

discussed in Chapter 4.

This new modified algorithm gives reliable decompositions but one drawback is the time

taken to decompose the meshes. We have overcome this problem and discussions of how

this is done can be seen in Chapter 5.

Finally, Chapter 6 shows the parallel efficiency of the decompositions used together with

conclusions and discussions of further work.

page 3

____________ ______ Chapter 1

1.3 Graph Theory

The following terminology and notation is used throughout this thesis [Wil85], [BM76].

A graph G is a pair of sets [V,E] where V is non-empty and E is a set of unordered pairs

of elements of V. The elements of V are called the vertices of G and the elements of E

are called the edges of E. VG is used to represent the vertices of G and EG is used to

represent the edges of G. The symbols i)G and eG are used to denote the number of

vertices and edges in G. If only one graph is being considered, then the letter G will be

omitted from the symbols, and therefore we use V, E, \) and e instead of VG , EG, 1)G and

Two graphs G and H are said to be isomorphic if there is a one-one correspondence

between their vertices which has the property that two vertices are joined by an edge in

one graph if and only if the corresponding vertices are joined by an edge in the other.

Two vertices u, v of a graph G are adjacent if there is an edge joining them i.e. <u,v>

e E.

With each <u,v> e EG, let there be associated an integer c(<u,v>), called its edge weight,

and with each v e VG , let there be associated an integer w(v) called its vertex weight.

Then G, together with these edges and vertex weights is called a weighted graph.

A vertex v and an edge e are incident if v is one of the vertices of e.

The degree pG(v) of a vertex v in G is the number of edges incident with v.

Figure 1.1 shows a graph G where i) = 8 and e = 14.

page 4

Chapter 1

Figure 1.1: A graph G with 8 vertices

To any graph G, there corresponds an adjacency matrix. This is the i) x \) matrix

A(G)=[ajj], where a^ is the number of edges joining YJ and YJ. The Laplacian matrix of

a graph G is defined as L(G)=[ljj] where l ij=aij for i^j and l y =-pG(Vi) for each YJ e V.

Figure 1.2 shows the adjacency matrix and the Laplacian matrix for the graph G shown

in Figure 1.1.

A(G) =

01011000

101 10000

01010001

11101111

10010100

00011010

00010101

001 10010

-3

1

0

1

1

0

0

0

1
-3

1

1

0

0

0

0

0

1
-3

1

0

0

0

1

1
1
1
-7

1

1

1

1

1

0

0

1
-3

1

0

0

0

0

0

1
1
-3

1

0

0

0

0

1
0

1
-3

1

0

0

1

1

0

0

1
-3

Figure 1.2 Adjacency matrix and Laplacian matrix of the graph G shown in

Figure 1.1

page 5

____________ ____________Chapter 1

A directed graph (digraph) D=(V,E) is a graph whose edges are ordered pairs of vertices.

With each digraph D we can associate a graph G on the same vertex set; corresponding

to each directed edge of D, there is an edge of G with the same ends.

A network N is defined to be a weighted digraph with two distinguished subsets of

vertices, X and Y, which are assumed to be disjoint and nonempty.

The vertices in X are the sources and those in Y are the sinks of N. The edge weight C

of each edge is a non-negative integer called the capacity.

A cutset in a network N is a set of edges which when removed disconnects the source

nodes from the sink nodes.

The weight of a cutset is equal to the sum of the capacities of the edges in the cutset.

The Max-Flow Min-Cut theorem [FF62] states that the value of a maximum flow in a

network is equal to the weight of a minimum cutset of that network.

page 6

___________ __________Chapter 1

1.4 Parallel Architectures

The availability of relatively cheap and efficient microprocessors has produced a

tremendous upsurge in the development of parallel computers [Car88], [Cri88], [Duc86].

These computers now consist of numerous (up to thousands) of processors. These

processors usually have reduced instruction sets and are frequently referred to as

processing elements (PEs). This section gives a brief overview of some of the models

that exist.

The SISD (Single Instruction Stream, Single data Stream) is the original von Neumann

model of computation where only one instruction is processed at a time on a single item

of data. Some parallelism may occur in the internal operations of such machines, for

example, parallel loading and storing of data items along with actual arithmetic

operations.

The MISD (Multiple Instruction Stream, Single Data Stream) performs several

instructions simultaneously on a single stream of data. Strictly speaking, this category

could contain the operation of internally parallel SISD architectures and pipeline

processors, but since the user's understanding of computer architectures is in our interest,

neither is included.

Computer architectures such as the SIMD (Single Instruction Stream, Multiple Data

Stream) commonly known as vector or pipeline computer architectures. A SIMD

computational model corresponds to a single stream of instructions each of which is

applied to multiple data items.

A broad definition of a vector processor is where each processing element allows a

sequence of identical operations at the same time but acts upon different sets of data.

This type of operations is often featured in operations involving vectors of data.

page 7

___Chapter 1

With pipeline processors, overlapping in the execution of instructions is permitted. The

data enters the pipeline at the processing element performing the first stage of the

operation, passing through the other processing elements until finally arriving at the last

one for the final stage of the operation. Parallelism is achieved when several data items

pass through such a pipeline, but with each item passing through different stages at the

same time. It is important that every processing element in the pipeline is kept busy in

order to achieve a significant speed-up. This is accomplished by passing several data

items that need the same overall operation to be performed on them through the same

pipeline. This is typical for vector operations where the data passing through the pipeline

consists of each consecutive element of the vector(s) concerned.

1.5 MIMD Multiple Instruction Stream, Multiple Data Stream

This type of machine is the one that we are focusing on and it typically consists of a

number of processing units each capable of executing its own program on separate sets

of data. All the processing units are interconnected and to achieve parallelism, the overall

task must be broken down into a group of many sub-tasks .

There are various designs of MIMD machines with a major distinguishing feature being

the interconnection network. The two extreme classes of machines are discussed, namely

the shared memory systems and distributed memory systems [Cri88].

Shared memory systems use a shared global memory that is accessible from every

processing unit via a communication bus. The processors can be considered identical

(providing the processors are of the same type) and the programmer need not be

concerned with the issue of mapping which task of the computation onto which processor

since communication between any pairs of processors is the same. Problems occur with

such systems when large number of processors are used since the communication bus

hardware becomes a bottleneck when many processors request access to the global

memory. Another disadvantage is that the bus only permits one processor to access the

page 8

____________ __________Chapter 1

global memory at any time. Thus if many pairs of processors require interaction on a

pair-wise basis, they will have to do so in sequence rather than in parallel. Figure 1.3

shows an example of a shared memory system.

Distributed memory systems consists of processing elements which have their own local

memory unit. The processors are joined by an interconnection network so an overall task

can be performed on by many processors and data can be sent from one processor to

another. With this type of machine, the processors do not have to fight for access to the

shared global memory and the communication bus does not become a bottleneck, but data

traffic bottlenecks can occur with a large processor network. Unlike the shared memory

system, task to processor allocation is not arbitrary and a task should be placed on a

processor that either holds the data to be accessed or can access the data through as short

as possible a communications route. The program data should, if possible, be divided

over all the local memories with a minimum of duplication to ensure efficiency of such

a system. Figure 1.4 shows an example of a distributed memory system.

PVM (Parallel Virtual machine) [SHH94] from ORNL has become a de-facto standard

for message-passing systems and because it is freely available, it has spread all over the

academic community and beyond. PVM has been ported to a big variety of currently

available machines ranging from workstations to MPP-systems. The highlight of PVM

is its usability in heterogeneous environments. However, its functionality is limited.

As a consequence, the international initiative MPI (Message Passing Interface) [Hem94]

was started in 1992 by the Center for Research in Parallel Computing at Rice University

and Oak Ridge National laboratory. The goal is to define a message passing interface

which will then be implemented and supported by all hardware manufacturers. It was not

the design goal to support low-level features to be used by parallelising compilers. The

focus of MPI is the point-to-point communication between pairs of processors, and

collective communication within process groups. More advanced concepts allow creating

those groups, and giving them topological structure.

page 9

Communication Bus

Global
Memory

P E : Processing Element

Figure 1.3: Shared Memory System

Chapter 1

page 10

Chapter 1

Interconnection Network

P E : Processing Unit

M : Memory

Figure 1.4: Distributed Memory System

page 11

Chapter 1

1.6 Processor Configurations

The processor network used can be in a number of different configurations [Car88]. The

configuration chosen should be influenced by the data access structure of the code

concerned. The amount of communication time acquired can be minimised by a sensible

choice of network configuration. Examples of network configurations are shown in Figure

1.5.

(a)

(b)

(c)

Figure 1.5: Processor Configurations

(a) Chain; (b) Grid; (c) 3 Way Hypercube

page 12

__________ _______________Chapter 1

1.7 Parallel Performance Measurement

There are two practical ways in which performance of software on parallel systems can

be measured. The first is speedup (Sp) which is defined as:-

~ _ Time on a single processor
Time on p processors

Sp gives the number of times faster the software executes on p processors as opposed to

the execution on a single processor [HJ81], However, there are two possible single

processor times that can be used, both carrying slightly different information about the

software.

Firstly, if the single processor time is that of the best serial version, using optimal serial

algorithms, then the speedup signifies the advantage of using a parallel machine rather

than a serial machine. If the algorithms used for the parallel version are different to those

in serial, then the speedup figure can be reduced because the serial performance may be

sacrificed for the parallel nature of the new algorithm. The second single processor time

that can be used is that of the parallel version being run on a single processor. This

speedup represents the performance of a parallel machine as more processors are used

and not performance over serial because any serial version should always use the best

serial algorithms available.

Efficiency is the second measure of performance of software on MIMD machines and

this is a measure of how well an application uses the available computer power. Again,

there are two types that can be used. The first is known as efficiency percentage (Ep) and

it is given by :

Ep = * 100 = sPeeduP on P processors

Ep indicates the percentage of available processor time which has been beneficially used,

page 13

__Chapter 1

j-, Total Idle Time ^ Ep = \
Total Processor Time

1.8 Control Volume Unstructured Grid Methods

1.8.1 Introduction

page 14

___________ _________________Chapter 1

1.8.2 Vertex Centred Approach

Figure 1.6: Finite element mesh

page 15

__Chapter 1

Fig 1.7: Vertex-Centred Mesh-Control Volume

page 16

___________ ____________Chapter 1

1.8.3 Cell-Centred Approach

Fig 1.8: Cell-Centred Mesh-Control Volume

page 17

_________________________Chapter 1

1.9 The Mapping Problem

1.9.1 Statement of Problem

timecomn + iimecomp

page 18

__Chapter 1

1.9.2 Objectives

1.9.3 Complexity

page 19

__Chapter 1

page 20

___Chapter 1

1.10 Summary of Existing Methods

1.10.1 Graph Partitioning Problem

n

page 21

__Chapter 1

x2

x2

~page

__Chapter 1

1.10.2 Graph Embedding Problem

page 23

__________ ___________________Chapter 1

page 24

Chapter 1

(a) Communication cost = 70

(b) Communication cost = 60

(c) Communication cost = 60

Figure 1.9: Possible 4-way partitions of a 40x20 grid with processor topology.

___Chapter 1

1.10.3. Prior work on the Mapping Problem

Figure 1.10: A network flow graph constructed from a task graph with two vertices.

page 26

_________^^^ _____________________Chapter 1

sl

page

___________________________________Chapter 1

n

O(n2)

page 28

__Chapter 1

page 29

__Chapter 1

page 30

___Chapter 1

page 31

page 32

Chapter 2

2.1 Introduction

2.2 Nearest Neighbour

2.2.1 Introduction

page 33

_______ _______Chapter 2

2.2.2 Regular Grids

2.2.2.1 One Dimensional Strip Partitioning

page 34

Chapter 2

Precmon

Fig 2.1: Example of one-dimensional strip partitioning

__Chapter

Two Dimensional Strip Partitioning

Chapter 2

Processors Processors

:-.ltial Loads
' a . _cac

___Chapter 2

2.2.3 Non Regular Grids

page 38

Chapter 2

Figure 2.3: Example of a one-dimensional non-regular graph

i - I i +

m n

2.2.4 Analysis of Method

page 39

Chapter 2

WWW\A/ AAAAAAAA

77
I/I/1A/I7171/1/77

77
77

77

77
77

\AAAAAAAA WWWVV\

Figure 2.4: A simple mesh illustrating the limitation of

the nearest neighbour technique

Chapter 2

2.3 Recursive Spectral Bisection

2.3.1. Introduction

2.3.2 The Laplacian Matrix

page 41

____ ____ ̂ ^ _______________________ Chapter 2

xlt

2.3.3 The Fiedler Vector

x2

x2

x2

x2

page 42

Chapter 2

a) Original mesh b) Partition into two using RSB

Figure 2.5: A simple mesh illustrating the RSB producing disconnected sub-domains

tn Pi10 r

Figure 2.6: Recursive Spectral Bisection Algorithm.

page 43

__Chapter 2

2.3.4 Analysis of Method

2.3.5 Multilevel Recursive Spectral Bisection

page 44

___Chapter 2

2.4 Combinatorial Optimisation Methods

2.4.1 Introduction

N,

N

page 45

__Chapter 2

2.4.2 General Formulation

page 46

temperature.

a

cooling ratio r, 0 < r < 1, integer temperature length L.

S

e^

T

T.

T,

S.

2. T >

S' S.

(S'} - (S).

S = S'.

S S' e

T = rt

G = (V, E)

V = V} V2 V

V Vj V2

(V,,V2) (V} - M, V2 (V,,

(VJt

(V,,V2)= u V2 \

V, \ V} and

E

E a / -; av
yeB

a ' -> ax.
xeA

^bx

xeA

by

= 1

Yes

No

i

1

2

3

4

5

6

7

8

9

a. 1

2

12

11

7

10

6

1

5

9

b, j

8

3

4

13

16

17

14

18

15

gi

1

2

-1

_2

-1

-1

1

-1

0

G=Ig,

1

3

2

0

-1

-2

-1

-2

-2

kbest

1

2

2

2

2

2

2

2

2

X
X

3/
/*

/8

[02101000

20212110

12021110

01201121

12110210

01112021

01121202

00010120

page 71

7XX7X

7XX/X

X/X/X

X/XZX

77

Processor 1 Processor 2 Processor 4 Processor 5

Processor 3

8

.13

B A

15

10

B

B B

6

8

B

1 D

7

12 11

8

7

8 12

1 9 23 2B 35 38

3 9/

/ /36

zzzz
7777

7777

ZZZZZ
ZZZZZZ

ZZZZZ
ZZZZZ

Processor 1 Processor 2 Processor 3 Processor 4 Processor 5

V

A/WV
/yv\A

A

Input

Form clusters

I
Swapset

1
Findg

1
Output
Results

Node number

Element number
56

0112

1011

1101

2110

Proc
1

Proc
2

Proc
3

Proc
4

7777
7777

VYYVV

&AAAA
[ZXYVYWS

W9999999&

/

V 7171717177

A

f

\Z\

/

Processor 1 Processor 2 Processor 3 Processor 4 Processor 5

50-

30

20-

64 256

page 140

&

No of processors

1

2

3

4

5

6

T800

100

98

97

96

94

90

i860

100

92

81

76

70

66

REFERENCES

