
Greenwich Academic Literature Archive (GALA)
– the University of Greenwich open access repository

http://gala.gre.ac.uk

__

Citation:

Ewer, John Andrew Clark (2000) An investigation into the feasibility, problems and benefits of re-
engineering a legacy procedural CFD code into an event driven, object oriented system that allows
dynamic user interaction. PhD thesis, University of Greenwich.

__

Please note that the full text version provided on GALA is the final published version awarded

by the university. “I certify that this work has not been accepted in substance for any degree,

and is not concurrently being submitted for any degree other than that of (name of research

degree) being studied at the University of Greenwich. I also declare that this work is the result

of my own investigations except where otherwise identified by references and that I have not

plagiarised the work of others”.

Ewer, John Andrew Clark (2000) An investigation into the feasibility, problems and benefits of re-

engineering a legacy procedural CFD code into an event driven, object oriented system that allows

dynamic user interaction. ##thesis _type## , ##institution##

Available at: http://gala.gre.ac.uk/6165/

__

Contact: gala@gre.ac.uk

http://gala.gre.ac.uk/
mailto:gala@gre.ac.uk

; 4 > -
)j / J (j J

An investigation into the feasibility,

problems and benefits of re-engineering

a legacy procedural CFD code into an

event driven, Object Oriented system

that allows dynamic user interaction

John Andrew Clark Ewer

A thesis submitted in partial fulfilment of the requirements of the

University of Greenwich for the degree of Doctor of Philosophy

July 2000

The University of Greenwich,

School of Computing and Mathematical

Science, Park Row, Greenwich, SE10 9LS.

PhD Thesis : Contents Section

Acknowledgements

I wish to dedicate this thesis to my parents who have helped me in more ways than I could

possibly mention during my many years in academia. Their support and encouragement have

been vital to my studies - The holidays were good too.

I would like to express my deepest gratitude to everyone involved in my Ph.D. research:

Professor Brian Knight, for his continued enthusiasm, support and patience with regards to my

research. I am also indebted to him for his advice and constructive criticism about the technical

matters of writing this thesis. My other supervisor, Doctor Don Cowell has also helped me

during my studies. Doctor Mayur Patel's enthusiasm, expertise and insights have helped to make

"SMARTFIRE" into a significant research tool. Professor Ed Galea has likewise supported the

advances that have been made during this research and always promoted the work. My former

colleague, Doctor Steve Taylor has provided support from his complementary research into

Case Based Reasoning for automated mesh generation. His comments and criticisms have helped

to make this work more robust than would otherwise have been the case. I would also like to

thank Doctor Miltos Petridis for his prior Ph.D. investigations on "FLOWES" that indicated that

my research was feasible. Doctor Fuchen Jia and Angus Grandison have recently helped to fine

tune "SMARTFIRE" and to remove a number of implementation glitches and grey areas. Their

diligent and thorough fire field modelling validation work (using "SMARTFIRE", "Phoenics"

and "Flow3D") have greatly helped during the validation of "SMARTFIRE". Thanks also to

Professor Mark Cross for my learning experiences with the "Physica" project.

Doctor Nick Croft has been largely responsible for the quality of this work. His complementary

Ph.D. studies in the area of algorithm development, for unstructured mesh CFD, have been the

mainstay of this research and his intelligent insights and willingness to help others have been

beneficial to many of the researchers in this department, including myself.

Finally, it remains only to thank the University of Greenwich and the EPSRC for funding the

"SMARTFIRE" project and this Ph.D. research.

ii

PhD Thesis : Contents Sectior

11

PhD Thesis : Contents Section

Abstract

This research started with questions about how the overall efficiency, reliability and ease-of-use

of Computational Fluid Dynamics (CFD) codes could be improved using any available software

engineering and Human Computer Interaction (HCI) techniques. Much of this research has been

driven by the difficulties experienced by novice CFD users in the area of Fire Field Modelling

where the introduction of performance based building regulations have led to a situation where

non CFD experts are increasingly making use of CFD techniques, with varying degrees of

effectiveness, for safety critical research. Formerly, such modelling has not been helped by the

mode of use, high degree of expertise required from the user and the complexity of specifying

a simulation case. Many of the early stages of this research were channelled by perceived

limitations of the original legacy CFD software that was chosen as a framework for these

investigations. These limitations included poor code clarity, bad overall efficiency due to the use

of batch mode processing, poor assurance that the final results presented from the CFD code

were correct and the requirement for considerable expertise on the part of users. The innovative

incremental re-engineering techniques developed to reverse-engineer, re-engineer and improve

the internal structure and usability of the software were arrived at as a by-product of the

research into overcoming the problems discovered in the legacy software. The incremental re-

engineering methodology was considered to be of enough importance to warrant inclusion in

this thesis. Various HCI techniques were employed to attempt to overcome the efficiency and

solution correctness problems. These investigations have demonstrated that the quality,

reliability and overall run-time efficiency of CFD software can be significantly improved by the

introduction of run-time monitoring and interactive solution control. It should be noted that the

re-engineered CFD code is observed to run more slowly than the original FORTRAN legacy

code due, mostly, to the changes in calling architecture of the software and differences in

compiler optimisation: but, it is argued that the overall effectiveness, reliability and ease-of-use

of the prototype software are all greatly improved. Investigations into dynamic solution control

(made possible by the open software architecture and the interactive control interface) have

demonstrated considerable savings when using solution control optimisation. Such investigations

have also demonstrated the potential for improved assurance of correct simulation when

IV

PhD Thesis : Contents Section

compared with the batch mode of processing found in most legacy CFD software. Investigations

have also been conducted into the efficiency implications of using unstructured group solvers.

These group solvers are a derivation of the simple point-by-point Jaccobi Over Relaxation (JOR)

and Successive Over Relaxation (SOR) solvers [CROFT98] and using group solvers allows the

computational processing to be more effectively targeted on regions or logical collections of

cells that require more intensive computation. Considerable savings have been demonstrated for

the use of both static- and dynamic- group membership when using these group solvers for a

complex 3-dimensional fire modelling scenario. Furthermore the improvements in the system

architecture (brought about as a result of software re-engineering) have helped to create an open

framework that is both easy to comprehend and extend. This is in spite of the underlying

unstructured nature of the simulation mesh with all of the associated complexity that this brings

to the data structures. The prototype CFD software framework has recently been used as the

core processing module in a commercial Fire Field Modelling product (called "SMARTFIRE"

[EWER99-1]). This CFD framework is also being used by researchers to investigate many

diverse aspects of CFD technology including Knowledge Based Solution Control, Gaseous and

Solid Phase Combustion, Adaptive Meshing and CAD file interpretation for ease of case

specification.

PhD Thesis : Contents Section

VI

PhD Thesis : Contents Section

Table of Contents

1 INTRODUCTION.. 1
1.1 OVERVIEW ...1-1

1.2 AIMS OF THE PROJECT..1-2

1.2.1 Main research question... 1-3

1.2.2 Subsidiary research questions... 1-4

1.2.3 Questions arising during this research..1-5

1.3 OBJECTIVES ...1-5

1.3.1 Main objective ..1-6

1.3.2 Subsidiary objectives... 1-6

1.3.2.1 Analyse the requirements for the new interactive CFD system... 1-6

1.3.2.2 Design a prototype software system and user interface... 1-6

1.3.2.3 Reverse Engineer the legacy CFD code...1-7

1.3.2.4 Implement the interactive prototype... 1-7

1.3.2.5 Validate the correctness of the interactive prototype... 1-8

1.3.2.6 Construct suitable test cases to test for the benefits of interactive control.. 1-8

1.4 CONTRIBUTION TO KNOWLEDGE...1-9

1.4.1 Development of an incremental re-engineering methodology........................ 1-9

1.4.2 Investigation of new CFD techniques..1-9

1.4.3 Investigation of the benefits of interactive control.......................................1-10

1.4.4 Knowledge of practical techniques of interactive control and monitoring of

CFD codes..1-10

1.5 PRACTICAL CONTRIBUTION TO CFD RESEARCH ...i-io

1.6 BACKGROUND TO THIS RESEARCH .. i-ii

1.7 STRUCTURE OF THIS THESIS ...1-12

Vll

PhD Thesis : Contents Section

2 BACKGROUND TO INTERACTIVE CFD RESEARCH.................. 2-1
2.1 OVERVIEW ..

2.2 THE TRADITIONAL APPROACH AND WORK ELSEWHERE.......................................2-15

2.2.7 Batch mode CFD codes...2-15

2.2.2 Other approaches to improve batch mode CFD codes.................................2-16

2.2.3 Other interesting and/ or relevant research..2-J7

2.2.4 Prior CFD research in the University of Greenwich....................................2-18

2.3 RECENT DEVELOPMENTS ..2-18

2.4 ASSESSMENT OF THE DEVELOPMENT TECHNIQUES AVAILABLE TO DEVELOP A

FRAMEWORK FOR INTERACTIVE CFD RESEARCH...2-19

2.4.1 Develop a new CFD engine from scratch and add interactive techniques.... 2-20

2.4.1.1 Development time factor..2-20

2.4.1.2 Reliability of CFD software..2-20

2.4.1.3 Access to CFD expertise...2-21

2.4.1.4 System capabilities..2-21

2.4.1.5 Other problems with developing from scratch...2-21

2.4.2 Add interactive functionality to an existing commercial CFD system........... 2-22

2.4.2.1 Sensitivity of commercial software ..2-23

2.4.2.2 Access to commercial software..2-23

2.4.2.3 Authority to modify commercial software ...2-23

2.4.2.4 Access to developers' expertise...2-23

2.4.3 Extending the capabilities of the existing partially complete CFD code :

"FLOWES"...2-24

2.4.4 Simple automated translation of a legacy CFD system................................2-24

2.4.5 Creation of nearly unchanged libraries of numerical routines and the

imposition of high level structure..2-25

2.4.6 Reverse engineering of a legacy CFD system back to basic design and re-

implement from this design...2-26

2.4.7 Reverse engineering of a legacy CFD system and re-implementation using an

viii

PhD Thesis : Contents Section

incremental approach and imposed data and control architecture.......................... 2-26

2.5 CHOICE OF IMPLEMENTATION LANGUAGE..2-27

2.5.7 Overview of language choice...2-27

2.5.2 Available languages..2-27

2.5.2.1 Ada..2-27

2.5.2.2 Pascal..2-28

2.5.2.3 FORTRAN-77...^

2.5.2.4 FORTRAN-90...^

2.5.2.5 C++...^^^

2.5.3 Language chosen for the re-engineered system..2-29

2.6 THE METHODOLOGY THAT WAS ADOPTED FOR THE DEVELOPMENT OF A CFD

RESEARCH FRAMEWORK...2-30

3 RE-ENGINEERING THE LEGACY CFD CODE............................... 3-1
3.1 OVERVIEW ...3-31

3.2 WHAT PROBLEMS ARE ASSOCIATED WITH THE RE-USE OF LEGACY coDE?..........3-31

3.2.7 Poor documentation..3-31

3.2.2 Evolutionary research code...3-32

3.2.3 Closed and inflexible architecture... 3-32

3.2.4 Archaic implementation language...3-33

3.2.5 Lack of any existing User Interface...3-33

3.2.6 Few, if any, library tools...3-33

3.2.7 Batchmode of processing...3-34

3.3 DISCUSSION OF CFD TECHNIQUES USED IN THE LEGACY CODE3-34

3.4 WHAT CONSIDERATIONS HAVE TO BE MADE FOR THE RE-USE OF LEGACY CODE FOR

USE IN THE NEW SYSTEM?...3-35

3.4.7 Nature of control and granularity...3-35

3.4.2 Existing looping structure...3-35

IX

PhD Thesis : Contents Section

3.4.3 Existing procedural structure..3-35

3.4.4 Use as part of ongoing research program (involving others)....................... 3-36

3.4.5 Data structures ...3-36

3.4.6 Performance issues...3-36

3.4.7 Portability issues...3-36

3.4.8 Integration of GUI components... 3-37

3.4.9 Integration of KBS components...3-38

3.4.10 Integration of visualisation components..3-38

3.5 WHAT NEW TECHNIQUES WERE NEEDED IN THE NEW SYSTEM AND WHAT

IMPLICATIONS DID THESE REQUIREMENTS HAVE? ..3-38

3.6 CRITICAL EVALUATION OF THE LEGACY CODE..3-41

3.6.7 Coding style..3-42

3.6.2 Data access mechanisms...3-44

3.6.3 Structure... 3-46

3.6.4 Optimisation... 3-47

3.6.5 Control looping...3-47

3.6.6 Consistency... 3-48

3.6.7 Code clarity.. 3-50

3.7 DEVELOPMENT OF A NOVEL NINE STAGE INCREMENTAL RE-ENGINEERING

METHODOLOGY ..3-50

3. 7.1 Stage (1): Ensure data consistency and make all data global...................... 3-52

3.7.2 Stage (2): Name and algorithm clarification...3-54

3.7.3 Stage (3): Removal of redundant code and simplification............................ 3-56

3. 7.4 Stage (4): Ensure consistent use of control and logicals.............................. 3-5 7

3.7.5 Stage (5): Translate the legacy FORTRAN to procedural C 3-58

3.7.6 Stage (6): Modify all file I/O and rewrite for compatibility......................... 3-60

3.7.7 Stage (7): Implement class objects to replace array structures.................... 3-61

3.7.8 Stage (8): Create Class member functions for procedural routines..............3-64

3.7.9 Stage (9): Optimisation and enhancements..3-65

PhD Thesis : Contents Section

3.8 STATISTICS FOR THE SOFTWARE RE-ENGINEERING pRocEss..............................3-67

3.9 SUMMARY OF CHAPTER ..3-69

4 DEVELOPMENT OF A PROTOTYPE INTERACTIVE CFD
SYSTEM.. 4-'

4.1 OVERVIEW ...4-70

4.2 IMPORTANT ASPECTS OF DESIGN...4-70

4.2.1 Imposedre-design features..4-70

4.2.2 HCIdesign issues..4-74

4.2.2.1 Visual programming interface..4-74

4.2.2.2 Menu and form filling interface ...4-75

4.2.3 Human Computer Interaction issues..4-75

4.2.3.1 Multiple modes of data presentation ..4-75

4.2.3.2 The CFD system has a "user-in-charge" interface...4-75

4.2.3.3 Visualisation...4-76

4.2.3.4 Graphs ...^^^^

4.2.3.5 ControPtakerface"...4-77

4.2.3.6 Minimise data on each form or menu and make menus specific to a task..4-77

4.2.3.7 Choice of portable library ...4-78

4.3 IMPORTANT ASPECTS OF BMPLEMENTATION..4-78

4.3.1 Restart database...4-78

4.3.2 Audit trail...4-79

4.3.3 User defined variables and code ...4-79

4.3.4 Additional status variables..4-80

4.3.5 Finding common structure for momentum and other solved variables......... 4-80

4.3.6 Automated saving..4-80

4.3.7 Debuggingfacilities..4-81

4.3.8 Automatic self'extendingarrays..4-81

4.3.9 Unstructured visualisation techniques...4-82

4.3.10 User configuredpatch and time step modifiers...,4-82

	xi

PhD Thesis : Contents Section

4.3.11 Solution configured patch and time step modifiers..........4-83

4.3.12 Configuration of results saving from sub-regions.4-83

4.3.13 Tabular data files for volume source variation..................4-83

4.3.14 Run-time modification of volume source application region.......4-84

4.4 SUMMARY OF CHAPTER ..4-84

5 PROTOTYPE SYSTEM VALIDATION.. 5-8
5. 1 INCREMENTAL TESTING (FUNCTIONAL COMPARISON WITH LEGACY FORTRAN

5.2 FINAL VALIDATIONS ... 5-85

5.3 BASIC IMPLEMENTATION VALIDATIONS ..5-86

5.4 INTERPRETATION AND COMMENTS..5-88

5.5 SUMMARY OF CHAPTER ..5-89

6 RESEARCH RESULTS ... 6-9(
6.1 OVERVIEW ... 6-90

6.2 INDICATIVE TEST CASES..6-91

6.2.1 Investigation of initial configuration.......6-92

6.2.2 Investigation of adjusting solution control during a simulation 6-95

6. 2. 3 Investigation of dynamic control of a more complex fire scenario 6-98

6.3 ASSESSMENT OF THE BENEFITS OF INTERACTIVE CONTROL6-100

7 PRELIMINARY INVESTIGATIONS INTO SOLUTION
OPTIMISATION TECHNIQUES ... 7-10!

7.1 OVERVIEW ... 7-102

7.2 PRELIMINARY INVESTIGATIONS OF GROUP SOLVERS... 7-102

7.2.7 Overview of groups.....................7-102

7.2.2 Description of group solvers................7-104

Xll

PhD Thesis : Contents Section

7.2.3 Investigation of geometric groups... 7-106

7.2.4 Investigation of dynamic groups.. 7-109

7.3 PRELIMINARY INVESTIGATION OF AUTOMATED DYNAMIC SOLUTION CONTROL 7-119

8 CONCLUSIONS... 8-11
8.1 BENEFITS OF INTERACTIVE CONTROL...8-120

8.2 BENEFITS OF INCREMENTAL REVERSE ENGINEERING.......................................^-^

8.3 CFD RESEARCH BENEFITS OF USING AN OPEN ARCHITECTURE AND OBJECT

ORIENTED DEVELOPMENT TECHNIQUES ...8-122

8.4 CFD RESEARCH PROBLEMS CAUSED BY THE USE OF OBJECT ORIENTED

DEVELOPMENT TECHNIQUES...8-123

9 FURTHER WORK... 9-11
9.1 OVERVIEW ...9-12

9.2 DYNAMIC SOLUTION CONTROL ...9-125

9.3 VISUALISATION...9-125

9.4 PATTERN MATCHING FOR KBS CONTROL AND STATUS REPORTING 9-126

9.5 ENHANCED PHYSICS AND NUMERICAL METHODS...9-126

9.6 EXPLOITATION OF PARALLEL PROCESSING ARCHITECTURES9-127

9.7 INTERACTIVE CONTROL EXPERTISE ..9-127

9.8 VALIDATION AND FINE-TUNING OF ALGORrraMs..9-128

9.9 LATEST RESEARCH...9-128

10 REFERENCES... 10-11

11 APPENDICES.. H-l<
11.1 SMARTFIRE VERIFICATION AND VALIDATION REPORT BY EWER J.,

Xlll

PhD Thesis : Contents Section

JIA F. AND GRANDISON A... 11-141

11.2 COPY OF JOURNAL PAPER "CASE STUDY : AN INCREMENTAL APPROACH TO RE-

ENGINEERING A LEGACY FORTRAN COMPUTATIONAL FLUID DYNAMICS CODE IN

C++", EWERJ., KNIGHT B. AND COWELL D., REPRODUCED FROM "ADVANCES IN

ENGINEERING SOFTWARE", VOL. 22, PP 153-168,1995.. 11-142

11.3 COPY OF CONFERENCE PAPER "THE DEVELOPMENT AND APPLICATION OF GROUP

SOLVERS IN THE SMARTFIRE FIRE FIELD MODEL", EWERJ., GALEA E., PATEL M.

AND KNIGHT B., REPRODUCED FROM PROCEEDINGS OF INTERFLAM '99, EDINBURGH,

UK, JUNE/JULY 1999, VOL. 2, PP 939-950... 11-143

11.4 SMARTFIRE USER GUIDE : TECHNICAL REFERENCE.............................. 11-144

11.5 DATA DICTIONARY FOR CWNN++ GEOMETRY CLASSES.............. 11-145

11.6 SMARTFIRE : INTERIM DEVELOPMENT REPORT ON THE CONTROL AND

BLACKBOARD ARCHITECTURE USED IN THE SMARTFIRE SYSTEM. 11-146

xiv

PhD Thesis : Contents Section

xv

PhD Thesis by John Ewer.

1 Introduction

1.1 Overview

The widespread and ever-increasing use of Computational Fluid Dynamics (CFD)

[SPALDING81] for the simulation of physical fluid flows has highlighted some striking

weaknesses to be found in many existing CFD software systems.

The most important problems obstructing the effective use of CFD simulations are:-

 the requirement for large amounts of numerical processing power,

 the extended duration of simulations, the high degree of complexity of the CFD algorithms,

 the poor reliability of the solution process and

 the nature of the development techniques traditionally used to create CFD systems.

Leaving the development issues aside, for the moment, it is worth considering the stages of

setting up, running and interpreting the results from a typical CFD simulation because this gives

some insight into the complexity of the software. Typically a CFD expert will specify the

geometry and the "known" physical and boundary condition properties in a pre-processing

specification tool or even in a simple text-based script file. This will be followed by the

generation of a suitable computational Finite Difference (FD) mesh. It should be noted that the

nature and quality of the finite difference (FD) mesh is critical to obtaining good results from the

CFD simulation but the topic of mesh generation is beyond the scope of this research. It is

assumed that a mesh of suitable quality is available for all simulations discussed in this research.

The numerical computation phase of the simulation will then be started. This phase causes all

of the properties, of all of the control volumes within the FD mesh, to be repetitively updated

by an iterative algorithm that moves the solution towards a progressively better and better

approximate answer. This computational process is generally very time consuming and, for a

particular simulation, has no guarantee of ultimately reaching a successful or accurate solution.

If all proceeds well with the simulation then the processing will eventually terminate and create

some form of output results files which can then be used for post-processing numerical data

1-1

PhD Thesis by John Ewer.

analysis or data visualisation. The vast arena that encompasses CFD research has led to a large

range of software systems that contain many different algorithms and a myriad of numerical

control parameters that modify the run-time behaviour of the various algorithms and solvers.

The choice of algorithms and control parameters can lead to widely differing solution behaviour,

even on similar simulations, and catastrophic behaviour when used inappropriately. Furthermore

a configuration that may not be appropriate at one stage of a simulation may then be suitable

(or indeed necessary) at some other stage of processing. The need for algorithm and parametric

fine-tuning, for specific classes of CFD simulation, further compound this problem.

This lack of predictable outcome of the numerical processing can be extremely costly in terms

of wasted human and computer time resources. Furthermore the solution to any simulation is

not guaranteed to produce an accurate or physically meaningful result. This can be extremely

costly if the results are to be used for construction design or for safety considerations.

Traditionally, when the CFD user has been able to detect an unsuccessful simulation then the

whole simulation had to be re-posed and re-started from scratch for even the simplest of

configuration changes. A few CFD codes do mitigate these problems by providing various

degrees of numerical data or solution status monitoring, during the numerical computations,

however the only course of action that is generally available to the user is to terminate a

simulation that appears to be unstable or unsatisfactory.

There is little or no reliable knowledge about how to effect beneficial control changes and this

means that many aspects of CFD simulation are regarded (and even taught to novices) as a

"black art". This is highly unsatisfactory for an ever more widely used simulation technique that

is being applied, often inappropriately and inexpertly, to application areas where paramount

safety issues exist. E.g. Fire safety aspects of building design, Wing aerodynamics for aircraft

design, Cooling system design for Nuclear reactors.

1.2 Aims of the project

Given the problems, with the traditional approach to CFD, this project had been instigated to

answer the questions about the applicability and potential benefits of interactive control

1-2

PhD Thesis by John Ewer.

techniques for the computational phase of CFD.

1.2.1 Main research question

Prior to this investigation it was not known to what extent CFD systems could be

enhanced by the use of interactive control and solution monitoring user interfaces.

This was because most existing CFD codes treat the numerical simulation as a

"black-box" process that is pre-conflgured to continue calculating results, to some

pre-specified strategy, until processing is deemed to have finished to some

prescribed criteria. This project was used to investigate if there are any tangible

solution "improvements" made possible by the use of interactive solution control

and monitoring. These improvements could be: better performance, greater

solution reliability, detection and prevention of errors or simply greater ease-of-

use.

The complex nature of all numerical CFD systems means that few users have a complete

understanding of how the simulation proceeds from its initial state to a satisfactory set of results.

This problem is further compounded by the diversity of the CFD algorithms, numerical

approximations, empirical methods, choice of initial conditions and solution control parameters

that are used within a particular CFD engine or for a particular simulation. With so many

degrees of freedom it is unsurprising that CFD techniques are generally considered to be only

useful for- and usable by- CFD experts.

In CFD codes where solution monitoring is provided it generally takes the form of pre-

confrgured graphs or simple numerical value display that cannot be used to explore the full

extent of the simulation data in any systematic or comprehensive way. Furthermore the general

lack of an interactive control interface means that there is little or no knowledge of what effect

control changes will have on the simulation both in terms of speed of execution and continued

solution stability. The only general knowledge about CFD simulations concerns the approach

often adopted to start a simulation in a reliable and safe way. This knowledge is derived by

performing a number of short trial runs with different initial conditions or by using very coarse

1-3

PhD Thesis by John Ewer.

computational meshes with few control volumes. Such knowledge does not guarantee that the

remainder of the simulation will be successful and it is often necessary for the user to run

complex simulations in a number of stages with different initial control parameters for each

stage.

Also unknown is the desirability, predicted response and reliability of making interactive changes

to the control parameters of a simulation and under what circumstances are the changes

appropriate or even counter-productive.

CFD simulation is a highly numerically intensive process and it was not clear to what degree a

fully interactive user interface, with all of the problems associated with coupling, would

adversely affect the performance of the system. This could have repercussions in terms of user

acceptance of the User Interface (UI) supported software due to a perceived poor speed of

processing.

It was soon realised that any attempt to perform research on interactive control would be fatally

flawed if the numerical CFD component was either unreliable or incomplete. This meant that the

largest initial problem facing this investigation was the need for a stable and well-validated

software platform on which to investigate user interaction techniques. This could not be

guaranteed in a completely new software development because it would be unclear if the

reliability of the numerical engine itself was contributing to any observed behaviour during

interactive control investigations. Thus it was considered vital to use some form of legacy CFD

system as the basis for this research.

1.2.2 Subsidiary research questions

During the course of this investigation it was realised that there were a number of subsidiary

questions that required answers.

The requirement for a well validated, robust and complete CFD software system as the basis for

the user interaction research lead to the question of how best to re-use such a legacy CFD

system in a new development. It was unclear how any legacy system, with all the usual problems

1-4

PhD Thesis by John Ewer.

associated with existing "research" developed software, could be re-engineered to allow user

interaction and still maintain a reasonable level of solution consistency, performance and

extensibility.

It was not known exactly what nature of interaction and quantity of status information would

be needed for the system user to determine how to modify the system controls in order to effect

the best solution strategy.

1.2.3 Questions arising during this research

During the re-implementation of the CFD code it was realised that the Object Oriented approach

adopted for the data structures and control hierarchy would allow highly beneficial modifications

to the traditional solution strategy.

One such innovation was the use of "group" solvers which, it was hoped, would provide a

framework for investigating localised solution control based on either geometric- or solution

determined- regions. This extension was considered to be of sufficient importance to warrant

investigation, in its own right, because most traditional CFD codes (particularly those using

unstructured mesh storage techniques) do not provide a sufficiently flexible architecture to

enable the benefits of such techniques to be researched particularly with the added perspective

of interactive solution control.

Also considered was the potential for the automation of any manual control strategy that was

demonstrated during this research. This was of considerable interest since the manual interactive

control of simulations has a high human resource overhead because an expert CFD user is

required to monitor and control the software throughout the duration of the simulation, which,

for complex and large mesh cases may extend to many days or even weeks on all but the very

fastest hardware platforms.

1.3 Objectives

The aims and research questions described above lead directly to a set of objectives and goals

1-5

PhD Thesis by John Ewer.

that constitute a research program capable of providing answers to the unknowns of this study.

1.3.1 Main objective

The main objective of this investigation was to research and test for the potential benefits and

disadvantages of using interactive control and monitoring of a CFD code during the

computational simulation process.

1.3.2 Subsidiary objectives

The main objective relies on having a suitable interactive CFD code on which to perform the

research and so the first subsidiary objectives that must be met were: to analyse, design and

implement a fully functional interactive CFD system and subsequently to use it to investigate

interactive control techniques. This lead to the following sequentially ordered objectives:

1.3.2.1 Analyse the requirements for the new interactive CFD system

The new interactive CFD system would require sufficient numerical simulation functionality to

run non-trivial CFD cases with adequate control options to allow experimental research into the

potential benefits of interactive control. This meant that the requirements analysis of the target

system would have to be performed prior to designing the architecture and functionality of any

new system.

1.3.2.2 Design a prototype software system and user interface

The required system design was imposed on the legacy CFD code to extend the capability to

fully interactive control and monitoring. A suitable programming paradigm and target

implementation language were selected to enable the user interface and numerical components

to be coupled. Wherever possible, heavy use was made of "good" software engineering

principles to ensure that the development system has an extended useful life and can be used in

the future as a comprehensive CFD application framework for a multitude of research purposes.

1-6

PhD Thesis by John Ewer.

The type of user interface and style of interaction were agreed with potential CFD code users

so that both the paper- and skeleton-UI prototypes would be constructed so as to allow the

target system user interface to be specified fully with assurance of user acceptance.

The User Interface components were chosen to provide the clearest possible view of the current

status of the simulation without unduly affecting performance. Controls and monitoring displays

were grouped so as to provide simple interface navigation and furthermore the interface was

restricted in depth to prevent the user being lost in hard to reach sub-menus. The User Interface

was also designed to support both novice and expert users alike. It was necessary to keep the

layout and mode of interaction of the interface consistent across all components of the user

interface. The actual approach and mode of interaction used were agreed by using evaluation

prototypes for discussions with expert CFD practitioners and researchers. Prototypes of the

software were also used on taught courses in Fire Safety Modelling, at the University of

Greenwich, in order to better understand how novice users would respond to the interactive user

interface.

1.3.2.3 Reverse Engineer the legacy CFD code

A methodology was created to re-use the legacy CFD code and to impose the required system

design whilst being aware of the potential pitfalls of the traditional approach to CFD

development and avoiding the usual handicaps of existing CFD codes. The Reverse Engineering

techniques that were used had to maintain absolute functional consistency with the legacy code

whilst providing a sufficiently flexible application framework for continued research into CFD

techniques.

1.3.2.4 Implement the interactive prototype

The prototype interactive CFD system was constructed by the coupling of the agreed prototype

user interface and the re-engineered CFD engine.

1-7

PhD Thesis by John Ewer.

1.3.2.5 Validate the correctness of the interactive prototype

The prototype interactive CFD system was validated for computational consistency with the

results from the legacy CFD code, with results from other commercial CFD codes and, where

available, with experimental data. The new interactive system had to perform a selected range

of simulations to an acceptable solution tolerance when compared with existing comparison

codes, experimental data or analytical solutions. A suitably diverse coverage of validation cases

was devised to exercise all of the coupled numerical modules within the system. Expert CFD

practitioners were asked to check that the prototype CFD system produced acceptably

consistent results.

1.3.2.6 Construct suitable test cases to test for the benefits of interactive control

Test cases were chosen to evaluate the benefits and disadvantages of the interactive nature of

the prototype system.

An investigation of the time benefits or overheads due to the use of user interaction could not

be performed easily in different CFD systems. This was because of differences already inherent

from the development languages, internal architectures and solution algorithms. Such differences

already produce large variations in run times between the various CFD systems. This effect is

observed without even considering the influence of the User Interface. Test cases were

constructed and used to investigate the benefits of user interaction when optimising the solution

strategy as the run proceeds when compared to a "batch mode" run of the same software. These

timings were then compared with the non-optimised simulations to give a reasonable indication

of relative performance. Other, less quantifiable, benefits (e.g. error detection and prevention

or stability enhancement) could really only be investigated by allowing real users to experiment

with their own simulations to see if either stability or timing enhancements could be made in

practice, but such investigation was outside of the scope of this study. The qualitative benefits,

observed during this research, are discussed as appropriate but no extensive investigation was

conducted into these benefits.

Group solver control techniques were also investigated to determine if dynamic or static

1-8

PhD Thesis by John Ewer.

membership groups offered any benefits to CFD simulation and to ascertain if interactive control

of groups was in any way beneficial.

Also researched was the potential for automated solution control using the knowledge gained

during the optimisation research mentioned above.

1.4 Contribution to knowledge

The following summary indicates the significance of this work based on the limitations and

problems of existing CFD systems in general and the legacy source CFD code in particular.

1.4.1 Development of an incremental re-engineering methodology

The techniques created to reverse-engineer and re-engineer the legacy FORTRAN CFD code,

using a novel incremental approach that preserves functional consistency, are likely to prove

beneficial to a wide range of legacy numerical software systems both within and outside of the

domain of CFD research.

1.4.2 Investigation of new CFD techniques

The prototype system has been used to research numerous enhancements made possible by the

structure, availability of dynamic memory allocation and the Object Oriented design paradigm

imposed during the software re-engineering. This has allowed research into the benefits of

unstructured group solvers [EWER99-3] to be investigated as well as research into the

automation of interactive control experiences using Knowledge Based System (KBS) control

techniques.

Other techniques, outside of the scope of this thesis, are also being developed within the

Smartfire framework [TAYLOR96]. This work is facilitated by the open and extensible software

architecture. These techniques include run-time mesh adaption, fire modelling using solid

combustion, modelling of thermal radiation and simulation of flash-over.

1-9

PhD Thesis by John Ewer.

1.4.3 Investigation of the benefits of interactive control

The prototype interactive CFD system (now being used as the interactive CFD component of

the "Smartfire" system [TAYLOR97-1]) has demonstrated some significant benefits for the use

of interactive control particularly for the control of solution stability and for solution

optimisation.

The interactive control of unstructured "group" solvers has indicated some very important

savings for simulation times for cases that have marked solution differences between geometric

regions. Furthermore the group solver control allows significantly stratified (layered) flows to

be effectively controlled so as to maximise stability whilst minimising computational effort.

1.4.4 Knowledge of practical techniques of interactive control and
monitoring of CFD codes

A further technique that has been researched as a prototype within the interactive CFD system

is the use of expert CFD user knowledge at controlling the CFD code within an automated

Knowledge Based System to represent and act on the rules which can be used to improve the

performance or stability of the CFD simulation during processing. The KBS system uses rules

that have been elicited from actual simulations that have been interactively controlled by expert

CFD users. This research was made possible by the existence of the interactive control interface

in the prototype system and the open "Blackboard" architecture which supports external control

agents, other than a human operator using the User Interface. Furthermore experience of the

issues concerning implementation and interactive control have been attained.

1.5 Practical contribution to CFD research

The prototype CFD system developed in this investigation has evolved into a comprehensive

environment (now called "Smartfire") that is extensively used for continuing CFD research

within the application domain of fire simulation at the University of Greenwich. This is mostly

due to the considerable flexibility created by the re-engineering techniques employed during its

development. The interactive control and monitoring interface is popular [HUME97] for a

1-10

PhD Thesis by John Ewer.

research based code because it drastically reduces the time taken to assess and monitor the

behaviour of newly developed research algorithms.

1.6 Background to this research

The origins of this current work go back to 1987 when Knight, Cowell and Edwards

[KNIGHT87] investigated the benefits (to CFD) of using strict Software Engineering design and

development techniques for the development of reliable and extensible framework of CFD

research. This theoretical consideration highlighted some of the problems that are discussed in

this thesis but was not researched in practice due to resource limitations. The investigation was

extended into practical research by Petridis in 1995, for his PhD research [PETRIDIS95]. This

later research primarily investigated the potential benefits of an integrated Knowledge Based

System (KBS) for the dynamic control of a Heat transfer code during the numerical simulation.

One problem which was noted during the research was the lack of expertise that was required

to control the CFD code in terms of appropriate decision making. This was largely due to the

nature of most CFD codes which use batch mode of processing that is pre-configured to solve

some flow scenario without any form of user intervention. Further problems, facing the research,

were the limited time constraints for development of a prototype system and the lack of access

to comprehensive and reliable CFD software which meant that the prototype system only had

quite limited capabilities when compared with the fully coupled flow, heat, turbulence and

radiation algorithms that are commonly found in commercial CFD codes or more recent in-house

research codes. The lack of flow and turbulence handling was particularly restrictive because

these sub-models constitute the majority of the complexity of any general purpose CFD system.

The previous research demonstrated that there were important improvements to be made to

CFD software if appropriate control expertise could be determined and encapsulated in a KBS.

Whilst some expertise had been gained during this prior research, it was by no means complete

because of the limited scope and capability of the prototype system. Another problem that was

identified was the question of how sufficient information about a particular solution status could

be represented for initiating any KBS reasoning [EWER93-1].

1-11

PhD Thesis by John Ewer.

A more ambitious project was initiated in order to answer the joint problems of what sort of

control to apply and under what conditions to apply it. It was also the intention of this project

to create a research tool which could be used to investigate the benefits of interactive software

control within the CFD arena on a non-trivial (and preferably safety critical) application area

where any benefits would have real and demonstrable importance. Furthermore it was intended

that the research tool would form the basis of a CFD application framework, called

"SMARTFIRE", which would not only support both KBS and interactive control techniques but

also provide a vehicle for continued research within the University of Greenwich.

Collaborative work has also progressed, with other researchers, on other aspects of the

"SMARTFIRE" system. One of the problems facing CFD users is the set-up and specification

of a case such that the best solution can be obtained in the most efficient way. To this end,

researchers have been investigating the scope for using automated set-up tools [TAYLOR97-2]

which can take a simplified case specification (usually the geometry and the boundary

conditions) and then automatically generate high quality specifications for the CFD simulation.

1.7 Structure of this Thesis

Chapter 1. This chapter has enumerated the research questions posed and answered during this

investigation and has also indicated how the objectives of this thesis were decomposed into sub-

goals. There is also a summary of the importance of this research in terms of the contribution

to knowledge in general and to CFD in particular.

Chapter 2. This chapter gives a background to this area of research and gives an overview of

the techniques commonly employed in fluid flow simulation at the beginning of this study. The

chapter also discusses some of the alternative techniques and implementation languages that

were considered during the early investigations of this research. The chapter finally indicates

some of the most recent developments (or lack thereof) in the field of CFD code development.

Chapter 3. This chapter describes the capabilities and limitations of the legacy CFD engine used

as a basis for these investigations. The chapter also includes a description of the novel

1-12

PhD Thesis by John Ewer.

methodology that was developed for the re-use of the legacy CFD software in order to provide

a framework for the research required for this project. The reverse engineering and re-

engineering principles developed during this investigation are of significant interest in their own

right, particularly when one considers the large amount of useful legacy code that is still in use

but is often difficult to maintain or to integrate with newer applications.

Chapter 4. This chapter describes the creation of the prototype CFD system from the re-

engineered legacy software. This is the "vehicle" that was to be used for the investigations into

the potential benefits of interactive control.

Chapter 5. This chapter discusses the validation of the prototype CFD environment and

compares the run-time behaviour with the legacy software from which it evolved. This was

necessary to check that the reverse-engineering process has not corrupted the functional

behaviour of the software.

Chapter 6. This chapter introduces a set of simulation cases with their results, and consequent

interpretations. These test cases were used to investigate the potential benefits of interactive

control and monitoring.

Chapter 7. This chapter discusses some preliminary findings of research that was conducted into

solution optimisation. The two techniques that were investigated were automated dynamic

solution control and a new solver technique called a group solver.

Chapter 8. This chapter offers conclusions about the benefits of these investigations.

Chapter 9. This chapter indicates the need for additional research. This additional research could

not be completed or fully investigated due to time constraints.

The Appendices include technical descriptions of the algorithms, design and development

techniques employed in the particular class of CFD code used during this research. Published

papers, from the author, which are directly relevant to this investigation have also been included

in their entirety, so that referring sections of this thesis could be written more concisely.

1-13

PhD Thesis by John Ewer.

2 Background to interactive CFD research

2.1 Overview

This chapter discusses some of the features and limitations of the most common commercial

CFD codes and assesses some of the approaches that have been used to "improve" CFD

modelling prior to this current research. The reasoning behind the decision to use a legacy CFD

system as the base code for the current research is also explained. Having established the need

for using legacy software, the various techniques that are available for effecting the re-use of a

legacy CFD system are discussed. Finally there is a critical assessment of the CFD techniques

and previous development style, that were found within the legacy CFD system used for this

study.

In order to gain some perspective of the mode of operation and structure of the prototype CFD

system it is worth considering the capabilities and mode of interaction typically found in other

CFD codes. It should be noted that the CFD codes are not being evaluated for their complexity

or relative accuracy of their modelling techniques, or for the diversity of application areas that

they cover. Rather the discussion centres on the techniques used for interaction and control, as

well as the assurance of reliable simulation and accuracy of results.

Clearly most, if not all, commercial CFD codes are undergoing continuous enhancement and

many facilities have been added or further developed during the period of this current research.

However, even now, few CFD developers are aiming to provide code interactivity and

automated solution control. The observed development emphasis is usually directed to the

enlargement of the range and diversity of cases that can be run with the software, the

improvement of the numerical models and approximations used in the software and the provision

of better quality set-up (i.e. case specification), meshing and post processing data analysis tools.

This development strategy seems to assume that the CFD users will always be CFD experts but

it has recently been observed that non CFD experts are often turning to CFD techniques in order

to support their own areas of expertise.

2-14

PhD Thesis by John Ewer.

The various CFD codes, mentioned in these discussions, are by no means exhaustive. The

intention is to include a representative set of CFD codes that adequately illustrate the currently

available methods and techniques.

2.2 The traditional approach and work elsewhere

2.2.1 Batch mode CFD codes

There is generally insufficient information to apply reliable control of batch mode CFD codes

since only residuals and spot value monitoring are provided. Whilst this is less of a problem for

simulation optimisation by the control of relaxation values it is a severe problem for the

appropriate handling of unstable or divergent solutions where the cause of the problem

behaviour is not known.

Geometry
& Physics

USER =>
Create
CFD Setup

Perform
CFD
Simulation

USER =>
Respecrfy
CFD Setup

USER =>
Analyse
Results

CFD
Results

FIGURE 2.2.1-1 : Typical run time lifecycle of a CFD simulation.

2-15

PhD Thesis by John Ewer.

The figure (See Figure 2.2.1-1) shows a typical run time simulation life cycle that shows user

interaction, processing and outputs. Generally the set-up / configuration, meshing and post

processing data analysis tools are all completely separate from the numerical CFD engine. The

user cannot easily make use of data visualisation to continuously monitor the solution because

the user would have to force the system to output frequent complete result file dumps. Similarly

the user is generally unable to "interact" with the solution controls because this generally

requires saving a complete restart dump, going back to the set-up tool in order to re-configure

a restart using modified control parameters and finally reloading the case and restarting to

continue processing.

There are a wide range of CFD codes that fall into this category, including:

Phoenics [CHAM], Flow 3D [FLOW3D91], Easyflow [EASYFLOW90], Fluent, and Astec.

2.2.2 Other approaches to improve batch mode CFD codes

Several attempts have been made at developing Intelligent Front Ends [WILLIAMS88]

[JAMBUNATHAN91] for CFD systems. Whilst this research has some scope for improving the

CFD simulation process, because of the importance having a high quality case specification, it

is likely that the problems facing CFD research (described in Chapter 1) will still apply.

Unfortunately the research only used Knowledge Based techniques to support the set-up and

specification of a case and did not modify the, essentially, batch mode numerical CFD engines.

Phoenics with rules was an attempt to control the CFD processing centred on an experimental

routine build into the Phoenics commercial CFD code. This module contained a fairly simple

algorithm to modify the relaxation parameters based on the latest values of residuals for some

of the solved variables. A paper by Spalding [SPALDING92] presented simple implementation

details of the production rules without validation of the potential benefits.

2-16

PhD Thesis by John Ewer.

2.2.3 Other interesting and / or relevant research

"FUNGI" [UPHAM94] is an interesting development because it employs Lex [KERNIGAN88-

1] and Yacc [KERNIGAN88-2] to interpret Finite Difference algorithms in a graphical

environment. Whilst these Finite Difference algorithms are generally not as complete as those

that would be required for a CFD simulation and there are no supporting variables, it is

interesting to see a system where the fundamental algorithms are not necessarily hard coded into

the source code. The algorithms are actually interpreted from set-up information and the GUI

parameters. This form of external algorithm configuration was investigated briefly to allow

simple calculation of auxiliary variables within the prototype system.

Similar research has been conducted by Edwards and Hayes into a Visual Programming Interface

for Iterative Methods [EDWARDS93]. Early discussions with CFD researchers led to this form

of interface being discarded because, whilst extremely powerful for research of algorithm design,

it is not especially useful for monitoring the solution status or controlling the simulation.

Scateni has also investigated the potential for creating an Integrated Object Oriented

Computational Fluid Dynamics Environment [SCATENI92] but this had only resulted in the

development of an Interactive Domain Editor.

Cortex [BANERJEE94] is a co-processing visualisation system designed to allow for interactive

control of a CFD system but it requires a specially modified CFD interface for control and data

passing. It was also designed for very powerful parallel systems. This is an interesting design for

a configurable GUI for co-processing visualisation for CFD simulations.

NetCFD uses a WWW browser to remote control a CFD code (femFlow) from a remote high

performance CFD system. The system currently limits data to 2D only at present. The CFD

engine is based on the Finite Element Method and this has been criticised by some CFD

researchers to have some problems with certain flow simulations. The system also requires high

performance networking for communications between the remote processing server and the local

2-17

PhD Thesis by John Ewer.

GUI system.

Tworzydlo and Oden have written on the subject of creating an automated environment for

computational mechanics [TWORZYDLO93] but this work was not particularly well advanced.

2.2.4 Prior CFD research in the University of Greenwich

Phoenics [CHAM] and Flow-3D [FLOW3D91]: These commercial codes have been used as

development environments for the research of additional CFD methods covering nearly all

aspects of simulation capability. As yet no research has been applied to the creation of

interaction or monitoring tools beyond being able to see residual / spot value graphs and being

able to break into the processing to re-specify the set-up.

UIFS: This FORTRAN 2-D unstructured mesh stress and control volume CFD code was the

pre-cursor of much of the in-house research at the University of Greenwich. This code was

primarily aimed at the simulation of coupled solidification, stress modelling and fluid flow

scenarios.

FLOWES [PETRIDIS92]: This C and prolog research tool combined a simple thermal transfer

code with a rule inference engine that could automatically modify the solution control

parameters based on automated monitoring of the solution status.

CWNN [CROFT98]: This FORTRAN CFD code was a 3-D enhancement of the earlier UIFS

code. The aims of the code were to combine multiple physics capabilities including stress,

solidification and fluid flow modelling (amongst others) into a single coupled environment that

was able to use fully unstructured meshes. This was the legacy code selected for the re-

engineering.

2.3 Recent developments

Physica [BAILEY95] [CROSS94]: This FORTRAN code was developed as the embodiment

2-18

PhD Thesis by John Ewer.

of the multiple physics concepts on unstructured meshes that are found in CWNN and UIFS,

both of these earlier codes were merely research tools used in the development of reliable and

fully coupled multiple physics techniques. The emphasis of Physica is for broad coverage of CFD

capabilities with high degree of portability and, where possible, the exploitation of high

performance computing architectures.

FLO++: This C++ CFD code is quite novel in that it breaks the mould of traditional research

techniques which have, almost exclusively, used FORTRAN. The software provides user

development routines for extension of the software. The numerical engine is still quite batch

mode oriented.

CFX: This FORTRAN CFD code is a recent successor to the earlier FLOW-3D code. The

capabilities have been extended beyond those of FLOW-3D but there has been no attempt to

incorporate any interactive techniques into the CFD engine, which is still essentially, a batch

mode process.

Colt / Phoenics VR [CHAM]: This was a new concept for utilising high powered remote servers

to run CFD problems with a set up tool and post processing environment running locally on the

user's workstation. The user would create the case locally and "send" it away for simulation. A

novel feature of the post processor is the VR style interface that allows the user to "walk

through" the geometry and the results data as if it were a real geometry. The CFD simulation

would still be run to completion in batch mode by the standard Phoenics CFD code.

2.4 Assessment of the development techniques available to
develop a framework for interactive CFD research

This section discusses the various techniques that were available to create a CFD application

framework for this research investigation. The various pitfalls and benefits of these approaches

are also discussed.

2-19

PhD Thesis by John Ewer.

2.4.1 Develop a new CFD engine from scratch and add interactive
techniques

It would be possible to create a CFD framework from scratch based on the plethora of available

literature. Many of the papers about CFD cover many advanced topics of CFD research and the

fine-tuning needed for specific application areas. The problem is that there are very few "single"

information sources, which cover all aspects of developing a general-purpose CFD code. There

are also a number of additional problems with regards to this approach.

2.4.1.1 Development time factor

Many CFD codes (either commercial or in-house research codes) have been developed over a

period of many years by numerous developers. This is largely due to the diverse methods

available for CFD research as well as improvements and replacements for both the generic

numerical methods and application-area specific empirical techniques. In this sense most CFD

code development is an evolutionary process both in terms of increasing hardware capability

(which tends to highlight limitations in traditional techniques as the problem size and simulation

complexity are increased - For example the availability of more memory and faster hardware may

lead researchers to use finer meshes which may actually give less stable simulations or worse

results because there are considerably more degrees of freedom for the flow path in a finer mesh)

and software capability. Given the limited duration, human resources (Approximately 3 person-

years) and CFD expertise available for this research it was concluded that it would not be

possible to create a complete and well validated CFD system from basic first-principles.

2.4.1.2 Reliability of CFD software

The huge investment in man-power to develop CFD codes and the customary evolutionary

development life-cycle of such codes mean that most CFD codes have a large and dedicated

following of users who trust in the capabilities of particular codes (It is also the case that CFD

codes have many optimal branches and fine tuned coefficients that are tailored to specific

application areas). Indeed many CFD users are so tied to a particular CFD system that they are

incapable or extremely reluctant to use any other CFD software outside of their previous

2-20

PhD Thesis by John Ewer.

experience. Any new development has to satisfy an extensive coverage of validation against both

experimental data and other CFD systems if it is to obtain widespread user acceptance. Such

reliability could not be guaranteed in any completely new code development prior to starting

research into interactive control and indeed it would be unclear if any observed system

behaviour, to interactive control, is due to problems in the reliability of the software or the actual

control strategy adopted.

2.4.1.3 Access to CFD expertise

Part of the problem facing new CFD system developers is access to applied mathematicians who

are familiar with the "fine-tuning" techniques used in CFD codes. This is vital where necessary

approximations and empirical techniques have to be used to extend the software capability into

new research areas. Starting a new code development from scratch would be fraught with

difficulty due to inexperience on the part of the software developer and the steep learning curve

associated with gaining the necessary development skills. This is particularly true of this

researcher whose background is in software engineering and physics rather than in the more

appropriate applied mathematics.

2.4.1.4 System capabilities

The nature of fluid flow simulation is so diverse in scope that few, if any, CFD codes can hope

to behave well in all application areas. Even a limited application area such as fire field modelling

is actually very complex when the fundamental physical and chemical processes involved (and

their interrelationships) are actually considered. This complexity is further compounded by the

nature of the approximations and simulation techniques used within CFD software. Any new

development would have to undergo extensive research and testing merely to become an

"adequate" simulation system in a specific application area.

2.4.1.5 Other problems with developing from scratch

As previously mentioned any implementation of a CFD code from basic principles is likely to

2-21

PhD Thesis by John Ewer.

take considerable time to develop due to the complexity and nature of the algorithms used.

Furthermore such development is fraught with difficulty particularly for finding the empirical

methods algorithm fine-tuning that give the best possible approximation to true physical

behaviour for the target application area when no accurate numerical model exists. It is highly

likely that a new code development would get the design and data architecture correct for the

desired system but it is probable that the new development would have errors and omissions in

the empirical models and core algorithm formulation that could only be removed by extensive

research and iterative improvement. Research would need to be conducted into the algorithms

and empirical methods employed because various combinations of numerical techniques behave

in very different ways even when disregarding the diversity of the target application areas. Most

CFD codes are the combination and accumulation of many titbits of implementation knowledge

from diverse information sources where such knowledge ranges in scope from the particular

values used for a few constants in a particular application area to choices for more reliable

solution algorithm for the coupling of the solved variables. Validation of a new development is

particularly difficult because of the long development period before the system is in a state that

can actually be used to run simulations and at such a stage any errors encountered would require

extensive modifications to the underlying software. As has been found in many previous new

developments there is unlikely to be trust in the development from potential users without

extensive validation against existing software systems and experimental cases. The duplication

of effort for developing a new CFD code is particularly problematic for a limited duration

project. Generally a new code development would have no support from other developers since

the information sources would be reference texts, journal papers and conference proceedings

with little access to numerical CFD software developers who have their own work loads.

2.4.2 Add interactive functionality to an existing commercial CFD system

At the beginning of this research a feasibility study was performed to ascertain if an existing

commercial CFD code should be used as the framework for this investigation. There were a

number of perceived problems with this approach.

2-22

PhD Thesis by John Ewer.

2.4.2.1 Sensitivity of commercial software

Most commercial CFD software is closely guarded by the developers because of the huge

investment of resources required to develop and maintain it. Access to some of the empirical

approximations, numerical methods or specific implementation techniques would give

competitors considerable advantage. It is generally the case that commercial software is only

infrequently available completely in source code form.

2.4.2.2 Access to commercial software

As previously mentioned the new research requires complete access to all of the software

internals because of the requirements for interactive dynamic control. Also the methodology

used to incorporate User Interface code within a software system are generally highly invasive

for the provision of comprehensive interactive control, run-time data monitoring and run-time

visualisation.

2.4.2.3 Authority to modify commercial software

Given the sensitivity of most commercial CFD codes it is unlikely that authority would be given

to re-engineer or modify such a code extensively because such modifications would create

several different versions of the software which would then have to be maintained. If a decision

was taken to only proceed with the modified "interactive" version then that would have

implications on the development techniques that would have to be employed (e.g. QA

procedures, regression testing, comprehensive validation, software design with management

walkthroughs) and also on the company requirements for the delivery software. Such

commercially driven research would be unlikely to be as flexible as pure research because of the

limitations of product and user requirements which often cannot afford to support extensive

speculative pure research.

2.4.2.4 Access to developers' expertise

It is unlikely that a commercial software development house would welcome external access to

2-23

PhD Thesis by John Ewer.

the CFD development team because of the likely interruption to work schedules that such

interaction would cause. Such access is vital if the new code development is to keep up with

bug-fixes, patches and code improvements and is not to stagnate as a dead-end system. The

software developer is also likely to need significant help with understanding and correctly

accessing the internals of the code.

2.4.3 Extending the capabilities of the existing partially complete CFD code :
"FLOWES"

In the case of the "FLOWES" system it was decided that there was too much missing from the

basic algorithms to contemplate extending the software because such extension would be very

similar to the previous section which described the difficulties facing a new code development.

This was particularly true in light of the fact that it is the complex flow and turbulence modules

that were not developed within the "FLOWES" software. As mentioned above, the reliability

of a completely new software development would be largely unknown and untested and

significant research would be required into the choices and fine-tuning of algorithms and

empirical methods. Extending an existing system would mean that the implementation language

and, to a lesser extent, the data structure would be fixed. This is not necessarily desirable when

considering the potential for extended research. There would be no support available from

developers since the legacy system was essentially an unsupported prototype that is not going

to be developed further or maintained.

2.4.4 Simple automated translation of a legacy CFD system

Some cursory investigation of the tools available indicated that such an approach would lead to

little or no improvement in structure of either the data architecture or the procedural hierarchy.

It is also possible that there would be small errors in translation process particularly in terms of

order of execution of compound statements and array handling between languages. Due to the

low stability and fine numerical tolerances of most CFD algorithms it is probable that very minor

differences could cause destructive and unpredictable behaviour. However this technique does

benefit from the fact that the implementation language can be chosen such that suitable tools and

2-24

PhD Thesis byJohn Ewer.

software libraries are available for the overall development. There are several portability issues

relating to some of the available translation tools particularly in the handling of the external files

(which is a vital aspect of CFD systems) which are used to maintain complete sets of set-up and

solution data outside of any particular run of the software. There would be no documentation,

other than that which was available with the legacy CFD code. Generally the translation would

be simple to do and quite quick however the quality of translated software is frequently

indifferent and often quite poor. This is particularly true of translation software that is intended

to allow compilation but not necessarily maintenance or enhancement within the target language.

The approach does have one significant benefit because the new system maintains a reasonable

one to one mapping with the legacy system but this is only useful if developmental and research

work is to be conducted entirely within the legacy system.

2.4.5 Creation of nearly unchanged libraries of numerical routines and the
imposition of high level structure

A part way solution to the use of legacy software, whilst acknowledging the need for improved

structure, is to impose a high level structure on the software whilst turning much of the legacy

code into utility routines and library procedures that now make use of an improved high level

data structure or routine hierarchy. This approach could be reasonably easy to implement but

depends largely on the existing procedures and data access mechanisms and the clarity and

flexibility of their implementation. It is possible that the approach could benefit from the use of

mixed language programming but this would adversely affect the system portability. It is also

possible that the desired high level structure would not necessarily be consistent with the legacy

routines. This technique could be reasonably quick to implement provided that no difficult

inconsistencies were encountered. Many of the legacy routines could be used "as-is" depending

on the pre-existing structure and nature of the language used. This is likely to result in a

straightforward path for upgrade, patches and bug-fixes but easy integration of legacy routines

cannot be guaranteed. Performance is likely to be good provided that functional data access or

re-assignment are not required as a means of accessing or passing data to low level library

routines. It is also likely that code clarity would be improved at a high level within the code but

would be generally poor at lower levels. Some of the problems would be dependant on the

2-25

PhD Thesis by John Ewer.

nature of the data access mechanisms that would be imposed by mixed language development

or the interface to the library routines.

2.4.6 Reverse engineering of a legacy CFD system back to basic design and
re-implement from this design

This process would take a considerable time and is by no means easy. The reverse-engineering

techniques available [BYRNE91] [BRAND96] to "mine" an existing software system for the

underlying design are by no means infallible [BERGEY]. Furthermore it is possible and indeed

quite likely that errors will be introduced in the re-design or re-implementation phases of re-

engineering. This technique does have the benefit of considerable flexibility in the choice of

implementation language. As with a new development there is a long time before the newly

developed code can be tested against the legacy code behaviour. However the behaviour is more

assured than simply developing a new code from first principles because the design has been

extracted from a working and complete software system. Reverse engineering will generally

preserve all of the algorithms and empirical methods but may not necessarily preserve an audit

trail back to the legacy software. This is particularly true if the structure and data architecture

have been drastically altered in the re-design process. It is likely that any updated methods and

bug fixes would also have to go through a complete re-engineering and re-implementation

process in order to be assured of functional consistency.

2.4.7 Reverse engineering of a legacy CFD system and re-implementation
using an incremental approach and imposed data and control
architecture

This approach to re-engineering has to make concessions in the design to maintain consistency

with legacy system whilst incrementally re-engineering. One of the most important benefits is

that the re-engineered system (and the incremental stages) are never very far from a working

CFD code that can be validated as being algorithmically correct and consistent with solution

behaviour from the legacy software. This gives considerable assurance that the algorithms and

empirical methods are preserved during re-engineering. The effort involved is significantly less

that would be needed for a complete re-engineering re-implementation from a reverse-

2-26

PhD Thesis by John Ewer.

engineered fundamental design, however the resultant system is less likely to have a "perfectly

designed" architecture due to dependencies and structure inherited from the legacy software.

This technique is more reliable than automated translation or re-structuring since the re-

engineered software will be designed so as to improve the architecture to create an extensible,

clear and consistent system. The target implementation language can be chosen as required but

this will necessitate some form of translation at one of the incremental stages. This technique

provides a form of audit trail back to the legacy software so that updated methods and bug fixes

can follow through into the new system with less effort than would be found with a totally re-

designed system.

2.5 Choice of Implementation language

2.5.1 Overview of language choice

Given that a large number of the overall system requirements had already been specified it was

possible for the implementation language choices to be enumerated. Whilst, in theory, the choice

of target language was not vital prior to the re-development phase it was found to be helpful to

know what programming paradigms and language features would be available for use during the

re-engineering.

Languages such as Smalltalk were not considered due to their huge performance hit, caused by

their interpreted nature, even though the conceptual structure of such languages is capable of

use for implementing scientific software [DUBOIS-PELERIN92].

The legacy CFD software was actually implemented in FORTRAN-77.

2.5.2 Available languages

2.5.2.1 Ada.

Ada had few libraries and suffered from generally quite poor portability due to the limited

2-27

PhD Thesis by John Ewer.

availability of quality compilers. Such compilers as there were had a high cost. At this stage the

compilers also exhibited limited reliability because Ada is such a complex language. Ada is not

quite Object Oriented. It was possible to create very robust software if the particular compiler

implementation was correct because of the very strict type checking. It appears that were only

a few numerical users. Algorithmic development and use as a research language is likely to be

hampered by the very strict type checking and lack of familiarity on the part of the developers.

Ada is moderately close, semantically, to the legacy code language.

2.5.2.2 Pascal.

Pascal is often considered to be rather an academic plaything. The portability of Pascal is quite

poor. The language is not really Object Oriented although record like structures are available.

It has been observed that there are inconsistencies in behaviour between different compilers and

platforms. Some compilers exhibit quite good speed but this is highly compiler dependant. There

were very few portable libraries available for Pascal. There were few serious numerical

developers. Certain compilers and language features helped to ensure reasonably robust

implementations. Pascal is moderately close to the legacy code language.

2.5.2.3 FORTRAN-77.

FORTRAN-77 has no Object Orientation hence it would be necessary to emulate Object

Orientation using simple data structures and possibly common data and entry points

[AFZAL94]. FORTRAN does display good speed and excellent portability due to its maturity

and strict specification. Generally there are rather poor language features and only a few

portable GUI libraries. FORTRAN has very good numerical libraries but these are not

necessarily useful for the CFD system. FORTRAN does not generally support any operating

system interface. The majority of numerical developers use FORTRAN. There is little support

from the language for robust coding but there are a number of commercial code analysis and

code tidying support tools available. FORTRAN is the language that was used to develop the

legacy code.

2-28

PhD Thesis by John Ewer.

2.5.2.4 FORTRAN-90.

FORTRAN-90 had only a few compilers available at the start of this investigation. Compiler

reliability was currently suspect particularly for compilers that translated from FORTRAN-90

to C as part of the compilation. There was rather a lack of libraries other than via FORTRAN-

77. Again FORTRAN-90 is not quite Object Oriented although it had introduced more complex

data types than were available in FORTRAN-77. There were few users but the language is

FORTRAN-77 compliant. The language includes enhanced numerical support for vector and

matrix algebra. Generally there was good numerical speed but often, surprisingly, much slower

than FORTRAN-77 compilers on the same platform. FORTRAN-90 is consistent with the

legacy code language.

2.5.2.5 C++.

C++ has a fully Object Oriented paradigm but the usage can be sometimes be somewhat obscure.

There were generally many diverse application libraries particularly for user interface

development. The operating system interface built into the language is very good. C++ does

suffer from less run-time performance than purely procedural languages (poor speed for dynamic

or "late" binding). There is reasonable support for robust coding with moderate to strong type

checking but the possible use of C style pointers could give dangerous unrestricted data access.

C++ had a quite limited number of numerical developers but its popularity is growing. The

language definition is being extended continuously and developers must be aware of the portable

sub-set of language if portability is an issue. C++ is a highly flexible and extensible language with

considerable possibility for optimisation. C++ has moderate to poor consistency with the legacy

code language.

2.5.3 Language chosen for the re-engineered system

The need for a generally portable prototype system that was capable of supporting the Object

Oriented data structure paradigm tended to indicate the use C++ as the target implementation

language. The wide availability of user interface development libraries and easy access to the

2-29

PhD Thesis by John Ewer.

operating system also supported C++ as a suitable language. The deciding factor was the

availability of Knowledge Based System development tools that are either compatible with C++

or accessible from within C-

2.6 The methodology that was adopted for the development of a
CFD research framework

The fundamental considerations for the development of the prototype system were for reliable

CFD modelling coupled with rapid implementation. The re-use of legacy software offered the

greatest potential benefits due to availability, access to knowledge and compatibility with

existing pre- and post- processing tools. When the various CFD code development techniques

available were considered, for the current project, the incremental re-engineering approach

offered the most appropriate solution based on absolute functional consistency, limited

development time, access to CFD code developer expertise, flexibility for re-design and ease of

maintenance.

The biggest problem facing this technique is that a change of implementation language would

require a complete and accurate translation of all of the source code with all of the potential

problems that this would entail. This was not seen as an insurmountable difficulty because the

incremental re-engineering technique would tend to support the translation stage due to earlier

re-structuring stages that are concerned with clarifying the legacy code and ensuring that data

access and procedure usage are consistent throughout the whole system.

A complete description of the re-engineering methodology adopted, for this investigation, is

given in the following chapter (See Chapter 3).

2-30

PhD Thesis by John Ewer.

3 Re-engineering the legacy CFD code

3.1 Overview

Having established the need for using a legacy CFD code as the basis for the creating of a CFD

research framework, this chapter discusses the considerations and difficulties that were

encountered during the re-engineering as well as giving a description of the reverse engineering

methodology itself.

This chapter first highlights the problems facing any re-use of legacy software. This is followed

by a discussion of the techniques and features that were known to be needed or were desirable

in the re-engineered system and the implications of these features are discussed where they have

a bearing on the re-engineering process. The chapter then gives a critical assessment of the

implementation techniques and characteristics of the legacy CFD software that was to be used

as the basis for the development of a research framework for this investigation.

Finally, this chapter describes the stages used in the reverse engineering methodology. This

incremental methodology was specially formulated in order to re-engineer the legacy CFD code

and to develop the required prototype CFD application and research framework. A journal paper

covering the software re-engineering is included in the appendices [See Appendix 11.2].

The reader might be interested to note that the legacy CFD software system consisted of 107

source files that contained 22,450 Lines-Of-Code (LOC) excluding comments.

3.2 What problems are associated with the re-use of legacy code?

3.2.1 Poor documentation

It is generally the case that research developed codes are largely unsupported by any

comprehensive code documentation. The code often serves as its own specification and final

3-31

PhD Thesis by John Ewer.

design. Any documentation that is available may be tailored to journals or conference

proceedings and is thus unlikely to be concerned with all of the technical development and

implementation issues that resulted in a particular instance of the legacy code but rather would

be concerned only with the basic algorithm changes that differentiate a particular system from

previous approaches.

3.2.2 Evolutionary research code

Generally the priorities for the development of an in-house research code (i.e. not product

oriented software) are vastly different from those for commercial software. Often software

development companies have adopted strict methodologies for software design, implementation

and maintenance. Conversely a purely research based code is likely to have good or excellent

mathematical models due to application of new and novel solution techniques. Unfortunately the

high quality algorithms are often obscured by a rather poor development style which can lead

to monolithic subroutines with too much inline code, poor software module re-use because

software grows by modification to pre-existing routines rather than being implemented from

design. Research code tends to lack consistent implementation strategy due to the variety of

component sources and developers. Further problems occur when there are no strictly imposed

and consistent strategies for passing variables, naming conventions or strict software

development methodologies which generally result in a working system which is very unclear

and exceedingly difficult to extend or maintain. Most research developed codes require

considerable tidying and re-structuring before they can be used for commercial systems or for

continued research and development by a software development team. A further traditional

problem is the nature and experience of most numerical researchers who are generally trained

and firmly entrenched in a procedural way of problem solving and software implementation. This

is not necessarily the most appropriate or optimal solution to creating a research tool with a long

useful life particularly in light of the techniques used for GUI implementation.

3.2.3 Closed and inflexible architecture

The requirements for an interactive and extensible research system are generally very different

3-32

PhD Thesis by John Ewer.

from those which are tolerated in a pure research code. The previously enumerated points about

data passing mechanisms and procedural structure have much greater importance when the

system is to be used for continued research by a multitude of researchers or when access to data

is required by other modules and possibly even other co-operative processes.

3.2.4 Archaic implementation language

The traditional language choice that is most commonly used to implement numerical systems in

general, and CFD systems in particular, is FORTRAN-77. Whilst FORTRAN is indeed fast and

portable it does suffer from being very restrictive particularly as far as data structures are

concerned. Furthermore the only conceptual mode of development that is generally supported

is for procedural implementations. Attempts at Object Oriented design and implementation using

FORTRAN have proved to be possible but these have had very limited acceptance and are often

quite unwieldy. Studies [PARSONS94] have shown that ease of maintenance, code clarity and

ease of modular implementation and maintenance can be significantly enhanced by the use of

Object Oriented development techniques.

3.2.5 Lack of any existing User Interface

Most existing software systems that were developed as research tools are not generally

supported by any form of integrated user interface. Partly this is due to the priorities of the

researchers which tend to favour algorithm robustness, solution correctness, execution

performance and fast implementation rather than any form of interaction techniques. Also many

CFD codes started their development at a time when graphical interactive computer terminals

were unavailable and hence the CFD software could only be run as black box processes on pre-

configured simulations.

3.2.6 Few, if any, library tools

Research development of software tends to design from the top down and does not often

concentrate on the generation of library software routines and modules that can be used in any

1-33

PhD Thesis by John Ewer.

subsequent research. A well conceived library of software tools can significantly benefit future

code development because researchers do not have to implement commonly used routines again

and such routines are easy to locate within the software system. The libraries that are available

do provide low-level routines such as solvers, norm calculation routines and vector algebra but

tend to be over prescriptive of the data structures and, in any case, do not support the real

complexity of CFD software which is mostly in the formulation of the coefficient values used

in the system matrix, the calculation of auxiliary variables and properties and the

interdependences between coupled variables.

3.2.7 Batch mode of processing

The nature of computers and their development history has led to a situation where many

competent (and indeed highly skilled) numerical software developers are unaware of the benefits

and possibilities afforded by non-batch mode codes. Batch mode processing tends to dominate

the field of CFD research because simulation run times used to be measured in days and weeks

and it was thus inconceivable that a user would wish to monitor and interact with a simulation

during the entire computational phase. This situation has been improved drastically by the

continuously increasing performance gains of current computer systems. Unfortunately the

traditional batch mode of processing still holds for most CFD systems when performing the

actual numerical simulation. Admittedly there have been advances made to the set-up tools

(specification) and post processors (results analysis) but the numerical computational phase

remains very similar to the batch mode techniques of legacy software.

3.3 Discussion of CFD techniques used in the legacy code

The particular formulations, approximations and algorithms used in the legacy CFD code (that

were subsequently carried forward into the prototype CFD system) are considered to be outside

of the scope of this thesis since they concern common numerical formulations of existing

algorithm development work that have little bearing on the re-engineering or the imposition of

interactive techniques. The interested reader is directed to the appendices section where the CFD

technical material and capabilities are described in some detail.

3-34

PhD Thesis by John Ewer.

3.4 What considerations have to be made for the re-i/se of legacy
code for use in the new system?

3.4.1 Nature of control and granularity

Since the target for this study was a system which would be able to respond to dynamic solution

control there needed to be due consideration to the nature of the control within the legacy

system. All of the available aspects of control had to be identified and furthermore each control

parameter had to be evaluated so that decisions could be made about "if', "when" and by "how

much" could it be safely modified. There were also data dependencies upon control parameters

which had to be assessed. For example it would not be correct to modify a relaxation parameter

part-way through a solver sweep if this would cause some of the cells to use the old value of

relaxation whilst the remainder used the new value of relaxation. Such a situation would

introduce potentially unpredictable and unstable solution behaviour and had to be prevented.

3.4.2 Existing looping structure

The existing looping structure within the legacy system was bound to the procedural

development style used by most CFD developers in the traditional software development cycle

typically found in numerical software developed in a research setting. This was not necessarily

appropriate for the target system. The nature of looping required was identified and the

implications of changing the looping were also assessed prior to re-engineering. The smallest

"chunk" of processing was determined to be the outer "sweep iteration" which causes all of the

solved, calculated and auxiliary variables to be updated once.

3.4.3 Existing procedural structure

A comprehensive understanding of the legacy system modularity was ascertained prior to the

re-design process. The scope and nature of the procedures had to be determined so that the re-

design work would not "break" the algorithms from the legacy code.

3-35

PhD Thesis by John Ewer.

3.4.4 Use as part of ongoing research program (involving others)

The fact that the prototype system was to be used as a research framework for CFD techniques

had important implications for the use of the legacy software. One such consideration was that

the new algorithm syntax and data access mechanisms could not be too "alien" in usage to the

intended developers. Another consideration was for the research requirements, within the

medium to long term, that would have implications on the form of data structures used and the

modularity of the software.

3.4.5 Data structures

The form of the data structures used in the legacy software had to be evaluated so that the

functional and data dependencies were known prior to any re-design. It was also necessary to

assess the nature and extent of data passing mechanisms. This evaluation ended with an

assessment of the most flexible and extensible data structures that could be used in the target

system which were still compatible with the algorithms within the legacy software.

3.4.6 Performance issues

CFD code users are highly aware of the overheads of performance because the size and

complexity of simulations, together with the computationally intensive numerical CFD

processing, lead to extended run-times. When the legacy software was re-designed some

consideration had to be given to the performance degradation or improvement that would result

from any design changes or implementation differences.

3.4.7 Portability issues

Since there is generally no specific computer hardware that is used to run CFD simulations then,

in order to provide adequate user coverage, the software was developed to be as portable as

possible. This affected the choice of implementation language and the choice of third party

3-36

PhD Thesis by John Ewer.

libraries which could be used. At the outset, the developer was aware that the prototype was

intended for use as a framework for future internal research but was also likely to be further

developed as a saleable product and thus, it was necessary to consider the commercial aspects

of the development too (e.g. minimising the dependencies on external expensive libraries whilst

maximising portability).

3.4.8 Integration of GUI components

Graphical User Interfaces are reasonably straightforward in concept but the diverse nature of

the underlying operating systems and computer hardware means that there are few truly portable

GUI development libraries. Most of the portable GUI libraries have a particular mode of

operation that is termed "event driven". There were a number of potential conflicts between an

event driven GUI and the legacy procedural software since it was intended that the software is

to be fully interactive.

/ EXPERT \

SETUP USER
INTERFACE

CFD USER
INTERFACE CONTROL

BLACKBOARD CFD DATABASE

USER

FIGURE 3.4.8-1 : Components of the CFD environment
and the data access architecture.

3-37

PhD Thesis by John Ewer.

3.4.9 Integration of KBS components

Prior research on FLOWES [PETREDIS92] [PETRIDIS96] indicated a suitable architecture for

the use of Knowledge Based System components that could be used to control the numerical

processing using production rules. The communications between the numerical software and the

rule system are made possible by the use of a Blackboard. Part of the extended research that

used the prototype system was a Knowledge Based System capable of reasoning about

appropriate control changes using stored expertise from expert CFD users. It was intended that

such changes could be effected by either a knowledgeable user (via the GUI) or the KBS module

in order to improve the simulation strategy. For the most part the available KBS tools are unlike

traditional programming languages and there were implications as to the choice of

implementation language for the CFD system so that the KBS and CFD components could

communicate effectively (or indeed at all). There was also a need for evaluation of how and in

what form could data from the CFD system be made available to the KBS system and how could

control be sent from the KBS to the CFD system (See Figure 3.4.8-1). Such decisions affected

the re-design process for the legacy software.

3.4.10 Integration of visualisation components

A significant new development within the CFD system was for the continually updated "run-

time" visualisation of data during the computational processing. This implies that the complete

solution data for visualisation had to be made available to the visualisation routines whenever

the display needed to be updated (such as when a window is exposed or resized or when new

data is available). Since the visualisation routines are based on an event driven paradigm it was

necessary to provide unrestricted global data access to the visualisation routines.

3.5 What new techniques were needed in the new system and what
implications did these requirements have?

The requirements for an open architecture, maintainable CFD system with integrated graphical

3-38

PhD Thesis by John Ewer.

interface and dynamic visualisation indicate that Object Oriented design and the event driven

paradigm are necessary implementation strategies. These architectural changes are desirable

from the point of view of the final delivery system but they have large implications for the

approach used and difficulties to overcome in order to re-engineer the legacy software into an

appropriate form.

In order to perform the software reverse engineering of the legacy software it was necessary to

identify the complete calling architecture, common procedural code and code duplication as well

as any "inline" methods. The full design and algorithmic methods used within the legacy software

had to be extracted for use in the new system in the most concise and self-consistent form

possible to support extended research.

It was also necessary to determine if the legacy software contained any computational objects

which could be created within the new system to encapsulate concepts, related data and

methods. The creation of abstract types provided significant flexibility and ease of maintenance

within the target system. There was also an improvement in general code clarity when objects

had intuitive and self-consistent meanings. Often the use of alternative data structures could

support lateral research thinking because new ways of problem solving become apparent due to

the nature of the objects themselves. The potential problem of using objects was the potentially

significant overheads that have been noted in some Object Oriented (OO) implementations

[ANGUS91] [DUBOIS-PELERIN93]. It has already been noted that performance is frequently

an important consideration when choosing a CFD code and it is vital that the imposition of

Object Orientation should not drastically affect performance. Angus et al [ANGUS94] had

noticed quite a large overhead for Object Orientation when applied to lower "processing" levels

of a "flutter analysis" simulation code. Their approach to overcoming these overheads was to

keep the lower levels using simple data structures but to group the simple structures and

methods at quite a high level of the calling architecture so that the performance hit of Object

Orientation was minimal. Such an approach was considered for the re-engineering of the legacy

CFD code but there are a number of potential Object Oriented exploitations that would not be

possible with this half-way house re-structuring. Care was taken to avoid the potential problems

[WEBSTER] of using an Object Oriented development by investigating the possible problems

3-39

PhD Thesis by John Ewer.

before the re-engineering commenced.

Consistency with numerical CFD developers experience necessarily put limits on the

implementation language choice and limited the features that were used. The new system was

designed to be largely self descriptive and consistent with the known algorithms from the legacy

system. It was also a design requirement that data access was self-consistent for all software

developers and researchers.

The coding interface between the GUI and numerical CFD code crosses the boundary between

an event driven architecture and purely procedural code. The danger with integration of different

programming methodologies was that one or other component can tend to dominate with the

effect that the GUI could seem unresponsive while the CFD code was always processing or,

alternately, the CFD code was never processing or behaving sluggishly as the GUI was always

waiting for input. Part of the design strategy that has been demonstrated in prior research is the

use of Blackboard objects for inter-component communications and for maintaining GUI

defaults.

Since the target system was ultimately intended to have KBS support, there were considerations

that had to made during the system design. The first choice was for the implementation language

such that data transfer between the CFD code and the KBS component was possible, portable

between systems and efficient. If, as seemed likely at that stage, the KBS system was constrained

to be a separate process then the overheads and complexity of data transfer by file would have

to be assessed. In practice the KBS, GUI and CFD engine are coupled by a global "blackboard"

data structure but are, for efficiency reasons, implemented within the same executable. This

implementation strategy was deemed to be both appropriate and necessary because of the huge

amounts of data required by a CFD simulation. A coupled system gives instant and unrestricted

access to all of the simulation data with no communications overheads. A mechanism of

restricting control access was considered in order to prevent meaningless or potentially

problematic control modifications. There is a distinct possibility that pattern recognition code

would be required to summarise status information prior to reasoning although creation of

pattern recognition routines is outside of the scope of this research.

3-40

PhD Thesis by John Ewer.

Visualisation was deemed to be vital for comprehension, by a CFD user, of patterns and trends

in large numerical data sets. The form of data within CFD systems is such that there are three

possible forms of visualisation and a variety of visualisation techniques from vector arrow

displays to contouring or graphs. The 3-D form of visualisation was considered to be too time

consuming and complex for the run-time display of data and was more appropriate to the usual

post processing visualisation of results from a completed simulation. A further perceived

problem with 3-D visualisation was that the displays can sometimes be uninformative if they are

cluttered with too much data simultaneously. Conversely 2-D visualisation is known to be

considerably faster and easier to draw but has the disadvantage that only a limited amount of

data is displayed at any one time so features could be missed if the 2-D display slice is chosen

inappropriately. Graphs are really 1-D visualisations that are very good for displaying time,

sweep or distance varying quantities so that data trends and convergence can be ascertained. The

3-D and 2-D visualisation methods require access to the data throughout the computational

domain for all variables. The 1-D graphs may also require access to historical data values when

used for graphing data against time or iteration sweep.

Consideration was also given to new code algorithms and new application specific modules and

techniques. These requirements implied that the new software system had to be coded for clarity

and robustness. This would not necessarily be the case for a pure prototype research code. One

feature that had already been conceived was for the use of group solvers. It became apparent

that there were two techniques that would be rather difficult to implement and use in the legacy

system because of the lack of dynamic memory allocation and the use of existing code

procedures that are global rather than object-specific. These techniques were for mesh adaption

and mesh refinement. It was unlikely that these techniques could be implemented during the

current research but consideration was given to the form of data structures and procedure

modularity that would support their implementation at a later date.

3.6 Critical evaluation of the legacy code

The following sections give a brief description and assessment of the state of the legacy system

3-41

PhD Thesis by John Ewer.

at the time when the legacy software was used for re-engineering. The interested reader is

directed to the SMARTFIRE Technical Reference which is included in the Appendices section

[See Appendix 11.4]. The Technical Reference covers the numerical and physics modelling

capabilities that exist in both the legacy and re-engineered CFD codes.

3.6.1 Coding style

The legacy code was written in standard FORTRAN-77 with no extensions to using compiler

specific features (e.g. no use is made of "DO..ENDDO", "DO..WHILE" or aggregate data

types) that are available in FORTRAN-90 and as extensions in some FORTRAN-77 compilers.

This was good from the point of view of portability but it did mean that "DO..WHILE(..)" loops

were actually implemented as "n CONTINUE..IF (..) GOTO n" which can be hard to follow

semantically within large sections of code. These are fairly common constructs in the legacy

CFD software.

Very little use was made of the computed GOTO or simple GOTO other than for the

implementation of DO. .WHILE loops as described above. This meant that the legacy system had

reasonably clear execution paths, although some sections of the code were very long.

The naming conventions used in the legacy software followed the standard 6 characters for

identifiers and procedure names. Almost all variables were explicitly declared for dimensions and

type. The legacy code did not use any implicit typing except for a few loop index counters. The

fact that implicit typing was not used made the legacy code easier to reverse engineer but the

use of 6 character identifiers made the code quite hard to comprehend initially.

Comments were only consistently applied to subroutine headers where they were used to

described the argument list variables and their access modes. The remainder of the source code

had only a few scattered comments (typically 1 descriptive comment per 50 lines of code) to

explain the algorithms or the purpose of subroutines and functions. Generally the only internal

comments were for related code block title headings. This lack of comments meant that legacy

code developer assistance and some background research was needed to understand the

3-42

PhD Thesis by John Ewer.

reasoning behind some of the algorithms and routines.

Reasonable use was made of named integer parameters for declaring the dimensions of data

arrays. This was a considerable help in the assessment of implied aggregate types since arrays

that were declared as having the same dimensions were thus likely to be of related storage and

hence possibly part of an implied aggregate (collection) type. The following example code

fragment (See Figure 3.6.1-1) shows some of the data arrays that could be identified as being

related due to the parameters which indicate the array sizes.

INTEGER MAXCEL, MAXFPC
PARAMETER (MAXCEL = 18500, MAXFPC = 6)
INTEGER CELMAT(1:MAXCEL), ADJFPO(1:MAXCEL,1:MAXFPC)
REAL CENTRE(IrMAXCEL,1:3), CELVOL(1:MAXCEL)
REAL TEMPER(1:MAXCEL), H(1:MAXCEL)
REAL OLDH(IrMAXCEL), OLDT(1:MAXCEL)
REAL LASTH(IrMAXCEL) , LASTT (1: MAXCEL)
REAL U(1:MAXCEL), OLDU(1:MAXCEL)
REAL V(IrMAXCEL), OLDV(1:MAXCEL)
REAL W(1:MAXCEL), OLDW (1 :MAXCEL)
REAL P(1:MAXCEL), OLDP(1:MAXCEL)

FIGURE 3.6.1-1 : Identification of aggregate data types.

Fairly extensive use was made of named parameters for storing empirical algorithm numerical

value constants. This was good because it tended to clarify the algorithms concerned and

indicated that the numerical values had some consistent meaning. These parameters tended to

be declared locally and were thus defined many times throughout the entire legacy software

system.

One area that the legacy code did fall down on was the frequent use of explicit integer indices

to refer to variables within arrays. This was particularly true of the arrays which hold status and

control information for each of the solved variables. Access was non intuitive when the source

code merely referred to item "n" in an array since the developer then had to cross check to see

how the number "n" related to known items.

3-43

PhD Thesis by John Ewer.

3.6.2 Data access mechanisms

There was no use of dynamic memory allocation (compiler dependant additions) in the legacy

code and no pseudo-allocation techniques were used (for example FORTRAN developers often

declare and use huge data arrays that are partitioned and passed down to subroutines as separate

arguments). This meant that the legacy code often needed to be modified and recompiled for

different problem sizes. This can greatly limit portability of the software and generally means

that portions of the code had to be made available in source code form for re-compilation. There

was also the problem that the legacy software might not use memory in the most efficient way

possible for the particular problem being simulated.

Standard FORTRAN array based storage was used for all data with each array named separately

as a separate variable. The legacy code did not use so called "f-array" storage techniques as in,

say, Phoenics [CHAM] - This technique declares a huge data array at the main program level

and passes down "chunks" of the array to sub-procedures. The use of simple array based storage

and the naming conventions used in the legacy code mean that, other than the declared sizes,

there was no clear indication of how differently named variables and arrays were related to one

other. Another problem that was encountered concerns the difficulty of developing additional

functionality that requires new variables. Generally speaking, the addition of a new variable, to

solve or calculate, will also require a large number of additional support or storage variables.

This additional storage may be needed for temporary storage during calculations, for control of

the solution, for reporting of status or for the storage of different historical versions of the

particular variable. This is a particular problem because the data dependencies in the legacy code

are unclear and it is thus difficult to ascertain how many and of what type the required new

variables should be.

There is no use made of COMMON for passing data around the system between procedures.

This means that all data is passed around the system as formal parameters in argument lists.

Given the high degree of data dependency between most of the numerical routines there are

considerable numbers of arguments. All variable names had to be limited to 6 characters to avoid

exceeding the continuation line limits for some of the argument lists. The greatest problem posed

3-44

PhD Thesis by John Ewer.

by this high degree of data coupling, between subroutines, is that code enhancement which adds

extra variables can potentially involve extensive modifications to the majority of the source code.

This is clearly undesirable because of the large potential for introducing errors. There is also a

problem with large argument lists because of the limited type checking provided by FORTRAN

that would allow some variables in a large argument list to be muddled in order without error

or warning. The only symptom of such a coding error would be the unpredictable behaviour of

the affected subroutine. This is a real and distinct danger that is present in the legacy software.

The following source code fragment (See Figure 3.6.2-1) indicates the scale of some argument

lists to major routines.

CALL MCSOLV(3,

@
@
@
@
@
@
@
@
@
@
@
8
@
e
RELAXA =
RMETHD =
MITERS =
LTEMP =

LVFRAC,
NOCELL,
VRMETH,
B PATCH,
CENTRE,
OLDLVF,
FTOCEN,
NPRPFD,
WAPL,
MATINX,
WB,
BDARCY ,
NOPINF,
XYZCRD,

SRELAX(l)
VRMETH (1)
MAXITR(l)
DEBUG (1)

CALL PCSOLV(3,

@
@
e
@
@
@
@
e
@
e

NOFINC,
BANWID,
RELAXA,
SCHEME,
ADJELE,
TEMPER,
NEQSFD,
W,
SYSMAT,
NOPINF,

IF (ERRINF .NE. 0)

SERROR(l) = RESIDU

CELTYP,
NOFINC,
BANWID,
SRELAX,
NOVARS ,
AREA,
TEMPER,
NUMMAT,
CELMAT,
UPG,
u,
UAP,
ISOLID,
MAXFPT,
NUMPTS,

CELTYP,
NOFTYP,
NO FACE,
TOLVAL,
LASTP,
NPATFD,
OLDP,
MAXEQS,
UAP,
MATINX,
MAXFPT,
STOP

NSOLVR,
NOFTYP,
FPATCH,
TOLVAL,
PTBYPT,
CELVOL,
VRELAX,
PRPEQS,
LASTU,
VPG,
V,
VAP,
NORMAL,
TURMOD,
ERRINF

LVFRAC,
NOCTYP,
WKSP,
MITERS,
B,
MAXCFA,
OLDT,
MATPRP,
VAP,
RESIDU,
LTEMP,

VELERR,
NOCTYP,
NO FACE ,
MAXITR,
P,
ADJELE,
OLDT,
NEQSFD,
LAS TV,
WPG,
w,
WAP,
DENS IT,
ADJFPO,

)

NOCELL,
RMETHD,
NUMPAT,
CENTRE,
CELFAC,
NUMMAT,
NPRPFD,
WAP,
NORMAL,
LASTU,

WALLS S,
WKSP,
NUMPAT,
NPATFD,
MAXCFA,
SOLERR,
MAXEQS,
LASTW,
BUOY,
TMPSYS,
OLDU,
ENUL,
DEBUG,

B PATCH,
AREA,
DELTAT,
PRPEQS,
CELMAT,
UPG,
DENSIT,
LAS TV,

SCHEME,
CELFAC,
VFALST,
MATPRP,
UAPL,
SYSMAT,
UB,
OLDV,
FACPTS,
NUMDBG,

CELVOL,
PCORR,
FTOCEN,
u,
VPG,
FACPTS ,
LASTW,

SERROR,
DELTAT,
ENUT,
SKINFR,
VAPL,
VARERR,
VB,
OLDW,
FACTYP,
XPROD,

BUOY,
OLDLVF,
ADJFPO,
V,
WPG,
FACTYP,
ERRINF)

FIGURE 3.6.2-1 : Usage of formal function parameters.

3-45

PhD Thesis by John Ewer.

3.6.3 Structure

Many of the routines are basically copies of other routines with only slight algorithmic

modifications. There is generally little or no consideration given to the isolation and re-use of

common code. This is particularly true of the large subroutines that are used to build the

coefficient "system" matrix for each variable or the fairly common methods such as simple vector

geometry operations. Whilst this approach tends to make the source code very large, and more

difficult to maintain, it does have the benefit of fairly optimal speed of execution since there is

generally less decision branching and the number of layers of procedure calls is kept to a bare

minimum.

Legacy code

RELAXA = SRELAX(5)
RMETHD = VRMETH(5)
MITERS = MAXITR(5)
FALSET = VFALST(5)
CALL HCSOLV(3, RELAXA, ...
CALL SYSRES(...)
SOLERR(5) = RESIDU
RELAXA = VRELAX(5)
CALL LINRLX(...)
VARERR(5) = RESIDU
RELAXA = VRELAX(8)
RMETHD = VRMETH(8)
CALL CSOLVT(...)
IF (ERRINF .EQ. 0) STOP
VARERR(8) = RESIDU

is problematic because

Literal values and simple assignments
prior to calling a complex numerical
calculation routine.

Highly abstracted routine call.
Less abstracted utility routine call.

Utility routine call.

More low level simple assignments

Call to highly abstract routine.

FIGURE 3.6.3-1 : Problematic code in the legacy software.

The subroutines in the legacy code have a great deal of clutter around them as if the structure

and level of code abstraction has not been completely decided. In the main program there are

calls to subroutines that are surrounded by simple assignment statements. This leads to a code

that does not have a clear semantic consistency because there are mixed levels of code

abstraction. This is clearly evident when one considers the major solution routines, within the

top level procedure, that are embedded within simple assignments and calls to simple utility

routines. This is mostly due to the evolutionary (research oriented) style of development which

tends to incrementally add and modify existing code rather than to be based on a clear and

3-46

PhD Thesis by John Ewer.

distinct top-down design. The code fragment shown in the figure (See Figure 3.6.3-1) indicates

some of the problems that were found due to the mixed levels of code abstraction in the legacy

CFD code. N.B. The "..."is used to indicate many formal procedure arguments. It should be

noted that, from the literal values, used to index the control and status arrays in the figure, it is

possible to infer that "5" represents the solved variable "ENTHALPY" and that "8" represents

the calculated variable "TEMPERATURE" but the meaning of the "3" (used as an argument to

the HCSOLV routine) is not apparent at this level.

3.6.4 Optimisation

The legacy system often used very large subroutines with a high degree of inline code and code

duplication between many routines. As previously mentioned this can lead to near optimal

execution speed at the expense of code clarity, code re-usability and ease of adaptive and

perfective maintenance.

3.6.5 Control looping

The subroutines are generally based on looping for all things of a particular type. A typical

example is the, geometry related, volume calculation routine which calculates the volumes of

all cells before returning. This is true of most of the geometry routines and the majority of the

solution calculation routines. The only exceptions are some of the lower level source

contribution routines for the calculation of the system matrix coefficients which tend to perform

calculations for a single control volume face only. Again this approach does give near-optimal

performance but limits the flexibility of the system as a research tool since there are few utility

routines that can be used in isolation for an individual object. The usual argument for optimal

behaviour in the legacy system is not particularly valid for the geometry routines since they are

only currently used during system initialisation. The following code fragment (See Figure 3.6.5-

1) shows the implementation of looping for the legacy volume calculation routine that is only

able to calculate volumes for all cells at once.

3-47

PhD Thesis by John Ewer.

SUBROUTINE VOLUME (NOCELL, NOFACE, NUMPTS, DIMENS, XYZCRD,

@ CELPTS, CELTYP, NOCTYP, NPTCTY, MAXCPT,

@ FACPTS, MAXFPT, NOFTYP, FACTYP, NOPINF,

@ CELFAC, MAXCFA, NOFINC, CELVOL, CENTRE,

@ AREA, NORMAL, DEBUG, ADJFPO, ADJELE,

@ ERRINF)

C
C Many lines of declarations removed
C

REAL CELVOL(1:NOCELL), XYZCRD(1:NUMPTS, 1:DIMENS)

C
C Many lines of initialisation removed for clarity
C

DO 1 I = 1, NOCELL
CELVOL(I) =0.0
DO 2 H = 1, NOFINC(CELTYP(I),0)

C
C Many lines of volume computation removed for clarity

C
CELVOL(I) = CELVOL(I) + AREA(FACNUM) * DISTAN / 3.0

2 CONTINUE
1 CONTINUE

RETURN
END

FIGURE 3.6.5-1 : Control loops to be found in the legacy software.

3.6.6 Consistency

Array arguments outside and inside of called routines generally, but not invariably, use the same

identifiers but there are many instances of subroutines having arguments that contain a

differently declared number of dimensions than in the calling routine. This is a serious flaw in

the legacy code since a developer assessing a piece of code in isolation will find it necessary to

trace the variable back up through the calling structure to determine the exact nature, context

and access mechanism of the variable in question. Also the calling and called naming convention

consistency is not guaranteed, within the legacy code, which can lead to semantic development

errors caused by name changes. This is a considerable problem as the code is intended to be used

and extended by a number of developers who will only have access to the source code itself. The

following source code fragment (See Figure 3.6.6-1) demonstrates the change in names and

dimensions of some variables between calling and called subroutines.

3-48

PhD Thesis by John Ewer.

INTEGER
REAL
REAL
REAL
REAL
REAL
REAL
REAL
LOGICAL

SCHEME, NPATFD
WALLSS(1:NOFACE) , SYSMAT(1:BANWID, 1:NOCELL)
LASTU(1:NOCELL) ,
LASTW(1:NOCELL),
UB(1:NOCELL) ,
WB(1:NOCELL) ,
ENUT(1:NOCELL) ,
NORMAL(1:DIMENS,
TURMOD

LASTV(1:NOCELL)
P(1:NOCELL)
VB(1:NOCELL)
ENUL(1:NOCELL)
SKINFR(1:NOFACE)

:NOCELL, IrMAXCFA)

C
C
C

C
C
C

C

C

C

c-
c
c-

Declarations removed for clarity

DO 1 ELENUM = 1, NOCELL

Numerical code removed for clarity

DO 2 FACNUM = 1, NOFINC(CELTYP(ELENUM),0)

Numerical code removed for clarity

IF (ADJNOD -LT. 0) THEN

External Boundary

PATCH = FPATCH(FACE)
CALL CBOUND (PATCH, NUMPAT, FAREA, BPATCH, DIST ,

@ NORMAL (1, ELENUM, FACNUM) , NPATFD,
@ ENUL(ELENUM),
@ ENUT(ELENUM),
@ LASTU(ELENUM) ,
@ LASTW(ELENUM),
@ WALLSS (FACE) ,
@ P(ELENUM),
@ UB(ELENUM),
@ WB(ELENUM),

ELDENS,
SCHEME,
LASTV(ELENUM),
SKINFR(FACE),
TURMOD,

VB(ELENUM),
SYSMAT(1,ELENUM)

SUBROUTINE CBOUND (PATCH, NUMPAT, AREA, BPATCH, DIST,
@ NORMAL, NPATFD, ENUL, DENSIT, ENUT,
@ SCHEME, U, V, W, SKINFR,
@ WALLSS, P, TURMOD, UB, VB,
@ WB, SYSMAT)

INTEGER
REAL
REAL
REAL
REAL

PATCH, NUMPAT, NPATFD, SCHEME
AREA, ENUL,
VB, WB,
WALLSS, P
NORMAL(1:3),

DENSIT, ENUT,
U, V,

SYSMAT, UB
W, SKINFR

BPATCH(1:NPATFD,1:NUMPAT)

FIGURE 3.6.6-1 : Lack of consistency through parameter lists.

It is worth noting that the "NORMAL" array changes from a 3-D array with sizes of

3-49

PhD Thesis by John Ewer.

(1 .DIMENSIONS, 1 :NOCELL, 1 :MAXFINC) to a 1-D array (1 DIMENSIONS) between the

calling and called routines. Conversely the "LASTU" array is used as an array called "U" in the

subroutine but there is already a "U" of different meaning used in other areas of the code. These

changes are likely to lead to confusion and incorrect data access.

The legacy system also exhibits some behaviour that shows that there were a number of code

developers working at different times on the system. This is most clearly indicated by a general

lack of consistency between some of the routines in terms of naming conventions or structure

and purpose. The evolutionary style of development has not helped since there have been no

strict development guidelines to adhere to. The only criteria for development has been for the

meeting firstly functionality and secondly performance requirements with little or no emphasis

on style or maintenance.

3.6.7 Code clarity

Given the lack of comments and the FORTRAN-77 standard restrictions for naming conventions

it can be very difficult to follow the source numerical algorithms. This is not helped by the high

level of complexity of the algorithms and data structure inter-dependencies due to the

unstructured nature of the solution mesh.

The code is mostly unsupported by any comprehensive documentation or algorithm designs and

thus serves mostly as its own completed specification.

3.7 Development of a novel nine stage incremental re-engineering
methodology

The re-engineering strategy, developed during this investigation, used a nine stage incremental

process to restructure the legacy code in FORTRAN-77, to translate to C++, to enforce modern

software engineering design principles and to prepare for later perfective and adaptive

maintenance. Much of this research has been published in a case study in a journal publication

and the interested reader is directed to read the paper [EWER95], included in the Appendices

[See Appendix 11.2] for a more complete discussion of the re-engineering process. The flow

3-50

PhD Thesis by John Ewer.

diagram (See Figure 3.7-1) indicates the key stages in the re-engineering of the legacy CFD

code. The central vertical line indicates the boundary between the FORTRAN-77 and C++

implementations.

FORTRAN Automatic
translation

C++

(1)

(2)

(3)

(4)

CWNN

Ensure data
consistency

and make global

test
run

Name and
algorithm

clarification

test
run

Removal of
redundant code
and simplification

test
run

Ensure consistent
use of control

Replace logicals

final (5)
test

(9)
Optimisations

and
enhancements

(8)
Create class

member functions
for procedural
routines

(7) I
Create class
data structures
as in design

(6)
Modify all file
I / O and rewrite
for compatibility

Manual
translation

-{compile

FIGURE 3.7-1 : Stages in the incremental re-engineering process.

Comprehensive regression testing (using a numerical file comparison utility called "NumdifT

[EWER93-2] to check results consistency) after each incremental stage of the re-engineering

process ensured functional compatibility between the delivery system and the legacy code. This

3-51

PhD Thesis by John Ewer.

regression testing used a sufficiently diverse selection of test cases to ensure that all major code

modules were exercised. Clearly it would be inadequate just to test a small sub-section of the

code and leave major portions untested.

3.7.1 Stage (1): Ensure data consistency and make all data global

Initially, all of the separate source code files were combined into a single source file with the

main program routine as the first routine. This was necessary because the editor, used

throughout the re-engineering, had a limit on the allowed number of open files. There was also

the problem that a large number of files would lead to a much greater likelihood of missing a

modification or translation step. Subsequently, tools such as Visual Studio, with integrated

multiple file searching and hypertext browsing, have reduced the problems associated with

maintaining and developing multiple file large applications. The legacy software used

approximately one source file per sub-routine and navigation was hampered by the use of DOS

standard 8.3 file naming and short (6 character) procedure names.

A FORTRAN-77 source code analysis and restructuring tool called SPAG [SPAG93] was

initially used to tidy the indentation and to restructure the source code using consistent control

constructs. The SPAG tool set also has a global code check utility that was used to generate

much needed information about subroutine calling structure and variable usage. SPAG was also

configured to set the case of identifiers to indicate variable scope and usage. COMMON

variables and PARAMETER statements were completely capitalised whilst local variables used

only lower case. Subroutine arguments had an initial capital letter followed by lower case

characters. This helped somewhat to locate the appropriate declarations and showed the

dependencies of any variable.

3-52

PhD Thesis by John Ewer.

Legacy FORTRAN code

CALL BUOYAN(RMETHD, ELEMAT, ELEVOL, TEMPER, ..)

SUBROUTINE BUOYAN(RMETHD, ELEMAT, VOLUME, T, ..)
INTEGER ELEMAT(TOTELE)
REAL VOLUME(TOTELE) , T(TOTELE)
B = TEMPER(I) * ...

is modified to become

INCLUDE 'DATABASE.INC'
CALL BUOYAN(RMETHD, ..)

SUBROUTINE BUOYAN (RMETHD, ..)
INCLUDE 'DAT ABAS E.INC'
B = T(I) * ...

with DATABASE.INC defined as

INTEGER ELEMAT(TOTELE)
REAL ELEVOL(TOTELE), TEMPER(TOTELE)
COMMON /CELL D/ ELEMAT, ELEVOL, TEMPER

FIGURE 3.7.1-1 : Passing data via include files and COMMON.

In order to restructure the software into an object oriented form, the data was grouped into

class-like "COMMON" structures. This could not be done if data items changed names in

argument lists or were passed around as incomplete array segments. It was therefore necessary

to match calling and called routine arguments and rename local variables to match external data

items. SPAG was used extensively to document and navigate within the CFD code.

Legacy FORTRAN becomes

CALL HBOUND(H(ICELL), ..) CALL HBOUND(ICELL, ..)

SUBROUTINE HBOUND(HVAL, ..) SUBROUTINE HBOUND(ICELL, ..)
REAL HVAL INCLUDE ' DATABASE . INC '

HVAL = HVAL * ... INTEGER ICELL
H(ICELL) = H(ICELL) * ...

FIGURE 3.7.1-2 : Revised argument passing for COMMON data.

Non-standard FORTRAN include files were used to pass data between routines. These include

files used COMMON data declarations to ensure that only one declaration exists for each

variable. Any easily identifiable utility routines kept their parameter list arguments intact. In

3-53

PhD Thesis by John Ewer.

some instances, during re-engineering, COMMON was used inappropriately for passing data to

utility routines. This problem was quite easy to identify because of the necessary introduction

of many simple assignment statements (putting data into COMMON) just before the utility

routine call. The figure (See Figure 3.7.1-1) demonstrates the passing of data in COMMON

blocks.

Data items were grouped into appropriately named COMMON blocks with related items, as they

were identified. This identification was facilitated mostly by the declared dimensions of the

arrays and the subroutine header information. Tentative groupings were made based on the

declared array sizes and these were revised as actual array variable usage was completely

identified within the source code. For example arrays with dimensions of (1..NOCELL) indicate

cell properties of some sort whilst those dimensioned as (1..NOFACE) were face properties.

Many of the single variables were identified as being suitable for COMMON by simple

inspection of their usage. Switch control variables tended to be more appropriately passed as

arguments to routines. It was preferable to err on the side of caution because of the slight

potential for naming conflicts between new COMMON variables and dummy arguments.

Dummy argument names were replaced with direct accesses to the newly defined included

COMMON variables. Where subroutines were receiving arguments which were single array

elements it was necessary to ensure that the appropriate array index was available within the

subroutine. The code fragment (See Figure 3.7.1-2) indicates how array index values were

passed instead of the array elements.

3.7.2 Stage (2): Name and algorithm clarification

The FORTRAN-77 standard 6 character identifiers and subroutine names were replaced with

longer, lower-case, names that conveyed the functional or conceptual meaning and usage. SPAG

was used to automatically rename identifiers, since it prevents and reports any renaming

conflicts. Some of the initial name changes are detailed in the figure (See Figure 3.7.2-1).

3-54

PhD Thesis by John Ewer.

Legacy FORTRAN identifier -> New identifier name

MCSOLV -> solve_momentum
CALGEN -> calc_generation_rate
RDINFF -> read_inform_file
H -> enthalpy
TEMPER -> temperature
U -> u_velocity
KINETC -> kinetic_energy
DISSIP -> dissipation_rate

FIGURE 3.7.2-1 : Name changes for code clarification.

Many, formerly inline, code sections were moved into new subroutines to highlight their

algorithmic meaning at a more appropriate level of abstraction. Passing data by include file and

COMMON facilitated this process since extensive re-declarations were no longer necessary.

There were two ways to identify inline code. The first was recognition of those instances of code

that keep appearing relatively unchanged throughout. An example of repetitive inline code within

CWNN was for the calculation of the cell upwind density. This code consists of some 32 lines

of source code duplicated in 10 different calculation routines. The second sort of inline code was

the use of very large code fragments (100 lines or more) in control constructs such as IF (..)

THEN...ENDIF blocks or DO...CONTINUE loops.

Legacy FORTRAN indicates that pressure should use the SOR solver

SOLTYP(l) = 5

becomes

INCLUDE 'PARAMS.INC'
solver_type(PRESSURE) = SOR

with PARAMS.INC defined as

INTEGER PRESSURE, SOR
PARAMETER(PRESSURE = 1, SOR = 5)

FIGURE 3.7.2-2 : Introduction of PARAMETER constants.

Literal numbers that were used to index arrays or used in calculations were globally defined as

more meaningful PARAMETER statements in an include file. This file was then included in all

routines as indicated in the example code fragment (See Figure 3.7.2-2).

3-55

PhD Thesis by John Ewer.

3.7.3 Stage (3): Removal of redundant code and simplification

Code paths and variables that were not required for the current project were removed from the

system. It was noted that solidification modelling was not necessary for the target application

area, so the corresponding code was completely removed. The solidification code was simple

to remove because it was all switched via logical control variables. The extra variable solver also

presented no difficulty to removal because it was (like most of the other solvers) simply a copy

of an existing solver routine with the data variables changed.

Legacy code fragment

MITERS = MAXITR(4)
RELAXA = VRELAX(4)
CALL SORSCH(...)
SERROR(4) = RESIDU
CALL LINRLX(...)
VARERR(4) = RESIDU

Equivalent code abstracted

INTEGER VAR_W_VELOCITY
PARAMETER(VAR_W_VELOCITY = 4)

CALL SORSCH(VAR_W_VELOCITY, ...)
CALL LINRLX(VAR_W_VELOCITY, ...)

N.B. The simple assignment statements have been moved down into the
called subroutines.

FIGURE 3.7.3-1 : Re-locating simple assignment statements.

There were many instances where code fragments could be simplified by moving simple

executable statements (generally simple assignments) into nearby called routines. This helped

to keep the code at the same level of algorithmic complexity and avoided unnecessary clutter

as shown in the example code (See Figure 3.7.3-1).

CWNN had many research "hooks" for future use. For example, dummy routine calls and logical

variables were provided to allow for the possible future development of mesh-refinement and

mesh-adaption. These "hook" locations were noted for location and function and then removed

to simplify the overall re-engineering process. Some of these hooks have subsequently been

added back into the software for research using SMARTFIRE.

3-56

PhD Thesis by John Ewer.

3.7.4 Stage (4): Ensure consistent use of control and logicals

Labelled lines were made to use CONTINUE rather than have executable statements. This

helped with the translation to C++ and made it easier to find other loop constructs.

Instances of single line "IF (<expression>) <statement>" were replaced with the equivalent

form using "IF (<expression>) THEN <statement> ENDEF" so that subsequent translation to

C++ would be facilitated. Instances of "IF (<expression>) GOTO <abel>" were left unchanged

because these were often part of "do... while" constructs. This identification and replacement was

performed later when some of the other clutter was removed.

Loop constructs which used the standard "DO <label> <block> <label> CONTINUE"

were changed to a non-standard form as "DO <block> ENDDO" loops which avoided excessive

use of continue and labels. The use of "DO...ENDDO" loops also allowed easier recognition of

the other uses of "<label> CONTINUE" as in FORTRAN simulated "do...while" loops. Any

clearly identifiable "do...while" loops were implemented with the compiler specific non-standard

FORTRAN WHILE constructs instead of the usual "IF (<expression>) GOTO <start_label>"

as used in the legacy code. SPAG was useful in this respect because it has some automatic re-

structuring capabilities supporting non-standard, but widely used, control constructs. The

correct indentation of these non-standard FORTRAN extensions is vital for conveying looping

structure at a glance. SPAG correctly indents loops and branches during its parsing.

Since C++ does not support a built-in LOGICAL type it was decided that an equivalent, robust

replacement should be implemented in the FORTRAN code at this stage. The direct translation

to a C++ enumerated type was considered but, because there was no conformal mapping for

assignment using the NOT value of a logical, the idea was discarded. LOGICAL variables and

comparisons were replaced with integers and integer comparisons respectively. The complexity

of replacing the LOGICAL values was significantly reduced by working within the FORTRAN

version of the code. This also prevented errors in logic that could occur when too many

translation steps had to be performed simultaneously. The replacement of a LOGICAL

3-57

PhD Thesis by John Ewer.

sometimes required the introduction of "IF (<expression>)" constructs to assign appropriate

"Boolean" values to integer variables. The integer parameters "False" and "True" (representing

0 and 1 respectively) were used throughout the code to match the ultimate C++ implementation.

3.7.5 Stage (5): Translate the legacy FORTRAN to procedural C++

When the above stages had been completed, and the FORTRAN code was still producing

consistent simulation results, it was necessary to translate the FORTRAN to procedural C++.

This was because there was no appreciable advantage to be gained by further FORTRAN code

changes. The serious limitations of the available FORTRAN-to-C translators "£2c" [F2C93] and

"for-C" [COBALT93] led to the decision to translate the CFD code to procedural C++

manually. The natural course of action would be to use parsing or compiler writing tools such

as "lex" [KERNIGAN88-1] and "yacc" [KERNIGAN88-2] but because of the high learning

overheads and non-interactive nature of these utilities, an alternate approach was investigated

and ultimately used when it proved to be workable. The tool actually chosen was a powerful

programmer's editor with regular expression search and replace facilities, macro record and

playback and multiple-file editing capabilities. It should be pointed out that a simple text editor

would not be sufficient because of the large syntactic variation that may be encountered in the

source code during translation. Even using the facilities provided,-great care was needed to plan

and perform the macros used to translate the code.

Using the editor facilities, the translation to procedural C++ involved writing a set of individual

macros to replace specific code constructs. Again SPAG was used prior to this task so that a

globally consistent style and control syntax would persist throughout the source code. This was

necessary to enable the searches within the macro replacements to work correctly. (See Figure

3.7.5-1) indicates some of the macro text replacements that were used during the manual

translation from FORTRAN-77 to procedural C++. The use of regular expression searches and

macro replacements does require that care was taken to perform the replacements in order of

most complex to least complex to prevent incorrect matching with parts of other expressions.

The main problems are with DO, END and IF which can be part of other keywords like END

IF or END DO. There are also potential problems with accidentally matching search expressions

3-58

PhD Thesis by John Ewer.

with literal strings or parts of variable names. Using case sensitive searches, after SPAG had

been used to consistently set the case of keywords and identifiers, minimised the potential for

problems. Clearly these problems would not be present using compiler writing tools (e.g. yacc

or lex) because all identifiers are recognised as whole tokens. The program editor was useful in

one respect because the regular expression text replacements are interactively controlled. N.B.

The ".." and "..." represent code and formal arguments, respectively, not changed by the

macros.

Legacy FORTRAN -> Macro replacement code

ELSEIF (..) THEN -> } else if (..){
IF (..) THEN -> if (..){
ELSE -> } else {
ENDIF -> }
CALL -> /* CALL REMOVED */
DO I = a, b, c -> for (I=a; I>=min (a,b) &&K=inax (a, b) ; I+=c){
DO I = a, b -> for (I=a;K=b;I++){
ENDDO -> }
SUBROUTINE .. (...) -> void .. (...){
END -> }
RETURN -> return;
PRINT*, ... -> cout « ... « endl;
nnn CONTINUE -> Label_nnn:
GOTO nnn -> goto Label_nnn;

FIGURE 3.7.5-1 : Macro replacements.

String variables (i.e. FORTRAN-77 CHARACTER*(n)) were dealt with on an individual basis

since the numerical code only had a very limited number of routines which manipulated strings.

Literal strings were easily replaced by the ["] delimited versions of C++.

One of the major problems encountered during the translation was the difference in array

indexing syntax. FORTRAN style array indexing is very different to C++ style array indexing.

It was decided to effect these changes manually (using searches and macros) on a variable by

variable basis. Macros were used to change the () indices to [] indices, but these could not be

used globally because of the complexities of multiple-dimensioned arrays, partial array argument

passing and arrays that are used to index other arrays. It was decided to increase the declared

array dimension sizes by one, and waste the Oth element, because of the declaration syntax and

3-59

PhD Thesis by John Ewer.

limitations of C++. This has an adverse effect on memory used but allows quicker run-time

performance. Fortunately most of the FORTRAN arrays had (1 :n) indices, but (-m:n) or (m:n)

indices were represented by simply adding or subtracting a suitable constant at the declaration

and each reference. All of the arrays were initially translated to statically declared (fixed size)

C++ arrays and no attempt was made to create class structures at this stage. The potential

problems of passing segments of multiple-dimensioned arrays were largely avoided because of

the earlier consistency modifications made to the legacy code in stage (1) which meant that data

arrays were uniquely defined in COMMON storage.

CWNN [CROFT98] has the traditional batch-mode "INPUT -> PROCESS -> OUTPUT"

execution path that is common to most legacy numerical simulation codes and hence, it was not

necessary for to completely re-engineer the output routines for the initial compile and run

testing. Simple use was made of "cout«" or "printfQ" as appropriate whilst leaving the original

commented-out FORTRAN PRINT and WRITE statements for later reference and more

thorough and complete translation.

Single item input presented no problem using "fscanf()" or "cin »" as appropriate. List directed

and formatted FORTRAN input were more problematic. The approach adopted was to replace

a list directed FORTRAN input with a collection of single item or looped-over fscanfQ calls. It

was necessary to remove any end-of-line comments from the input files until a permanent "in-

code" solution could be implemented. Once again IO translation was facilitated by the limited

amount of actual IO performed by the legacy software.

After several trial compilations and minor fixes a clean compilation was obtained. Very small

data sets (with between 2 and 100 control volumes) and a C++ debugger were used to check

that input files were accurately read in and that the data was appropriately stored in the new

structures.

3.7.6 Stage (6): Modify all file I/O and rewrite for compatibility

The first task within the procedural C++ code was to ensure that all of the file input and output

3-60

PhD Thesis by John Ewer.

was being performed correctly. This was very easy to check by immediately dumping any item

read out to a log file and comparing this with the original data file. It was often necessary to use

the "ifstream getlineQ" function to clear to the end of input lines because of the character based

file handling of C++ as opposed to the line based file handling of FORTRAN.

One of the input problem-specification files made use of a script-like command language that

presented some difficulties because of potentially multiple command arguments. These problems

were overcome by implementing a line parsing routine and corresponding token or phrase

extraction utilities to interpret the lines of input and to extract data values as required. This was

the only area where new code had to be developed due to the differences between the

FORTRAN and C++ languages.

Generally most numerical reading of data was as simple in C++ as it was in FORTRAN however

care had to be taken with one of the more obscure FORTRAN formats where numbers can be

written with no space separators between them when sign characters are used. If, as with the

FORTRAN implementation, the format was known then this difficulty can be overcome by

reading the required field width into a character buffer and then extracting the value from the

buffer. One other difficulty was with PC C++ compilers which tend to always write float values

in double precision exponential format. A writing routine had to be developed for IO to those

files which required a pure single precision or non space delimited format for use in other

packages.

3.7.7 Stage (7): Implement class objects to replace array structures

The original array structures of the FORTRAN code were very unsatisfactory because there was

no explicit grouping and no obvious relationship between many of the variables, apart from the

nature of the indexing. The groupings used to make COMMON variables in the legacy code

provided a means of collecting data items into structures (C++ classes). This allowed the

creation of physically meaningful entities with known attributes. The diagram (See Figure 3.7.7-

1) shows some of the legacy code FORTRAN-77 arrays.

3-61

PhD Thesis by John Ewer.

This corresponds to the diagram (See Figure 3.7.7-2) of the equivalent C++ classes. Some of

the arrays in the legacy CFD code (See Figure 3.7.7-1) contain actual data values (e.g. P,

OLDP, AREA and XYZCRD) whilst others contain index values (e.g. CELFAC and FACPTS)

that are used to reference data items in other arrays. It should be noted, at this point, that the

links between the identified class objects could have been implemented using pointers and arrays

of pointers instead of integer indices and arrays of indices. The major problem with using

pointers extensively is that this would necessarily introduce pointer de-referencing to access

values. This would almost certainly be unfamiliar to many numerical CFD developers. It was

decided that the object links be implemented in a form not too dissimilar from the legacy code.

Whilst this was often less elegant, than some other techniques, it did have the benefits of

consistency and ease of implementation.

Cell Properties

x

z

Point Properties

XYZCRD

Index links

Face Properties

1
2
3
n

FACPTS

AREA

SKINFR

FIGURE 3.7.7-1 : Legacy FORTRAN data storage in simple arrays.

There was a potential problem for the storage of cell properties because of the need to maintain

up to four different historical versions of some variables. For example a transient flow simulation

needs old time-step, last sweep, previous inner iteration and newest values of pressure and

3-62

PhD Thesis by John Ewer.

momentum components. Also variable usage is determined by simulation type. Using explicitly

declared cell class attributes for cell properties (e.g. "cell.pressure", "cell.old_pressure",

"cell.last_pressure", and "cell.previous_pressure") would always use storage regardless of the

actual requirements of simulation. It was decided that simple "data" arrays of properties should

be created and then indexed by parameter type identifiers (See Figure 3.7.7-2). The "slots", in

the data array, can then be assigned as required by the simulation. This was particularly

important, for example, in a simple heat-transfer simulation where the overhead of storing the

other flow variables is highly undesirable. This approach also allowed for functional data access

with expressive selection arguments, and ease of data monitoring. The argument against using

such a method revolves around the fact that it is then possible to confuse the indexing to the

slots. In order to prevent inappropriate access to the slots, the indexing mechanisms were made

private to the class and embedded within data access functions.

PRESSURE
Array of cell objects data NEWEST

LAST

OLD

"O num_of_faces

"O material

"O volume

Array of face objects

Array of point objects

index link

index link

SKIN FRICTION

"O area

"O num_of_points

FIGURE 3.7.7-2 : Re-engineered Object Oriented data structures in C++.

3-63

PhD Thesis by John Ewer.

3.7.8 Stage (8): Create Class member functions for procedural routines

Many of the procedural calculation routines contained code similar to the fragment in (See

Figure 3.7.8-1) which calculates the cell volumes for all cells. The inline code (looping over all

cells) often forms a natural class member function for the individual loop objects. The loop code

can be abstracted into class utility methods as indicated. The advantage of this approach was that

utility routines were created that provided much greater flexibility than was afforded by the

original software architecture. Previously the software could only calculate for all objects at

once whereas it would be desirable (as in the case of mesh adaption and mesh refinement) to

limit the calculation to selected objects.

Legacy style routine for all cells

void calculate_all_volumes (void) {
for (i = 1; i <= max_cells; i++) {

// calculate volume for current cell
cell [i] .volume = ...;

Introduce a new method for calculating the volume in a cell

void Cell_Class : : calc_volume (void){
// calculate volume for current cell

* this. volume = ...;

and then the original routine becomes

void calculate_all_volumes (void) {
for (i = 1; i <= max_cells; i++) {

cell [i] .calc_volume () ;

FIGURE 3.7.8-1 : Identification of class methods.

The identification of class methods from FORTRAN legacy code was quite straight-forward

because numerical codes tend to be optimised for speed rather than for memory usage. This

means that developers introduce variables, that are initialised once at program start-up and then

persist for the duration of the simulation, to hold values like face areas, volumes and normals

3-64

PhD Thesis by John Ewer.

rather than lowering performance by repetitively re-calculating them. This allows methods to be

identified in the initialisation stages of the software where these values are first set. The storage

of such variables was kept for optimal performance and in some instances extended as other

needlessly repetitive calculations were identified and subsequently replaced.

Another area where methods were identified was in routines that were simply "copied" and

"modified" versions of other routines. Some code fragments had nearly identical algorithmic

structure but used different variables. These routines were relatively simple to gather into a

unified general purpose routine that is "parameterised" via function calls to provide the original

functionality.

3.7.9 Stage (9): Optimisation and enhancements

The initial class oriented C++ version used statically declared arrays of objects. Dynamically

declared arrays were relatively easy to implement provided that the sizes could be determined.

In practice this required the use of temporary dynamic storage which is used to hold some of the

geometry data whilst allocation sizes are determined. This use of dynamically allocated data

structures gave much greater code flexibility without the need to re-compile for larger

simulations. It was also possible to implement arrays of pointers to objects so that even

individual objects could be created and destroyed independently, at run-time, as required. This

could be very important for future methods involving mesh-refinement where more control

volumes are created during the running of the program or for parallel processing where each

processor could be handling a sub-set of cells.

The debugging of CFD codes has traditionally been a major problem because of limited or non-

existent access to the internals of the algorithms and the problems of finding the appropriate

values in the segmented and dispersed storage. The initial re-engineered system used direct data

access to cell objects but such access cannot be easily controlled or monitored. The approach

finally adopted was to use access functions that return data references rather than merely

returning data values. Such access functions can then be used on either side of assignment

statements to in order to set or get values. The figure (See Figure 3.7.9-1) shows the

3-65

PhD Thesis by John Ewer.

implementation of the cell data access function in C++. Since data access was implemented as

a function it is possible to plant debug code to monitor the usage of a chosen cell or variable or

even to trigger some other analysis code. This is demonstrated by the example debug code to

watch for negative temperatures. The optimised version of this access function uses a compiled

inline definition (without any debug code) so that it should have little or no greater performance

overhead than a direct array access.

Enhanced debug facilities for code development via class methods

float & Cell_Class :: access (int mode, int var){
#ifdef __ DEBUG_CODE __

if ((mode == NEWEST) && (var == TEMPERATURE)) {
if (data [mode] [var] < 0.0){

//
// Error negative temperature detected in cell data access

#endif
return data [mode] [var] ;

FIGURE 3.7.9-1 : New data access function.

The solvers available in CWNN were all based on whole matrix solving techniques. It was

suggested, by a fellow CFD researcher, that a true cell-by-cell solver should be developed for

comparison purposes. This has been implemented from some of the re-engineered software

components produced during this project but its usefulness is limited because of comparatively

poor performance when compared to the "whole-field" solvers.

The implementation of a vector class for normal and displacement vectors has greatly simplified

many aspects of the source code. The original FORTRAN code had to loop over all three

dimensions for many geometric calculations whereas now, simple vector algebra can be

performed. Operator overloading has been used to give the vector algebra a more natural syntax,

as found in most reference texts. The figure (See Figure 3.7.9-2) shows the equivalent loops for

calculating the cell centres from both the legacy code and the re-engineered code, which uses

vector methods. Such instances were relatively easy to find because the loop dimensions go from

1 to 3 (or 1 to DIMENSIONS). It was possible to abstract one and sometimes even two levels

3-66

PhD Thesis by John Ewer.

of looping because of the new operators and functions provided for vector algebra. These

functions include dot- and cross- product utilities.

Original code for cell centre position calculation

DO I = 1, NOCELL
DO J = 1, 3

CENTRE (I, J) = 0.0
ENDDO
DO J = 1, 3

DO K = I, NPTCTY(CELTYP(I))
CENTRE (I, J) = CENTRE (I, J) + XYZCRD (CELPTS(I, K) , J)

ENDDO
CENTRE (I, J) = CENTRE (I, J) / REAL (NPTCTY (CELTYP(I)))

ENDDO
ENDDO

New C++ code using a vector class methods

for (i=l; i<=num_of_cells; i++) {
cell [i] .mid. set (0.0, 0.0, 0.0);
for (j=l; j<=cell [i] .num_of_pts; j++){

cell [i]. mid = cell [i]. mid + point [cell [i] .pt_num[j]];
}
cell[i].mid = cell[i].mid / (float) cell [i] .num_of_pts;

N.B. This code does not loop for the three directions because the
overloaded vector operators "+" and "/" hide these details

FIGURE 3.7.9-2 : Example of using a class for vector algebra.

Any further optimisation and enhancement features, that were identified early in the re-

engineering stages, were researched and implemented in this stage. One such example of

optimisation was the relocation of loop invariant calculations outside of low level loop

constructs.

3.8 Statistics for the software Re-engineering process

The following code statistics provide a crude comparison between the legacy and new systems.

This information should be regarded as being of academic interest only and not necessarily

typical of any other or similar re-engineering projects.

3-67

PhD Thesis by John Ewer.

- The legacy system consisted of 107 source files that contained 158 routines. There were

22,450 Lines-Of-Code (LOG) excluding comments.

- The re-engineered system has 4 source and 13 header files and has 395 routines including class

member functions. There are 11,250 LOG in source files and 1,400 LOG in header files.

The project statistics (See Table 3.8-1) indicate approximate durations of the individual stages

used during the re-engineering. The final stage (stage 9) has not been included because

perfective and adaptive maintenance is ongoing. The project durations are measured in Person-

Weeks (PW) where a Person-Week is defined as 5 work days for one system developer.

TABLE 3.8-1 : Duration of the stages of Re-engineering.
Stage

-

-

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Description

Background research into un-structured mesh CFD.

Project planning and learning to use tools.

Ensure data consistency and make data global.

Name and algorithm clarification.

Removal of code and simplification.

Ensure consistent use of control and replace logicals.

Translate from FORTRAN to C++.

File I/O modifications.

Implement data classes to replace arrays.

Create class member functions.

Duration (PW)

6

3

3

2

3

2

2

3

4

4

It should be noted that stage 9 of the re-engineering is an on-going process and it is therefore

impossible to detail the statistics associated with this stage of the development. Further

information about run-time performance characteristics and an appraisal of the software re-

engineering can be found in the Appendices (See Appendix 11.2).

3-68

PhD Thesis by John Ewer.

3.9 Summary of chapter

This chapter discussed the limitations of the legacy software and assessed the issues concerning

the re-use of the legacy system in order to create a suitable CFD software framework for

research into interactive control techniques. This chapter also described the novel nine stage re-

engineering methodology that was developed in order to re-use the legacy software. At the end

of the incremental re-engineering process a suitable framework was available for the creation

of the prototype interactive CFD system. The following chapter (See Chapter 4) describes how

the re-engineered framework was subsequently modified and enhanced to create the interactive

CFD engine.

3-69

PhD Thesis by John Ewer.

4 Development of a prototype interactive CFD
system

4.1 Overview

This chapter discusses the development of the prototype CFD system including the imposition

of required design characteristics. The interested reader is directed to the Appendices section

where there is more detailed information about the physical implementation of the Geometry

Classes [See Appendix 11.5] and the Control Architecture [See Appendix 11.6] that was

imposed on the Re-engineered CFD system.

4.2 Important aspects of design

4.2.1 Imposed re-design features

During the planning stages of this research it was known that a suitable application framework

for research was required. This influenced the data storage design within the re-engineered

system to make use of geometry based objects in a highly intuitive data architecture. This would

facilitate CFD research by other researchers as well as significantly simplifying perfective and

adaptive maintenance.

Many existing FORTRAN CFD codes use memory tricks or need re-compilation in order to

mimic the flexibility of dynamic memory allocation of objects and their internal data. Such was

not the case with the prototype system where maximal usage of dynamic memory allocation was

planned and implemented. Occasionally this caused problems due to needing access to the data

sizes prior to attempting the reading of data but some of the sizes could only be determined by

analysing some of the data that had been read. This problem is overcome by reading data in two

stages. The first read only determines the sizes whilst the second does the actual data reading

after the correct amount of memory has been allocated. Where sizes had to be determined from

the data then local temporary dynamically allocated storage was used.

PhD Thesis by John Ewer.

It has always been the intention that the prototype application framework should be available

for use in research into CFD algorithms, interactive control and optimisation. This led to the

creation of object related methods which are considerably easier to support and maintain.

The direction of future research using the re-engineered prototype was largely unknown but it

was likely that the software would be used for mesh refinement at some stage. It was decided

to provide the ability to create and destroy objects at run time for continued research purposes.

This implied using dynamic arrays of pointers to objects rather than the simpler dynamic arrays

of objects because the latter approach would require more time consuming reorganisation of

objects in order to allow for run-time creation or destruction of the objects.

One major potential advantage of this form of abstract conceptual design and object oriented

implementation is that it would be possible to better exploit parallel or distributed processing

platforms than using procedural parallelisation strategies [IEROTHEOU92]. This advantage

comes from the fact that it may be impossible to hold all of the data for the solution domain on

a single processing node. When data is partitioned between nodes it is found that many parallel

implementations of software suffer from a lack of balancing of computational effort between the

processing nodes and so it may be necessary to perform load balancing between the nodes. The

task of load balancing is greatly simplified if it merely involves sending a single object to another

node and updating the member lists rather than having to re-distribute portions of all of the

disparate data arrays that would be found in a non object oriented implementation.

When the object oriented viewpoint of geometric objects was considered for implications it was

realised that there was a potential for meaningful geometric or solution dependant "groups of

cells" as intermediates between the whole domain of cells and each individual cell. It was not

known what benefits could be realised using these groups but the group structures were created

for partitioning the computational domain into geometric or solution based group collections

of cells in order that the potential benefits could be researched. It was anticipated that groups

would allow greater focussing of processing effort to areas where it was most beneficial.

The ultimate aim of the project was to investigate the benefits of interactive solution control. If

4-71

PhD Thesis by John Ewer.

these benefits proved to be tangible then it was likely that some attempt would be made to

automate any successful control strategies. It was realised that this future automation would be

greatly facilitated if a consistent form of maintaining and communicating control and status

information was created. When the structure of the earlier work on "FLOWES" [KNIGHT91]

[PETRIDIS92] [PETRIDIS95] was considered it was natural to impose a so-called

"blackboard" architecture that would use control and status objects which could then be used

for communications between multiple processes. Essentially a "blackboard" is a structured global

memory area which can be written-to and read-from by any of the application processes or sub-

tasks. The "blackboard" also incorporates a scheduler to manage the order and frequency of

running the processes and tasks. In any event these information and control link objects would

greatly facilitate the implementation and data-transfer between the CFD engine and the GUI

components.

It has already been discussed that flexible dynamic memory allocation can introduce considerable

complexity when it comes to data access mechanisms. Since the prototype system has to be

easily comprehensible to researchers and furthermore must support a consistent data view

throughout the application it was decided to create data access functions, where necessary, to

simplify and standardise the access to an object's internal data. This was particularly problematic

where the data inside an object was itself dynamically allocated and thus accessed by an index

list which would lead to verbose code to perform data accesses. Fortunately the C++ language

allows for functional data access (that hides all of the dynamic data indexing details). This

functional data access should have no greater performance overhead than direct array access to

static memory since the function call may be generated with inline code - although this may

depend on the quality of the C++ compiler and level of optimisation available. The issue can be

forced, somewhat, by declaring the function as "inline" but this is still only a recommendation

to the compiler rather than an assured behaviour.

Conventional thinking dictates that data should be kept as local as possible in order to prevent

unintentional side-effects however in a CFD code this can greatly restrict the flexibility and

increase the coding effort to provide new functionality. It was decided to use global data storage

mechanisms to allow data to be visible in any routine and to enforce strict access mechanisms

4-72

PhD Thesis by John Ewer.

to prevent accidental and unintentional data access. The benefit of this global approach to data

storage and data access mechanisms is that data access is always consistent and well known for

any and all code modules and allows for future developments with no detrimental effect on

existing routines. This type of data storage is also close to the concept of the Blackboard

architecture [PETRIDIS93] since data is not passed around the CFD code as arguments, but

rather, the Blackboard maintains the data and the rest of the software uses query and update

functions to access the data. There are a number of important maintenance and ease-of-

comprehension issues associated with having a high degree of consistency between the

conceptual design and the physical implementation.

The use of functional data access mechanisms was of some concern due to the potential

performance overhead. The overhead of an extra layer of function calls has been mitigated by

using the inline directives in the "fast" version of the code and ordinary functional access for the

debug version. However, at the present time, the "inline" directive is only a recommendation to

the compiler and it does not guarantee that the indicated code is actually generated locally rather

than via a function call. Such functional data access mechanisms were necessary to the

implementation of a "Blackboard" architecture for the data and the Blackboard access functions.

The consideration of data objects within the CFD software leads naturally to the consideration

of object-specific methods. During the re-engineering a library of geometrically related methods,

based on any commonly used code fragments that serve some identifiable purpose, have been

formed. This is backed by observations [ANGUS94] that have demonstrated considerable ease

of maintenance of Object Oriented implementations when compared to purely procedural

software.

It was likely that the majority of software users of the initial prototype would be CFD experts

and researchers. This had implications for the design of the interface between the GUI and the

CFD engine. The GUI is necessarily the main program and the controlling process that

repetitively calls the CFD processing segments to progress the solution further. Furthermore,

since the scope of the required controls could not be predicted, all of the parametric solution

controls had to be made available on the GUI.

PhD Thesis by John Ewer.

4.2.2 HCI design issues

There were two distinct choices for the User Interface (UI) paradigm that could be used with

the prototype CFD system.

A visual programming interface would use visual icons and links to represent data passing

through and being modified by the system. Generally the tools could be "opened" and have their

behaviour modified using a tool specific menu. Such interfaces have become quite common for

image processing systems and, to a lesser extent, for visualisation systems. The problem with

a visual programming paradigm for CFD is that it would be inappropriate to the experience of

many users. There are often quite high initial learning overheads for visual systems but once the

nature of the interface has been learnt then new components and tools are usually quite easy to

use. It is generally quite difficult to implement visual interfaces in a portable way and all

application tools have to be available and accessible from the interface. There is large scope for

inappropriate configuration unless great care is taken for the component linking strategy. It is

likely that a CFD visual programming interface would quickly become cluttered with tools and

filters due to the complexity of the underlying numerical system and the potential for

modifications to that architecture. There are currently very few examples of applications that use

the visual programming metaphor so it was difficult to assess the potential effectiveness of this

paradigm. Generally visual programming seems to be a very powerful tool when data

transformations through a system can be conceived as a linked list of filters and transformation

tools (E.g. AVS, Khouros) but the nature of the CFD system suggested that this type of

interface be avoided. It is not simple to conceive of one, or more, simple data pipelines because

of the complex data interdependencies inherent in CFD computations. A well designed visual

programming interface would be a powerful tool for an expert CFD user or a CFD developer

but most users would probably never use the majority of the capabilities of the interface and,

furthermore, are likely to be confused to such an extent that in-appropriate linkages are formed

that break the software.

PhD Thesis by John Ewer.

A menu and form-filling user interface paradigm is much more common and familiar to CFD

software users. The interface can be quite restrictive or obscure particularly when too many

layers of menus are used thus, effectively, hiding control settings or when settings are

inappropriately grouped together using obscure logical linking. Such interfaces are reasonably

portable due to the large number of interface development libraries now available. There is

generally a low to moderate learning overhead but when extra menus are added then these too

need to be learnt. This approach does benefit from a consistent interaction style within

application and similar style to many other applications. Generally the interfaces are largely self

explanatory and intuitive provided that menus are not overloaded with settings and provided that

the items are sufficiently verbose.

4.2.3 Human Computer Interaction issues

It has already been mentioned that there were a number of appropriate visualisation techniques

for data from CFD codes. The new code interface should support as many modes of data

representation as possible so that the user can make the most effective use of the interface. This

means that data will be presented as numerical values, graphs and data visualisations within the

CFD application UI.

Such an interface is reactive to the user. In the case of the CFD code this was implemented as

a set of buttons which behave rather like the buttons on a tape recorder that can be used to start

or stop the processing as well as to open configuration menus.

4-75

PhD Thesis by John Ewer.

Visualisation, as previously mentioned, is relatively costly in terms of compute resources

particularly for 3D displays. This performance overhead of visualisation has been mitigated by

the choice of 2D slice visualisation and the provision of options to limit the frequency of visual

updates. Another problem is the question as to whether intermediate (part processed) solution

status displays have any meaning. This depends on the context of the display and the

interpretation by the user. Any visualisation of a non-converged solution status has NO real

physical meaning other than as an indication of the current trends within the data. At the end of

a time step or when a converged solution is obtained (for steady state problems) the visualisation

is a true representation of the simulated physical behaviour. It was not clear at this stage as to

whether other variables could give more meaningful and indicative data and status visualisations,

e.g. error values. Any visualisation tools built into the CFD code will serve a dual purpose

because they can be used to monitor the intermediate solution status and they can be used as

post processing data explorer when the simulation has finished. It is possible that there is a

novice user role for pattern recognition for dynamic KBS reasoning. It is envisaged that even

if planned attempts at automated pattern recognition fail then it will still be possible for users to

visually detect patterns and to thus select appropriate options based on known examples and

advice from the UI. In general, visualisation techniques can be costly to develop and to tailor

to the underlying data architecture particularly for the unstructured mesh class of codes where

there is no regularity or predictability in the layout of the data or the navigation between

computational cells.

Graphs can be highly informative particularly for data trends (continued movement in one

direction by similar amounts) and instabilities (oscillatory behaviour). They are inexpensive in

terms of compute resources and are generally easy to develop. Graphs may, however, over-

emphasise certain solution features inappropriately (e.g. spot value graphs are not very useful

unless used with experimental data or a known analytic solution).

4-76

PhD Thesis by John Ewer.

The fully interactive nature of the planned CFD code leads to a distinct possibility of corruption

of simulation data for uninformed or experimental control modifications by novice users. This

meant that the system needed a comprehensive restart capability so that speculative research

- that could break a simulation - does not require the user to start again from scratch but instead

allows the user to jump back to the last valid situation before the bad control change was made.

It is also important that the control modifications are only applied at meaningful stages of the

processing.

Confusing UI design can often intimidate the software users to such an extent that it can result

in functionality that is hidden or can leave the user with a complex navigational task through

layers of menus to reach frequently used options. In order to prevent such problems, with the

target development, considerable thought was put into the most appropriate style of interaction

grouping for menus and forms. This included having a number of meetings with CFD

practitioners to discuss UI design prototypes and using these prototypes to give a "walk-

through" of the proposed system. In the formative stages of planning this project, meetings with

CFD users were also convened to ask the prospective users about their requirements for the

mode of interaction and their needs for data to be available via the User Interface. During the

design considerations it was a design priority that no more than two layers of menus would be

presented to the user because of the possibility of the user becoming "lost" in deeply layered

menus. Conversely, because of the popularity and familiarity that many users have with most

Microsoft Windows [MICROSOFT] based software, it was decided to design the style of

interaction to be as consistent as possible with common software packages and the native GUI.

Most of the guiding principles of "good" User Interface design, that have been employed in this

research, can be found in the book by Thimbleby on the subject of User Interface Design issues

[THIMBLEBY90] and a collection of papers on the subject [THIMBLEBY97].

PhD Thesis by John Ewer.

At the start of this investigation there were a large number of user interface and graphical

libraries available including XI1, motif, MFC, Zinc, XVT, tcl, tkl, wxWin, Phigs, OPEN-GL,

GKS, OpenWindows and INTERACTER, to name but a few. Consideration was primarily given

to implementation language choice for the target CFD code before the choice of UI development

library was made. The secondary consideration was the requirement for a high degree of

portability that would include PC compatible machines as well as UNIX based workstations.

This latter consideration was thought to be vital for extensive use and acceptance of the CFD

code because of the prevalence of PCs within the academic community as well as the common

use of PCs in smaller firms and consultancies. Whilst the targeting of the PC platform is

necessary for a particular class of user, there is another class of user that needs to run significant

problems on powerful workstations since the size and complexity of CFD research cases could

preclude the use of PCs. One of the few libraries to meet all of the portability requirements and

match the chosen target implementation language was the Zinc interface library [ZINC]. This

choice also benefited the research because the Zinc library is itself heavily Object Oriented which

ties in with the intended re-development strategy. Zinc also has an elegant event handling

architecture that is platform independent and was one of the few libraries to be supplied in fully

source code form. The only slight cause for concern was the fact that the Zinc library is a

commercial product so future development of the CFD code would depend on the fortunes of

the parent company.

4.3 Important aspects of implementation

During this research a number of techniques have been developed and implemented that are

worthy of note because of their importance to the application area or because of the potential

for continued research that they provide.

4.3.1 Restart database

One of the perceived problems with legacy CFD software is that once a simulation started to go

4-78

PhD Thesis by John Ewer.

wrong, at some stage of the processing, then it usually necessary to start the simulation again

from scratch with a different set of configuration options. This is clearly very time consuming

and prone to error. In the prototype system a restart database is used to store sufficient

information to continue a simulation from any saved stage. This restart database maintains the

file formats of the usual configuration and set-up files but uses compression techniques to store

them compactly. There is also an index table to allow easy selection and database management

routines are available to selectively remove certain restarts. The restart database can then be

used to regularly save stages of the simulation or can be added to whenever a potentially

problematic control action is about to be taken.

4.3.2 Audit trail

Users of CFD codes are starting to be concerned about the reliability and accuracy of simulation

data. The prototype system has been written to save ample configuration and status data as well

as an audit trail of user control modifications. These various audit files contain all the

information about the solution path that gives end users confidence of the final solution results.

This is particularly important for safety critical simulations as in, for example, the fire simulation

application area where building design and safety issues are paramount. Furthermore the

command summary file can also be used to duplicate an earlier simulation exactly be re-imposing

the same control actions at the same times.

4.3.3 User defined variables and code

The fact that the prototype system was intended for use in future research has meant that

consideration had to be given to facilitating additional user code development. This has lead to

the addition of user defined variables in the script file that, once defined, then behave in an

identical way to the usual system variables. This means that the same syntax that was used for

the usual system variables is also appropriate for additional user variables with no extra learning

overhead. User coding links are still under development at this time.

4-79

PhD Thesis by John Ewer.

4.3.4 Additional status variables

Traditional CFD codes make use of many temporary variables that may be of significance to the

user. The prototype system has been developed to maintain some additional status variables, if

required, in order to give a better indication of solution status. This is particularly true of the cell

residual variables which store the cell-by-cell residual error for any variable as an additional data

field. These status variables can be particularly useful in tracking down problematic parts of the

geometry that are causing unpredictable solution errors since it is possible to visualise these

residuals in the same way as any other variable and hence locate problem cells.

4.3.5 Finding common structure for momentum and other solved variables

In the original legacy code momentum was solved using a special treatment that was almost a

vector handling as opposed to the simple scalar handling of other variables. The prototype

system has been reformulated to treat the individual momentum components as simple solved

scalars because this allows all of the solved variables to be unified into a common structure

where the only differences are in the system matrix coefficient formulation and the source term

calculations. This leads to a much cleaner software architecture and allows a consistent and

extensible functional access to system matrix calculations to be provided.

4.3.6 Automated saving

Early in this project it was known that a significant amount of research would be needed to

validate the implementation and to investigate the benefits of interactive control of the CFD

code. Since it was known that much of the CFD research would be quite speculative, whereby

a solution is unknown when the simulation is started, it was deemed necessary to provide a

suitable support structure that would facilitate this research. The provision of both manual and

automated saving facilities allows the configuration of data saving so that regular saves of

visualisations, status graphs, data plots, results and restarts can be made. It was assumed that

there would be circumstances where the immediate monitoring data and status might suggest

one course of control action but that another control action might be more appropriate when

PhD Thesis by John Ewer.

considering a whole history of monitoring data and solution states. This consideration may also

be of relevance to the purpose behind a particular simulation and the form that the results will

take. This is particularly important for transient simulations where the interest in not so much

in any final solution state or data but is rather in the critical phases and changes that occur during

the full simulation. With reference to using fire modelling for assessing safety of the built

environment, it is insufficient to merely say that at the end of the simulation conditions in a room

fire were non-survivable when it would be of more use to determine the first time at which the

room fire became truly dangerous.

4.3.7 Debugging facilities

Since the code is intended to be used for algorithm development it was considered vital to

provide comprehensive debugging facilities. It is not sufficient to rely solely on compiler

provided debugging because the variability of such debuggers is very large and the navigation

of complex data structures can be problematic and time consuming. In the prototype system two

separate debugging facilities have been provided. The first allows any stored variable to be

output in human readable form just after it has been calculated. This output can be limited to a

particular simulation time and range of cells. The second facility allows specific data monitoring

code to be planted in the data access functions. This allows the .values of any data item to be

monitored throughout the simulation whenever data is accessed. Of course these techniques do

not prevent a developer from using compiler debugging techniques but do provide additional

tools to track down hard to find errors that are a quite common occurrence when developing

new algorithms.

4.3.8 Automatic self extending arrays

Sometimes it would be inefficient, in terms of memory usage, to allocate arrays to the maximum

anticipated size when such arrays may only infrequently use their full extent. Conversely if the

length of an array is likely to change quite often then re-allocation is likely to be inefficient in

terms of performance because of the book-keeping involved with creating a larger array and

moving the existing elements across to it, followed by destruction of the old array space. There

4-81

PhD Thesis by John Ewer.

is a middle ground that has been exploited in the prototype system for such arrays that uses

arrays that will extend (or contract) automatically by a pre-configured chunk size. This basically

means that if an extra element of the array is added but there is no room for it in the array then

the array will grow automatically and then the element will be added. If the array was already

large enough then the element is simply added without extension and the write pointer is moved

on to the next available array slot. Such techniques can be quite elegant in usage since no sizes

have to be determined for dynamic memory allocation.

4.3.9 Unstructured visualisation techniques

It is quite complicated and computationally intensive to produce visualisations of data from

unstructured meshes. The prototype system uses planar slice 2-D visualisation of an arbitrarily

positioned x-, y- or z- plane. The simplest way to handle this situation would be to interpolate

the data required for visualisation onto the plane and display it as scattered data. However an

alternative treatment was sought because the best quality display possible is required with least

possible computational overhead. The adopted method first locates all cell-centre to cell-centre

lines that would be cut by the required plane. The intersection points are assigned interpolation

weights based on their relative distance from the cut plane and the indices of the neighbouring

cells are also stored. These scattered points are then re-meshed .into triangles using Delaunay

triangulation [FIELD91]. This allows any selected variable to be quickly interpolated to the

plane using the interpolation weights on the neighbouring cells data values. The relatively

expensive triangulation only needs to be performed once, when the user confirms that a new

plane should be used but the mesh of triangles allows high quality visualisation of contour lines

or contour fills.

4.3.10 User configured patch and time step modifiers

It was often observed, by the developer, that seemingly simple tasks in other CFD codes resulted

in users having to write, compile and link additional user-defined code. This mostly seemed to

be due to a lack of foresight on the part of the original code developers. It was clear that more

complex scenarios (in the fire modelling application area) that exhibited some degree of realism

4-82

PhD Thesis by John Ewer.

would possibly include such features as opening doors, breaking windows and ignition of

secondary fires. It was quite simple to define additional control commands to allow the various

physical patches to be swapped to alternate definitions at pre-configured times. This greatly

enhances the usability of the software without requiring the user to write additional code.

4.3.11 Solution configured patch and time step modifiers

Once it was realised that the user could pre-configure patches to change at given times it was

also clear that it might be desirable for the solution to control such events. This is also quite easy

to manage since it only requires that data monitoring code be activated and then the boundary

patches check with the data monitor to see if it is appropriate to swap to an alternate patch

definition rather than checking some pre-configured time for the swap. This functionality again

removes the onus from the software user for writing additional source code and rather makes

the task a simple configuration method.

4.3.12 Configuration of results saving from sub-regions

Generally, at the end of a simulation, the user will be presented with results files for all of the

simulation data for all of the cells of the domain. This does not help the user to comprehend the

data when the user may only be interested in smaller sub-regions of the whole simulation

domain. In order to provide the user with appropriate data analysis the prototype CFD code has

the ability to output results for specified sub-regions. The regions are specified by low and high

co-ordinate position and all cells contained within such specified volumes will have their results

output.

4.3.13 Tabular data files for volume source variation

Increasingly users of CFD codes are aiming to obtain better and better accuracy from their CFD

simulations by using experimental data, wherever possible rather than crude functional

approximations. One such area in fire modelling scenarios is for the definition of the heat load

that is applied by a given fire in some experimental set-up. Often the actual heat load at any time

PhD Thesis by John Ewer.

can be determined for the experimental set-up and so it is useful if this data can also be used in

the CFD code to accurately represent the fire. Again the policy with the prototype CFD system

is to limit the need for the user to write source code to extend the CFD capabilities so a general

table file handling volume source has been defined which allows the simple use of time varying

tabular source data to be read in from a file.

4.3.14 Run-time modification of volume source application region

A recent idea has been to allow the user to simulate fire spread by extending the volume over

which the fire load is applied. At present there is no automated means to spread the fire within

the prototype system however the first step is to provide a manual method of enlarging the fire

volume so that a reliable automated methodology can be found.

4.4 Summary of chapter

This chapter has described the considerations and implementation details that were used to

transform the re-engineered CFD framework into a vehicle for interactive control research. Once

the new interactive CFD system had been completed it was necessary to verify that the re-

engineering process and subsequent prototype developments had left the original functional

behaviour, of the legacy CFD system, unchanged. The following chapter (See Chapter 5)

describes a sufficiently wide coverage of test cases, and their results, that were used to verify

that the whole of the new software framework was consistent with the original legacy software.

PhD Thesis by John Ewer.

5 Prototype system validation

5.1 Incremental testing (functional comparison with legacy
FORTRAN code)

At each stage of the reverse engineering and subsequent re-engineering it was deemed to be vital

to validate the system functional consistency with the original legacy FORTRAN CFD code to

ensure that the current stage of the development maintained the same behaviour as the original.

This process was largely automated (in batch mode scripts) at the end of a stage of work so that

a known simulation case, that provides full code coverage (i.e. using most, if not all, of the

modules and algorithms within the CFD code), was run overnight and the data output files were

compared by a numerical differencing utility to ensure reasonable consistency. If any stage of

re-engineering or development produced a different set of results then an inspection of the

differences was performed to see if they were significant. In the event that the developer was

unsure of the significance of any observed differences then a CFD expert was consulted to

determine if the new results were acceptable. In general the phrase "in good agreement" means

that there were no significant differences in the results.

5.2 Final validations

In order to determine the overall usefulness of the reverse engineering process a sufficiently wide

coverage of fire modelling and primitive physics validation test cases were constructed to test

(both individually and collectively) all of the sub-models relevant to fire field modelling

contained in the re-engineered system. Some of these validation test cases have subsequently

been used as the standard validation suite for the SMARTFIRE system. The complete validation

report for the key test cases has been included in its entirety in the appendices section of this

thesis [See Appendix 11.1] but a summary, of the most important validations, is presented here

for convenience. These simulation cases were used to compare SMARTFIRE with several other

commercial CFD codes (or experimental data, if available) in order to check the correctness of

the results.

5-85

PhD Thesis by John Ewer.

The validation case "Two dimensional flow over a backward facing step" was used to validate

that the flow and turbulence modules were working correctly. The goal of the case is to develop

a fully recirculating flow region behind a sudden expansion in the down-flow direction of the

duct. Experimental studies have shown that a parametric solution is obtained that is dependent

on the height of the step and the Reynolds number. In the test case, conducted for the validation,

the experimental re-attachment point is 7.0 step heights down stream from the step. This re-

attachment point is the downstream limit of the re-circulation where the flow at the outer

boundary once again follows the dominant flow direction down the duct. In the simulation tests

the prototype CFD code gives a re-attachment point 6.0 step heights down stream from the step.

This is the same value as the legacy CFD code (and is comparable with other CFD codes which

use the K-Epsilon turbulence model). This reduction in re-attachment length is reported in many

papers (which have analysed various turbulence models) and is typical of the standard K-Epsilon

model used in the prototype and legacy software.

The validation case "Turbulent long duct flow" represents flow along a "long" square section

duct such that the flow speed is sufficient to produce a fully turbulent flow. The results from this

simulation are in good agreement with those from the legacy software.

The test case "Turbulent Buoyancy flow in a cavity" represents "a natural convection scenario

where the flow is created by the buoyancy effect of a hot and a cold vertical wall on a fluid. The

results were found to be in good agreement with published data.

The test case "Steckler room fire" is a simulation of a fixed heat output fire within a

compartment that has a single door. A variety of tests were performed in the actual Steckler

experiments but a typical scenario was chosen for the comparisons. The results from

SMARTFIRE give good agreement to the published data and are consistent with the results

from the other CFD codes.

5.3 Basic implementation validations

5-86

PhD Thesis by John Ewer.

A number of basic validation comparisons were also performed to check that the re-engineered

CFD system was consistent with the legacy CFD software. The actual simulation results and the

detailed set-up configurations, for these simulations, are not particularly relevant to the current

discussion and only a brief outline is given of the test cases and their respective results.

The validation case "Diffusion controlled combustion" uses two parallel inlet jets with a jet of

fuel and a jet of oxidant into a 2D combustion chamber to test the simple combustion model.

The Simple Chemical Reaction Scheme (SCRS) uses a much simplified chemical reaction

equation which turns appropriate proportions of fuel and oxidant present within a cell into some

product material with the consequent production of heat which is fed into the energy equation.

Once again the re-engineered CFD system performed as expected and consistently when

compared to the legacy software.

The validation case "Heat bar using multiple materials" uses simple heat transfer along a 2D bar

that is constructed of two different materials. This heat transfer is caused by the imposition of

an elevated temperature boundary condition at one end of the bar whilst the other end is

maintained at some ambient temperature. The results for the temperature profile down the axis

of the materials agree with the analytical results. This case reduces, essentially, to a 1

Dimensional heat conduction problem. The results obtained were as expected for both the re-

engineered and legacy software.

The validation case "Heat bar using a triangular mesh" also uses a simple heat transfer along a

bar but in this case the bar is only constructed of a single material and uses an unstructured mesh

of triangular cells. The ends of the bar are maintained at different temperature and heat flux

boundary condition combinations and a steady state temperature profile is expected. The

unstructured correction terms are used to enhance the solution accuracy for these unstructured

mesh cells. The results from the prototype software give good agreement with the results from

the legacy software and the analytic solution.

The validation case "Heat bar using a user variable" uses a simple single material bar to check

the user variable solver. In the normal case described above the heat variable is solved and

5-87

PhD Thesis by John Ewer.

temperatures calculated from the heat content of the cell and the specific heat capacity. In this

case, however, a user defined variable is used to represent the heat (i.e. the Enthalpy variable).

The results are essentially the same as for the standard heat bar case but have made use of the

extra variable solvers.

The validation case "Moving lid cavity" represents an idealised infinite length square cross

section box that has a lid that is moving across the top of the box at a uniform rate. The viscosity

of the fluid within the box causes momentum from the moving lid to be transferred into the fluid

cavity and a fully recirculating flow is developed. The results from this case are in good

agreement with the legacy software results and were deemed to be acceptable by an expert CFD

user.

The validation case "Natural convection" combines flow, heat transfer and buoyancy for a fluid

filled box. In this case one of the vertical walls is maintained at an elevated temperature whilst

the opposite wall is maintained at a cooler temperature. The uptake of heat near the heated wall

leads to density changes that result buoyancy forces that drive a fully re-circulating flow.

Eventually a steady state is reached whereby the uptake of heat from the hot wall is perfectly

balanced by the loss of heat to the cold wall. The results from this case are in good agreement

to those from the legacy software and the analytic solution..presented in journal papers

[JONES79] [DAVIS83].

5.4 Interpretation and comments

It is clear from the various validation cases that the re-engineered software is in good agreement

with the legacy CFD software. There are, almost inevitably, small differences but these are to

be expected due to minor implementation language dependencies. Furthermore the order in

which mathematical expressions are evaluated are likely to be different between the two

software versions which may explain some of the small discrepancies.

As the validation cases become more complex (the fire field modelling cases have more complex

geometries, more extreme rates of heating and many more degrees of freedom) so the agreement

PhD Thesis by John Ewer.

between the re-engineered software and alternate CFD software packages becomes less

consistent. It is also observed that the legacy CFD code and the other validation CFD codes do

not agree completely and the re-engineered code tends to have results that are within the bounds

of the other CFD codes tested. Small differences in boundary condition handling and solution

schemes are responsible for most of these differences.

5.5 Summary of chapter

This chapter has demonstrated that the re-engineered, and subsequently the interactive, CFD

framework is functionally consistent with the behaviour of the legacy CFD code. It was now

possible to use the interactive CFD engine to research the potential benefits of using interactive

control. The following chapter (See Chapter 6) describes the test scenarios that were used for

research and gives interpretations of how the results demonstrate the benefits of interactive

control.

5-89

PhD Thesis by John Ewer.

6 Research results

6.1 Overview

In order to investigate the potential effectiveness of user interaction techniques, for

Computational Fluid Dynamics (CFD) modelling, it was decided to choose an application area

that gave ready access to a number of CFD experts and furthermore was an application area

where the accuracy and correct interpretation of results was of a safety critical nature. One such

topic of research at the University of Greenwich is Fire Field modelling. This application area

is interesting because of the complexity of the geometry used in the simulations and the

requirements for the modelling of high rates of heating and thermal radiation [KUMAR91].

Furthermore, many fire simulations have to be performed in transient mode so that the time

varying nature of the simulation is revealed. This is partly due to the extremity of the physics

being modelled but also due to the types of question asked of the modelling which includes the

determination of temperatures and smoke concentrations at certain times in order to research

safety issues relating to, for example, fires in compartments and buildings [LEWIS97]. The

added advantage of using this application area is that there is considerable "in-house" expertise

available for the use of fire field modelling. Of particular importance have been the comparisons

[KERRISON94] [BJORKMAN95] of various CFD codes against the experimental work of

Steckler [STECKLER82] which give a useful set of validation and comparison data for the

modelling of fires within compartments.

The results presented in this section are indicative rather than exhaustive but the intention has

been to demonstrate that the traditional techniques used for CFD in general and Fire Modelling

in particular have mostly ignored the issues of interactive solution control, to their detriment.

Recent questions about the reliability and accuracy of CFD techniques used in ever more critical

simulations will, almost inevitably, tend to embrace technologies, such as interactive control and

monitoring, in order to give more assurance of solution correctness.

The results presented here demonstrate that even expert CFD users can have significant

6-90

PhD Thesis by John Ewer.

difficulties choosing a sufficiently restrictive, but also optimal, set of solution control parameters

for a previously unseen simulation scenario where those control parameters are used for the

whole of the simulation. Furthermore the results and timings from selected fire simulation

scenarios demonstrate that run-time adjustment of control parameters can lead to savings of up

to 50% for overall processing time when compared to some "safe" initial set of relaxation

parameters used throughout the simulation. Clearly such savings are highly problem specific but

the principle of choosing a known "safe" set of control parameters and then adjusting the

controls as required by the most up-to-date solution status is highly recommended and likely to

be of great benefit to both expert and intermediate users. Ultimately it is anticipated that these

experiences of run-time solution control will be automated so that reliable CFD simulation and

monitoring is made available to all classes of user from novices to experts.

6.2 Indicative test cases

One of the important factors, when considering CFD simulations, is the time required to arrive

at the results. This is an easy quantity to measure and gives a reasonable indication of the

effectiveness of the interactive control. The problem with attempting to assess the benefits of

interactive control, of the solution parameters, is that the effectiveness will be highly dependent

on the quality of the initial solution parameters. The factors which determine a good choice of

the initial control parameters are prior knowledge of the simulation of similar cases, a reasonable

understanding of the behaviour of the particular CFD code in question and an adjustment (based

on engineering judgement) to account for the particular simulation being conducted. There are,

however, no hard and fast rules to prescribe a suitable set of initial control parameters.

This situation is further complicated by the highly complex nature of CFD simulations which

means that the simulation controls required to start a simulation are likely to be too extreme for

the later stages of the simulation. There are also potential transient characteristics of the flow

solution which typically require even tighter control regimes to prevent the simulation from

becoming unstable.

6-91

PhD Thesis by John Ewer.

6.2.1 Investigation of initial configuration

In order to determine how good an initial set of control parameters would be selected, by a

typical CFD expert, a questionnaire (See Figure 6.2.1-1) was formulated, with the help of a CFD

expert user, in order to get some indication of how various CFD researchers would configure

a new, previously unseen, simulation specification within the prototype CFD code. The variety

of the controls available in the interactive prototype meant that, for ease of description and

brevity, some limitations had to be imposed on the range of controls used in the simulation. It

was decided to impose a fixed time step size and specified simulated period but to allow the

CFD experts free access to choose their own number of iteration sweeps per time step and the

linear- and false time step- relaxation values for all of the solved and calculated variables as

appropriate. These user specified control parameters were then used in test simulations in order

to check their effectiveness.

COMPARTMENT #1

PARTITION (removed at t=30.0s)

COMPARTMENTS

FIRE

0.7m 2.5m

EXTENDED
REGION

DOORWAY

A simulation is to be conducted involving a multiple compartment fire in 2D geometry with a partition (instantaneously removed at t=30.0s). All walls are
assumed adiabatic and the extended region has the side and top set as free (outlet) type boundaries. Front and back surfaces are symmetry planes The case is run
for 110 time steps each of duration 1 .Os (except for 5 time steps when the partition is removed that use a time-step size of 0.2s to ease the transition). The
constant fire output is 200kW. The mesh has regular spacing of O.lm in both the xandy directions within the two compartments. The air is assumed to be a
compressible ideal gas and uses a non-boussinesq approximation for buoyancy. The K-e turbulence model is enabled.

REQUEST: Given the case as described above please can you give your best estimate of the number of sweeps (iterations) per time step and the relaxations
needed to give a safely converged solution with the least possible run time. You can use any combination of relaxation values in the table below.
N.B. Linear relaxations should be in the range {0.0001,1.0} and false time relaxations in the range {0.0001,10.0} or NONE.

REQUIREMENTS: Each time step should convergeto 0.1% of the final maximum of each variable I.e. the CFD code normalises all variables by the final
maximum (already determined) to obtain convergence when all residuals fall below 0.001.

VARIABLE(S)

Pressure correction
Momentum
Turbulence
Enthalpy
Temperature
Buoyancy
Density

LINEAR RELAXATION FALSE TIME RELAXATION

N/A

N/A
N/A
N/A

Required
NUMBER_OF_SWEEPS
per time step

FIGURE 6.2.1-1 : Questionnaire used to obtain control selections from CFD experts.

Four sets of control parameters were returned on the questionnaires and these were run as

6-92

PhD Thesis by John Ewer.

specified. Suitable monitoring was applied to give an assessment of the appropriateness of each

set of initial control parameters. A base set of "safe" control parameters was also used as a

comparison for the expert specified cases. This "safe" set of relaxation parameters was arrived

at from the Software Developer's experiences of validation and testing of the prototype

interactive system when used on similar simulation scenarios.

The CFD users who answered the questionnaire gave the following recommended control

specifications for the partitioned room fire simulation.

TABLE 6.2.1-2 : Control regimes taken from questionnaires.

Control Item

Number of sweeps

Pressure relaxation

Momentum linear relax

Momentum false time relax

Turbulence linear relax

Turbulence false time relax

Enthalpy linear relax

Enthalpy false time relax

Temperature relaxation

Buoyancy relaxation

Density relaxation

Safe Set
#1.1

100

0.4

1.0

0.1

1.0

0.01

1.0

1.0

1.0

1.0

0.5

Expert
#1.2

200

0.6

1.0

0.1

1.0

0.05

1.0

0.1

1.0

1.0

0.8

Expert
#1.3

100

0.6

0.2

0.5

0.2

0.1

0.2

0.5

0.5

0.6

1.0

Expert
#1.4

200

0.1

0.1

0.01

0.1

0.01

1.0

0.1

1.0

1.0

0.1

Expert
#1.5

30

0.8

1.0

0.05

1.0

0.05

0.5

0.05

1.0

1.0

0.8

The simulations where run as specified by the various experts and the run-times and convergence

behaviours are shown in the table (See Table 6.2.1-3).

At first glance it appears, from the timings, that the user specified set #1.5 returned the optimal

performance because of its shorter run-time, however the simulation results were very poor for

that set of initial control parameters because none of the time steps actually converged to a

6-93

PhD Thesis by John Ewer.

satisfactory degree due to the low number of configured sweeps per time-step. The only set of

acceptable parameters used was from user specified set #1.2 which only failed to converge on

two of the time steps and then only by a relatively small factor. User specified set #1.3 was

reasonably stable but failed to reach convergence in 25% of the time steps whereas user

specified set #1.4 had too much under-relaxation that caused the time steps to do very little

useful processing with none of the time steps actually converging.

TABLE 6.2.1-3 : Processing timings for the various control regimes.

Initial control set

#1.1 Safe initial control
parameters

#1.2 Expert user specified
control parameters

#1.3 Expert user specified
control parameters

#1.4 Expert user specified
control parameters

#1.5 Expert user specified
control parameters

Cumulative
number of sweeps

10750

7728

10900

16329

3267

Total processing
time (seconds)

13641

9806

13831

20720

4145

Non-converged
time steps

OofllO

2 of 110

28 of 110

98 of 110

HOofllO

The configurations used above were selected by a small, but hopefully quite representative,

group of researchers with various degrees of familiarity with the particular CFD engine used but

all with considerable familiarity with CFD techniques in general or specific alternate CFD codes.

This highlights another problem, which is the unique behaviour of different classes of CFD code

to the initial configurations. When the users were informed of the quality of the control

specification, that they provided, most were surprised that the settings they would have used in

their usual CFD system did not work well in the prototype interactive system. This lack of

transferability of set-up knowledge means that users are forced to learn the idiosyncrasies of

each new class of code (e.g. staggered mesh, unstructured) and the behaviour due to the

particular combinations of approximations, solvers, boundary condition handling and empirical

techniques used by each CFD system.

6-94

PhD Thesis by John Ewer.

6.2.2 Investigation of adjusting solution control during a simulation

The second investigation used the same test case scenario of a 2D room with a fire and a

removable partition. A "safe" set of configuration control parameters was selected for the trial

and then a variety of different control strategies were adopted to modify the parameters to

attempt to obtain the same ultimate solution in a faster time.

The simulations conducted were as follows:

#2.1 No adjustments to the initial set of relaxation parameters.
#2.2 Manual adjustments applied by an expert user as the simulation progresses.
#2.3 Using the final relaxation values from #2.2 as the initial relaxation values.
#2.4 Automated adjustments applied by a prototype KBS as the simulation progresses.
#2.5 Using the final relaxation values from #2.4 as the initial relaxation values.

The modification strategy used by the expert user was that towards the end of each time step

(as determined by convergence) or if a problem was observed then the user could decide to

temporarily halt the processing and modify the relaxation parameters in a positive or negative

sense based on the convergence graphs and visualisation of the current solution state. The

relaxation parameters could only be changed in a positive sense (i.e. a lessening of under-

relaxation) by up to 25% of their existing values and, at most, -only one stage of removal of

under-relaxation could be performed during each time step. This limitation had to be imposed

after observations made in preliminary research showed a "run-away" control regime in certain

circumstances that kept on increasing or decreasing the relaxation at every control test. It has

also been observed that making too large a change in the relaxation values can "kick" the

solution so hard that it never regains stability. This is the reason for the 25% change limitation.

Whilst these limitations may appear very restrictive it has been observed, from both automated

and manual control interventions, that small and gradual changes are much less likely to

destabilise the solution whilst still providing the potential for significant optimisation savings.

There were no imposed limitations to applying more under-relaxation if some convergence

problem was detected. Furthermore there were imposed upper limits to the relaxation values so

that some minimal level of under-relaxation was always applied. These restrictions were imposed

6-95

PhD Thesis by John Ewer.

to attempt to limit the learning, by the expert, of an optimal set of parameters and applying them

(as an alternate initial control set) in the first time step. A description and discussion of the

prototype dynamic control KBS and its mode of operation are given in the paper [EWER98]

that is included in the appendices. The runs, which used the final relaxation configurations as the

initial set-up, were used to determine if the "safe" set of parameters was a particularly non-

optimal set of relaxation parameters.

The results obtained for the computational effort for the entire simulation were as follows:

TABLE 6.2.2-1 : Computational effort for various control strategies.

Control strategy

#2. 1 Safe initial control
parameters

#2.2 Expert user adjusted
control parameters

#2.3 Final control
parameters from #2.2

#2.4 KBS adjusted control
parameters

#2.5 Final control
parameters from #2.4

Cumulative number
of sweeps

10750

5200

13940

4741

5364

Total processing
time (seconds)

13641

6598

17689

6016

6807

Non-converged
time steps

OofllO

Oof 110

34 of 110

OofllO

7of 110

This time it is clear from the process timings for #2.2 and #2.4 that there are better sets of

relaxation parameters than those used in control set #2.1. However it is also clear from the

timings for #2.3 and #2.5 that it is not sufficient to simply apply less under-relaxation from the

start of the simulation as this was observed to destabilise some of the time steps such that a

converged solution, to some of the time steps, could not be obtained within a reasonable number

of sweeps. The prototype KBS used in this investigation provided marginally better control than

the one described in the paper [EWER98] because it had subsequently been optimised to

incorporate slightly better rules for limiting and applying relaxation modifications and the CFD

algorithms had also been improved. The problem with the prototype KBS is that it is somewhat

inflexible to alternate simulation scenarios, particularly those with more degrees of freedom,

6-96

PhD Thesis by John Ewer.

since it was implemented based on observational experience of the manual control of this 2D

partitioned room scenario. The KBS has not performed particularly well on 3D room fire

simulations and more research is needed to ensure that the dynamic control KBS is more reliable

for general simulations.

In order to check that the controlled path to the solution does not affect the final simulation

solution the final results were compared. In this simulation the results for a vertical line of

temperatures in the middle of the room were compared for consistency. The graph (See Figure

6.2.2-2) depicts the vertical temperature profile and indicate that there are no significant

differences when comparing the results of the different simulations in spite of the vast differences

in applied computational effort.

2.7

2.4

2.1

1.8

0.9

336 348 354 360
Temperature

FIGURE 6.2.2-2 : Vertical temperature profiles at the end of the simulation.

6-97

PhD Thesis by John Ewer.

6.2.3 Investigation of dynamic control of a more complex fire scenario

The limitations of the prototype KBS do not restrict the expert user from conducting manually

controlled investigations on more complex fire scenarios. Another simulation was devised to

investigate manual solution control in a 3D fire case.

FIGURE 6.2.3-1 : Geometry layout for multiple room fire scenario.

The case investigated was a two storey barn (See Figure 6.2.3-1) that had an open doorway on

the ground floor and an open window on the first floor, directly above the door. There was an

open ladder hatch between the floors towards the back of the room and a centrally located fire

on the ground floor. In this investigation the tests were conducted "blind" so that the expert

6-98

PhD Thesis by John Ewer.

CFD user only knew that the simulation would run successfully, with the configured "safe" set-

up, but had no indication of how many iterations were required for each time step to converge.

Furthermore, only a first attempt at manual control was used for this investigation in order to

prevent the user from "learning" the optimal behaviour for the particular scenario in question.

The limitations and restrictions for the manual control adjustments were as described above for

the 2D partitioned room with a fire simulation. The fact that this simulation was modified

"sight-unseen" did mean that a more tentative approach was adopted when applying any

relaxation changes but this was considered to be a more realistic use of manual interactive

control. The tests were re-run with a fire that had a heat output of four times that of the former

case as a test of the modelling of more extreme physics.

The following timings and computational effort measurements were obtained:

TABLE 6.2.3-2 : The processing effort required for various control strategies.

Control strategy

#3.1 Safe configuration for
50kW fire case

#3.2 Manual adjustment of
50kW fire case

#3.3 Final parameters from
#3.2

#3.4 Safe configuration for
200kW fire case

#3.5 Manual adjustment of
200kW fire case

#3.6 Final parameters from
#3.5

Cumulative number
of sweeps

3464

1834

1707

4448

3155

2993

Total processing
time (seconds)

5577

2953

2748

7161

5080

4819

Non-converged
time steps

Oof 100

Oof 100

Oof 100

Oof 100

Oof 100

Oof 100

In these investigations the savings due to manual control were 47% for the smaller 50kW fire

scenario and 29% for the larger 200kW fire scenario. The fact that simulation #3.3 and

simulation #3.6 produced marginally better savings without loss of convergence stability implies

that the initial "safe" set of relaxation parameters are a little too restrictive but this could not

6-99

PhD Thesis by John Ewer.

have been known or predicted prior to the investigation. Whilst this result might seem to suggest

that manual control is actually less important than appropriate set-up, it is argued that these

results demonstrate that there is still significant potential for solution optimisation from even a

safe initial set-up based on observation and manual control. There is also the consideration that

the simulation case is quite simple and stable compared to some of the fire modelling research

that is actually performed. When a case involves critical events (e.g. window breaking,

secondary ignition or flash-over), which may change the flow characteristics and solution

behaviour drastically, then it is highly unlikely that a single set of initial safe relaxation

parameters will be appropriate and optimal for the entire simulation. In practice, it was observed

that this simulation was atypically stable and quite easily approached a steady state solution due

to the fact that there was a natural flow path through the building that did not tend to build the

often-seen opposing layered flows. It is clear from simulation #3.1 and simulation #3.4 that

merely changing the output fire heating rate can greatly influence the amount of processing

required to obtain a converged solution. This is intuitively obvious since a higher rate of heating

will lead to proportionately faster flows and hence pressures and turbulence will also be more

extreme (and hence harder to converge).

The multiple room simulation, from above, was also conducted without any relaxation at all

(except for the usual 0.6 linear relaxation on pressure that is generally required by the SIMPLE

algorithm [PATANKAR80] for stability). In this case the solution entered a quasi-stable state,

during the first time step, where the solution was oscillating at quite high residual errors with

no real tendency to either diverge or converge within any time step.

6.3 Assessment of the benefits of interactive control

The problems of selecting an "appropriate" control configuration, faced even by experienced

CFD users, vindicate the investigation of interactive control and monitoring as a necessary

research program that is needed to obtain a better understanding of the practicalities of CFD

simulation and to pave the way for reliable automation of solution control.

It has been observed that there is usually some "acceptable" band of control parameters for each

6-100

PhD Thesis by John Ewer.

simulation scenario. When control parameters are chosen outside of this acceptable band then

at best the solution will stagnate or oscillate and at worst it will completely corrupt the

simulation results so that the only available course of action is to simulate again from scratch.

Unfortunately the acceptable band of control parameters is case specific and unknown for each

scenario until some stability research has been conducted. The control parameters at the upper

edge of the acceptable band are likely to give the fastest possible simulation times, however,

these controls are also the most likely to cause data corruption. Simple observation has led to

the conclusion that the initial stages of a simulation are the most unstable and hence it is

generally the case that greater under-relaxation is required to start the simulation. This indicates

that the safest way to proceed is by removing under-relaxation from a sufficiently "safe" set of

restrictive initial relaxation values.

This does not, however, address the natural solution or pre-configured events that may occur

during a simulation. These "events" can happen at unpredictable times and are generally

associated with a significant change to the stability of the solution. Examples of these events are

the changing of height of a neutral plane, secondary combustion, flash-over burning, breaking

or opening of doors and windows or the change in direction of a geometry constrained fire

plume. A pre-configured control strategy for relaxation parameters would be unlikely to meet

the relaxation requirements for all of the events that could happen unless a sufficiently restrictive

set of relaxation values were chosen. The problem is that a "safe" restrictive set of relaxation

parameters are often far from optimal when considering the complete duration of a simulation

and hence there would be much associated wastage of computing effort as demonstrated by the

investigations in this results section. The only approach that users of traditional CFD codes have

been able to use is to attempt to predict the stages of the development of the fire solution and

to revise the control configuration between these simulation stages. Such an approach is prone

to error since both the duration of the stages of solution development and the required control

configuration are unknown. Only considerable experience, of similar simulations, allows expert

CFD users to obtain results reliably and optimally.

6-101

PhD Thesis by John Ewer.

7 Preliminary investigations into solution
optimisation techniques

7.1 Overview

During the course of this PhD research it has been possible to investigate some areas of interest

(for the optimisation of the solution process) that became apparent during the re-engineering of

the legacy CFD software. Often these investigations were along the lines of feasibility studies

to determine if more research would be needed to exploit new features [EWER99-4].

7.2 Preliminary investigations of group solvers

7.2.1 Overview of groups

In traditional Computational Fluid Dynamics (CFD) based fire models [GALEA89], control of

the numerical solver applies equally over all of the cells throughout the solution domain. In large

geometry cases this can create a significant, and at times limiting, computational overhead. This

is particularly true in cases where the fire occupies a relatively small proportion of an otherwise

large solution domain for part, or all, of the simulation period. An example of this may be the

early stages of fire growth within an airport terminal or a road/rail tunnel. The group solver

concept [EWER99-3] attempts to address this problem algorithmically, by providing optimal

processing in regions of the domain where and when it is required.

In the group solver concept, the solution domain is split into an arbitrary number of groups-of-

cells. A group is defined as a unique collection of cells that can have solver control parameters

independent from any other groups in the solution domain. Group solvers can be activated

independently for each solved variable. Internally, the group solver makes use of standard

numerical "point-by-point" solution methods such as JOR or SOR [CROFT98].

One way in which this may be achieved is by controlling the number of iterations that the solver

7-102

PhD Thesis by John Ewer.

performs in the various groups. For instance, the maximum number of iterations in an "Inactive

group" will be considerably smaller than the number for an "Active group". As the solution

develops, cells can migrate to and from groups, thus receiving more or less computational

attention. The overall convergence criteria are still configured as for conventional problems so

there should be no significant difference in the quality of the converged solution.

Group solvers are a novel feature of the CFD component introduced during the software re-

engineering. In traditional CFD codes, solver type and control apply to all the cells in the

solution domain. Group solvers allow the solution domain to be split into a collection of groups-

of-cells. A group is defined as a collection of cells that has its own independent control

parameters. A group solver is used for a particular variable on a particular sub-region of the

domain. The group solver makes use of standard low-level numerical solution matrix solver

methods such as JOR or SOR.

There are several different criteria which may be used to determine the cell groupings.

"Geometric groups" have membership with cells grouped by geometric location (e.g. a near wall

group, a fire group or a "dead" region group). Such geometric groups are intended to keep their

cell membership throughout a simulation. Conversely cells may be dynamically assigned to

groups whose membership may change during the solution process. These are so called

"dynamic membership groups". The membership assignment process is triggered by pre-

configured selection criteria which are dependent on the magnitude of particular variables. For

each group, there is a lower and upper value of the trigger-variable(s) which define an

acceptance band for membership of that group. When the chosen value(s) in a cell comply with

the entry criteria, the cell will be transferred to the matching group.

Typically one could define four base groups for dynamic membership, namely: "Active",

"Moderate", "Inactive", and "Void". "Active" has the upper value range for flow or heat,

"Moderate" has the medium value range and "Inactive" has the lowest value range. "Void" is

used for areas in the geometry that are not part of the flow domain and there is a fixed constant

value of the variable (e.g. regions that have been meshed for convenience but are not part of the

flow domain for all, or part, of the simulation) that does not require iterative re-calculation.

7-103

PhD Thesis by John Ewer.

The main purpose of both types of group and the group solvers is to reduce the overall

computation time. This is achieved by directing computational effort only to where it is needed.

One way in which this is achieved is by controlling the number of iterations the solver

implements in the various groups. For instance, the maximum number of iterations performed

in the Inactive group will be considerably smaller than the number performed in the Active

group. As the solution develops, cells can migrate to and from groups, receiving more or less

computational attention. As the overall convergence criteria are set as for conventional

problems, there should be no difference in the quality of the converged solution obtained using

this technique.

As the prototype CFD code uses a truly unstructured mesh, there are a limited number of

reliable and general purpose numerical techniques available to solve the systems of algebraic

equations for each of the primary field variables. Structured mesh CFD codes can exploit the

structured nature of the data (e.g. using lines or planes) in various solvers to give more efficient

solution than for the point-by-point iterative solvers commonly used in unstructured codes. One

of the goals of this work has been to investigate and, if possible, exploit reliable techniques that

prove to be of benefit to fire modelling within unstructured mesh CFD codes. One such

technique, developed by the author, is the concept of group solvers. A conference paper

discussing group solvers is included in the Appendices [See Appendix 11.3].

7.2.2 Description of group solvers

Group solvers are a conceptual extension of the simple linear, iterative, algebraic equation

solvers usually referred to as Jaccobi Over Relaxation (JOR) or Successive Over Relaxation

(SOR) [CROFT98]. At the most basic level these solvers involve the repetitive update of the

solution of a property variable within each cell based on the contributions from nearest

neighbouring cells, a portion of the previous solution value and the source quantity for each cell.

In a CFD context the contributions from neighbouring cells represent the convection and/or

diffusion of a physical property throughout the solution domain whilst the source indicates the

creation or destruction of the physical property in the considered cell. The distinction between

JOR and SOR solvers is that the SOR always uses the most up-to-date versions of the solution

7-104

PhD Thesis by John Ewer.

when calculating the next update. This can make the SOR solver less stable than the JOR solver

but it does has the significant advantage of spreading the solution much more rapidly than the

JOR

In the typical whole-domain JOR or SOR solver, the solution in each and every cell of the

domain is updated repetitively until the difference between successive updates is sufficiently

small. Clearly, if the solution domain contains many cells that are far removed from any active

flow region or worse are totally de-coupled from the region of interest for a portion of the

simulation, then not all of these JOR or SOR calculations are performing any useful

advancement of the solution. This is especially true of many of the large complex geometries

used in fire field modelling (e.g. whole building simulations).

The group solver concept allows the domain to be partitioned into "geometric" or "logical" (i.e.

solution dependant) groups of cells that then use the iterative point-by-point update described

above. The difference for the group solvers is that each group can have a unique set of control

parameters to configure the maximum number of iterations to perform, the tolerance to use for

convergence testing and/or the linear solver relaxation to be used. In this paper, the investigation

only concerns the potential benefits of limiting the number of iterations that are used within each

group of cells - while maintaining the desired level of convergence.

Since, in an unstructured code, a group does not need to be limited to some pre-configured

geometric region it is possible to further extend the group solver techniques by allowing groups

to determine their own cell-membership as the solution develops. This has been implemented

within SMARTFIRE to allow an arbitrary number of groups which can contain either geometric

or solution dependant membership (provided that each cell only exists in one group) and that

furthermore the dynamic groups can exchange cells as the simulation solution develops. In

practice, the dynamic membership is configured so that each dynamic group has an acceptance

range of values which will trigger a non-member cell to be transferred into that group if its

property value is within the configured range and that the cell is not already contained in a static

"geometric" group.

7-105

PhD Thesis by John Ewer.

The implementation of the group SOR solver requires particular care, at the algorithmic level,

to ensure that the groups are not de-coupled into JOR connectivity between groups. This

scenario is possible if the looping between group-inner-iterations and between groups is

mismanaged to give simple external looping for all groups and internally for each group to loop

for all configured inner-iterations. There are several possible methods of handling the inner

looping which give different updates for cases where groups have different numbers of

configured inner iterations. It was decided to interleave the processing between groups without

using a simple 1:1 interleave ratio, which would have been easier to implement but possibly less

efficient. The more complex interleaving technique causes each group to be visited in turn and

performs one (or more) of the inner iterations before moving to the next group. The looping

amongst groups continues until each group reaches its configured maximum number of inner-

iterations or until convergence is detected.

In order to attain maximal optimisation for cases with truly de-coupled (and hence uninteresting)

group regions, it was also necessary to limit processing of such groups so that simple calculated

variables are not updated. Mostly there is little difficulty in performing this optimisation because

the support variables are generally closely linked in their usage to associated solved variables.

It should be noted that many of the variables in a fire modelling simulation have a definite

"directionality" that can be exploited by matching the marching order of the cells within SOR

solvers with this direction. The prototype CFD engine has been implemented to use bi-

directional marching order for all SOR type solvers, which gave a saving of up to 20% over the

usual unidirectional marching order - when used on the simulation case described in this section.

All of the timings compare bi-directional group and whole-domain SOR solvers.

7.2.3 Investigation of geometric groups

Several examples were used to investigate the use of geometric group solvers for a partitioned

2-D room fire simulation. The simulation timings, for geometric groups, were all performed

7-106

PhD Thesis by John Ewer.

using a 90 MHz Pentium PC with 64MB RAM. The first example involves a single compartment

with two doors. Both doors open to the outside and hence involve two extended flow regions.

The second example involves a similar compartment in which one door opens to the outside

while the other door opens to a second closed compartment. For simplicity, all confining

boundaries are assumed to be adiabatic. In both cases a small volumetric fire source of 50 kW

is situated in the centre of the fire compartment.

In the first example, one of the doors is open throughout the simulation while the second door

is opened 40 seconds into the fire simulation. The solution domain is thus made up of three

distinct regions, the first external region outside of the open door, the fire compartment itself

and the second external region beyond the closed door. The computational mesh in each region

comprises of 8 x 21 cells, 22 x 21 cells and 8 x 21 cells respectively i.e. a total of 798 cells.

Using standard CFD solution techniques the solvers operate equally in all of the cells throughout

the solution domain, even the cells in the initially dormant external region beyond the closed

door. This is clearly a waste of CPU time as nothing of significance occurs in the external region

beyond the closed door.

Whole solvers Temporary

Extended region

FIGURE 7.2.3-1 : Solution prior to opening of second door
obtained using conventional and groups solvers.

PhD Thesis by John Ewer.

Using the group solver, the initially "dead" region is marked as Inactive resulting in the solver

spending a minimum amount of effort in this region. When the second door opens after 40

seconds, the Inactive region changes to Active status and the solution domain extends to cover

the second extended region. As demonstrated in the figure (See Figure 7.2.3-1), the solution just

prior to the second door opening when the group solver is used is identical to the solution when

the conventional solver is used and it is concluded that there is no loss of accuracy.

FIGURE 7.2.3-2: Steady-state solution obtained
after both doors are opened (example 1).

When both doors are opened, both methods converge to the steady state solution depicted in

the figure (See Figure 7.2.3-2). However, using the conventional solver, the run time up to the

point where the second door opens was approximately 3.02 hours while using the group solver

this was reduced to 2.72 hours, a saving of 10%. While only a modest saving, this was achieved

by saving the computational effort over only a comparatively small proportion of the solution

domain.

FIGURE 7.2.3-3: Steady-state solution obtained
after both doors are opened (example 2).

7-108

PhD Thesis by John Ewer.

When Inactive regions occupy a greater proportion of the mesh savings in computational time

can be improved significantly.

In the second example, the second door is opened after 40 seconds but rather than opening to

the outside it opens into an otherwise sealed compartment. The solution domain again consists

of three distinct regions, the external region outside of the open door, the fire compartment and

the second, initially sealed, compartment. The computational mesh in each region comprises of

8 x 22 cells, 22 x 22 cells and 30 x 22 cells respectively i.e. a total of 1320 cells. Using standard

CFD solution techniques the solver operates equally in all the cells throughout the solution

domain, even the cells in the second sealed and isolated compartment.

Once again, the initially dormant region is marked as Inactive resulting in the numerical solver

spending the minimum amount of effort in this region. When the second door opens after 40

seconds, the Inactive region changes to Active and the solution domain extends to cover the

second compartment. As in the previous case both solution techniques result in identical

solutions prior to the opening of the second door. When both doors are opened, both methods

converge to the steady state solution depicted in the figure (See Figure 7.2.3-3). However, using

the conventional solver, the run time up to the point where the second door opens was

approximately 4.40 hours while using the group solver this was reduced to 3.06 hours, a saving

of 31%. Thus, by effectively reducing the computational domain by 50%, a saving in

computational time of 31% is achieved. This saving is less than might have been expected but

it is explained by the need for initialisation and property updates that occur in all cells regardless

of their group membership.

More work is needed in this area to determine if there are benefits for the dynamic control of

each group's solution controls.

7.2.4 Investigation of dynamic groups

The case used to investigate the use of dynamic group solvers is a preliminary investigation into

7-109

PhD Thesis by John Ewer.

fire spread between the floors of a multi-storey building where window sizes are varied to

modify the ejected plume behaviour. This case is loosely based on some collaborative research

with LPC into fire spread between floors [GLOCKING97]. In the case presented here only the

lower (ground) floor room is modelled together with the outer wall of the second and third

floors above. In subsequent research it is intended that the upper floor rooms will also be fully

modelled with windows that can be broken by the incident heat flux from the ejected spill plume.

In order to investigate the benefits of the group solvers a number of test cases were prepared.

The geometry and mesh used in all of the tests was identical and great care was taken to ensure

that the mesh was sufficiently refined across the height and width of the window, near the walls

of the room and outside and just above the window. These considerations are critical to

obtaining a reliable and accurate simulation of the ejected plume.

The geometry (See Figure 7.2.4-1) was set up with room dimensions of 4.0m (x) X 3.4m (y) X

6.0m (z). The centrally located fire is represented as a volumetric heat load which is applied over

a volume of 1 .Om X 1,2m X 2.0m. The fire uses the so-called "alpha t squared" power curve,

which reaches 2.0 MW (using a fast growth rate) in three minutes of simulated time. This is a

commonly used growth rate for representing real fires (for example burning furniture) with a

volumetric heat output. The window aperture has a size of 2.0m-(y) X 2.0m (z) and is centrally

located on the high X-face of the room. The exterior wall, above the window, extends for a

height of 10.5m vertically. This extended height is intended to allow for the addition of two open

rooms above fire room and a further room height to move the free surface boundary sufficiently

far away from any upper floor windows that may be used. This positioning of the free surface

is necessary to prevent outlet effects from dominating the flow in any critical region of the flow

domain where it might change solution.

7-110

PhD Thesis by John Ewer.

FREE SURFACE BOUNDARY

O.lm

ROOM AND FIRE (floor plan)

WINDOW____

10.5m

X
A

2.0m

5J, 1.0m 4.0m

6.0m

WALL WITH WINDOW

3.5m
Y
A

i\

2.0m

\1

WINDOW

 FIRE
tJu.

3.5m

2.0m

FIGURE 7.2.4-1 : The multi-storey geometry used for the group solver tests.

The extended region beyond the window has the same Z-width as the room and extends for a

distance of 6.0m in the X-direction in order to give ample room for the plume ejection. All of

the surfaces of the extended region have a free surface boundary condition except for the floor,

which is assumed to be solid.

The outside region is assumed to be calm prior to the fire. The walls are assumed to be brick

with a thickness of 0.1m.

The mesh used for the simulation consisted of 40,572 cells with NX=36, NY=49 and NZ=23.

The number of cells in the geometric regions was as follows: Dead region (non participating

rooms above fire compartment i.e. de-coupled region) has 14,260 cells, Fire-room has 8,280

cells and the entire extended region has 18,032 cells (See Figure 7.2.4-2).

7-111

PhD Thesis by John Ewer.

RISGIQH

FIGURE 7.2.4-2 : Vertical slice through the domain
showing the mesh and the various regions.

The simulation involves buoyancy driven flow with K-Epsilon turbulence model (buoyancy

modified) and incorporates the six-flux (enhanced) radiation model as described in the User

Manual [EWER99-2]. The entire simulation was configured to perform 90 time steps of 2

second duration. The solver configurations used in the various simulations are summarised in

the following table (See Table 7.2.4-3).

7-112

PhD Thesis by John Ewer.

TABLE 7.2.4-3 : Summary of solver configurations used in simulations.

Variable(s)

Pressure

Momentum

Turbulence

Enthalpy

Radiation

Solver update
method

SOR

SOR

SOR

SOR

SOR

Whole
domain
iterations

50

6

20

30

20

Active
group
iterations

50

6

20

30

20

Calm
group
iterations

12

2

5

8

5

Void
group
iterations

0

0

0

0

0

Furthermore all solvers were able to terminate their inner iterations if a common convergence

level was reached. Each time step was forced to have all normalised variable residuals

converged, to l.Oe-03, before the next time step could be started.

For comparison purposes, the following three test cases were simulated:

Case 1: The simulation is configured with all solved variables using the whole domain SOR

solvers as specified in the table (See Table 7.2.4-3). For comparison purposes this constitutes

the base case. The group solvers are not utilised in this test and so the code is run in a

conventional manner.

Case 2: The entire solution domain is configured into two static "geometric" groups, one group

configured as a "Void" group and another configured as an "Active" group (See Table 7.2.4-3).

The "Void" group contains all of the cells in the de-coupled region above the fire room (i.e.

14,260 cells or 35.2% of the entire cell budget). The "Active" group contains all of the cells that

are not in the "Void" group region (i.e. 26,312 cells or 64.8% of the entire cell budget). While

the group solvers are activated, group membership remains the same throughout the simulation.

Case 3: The entire solution domain is partitioned into four groups, two are static "geometric"

7-113

PhD Thesis by John Ewer.

groups and two are "dynamic" membership groups. The first group is a static group that is

configured as a "Void" group which contains all of the cells in the de-coupled region above the

fire room (i.e. 14,260 cells or 35.2% of the entire cell budget). The second "static" group is

configured as an "Active" group and contains all of the cells in the fire room, those in the

window aperture and a small rectangular block of cells that is immediately outside of the

window (uses room with 8,280 cells and 2,366 cells from the extended region i.e. 10,646 cells

or 26.2% of the entire cell budget). The third group is "dynamic" and "Active" and is configured

to determine cell membership from the non-static cells of the extended region. The group

membership selection criteria is for absolute cell velocity being greater than 10% of the

maximum domain velocity. The fourth "dynamic" group is configured as a "Calm" group and

contains extended region cells that have an absolute velocity of less than 10% of the maximum

domain velocity. The two active groups share the remaining 15,666 extended region cells or

38.6% of the entire cell budget. Dynamic group membership is updated every 10 sweeps.

For the purposes of this paper, timing comparisons based on the first 50 time steps of each test

will be presented. On the test computer (a Pentium n 400MHz with 256MB of RAM) this gave

a convenient processing duration that could be run overnight without interruption.

TABLE 7.2.4-4 : Comparison of group solver performance over the three test cases.

Test scenario CPU time used for 50
time steps______

Total number of
sweeps used

Percentage time
saving over case 1

Case 1 :
Whole domain solvers

15h51m40s
(57,100 seconds)

3095

Case 2 :
Static groups

Ilh43m36s
(42,216 seconds)

3089 26.1%

Case 3:
Static and dynamic groups

9h 56m 45s
(35,805 seconds)

2919

Of primary interest, to this study, are the potential gains in numerical efficiency generated by the

use of group solver technology. It should be noted that all three test cases produced practically

7-114

PhD Thesis by John Ewer.

identical solutions with the same levels of convergence. A comparison of the run times for the

test cases is presented in the table above (See Table 7.2.4-4). Clearly, the group solver has

potential for introducing considerable savings in computational time.

The fire dynamics in these test cases proceeded as expected. As the window opening to the fire

compartment was considered narrow, a strong plume was ejected from the compartment. As

the plume rotated and ascended vertically, it did not attach to the building facade. These results

are consistent with earlier modelling work [GALEA96] and with reported experimental

observations [YOKOI60].

By 100 seconds, of simulated time, the rising plume outside of the compartment was fully

developed and clearly unattached from the building fa9ade. Continuing the simulation beyond

this point merely increased the temperature of the fire compartment, the rising plume and the

building fa9ade.

The results for temperature displayed in the figure (See Figure 7.2.4-5) were taken at a

simulation time of 120 seconds from the whole field SOR simulation in Case 1. Only the results

from Case 1 are presented here as the comparable results from Case 2 and Case 3 displayed no

apparent differences. Within the solution fields produced by Cases 1-3, maximum temperatures

differed by at most, 1 Kelvin in the range of 318 to 914 Kelvin.

In order to verify that the dynamic group solver membership mechanisms were operating as

expected, a vertical slice visualisation of group membership was created. This group

visualisation (See Figure 7.2.4-6) shows that the "active" dynamic group in the extended region

has captured the plume extent correctly.

The static group solvers used in Case 2 demonstrated that, by effectively removing 35.2% of the

domain from the computations, a saving of processing time of 4h 8m 4s (or 26.1%) was

obtained when compared to the standard whole field SOR solvers processing all cells equally.

7-115

PhD Thesis by John Ewer.

PLUME

DEAD REGION

i /

FIGURE 7.2.4-5 : Vertical slice showing room
and plume temperatures (K) at 120 seconds.

In effect this indicates that the group solvers were 74.2% efficient at removing the processing

overhead of the de-coupled region from the simulation. While a 100% efficiency may be desired,

this result was anticipated because there are still many calculations performed in the "de-

coupled" region for material properties and simple calculated variables. It is anticipated that this

figure can be improved somewhat by increasing the use of "group" activated calculations within

7-116

PhD Thesis by John Ewer.

the rest of the CFD code.

STATIC GROUP
(DEAD REGION)

DYNAMIC GROUP
(ACTIVE REGION)

STATIC GROUP
(ROOM REGION) DYNAMIC GROUP

(CALM REGION)

FIGURE 7.2.4-6 : Vertical slice showing static and dynamic
group membership at 120 seconds for test case 3.

In Case 3 both static and dynamic groups are used with the majority of the extended region

being continuously evaluated for applied processing strategy. In this case an overall processing

time saving of 5h 54m 55s (or 37.3%) was achieved when compared to the standard whole field

7-117

PhD Thesis by John Ewer.

SOR solvers processing all cells equally. It should be noted that much of this saving is due to

the "de-coupled" void group which, as shown in Case 2, saves 26.1% of the processing. The

remaining 11.2% saving is due to the optimisation of processing within the extended region

which targets less solver processing in cells with relatively low velocity flow. The fact that this

saving is comparatively less than for the "de-coupled" region is also anticipated. This can be

explained by considering the work performed in the "de-coupled" and dynamic groups. In the

"de-coupled" group, it was not necessary to build the system matrix coefficients for the member

cells whereas any cell in a solved group that performs one (or more) iterations must build the

system matrix coefficients in order to perform any calculation. Building the system matrix

coefficients is relatively costly compared to solving the matrix.

The results indicate that there are large potential savings to be gained in the simulation of fire

modelling scenarios by the targeting and optimisation of processing effort in fully de-coupled,

suitably stratified or geometrically related flows. Furthermore, these savings need not result in

compromised accuracy of the final solution. The techniques developed and presented here

resulted in considerable run-time savings of up to 37% of processing time. It is anticipated that

this figure can be improved significantly when a better understanding of the balancing required

between groups and variables is achieved.

As group solvers are a new concept, there was little or no expertise to guide in the optimal

selection of number of groups to use, the choice of group membership conditions and the

relative amounts of processing used in each group. Furthermore there are a number of remaining

group solver control options which were not varied during the test simulations.

It is anticipated that in large scale simulations, which may involve whole buildings, there are

likely to be much greater savings possible with intelligent use of group solvers that can target

the processing only on the active flow and fire regions until the solution characteristics in other

regions become significant.

Current research efforts are directed at gaining a better understanding of when it is appropriate

7-118

PhD Thesis by John Ewer.

to use groups and how best to balance the processing between groups in order to obtain optimal

convergence and simulation times. Dynamic groups have been shown to give modest

performance improvements but more work is needed to determine if there are any further

benefits possible due to combined solution monitoring and dynamic knowledge based control

of the processing within both the static and dynamic groups. Whilst the use of group solvers

increases the complexity of the knowledge based control it is also most likely to provide the

most significant savings and most reliable solutions.

7.3 Preliminary investigation of automated dynamic solution
control

A prototype dynamic control module was developed to investigate the potential for automating

the process of dynamically monitoring and controlling the solution of a particular class of Fire

simulations [EWER98]. (See Section 6.6.2 in the Results Chapter 6) The module was quite

primitive because it only monitored the local convergence behaviour and then only modified

linear and false time step relaxation values.

The production rules that were used to effect these control changes were demonstrated to be

quite good for 2-dimensional fire scenarios but not sufficiently flexible to handle more complex

3-dimensional fire scenarios.

It has been established that significant savings in run-times can be achieved when the automated

solution control module can fine tune the relaxation parameters for optimal convergence but

there is some danger of de-stabilising the solution when compared to using a safe set of initial

relaxation parameters. This was demonstrated by the fact that a fairly simple 2-Dimensional

scenario gave good savings for optimisation of relaxations but a more complex 3-Dimensional

scenario was destabilised by the solution control module. It is predicted that these problems are

caused by the lack of monitoring of persistent trends in the solution convergence behaviour. The

prototype solution control module was only evaluating convergence trends based on a few

preceding simulation sweeps.

7-119

PhD Thesis by John Ewer.

8 Conclusions

8.1 Benefits of interactive control

This research has demonstrated significant and tangible benefits for the use of interactive control

and monitoring user interaction techniques for use with CFD simulations in the Fire Field

Modelling arena. These benefits are not solely limited to performance enhancements because

solution reliability, error detection and algorithm development have also been demonstrably

improved during the investigations. Although the re-engineered and interactive prototype CFD

system runs more slowly than the original legacy code this should be seen in context of the

tangible improvements in the overall performance due to time saved by using solution

optimisation and the reductions in time wasted in unsuccessful simulations. There is also the

added benefit that the prototype CFD system gives more assurance of solution correctness when

the path to the solution has been monitored.

The need for interactive control has also been demonstrated by the relatively poor attempts at

static simulation configuration obtained from CFD researchers during this investigation. This

tends to suggest that some form of interactive control is necessary for CFD experts to be able

to transfer their knowledge between CFD codes so that they can use new simulation software

correctly and optimally. It is also beneficial for expert CFD users to have immediate access to

the intermediate solution status information so that simulation problems can be detected

promptly and control actions planned and imposed as required.

One particularly surprising observation made during this research concerned the lack of

transferability of set-up knowledge between different CFD codes by expert CFD users who were

familiar with another CFD code. This meant that even users who have considerable expertise

with using a particular CFD code cannot always easily transfer that knowledge for the optimal

or, in some cases, reliable use of another CFD code. Generally speaking, this means that all users

are forced to learn the idiosyncrasies of each new class or instance of a CFD code. It is not clear

if this problem is quite so marked or critical in other application areas outside of CFD research

8-120

PhD Thesis by John Ewer.

or outside of numerical simulation. Clearly the problem is alleviated somewhat by having a good

user interface with appropriate monitoring and solution statistics that allow the user to check

that the CFD code is behaving predictably, acceptably and optimally.

The implementation of reliable simulation control automation relies on the availability of high

quality expertise and knowledge obtained from Expert users controlling real simulations.

Formerly this knowledge has not been available because traditional approaches to CFD used

batch mode processing techniques followed by post-processing results analysis. It has been

demonstrated that this often leads to highly non-optimal simulation strategies and errors in the

simulation are found (if detected at all) after a simulation has been run completely. Knowledge

about reliable solution control methods will only be obtained through the use of interactive

control techniques by CFD experts and further research in this area. As a corollary, it should be

noted that an interactive control and monitoring interface is a significant benefit for teaching

purposes. When used as a teaching tool, an interactive CFD code gives trainee Fire Field

modellers a much better understanding of the internal processes and limitations of CFD software

and is thus likely to enhance their productivity and accuracy of simulation

The current trend for the use of Fire Field modelling by building designers, fire regulatory

authorities and others who often have quite limited CFD experience (or in the case of Firemen

who have recently started to investigate Fire Modelling techniques, almost no CFD experience)

which means that it is more important than ever for reliable, informative and (whenever possible)

automated simulation software to be made available to ensure that simulations that are

conducted for risk assessment, design planning and performance analysis are conducted correctly

and that the results are only used or presented if they are reliable.

8.2 Benefits of incremental reverse engineering

The reverse engineering methodology developed during this study has wider implications when

one considers the huge amount of extant software that was written in older computer languages

and often without the benefit of modern software engineering practices. The success of the

methodology lies in the fact that the software being re-engineered is never far away from a state

8-121

PhD Thesis by John Ewer.

that can be compiled and re-validated for functional consistency with the original legacy

software. Clearly it is necessary that the validation cases selected should provide suitably wide

function coverage but, with this proviso, it is possible to impose many modern principles of

software design and ease of maintenance without an overwhelming expenditure of human

resources.

In practice, it would have been more efficient to use more automation (i.e. translators or

compiler writing tools) during the translation phase of the re-engineering. It is also not easy to

predict how well the techniques used in this investigation would be transferable to other

application areas but the principles of maintaining absolute functional consistency do make a

great deal of sense no matter what the origin and purpose of the legacy code.

8.3 CFD Research benefits of using an open architecture and
Object Oriented development techniques

Many of the enhancements, capabilities and possibilities for further research have only been

practically made possible due to the open architecture imposed on the re-engineered CFD

software and the use of Object Oriented implementation techniques. This does not mean that

traditional implementation techniques (i.e. procedural, structured coding) make such

enhancements impossible but there is a point where procedural implementations with their poor

code clarity, primitive data passing, simple data storage mechanisms and monolithic software

architecture tend to hamper further development. A well-structured Object Oriented architecture

can give considerable assurance that the methods for one type of object will not interfere with

other types of object and their respective implementations. This was a definite benefit with

regards to the implementation and development of the visualisation, knowledge based control

and group solver functionality.

The use of Object Oriented development techniques have also been observed to promote ease

of adaptive and perfective maintenance. The fact that new algorithms can be implemented

without having a knock on effect through the rest of the software considerably simplifies the

scope of any new developments and helps to ensure implementation correctness.

8-122

PhD Thesis by John Ewer.

8.4 CFD Research problems caused by the use of Object Oriented
development techniques

There were, almost inevitably, some problems facing the use of Object Oriented development

techniques with CFD research.

The first observed problem was that there were multiple clear conceptual or real world objects

that could be used as the basis of the data architecture. The eventual object abstraction that was

adopted came down to a simple preference for a favourite object hierarchy. The re-engineering

development described in this research may have gone very differently if, at the key stage of

formulating an object hierarchy, it had been decided that data vectors and system matrices were

the best choice of conceptual objects.

The second observed problem is that Object Orientation tends to make the developer write more

and simpler functions than would have been present in the original procedural code. The

problem here is that adding additional layers of function calls at a low level of looping within the

numerical code is likely to be accompanied by a considerable performance overhead for the

additional calls. Matters would be even worse if dynamic function resolution (i.e. late-binding

or run-time) is used because of Object Oriented inheritance and-overloaded functions. This is

typically seen where one type of object is a sub-type of a parent object type and both object

types have identical methods which means that the compiler cannot resolve which method to call

and it must be evaluated at run-time. The re-engineering described in this investigation tried to

limit this increase in the number of layers of function calls, but it was not completely successful.

The re-engineered system has, on average, at least one extra layer of function calls at a relatively

low level of the code and this has quite a large impact on run-time performance. The

development has managed to keep late-binding to very high levels of the code where it will have

negligible effect on the overall performance.

The third observed problem is that the Object Oriented language used for this research (i.e. C++)

and most other object oriented languages are somewhat slower than the FORTRAN language.

This is partly due to the difficulties of optimisation in C++ and the simplicity of FORTRAN.

8-123

PhD Thesis by John Ewer.

There is also the performance impact, which has not been evaluated, of the organisation of the

large amounts of simulation data in memory and the memory address "jumping" required by the

processor to perform the calculations. The original FORTRAN code had long arrays of data

whereas the Object Oriented C++ version of the code has cell objects (with complete sets of

internal data) that are consecutive and adjacent in memory. It is not clear what overhead this has

in terms of the jumping necessary when addressing data and the performance hits that this will

cause due to the required frequency of cache updates. Unfortunately there was insufficient time

to perform an analysis of the impact of the techniques used for data storage.

A final problem facing the prototype system is that of user acceptance. The fact that the system

has been written in object oriented C++ will mean little to the majority of users who will only

ever make use of the executable form of the software to perform their simulations. Conversely

users and developers who need to write additional routines may find the conceptual structure

of the Object Oriented version of a CFD code too alien to their experiences of procedural

development. Every effort has been made to mitigate these problems by avoiding the more

obscure syntax, constructs and mechanisms available in C and C++ but some of the

idiosyncrasies remain. Possibly the worst of these is the slightly strange syntax needed to access

any cell data value which in the re-engineered system appears as

data = celI[cell_index]->access(NEWEST,TEMPERATURE);

whereas the original legacy code would have used the simpler syntax

data = TEMPER(celMndex)

but, it is argued that, the benefits of the re-engineered system described in this investigation far

outweigh this fairly minor inconvenience.

8-124

PhD Thesis by John Ewer.

9 Further work

9.1 Overview

During these investigations there were many instances of research areas that needed

investigation or that could be potentially beneficial but these could not be pursued due to time

and resource constraints. This section describes areas of research that need further work.

9.2 Dynamic solution control

Further work is needed for better determination of the current solution status (possibly involving

more historical solution status information) so that the control rules can be fired in a more

reliable way. Also the actions that can be performed need to be extended to cover more of the

capabilities of the CFD software. It is possible that the Dynamic control module would benefit

from initially using a "Zone model" to determine a "quick and dirty" solution prior to performing

the simulation and to use this data to apply changes to the number of iterations, tolerances,

solver types and time step size as required.

Furthermore the dynamic control module needs to be "aware" of transitional effects such as the

re-direction of plumes or flow jets by geometry constraints or the change in height of neutral

plane because these changes can greatly effect solution stability and often require special

handling. There is also the potential for user or solution defined transitional effects such as the

breaking of windows, opening of doors and secondary fire ignition or fire spread that will also

require specialised control handling.

9.3 Visualisation

Visualisation needs to be extended to 3-D for improved run-time assessment of the solution

status. This should not be regularly updated, as it is in the current 2-D slice visualiser, because

9-125

PhD Thesis by John Ewer.

of the performance overhead that would be incurred for 3-D display formation. A more global

approach to investigating the solution data, at any stage of the processing, is needed so that

solution features are not missed. Quality data visualisation using contour nets and vectors are

recommended though it may prove necessary to use transparencies and cutaways in order to

prevent foreground data from obscuring background data. Streamlines can also be used to give

visual meaning to flows.

The fire field modelling area is likely to benefit from recent visualisation techniques such as

"fogs" and Virtual Reality in order to help bridge the gap between the fire field modeller and

designers or non-CFD specialists who need to comprehend and make use of the simulation data.

9.4 Pattern matching for KBS control and status reporting

It is anticipated that some means can be found to detect recirculations and other flow formation

events in order to fine tune the simulation controls to give reliable but still optimal numerical

handling. This may need to implemented, at least initially, with simple status monitors and

questioning of the computer user who will be used as a non-specialist expert for the visual

classification of a data visualisation. This would be used where numerical or other programmatic

means of classification of simulation features are non trivial or prove to be unworkable.

Work is already progressing into more reliable and comprehensive techniques for solution status

reporting based on the analysis of residual graphs. This new type of analysis attempts to classify

convergence trends and behaviour over time and over successive sweeps so that qualitative

decisions can be made about how the simulation can be optimised and to monitor for potential

problems so that they can be handled before ever becoming critical (i.e. solution threatening).

9.5 Enhanced physics and numerical methods

There are a number of diverse techniques that need to be added to the prototype system in order

9-126

PhD Thesis by John Ewer.

to provide a comprehensive tool for fire field modelling scenarios. The most important of these

features are toxicity modelling, pyrolysis and solid fuel combustion [COX95], flash-over

modelling [JIA97], discrete transfer model for radiation, fire spread modelling and secondary

ignition. These features are by no means trivial and some are at the forefront of current research

[JIA99].

9.6 Exploitation of parallel processing architectures

It is interesting to note that the Object Oriented data structures used in the prototype system

could be used to provide a fairly simple exploitation of parallel processing architectures. Since

each cell is a complete and separate entity and the fact that group solvers and dynamic group

membership have already be demonstrated as workable, it is possible that a parallel

implementation of the code could be formulated with relatively little additional programming.

There are several areas that would need to be addressed i.e. the addition of halo cell regions

about each group and the scheduling of inter-processor data updates. Where this implementation

may really benefit is from the potential for dynamic assessment and handling of load balancing

as under-utilised parallel processes could have additional cells passed across to them in order

to make maximal use of all processors. The data structures of the prototype system minimise the

amount of book-keeping and simplify the data access so that parallel implementation is likely to

be greatly simplified.

Whilst such exploitation of parallel or distributed architectures is not new [LUKSCH98], it is

anticipated that the Object Oriented data structures within the prototype system will greatly

facilitate the parallelisation of the software.

9.7 Interactive control expertise

Throughout the current research there has been a lack of high quality expertise about how to

manage the interactive control of CFD codes. This is mostly due to the fact that CFD

9-127

PhD Thesis by John Ewer.

practitioners have never really had the tools to enable them to perform reliable run-time

optimisation of the simulation controls. In order to address this limitation it is predicted that case

based data relating to simulation status, reliable control modifications, problematic simulation

features and solution reliability need to be collected and analysed in order to facilitate future

research.

9.8 Validation and fine-tuning of algorithms

Although the prototype software is being used more frequently from real world simulations

[WANG99] there is still considerable scope for validation of all aspects of the algorithms and

numerical behaviour in diverse simulation cases.

There is also a need to continually analyse and fine-tune the algorithms within any CFD code in

order to best represent each case or application area.

Another potential problem is that it is not known how sensitive CFD codes are to all of their

input or pre-configured parameters. It is likely to prove beneficial to perform a comprehensive

parametric sensitivity study to determine how critical all of the various input parameters and so

called "algorithm constants" are. This is particularly true of the Fire Field Modelling application

area where many properties are assumed to be constant over the whole range of temperatures

and conditions experienced during a simulation but this is quite an unrealistic assumption for

quantities like the specific heat capacity of air.

9.9 Latest Research

The interested reader is advised to check out the University of Greenwich Web pages

[GREENWICH] in order to check the current advances in research within the Fire Safety

Engineering Group and to see the current status of the Smartfire system.

9-128

PhD Thesis by John Ewer.

10 References

1. [YOKOI60] Yokoi S., "Study on the prevention of fire-spread caused by hot upward

current." Report of the Building Research Institute, 1960.

2. [JONES79] Jones I, "A Comparison Problem for Numerical Methods in Fluid Dynamics, The

'Double Glazing1 Problem", Numerical Methods in Thermal Problems, Proc. of the First

International Conf, pp 338 - 348, 1979.

3. [PATANKAR80] Pantakar S., "Numerical Heat Transfer and Fluid Flow", Intertext Books,

McGraw Hill, New York, 1980.

4. [SPALDING81] SpaldingD., "A General Purpose computer Program For Multi-Dimensional

One- and Two- Phase Flow", Mathematics and Computers in Simulations, North Holland

(MACS), Vol. XXHI, 267, 1981.

5. [STECKLER82] Steckler K., Quintiere J. and Rinkinen W, "Flow Induced By Fire in a

Compartment", NBSIR 82-2520, National Bureau of Standards, Washington, 1982.

6. [DAVIS83] De Vahl Davis G. and Jones I., "Natural Convection in a Square Cavity: A

Comparison Exercise", International Journal for Numerical Methods in Fluids, Vol. 3, pp 227

-248, 1983.

7. [KNIGHT87] Knight B., Cross M., and Edwards D., "Software Design for Numerical

Software", Reliability and Robustness of Engineering Software, Ed. Brebbia C, and Keramidas

G, pp 121 - 136, 1987.

8. [KERNIGAN88-1] Kernigan, B. & Wilson, B., "lex - a lexical analysis tool", The C

10-129

PhD Thesis by John Ewer.

programming language, Pub. Prentice-Hall, 1988.

9. [KERNIGAN88-2] Kemigan, B. & Wilson, B., "yacc - yet another compiler compiler", The

C programming language, Pub. Prentice-Hall, 1988.

10. [WILLIAMS88] Williams A., "The Development of an Intelligent Interface to a

Computational Fluid Dynamics Flow-Solver Code", Computers and Structures, No. 1/2, pp 431

-438, 1988.

11. [GALEA89] Galea E., "On the field modelling approach to the simulation of enclosure

fires", Journal of Fire Protection Engineering, vol. 1 (1), 1989, pp 11 - 22.

12. [EASYFLOW90] EasyFlow: CHAM (Concentration, Heat and Momentum) North America:

EasyFlow Reference Manual, 1990.

13. [THEVIBLEBY90] Thimbleby H., "User Interface Design", Publisher: Addison Wesley 1990,

ISBN: 0201416182.

14. [ANGUS91] Angus I., and Stolzy J., "Experiences converting an application from

FORTRAN to C++ : Beyond f2c", C++ at work conference, November 1991.

15. [BYRNE91] Byrne E., "Software Reverse Engineering: A Case Study", Software Practice

and Experience, Vol. 21 (12), pp 1349 - 1364, December 1991.

16. [FIELD91] Field D., "A generic Delaunay triangulation algorithm for finite element meshes,

Advances in Engineering Software, Vol. 13, No. 5/6, pp 263 - 272, September 1991.

17. [FLOW3D91] FLOW3D Release 2.3.3 Reference Guide, CFD Dept, AEA Harwell, UK,

February 1991.

10-130

PhD Thesis by John Ewer.

18. [JAMBUNATHAN91] Jambunathan K., Lai E., Hartle S., and Button B., "Development of

an Intelligent Front-End for a Computational Fluid Dynamics Package", Artificial Intelligence

in Engineering, 1991, Vol. 6, No. 1, pp 27 - 35.

19. [KNIGHT91] Knight B., and Petridis M, " A Design For Reliable CFD Software",

Reliability and Robustness of Engineering Software n, Ed. Brebbia C., Ferrante A, pp 3 - 17,

Elsevier, 1991.

20. [KUMAR91] Kumar S., Gupta A. and Cox G., "Effects of Thermal Radiation on the Fluid

Dynamics of Compartment Fires", Fire Safety Science - Proc. of the Third International Symp.,

pp 345-354, 1991.

21. [DUBOIS-PELERIN92] Dubois-Pelerin Y., Zimmermann T. and Bomme P., "Object-

oriented finite element programming: n. A prototype program in Smalltalk", Computer Methods

in Applied Mechanics and Engineering 98, pp 361 - 397, 1992.

22. [IEROTHEOU92] lerotheou C., and Galea E., "A Fire Field Model implemented in a

Parallel Computing Environment", International Journal for Numerical Methods in Fluids, Vol.

14, Issue 2, pp 175 - 187, Jan 1992.

23. [PETRIDIS92] Petridis M., and Knight B., "FLOWES: An Intelligent CFD System",

Engineering Applications of Artificial Intelligence, Vol. 5(1), pp 51 - 58, 1992.

24. [SCATENI92] Scateni R, "Towards integrated object-oriented computational fluid

dynamics environments: Interactive Domain Editor", Conf. Proc. 3rd Eurographics Workshop

on Visualisation in Scientific Computing, pp 83 - 98, 27 - 29 April 1992.

25. [SPALDING92] Spalding D., "The expert-system CFD code; problems and partial

solutions", International High-Tech Forum, Basel, 27th May 1992.

10-131

PhD Thesis by John Ewer.

26. [COBALT93] for-C translation software, Cobalt Blue Inc., 11585 Jones Bridge Rd., Ste 420

- 306 Alpharetta, GA 30005, USA.

27. [DUBOIS-PELERIN93] Dubois-Pelerin Y. and Zimmermann T., "Object-oriented finite

element programming: HI. An efficient implementation in C++", Computer Methods in Applied

Mechanics and Engineering 108, pp 165 - 183, 1993.

28. [EDWARDS93] Edwards H., and Dr. Hayes L., "Visual Programming of Iterative

Methods", Conf. Proc. 1 st Annual OON-SKI '93 (Object Oriented Numerics) Conference, pp

163 - 170, 1993.

29. [EWER93-1] Ewer J., Petridis M., Cowell D., and Knight B., "An Intelligent User

Interface for Computational Fluid Dynamics Software", Proceedings of AEENG '93, pp

77 - 92, 1993.

30. [EWER93-2] Ewer J., Numdiff - A numerical file differencing utility, 1993, The

University of Greenwich, School of Computing and Mathematical Science, Maritime

Greenwich Campus, Greenwich, London.

31. [F2C93] f2c is a freeware Fortran to C translation utility. Available via the GNU Free

Software Foundation, 1993, Original code is © AT&T, Lucent Technologies and Bellcore.

32. [PETRIDIS93] Petridis M., and Knight B., "A Blackboard Approach for the Integration of

an Intelligent Knowledge Based System into Engineering Software", Knowledge Based Systems

for Civil and Structural Engineering, Ed. Topping B., pp 49 - 56, Civil-Comp Press, 1993.

33. [SPAG93] SPAG - A Fortran tool for restructuring spaghetti code. Part of plusFORT, 1993,

Salford Software Ltd., Adelphi House, Adelphi Street, Salford, M3 6EN.

10-132

PhD Thesis by John Ewer.

34. [TWORZYDLO93] Tworzydlo W. and Oden J., "Towards an automated environment in

computational mechanics", Computer Methods in Applied Mechanics and Engineering 104, pp

87-143, 1993.

35. [AFZAL94] Afzal M., Cross M., "GASFLO - airflow distribution evaluation tool for ducting

systems of pellet induration processes", Applied Mathematical Modelling, Vol. 18, pp 408 - 414,

1994.

36. [ANGUS94] Angus I, and Curtis W., "From Fortran to Object Orientation: Experiences

with a Production Flutter Analysis Code", Conf. Proc. 2nd Annual OON-SKI '94 (Object

Oriented Numerics) Conference, pp 174-180, 1994.

37. [BANERJEE94] Banerjee D., Morley C., and Smith W., "The design and implementation

of the Cortex visualisation system", Conf. Proc. Visualization '94 (Cat. No. 94CH35707), pp

265 - 272, 17-21 October 1994.

38. [CROSS94] Cross M., Chow P., Ewer J., et al., "PHYSICA - A Software Environment

for the Modelling of Multi-physics Phenomena", 1994, Internal publication at the

University of Greenwich, CNMPA, London, SE18 6PF.

39. [KERRISON94] Kerrison L, Mawhinney N., Galea E., Hoffinann N. and Patel M., "A

Comparison of Two Fire Field Models With Experimental Room Fire Data", Fire Safety Science

- Proc. of the Fourth Intl. Symp., Ottawa, Canada, 13-17 July 1994, pp 161-172.

40. [PARSONS94] Parsons R., and Quinlan D., "A++ / P++ Array Classes for Architecture

Independent Finite Difference Computations", Conf. Proc. 2nd Annual OON-SKI '94 (Object

Oriented Numerics) Conference, pp 408 - 418, 1994.

10-133

PhD Thesis by John Ewer.

41. [UPHAM94] Upham D., "FUNGI: Finite-difference Using a Nearly Graphic Interface",

Conf. Proc. 2nd Annual OON-SKI '94 (Object Oriented Numerics) Conference, Poster Session,

pp 464-467, 1994.

42. [BAILEY95] Bailey C, Ewer J., et al., "An Object Oriented Approach to

Computational Mechanics - Physica", 1995, SEL-HPC Short Course delivered by The

University of Greenwich, CNMPA, London, SE18 6PF.

43. [BJORKMAN95] Bjorkman J., Keski-Rahkonen 0., and Lewis M., "First Simulations of the

Steckler Room Fire Experiment by using SOPHIE", Conf Proc., First European Symp. On Fire

Safety Science, Zurich, Switzerland, 21-23 August 1995.

44. [COX95] Combustion Fundamentals of Fire, Editor: Cox G., Academic Press, 1995.

45. [EWER95] Ewer J., Knight B. and Cowell D., "Case Study: An Incremental

Approach to Re-engineering a Legacy FORTRAN Computational Fluid Dynamics Code

in C++", Advances in Engineering Software, Vol. 22, pp 153 - 168,1995.

46. [PETRIDIS95] Ph.D. Thesis: "Integrating an Intelligent Knowledge Based System into CFD

Software", Petridis M., 1995, The University of Greenwich, School of Computing and

Mathematical Science, UK.

47. [BRAND96] Van Den Brand M., Klint P., and Verhoef C., "Reverse engineering and system

renovation - an annotated bibliography", Technical Report P9603, University of Amsterdam,

Programming Research Group, 1996, ACM Software Engineering Notes.

48. [GALEA96] Galea E., Berhane D. and Hofrmann N., "CFD Analysis of Fire Plumes

Emerging from Windows with External Protrusions in high-rise Buildings", Proc. Interflam 96,

Cambridge, UK, pp 835 - 839, March 1996.

10-134

PhD Thesis by John Ewer.

49. [PETRIDIS96] Petridis M., and Knight B., "The Integration of an Intelligent Knowledge

Based System into Engineering Software using the Blackboard Structure", Advances in

Engineering Software, Vol. 25, pp 141 - 147, 1996.

50. [TAYLOR96] Taylor S., Galea E., Patel M., Petridis M., Knight B. and Ewer J.,

"SMARTFIRE: An Intelligent Fire Field Model", Proc. Interflam 96, Cambridge, UK,

March 1996, pp 671 - 680.

51. [GLOCKING97] Dr Clocking J., Annable K., and Campbell S., "Fire spread in multi-storey

buildings : Fire break out from heavyweight unglazed curtain wall system - Run 007", Document

TE88932-43, Confidential Report, 1997, The Loss Prevention Council, Melrose Ave.,

Borehamwood, Herts., UK, WD6 2BJ.

52. [HUME97] Hume B., "Development of a User-Friendly Interface for a Fire Model", UK

Home Office FRDG, Central Fire Brigades Advisory Council Joint Committee on Fire Research,

Research Report No. 77, 1997.

53. [JIA97] Jia F., Galea E., and Patel M., "The prediction of Fire Propagation in Enclosed

Fires", Fire Safety Science - Proc. 5th International Symposium, 1997, pp 439 - 450.

54. [LEWIS97] Lewis M., Moss M. and Rubini P., "CFD Modelling of Combustion and Heat

Transfer in Compartment Fires", Fire Safety Science, Proc. of the Fifth Int. Symp., Ed: Hasemi

Y., pp 463 - 474, 1997.

55. [TAYLOR97-1] Taylor S., Petridis M., Knight B., Ewer J., Galea E. and Patel M.,

"SMARTFIRE: An Integrated CFD code and expert system for fire field modelling", Fire

Safety Science, Proceedings of the 5th Int. Symp., Ed: Hasemi Y., 1997, pp 1285 - 1296.

10-135

PhD Thesis by John Ewer.

56. [TAYLOR97-2] Ph.D. Thesis: "An Investigation into Automation of Fire Field Modelling

Techniques", Taylor S., September 1997, The University of Greenwich, School of Computing

and Mathematical Science, UK.

57. [THIMBLEBY97] "People and Computers XII", Editors: Thimbleby H., O'Conaill B. and

Thomas P., August 1997, Publisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG,

ISBN: 3540761721.

58. [CROFT98] Ph.D. Thesis: "Unstructured Mesh - Finite Volume Algorithms for Swirling,

Turbulent, Reacting Flows", Croft T., June 1998, The University of Greenwich, School of

Computing and Mathematical Science, UK.

59. [EWER98] Ewer J., Galea E., Knight B., Patel M., Janes D., Petridis M., "Fire Field

Modelling using the SMARTFIRE Automated Dynamic Solution Control Environment",

CMS Press, Paper Number 98/EVI/41, ISBN 1899991387, London, 1998.

60. [LUKSCH98] Luksch P., Maier U., Rathmayer S., et al., "Software Engineering in parallel

and distributed scientific computing: a case study from industrial-practice", Proc. International

Symp. on Software Eng. for Parallel and Distributed Systems (Cat. No. 98EX155), pp 187 -

197, 20-21 April 1998.

61. [EWER99-1] Ewer J., Galea E., Patel M., Taylor S., Knight B. and Petridis M.,

"SMARTFIRE: An Intelligent CFD Based Fire Model", Journal of Fire Protection

Engineering, Vol. 10, No. 1, pp 13 - 27,1999.

62. [EWER99-2] Galea E., Knight B., Patel M., Ewer J., Petridis M., and Taylor S.,

"SMARTFIRE V2.01 build 365, User Guide and Technical Manual", Smartfire CD and

bound manual, 1999.

10-136

PhD Thesis by John Ewer.

63. [EWER99-3] Ewer J., Galea E., Patel M. and Knight B., "The Development and

Application of Group Solvers in the SMARTFIRE Fire Field Model", Proc. Interflam 99,

Edinburgh, UK, June/July 1999, Vol. 2, pp 939 - 950.

63. [EWER99-4] Ewer J., Galea E., Patel M. and Knight B., "Enhancing the Numerical

Performance of Fire Field Models", CMS Press, Paper No. 99/EVI/52, ISBN No. 1 899991

53 0,1999.

64. [JIA99] Ph.D. Thesis: "The Simulation of Fire Growth and Spread within Enclosures using

an Integrated CFD Fire Field Model", Jia F., October 1999, The University of Greenwich,

School of Computing and Mathematical Science, UK.

65. [WANG99] Wang Z., Jia F., Galea E., Patel M. and Ewer J., "Simulating One of the

CIB W14 Round Robin Test Cases using the SMARTFIRE Fire Field Model", December

1999, To be submitted to Fire Safety Journal.

66. [BERGEY] Bergey J., Smith D., Tilley S., Weiderman N., and Woods S., "Why

Reengineermg Projects Fail", Technical Report CMU/SEI-99-TR-010, ESC-TR-99-010,

Carnegie Mellon Software Engineering Institute, Pittsburg, PA 15213 - 3890.

67. [CHAM] PHOENICS and PHOENICS VR: CHAM (Concentration, Heat and Momentum)

Ltd., Bakery House, Wimbledon Village, London, SW19 5AU, UK.

68. [GREENWICH] www: http://fseg.gre.ac.uk/

69. [MICROSOFT] Microsoft Windows 95, 98 and NT, Copyright © Microsoft Corporation,

One Microsoft Way, Redmond, Washington 98052-6399 U.S.A.

10-137

PhD Thesis by John Ewer.

70. [NETCFD] "netCFD: ANinf CFD component for Global Computing, and Java applet GUI",

Parallel & Distributed System Performance TRC Laboratory Real World Computing

Partnership, JAPAN.

71. [WEBSTER] Webster B., "Pitfalls of Object-Oriented Development", M&T Books, New

York, ISBN 1-558513-97-3.

72. [ZINC] Zinc Application Framework, Zinc Software Incorporated, 405 South 100 East,

Pleasant Grove, Utah, 84064, U.S.A.

10-138

PhD Thesis bv John Ewer.

10-139

PhD Thesis by John Ewer.

11 Appendices

This appendix section gives more detailed or background information which was not appropriate

for direct inclusion in the main thesis as it would tend to clutter the text.

11-140

PhD Thesis by John Ewer.

11.1 SMARTFIRE VERIFICA TION AND VALID A TION REPORT by
Ewer J., Jia F. and Grandison A.

11-141

APPENDIX 1 : SMARTFIRE VERIFICATION AND VALIDATION REPORT

SMARTFIRE VERIFICATION AND
VALID A TION REP OR T

By J. Ewer, A. Grandison and F. Jia.

Appendix 11.1 Page 141-1

APPENDIX 1 : SMARTFIRE VERIFICATION AND VALIDATION REPORT

1 INTRODUCTION...^

2 GENERAL PHYSICS VALIDATION CASES.. 4

2.1 BASIC PHYSICS VERIFICATION OF SMARTFIRE CONVECTIVE TERM.. 4

2.7.7 SMARTHREresults..^

2.2 RADIATION VERIFICATION IN 2D CAVITY WITHOUT FLOW. ... 5
2.2.7 SMARTFIRE results... 6

2.3 SYMMETRY BOUNDARY CONDITION TEST... 10
2.3.7 SMARTFIRE results... 10

2.4 TWO-DIMENSIONAL TURBULENT FLOW OVER ABACKWARD FACING STEP.. 12

2.47 Results... 72

2.5 TURBULENT LONG DUCT FLOW.. 15
2.5.7 Results... 16

2.6 TURBULENT BUOYANCY FLOW IN A CAVITY... 17
2.6.7 Results... 18

3 FIRE VALIDATION CASES... 23

3.1 STECKLER ROOM FIRE.. 23
3.7.7 Results... 24

3.2 HONG KONG AIRPORT CASE... 26
3.3 SIMULATIONSFORLPC-RUN-007.. 28

3.3.7 Results... 29

3.4 COMPARISON OF RUN-TIMES BETWEEN PHOENICS AND SMARTFIRE... 32

3.5 SIMULATION OF STECKLER ROOM FIRE USING LARGE CELL BUDGET.. 33
3.5.7 Results... 33

4 REFERENCES.. 36

Appendix 11.1 Page 141-2

APPENDIX 1 : SMARTFIRE VERIFICATION AND VALIDATION REPORT

1 Introduction

The test cases presented in this document serve to verify and validate the SMARTFIRE
CFD fire modelling software. The report is split into four sections. Section 2 contains test
cases concerned with verifying that the basic physics within SMARTFIRE has been
correctly implemented. Section 3 is used to compare SMARTFIRE predictions against data
derived from fire experiments and data generated by other fire models. Finally, section
Error! Reference source not found, provides detailed information concerning the problem
set-up (e.g. meshes used in the test cases) and additional detailed information to allow other
users to reproduce the SMARTFIRE results.

Validation is not a "once and forget" task. It is an on-going activity that both code
developers and users should be involved with. It is expected that this report will grow in
time as more test cases are developed and the capabilities of SMARTFIRE expand.
SMARTFIRE users are encouraged to develop other test cases and to report their findings to
the code developers. When reporting verification/validation results please ensure that
complete details of the SMARTFIRE set-up are provided along with your SMARTFIRE
predictions and expected results for comparison purposes. Please report validation cases by
email to smartfire@fseg.gre.ac.uk

Unless otherwise stated the following material properties are used in the test cases: -

PROPERTY
CONDUCTIVITY CONSTANT

VISCOSITY CONSTANT
NATURAL STATE

THERMAL EXPANSION
DENSITY

Molecular weight
Specific heat constant

AIR 1 COMMON BRICK
0.02622
1.6e-005

Gas
0.003292

Use Ideal gas law
29.35

1045.78

0.69
Ie4010
Solid

0
1600
N/A
840

Unless otherwise stated, the CFD codes used in this document are: -

SMARTFIRE v2.01 build 369, produced by FSEG of the University of Greenwich,
PHOENICS v2.1.3, produced by CHAM Ltd of the U.K., and
CFDS-FLOW3D v2.3.2, produced by AEA Technology of the U.K.

Appendix 11.1 Page 141-3

APPENDIX 1 : SMARTFIRE VERIFICATION AND VALIDATION REPORT

2 General Physics Validation Cases

2.1 Basic physics verification of SMARTFIRE Convective term.

This test examines whether the convective term in SMARTFIRE is functioning correctly.
The tests involve a simple 2D fluid flow in a box. The fluid uniformly enters the box from
an inlet and leaves via an outlet located opposite to the inlet (see Figure 1). The fluid
temperature is uniform. The test was repeated in the three co-ordinate directions (x, y, z) in
the positive and negative directions. This leads to six test cases which should all produce
identical results. All these tests are further repeated with heat transfer and also with heat
transfer and buoyancy. Due to the use of the symmetry planes, the flow leaving the
geometry should exit uniformly with the same velocity with which it entered and possess
the same velocity throughout the domain.

symmetry

Figure 1 - Geometry for 2D flow case

a) flow only, no heat transfer and buoyancy

maximum velocity : 1.0 m/s, minimum velocity: 1.0 m/s. »/

b) flow and heat transfer but no buoyancy

maximum velocity : 1.0 m/s, minimum velocity: 1.0 m/s. /

c) flow, heat transfer and buoyancy

maximum velocity : 1.0 m/s, minimum velocity: 1.0 m/s. /

Appendix 11.1 Page 141-4

APPENDIX 1 : SMARTFIRE VERIFICATION AND VALIDATION REPORT

Radiation verification in 2D cavity without flow.

These tests were designed and carried out to examine the implementation of the
SMARTFIRE six-flux radiation model. The cases concern radiation within a cavity with hot
and cold walls and a uniform temperature distribution within the media. Scattering is
neglected. The geometry used in the test cases is presented below in Figure 2.

Figure 2 - 2D verification of SMARTFIRE six-flux radiation model.

For this scenario it is possible to determine an exact analytical radiation flux based on the
six-flux model formulation. Let Th, Tc, Tm, SH, ec and a denote the hot wall temperature, the
cold wall temperature, the media temperature, the hot wall emissivity, the cold wall
emissivity and the absorption coefficient of the media respectively. Then the exact
analytical solution for the radiation fluxes as determined by the" six-flux model is:

The radiation flux along the negative x direction, F~ is :

= Dexp(-a(L-x)) + o(l-exp(-a(L-x))) Tm

Where,

D = (l-ec)C + scoTc

C = B/A

B = aexp(-aL) [eh Th
+ a(l-exp(-aL))Tm

A= l-(l-sh)(l-sc)exp(-2aL)

-exp(-aL))Tm -sh) ec exp(-aL) Tc4]

The radiation flux along the positive x direction, F+ is :

Appendix 11.1 Page 141-5

APPENDIX 1 : SMARTFIRE VERIFICATION AND VALIDATION REPORT

= Dexp(-ax) + o(l-exp(-ax)) Tm

Where

D = (l-8h)C

= B/A

B = aexp(-aL) [sc Tc4 + (!-EC) (l-exp(-aL))Tm4 + (l-sc) sh exp(-ocL) Th4]
+ a(l-exp(-aL))Tm4

A= l-(l-Sh)(l-sc)exp(-2aL)

where a is the Stefan-Boltzmann constant.

The test was repeated for various values of emissivity, absorption coefficient.

2.2.1 SMARTFIRE results

The model predictions are compared with the exact solutions. In these comparisons, the

temperatures of the hot wall, the cold wall and the media are 774 K, 304 K and 574 K

respectively. The length of the cavity L is 1m. The cell size is 0.0222m.

a) Absorption coefficient of the media is zero, emissivity is 1.0.

If 8aii = 1 .0 and a = 0.0 then

F = aTc4

F+ = aTh4

The results are tabulated below (Table 1)

Table 1 - Theoretical and SMARTFIRE results for radiation fluxes when

Flux
F
F+

Theoretical
4.8423E+02
2.0348E+04

SMARTFIRE
4.826421E+02
2.032182E+04

Maximum relative error < 1%.

b) Absorption coefficient of the media is zero, emissivity is 0.7.

If s = 0.7 and a = 0.0 then

= 1.0 and a = 0.0

F~ =

Appendix 11.1 Page 141-6

APPENDIX 1 : SMARTTIRE VERIFICATION AND VALIDATION REPORT

F + =

The results are tabulated below (Table 2).

Table 2 - Theoretical and SMARTFIRE results for radiation fluxes when = 0.7 and a = 0.0

Flux
F+
F-

Theoretical
1.59518E+04
5.060E+03

SMARTFIRE
1.574355E+04
5.060915E+03

Maximum relative error < 1%.

c) Absorption coefficient of the media is one, emissivity is 1.0.

As there is now absorption from the media, this leads to the fluxes being dependent on
displacement. The results are illustrated below in Figure 3 and Figure 4.

Figure 3 - Theoretical and SMARTFIRE results for negative radiation fluxes when e^ = 1.0 and a = 1.0

Appendix 11.1 Page 141-7

APPENDIX 1 : SMARTFIRE VERIFICATION AND VALIDATION REPORT

x 4.00E-01

O.OOE+00

Figure 4 - Theoretical and SMARTFIRE results for positive radiation fluxes when e^ = 1.0 and a = 1.0

Maximum relative error < 1%.

d) Absorption coefficient of the media is one, emissivity is 0.7.

As there is now absorption from the media, this leads to the fluxes being dependent on
displacement. The results are illustrated below in Figure 5 and Figure 6.

Figure 5 - Theoretical and SMARTFIRE results for negative radiation flux when B^ = 0.7 and a = 1.0

Appendix 11.1 Page 141-8

APPENDIX 1 : SMARTFIRE VERIFICATION AND VALIDATION REPORT

TJ

Figure 6 - Theoretical and SMARTFIRE results for the positive radiation flux when e^i = 0.7 and a
1.0

Maximum relative error < 1%.

The results from this test suggest that the six-flux model has been correctly implemented

Appendix 11.1 Page 141-9

APPENDIX 1 : SMARTFIRE VERIFICATION AND VALIDATION REPORT

2.3 Symmetry boundary condition test

This case is intended to test if the symmetry function works correctly. The case involves
flow expansion from a small duct into a larger duct. The configuration is shown in Figure 7
below. The case was simulated using the whole flow domain and then repeated using a
symmetry boundary condition along the central axis.

Figure 7 - Expanding duct with symmetry line indicated

The flow fields of the symmetry case (Figure 8) and whole field case (Figure 9) systems are
plotted below. The velocity profile at the outlet is plotted in Figure 10.

Figure 8 -The flow field producted by the simulation using the half system

Appendix 11.1 Page 141-10 10

APPENDIX 1 : SMARTFIRE VERIFICATION AND VALIDATION REPORT

Figure 9 - The flow field produced by the simulation using the whole system

Figure 10 - Comparison of the whole field and symmetry cases at the outlet

The results suggest that the symmetry condition within SMARTFIRE functions as intended
for isothermal flows.

Appendix 11.1 Page 141-11 11

APPENDIX 1 : SMARTFIRE VERIFICATION AND VALIDATION REPORT

2.4 Two-dimensional turbulent flow over a backward facing step.

This test examines the SMARTFIRE K-S turbulence model. The comparison is carried out
between SMARTFIRE, PHOENICS and FLOW3D. The same mesh (60x50) is used for all
the CFD codes. The flow properties and boundary conditions are described below with the
configuration shown in Figure 11:

Figure 11 - Backward facing step configuration

Fluid roerties

Density: 1 kg/m3,
Viscosity: 1.101E-5kg/ms.

Boundary conditions

At the inlet

velocity: 13.0 m/s,
kinetic energy:0.7605 m2/s2,
dissipation rate:31.78 m2/s3 .

There is no heat transfer in this problem. It should be noted that SMARTFIRE and
FLOW3D use the same wall function formulation while PHOENICS uses a different wall
function formulation.

Reattachment point

The reattachment point is the downstream location in the x direction where there is no
longer any flow re-circulation due to the backward facing step.

Appendix 11.1 Page 141-12 12

APPENDIX 1 : SMARTFIRE VERIFICATION AND VALIDATION REPORT

In Figure 11 the reattachment point is denoted by P and the distance from the step to point P
is s. The ratio of s to the height of the step (h) predicted by the following CFD codes are
SMARTFIRE: 5.70; PHOENICS: 6.55; FLOW3D: 5.16. Experimental results indicates that
the ratio is 7.1 [1,2]

All three codes predict values for the reattachment point that are similar and all codes
under-predict the correct value. The SMARTFIRE prediction falls between that of
PHOENICS and FLOW3D. It is expected that these values will improve with further mesh
refinement.

Velocity profiles
In addition to the reattachment distance, it is also important to compare the prediction of the
velocity profile at several locations within the duct. In this case, the SMARTFIRE,
PHOENICS and FLOW3D generated U velocity profile at the outlet and 0.285 m from the
inlet are compared. U velocity profiles for this case at the two different positions are
presented below in Figure 12 and Figure 13.

10

2 -

0.02 0.12

Figure 12 - U velocity against height at the outlet

Appendix 11.1 Page 141-13 13

APPENDIX 1 : SMARTFIRE VERIFICATION AND VALIDATION REPORT

Figure 13 - U velocity against height at 0.285m from the inlet

The SMARTFIRE velocity profiles are very close to the profiles of PHOENICS and
FLOW3D. The comparison demonstrates that the SMARTFIRE K-S turbulence model
works as well as either PHOENICS or FLOW3D.

Appendix 11.1 Page 141-14 14

APPENDIX 1 : SMARTFIRE VERIFICATION AND VALIDATION REPORT

Turbulent long duct flow.

This test case examines the SMARTFIRE K-S turbulence model in conjunction with
turbulent heat transfer. This case has been well investigated with PHOENICS in the past
and is part of the PHOENICS test case library. The geometry of the case is depicted in
Figure 14.

Figure 14 - Turbulent long duct flow configuration

Fluid properties

Conductivity: 0.07179 (W/mK)
Density: 1 (kg/m3)
Viscosity: 5e-5 (kg/ms)
Specific heat: 1005 (J/kgK)

Inlet Conditions

Velocity : 50 m/s
Turbulent kinetic energy: 11.25 (m2/s2)
Dissipation rate: 1378.0 (m2/s3)
Enthalpy: 10 (J/kg)

Wall Condition

Fixed enthalpy value :(1 J/kg).

No buoyancy is used in this problem.

The 2 dimensional mesh is non-uniformly distributed and the cell budget is 600 (20x30).

Appendix 11.1 Page 141-15

APPENDIX 1 : SMARTFIRE VERIFICATION AND VALIDATION REPORT

The results from SMARTFIRE are compared with those from PHOENICS. The comparison
includes the enthalpy and velocity profiles across the duct at the outlet.

7 -I

m

Figure 15 - Enthalpy plotted against distance from duct axis at the outlet.

» m

Figure 16 - Velocities plotted against distance from the duct axis at the outlet

The results indicate that the turbulent heat transfer function of SMARTFIRE and
PHOENICS produce similar results.

Appendix 11.1 Page 141-16 16

APPENDIX 1 : SMARTFIRE VERIFICATION AND VALIDATION REPORT

Turbulent buoyancy flow in a cavity.

This test case examines the turbulence model, turbulent heat transfer and buoyancy model.
The test case is a standard test case which has been used by a number of other investigators
[3] and forms part of the PHOENICS test library. The turbulence model used by
SMARTFIRE is based on the model of Launder and Spalding [4].

The geometry used for this case is depicted in Figure 17 below.

Fluid properties

conductivity is 2.852158e-02 (W/mK)
density is 1.071 (kg/m3)
specific heat is 1.008e+03 (J/kgK)
viscosity is 2.0383e-05 (kg/ms)
thermal expansion is 3.029385e-03 (1/K).

Boundary conditions

hot wall (th): constant temperature (353.0 K)
cold wall(tc): constant 307.2 (K).
The other walls are adiabatic.

The cell budget is 14400(120x120) with non-uniformly distributed mesh.

The Boussinesq approximation is used to model the buoyancy. As the flow lies in the low
Mach number region (i.e. subsonic) and there is a small temperature difference between the
walls, then the Boussinesq approximation is extremely good arid therefore the use of a fully
turbulent treatment is unnecessary.

Appendix 11.1 Page 141-17 17

APPENDIX 1 : SMARTFIRE VERIFICATION AND VALIDATION REPORT

Figure 17 - Configuration for buoyancy flow in a duct

In this test case, SMARTFIRE predictions for the vertical velocity profile (mid way up the
test cell), temperature along the vertical centre line, turbulent fluctuations and turbulent
viscosity are compared with published experimental data. The results produced by
SMARTFIRE (Figure 19) when compared with the results published in the reference [3]
(Figure 18, Figure 20, Figure 22 and Figure 24) demonstrate that the SMARTFIRE results
are very close to the published results. In Figure 18, Figure 20, Figure 22 and Figure 24;
'LB' stands for the turbulence model of Lam and Bremhorst [5], 'PRESENT' stands for the
turbulence model devised by Davidson from which the figures shown here are taken [3],
and 'EXP' stands for experimental data obtained by Cheesewright et al [6]. It should be
noted that the LB [5] and Davidson [3] turbulence models are more advanced than the
current SMARTFIRE turbulence model [4].

Appendix 11.1 Page 141-18 18

APPENDIX 1 : SMARTFIRE VERIFICATION AND VALIDATION REPORT

0.40

0.20

V

0.00

-LB

-0.20

0.40 0.60 0.80 1.00

xfL

Figure 18 - Published [3] velocity (y direction) profiles at y/H = 0.5

Figure 19 - Predicted velocity (y direction) profiles at y/H = 0.5

Appendix 11.1 Page 141-19 19

APPENDIX 1 : SMARTFIRE VERIFICATION AND VALIDATION REPORT

Figure 20 - Published [3] local temperatures along the vertical central line.

Figure 21 - SMARTFIRE predicted local temperatures along the vertical central line.

Note: Tc and Th represent temperatures at the cold and hot wall respectively.

Appendix 11.1 Page 141-20

APPENDIX 1 : SMARTFIRE VERIFICATION AND VALIDATION REPORT

Figure 22 - Published [3] turbulent fluctuations, # > at y/H = 0.5

Figure 23 - SMARTFIRE predicted turbulent fluctuations, -\fk , at y/H = 0.5

Appendix 11.1 Page 141-21

Figure 24 - Published [3] turbulent viscosity scaled with the laminar
viscosity at y/H = 0.5.

Figure 25 - SMARTFIRE predicted turbulent viscosity scaled with the laminar
viscosity at y/H = 0.5.

1 Steckler Room Fire

Figure 26 - Configuration of Steckler room

Figure -Vertical Corner Stack temperatures at 0.305 from the front wall and side.

Figure 28 -Vertical Doorway temperature profile in the middle of the door.

Figure 29 -Horizontal velocity profile for a vertical stack in the middle of the door.

3.2 Hong Kong Airport Case

Figure 30 - Temperature profile across the cabin O.lm below the ceiling.

Figure 31 -Temperature profile across the cabin 0.3m below the ceiling.

Figure 32 -Vertical temperature profile in the centre of the fire.

Simulations for LPC-RUN-007.

Figure 33 - Front view of LPC 007
configuration

Figure 34 - Side view of LPC 007 configuration

1000

900

800

700

600

500 -

400 -

300 -

200 -

100 -

0

Figure 35 - The corner gas temperature predicted by the simulation.

nnnDnonnnn

O

m

Figure 36 - The predicted plume temperatures.

3.4 Comparison of run-times between PHOENICS and SMARTFIRE.

Simulation of Steckler room fire using large cell budget

1.4 -

Figure -Horizontal velocities for a vertical stack in the middle of the door.

Figure 38 -Temperature profile for a vertical stack in the middle of the door.

Figure 39 -Temperature profile for a vertical stack 0.305m from the front and side walls.

Case Study : An incremental approach to re-engineering a legacy FORTRAN
Computational Fluid Dynamics code in C++.

J. Ewer, B. Knight, D. Cowell

The University of Greenwich, Wellington Street, Woolwich, London, SE18 6PF, U.K.

Abstract

Keywords:

1. Introduction

2. Background to Computational Fluid Dynamics software.

3. The motivation for re-engineering.

APPENDIX 2 : Journal Paper "Case Study : An Incremental Approach to Re-Engineering
a Legacy FORTRAN C.F.D. Code in C++", Ewer J., Knight B. and Cowell D.,

Advances in Engineering Software, Vol. 22, pp 153-168, 1995

Legacy code fragment

IF (IHEAT) THEN
RELAXA = SRELAX(5)
RMETHD = VRMETH(5)
MITERS = MAXITR(5)
FALSET = VFALST(5)

CALL HCSOLV(3, RELAXA, . .

CALL SYSRESt ...)
SOLERR(5) = RESIDU

RELAXA = VRELAX(5)
CALL LINRLX(...)
VARERR(5) = RESIDU

RELAXA = VRELAX(8)
RMETHD = VRMETH(8)
CALL CSOLVT(...)
IF (ERRINF .EQ. 0) STOP
VARERR(8) = RESIDU

ENDIF

is problematic because

Literal values used and simple assignments
prior to calling a complex numerical
calculation routine.

Highly abstracted routine call.

Less abstracted utility routine call.

Utility routine call.

More low level simple assignments.

Call to highly abstract routine.

Figure 1 : Mixed levels of abstraction.

SOLTYP(l) = 5

K = K + 0.37777 * (. . .

is problematic because:

The SOLTYP array holds the solver types but the index
1 and solver type 5 could relate to anything. The
intended meanings must be found elsewhere in the code.

Explicit values used in numerical algorithms
give no indication of the purpose of the values used.

Figure 2 : Use of literal constants.

The multi-stage re-engineering process

Figure 3 : Stages of re-engineering.

Legacy FORTRAN code

CALL BUOYAN(RMETHD, ELEMAT, ELEVOL,
TEMPER, .-)

SUBROUTINE BUOYAN(RMETHD, ELEMAT,
VOLUME, T, ..)

INTEGER ELEMAT(TOTELE)
REAL VOLUME(TOTELE), T(TOTELE)
B = T(I) * ...

becomes

INCLUDE 'DATABASE.INC 1
CALL BUOYAN(RMETHD, ..)

SUBROUTINE BUOYAN(RMETHD, ..)
INCLUDE 'DATABASE.INC'
B = TEMPER(I) * ...

with DATABASE.INC defined as

INTEGER ELEMAT(TOTELE)
REAL ELEVOL(TOTELE), TEMPER(TOTELE)
COMMON /CELL_D/ ELEMAT, ELEVOL, TEMPER

Figure 4 : Passing data by include file and COMMON.

CALL HBOUNDt H(ICELL), ..)

SUBROUTINE HBOUND(HVAL, ..
REAL HVAL
HVAL = HVAL * ...

becomes

CALL HBOUNDt ICELL, ..)

SUBROUTINE HBOUNDf ICELL, ..)
INCLUDE 'DATABASE.INC'
INTEGER ICELL
H(ICELL) = H(ICELL) * ...

Figure 5 : Revised argument passing for COMMON data.

MCSOLV
CALGEN
RDINFF
H
TEMPER
U
KINETC
DISSIP

New naming convention

solve_momentum
calc_generation_rate
read_inform_file
enthalpy
temperature
u_velocity
kinetic_energy
dissipation rate

Figure 6 : Name changes for code clarification.

T. & g a cy FORTRAN code

INTEGER PRESSURE, SOR
PARAMETER(PRESSURE = 1, SOR = 5)

Figure 7 : Introduction of PARAMETER constants.

Legacy code fragment

MITERS = MAXITR(4)
CALL SORSCH(...)
SERROR(4) = RESIDU

RELAXA = VRELAX(4)
CALL LINRLXt ...)
VARERR(4) = RESIDU

Equivalent code abstracted

INTEGER VAR_W_VELOCITY
PARAMETER! VAR_W_VELOCITY = 4)

CALL SORSCH(VAR_W_VELOCITY, ...)

CALL LINRLXt VAR_W_VELOCITY, ...)

N.B. The simple assignment statements have
been moved down into the called routines.

Figure 8 : Re-locating simple assignment statements.

Legacy FORTRAN -> Macro replacement

ELSEIF (..) THEN -> } else if (..){
IF (..) THEN -> if (..){
ELSE -> } else {
ENDIF -> }
CALL -> /* CALL REMOVED */
DO I = a, b, c -> for (I=a; I>=min(a,b) && K=max(a,b); I+=c){
DO I = a, b -> for (I=a; K=b; I + +){
ENDDO -> }
SUBROUTINE .. (...) -> void .. (...){
END -> }
RETURN -> return;
PRINT*, ... -> cout « ... « endl;
nnn CONTINUE -> Label_nnn:
GOTO nnn -> goto Label nnn;

Figure 9 : Macro replacements.

Figure 10 : Legacy code arrays.

Legacy routine for all cells

void calculate_all_volumes(void){
for (i = 1; i <= max_cells; i++){

// calculate volume for current cell

Afeiv cell method

void Cell_Class::calc_volume(void)
// calculate volume for current cell

cell[i].volume = ...

*this.volume = ...

and the original routine becomes

void calculate_all_volumes(void){
for (i = 1; i <= max_cells; i

cell[i].calc volume()

