UNIVERSITY

GREENWICH

Greenwich Academic Literature Archive (GALA)
- the University of Greenwich open access repository
http://gala.gre.ac.uk

Citation:

Evans, Emyr Wyn (2000) Strategies and tools for the exploitation of massively parallel computer
systems. PhD thesis, University of Greenwich.

Please note that the full text version provided on GALA is the final published version awarded
by the university. “I certify that this work has not been accepted in substance for any degree,
and is not concurrently being submitted for any degree other than that of (hame of research
degree) being studied at the University of Greenwich. | also declare that this work is the result
of my own investigations except where otherwise identified by references and that | have not
plagiarised the work of others”.

Evans, Emyr Wyn (2000) Strategies and tools for the exploitation of massively parallel computer
systems. #thesis type##, ##tinstitution# _

Available at: http://gala.gre.ac.uk/6164/

Contact: gala@gre.ac.uk

http://gala.gre.ac.uk/
mailto:gala@gre.ac.uk

I certify that this work has not been accepted in substance for any degree, and is not
concurrently submitted for any degree other than that of Doctor of Philosophy (PhD)
of the University of Greenwich. I also declare that this work is the result of my own

investigations except where otherwise stated.

S, Sl

Mz en.

Acknowledgements.

There are several people who I wish to thank for their help during the time that it has taken to

accomplish this work and for the writing of this thesis.

My supervisors, Professor Mark Cross and Doctor Stephen Johnson, for their support and

guidance, and especially their overwhelming patience.

My colleagues Constantinos Ierotheou, Peter Leggett, Kevin McManus, Chris Walshaw,

Jackie Rodrigues, Chris Bailey and Peter Chow who have assisted me in varying degrees for

the completion of this thesis.

Finally, to my wife Elisabeth and my parents for supporting me on this long journey.

11

Abstract.

The aim of this thesis is to develop software and strategies for the exploitation of parallel
computer hardware, in particular distributed memory systems, and embedding these strategies
within a parallelisation tool to allow the automatic generation of these strategies.

The parallelisation of four structured mesh codes using the Computer Aided
Parallelisation Tools provided a good initial parallelisation of the codes. However, investigation
revealed that simple optimisation of the communications within these codes provided an even
better improvement in performance. The dominant factor within the communications was the
data transfer time with communication start-up latencies also significant. This was significant
throughout the codes but especially in sections of pipelined code where there were large
amounts of communication present.

This thesis describes the development and testing of the methods used to increase the
performance of these communications by overlapping them with unrelated calculation. This
method of overlapping the communications was applied to the exchange of data
communications as well as the pipelined communications.

The successful application by hand provided the motivation for these methods to be
incorporated and automatically generated within the Computer Aided Parallelisation Tools.
These methods were integrated within these tools as an additional stage of the parallelisation.
This required a generic algorithm that made use of many of the symbolic algebra tests and
symbolic variable manipulation routines within the tools.

The automatic generation of overlapped communications was applied to the four codes
previously parallelised as well as a further three codes, one of which was a real world
Computational Fluid Dynamics code.

The methods to apply automatic generation of overlapped communications to
unstructured mesh codes were also discussed. These methods are similar to those applied to the

structured mesh codes and their automation is viewed to be of a similar fashion.

111

Contents

1

INTRODUCTION...... teeseessessesssssstsatsstsatt st st Rt Rt SRS S RS0S40 0580 000000000000R0SNSONEORSSRRSSHSER ISR S SRS RSSO RS 1
1.1 WHY PARALLEL PROCESSING?.....cuteiiitiiiiiititecteete et et estest e te ettt e eaeeeseeeseneeeseeneeeneensenseesenssensensesssnnneens 1
1.2 PROBLEMS OF CREATING PARALLEL CODES.ccueoviouietieteenietieieeeteeeeeeseeeveeaeeneeereeseessesseeseeseerseenesreenneeses 2
1.3 REQUIREMENTS OF PARALLEL PROCESSING.c.oveiitiiiieeietictcctccteeeteit ettt ev ettt ettt ne et eaeene s 5
1.4 THE USE OF MESHES IN COMPUTATIONAL MECHANICS CODES.ccveotiouiereerieneeneeeeeneeeeeeereeeesesesaeeaeenenns 6
1.5 PARALLELISATION STRATEGIES.cecetteutrutetiitetiitistestesseteseeesseseeseeseeseessesessesssessssessensesessensensessassessessons 7
1.6 COMMUNICATION UTILITIES. .. .ceutiiitieietietiteeeteeseeeseeteeteseeaeeaeeseeseeseesseseeneeseeneeseesesseesessessessessanssressesees 11
1.7 DOMAIN DECOMPOSITION OF A 1-DIMENSIONAL JACOBI SOLVER.c.coeouierieeieeeenieieeeeeseseseieeseeseeenns 13
1.8 IMPLEMENTING RECURRENCE RELATIONS USING PIPELINES.cveieiieitieeeeeeeteeee e see e s enes 16
1.9 ITERATION GROUPING.ooutiuiriiimiiiiatietieteetitetieteeteaeesesesseteeseneseseesesesessssssesesseeseeneeeeeeeeeneeeeeseseeaseeneeneanas 19
1.10 RESEARCH OBJECTIVES.ccutittitiaitteeteettetesiess et steestesteeeaeeeseeeaseseressneesaessessaeeeeessseeesesseeeseseseeaneens 20
1.11 OUTLINE OF THESIS. ..ottt ettt et ete et seteste e eeesaeeeeeeaeeeeesse et eseeeaeeeeeeeeeseeaeeenens 21
1.12 CONCLUSIONS. ...ouiiiiiitiietctece ettt ettt teete et eas et et e teeesssesaesaeeate e eneeneeeeeneseeeesaseaeeeeseneenas 22

COMPUTER AIDED PARALLELISATION TOOLS (CAPTOOLS). c.uuueeereieernresesnsssesssssassssassnsans 23
2.1 CAPTOOLS. ...ttt ettt ettt et e e e e e ee et e et et e et e e e e e eseess e s eeseeseeeeeeseeseaes 23
2.2 USING CAPTOOLS TO PARALLELISE A STRUCTURED MESH COMPUTATIONAL MECHANICS CODE. 23
2.3 LOADING THE SERIAL CODE......c.eititiiiiuietetietestese et etee et eeeeeeeeee et eeeee e e e e e e e s e es e e e e oo 24

23,1 CALL GRAPH. ..ottt sttt ettt ettt e e et e e e e e e et e e e e e e e e e e, 24

2.3.2 CONTROL FLOW GRAPH.ootiitiiiiiieietieteetee ettt ee e ee e e e e e e e e e e eens e oo 25
2.4 DEPENDENCE ANALYSIS. ...tttiiitiittiiiiieitreeteeetreetee ettt e eteeseeeeeeeeseeee e e e e s ee e e e e e e e 30

2.4.1 DEPENDENCE TYPES. ...cuotiiiiitiiiitt ettt sttt ettt e e e e e e e e e e e e e 30

2.4.2 DEPTH DEPENDENCE.coiitiitiittniiietieeste sttt ettt e e et e e e st e e e e e e e e e oot e 31

2.4.3 EXAMPLE OF A DEPENDENCE GRAPH.cooutiiiiiiiieeeeeeeeee oo 33

2.4.4 LOOP NORMALISATION.cttimittititatieiteniteesteeeine et e eeeeeaeeeeeeeeseeeeeesee e e e e e et oo 33

24.5 CONTROL DEPENDENCE CALCULATION. ..cc.corttitiitiietieiieiteeeeeeee e e e e e e oo 34

2.4.6 DEPENDENCE ANALYSIS. ..ooiiiiiiouieiteniteiestt e aten ettt e et ee et e e e e e e e e e e e e e eee e oo 34

2.4.6.1 Symbolic Inequality Disproof AIOrithm.........c.ocoiviiiiiiiiiieeeieeeeeeeeeeeeee e 35
2.4.6.2 Inference ENGINE.c.ocoooiimiiiiiiiiii e e 37
2.4.6.3 Interprocedural ANalysis.cooooiiiiiiiiiiiiiiic e 39
2.5 SYMBOLIC VARIABLE MANIPULATION.coiiiiiiiiiiiiiiientcnt ittt ettt 39

2.5.1 SYMBOLIC VARIABLE MANIPULATION UTILITIES.covttiitieiieees e 41

1v

2.6 DATAPARTITIONING.coeeeiiiitieeetrieiteeetteeeteeeteeeeeteeetseeeeseassseesseessseeanseeasnesssseaesaseesanbeeesateeesnseeennnnenane 42
2.7 EXECUTION CONTROL MASKS. .utiiiiiiiiiiiieeeeeitee e ettt e eetteeeeteee e ttaesssaeeesanseeeassaeaeassbaeessasbeeasssabenessnsnens 45
2.8 CALCULATION, MIGRATION AND MERGING OF COMMUNICATIONS.ccoviteiriieeereenrreeeereennresensveessneeans 47

2.8.1 COMMUTATIVE OPERATIONS.oiiitiieureiitteeiiteeeteeeeieeeteeesaeesaseessseennsesssasesssaessseeesseessnsessnneesansens 47

2.8.2 CALCULATION OF COMMUNICATION REQUESTS. ...uvvitietiiiiiiieeeteeeeireeeeeiteeseseiteeesseseeesssnneessaseneenns 47

2.8.3 MIGRATION AND MERGING OF COMMUNICATIONS.coviiitieiteeuieiteesseesseeeeseesseeseseensasaseesssenssnenes 49
2.9 GENERATION OF COMMUNICATIONS.ccoiutieiuiieittieeiteeeeteeeeteeesteeeseeeseesseeesssessseesssesessssenssesessenssssssessesans 53
2.10 FINAL CODE GENERATION.cceitiittttttiiiitteessaottteeeeeiessaeaeaesneeessrssaeeesebassesesasssnressassessssseseesssssseeseaes 53
2.11 TRANSFORMATIONS......cetittttiutiteeiteereitreaeitseeesisseseasssessssseesseseessseesasteeasssssseessasensssreesssseseesseseensseeesns 53
2.12 CONCLUSIONS.etiitiiitetieetee et te et aeesesttaeae e s teesseeesssaesseessseessentseentseesesesnsaensseesessentneennesenssseenns 54

3 PARALLELISATION OF STRUCTURED MESH COMPUTATIONAL MECHANICS CODES. 55

3.1 INTRODUCTION.coutiutiuiiteitiriteitett et eetete st estesseessessesseesseesseseeseeessasessessseseeseensestesnsesnsesseenseensesteeneserseseas 55
3.2 2-D HEAT DIFFUSION CODE (FAB).....ooi ettt e et ee e e e e e e e e e e e e e e e eee e e e e s e e enenneseaaeas 55
3.3 TEAMKEL oottt ettt et eae et e r e a e et e et et e et e e e e teeaeenaeetesreeanas 66
3.4 APPLUL ..ottt ettt e bttt ettt e te et e seeeeae e e e neeeneereeaneeaeas 75
3.5 ARCBD . ettt ettt te et e bttt e re et et et e ete et e er et e ete st eeaesns 84
3.0 CONCLUSION. ...cooiiimtiiiittettete et et et e st e it et e ae e bt eaaeese e s s e seetseseemeeeseseeeteeneeeseeseenesassenseemeeenesnesaeenneeaneerenaees 86

4 APPLICATION OF OVERLAPPING COMMUNICATIONS FOR STRUCTURED MESH

COMPUTATIONAL MECHANICS CODES....... . 87
4.1 INTRODUCTION......ciiuiiiiitiitetentettet e e ste st e ste s eeateteeteeseeeseeseeseeseeae et et s eneeanenneseeenseeeeeenseeeeeeeeesanssssesseenes 87
4.2 COMMUNICATIONS IN DISTRIBUTED MEMORY SYSTEMS.c.vtiuiimieueeeeeeeeeeeeeeeeeeeeeeeeeesssesesseessseseensens 88
4.3 HARDWARE FOR ASYNCHRONOUS COMMUNICATIONS.ccevimiiaiieieteeeeeeeeeeeeeeeeeeeeeeeseessesseseeseeseessenens 92
4.4 ASYNCHRONOUS COMMUNICATION UTILITIES.ooveivieuieiereeeeeieeeeeeceeeeeee e eeeeeeeeeeee e e seee e s eeseees e esennanns 93
4.5 SIMPLE OVERLAPPING OF EXCHANGE COMMUNICATIONS.cvoviuviteiueeeteeeeeeeeeeeeeeeseee e e 94
4.6 PARTIAL LOOP OVERLAPPING USING LOOP UNROLLING.vouvimeeeteeieeeeeeeeeeeseee e e oo 99
4.7 PARTIAL LOOP OVERLAPPING WITH A CONDITIONAL STATEMENT......cveteeeeeeeeeeeeeeeesoeeoee oo, 102
4.8 PIPELINES.coiiiiiiiiitietiet ettt ettt e e e ettt e et e et e e et e e e e e e e e e e e e e e e e e 106
4.9 CONCLUSION. ...ttt ittt sttt e ettt eae e st e eeteeae et e e e e eeeeeeeeese e e s e e e s e e e 111

5 THE AUTOMATIC CODE GENERATION OF OVERLAPPING COMMUNICATIONS FOR

STRUCTURED MESH COMPUTATIONAL MECHANICS CODES. ceeeeesensnsssen 112
5.1 INTRODUCTION.....ciitiitiiittitticttcti ettt ettt ettt e e e e e e e s e e e e e e e et e e 112
5.2 EXCHANGE COMMUNICATIONS.otiiiuiiutritnntntienteaeettentessesteessaeseeee e e ees e e e e s oo 113

5.2.1 SELECTION OF OVERLAPPING TECHNIQUE.coucoutiuiiuieieneeeee e 114

5.2.2 CALCULATION OF THE LEGALITY AND PROFITABILITY OF SIMPLE OVERLAPPING
COMMUNICATIONS......eetentieitiieneeteet ettt s e et e et a s e st es s e s eeneeeeeae e e eeee e s ene e e e e 114
5.2.2.1 Sink Command with No ‘Local’ Surrounding Loops.cccovveumeomemoeeeoeoooooooo 115

5.2.2.2 Sink Command with Surrounding Loops (Not Common to Source Command). 119

A%

5.2.2.3 Source Command and Sink Command in Different Routines.............c.cceerverriieenneerenennnnne 121
5.2.2.4 No Time Consumers outside Surrounding LOOPS.ccccccerverierirneeiicciiiiiiiceienie s 124
5.2.2.5 Testing of the Simple Overlapping Method.c..cccoueiiinininincnicicnen e 124
5.2.3 CALCULATION OF THE LEGALITY AND PROFITABILITY OF PARTIAL LOOP OVERLAPPING. 126
5.2.4 CALCULATION OF PARTIAL LOOP OVERLAPPING WITH LOOP UNROLLING.ceoveruiirnierreniennnen. 134
5.2.5 MERGING OF SYNCHRONISATION POINTS.cccueiiiriiriiriinienieieieeteceeecee s escssc e e e s ense e 135
5.2.6 PASSING OF SYNCHRONISATION VALUES BETWEEN ROUTINES........c..coeevetiereerenieenennieeeneeeeeeneenes 141
5.2.7 GENERATION OF OVERLAPPED COMMUNICATION.ccceeiiriririeneentieeresesteesesseessesseessesssesssesesnss 143
5.2.7.1 Generation of Partial Loop Overlapping with Loop Unrolling.c.ccccecveinieninincnennnen. 144
5.2.77.2 Generation of Partial LoOp OVErlappingcccceirerieurrirreeienieieeiseeeeeeiesese e 146
5.2.7.3 Generation of Simple OVerlapping..........cccoevvevierieeeinirieese et 147
5.2.7.4 Communications with Several Sinks using Different Overlapping Methods.......................... 147
5.2.8° VALIDATION OF THE OVERLAPPING COMMUNICATIONS GENERATION.ccoemrurereereerearerenennes 148
5.3 PIPELINES. ...ttt ettt ettt ettt b e bt et e et et e st enseae e st e aseteeseessesetensensereeteeteens et e eteenseeeensens 149

5.3.1 GENERATION OF THE CONDITIONAL STATEMENTS AND THEIR RELATED OVERLAPPED RECEIVE
COMMUNICATIONS.utiitiriesttesteete e steeeteeteeeteeetteeseseseestesstesssesseesteesaesesesasesesesseseseneeesaeesnnesareeseeeseeens 155
5.3.2 GENERATION OF THE FIRST OVERLAPPED RECEIVE COMMUNICATION OF THE PIPELINE AND THE
RECEIVE SYNCHRONISATION POINT. ...cuuoiiiiiiiiiieiiecee ettt eeee e ee e e e e s e eeeeseaeeeeneeeeeaeseene s 157
5.3.3 THE GENERATION OF THE OVERLAPPING SEND COMMUNICATION AND THE SEND
SYNCHRONISATION POINTS. ...couiiitiiiiieieceteeeee et ettt et e e e et e e et eeeaeeeaeeeeaeseseeeneseeseneeeneseseressenes 158

5.4 CONCLUSIONS ..otttiiitiieet et e e e 159

6 RESULTS FOR AUTOMATIC CODE GENERATION OF OVERLAPPING

COMMUNICATIONS FOR STRUCTURED MESH COMPUTATIONAL MECHANICS CODES.160
6.1 INTRODUCTION.cootiitiriiiitintirte ettt ettt e st etseteete et et eeeeentetteeae s e eeseeeeeeeeeeeeeeese e e e s eess s s enesees e e e, 160
6.2 2-D HEAT DIFFUSION CODE (FAB)......oootiieeie et e e e e 160
6.3 TEAMKEL. ..ottt et e e e e et e et e e e e e e et 164
6.4 APPLUL ..ot 166
0.5 ARGCBD. ..ottt e e e et 171
6.6 APDPSP. e e e e 176
6.7 APPBT. ..o ettt e e e 178
6.8 INDUSTRIAL CFID CODE.......coctiiiiiteiieie ettt et ettt ettt eeee e e e e e e e e e e e et 180
6.9 SUMMARY OF OVERLAPPED COMMUNICATIONS APPLIED.ccuooiuiiuieeeieeeeeeeeeeeeeeeeeeeeeeeeeeoeeooeoe 183
6.10 CONCLUSIONS. ...ttt ettt ettt et e e e e bt et e e te e et eeaeeeee e e e ense e e e e es e e e e e 184

7 APPLICATION AND INVESTIGATION INTO AUTOMATIC CODE GENERATION FOR
OVERLAPPING COMMUNICATIONS FOR UNSTRUCTURED MESH COMPUTATIONAL
MECHANICS CODES.......uvenrersensensassanssassasssense . seeesssssssanssssaeseanessrstssnasssansaseenne 185

7.1 INTRODUCTION.....ottittiittiittiittietii ittt s et s ar e s tt e nt e e s e et s e aeemee e e e e e e e e e e sss oo e 185
7.2 UNSTRUCTURED MESH COMPUTATIONAL MECHANICS CODES.ccovioeieeteeeeeoeeeeeeeeeoeoo 185

7.3 MANUAL PARALLELISATION EXPERIENCE OF UNSTRUCTURED MESH CODES........ccccoiuiiiiiniinnincennnn 186
T31 ASTEC .ttt sttt s bbbt e bt eae b bttt h et b e sheeaneene s 186
7.3.1.1 MeSh DeCOMPOSItION.......cccuiiiiieiiieiiiieetiecte ettt cerie ettt eteeeesate st st s b e saeeenesneesaees 187
7.3.1.2 Gauss-Seidel Method in Parallel.oooiiiiiiiiiiiie e 188
7.3.1.3 COMMUNICALIONScccvvieitiiiirierieeteeeeee e teeeoteeeeeeeeereeessseessseeessseessssesssseasseearsaassesensssessnaassseans 188
7.3.1.4 POTtING ASTEC.coitiiiitieeee ettt ettt et e v e et essae e s e bt e st e s e e ensaessaensaeseanseesnsaenne 189

T.3.2 PUIFES. et et e et e e ettt e et e e eesesetae e etaeeetsseesanesabeeesbeensenessbeeenseeenes 191
7.4 GENERIC METHODS OF PARALLELISING UNSTRUCTURED MESH CODES.ccevtieiieiieieenieesieeieeneens 194
7.4.1 DATA STRUCTURES FOR AN UNSTRUCTURED MESH........c.coitiiuiieiieireieeieeeressesseesssesseesseesseans 196
A N £ 5 (€)1 J OSSP 198
7.4.3 EXECUTION CONTROL MASKS. ...cuieuiiiiieiiiiriieiietetesteeeeesssesteteeneeteeseensesseensessnessensesssessesssenses 200
7.4.4 CALCULATION AND GENERATION OF COMMUNICATIONS.ccuttrieeiieriariieeerestiessesseessessesssesseeseens 200
7.5 COMMUNICATION UTILITIES FOR PARALLEL UNSTRUCTURED MESH CODES.c.ccveeveevieeeeveercereeneenee, 204
7.6 PARALLELISATION OF ESAUNA USING THESE GENERIC METHODS.ccocoviiviieteeteeeeeeeneeeseeeneeseenens 205
7.7 'THEPROCESS OF AUTOMATIC CODE GENERATION OF PARALLEL UNSTRUCTURED MESH CODES. 210
T 7.1 PARTITIONING. ...ccutiitiittettentteeieertesttetes e etteeutesesaeesseeesessaseessseseesaeeasseenesereessseessessssseesressaessnnens 210
7.7.2 EXECUTION CONTROL MASKS. ...ccutiiriitiitieiieieeiesteeteeeteeteeeteeseeteeseeeseeaesneeeeeensessesessneesnseeessanesenas 211
7.7.3 CALCULATION AND GENERATION OF COMMUNICATIONS.ccveeuuiiuierreieeeereeseeeeeeseeesesseeeeeseeens 211
7.8 MANUAL APPLICATION OF OVERLAPPING COMMUNICATIONS FOR UNSTRUCTURED MESH CODES.212
7.8.1 COMMUNICATION UTILITIES FOR OVERLAPPING COMMUNICATIONS........cviiueieeeieeeeeeeeeeeeeeeen. 212
7.8.2 SIMPLE OVERLAPPINGcocttrititiitateiesienieieesteeteeteeseeeeeteeesseseeeeetssteesaeeeeneeseeeeseseeeneeeneseeeeeeeensens 213
7.8.3 UNROLL OVERLAPPINGooititieiietieinieteeteesteeeteeseeseseseentestsssteeneeesesaesse st eeseeesseaeeeseeseseseaeesneans 215
7.8.3.1 Pointer array/indirect addreSSing.coooeereinieiieeicieieeee e 216
7.8.3.2 Mesh RENUMDETINGc.ooiiiiiiiiiiieiee et e e e e ee e, 218
7.8.3.3 Execution control Masking.cceoivirieiriiiiieeieeiieteceece oot e e e 221
T.8.3.4 SUIMIMATY. ...oiuiiiiiiiiiieeete ettt ettt ettt e e et e st et e e e e s et e e e ese e e sesseeeseesseesseaeas 222

7.8.4 PARTIAL OVERLAPPING.eoitiiiiiieteieietetee et ettt eae et ee e e e e e e e e e e e e e e e e e e 224

7.9 MANUAL APPLICATION OF OVERLAPPING COMMUNICATIONS TO UNSTRUCTURED MESH CODES. 225
7.9.1 MANUAL APPLICATION OF OVERLAPPING COMMUNICATIONS TOPUIFS. ...oooooooe e 225

7.10 AUTOMATIC GENERATION OF OVERLAPPING COMMUNICATIONS FOR UNSTRUCTURED MESHES.227

7.11 SUMMARY OF THE APPLIED OVERLAPPING COMMUNICATION METHODS.....ove oo 227
7.12 CONCLUSIONS. ...ttt ettt ettt e e et e s ettt e e et e e e e e e e e e e e e e ee e e e 227
8 CONCLUSIONS....ccctiisssnisesessssssssrsssssssssasssssessacssssssasassasssssssssssssssasssnsensassssssessssnssssmsssssmnnsnnne eereeeee 229
8.1 CONCLUSIONS. ..ottt ettt ettt e ettt e e et eae et e e e et e e ee et e e s e e s e e oo 229
8.2 REQUIREMENTS OF PARALLEL PROCESSING.c.cecutetiiiittiieeiiect oo 230
8.3 FINALE ..ottt ettt e et e e 230
APPENDIX A: PORTING OF ASTEC. .- . .232

T AHAVIOOITdId

viii

List of Figures

FIGURE 1.1 : SIMPLE STRUCTURED AND UNSTRUCTURED MESHES..........cccccccoiiiinininininiiinnnecenn, 6
FIGURE 1.2 : A TYPICAL CODE SECTION FROM A STRUCTURED MESH CODE...........cccccovvivveirnnn. 7
FIGURE 1.3 : A TYPICAL CODE SECTION FROM AN UNSTRUCTURED MESH CODE.c..cc..cc....... 7
FIGURE 1.4 : BLOCK MAPPING OF A MATRIX.ciiiiiiiiiiiieieseiee ettt 9
FIGURE 1.5 : AN UPPER TRIANGULAR MATRIX WITH BLOCK MAPPING (N.B. THE SYMBOL *

REPRESENT ELEMENTS NOT PROCESSED).......ccciiiiiiriinirieieneene ettt s 10
FIGURE 1.6 : WRAP MAPPING OF AN UPPER TRIANGULAR MATRIX (N.B. * REPRESENTS

ELEMENTS NOT PROCESSED).......cooiitiitinitertertiieseetee sttt ettt st sttt steseestesaesanseeneeneeneas 10
FIGURE 1.7 : COMPARISON OF AN UNPARTITIONED AND PARTITIONED 1-D ARRAY.................... 15
FIGURE 1.8 : A SIMPLE SERIAL RECURRENCE.........cccositiiiiiitietieeetteieee et sve v e 16
FIGURE 1.9 : THE USE OF PREVIOUSLY CALCULATED DATA IN APIPELINEcccevvinirrieienene. 16
FIGURE 1.10 : A BLOCK PARTITONED PIPELINE.ccccceotmiinieiitiieiieeeteeeteeteee et eev e v, 17
FIGURE 1.11 : A SIMPLE SERIAL RECURRENCE THAT HAS BEEN PARALLELISED........................... 17
FIGURE 1.12 : A SERIAL PIPELINE.ccooiiiiiiiiiiiirieeiet ettt ettt ere st sttt se s 18
FIGURE 1.13 : A SERTAL RECURRENCE WITH SURROUNDING LOOPS.cccooveiererireecriereeeeeeeene. 19
FIGURE 1.14 : A SUCCESSION OF PIPELINES.coooititrteinineceetesteetet ettt s eae e 19
FIGURE 1.15 : ITERATION GROUPING IN A PIPELINE.ccoeiieitiiiieieeeetecteeeeeeeeeeeeees e 20
FIGURE 2.1 : APARSE TREE FROM CAPTOOLS REPRESENTING AN ASSIGNMENT STATEMENT..24
FIGURE 2.2 : PSEUDO CODE TO TRAVERSE THE CALL GRAPH. ... eooooeooeooeeoeeoeeoeooeoeeeooeeooooo 25
FIGURE 2.3 : PSEUDO CODE TO TRAVERSE EVERY STATEMENT IN THE INPUT CODE................... 26
FIGURE 2.4 : PSEUDO CODE SHOWING A DEPTH FIRST SEARCH OF THE BASIC BLOCKS.............. 26
FIGURE 2.5 : CODE TO DEMONSTRATE CONTROL FLOWcoouiitiitieiieeeeeee et 27
FIGURE 2.6 : CONTROL FLOW GRAPH.c.coiriiiitiiiiiiesteeeeee et e e et e e 27
FIGURE 2.7 : PREDOMINATION GRAPH.c.ooiiiiiieeeeeee e e e 28
FIGURE 2.8 : POSTDOMINATION GRAPH.........cccoitiiitiiieeeeeteeeeeee e e e, 28
FIGURE 2.9 : PSEUDO CODE SHOWING A TRAVERSAL OF THE PRE-DOMINATOR GRAPH IN

CAPTOOLS. ...ttt et ettt st e e et et e e e e e e e e e e s e e e e e 29
FIGURE 2.10 : THE DATA STORAGE OF NESTING WITHIN CAPTOOLS.......ccoveoeoeeeeeeeeeeoeoo 29
FIGURE 2.11 : DEPENDENCE GRAPH OF THE JACOBI CODE.c.ccoooviiiieoteteeeeee oo, 33
FIGURE 2.12 : PSEUDO CODE SHOWING TWO DIFFERENT CALL PATHS FOR A DEFINING

STATEMENT . ..ottt ee e e e e e oot 35
FIGURE 2.13 : THE FIRST INDEX OF ARRAY A STORED WITHIN CAPTOOLS......oooovoomooeoooo 40
FIGURE 2.14 : THE SECOND INDEX OF ARRAY A STORED WITHIN CAPTOOLS.......ooovoooeoeo 40
FIGURE 2.15 : THE THIRD INDEX OF ARRAY A STORED WITHIN CAPTOOLS.covooeooeooee 41

FIGURE 2.16 : PARTITIONING WINDOW FROM CAPTOOLS FOR THE JACOBI CODE

1X

FIGURE 2.17 : COMMUNICATION BROWSER FROM CAPTOOLS.c.coceiiiriinieiciinierneee e 51
FIGURE 2.18 : PSEUDO CODE TO SHOW THE SHOW THE USE OF DEFROUTE DATA STRUCTURES.
... 52
FIGURE 2.19 : DATA STRUCTURES FOR DEFROUTE FOR THE EXAMPLE IN FIGURE 2.18. 52
FIGURE 3.1 : THE LINE SUCCESSIVE OVER RELAXATION ALGORITHM IN SERIAL.cccecveuenne. 57
FIGURE 3.2 : THE ROUTINE SOLVER FROM THE SERIAL FAB CODE............ccccecvvviiririeieeseseie e 58
FIGURE 3.3 : LINE SUCCESSIVE OVER RELAXATION ALGORITHM IMPLEMENTED AS A PIPELINE
IN PARALLEL. ...ttt sttt et s e sttt e st ebe st et e s et e sessessebe s et enaensesesassessansanes 60
FIGURE 3.4 : COMMUNICATIONS IN THE ROUTINE SOLVER FOR THE PARALLEL FAB CODE......61
FIGURE 3.5 : THE ROUTINE SOLVER IN FAB WITH THE PIPELINE COMMUNICATIONS REPLACED
BY EXCHANGE COMMUNICATIONS. ..ottt sie st st ss s e s s ae s nnees 63
FIGURE 3.6 : THE GAUSS-SEIDEL LOCAL LSOR IN PARALLEL.ccecvvtiieieiieeceeeereee et 64
FIGURE 3.7 : GRAPH OF TIME TAKEN AGAINST COMMUNICATION LENGTH FACTOR AND A
BEST-FIT LINE ...ttt ettt ae et teene e e tseteeseeseensenseneesees 66
FIGURE 3.8 : THE BI-DIRECTIONAL LSOR ALGORITHM IN THE ROUTINE LISOLV.........ccccovevvnnn.n. 67
FIGURE 3.9 : ROUTINE LISOLV FROM SERIAL TEAMKE!] CODE..........cccccoiniiieirieeeereeee e 68
FIGURE 3.10 : ROUTINE LISOLV PARTITIONED IN THE SECOND DIMENSIONAL INDEX J.............. 69
FIGURE 3.11 : ROUTINE LISOLV FROM TEAMKE! WITH LOOP SPLITTING AND ARRAY
EXPANSION. ..ottt ettt et et teeseeae e st eteeteene et e eaesteste st e etesaeeneenennes 70
FIGURE 3.12 : PIPELINE WITH AND WITHOUT LOOP SPLITTING FOR LISOLV FROM TEAMKE]...71
FIGURE 3.13 : MAIN PROGRAM FOR THE PARALLEL TEAMKEL CODE.........ccccecooitetoeeeeeeeeeeeeerenenn. 73
FIGURE 3.14 : CAPTOOLS COMMUNICATION BROWSER ILLUSTRATING MERGED
COMMUNICATIONS FOR THE TEAMKEL CODE.ootoiieeieieeeeeeeeeeeeeeeeeeeee e ee e erees e, 74
FIGURE 3.15 : SECTION OF A CALC ROUTINE SHOWING THE QUICK ALGORITHM.cc.coeun...... 75
FIGURE 3.16 : DATA STORAGE OF ARRAYS IN FORTRAN........cocoouiiiiiiiieeeeeeeeeeeeeeeeeee e e 77
FIGURE 3.17 : ALL PIPELINE CODE COMMUNICATING ALL DATA FOR ROUTINE BLTS FROM
APPLUL oottt ettt ettt e e et et e e et e e e s e e et e e e e eee e 78

FIGURE 3.18 : DIAGRAMMATIC REPRESENTATION OF PIPELINE COMMUNICATING ALL DATA. 78
FIGURE 3.19 : LINE PIPELINE CODE COMMUNICATING LINES OF DATA FOR ROUTINE BLTS

FROM APPLU. ..ottt ettt ettt ettt e e e e e e e e e et e 79
FIGURE 3.20 : DIAGRAMMATIC REPRESENTATION OF PIPELINE COMMUNICATING LINE DATA.
... 79
FIGURE 3.21 : PIPELINE CODE COMMUNICATING POINTS OF DATA FOR ROUTINE BLTS FROM
APPLU . oot ee e e 80
FIGURE 3.22 : DIAGRAMMATIC REPRESENTATION OF PIPELINE COMMUNICATING POINT DATA.
... 80
FIGURE 3.23 : SECTION OF CODE FROM STEPF3D ROUTINE OF ARC3D CODE. ..o 84
FIGURE 3.24 : THE PIPELINES IN ROUTINE CAP_VPENTA1 IN ARC3D CODE.oovooooeoooooo 85

FIGURE 4.1 : PSEUDO CODE OF ASYNCHRONOUS COMMUNICATION.oovvoeeeeoooeeoeooo 89

X

FIGURE 4.2 : PSEUDO CODE OF ASYNCHRONOUS COMMUNICATIONS WITH SYNCHRONISATION

PO TN T Sttt sttt et e et b et s e eat e e e st e s b s b e e e e st e sh et e san e sr e e ere s 90
FIGURE 4.3 : NON-MULTITHREADED AND MULTITHREAD DISTRIBUTION OF DATA..................... 91
FIGURE 4.4 : THE TRANSPUTER ARCHITECTURE.coctvctrtiiiriieienenienie sttt 93
FIGURE 4.5 : SYNCHRONOUS AND OVERLAPPING PSEUDO CODE ILLUSTRATING SIMPLE

OVERLAPPING WITH UNRELATED CODE.ccoooiitiiiirirenieenreneeieeieeie ettt sve e 95
FIGURE 4.6 : SECTION OF CODE FROM ROUTINE SSOR IN THE APPLU CODE WITH

SYNCHRONOUS COMMUNICATIONS.coiiieiiietieieeteetesit ittt ettt ss e sr e st see e 96
FIGURE 4.7 : COMMUNICATION BROWSER SHOWING WHERE THE COMMUNICATED DATA IS

REQUIRED.......oiiiiiii ettt et st et a e sa e st sat et s h et st et e st e e e sat e neseennenee 97
FIGURE 4.8 : SECTION OF CODE FROM SSOR WITH AN OVERLAPPING COMMUNICATION........... 98
FIGURE 4.9 : SYNCHRONOUS AND OVERLAPPING PSEUDO CODE ILLUSTRATING PARTIAL LOOP

OVERLAPPING USING LOOP UNROLLING.ccoeotteiiieriieiieiieie ettt eae e s enas 100
FIGURE 4.10 : THE ROUTINE SOLVER IN FAB WITH PARTIAL LOOP OVERLAPPING WITH LOOP

UNROLLING APPLIED.coiiiiiiiiit ettt sttt be et et ss et s te s s teess e teessensessnenbaessennas 101
FIGURE 4.11 : SYNCHRONOUS AND OVERLAPPING PSEUDO CODE ILLUSTRATING PARTIAL

LOOP OVERLAPPING WITH A CONDITIONAL STATEMENT.......cccccoviiiiieieeeceeeeee e 102
FIGURE 4.12 : SUBROUTINE CALCU IN TEAMKE| WITH SYNCHRONOUS COMMUNICATIONS...103
FIGURE 4.13 : SUBROUTINE CALCU IN TEAMKEI| WITH OVERLAPPED COMMUNICATION......... 104
FIGURE 4.14 : ROUTINE SOLVER IN FAB WITH PARTIAL OVERLAPPING USING LOOP

UNROLLING AND A CONDITIONAL STATEMENT.coooiiiitititiceceeteeeeete et 105
FIGURE 4.15 : CALCULATION ORDER OF CODE IN FIGURE 4.14.........ccooovoiiiiiieeeeeeeeeeeeeee e, 105
FIGURE 4.16 : SYNCHRONOUS PIPELINE.ccccciiiitniiaieieeet ettt ettt sae e ene e 107
FIGURE 4.17 : OVERLAPPING PIPELINE.ccooitiiiiiiiiiietteeeceeeee ettt e e ee e en. 108
FIGURE 4.18 : OVERLAPPING PIPELINE COMMUNICATING LINE DATA FOR ROUTINE BLTS IN

APPLUL .ot e et ettt e te e et ettt eaeeseeeeeea e e e e et e et e eaeeeeeeeeeeeeseeseraaes 109
FIGURE 4.19 : GRAPH OF SYNCHRONOUS VERSUS OVERLAPPED COMMUNICATIONS................ 110
FIGURE 5.1 : THE BASIC ALGORITHM FOR THE AUTOMATIC GENERATION OF OVERLAPPING

COMMUNICATIONS. ..ottt ettt ettt et e e ee et et e e eee e e e e ee e s eeesseaes 113
FIGURE 5.2 : PSEUDO CODE OF A SINK COMMAND WITH NO SURROUNDING LOORP................... 115
FIGURE 5.3: CONTROL FLOW GRAPH FOR FIGURE 5.2.cocoooiiuiiiiiiiiieeeeeeeeeeeeeeee e 116
FIGURE 5.4: PREDOMINATOR TREE FOR FIGURE 5.2.cocuiiiiiiiiiiiiteeeeeeeeeeeeeeeeeeeeeeee e 116
FIGURE 5.5 : PSEUDO CODE FOR DETECTING A TIME CONSUMER COMMAND......ccocovvoveeieeen.. 117
FIGURE 5.6 : PSEUDO CODE FOR DETECTING TIME CONSUMERS BETWEEN A BLOCK AN ITS

PREDOMINATING BLOGCK. ...ttt ettt ee s e e s e s e ees e 118
FIGURE 5.7 : PSEUDO CODE FOR DETECTING A TIME CONSUMER BETWEEN A SINK COMMAND

AND ITS SOURCE COMMAND.coiiiiiiieeee ettt e ee et e e e e e 119

FIGURE 5.8 : CODE FRAGMENT OF A SINK COMMAND WITH SURROUNDING LOOPS.oo......... 120

X1

FIGURE 59 : CODE FRAGMENT SHOWING INTERPROCEDURAL MIGRATION OF THE

SYNCHRONISATION POINT.ocutititiiteieieiinterie ettt sttt e s n e 121
FIGURE 5.10 : INTERPROCEDURAL ALGORITHM FOR CALCULATING TIME CONSUMERS.......... 123
FIGURE 5.11 : CODE FRAGMENT OF A SYNCHRONISATION POINT WITHIN A LOORP. 124
FIGURE 5.12 : A SAMPLE OF TEST CASES USED FOR TESTING.........ceccervrtrtrininieenesee e 125
FIGURE 5.13 : PSEUDO CODE OF A SYNCHRONOUS COMMUNICATION REQUIRING PARTIAL

LOOP OVERLAPPING.c.ociiiiittitetet sttt ettt ettt e ne et esbesbeenesseesesneeseanas 127
FIGURE 5.14 : DIAGRAM OF THE LOOP SWEEP FOR THE PSEUDO CODE IN FIGURE 5.13.............. 127
FIGURE 5.15 : FORMAL MODEL FOR A POTENTIAL PARTIAL LOOP OVERLAPPING

COMMUNICATION. ..ottt sttt ettt st e e e teaessebessesaesesses s sessassasessansesensens 128
FIGURE 5.16 : PSEUDO CODE ALGORITHM FOR DETERMINING WHETHER PARTIAL OVERLAP

MAY BE APPLIED.oooiiiiiiii ettt et aa e et ese et entessessessennereanas 129
FIGURE 5.17 : CODE FOR EXAMPLE 1 AND EXAMPLE 2.ccoiioiiiiieeiiieriietteee e 130
FIGURE 5.18 : PSEUDO CODE FOR EXAMPLE 3.cocoociiiiiiiitieretiietcieeerese ettt vesees et eaens 133
FIGURE 5.19 : ALGORITHM TO CALCULATE HOW MANY ITERATIONS TO UNROLL..................... 134
FIGURE 5.20 : SYNCHRONOUS PARALLEL CODE REQUIRING SIMPLE AND PARTIAL

OVERLAPPED COMMUNICATIONS. ..ottt ettt ettt e ettt eteeaess e eaeenene e 136
FIGURE 5.21 : OVERLAPPED PARALLEL CODE WITH NO MERGED SYNCHRONISATION POINTS.

... 137
FIGURE 5.22 : CODE FROM FIGURE 5.21 AFTER MERGING SYNCHRONISATION POINTS.............. 138
FIGURE 523 : SYNCHRONOUS PARALLEL CODE REQUIRING UNROLL OVERLAPPED

COMMUNICATION. ...ttt ettt ettt reeteeaseteeaeene et eeeeaeneeeeeseneeeens 139
FIGURE 5.24 : CODE FROM FIGURE 5.18 WITH UNROLL OVERLAPPED COMMUNICATIONS. 139
FIGURE 5.25 : BASIC ALGORITHM FOR MERGING PARTIAL AND UNROLL SYNCHRONISATION

POINTS ..ottt ettt et ae et e e e te e e et et e et e e e e s eesees e s eeseeseeeeesenes 140
FIGURE 5.26 : TWO SYNCHRONISATION POINTS WITH DIFFERENT SYNCHRONISATION VALUES

... 141
FIGURE 5.27 : EXAMPLE SHOWING THE PASSING OF SYNCHRONISATION VALUES BETWEEN

ROUTINES.ooi ettt ettt e e e e e e et e e e e e oo 142
FIGURE 5.28 : EXAMPLE SHOWING THE NEED TO FIND ALL CALLERS TO A ROUTINE................ 142
FIGURE 5.29 : ALGORITHM TO GENERATE PARTIAL LOOP OVERLAPPING WITH LOOP

UNROLLING. ...ttt et et e et e e e et et 144
FIGURE 5.30 : LOOP WITH INCREASING ITERATIONS.....coooiiiieee e 145
FIGURE 5.31 : LOOP WITH DECREASING ITERATIONS. ..ot 145
FIGURE 5.32 : ALGORITHM TO GENERATE THE CONDITIONAL SYNCHRONISATION CALL FOR

THE PARTIAL LOOP OVERLAPPING.coiiiiieeeeeeee e 146

FIGURE 533 : SYNCHRONOUS AND OVERLAPPING CODE APPLYING PARTIAL LOOP
(017212 07N 2201 (€SOO 146

X11

FIGURE 5.34 : COMMUNICATION WITH SEVERAL SINKS USING DIFFERENT OVERLAPPING

METHODS. ...ttt et e be bbbt bbb bbbt bt et e bt bt e neeneemtenne 147
FIGURE 5.35 : ORIGINAL PARTIAL OVERLAPPED CODE GENERATED.ccccceotnvieninnienincinenennes 148
FIGURE 5.36 : MODIFIED PARTIAL OVERLAPPED CODE NOW GENERATED..........cccoceirirnieinnne. 149
FIGURE 5.37 : A SIMPLE GENERAL MODEL.ccocotiitiiiiieieiicieietie et saesae e ese e esaenes 149
FIGURE 5.38 : FORMAL MODEL FOR A SYNCHRONOUS PIPELINE............ccceoestniieierietieieieereereie e, 151
FIGURE 5.39 : FORMAL MODEL FOR AN OVERLAPPED PIPELINE............ccccoovriiiiineririereieiee e, 152
FIGURE 5.40 : FORTRAN PSEUDO CODE ILLUSTRATING LOOP EXITS.....cccoccccevvniririrririeiieeeeeienens 153
FIGURE 5.41 : ILLEGAL FORTRAN PSEUDO CODE ILLUSTRATING AN ANTI-DEPENDENCE. 153
FIGURE 5.42 : FORTRAN PSEUDO CODE ILLUSTRATING THE POSITIONS OF OVERLAPPING

COMMUNICATIONS WITHIN A PIPELINE.occooiiiiiieietiiieeeeieeteeteee ettt e 154
FIGURE 5.43 : PSEUDO CODE FOR THE AUTOMATIC GENERATION OF THE CONDITIONAL

STATEMENTS OF THE OVERLAPPING PIPELINE.ccocceeiiiiiiiiiisieteiceeeeteeee e, 156
FIGURE 5.44 : PSEUDO CODE FOR THE ADJUSTMENT OF THE LOOP ITERATION COUNTERS FOR

THE FIRST OVERLAPPED RECEIVE IN THE PIPELINE.ccoooeiieieiiieiieeicrcieeeteete e 158
FIGURE 6.1 : CODE FROM FAB SHOWING THE TWO CAP_EXCHANGE COMMUNICATIONS THAT

HAVE NOT BEEN OVERLAPPED.cc.cctiiiiitiineiteietie ettt ettt 162
FIGURE 6.2 : TIME GRAPH OF FAB ON THE TRANSTECH PARAMID..........cccocooooioiieeeeeeeeeeeeeeeeeen, 163
FIGURE 6.3 : SPEED UP GRAPH OF FAB ON THE TRANSTECH PARAMID.cocceovvtveeeeeeeeeeen. 163
FIGURE 6.4 : TIME GRAPH OF TEAMKE! FOR THE TRANSTECH PARAMID.cooeoeeeeeeeeeeeeeeernn.. 165
FIGURE 6.5 : SPEED UP GRAPH OF TEAMKE! FOR THE TRANSTECH PARAMID.ccccoovvuveunnn.... 165
FIGURE 6.6 : TIME GRAPH FOR A 32X32X32 PROBLEM ON THE TRANSTECH PARAMID............... 167
FIGURE 6.7 : SPEED UP GRAPH OF APPLU FOR A 32X32X32 PROBLEM ON THE TRANSTECH

PARAMID. ..ottt ettt et e en et e et e et e e s e s e e e e s ees s eee e s 167
FIGURE 6.8 : TIME GRAPH OF APPLU FOR A 24X24X24 PROBLEM ON THE PARSYS SN9500......... 170

FIGURE 6.9 : SPEED UP GRAPH OF APPLU FOR A 24X24X24 PROBLEM ON THE PARSYS SN9500.170
FIGURE 6.10 : TIME GRAPH OF ARC3D FOR A 40X33X40 PROBLEM ON THE TRANSTECH

PARAMID. ..ottt ettt ettt ee et e e e s e e e e e e et 174
FIGURE 6.11 : SPEED UP GRAPH OF ARC3D FOR A 40X33X40 PROBLEM ON THE TRANSTECH

PARAMID. oottt et e e et e 174
FIGURE 6.12 : TIME GRAPH OF ARC3D FOR A 40X33X40 PROBLEM ON THE PARSYS SN9500. 175
FIGURE 6.13 : SPEED UP GRAPH OF ARC3D FOR A 40X33X40 PROBLEM ON THE PARSYS SN9500.

... 175
FIGURE 6.14 : TIME GRAPH OF APPSP FOR THE TRANSTECH PARAMID........ooooooooo 177
FIGURE 6.15 : SPEED UP GRAPH OF APPSP FOR THE TRANSTECH PARAMID.oovoooo 178
FIGURE 6.16 : TIME GRAPH OF APPBT FOR THE TRANSTECH PARAMID.oovoioo 179
FIGURE 6.17 : SPEED UP GRAPH OF APPBT FOR THE TRANSTECH PARAMID.......ccooovoooo 180
FIGURE 6.18 : UPWINDING SCHEME FROM THE INDUSTRIAL CFD CODE............oooooooo 181

FIGURE 6.19 : TIME GRAPH OF AN INDUSTRIAL CFD CODE FOR THE TRANSTECH PARAMID. .. 182

Xiil

FIGURE 6.20 : SPEED UP GRAPH OF AN INDUSTRIAL CFD CODE FOR THE TRANSTECH PARAMID.

... 183
FIGURE 7.1 : PIPE MESH AND A TYPICAL PROCESSOR TOPOLOGY.coecovviviiieiereeeceeereneeeeee e 187
FIGURE 7.2 : SPEED UP RESULTS FROM ASTECccocivtiiitiieeiieieieeeeeteteeeie et ev e 191
FIGURE 7.3 : FLOW CHART FOR UIFS.......cccoiiiiiiiiieieticteieeete ettt et ettt saen s snene s 193
FIGURE 7.4 : ATYPICAL CODE EXAMPLE AND DATA STRUCTURE FROM THE UIFS CODE......... 194
FIGURE 7.5 : A SIMPLE UNSTRUCTURED MESH CODE EXAMPLE............cccoeoimiiiiieeeeeeeeeeeeveeeeas 195
FIGURE 7.6 : AN UNSTRUCTURED MESH OF 94 ELEMENTS.c.ooviieiiiieeeeeeeeeeeeteeeees e 196
FIGURE 7.7 : INSPECTOR LOOP FOR THE CALCULATION LOOP IN FIGURE 7.6.cccccooevvveennn.... 198
FIGURE 7.8 : A LIST OF PROCESSOR-ELEMENT OWNING RELATIONSHIP.cccccoovimiieeiierenannn. 199
FIGURE 7.9 : UNSTRUCTURED MESH DECOMPOSED ONTO THREE PROCESSORS.ccccocoeo...... 199
FIGURE 7.10 : UNSTRUCTURED MESH DECOMPOSED ONTO THREE PROCESSORS WITH

OVERLAP REGIONS. ...ttt ettt ettt et e e s e n s st st s eeene e eee e eeeas 201
FIGURE 7.11 : CAPTOOLS GENERATED PARALLEL CODE FOR THE SERIAL CODE IN FIGURE 7.5.

... 203
FIGURE 7.12 : CALCULATION LOOP FOR A 5-POINT NODE FROM THE ROUTINE EULER IN

ESAUNA L ettt ettt e te et etees e s et e eteae e e ee e e et e s eeeesenees et ereeaseesnneeeneens 206
FIGURE 7.13 : INSPECTOR LOOP FOR THE CALCULATION LOOP IN FIGURE 7.12.cooveeereenn... 207
FIGURE 7.14 : THE ORIGINAL PARALLEL LOOP FOR FIGURE 7.12.coouiuiieieeeoee e 208
FIGURE 7.15 : THE POINTER LIST INITIALISED AT START OF PARALLEL PROGRAM..................... 209
FIGURE 7.16 : THE IMPROVED PARALLEL LOOP FOR FIGURE 7.12 USING A LIST POINTER......... 209
FIGURE 7.17 : BLOCK EXECUTION MASK APPLIED TO THE SIMPLE UNSTRUCTURED MESH CODE

IN FIGURE 7.5 ..ottt ettt et e e et e s es s s e e s ees e e s ee e, 211
FIGURE 7.18 : INSPECTOR LOOP FOR THE CODE IN FIGURE 7.17. ..oovoueoteeeeeeeeeeeeeeeeeeeoeeee, 212
FIGURE 7.19 : PSEUDO CODE FOR SIMPLE OVERLAPPING IN AN UNSTRUCTURED MESH CODE.

... 213
FIGURE 7.20 : THE APPLICATION OF SIMPLE OVERLAPPING TO THE PARALLEL CODE IN FIGURE

Tl Lttt et et e et et e e e oot 214
FIGURE 7.21 : PSEUDO CODE FOR UNROLL OVERLAPPING IN AN UNSTRUCTURED MESH CODE.

... 215

FIGURE 7.22 : PSEUDO CODE TO CALCULATE THE ‘INNER’ AND ‘OUTER’ CORE ELEMENTS. ...216
FIGURE 7.23 : THE CALCULATION LOOP AND ASSOCIATED COMMUNICATION FROM FIGURE

Tl Lttt ettt et e e e e 217
FIGURE 7.24 : ASYNCHRONOUS CODE FOR POINTER ARRAY / INDIRECT ADDRESSING. 218
FIGURE 7.25 : THE UNSTRUCTURED MESH IN FIGURE 7.10 WITH MESH RENUMBERING. 219
FIGURE 7.26 : THE VALUES OF LAST_INNER_CORE_ELEMENT AND LOCAL_NELEMENT FOR THE

UNSTRUCTURED MESH IN FIGURE 7.25.ooiiiiiiiiee e 219
FIGURE 7.27 : SYNCHRONOUS COMMUNICATION USING MESH RENUMBERING. ..o 220

FIGURE 7.28 : ASYNCHRONOUS COMMUNICATION USING MESH RENUMBERING. ..o 220

X1v

FIGURE 7.29 : ASYNCHRONOUS COMMUNICATION USING EXECUTION CONTROL MASKS. 222
FIGURE 7.30 : PSEUDO CODE FOR PARTIAL OVERLAPPING IN AN UNSTRUCTURED MESH CODE.
FIGURE 7.31 : PARTIAL OVERLAPPING WITH MESH RENUMBERING.c.ccccooveviiirereeeereeeens 224
FIGURE 7.32 : SPEED UP OBTAINED WITH THE ASYNCHRONOUS (SOLID LINES) AND
SYNCHRONOUS (DASHED LINES) OPTIMISED SOLVERS FOR THE FLUID DYNAMIC TEST
CASE WITH A RANGE OF MESH SIZES.cooootiuiiiiieeeteteeeete ettt se s sn s 226
FIGURE 7.33 : SPEED UP OBTAINED WITH THE ASYNCHRONOUS (SOLID LINES) AND
SYNCHRONOUS (DASHED LINES) OPTIMISED SOLVERS FOR THE SOLID MECHANICS TEST
CASE WITH A RANGE OF MESH SIZES.coooiitiiiiietetctetcteteeeeeete ettt 226

Chapter 1

1 Introduction.

1.1 Why Parallel Processing?

The need for parallel processing is born from the fact that computer users always
require their programs to perform computation at a much faster rate. There are many large
scale codes available for Computational Fluid Dynamics, Computational Mechanics, etc that
require a large amount of processing power. These codes often take hours, even days to run
and a greater amount of power is therefore required to allow these codes to run in a fraction
of the time.

To meet this demand for greater processing power supercomputers were developed
with vector or pipeline processors. These processors instead of operating on a single variable
at a time, allowed a vector of data to be processed simultaneously [1]. This required the code
author to optimise the code in order to exploit valid vector operations and ensure that the
correct vector operands were loaded from memory [2]. This led to the development of
vectorising compilers which automatically optimised the code for vector parallelism [3].

This in turn led to the development of supercomputers that consisted of an array of
processors (ranging from 1000 to 16,000) which could process data in parallel. All the
processors operated on the same instruction set issued by a central processing unit on its own
data set. These array structured machines (e.g. the Illiac-IV, ICL DAP, Thinking Machines
CM2) are known as Single Instruction, Multiple Data (SIMD) [4] machines. These machines
increased the performance of codes significantly so long as the problem was structured in nature
and did not consist of any serial operations [5].

The advent of the Transputer processor [6] in the early 1980’s allowed manufacturers to
design relatively inexpensive parallel machines. These processors could execute their own
instructions on their own data set. These machines are referred to as Multiple Instruction,
Multiple Data (MIMD) [4]. There are two distinct variants of the MIMD class : Shared Memory
(SM) which has a common (shared) memory space and Distributed Memory (DM) where each
processor has its own private memory [7]. Both of these sub classes of the MIMD have their

disadvantages.

Chapter 1 2

In the case of the SM-MIMD class, memory contention causes bottlenecks when
executing serial loops and all the processors have to access the shared memory via the same data
bus. There is also the need for synchronisation points within the parallel code. This incurs an
overhead and can also create idle time while processors wait for other processors to complete
their tasks.

In the case of the DM-MIMD class there are several causes of bottlenecks. These consist
of too many communications in the parallel code, which may also communicate large volumes
of data or communicate data to all other processors as opposed to their nearest neighbours only.
There are also the possibilities of idle time and of duplicated calculation that will reduce the
efficiency of the parallel code but will remove the requirement for communication.

Several European manufacturers used the Transputer in the late 1980’s and early 1990’s
in the creation of modest inexpensive parallel machines [8, 9]. Examples of these are the
Transtech Paramid [81] and the Parsys SN9500 [82] which are mentioned in greater detail in
Section 4.3. These manufacturers as well as many others have since adapted other better
performing processors to build even more powerful parallel machines.

There are many variants of parallel machines now available for users [8, 9]. Examples of
SM-MIMD machines that are commonly available today are the DEC AlphaServer Clusters and
SGI Origin 2000. Examples of DM-MIMD machines are the IBM SP2, Cray T3D and Cray
T3E.

1.2 Problems of Creating Parallel Codes.

The hardware for parallel processing is obviously widely available. The main difficulty
is providing parallel codes for this hardware. This may be achieved by writing a parallel code in
a new language or by adapting existing sequential code to run on these machines. To convert a
large serial code to be parallel may take many man months [10] or years to achieve. This method
of parallelisation should eventually provide the most efficient form of parallel code but is
however very tedious and is open to error. There is currently a range of options available to
automate the process of parallelism: optimising and vectoriser compilers; shared memory
parallelising compilers; distributed memory parallelising compilers; High Performance Fortran

(HPF); or parallelisation tools.

Chapter 1 3

Many of today’s compilers may optimise and/or vectorise a serial code to exploit
parallelism within loops using code transformations such as scalar expansion and loop splitting.
These compilers are fast and provide a reasonable improvement to the code

Automatic compilers were designed to automatically parallelise the code. In the case of
the shared memory system this has provided some satisfactory results for some limited cases
[11]. This, however, was only achieved once the user had inserted compiler directives into the
source code. The main problem is that the user (from previous experience) expects compilers to
be quick. This leads to the compilers making many conservative assumptions often presuming
there is a dependence if it cannot prove otherwise. This often leads to a particular code section
being serial. These compilers concentrate on only a small section of code, such as a loop, to try
and obtain parallelism and are always intra-procedural, i.e. they do not take a global view of the
code, concentrating parallelism within a procedure. They will also typically only parallelise one
loop within a given nest of loops.

In the past two decades a number of research programmes have pursued the concept of
parallelising compilers for distributed memory, with the more recent projects focusing on HPF.
These include Paraphrase at the University of Illinois [12], the KAP paralleliser [13], Parallel
Fortran Converter (PFC) [14] and FORTRAN-D [15] at Rice University, SUIF [16] at Stanford,
VIENNA-FORTRAN [17, 18] at the University of Vienna and PARADIGM [19] developed by
the University of Illinois.

There are at present a number of groups who are attempting to develop parallelising
compilers and parallelisation tools. Parallelisation tools are a compromise solution to the desire
for parallel compilers that generally produce poor parallel efficiencies by comparison with
manual parallelisations that produce the most efficient parallel code. Most of these tools make
use of compiler technology to convert serial code to parallel code, for a particular parallel
machine. All tools must make conservative assumptions when generating parallel code and
therefore much potential parallelism might be omitted to ensure correct code.

A method, currently much promoted, is the use of High Performance Fortran (HPF)
language [20]. This requires the programmer to posses a significant amount of expertise, and
even then the amount of effort required can be substantial. It is also restrictive in that most dusty
deck Fortran codes will require considerable amounts of re-engineering and rewriting before the
code is actually suitable for HPF. Once the source code has been converted to HPF the

performance of the code in parallel are, for certain test cases, not very good. [21].

Chapter 1 4

There are also at present a small number of parallelisation tools available or being
developed. These are Forge 90 [22] developed by Applied Parallel Research, Vienna Fortran
Compilation System [23] developed by the University of Vienna, D System [24] developed by
Rice University, PARADIGM [25] developed by the University of Illinois and Computer Aided
Parallelisation Tools (CAPTools) [26, 27, 28, 29] developed at the University of Greenwich.

Forge 90 [22] developed by Applied Parallel Research is an integrated collection of
interactive tools to enable the parallelisation of Fortran. The tools generate fully scalable Fortran
77 Single Program Multiple Data (SPMD) program with support for many different message
passing libraries such as IBM’s MPL, PVM, Express and Linda. It will also allow standard
Fortran 90 and HPF directives to be used to control the parallelisation of the program.

The D System was developed by Kennedy et al at Rice University and grew out of
ParaScope [30]. It consists of a suite of tools developed to aid in the development of programs in
Fortran D [30]. Fortran D is an extension to existing Fortran 77 or Fortran 90 compilers. It was
primarily designed to create a machine independent set of extensions to aid in the distribution of
data onto parallel machines. Fortran D compilers have been developed for several parallel
machines including the Intel Paragon and Thinking Machines CM-5. High Performance Fortran
(HPF) is an extension to Fortran 90 and was inspired by the original work on Fortran D. It
provides support for data parallel programs and for the control of data distribution.

Vienna Fortran [23] was developed by Zima et al at the University of Vienna. It was
developed from the original SUPRENUM [31] project. It is a machine independent language
extension to Fortran 77, allowing the user to write programs for DMS using global addresses.
Vienna Fortran is now part of the Vienna Fortran Compilation System (VFCS) which provides
source to source conversion of Vienna Fortran or Fortran 77 code to explicit parallel Message
Passing Fortran for use on Intel iPSC/860, Intel Paragon, and machines that support Parmacs.

PARADIGM (PARAllelizing compiler for Dlstributed memory General-purpose
Multicomputers) [25] developed at the University of Illinois provides an automated means of
parallelising and optimising serial programs for efficient use on a distributed memory system.
PARADIGM allows automatic data distribution, communication optimisation and the
exploitation of both functional and data parallelism. It has been used on several DMS machines
such as the Intel Paragon, the Thinking Machines CM-5 and the IBM SP-1.

Computer Aided Parallelisation Tools (CAPTools) [26, 27, 28, 29] is a toolkit developed

at the University of Greenwich to automate most of the process of parallelising scalar Fortran 77

Chapter 1 S

codes. The aim of CAPTools is to obtain code that is as efficient as manually parallelised code
by using a combination of parallel compiler technology and as much user interaction as is
necessary. The time and effort required by a user to create such a parallel code should be
minimal, but the resulting code should be as efficient as possible.

The final parallel code generated by the first version of CAPTools adheres to the Single
Program Multiple Data (SPMD) model. In the SPMD model each processor executes the same
code but on a subset of the program data. The parallel code produced will be as similar as
possible to the original serial code allowing the parallel code to be easily optimised and
maintained by the user and easily portable to any Distributed Memory System. The parallel code
will differ from the serial code in that it will now contain communication calls and also
execution control masks to ensure that each processor will only operate on its own data subset.
The communications generated are high level generic communication calls which map onto low
level communications of either machine specific communications or communication libraries
(Section 1.6).

Chapter 2 discusses the Computer Aided Parallelisation Tools in more detail.

1.3 Requirements of Parallel Processing.

There are a number of objectives that must be achieved by a satisfactory parallelisation
strategy:
1. Minimise the changes to the original algorithms :
The parallel code should produce exactly the same results as serial. Identical results
provide the user with confidence that the parallel code is correct.
2. Recognisable code :
The parallel code should also be recognisable and therefore easily maintainable and/or
optimised by the original serial code author.
3. Maximise the invisibility of the parallel execution :
The user should not notice any difference between running the parallel and serial code
except for an increase in speed and possibly the size of the problem that can be solved.
4. Maximise parallel efficiency :
Ensure that the parallel code produces significant increase in speed up in relation to the

serial code. This ensures that the parallel machine is being used efficiently.

Chapter 1 6

5. Efficient use of all available memory:

Ensure that the problem size is proportional to the total local memory size available from

eVery processor.

Different members of the Parallel Processing community will place varying amounts of
importance to these objectives. The user of a parallel code will be concerned with objectives 3, 4
and 5: the code looks the same during execution; will reduce the computation time; and allow
bigger problem sizes to be executed. The application code author will primarily only be
interested in objectives 2 - the minimum amount of change to the code - but due to the needs of
the end user must also pay attention to the other objectives. An in-house code developer
wishing to parallelise their codes will place an emphasis on all the above five objectives.
Developers of parallelisation tools on the other hand must bear in mind the needs of the users,

authors and in-house developers and must concentrate on all of these objectives.

1.4 The Use of Meshes in Computational Mechanics Codes.

This work focuses upon certain important classes of application code and their related
SPMD parallelisation strategies. Computational Mechanics is a diverse area that includes the
modelling of fluid dynamics, structural mechanics and electromagnetics. The application of a
system of equations to a problem leads to the concepts of a grid or mesh. There are two distinct
types of meshes predominantly used to discretise a problem in Computational Mechanics :

Structured and Unstructured Mesh. Examples of these meshes may be seen in Figure 1.1.

Structured Mesh Unstructured Mesh

Figure 1.1 : Simple structured and unstructured meshes.

Chapter 1 7

In a structured mesh code the mesh is regularly structured and is well suited for control
volume (cells) and finite difference problems. The advantage of using such a mesh is that the
topology of the mesh is stored implicitly allowing simple addition or subtraction to calculate its
neighbouring cells. Figure 1.2 shows that to calculate the value of A(I,J,K) require the values
from both its immediate neighbours in both the J and K dimension. The main disadvantage of

using a structured mesh is that only regular shaped geometries may be solved.

DOI=1,NI
DOJ=1,NJ
DOK = I.NK
A(LJ.K) = B(LJ-1,K) + B(LJ+1,K)+B(I,J.K-1) +B(1,J-1,K+1)
ENDDO
ENDDO
ENDDO

Figure 1.2 : A typical code section from a structured mesh code.

Unstructured or irregular meshes are used for the solving of finite element or control
volume problems or any other inter-related entities. In an unstructured mesh the topology is
explicit with the relationships between elements and nodes of the mesh explicitly stored, e.g.
ELETOP(ELEMENT, NODE) will contain the relationship between the nodes and elements.
Figure 1.3 shows that to calculate the value of A for a particular element requires the topological

information for B from the element and nodal information of A.

DO ELEMENT = 1, NELEMENT
DO NODE = |, NNODE(ELEMENT)
A(ELEMENT)=B(ELETOP(ELEMENT,NODE))
ENDDO
ENDDO

Figure 1.3 : A typical code section from an unstructured mesh code.

The use of unstructured mesh allows more complex geometries to be solved but
unfortunately they will not be as efficient as structured meshes since they require indirect

address accesses of arrays in their calculations, i.e. in the use of ELETOP.

1.5 Parallelisation Strategies.
There are three predominant methods available to parallelise a code. These are Task
Farming, Algorithmic Decomposition and Domain Decomposition. These may also be used

together to form a hybrid.

Chapter 1 8

Task Farming [32] (or task-scheduling) attempts to ensure that all processors are always
kept busy with computation. This method requires one process acting as the master processor
distributing tasks for each of the other slave processors. The master will also collate the results
from these slave processors. The master also attempts to ensure that every slave processor is
kept busy at all times thus avoiding idle time. Good parallel efficiencies can therefore be
obtained as long as the time required for each task is significantly more than the communication
time of the task between the master and slave. There should also be a significant number of tasks
in comparison with the number of processors. This method of parallelisation is only suitable for
problems where there is no other communication required with any other slave, i.e. each slave
task must be independent of any other calculation on another slave task. It has proven well
suited for radiation field calculations [33, 34] and Monte Carlo techniques [35].

Algorithmic methods or Functional Decomposition [32] involves dividing the algorithm
on to several processors. For example consider a three dimensional Computational Mechanics
(CM) code which requires velocities for each dimension to be calculated. Algorithmically this
could be achieved by allowing each dimensional velocity to be calculated on one of three
different processors. The main disadvantages of such a method is that each processor may have
a different amount of work to be done and could cause some of the processors to be idle. They
are also not scalable, i.e. if there are three different algorithms that may be run in parallel then
only three processors are required. The addition of any further processors will not provide any
further increase in the efficiency of the code. Also if the calculation on each processor are not
independent of each other then the communication overhead may be high.

Domain Decomposition [32], also known as Geometric Decomposition, involves
splitting the data as evenly as possible on to each individual processor. Each processor will then
operate on its own allocated subset of data. Since each processor has an even amount of data to
operate upon, the idle time will often be very small. There are three distinct methods of mapping
a domain of interest here : Block, Cyclic and Graph Based Partitions.

A block mapping [32] represents each processor containing an equal continuous section
of the problem domain. Each processor would then be allocated one of these blocks of data. For
instance a block mapping of a matrix with 7 rows onto 3 processors would be distributed as in

Figure 1.4.

Chapter 1

10

L

* K *k
* k%

* *

* K *

Figure 1.5 : An Upper Triangular Matrix with Block Mapping (N.B. The Symbol * represent

elements not processed).

po—m

* k%
* K %

*
* %

* % X

p—

Row 1
Row 4

Figure 1.6 : Wrap Mapping of an Upper Triangular Matrix (N.B. * represents elements not

processed)

Figure 1.6 shows that for the first column the workload is approximately equal. Looking

at the sixth column now each processor has the same amount of work to accomplish. This

method therefore provides a better load balance for upper or lower triangular matrices.

Another method that may be used is Block Cyclic which is a hybrid of the block and

cyclic methods. For this method, the load imbalance is higher than it would be for the cyclic

Chapter 1 11

method but lower than for the block method. This method does however have the potential for
lower communication than the cyclic method but more than for the block method.

Graph Based Partitions involve taking a graph that represents the mesh of the problem
and dividing the graph such that each processor has an equal amount of graph/mesh nodes whilst
also minimising the number-of graph edges cut. The greater the number of edges cut then the
greater the volume of communication. There are several methods to accomplish this, some of
which are : Greedy [38], Recursive Graph Bisection [39], Recursive Spectral Bisection [40] and
Multilevel Recursive Spectral Bisection [41].

There are at present several software tools available to provide a graph decomposition.
These include Scotch [42], Metis [43], Chaco [44] and JOSTLE [45, 46, 47].

JOSTLE [45, 46, 47] developed at the University of Greenwich decomposes
unstructured meshes by first of all using the Greedy method to provide an initial partition. It will
then reduce the problem size by using a Recursive greedy algorithm before applying further

optimisation heuristics.

1.6 Communication Ultilities.

In this work the Computer Aided Parallel Tools communication library is used. These
are high level generic communication calls developed at the University of Greenwich [48, 49].
These map onto the low level communication calls of either machine specific communications
such as Cray SHMEM ([50], Inmos CToolset or onto communications libraries such as PVM
[51] or MPI [52]. The communications have been designed to function on various processor
topologies such as 1-D, 2-D or 3-D grids of processors, rings of processors or a full processor
interconnection. They have been employed successfully and efficiently in the parallelisation of
numerous Computational Mechanics (CM) codes [26]. The communications have been designed
to be simple with the minimum number of parameters required. This allows the communications
to be comprehendible in understanding the nature of the parallel code. They are easily portable
to other parallel machines using the above mentioned communication libraries and can easily be
adapted for use with any other communication library or low level communications.

Examples of these high level communication calls are CAP_SEND, CAP_RECEIVE
and CAP_EXCHANGE which will respectively send, receive or perform a pairwise parallel

Chapter 1 12

exchange of the required data between the required processors as stated in the communication
calls parameter lists.

The parameter lists for these high level generic communications for the synchronous
communications are as follows :

CAP_SEND(Send Address, Length, Type, Direction)

CAP_RECEIVE(Receive Address, Length, Type, Direction)

CAP_EXCHANGE(Receive Address, Send Address, Length, Type, Direction)
where the Send Address is the start address of the data to send; the Receive Address is the start
address to receive the data; the Length is the amount of data to be communicated; the Type is an
integer value representing the type of data to be communicated e.g. integer, real, etc; and the
Direction is the processor or neighbour to communicate with. The Direction definition for a 1-D
grid of processors (pipeline/chain), for example, may be CAP_LEFT or CAP_RIGHT which
simply states that the data is to be communicated from processor p to processor p-1 or processor
p+1, respectively. For a 2-D grid of processors the Direction would be either CAP_LEFT,
CAP_RIGHT, CAP_UP and CAP_DOWN. This is extended to a 3-D array of processors by
introducing CAP_TOP and CAP_BOTTOM.

The CAP_SEND and CAP_RECEIVE communications will always work in tandem.
Consider the following code:

CALL CAP_SEND(A(1), 10, 1, CAP_LEFT)

CALL CAP_RECEIVE(A(1), 10, 1, CAP_RIGHT)
The first communication will send 10 values of data beginning at the array address A(1) of the
data type 1 (which represents an INTEGER) to the processor to its left. The second
communication will then receive the 10 values of data from its right into the array with the array
address beginning at A(1).

An example of an exchange communication as used in a code is as follows:

CAP_EXCHANGE(A(100), A(200), 100 ,2, CAP_RIGHT)
The processor will receive 100 data items from its right in to the array address A(100) of the
data type 2 (which represents a REAL). The communication will also send back 100 data items
in the opposite direction (i.e. to the left) from the array address beginning at A(200). The
advantage of the CAP_EXCHANGE communication is that each processor will perform the
communication at the same time in the same direction in parallel. The time required to exchange

data is thus independent of the number of processors.

Chapter 1 13

Another high level generic communication call commonly used 1is the
CAP_COMMUATIVE that allows each processor to calculate its own local commutative
operation (e.g. minimum, maximum or sum calculation, etc) before communicating with all
other processors and returning the global value to each processor. The parameter list for this
communication is as follows :

CAP_COMMUTATIVE(Value, Type, Function)

Where Value is the local contribution to the value to which the commutative operation is to be
applied, and Function is the binary commutative function to be used, e.g. MAX, ADD, etc.

An example of a commutative communication is as follows :

CAP_COMMUTATIVE(MAXNUM, 2, CAP_RMAX)

Each processor will provide its own local value of MAXNUM and will, based on the function
CAP_RMAX which finds the maximum value of MAXNUM, will return it as the global value.

In the CAPTools library every processor knows its position in the processor grid and

knows which processors are its neighbours. This includes knowing that a neighbour processor

does not exist in a certain direction if it is a processor on the edge of a grid.

1.7 Domain Decomposition of a 1-Dimensional Jacobi Solver.

To demonstrate the parallelisation of a code using domain decomposition and the
Computer Aided Parallelisation Tools communication library consider the following problem.
The simple diffusion Jacobi problem being solved is :

TNEW(D) = (TI-1)+T(+1))/2 where 1=2,999
and the boundary conditions are

T(1)=1 T(1000) = 100
The serial algorithm for solving this problem would be as follows :

DO1=2,999

TNEW(D) = (T(I-1)+Td+1))/2
ENDDO

The mesh for the problem is 1-dimensional consisting of 1000 elements. To decompose
this mesh onto, say N processors using Block Mapping (Section 1.5) would involve distributing

1000/N elements to each processor. For example if there were 4 processors then the number of

Chapter 1

14

elements distributed to each processor would be 250. Table 1.1 shows the range of data each

processor would operate on.

Processor Low Range High Range
1 1 250
2 251 500
3 501 750
4 751 1000

Table 1.1 : Data ranges for four processors.

Each processor has its own unique low and high range limit to operate upon. These low

and high ranges values will differ depending on the number of processors. For example on 2

processors the ranges is shown in Table 1.2.

Processor Low Range High Range
1 1 500
2 501 1000

Table 1.2 Data ranges for two processors.

These low and high range values are dependent on the number of processors. Since the
problem may be ran with varying number of processors then these low and high range values
must be dynamically generated at the beginning of the parallel code. These low and high ranges
are calculated for each processor at runtime based on the problem size (often read in) and the
user specified number of processors. These low and high ranges are allocated the variable names
CAP_LOW and CAP_HIGH and are unique to each processor. These variables may then be
used to partition the solver loop as follows :

DO I = MAX(2,CAP_LOW), MIN(999, CAP_HIGH)

TNEW(I) = (T(I-1)+T(I+1))/2
ENDDO

The MAX and MIN functions ensure that the original limits of the problem are not exceeded.
To calculate the value of TNEW for each processors range requires values from its
neighbouring processors. Consider the 4 processor case again. On processor 2 the range of I will

be from 251 to 500. To calculate the value of TNEW(251) requires the value of T(250) and

Chapter 1 16

1.8 Implementing Recurrence Relations using Pipelines.

Consider the simple serial recurrence calculation in Figure 1.8.

A(1)=A_INITIAL
DO L=2,NZ
A(L)=A(L)+A(L-1)
ENDDO
Figure 1.8 : A Simple Serial Recurrence.

To calculate the value of the array for a given index L requires the value of the present
index and the value of the array at the previous index, i.e. it require A(L) and A(L-1). A
recurrence occurs since the previous value A(L-1) is required to calculate the value of A(L).
This recurrence is very much like a production line or pipeline where an entity is required from
the previous stage of the pipeline. It is for this reason that a recurrence is often referred to as a
pipeline.

Figure 1.9 shows how this pipeline is reliant on the previous index of the array. For
example, to calculate the value of A(3) requires the value of the previous index A(2). This
indicates that the computation must be done in this strict order to ensure correct results. This

form of calculation is found regularly in most CFD codes.

A(l) A2)=AQ2)+ A1) A(3)=A3) + A(2)

Figure 1.9 : The Use of Previously Calculated Data in a Pipeline

When this pipeline array is partitioned in parallel using a block partition, the array will
be equally divided between the processors. If there are N number of processors and each of these
processors is distributed with three indices of the array then the partition array will be as in

Figure 1.10.

Chapter 1 17

1 1 2 [3] 45716] [Nz5|NZ4[Nz3 [NZ-2 [NZ-1| NZ

Proc 1 Proc 2 Proc N-1 Proc N

Figure 1.10 : A block partitoned pipeline.

Figure 1.11 shows the code for a simple serial recurrence (Figure 1.8) after
parallelisation. The loop L has been partitioned using CAP_LLOW and CAP_HIGH as described
in Section 1.7. The aim of partitioning this loop is to allow each processor to calculate its own
portion of the array concurrently and thus reduce the computation time. However, the
calculation within this loop is dependent on having the value of the previous array index. This
therefore condemns the processors to operate in a serial fashion. Figure 1.12 displays
diagrammatically how this pipeline operates. The first processor will calculate for the range of
indices it owns (i.e. 1 to 3) before communicating the required data (index 3) to the next
processor. The next processor then receives this data before allowing calculation to be executed.
Once this calculation has been executed the processor will then communicate to the next

processor the data it requires.

A(1)=A_INITIAL

CALL CAP_RECEIVE(A(CAP_LOW-1),1,2,CAP_LEFT)

DO L=MAX(2,CAP_LOW),MIN(NZ,CAP_HIGH)
A(L)=A(L)+A(L-1)

ENDDO

CALL CAP_SEND(A(CAP_HIGH),1,CAP_RIGHT)

Figure 1.11 : A Simple Serial Recurrence that has been parallelised.

The recurrence calculation causes the processors to operate serially. The pipeline will
also take longer than the original serial code since there is now the additional overhead of
communication between the processors. For a parallel machine with a high communication
latency, the communication time will extend the total time of the pipeline significantly. If there
is little computation within the loop then the communication time may completely dominate the
time taken. Obviously if a parallel machine with a low communication latency is used then the

time taken by the pipeline will be reduced, but will still take longer than the serial code. The

Chapter 1 21

(CAPTools). In the first instance this was achieved by improving the automatically generated
parallel code from CAPTools by applying by hand the overlapping of communications with
calculation using asynchronous communications. This was tested on a test case of four codes.
From this premise it was then possible to formulate a general formal model that was pursued
in the incorporation of automatically generated overlapped communications as an additional
stage within CAPTools. This additional stage within CAPTools was tested on several other
codes. Initially these methods were applied for structured mesh based codes. A further
objective was to investigate whether these methods were also applicable to unstructured mesh

based codes.

1.11 Outline of Thesis.
Chapter 2 will discuss Computer Aided Parallelisation Tools (CAPTools) [26, 27, 28,

29] developed at the University of Greenwich to automatically generate parallel code. These
Tools are referred to throughout this work.

Chapter 3 investigates the parallelisation of four structured mesh codes using CAPTools.
The chapter discusses how these codes were parallelised using CAPTools along with any other
optimisations that were applied to obtain improved efficiencies. Results will also be presented
for these parallelisations using synchronous communications.

Chapter 4 moves on to investigate ways of increasing the performance of these codes
even further by applying overlapped communications. Four different methods of applying
overlapped communications were investigated and are discussed. These methods are applied to
these codes by hand.

Following the successful application and testing of the four methods in the previous
chapter, Chapter 5 discusses their implementation as an additional stage within CAPTools. This
will allow these methods of overlapping to be automatically generated by CAPTools to replace
the synchronous communications.

Chapter 6 provides the results obtained from CAPTools using synchronous
communications and for overlapped communications.

Chapter 7 investigates the parallelisation of unstructured mesh codes. The chapter also
discusses methods to automatically generate overlapping communications for these types of

codes.

Chapter 1 22

Chapter 8 provides a conclusion to the work investigated.

1.12 Conclusions.

This chapter has provided a basic understanding of the concepts of parallelising codes. It
has also defined some of the problems associated with parallel processing. The subsequent
chapters will attempt to resolve some of these problems, and be implemented for automatic

generation within Computer Aided Parallelisation Tools.

Chapter 2

2 Computer Aided Parallelisation Tools
(CAPTools).

This chapter explains in further detail the aims of the parallelisation tool, Computer
Aided Parallelisation Tools (CAPTools) and the stages of the process of obtaining parallel
code. Other parallelisation tools, as well as CAPTools, were discussed briefly in Section 1.2.

The whole process of automatically generating parallel code will be explained briefly
along with a more in depth explanation of how each stage is accomplished. The embedding of
the automatic generation of overlapping communications within CAPTools will require the

use of various data structures from each of these stages.

2.1 CAPTools.

CAPTools [26, 27, 28, 29] is targeted at facilitating the generation of efficient parallel
FORTRAN 77 code with explicit communication calls. Although the tools are designed for
the parallelisation of any application, the initial focus of attention of CAPTools is for
structured mesh based FORTRAN numerical codes such as Computational Fluid Dynamics,
heat transfer and structural analysis.

The main aim of CAPTools is to produce a parallel code adhering to all the five
requirements of parallel processing outlined in Section 1.3. Using CAPTools, it is possible to

reduce the time taken to parallelise code from weeks or months, to just days or even hours.

2.2 Using CAPTools to parallelise a Structured Mesh Computational Mechanics
Code.
The stages involved to produce a parallel code using CAPTools are as follows:
1. Serial Fortran code is loaded into CAPTools (Section 2.3).

2. A detailed dependence analysis of the serial code is calculated (Section 2.4).

Chapter 2 24

3. A data partition for one array is prescribed by the user and inherited
throughout the code (Section 2.6).

4 Execution control masks are generated (Section 2.7).

5. Calculation, Migration and Merging of communications (Section 2.8).

6 Generation of communications (Section 2.9).

7. Final code generation (Section 2.10).

Each one of these steps will be discussed in further detail in this Chapter.

2.3 Loading the Serial Code.

The very first stage in using CAPTools is to read in the serial Fortran 77 code. This
will involve a basic parsing of the code and for a parse tree, symbol table, routine call graph
and a control flow graph to be constructed.

The parse tree consists of nodes used to represent the source code being parallelised.
The parse tree is constructed as binary trees with each node representing a symbol table entry
(SYMBOL) with a left and right branch pointing to the next nodes. Each routine has its own
symbol table. Figure 2.1 shows an example of a simple parse tree from CAPTools for an

assignment statement A = A + 2.

SN

()

Figure 2.1 : A parse tree from CAPTools representing an assignment statement.

2.3.1 Call Graph.

The call graph consists of nodes each representing a routine. A node is connected to
another node if a routine calls another routine. The call graph is assembled by identifying all

calls to routines in the parse trees and matching them with the relevant routine header. The

Chapter 2 25

strict order of the call graph is composed by performing a depth first search from the main
program identifying every routine call. A routine is added to the ordered list only when every
routine called by that routine has been processed. This provides a strict order of routine calls
for the program that allows the Fortran code to be outputted in the same order as inputted.
This strict order call graph may then be used for interprocedural analysis of the dependence
graph. It will also be relevant when determining the path by which communications and any
communication synchronisation points may proceed when being migrated (Section 2.8.3).
The strict ordering of the routines is employed when traversing through the routine
boundaries during an interprocedural traversal.

Each routine node (ROUTINE) holds information on other routines that a particular
routine calls (CALLS) and a list of routines that have called this routine (CALLEDBY).
Each ROUTINE also stores the next routine in the order as they were read from the input file
(NEXT) and a strict order where each routine is listed only after all routines it references
have already been listed (STRICT). The pseudo code in Figure 2.2 shows how CAPTools
uses this data structure to traverse the call graph, which in this case are the routines being

called.

CALLS := ROUTINEA.CALLS
WHILE (CALLS <> NIL) DO
BEGIN

CALLS := CALLSANNEXT
END

Figure 2.2 : Pseudo code to traverse the call graph.

2.3.2 Control Flow Graph.

The control flow graph consists of nodes which represent a group/block of statements
(known as a basic block) with directed control flow paths from one node to another [53].
These blocks of statements are stored within CAPTools as a BLOCK data structure. Each one
of these BLOCK data structures will point to a list of these statements (COMMAND) that
belongs to this BLOCK. These statements are grouped into blocks as follows: each DO or IF
statement will be placed in a BLOCK of its own; while one or more consecutive assignment
statements will be placed into one block. The pseudo code example in Figure 2.3 shows how
it is possible to traverse through every statement of every block of every routine in the code

as it was in the original input code read into CAPTools.

Chapter 2 26

CURRENT_ROUTINE := ROUTINE
WHILE (CURRENT_ROUTINE <> NIL) DO
BEGIN
CURRENT_BLOCK := CURRENT_ROUTINE ~.BLOCKTOP
WHILE (CURRENT_BLOCK <> NIL) DO
BEGIN
CURRENT_COMMAND := CURRENT_BLOCKA.COMMAND
WHILE (CURRENT_COMMAND <> NIL) DO
BEGIN

CURRENT_COMMAND := CURRENT_COMMANDANEXT
END
CURRENT_BLOCK := CURRENT_BLOCKA.NEXT
END
CURRENT_ROUTINE := CURRENT_ROUTINE A.NEXT
END

Figure 2.3 : Pseudo code to traverse every statement in the input code.

The first block of each routine is stored in the CAPTools data structure ROUTINE as
the BLOCKTOP.

Each BLOCK possesses a HASFATHER and a HASCHILD data structure that
represents a list of blocks from which flow can have reached a particular block and to which
control can flow from the block respectively. Figure 2.4 shows the pseudo code that performs
a depth first search (DFS) from a starting block (STARTBLOCK) passing through all blocks
marking all reachable blocks down the control flow graph using the HASCHILD of each
block. The blocks are marked using the MARKED field of BLOCK which is reserved
specifically for this purpose. It is also possible to perform a depth first search up the control

flow graph using the HASFATHER of the block

PROCEDURE BLOCKDFS(STARTBLOCK)

BEGIN

BLOCKA.MARKED := TRUE

BLOCKLIST := STARTBLOCK ~HASCHILD

WHILE (BLOCKLIST <> NIL) DO
BEGIN
IF (NOT BLOCKLISTABLOCKAMARKED) THEN

BLOCKDFS(BLOCKLISTA.BLOCK)

BLOCKLIST:=BLOCKLISTA.NEXT
END

END

Figure 2.4 : Pseudo code showing a depth first search of the basic blocks.

Figure 2.5 shows how the statements are divided into blocks. The control flow graph

(Figure 2.6) shows how the control flows from one block to another. For example, Blockl

Chapter 2

27

may either flow to Block2, i.e. another iteration of the I loop, or flow to block 5, 1.e. there are

no further iterations of loop 1.

Sl
S2
S3
S4
S5
S6
S7
S8
S9
S10
S11
S12
S13
S14
S15
S16
S17
S18 10
S19
S20

DOI=
DOJ =
A(LY)=
B(L))=
ENDDO
C(DH=
ENDDO
IF(CONDITIONAL) THEN
C(D)=
ELSE
C(D=
ENDIF
IF (CONDITIONAL) THEN
GOTO 10
ENDIF
Al)=
A(1,N)=
CONTINUE
B(1,1)=
B(I,N)=

Figure 2.5 : Code to Demonstrate Control Flow

|

Block 1

Block 2

Block 3

Block 4

Block 5
/ \

Block 6 Block 7

S —

Block 8

Block 10

Block 9

V

Figure 2.6 : Control Flow Graph.

Block 1
Block 2
Block 3
Block 3

Block 4

Block 5
Block 6

Block 7

Block 8
Block 9

Block 10
Block 10
Block 11
Block 11
Block 11

Chapter 2 28

Incorporated into the basic blocks are the post- and pre- dominator trees of the control
flow graph. Post-domination indicates that a statement S post-dominates a statement S; if no
control flow path to the routine end exists from S, that does not pass through S;.
Predomination indicates that a statement S; pre-dominates statement S, if the control flow
must pass through S to reach S,, i.e. no other route exists to S, that does not pass through S;
[54]. The predomination graph and post-domination graph for the control flow graph in
Figure 2.5 is shown in Figure 2.7 and Figure 2.8 respectively. Each block has its own unique
immediate pre- and post- dominator. The pre-dominators and post-dominators of a block may
be found, within CAPTools, by traversing up the appropriate pre or post dominator tree

which is stored in the BLOCK data structure of CAPTools.

START STOP

oo
oRolololo Sl
START
ofo

STOP

Figure 2.7 : Predomination Graph. Figure 2.8 : Postdomination Graph

Using these graphs and data structures that are provided from CAPTools it is possible
to traverse up the control flow graph to find the optimum position for placement of
communications, synchronisation points, etc. For instance, if a communication were required
before a certain statement then it would be migrated up the pre-dominator tree since this
would guarantee execution before that statement. The pseudo code in Figure 2.9 shows how

this would be accomplished within CAPTools.

Chapter 2 29

PREDOMINATING_BLOCK := BLOCK
WHILE (PREDOMINATING_BLOCK <> NIL) DO
BEGIN

PREDOMINATING_BLOCK := PREDOMINATING_BLOCK*PREDOM
END

Figure 2.9 : Pseudo code showing a traversal of the pre-dominator graph in CAPTools.

If the BLOCK on the first line in Figure 2.9 is BLOCKI11 from Figure 2.5 then the
code will traverse the pre-domination graph (Figure 2.7) passing through BLOCKS8 and
BLOCKS5 before reaching BLOCK1 where the command is a DO statement. A similar
method may be used to traverse the post-domination graph.

During traversal, any barriers to movement (such as the assignments of the data to be
communicated) must be detected between the current control flow graph block and its
immediate pre-dominator in any control path before traversal is legal.

Each one of these blocks also holds a list relating to the loop nestings (NESTING)
surrounding that basic block. For example, in Figure 2.5 Block 3 will have two loop nesting
surrounding that block, i.e. Block 1 and Block 2. Figure 2.10 shows how this NESTING

information is stored within CAPTools.

BLOCK NESTING NESTING LOOPINFO
NEXT COMMANDS NESTING LOOPINFO NEXT LOOPINFO NEXT HEAD VARIB

;| NIL| ' I

\l—f——ﬁw,|1|

| =1 | [Nu]

T
N

__[NIL]

Figure 2.10 : The data storage of NESTING within CAPTools.

Chapter 2 31

reassigns that data. The source is in effect overwritten by the sink. Consider the following
example :
Sy ..=A()
S, A =..
An anti dependence exists since the data used in statement S, is reassigned in statement S,.
Output Dependence - This is when data is being reassigned after being previously
assigned. Consider the following example :
Si Al = ..
S A =..
The data in statement S; is simply reassigned in statement S,. This is a common method used
in many codes to reuse memory location to reduce the memory overheads.
Control Dependence - This is when a control statement, such as an IF, controls the
execution of other statements. Consider the following example :
Si IF (conditional) THEN
S A= ...
The statement S; is controlled by the statement Sy. The statement S; may not execute until

statement S; has been proved either true or false.

24.2 Depth dependence.

Another attribute of dependencies to consider is whether they are carried by loops.
These are dependencies for data assigned in one iteration being used in a consequent iteration
of the same loop.

Each dependence type also possesses a depth. A dependence may be Loop

Independent if it exists within a single iteration of all surrounding loops. For example :

DO I=1,100
DO J=2,99
AL = ...
.= ALD)
ENDDO
ENDDO

i.e. the value of A(I,J) was assigned and used in the same iteration.

Chapter 2 32

If a dependence exists between iterations of the outermost loop of the surrounding

statement/s then it is deemed to be Level One. For example :

DO K=1,100
DO J=2,99
DO I=1,5
A(LTK) = A(LJK-2)
ENDDO
ENDDO
ENDDO

i.e. the values used in each iteration was assigned two iterations earlier of the outermost K
loop.
If a dependence exists between iterations of the next outermost loop of the

surrounding statement/s then it is deemed to be Level Two. For example :

DO K=1,100
DO J=2,99
DO I=1,5
A(LTK) = A(LJ-1,K)
ENDDO
ENDDO
ENDDO

i.e. the value used in each iteration was assigned in a previous iteration of the J loop. This
process may continue for every other loop.

These loop carried dependencies can cause a loop to be serial, often resulting in a
pipeline (Section 1.8). These pipelines are caused (as mentioned earlier in Section 1.8) by the
use of data calculated in a previous iteration. These serial loops are detected by CAPTools by
the occurrence of a loop carried true dependence.

Within CAPTools data structures every executable statement (COMMAND) stores all
dependencies for that statement. Each dependence data structure stores the information for its
Level of dependence (DEPTH), its TYPE, i.e. True, Anti, etc, and the VARIABLE that

causes that dependence.

Chapter 2 34

increments in every iteration of a particular loop, are identified and transformed to be
functions of the loop variable concermed [56, 57, 58]. These transformations are not essential
but they do simplify the analysis process, code generation and asynchronous code generation
stages. These transformations are easily reversible during the code generation stage to ensure

original code recognition [28].

2.4.5 Control Dependence Calculation.

Prior to the calculation of the dependence analysis the control dependencies (Section
2.4.1) are calculated using the post-domination graph of the control flow graph (Section
2.3.2). If a statement does not post-dominate its father statements then it is control dependent
on those fathers [54]. The control dependence calculation algorithm searches up the post-
domination graph until a common post-dominator is reached. All the blocks that were

traversed then contain statements that are control dependent on the father block.

2.4.6 Dependence Analysis.

The dependence analysis first performs a basic dependence calculation. This analysis
consists of a scalar and array analysis. A scalar variable can be a DO loop counter variable,
whose value will always be defined within the loop, otherwise it is deemed as a nonloop
variable. The values of the nonloop variables will always be defined by previous statements.
These values may be determined by the true dependencies of the scalar dependence graph.

For an array analysis, the examination and determination of possible equality of array
index expressions determines if a dependence exists. Due to the conservative nature of the
algorithm to obtain a correct dependence graph, a dependence is set unless its non-existence
may be proved. A dependence may be determined by the array references of the assi gnment
and usage statements. From this, a set of equations and constraints may be determined, to
which dependence tests are applied to attempt to prove that a dependence does not exist.

These tests include the Greatest Common Divisor test (GCD) [58], the Banerjee
Inequality Test [58, 59, 60] and the Symbolic Inequality Disproof Algorithm (SIDA) [61,
27). The GCD test obtains a solution to the equations based on the fact that they have only
integer variables and integer coefficients. The Banerjee inequality test makes use of all

variable range information to prove that a dependence does not exist.

Chapter 2 35

The first two tests mentioned make use of information about the loop iteration
variables. However, the inclusion of other variables, such as nonloop variables (also referred
to as symbolic variables) in index expressions, loop limits and conditional statements,
prevents an accurate analysis (Section 2.5). Consider the pseudo code in Figure 2.12 where
the variable M used in statements S4 and S¢ have the same defining statements but each has a
different call path. The use of variable M in statement S, is defined in statement S; but has
the call path S;. Meanwhile, the use of the variable M in statement S¢ also has the defining
statement S3 but the call path of Ss. The two references to the variable M in subroutine SUB1
therefore have different values since their call paths to the defining statement of the variable

are different.

Sy CALL INITIALISE (N)
S, CALL SUBI(A, N)

SUBROUTINE INITIALISE (K)

S; K=..
END
SUBROUTINE SUB (A, M)
S, AM, 1) = ...
DOJ=1,NJ
Ss CALL INITIALISE(M)
Se AM,) = ...
ENDDO
END

Figure 2.12 : Pseudo code showing two different call paths for a definin g statement.

2.4.6.1 Symbolic Inequality Disproof Algorithm

The Symbolic Inequality Disproof Algorithm (SIDA) test attempts to prove nonloop
variables inequalities to be false. The algorithm makes use of information already known in a
linear combination that matches the set of nonloop variables being tested. For example:

Test NONLOOPS + K >= 0 where K is a constant
A linear equation of known inequalities produces :
NONLOOPS + C <=0 where C is a constant
The SIDA test can then be performed to eliminate all nonloop variables :
NONLOOPS + K >= 0 >= NONLOOPS + C
K>=C

If the inequality involving only known constants is true then the original test :

Chapter 2 36

NONLOOPS >=0 is false
For example, to prove that N + 2NM >= 10 requires the test to disprove that :
N+2NM-10<0
The knowledge base consists of two relevant known inequalities N -2 >=0and N - M <= 0.
Since the original equation consists of a nonlinear term NM further inequalities are required

to find a solution. These additional inequalities, for this example, may be obtained by
multiplying the first inequality from the knowledge base with itself and multiplying the two

inequalities together. This provides the following four inequalities :
N-2>=0
N-M<=0
N°—4N +4>=0
N’ —NM - 2N + 2M <= 0
Taking these inequalities a matrix system A k = b is constructed. The vector b is
constructed using the coefficients of the nonloop variables in the test inequalities. In the
matrix A each column represents the coefficients of the nonloop variables in a known
inequality, where each row represents a nonloop variable, matching those in the b vector.
Any nonloop variables not in b are appended to b with a zero coefficient.
Also constructed are vectors ¢ and s which store thes constants and signs respectively
of each known inequality (i.e. columns of A) where (<=, =, >=) are represented by (-1,0,1) in
.

For the four inequalities above the following matrix system and vectors are

constructed :
A k = b
1 1 -4 -2\ (k) (1} N
0 0 0 -k 2] NM ¢c=(-2 0 4 0) s=(1 -1 1 -1)
0 -1 0 2 ||k| |O] M
o 0 1 1]k (0] N?

The solution of this system produces the coefficients for the linear combination of the known

inequalities required to eliminate the variables in the inequality being tested :

Chapter 2 37

9 9
-4 4
k= s*¥k =
- 2 -T2
-2 2

Since we are attempting to prove false a lesS than zero inequality, a positive combination is
required. The s*k vector above shows that all the contributions to the combination have the
required sign , allowing the final test of the SIDA algorithm:

N+ 2NM -10 < 0 <= 9(N - 2) — 4(N = M) + 2(N* - 4N + 4) — 2(N* —= NM — 2N + 2M)

<=9N - 18 —4N +4M + 2N? - 8N + 8 — 2N° + 2NM + 4N - 4M

N+2NM-10<0<=N+2NM-10

Which provides :
-10< -10

and thus the final test involves constants only and if false, proving that the original test is

false and that the original inequality is true.

2.4.6.2 Inference Engine.

These dependence tests work well to exploit definitely true inequality information.
However, much of this information, especially the execution control set of statements will
often involve logical operations and logical variables. Vital information such as loop steps
and division denominators can definitely never be zero and therefore cannot be used since the
information is either greater than or less than zero.

Using an inference engine [62] in conjunction with the SIDA allows this information
to be exploited. Every logical variable and inequality in the known information is used to
form a literal when the logical expression 1s converted into clausal form. The inference
engine then attempts to prove the clause list false by combining clauses that contain
contradictory literals, performing a union on the remaining literals to form a new clause. The
false conclusion is reached if an empty clause is formed when two clauses contain single
literals that contradict each other. To calculate the contradictory literals between two
inequalities to be false requires assuming one of these inequalities is true. Adding this
inequality to the knowledge base then enables the other inequality to be proved false. This
indicates that one of these literals, either the assumption or the second literal, to be false and

satisfying the contradictory literal requirement.

Chapter 2 38

Consider the following code example :

DOI=2,N,S
A0 =Ad) + ...
ENDDO

Normalising this loop (Section 2.4.4) provides :

DOI=1,(N-2)/S +1
A(I-D)*S +2) = A(I-1)*S +2) + ...
ENDDO

Applying the Banerjee Inequality Test [58, 59, 60] provides the following inequality :

S~ (S8 +8)" (N-2)/S+ 1) <=0 <==S + (S* = S)" (N=2)/S + 1)
where

S*=Sif S >0 or otherwise S*=0

S"=S if S >0 or otherwise S'=0
Therefore depending on the sign of the variable S :

S>0:-S-S((N-2)/S+1)<=0<=-S

S<0:-S<=0<=-S-S((N-2)/S +1)

S=0:0<=0<=0
The first two cases have contradictions that can be identified using the SIDA test (Section
2.4.6.1). The third case, however, cannot be disproved with the given current set of
information. If S is zero then the location of array A used is the same for each iteration as the
previous causing a loop carried loop dependence. Since S is the loop step and may not be
equal to zero and also S is the denominator in a division the following clauses are added to
the knowledge base :

S>0 orS<0
The inference engine is used during the Banerjee inequality to determine the possibility of the
variable S having a value of zero. The first test provides the contradictory literals (S = 0) and
(S < 0). A further second test provides the contradictory literals (S = 0) and (S > 0). The
inference engine therefore proves that the variable S cannot be zero and thus the third case of
S =0 is removed from the set of Banerjee tests, enabling the non-existence of the loop carried

true dependence to be proved.

Chapter 2 39

2.4.6.3 Interprocedural Analysis.

The dependence analysis tests carried out are interprocedural. This is not done using
the technique of inlining as this will change the structure of the code, which is in direct
contradiction of rule 2 of the parallelisation objectives in Section 1.3. Instead, a mapping is
executed between routines using a start and stop node of the routines involved. These start
and stop nodes are added to the dependence graph after it has been constructed. All
statements within a routine that uses variables that are not defined in that routine but passed
in via either the parameter list or common block are joined in the dependence graph to the
start node. Similarly, any statements that define variables that are passed out of this routine
are connected to the stop node.

A further dependence test being incorporated into CAPTools is the OMEGA test [63].
This test uses the Fourier-Motzkin variable elimination [63, 64, 65] to attempt to determine
precisely if a dependence exists. This method is slower, but more accurate, and for the

majority of cases is not required.

2.5 Symbolic Variable Manipulation.

One of the most important features of CAPTools is its ability to manipulate symbolic
variables. The dependence calculation algorithm makes use of loop iteration variables, but the
inclusion of other non-loop variables could prevent accurate analysis.

To enable a more accurate comparison of these non-loop variables, they are defined not
only in terms of the symbol of the variable but also as the defining statement of the variable
along with the call path from the variable usage to the routine that assigns the variable.

Consider an array index expression, for an array

A((S*M*L)+(2*K)+J+6, J*M)+5, IP(K+1)+J-1)
where J and K are loop variables and M and N are non-loop variables. This is stored within

CAPTools as shown in Figure 2.13, Figure 2.14 and Figure 2.15.

Chapter 2 41

INDEX 3
COEF NONLOOP CONSTANT NEXT
Vr [[-1 [NILj
TERM COEF NEXT
;[1 NI
TREE COMMAND INDICIES NEXT
Lo T [N
| |
IP IP(.)=..
COEF NONLOOP CONSTANT NEXT
,] NIL] 1 TNIL
LINK COEF CONSTANT NONLOOP NEXT LINK COEF CONSTANT NONLOOP NEXT
L 10 o [N [——{ J1 [o [NL [N
} }
J K
LINK COEF CONSTANT NONLOOP NEXT LINK COEF CONSTANT NONLOOP NEXT
p 1] o [N [——{ ;Jo] o [NL_ [N
| |
J K

Figure 2.15 : The third index of array A stored within CAPTools.

Figure 2.13 shows the data structure for storing the first index (INDEX) for the array
A. This INDEX data structure consists of a data structure for the loop variable coefficients
(COEF), nonloop variables (NONLOOP) and any constants values (CONSTANT). For this
index, the COEF data structure stores the value of K*2 and J*1; the NONLOOP data
structure stores the value 5*M*L; and the CONSTANT stores the value 6. When these
components are added together they provide the symbolic variable of the first index of array
A ie. (5*M*L)+(2*¥K)+J+6. The data is stored similarly for indices 2 and 3 in Figure 2.14
and Figure 2.15.

These symbolic variable data structure may be manipulated within CAPTools by
iterating over each INDEX of an array, followed by each COEF and each NONLOOP. While
iterating over each of these data structures the symbolic variables may be manipulated using

some of the utilities in Section 2.5.1.

2.5.1 Symbolic Variable Manipulation Utilities.

There are several utilities within CAPTools that can be used to manipulate these

symbolic variables and their data structures. Some of these routines are :

Chapter 2 42

FORSUBSTITUTE - This utility processes an input symbolic expression or an input
parse tree and performs a depth first search of the dependence graph substituting the
original symbolic variables with the symbolic variables used to evaluate it. This allows
symbolic variables to be converted into a more standard set of defining symbolic
variables allowing a comparison between statements to eliminate any unknown
symbolic variables;
ADDLIST - This allows two symbolic variable lists to be added or subtracted,
MULTLISTS - This allows two symbolic variable lists to be multiplied together;
LDISPROVE - This processes symbolic variable expressions to determine if they are
true, false or cannot be resolved using the SIDA or OMEGA tests (Section 2.4.6);
EXTRACTLOOP - This allows loop variables to be extracted from a nonloop list;
CONTROLFACT - This extracts the control set in clausal form under which the input
statement will execute;
FACTORISE - This symbolically factorises one symbolic expression by another
symbolic expression

Using these utilities, the algorithms within CAPTools may be used to exploit the symbolic

algebra.

2.6 Data Partitioning.

In CAPTools, a partition strategy for a structured mesh may be prescribed simply by
defining a routine name, a variable array name and an index or subset of that array [28].
Figure 2.16 shows that for the Jacobi code (Section 1.7) the variable array TNEW, index 1
has been chosen as the base variable for partitioning. CAPTools will then produce a
comprehensive decomposition of the mesh with automatic inheritance of partition
information to all appropriate variables in all routines. Each processor will have its own
partition range which is defined by the CAPTools generated variables CAP_LXXX and
CAP_HXXX where XXX represent the variable that the partition is based upon. These
partition range variables have their own unique values on each processor as mentioned in
Section 1.7.

The inheritance of a data partition may be acquired by an array variable if it is

assigned or used by a partitioned array if a linear relationship exists of the index expression

Chapter 2 44

DOI=1,N
DO J=1,100
S B(J.D) = A(L))
ENDDO
ENDDO
DOI=1,N
DO J= 1,100
S C(1,J) =B(,J) + A(1,J))
ENDDO
ENDDO
In statement S, array A (which has been partitioned on index 2) inherits its partition to the
array C index 2. Also, in statement S, the array B may inherit the partition in index 2 but in
statement S the array B may inherit its partition in index 1. There is clearly a conflict here in
that both indices may not be partitioned.

The data partition inheritance algorithm has been devised to operate in the context of
real world application codes. This, in particular, forces it to cater for interprocedural re-
mapping of array dimensions (e.g. when a one-dimensional array is passed into a routine and
becomes a three-dimensional array). This is achieved by specifying array decompositions in
terms of Modulus and Divisor symbolic expressions rather than as an array index. These
expressions can be used to extract a partitioned component of an array from a non-linear one-
dimensionally mapped representation of the array indices.

Once the partition has been generated, the user can inspect the arrays partitioned to
ensure that a complete partition of the code has been generated and also to ensure that there
were no undesirable array partitions generated. Addition of arrays into the data partition and
deletion of some array partitions can then be performed.

The data structure for the partition (PARTITION) is stored for each array partitioned in
every routine. Each PARTITION data structure consists of a reference to the symbol variable
(SYMBOL) that is partitioned; the index (INDEX) that is partitioned; the low and high
partition range variables; the values of the Modulus and Divisor expression in terms of
symbolic variables, i.e. NONLOOP and CONSTANT. It also stores whether the partition

controls a disected subset of the array or the entire array. If the disected partition is present

then any other disections of the partition are stored in the NEXT field.

Chapter 2 45

2.7 Execution Control Masks.

The calculation and generation of execution control masks are required to ensure that
the appropriate statements execute only on the processors that own the partitioned data [28,
31]. CAPTools generates a mask for every statement that requires one. These masks consist
of an IF statement with a condition which states that only the processor which owns the data
should execute the given statement. For example:

IF (CAP_LXXX <=1<=CAP_HXXX) A(D)=...
This execution CONTROL mask ensures that the value of A(I) is assigned only on the
processor that owns the value of Ith entry of array A.

During the generation of these execution control masks, many statements will possess
a mask. These execution control masks are however merged to reduce the overhead of

calculating each mask. For example :

DO I1=1,100
IF (CAP_LXXX <=1 <= CAP_HXXX) A(])=...
IF (CAP_LXXX <=1 <= CAP_HXXX) B(I)=...

IF (CAP_LXXX <=1<= CAP_HXXX) Z(I)=...
ENDDO

In the above code the statements within the loop each possess the same execution
control mask. These execution control masks may be reduced down to one execution control

mask that surrounds all the statements :

DO1=1,100
IF (CAP_LXXX <=1 <= CAP_HXXX) THEN
A(D=...
B(D)=...
Z(D)=...
ENDIF
ENDDO

this execution control mask may then be transformed into the DO loop limits as follows:

Chapter 2 46

DO I = MAX(1,CAP_LXXX),MIN(100,CAP_HXXX)
A(D=...
B()=...

Z(D)=...
ENDDO

This prevents the I loop iterating for all 100 iterations on each processor, while also
avoiding the evaluation of the execution control mask the same number of times. Instead each
processor will now only iterate over the partitioned data range allocated to that processor.

The main aim of the masking algorithm is to administer execution control masks to
the maximum number of statements and thus allowing the maximum amount of parallelism to
be obtained. Any statements that are not masked will be executed on every processor and can
cause additional communications to be generated if, for example, an unmasked statement
makes use of partitioned data.

There are four basic rules for generating execution control masks:

Rule 1. Statements that assign partitioned data.

Rule 2. Statements that use partitioned data.

Rule 3. Statements that assign values which are used by a masked statement.
Rule 4. Statements that use the data assigned by a masked statement.

The mask calculation algorithm attempts to mask as many statements as possible whilst
minimising the communications required. Flexibility exists since statements may be
controlled by a selection of execution control masks inherited via rules 2, 3 and 4. Some
statements may be controlled by several execution control masks, for example, to calculate
the data in overlap areas to avoid communication nested within many loops

Execution control mask statements may also be placed on call statements. This is
possible if either all the statements within the called routine have the same mask or the called
routine contains no masks.

To ensure a comprehensive set of masks has been set, they may be examined in the
Mask Browser window.

Each execution control mask is stored in the CAPTools data structure MASK. This data
structure contains a pointer to the symbolic expression for the execution control mask itself,

and the partition that is relevant to this execution control mask. The MASK data structure is

Chapter 2 47

assessable for each executable statement (COMMAND). This allows CAPTools to process
each execution control mask for each executable statement. More than one execution control

mask associated with the same statement is linked by means of the NEXT field.

2.8 Calculation, Migration and Merging of Communications.

When the execution control masks have been generated for the statements within the
code, it is possible to determine whether any communications are required and their
placement determined [28]. A communication is required if data used on a processor is not
assigned on that processor. This is determined by comparing the execution control masks on
the using statements with the location of the used data. This is achieved by the use of the
symbolic inequality disproof algorithm (Section 2.4.6.1) comparing the partition range values

designated by CAPTools in the partitioning stage with the execution control masks.

2.8.1 Commutative Operations.

Commutative operations, e.g. the summation or maxima of data, can exploit
parallelism where a loop carried dependence appears to prohibit it. The loop carrying the
dependence must be marked as partitioned during the masking stage (Section 2.7). There
must also be no other assignments or usages of the data within the loop or any other loop
carried true or control dependencies involving any other data in the statement.

This method allows each processor to calculate its own local values before
communicating to all other processors and returning a global value. The value will be the
same apart from some minor round-off error due to calculation reorder. This type of

communication is accomplished using the CAP_COMMUTATIVE (Section 1.6)

communication.

2.8.2 Calculation of Communication Requests.

Communication of partitioned data is necessary if the data required by one processor
is calculated on another processor. The data range required by a processor can be determined
by creating a clause list representing the control information for that range. The algorithm to
calculate the communication control set is as follows :

1. Create two literals from the execution control mask of the statement, i.e.

Mask_expression >= CAP_LOW AND Mask_expression <= CAP_HIGH.

Chapter 2 48

2. Create a third literal for the same ’AND’ set for the use of data before the set allocated
to this processor, i.e.

Usage_expression < CAP_LOW.

3. Duplicate the previous '’AND’ set and place within an 'OR’ list, changing the third
literal to represent the use of data after the set allocated to this processor, 1.€.
Usage_expression > CAP_HIGH.

4. Normalise the ’AND’ sets by setting the Mask_expression to be a function of the
Usage_expression, creating a new variable to represent the Usage_expression.

5. Simplify the control list by using the inference engine within CAPTools and the
control information of the statement.

Consider the following simple statement and its corresponding execution control mask :

IF (CAP_LOW <=1<=CAP_HIGH) A(I) =B(I-1)

where arrays A and B have the same partition. The communication control constructed for

the usage of B was as follows :

((I>= CAP_LOW) AND (I <= CAP_HIGH) AND (I-1 < CAP_LOW)) OR
((I>=CAP_LOW) AND (I <= CAP_HIGH) AND (I-1 > CAP_HIGH)

After the normalisation (with the introduction of a new variable CAP_USAGE representing

the index values involved in any communication) and simplification of the above control set

by adding knowledge that the partition range on each processor is at least one or more, i.e.
CAP_HIGH - CAP_LOW >= Minimum SLAB NUMBER

where
Minimum SLAB NUMBER >= 1 (and may be set higher by the user)

provides the following :

((CAP_USAGE + 1 >= CAP_LOW) AND (CAP_USAGE < CAP_LOW))

which states that the values of array B to be received from another processor is for the low

overlap area of B, i.e. B(CAP_LOW-1). If the control set is not empty a communication is

required.

For unpartitioned data and scalars a similar algorithm is used where the ownership is
not determined from a partition, but instead is based on the execution control mask of an
assigning statement that is related to the usage via a dependence.

There are five distinct type of communications :

Chapter 2 49

EXCHANGE - this involves the exchange of data between neighbouring processor as
described in Section 1.6;
SEND/RECEIVE - the communication of points of data between processors which
may not be neighbours;
BROADCAST - required when there is a conflict in data location or when no
relationship may be determined between the usage and the assignment of data;
PIPELINES — communications involving a recurrence calculation (see Section 1.8);
COMMUTATIVES - communication of summation and maxima calculations (see
Section 2.8.1).
Other communications may also be required for unpartitioned arrays and for all scalars.
If any DO, IF or CALL statements contains a communication and also has an
execution control mask associated with it then the execution mask is removed to prevent any

possible deadlock of the generated parallel code.

2.8.3 Migration and Merging of Communications.

Communications are generated for every statement that requires data from another
processor. The communications are placed prior to the use of the communicated data. These
communications may be placed within loops and be called several times more than desired,
causing additional unnecessary start up latency. There may also be duplication in the
communications of data between processors. To reduce this duplication the communications
are migrated out of as many loops and routine boundaries as possible in order to maximise
the possibility of merging these communications. This in turn leads to a further reduction in
the number of communication calls.

The migration of the communications is achieved by traversing up the control flow
graph via its predominator tree (Section 2.3.2) ensuring that there is no barrier to prevent the
migration of the communications. A barrier which would prevent the migration of a
communication are assigning statements or index assigners which may be determined using
the true dependencies. If migration reaches a routine start then each reference to that routine
call inherits the set of communications, and the communication continues from that point in
the caller routine.

Communications will often migrate to the same point in the code. This is normally

due to the barrier being the statement that assigns the data to be communicated. These

Chapter 2 50

communications may be merged by calculating whether they are subsets or intersections of
the same data using a symbolic comparison of the vector spaces [28].

When two requests for communication are merged, the original requesting statements
are listed within the communications request list of the CAPTools data structure for
communication (RECEIVE). The communication is referred to as the source while the
statements requiring the communication are referred to as their sinks. A communication
source may have several sinks due to the merger of communications as previously mentioned.
Figure 2.17 shows the Communications Browser from CAPTools for the Jacobi code
(Section 1.7). A communication has been selected and its associated statements using the
communicated data (sinks) are shown. Each communication may also be interrogated to
provide the user with additional information such as the barrier to the communication and
details of why it is required.

The data structure for the communications within CAPTools (RECEIVE) has several
fields of information. Each RECEIVE will store information for the symbol table of the variable
(SYMBOL) that requires communications; the communication control information (Section
2.8.2); a pointer to the list of commands requesting the communication (COMMANDLIST); and
a pointer to the list of commands assigning the communicated data (ASSIGNLIST). CAPTools
can traverse through each routine, each communication and each executable statement that

requested that communication.

Chapter 2

52

at statement S,. The third path is via the call to SUB2 in subroutine SUB1 at statement Ss and

then again by the call to subroutine SUB1 at statement S.

Se

Figure 2.18 : Pseudo code to show the show the use of DEFROUTE data structures.

DOI=...
B(D)=...
ENDDO
CALL CAP_EXCHANGE(B(I+1),....)
CALL SUBI(B)
CALL SUB2(B)

SUBROUTINE SUBI
CALL SUB2(B)
CALL SUB2(B)
END

SUBROUTINE SUB2(B)
DO I=1,N

A = A + B+1)
ENDDO

COMMAND
NEXT RECEIVE

RECEIVE COMMANDLIST DEFROUTE
NEXT COMMANDLIST NEXT DEFROUTE NEXT COMMAND

NIL NIL[|

NIL[|

NIL

NIL[|

Figure 2.19 : Data structures for DEFROUTE for the example in Figure 2.18.

Chapter 2 53

The information for the data storage of the communication within CAPTools is
exploited for the calculation of the optimum position of synchronisation points for

overlapping communications (Chapter 35).

2.9 Generation of Communications.

The communications generated by CAPTools are high level generic communication
calls, developed by the University of Greenwich, which map onto the low level
communication calls of either machine specific communications or communications (Section
1.6). The communications type generated depend upon that chosen by the user - either bulk
or gather and scatter. The generated communications consist of exchanges, pipelines,
constrained send/receive and broadcasts to all processors. Each of these communications may

be generated with additional surrounding loops if required.

2.10 Final Code Generation.

This stage outputs the final parallel code generated by CAPTools. The parallel code
will be generated with calls to routines to allow the setup of the partition of the data given the
number of processors. The code will also consist of additional communications to distribute
the initial data (i.e. from READ statements) and to collate the final results (i.e. for
WRITE/PRINT statements).

The parallel code may then be compiled and linked with the pre-processed CAPLib
communications library (Section 1.6). This library is pre-processed specifically for the
parallel machine and the communications types required, e.g. it may be compiled for the Cray
T3D using PVM, MPI or SHMEM communications or for the Transtech Paramid using PVM

or Ctoolset communications.

2.11 Transformations.

At various stages throughout the parallelisation process within CAPTools the user may
apply several automatic transformations to their source code. These are supplied within
CAPTools to allow the user to obtain improved results form the parallel code by the

application of very simple transformations. These transformations are :

Chapter 2 54

Loop split — this allows for the splitting of loops. This can transform serialising loop
carried dependencies within the original loop into loop independent dependencies
between the two loops formed by splitting the original;
Loop Interchange - this allows loops to be interchanged to allow better parallelism to
be obtained from a loop nesting;
Index Interchange — this allows the user to alter indices and, for example, to provide
contiguous data for communication;
Routine Copy — this allows a routine to be copied;
Loop Movement — this allows a loop to be moved into or out of called routines.

All these transformations will modify statements, control flow graph and the dependence

graph to ensure that correct code is generated.

2.12 Conclusions.

This chapter has provided a brief explanation of the parallelisation tool CAPTools and some
of its data structures. These data structures provide a good basis for the work developed in
Chapter 4 for the automatic generation of the overlapping communications within CAPTools
in Chapter 5. CAPTools will also be employed in the parallelisation of several codes in

Chapter 3.

Chapter 3

3 Parallelisation of Structured Mesh

Computational Mechanics Codes.

3.1 Introduction.

This chapter sets out to obtain efficient parallel performance of four different codes.
In the first instance all the codes were parallelised using Computer Aided Parallelisation
Tools (Chapter 2). Each of the parallel versions of the codes was then scrutinised closely to
detect if any further improvement in performance could be obtained on a parallel system.
These codes were also examined with the aid of CAPTools.

Every communication within a parallel code incurs an overhead that varies from one
parallel system to the next. It is therefore essential that the minimum number of
communications be generated.

There are also different communication calls that may be used depending on both the
data to be communicated and the nature of the algorithm. In the codes that are parallelised here
there will be examples of pipelined communications (see Section 1.8) and also exchange of data
between each processor (see Section 1.6 and 1.7).

Further optimisation such as Iteration Grouping is also investigated (Section 1.9).

3.2 2-D Heat Diffusion Code (FAB).

The in-house heat diffusion code from the University of Greenwich solves two
dimensional head diffusion and conduction problems on a structured grid. The solver is based on
the Gauss-Seidal Line Successive Over Relaxation (LSOR) algorithm which sweeps the domain
in the j-direction. The code consists of approximately 700 lines of FORTRAN code.

Figure 3.1 shows a two dimensional mesh of dimension IN by JN. The LSOR solver
sweeps the domain in the j-direction from 1 to JN solving for each i from 1 to IN. To calculate
the line L; requires the data from the previous line L;.; and from the next line Li+1. The physical

model of the problem is as follows :

Chapter 3 56

2 2
a_gz_+a ¢2=0
a_x ay

This is the two-dimensional Poisson equation to solve the temperature ¢. This is a typical

example of an elliptic partial differential equation. Applying a central difference approximation

provides the equation :

a; ;19 t ai—l,j¢i—1,j _ai,j¢i,j + ai+1,j¢i+1,j + ai,j+l¢i,j+l = bi,j

Where a denotes the coefficient at the respective nodal temperatures
Solving the problem using a line solver the solution of a line j is based on the approximations of
lines j-1 and j+1. This provides a tridiagonal matrix system of equations to be solved for each
line of the form:

101 ;= ;9% Ais1j Py ;= i1 Py Qi P, T b

For a single j line this, gives the matrix equation :

A® =B
(d, u,] [D,] [B,]
l, d, u, D, B,
l, dy u D, B,
A = CI) = B =
Lo dpy Uiy D, By,
i Ly dy i D,y i | By]
Where

li = ai—l,j

u, =a;.,;

di = ai,j

B ==a;,; 0 ;1 —a ;P tb
This system of equations is then solved using the Thomas algorithm [66] which is a
special case of Gaussian Elimination for tridiagonal matrices and consists of a forward
elimination and a backward substitution. This method is often referred to as the Tridiagonal

Matrix Algorithm (TDMA). This algorithm is implemented as two recurrences: one for the

Chapter 3

57

forward elimination from I=1 to I=IN and the other for backward substitution from I=IN to I=1,

as indicated in Figure 3.1.

JN

1

] 1

L.,

IN

Lj+1

Lj-1

Figure 3.1 : The Line Successive Over Relaxation Algorithm in Serial.

An execution profile (Table 3.1) of the serial code ran on a SUN Workstation showed

that over 97% of the computational effort occurred in the routine SOLVER (Figure 3.2) and the

routines it called. The profile also showed that routines TDMA and RESIDUAL provided 35%

and 16% of the total computation respectively. The routine SOLVER however called these two

routines. The routine FAB was the main routine and obviously accounted for 100% of the

computational time. Closer inspections of the loops within the routine SOLVER showed that

there is a loop iterating over the j lines in the mesh of the problem (see Figure 3.2). This loop is

surrounded by an additional iterative loop that controls the number of domain sweeps.

I Function Name

Cost(seconds)

Cost(%)

SOLVER
TDMA

RESIDUAL

FAB

PROPS

TEMPER

0.12

SETTEMP

CONDUC

Table 3.1 : A profile of the serial FAB code for a 500x500 problem size.

Chapter 3

58

a0 2000

oloNe

ololoke

10

30

000

This is the Main loop, it controls number of sweeps.

CONTINUE
RESID =0.0

If max sweep reached print out results and quit.

IF (ISWEEP .LE. MSWEEP) THEN

Start to sweep lines visiting each J line in domain once.

TOP=0.0
BOT=0.0
DO 30J =2,JN-1
IF (GMOPT .EQ. 0) THEN
RBAR=10
ELSE
RBAR =R(J)
ENDIF
DR = (R(J+1) - R(J-1))/ 2.0 * RBAR

Construct coeff.(Gauss-Seidal iteration implemented so must use latest
values of TNEW(1,J-1) for each line calculation.)

DO 101=2,IN-1
LSWEEP(I) = TNEW(LJ)
DZ = (Z(1+1) - Z(I-1))*0.5
A(l)= WKSP(L.])/ DZ
C(I) = WKSP(I+1,1)/ DZ
D(D) = -(A(l) + C(I) + FAC + (SK(1J+1) + SK(LJ)) / DR)
B(I) = TOLD(LJ) * FAC + HFLX(1,J)
B(I) = -(B(I) + (TNEW(1,J+1) * SK(L,J+1) + TNEW(1,J-1) * SK(LJ)YDR)
CONTINUE
CALL TDMA(TNEW.IN,IN-1,J)
CALL RESIDUAL(LSWEEP,TNEW.,IN-1,RESIDJ.J,JN-1,TOP,BOT)
CONTINUE
TOP = SQRT(TOP)
BOT =SQRT(BOT) + 1.0
RESIDJ = TOP/BOT
RESID = RESIDJ
ISWEEP = ISWEEP + 1

Is Problem converged? If no do another iteration.

IF (MOD(ISWEEP,10).EQ.0) PRINT *, RESIDUAL =" RESID,ISWEEP
IF (RESID .GT. CON1) THEN

GOTO 40

ELSE
PRINT* ITERATIONS:" ISWEEP
RETURN

ENDIF

Figure 3.2 : The Routine SOLVER from the serial FAB Code.

The code was analysed by CAPTools with a full power analysis. Using the Loop

Browser within CAPTools, showed that the DO 30 J=2,JN-1 loop was serial. Interrogating the

dependence graph reveals that there is a true dependence of the array TNEW between the source

command :

CALL TDMA(TNEW,IN,IN-1,J)

and the sink command :

Chapter 3 59

B(D) = -(B(D+HTNEW{J+1)*SK(I,J+1)+TNEW(,J-1)*SK(I,J))/DR)
between iterations of the DO 30 J loop. This dependence is due to the calculation of TNEW(L,J)
in one iteration of the J loop and its use in the next as TNEW(I,J-1), i.e. a recurrence. This
recurrence occurs because the algorithm implements the Gauss-Seidal iteration which uses the
latest values of TNEW(LJ-1) for each line calculation. On a serial machine this is often the best
method to apply since it generally converges to the correct solution in fewer iterations than an
explicit method.

Figure 3.3 shows the operation of this recurrence. The domain is partitioned in this
case, onto three processors. To calculate each line requires the data from the previous line. To
preserve the integrity of the algorithm in parallel it is necessary to calculate all the lines on
processor 1 before communicating the values of the last line on processor 1 (L;) to the second
processor to calculate the values of the first line on that processor. The algorithm will
therefore be serial in nature.

This recurrence causing the DO 30 loop to be serial compels the parallel code to be
generated with a pipeline communication (Section 1.8) surrounding the DO 30 loop (Figure
3.4). The pipeline communication receives the values of TNEW(I,CAP_BLTNEW-1) for
every sweep. A CAP_EXCHANGE communication has also been generated for the
communication of the TNEW(LJ+1) in each domain sweep. Two CAP_COMMUTATIVE
calls were also generated for the calculation of the global sum of TOP and BOT variables,
that were summed in routine RESIDUAL, used for the calculation of the residuals for each
sweep. These were the only communications generated for the main algorithm in routine
SOLVER.

The solutions obtained from a parallel run of this code were the same as those
obtained from the serial code. However, the speed up results obtained were poor. Table 3.2
shows that as the number of processor increase, the time taken does not decrease. Instead the
actual time taken is increasing slightly as the number of processors increases. This is due to
the additional communication latency incurred in the parallel version whilst no parallelism is

being exploited due to the pipeline that is not surrounded by any parallel loops.

Chapter 3 60
JN Stage JN
Proc 3
Proc 2
Stage 8
_______ Stage 7 L
Stage 6 L]
Stage 5
Proc 1 Stage 4
Stage 3
Stage 2
1 Stage 1
J 1 IN

Figure 3.3 : Line successive over relaxation algorithm implemented as a pipeline in parallel.

Chapter 3

This is the Main loop, it controls number of sweeps.

200

0 CONTINUE
RESID =0.0

If max sweep reached print out results and quit.
IF (ISWEEP .LE. MSWEEP) THEN
Start to sweep lines visiting each J line in domain once.

Exchange communication for the values of TNEW(I,J+1).

a0oaon0an ao0n

CALL CAP_EXCHANGE(TNEW(2,CAP_BHTNEW+1),TNEW(2,CAP_BLTNEW),
& IN-2,CAP_RIGHT)

TOP=0.0

BOT=0.0

Receive communication of the pipeline for the values of TNEW(I,J-1).

oNoNe]

CALL CAP_RECEIVE(TNEW(2,CAP_BLTNEW-1),IN-2,CAP_LEFT)
DO 30 J=MAX(2,CAP_BLTNEW) MIN(JN-1,CAP_BHTNEW),1

Construct coeff.(Gauss-Seidal iteration implemented so must use latest
values of TNEW(LJ-1) for each line calculation.)

oNoNoNe!

DO 10 I=2,IN-1,1

B(D=-(B()+(TNEW(LJ+1)*SK(LJ+ I)+TNEW(1,J-1)*SK(I,J))/DR)
10 CONTINUE
CALL TDMA(TNEW,IN,IN-1,J,CAP_LTNEW,CAP_HTNEW)
CALL RESIDUAL(LSWEEP,TNEW,IN-1,RESIDJ,J.JN-1,

& TOP,BOT,CAP_LTNEW,CAP_HTNEW)
30 CONTINUE
C
C Send communication of the pipeline for the values of TNEW(I,J-1).
C
CALL CAP_SEND(TNEW(2,CAP_BHTNEW),IN-2,CAP_RIGHT)
C
C Perform commutative operations to calculate global values of TOP and BOT.
C
CALL CAP_COMMUTATIVE(CAP_TOP,CAP_RADD)
TOP=TOP+CAP_TOP
CALL CAP_COMMUTATIVE(CAP_BOT,CAP_RADD)
BOT=BOT+CAP_BOT
TOP=SQRT(TOP)
BOT=SQRT(BOT)+1.0
RESIDJ=TOP/BOT
RESID=RESIDJ
ISWEEP=ISWEEP+1
C
C Is Problem converged? If no do another iteration.
C

IF (MOD(ISWEEP,10).EQ.0) PRINT *, RESIDUAL =’ RESID,ISWEEP
IF(RESID .GT. CON1) THEN

GOTO 40

ELSE
PRINT*,TTERATIONS:,ISWEEP
RETURN

ENDIF

ENDIF
Figure 3.4 : Communications in the Routine SOLVER for the Parallel FAB Code.

Chapter 3 62

Number of Processors Time Taken (seconds)

127.967

128.502

128.856

129.396

129.866

Table 3.2 : Initial timing results for parallel FAB on the Transtech Paramid.

The pipeline loop, DO 30, timed independently indicated that almost all the time was
executed in this loop. Pipelines are essential to ensure correctness of the parallel code but are
unfortunately highly inefficient due to communication start-up latency and also pipeline start-up
and shutdown times. However, in this case the pipeline was also completely serial. Greater
benefit could be obtained if the pipeline communication of TNEW(L,J-1) was replaced by a
CAP_EXCHANGE communication similar to that applied to the TNEW(I,J+1).

To improve the performance of the parallel code, the true dependence carried by the DO
30 loop was removed. Reloading the earlier analysis database into CAPTools and by selecting
and deleting the true dependence between the previously mentioned statements, using the
CAPTools dependence graph browser, can remove this problem. The deletion of dependencies
from a code can be highly dangerous since it changes the solution algorithm. However, in this
case the removal of a dependence prevents the algorithm from using the latest available value of
TNEW(LJ-1). Instead for each iteration the values of TNEW(I,J-1) from the previous iteration,
i.e. the old value, are used for the first line of each processor. The removal of this dependence
will allow CAPTools to no longer know that the value of TNEW(I,J-1) is dependent on a
previous iteration. This allows the DO 30 loop to be parallel and for a more efficient parallel
code to be generated. This is a slight alteration to the linear equation solver and will in no way
alter the physics of the original problem. This is a well known method that is commonly used
and is referred to as the Localised LSOR solver. The only disadvantage of altering the algorithm
is that the convergence will now vary slightly from the serial algorithm due to a change in the
calculation order [61].

The parallel code obtained (Figure 3.5) consists of an additional CAP. EXCHANGE
communication for each sweep of the algorithm. This has replaced the pipeline communication.

This communication has been migrated to its optimal position at the same point in the code as

Chapter 3 63

the CAP_EXCHANGE communication of the TNEW(I,J+1), i.e. immediately after the sweep

loop head.
C
C This is the Main loop, it controls number of sweeps.
C
40 CONTINUE
RESID =0.0
C
C If max sweep reached print out results and quit.
C
IF ISWEEP .LE. MSWEEP) THEN
C
C Start to sweep lines visiting each J line in domain once.
C
C Exchange communication for the values of TNEW(1LJ+1).
C
CALL CAP_EXCHANGE(TNEW(2,CAP_BHTNEW+1),TNEW(2,CAP_BLTNEW),IN-2,CAP_RIGHT)
C
C Exchange communication for the values of TNEW(I,J-1) which replaces the previous pipeline.
C
CALL CAP_EXCHANGE(TNEW(2,CAP_BLTNEW-1),TNEW(2,CAP_BHTNEW),IN-2,CAP_LEFT)
TOP=0.0
BOT=0.0
DO 30 J=MAX(2,CAP_BLTNEW),MIN(JN-1,CAP_BHTNEW),1
C
C Construct coeff.(Gauss-Seidal iteration implemented so must use latest
C values of TNEW(1,J-1) for each line calculation.)
C

DO 10 I=2,IN-1,1

B(D=-(B(H+(TNEW(LJ+1)*SK(LJ+1 +TNEW(LJ-1)*SK(1J)YDR)
10 CONTINUE
CALL TDMA(TNEW,IN,IN-1,J,CAP_LTNEW,CAP_HTNEW)

CONTINUE

Perform commutative operations to calculate global values of TOP and BOT.

nooy

CALL CAP_COMMUTATIVE(CAP_TOP,CAP_RADD)
TOP=TOP+CAP_TOP

CALL CAP_COMMUTATIVE(CAP_BOT,CAP_RADD)
BOT=BOT+CAP_BOT

TOP=SQRT(TOP)

BOT=SQRT(BOT)+1.0

RESIDJ=TOP/BOT

RESID=RESID)

ISWEEP=ISWEEP+1

Is Problem converged? If no do another iteration.

oNoNe!

IF (MOD(ISWEEP,10).EQ.0) PRINT *, RESIDUAL = " RESID,ISWEEP
IF(RESID .GT. CON1) THEN

GOTO 40

ELSE
PRINT* ITERATIONS: ISWEEP
RETURN

ENDIF

ENDIF
Figure 3.5 : The Routine SOLVER in FAB with the Pipeline Communications replaced by

Exchange Communications.

Chapter 3 64

The parallel code has been altered such that a Local LSOR (LLSOR) algorithm is
implemented. This is a common parallel approach and Figure 3.6 shows how this is
implemented. Each processor will now calculate a line of data on each processor at the same
time. In the pipeline version the calculation of a line was dependent on knowing the values of
the previous line. This dependence has now been removed and the data from the previous line
is obtained from data calculated on the previous sweep of the domain. Thus the line L, on
processor 2 will require the data from the previous sweep to be communicated to its
processor by means of an exchange communication. The same is also true for the calculation

of L3 on processor 3.

JN
Proc 3 :
Stage 3
Stage 2
Stage 1 L3
____________________________________ B T2
Proc 2 :
Stage 3
Stage 2
Stage 1 L2
Proc 1 :
Stage 3
Stage 2
1 Stage 1 Ll
J 1 IN
L" I

Figure 3.6 : The Gauss-Seidel Local LSOR in Parallel.

The performance results (Table 3.3) obtained were much better than the previous
parallel code. A speed up of 7.33 was obtained on 8 processors. The solutions obtained did
vary slightly as expected (within a specified tolerance) and were satisfactorily accurate. There

was however, looking at the performance results, scope for further improvement. A further

Chapter 3 65

profile of the parallel code revealed that the two CAP_EXCHANGE communications in the

main algorithm were now taking a significant amount of time.

|__No. of Processors Time Taken

. 1 127.967]]
|| 2 65.277 1.96 98.0% Il
4 33.346 3.84 95.9% |

6 22.833 5.60 93.4% I

17.448 7.33 91.7% |

Table 3.3 : Results for FAB with synchronous communications for the Transtech Paramid.

To measure the impact of these CAP_EXCHANGE a simple test was administered to
establish how varying communication lengths affected the overall runtime of the code. The
additional data communicated does not affect the usual calculation of the code. The test was
executed on four 1860 processors with a single communication of 500 reals, i.e. 2000 bytes of
data. This communication length was multiplied by various factors and the results in Table 3.4

were obtained.

Communication Time Efficiency
Length Factor (seconds) (%)

1 33.461 95.6

10 37.290 85.8

20 41.597 76.9

30 45.893 69.7

40 50.192 63.7

60 58.786 54 .4

80 67.326 47.5

75.974 42.1
Table 3.4 : Results for varying communication lengths on four i860 processors.

The results in Table 3.4 show that as the amount of data being communicated
(communication length factor) increased then so the efficiency of the problem decreased. It can
therefore be concluded that as the communication lengths increased then so the total runtime of
the parallel code will be extended and therefore the performance of the parallel code
deteriorates. The communication time was plotted on a graph (Figure 3.7) against the
communication length factor and linear regression was applied to obtain a best-fit’ line. From
the graph using linear regression it is estimated that if no data were communicated then the time

for communication would be 33.013 seconds. This time is attributed to the total communication

Chapter 3 66

start-up time for the whole run of the program. It would therefore be of advantage if the
communication time and its associated start-up latency were concealed. Most parallel machines
perform overlapping or asynchronous communications (Section 4.2). A method of improving

these communications using overlapped communication will be discussed later in Chapter 4.

100 T T l . I T T T 1
90 4
80 r 1
70 |
60
50

40

Time (seconds)

30 |]
20 | i

10 | .

0: 1 | L 1 1 L 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Communication Length Factor

Figure 3.7 : Graph of Time taken against Communication Length Factor and a Best-Fit Line.

3.3 Teamkel.

Teamkel is a two dimensional steady state flow prediction code from the University of
Manchester Institute of Science and Technology (UMIST) [67]. It is a finite difference/finite
volume technique with a k-¢ turbulence model code using a structured Cartesian grid. The code
may be applied to plane and axisymmetric flows, and laminar or turbulent flows. The convective
terms may be discretised using either Quadratic interpolation (QUICK) or Power Law
interpolation (PLDS).

A bi-directional Line Successive Over Relaxation (LSOR) solver is used to solve the
linear equations. The FAB code (Section 3.2) consisted of a single line by line solver sweeping
from top to bottom. The LSOR algorithm may sweep the domain from top to bottom, bottom to

top, left to right, right to left or a combination of these. The advantage of using a combination of

Chapter 3 67

these sweeping directions is that boundary effects can be conveyed throughout the domain at a
faster rate than a single sweeping direction. TEAM allows the domain to sweep from left to right

and then from bottom to top alternatively as shown in Figure 3.8.

JN
Proc 3 —
|] ' LJ
Proc 2
Proc 1
-9
1
J 1 L, IN
.

Figure 3.8 : The Bi-directional LSOR algorithm in the routine LISOLV.

The bi-directional solver is in the subroutine LISOLV (Figure 3.9). The bi-directional
solver consists of sweeping through the i-direction (DO 100 loop) followed immediately by a
sweep through the j-direction (DO 1000 loop). Figure 3.8 shows the domain being swept in the
I-direction calculating a line at a time from 1 to IN. The domain is then swept in the j-direction
line by line from 1 to JN. Each line requires the data from the previous line, i.e. line L, requires
the data from line Li; and likewise L; requires data from line L;. Each directional sweep
consists of calculation of the coefficients and then an update of the solution variable PHI. For the
i-direction the DO 101 loop is responsible for the coefficient calculation (forward elimination)
and the DO 102 loop is responsible for updating (backward substitution). For the j-direction the
DO 1010 loop is responsible for calculating the coefficients while the DO 1020 loop is

Chapter 3 68

responsible for the updating. All of these four loops possess an implicit calculation which deem

the loops serial. If these loops were parallelised then pipelines would be generated.

SUBROUTINE LISOLV(...)

NIMI1=NI

NJMI1=NJ
JSTMI1=JSTART-1
ISTM1=ISTART-1
DO 2000 IT=1,NSW

AJSTM1)=0.0
C
C Commence W-E sweep.
DO 100 I=ISTART NIM1
CUJSTMD=PHI(1,JSTMI)
C
C Commence S-N traverse.
DO 101 J=JSTART,NJM1
C
C Assemble TDMA coefficients.
A(DH=AN(,))
B(=AS(L])
C(H=AE(LDH*PHI(I+1,)+AW(LI)*PHI(I-1,J)+SU(LJ)
D()=AP(,))
C
C Calculate coefficients of recurrence formula.
TERM=1./D)-BJ)*A(-1))
AD=A)*TERM
101 CH=(CH+B)*CJ-1))*TERM
C
C Obtain new PHL
DO 102 JJ=JSTART,NIM1
J=NJ+JSTART-JJ
102 PHI(1,H=A)*PHI(L,J+1)+C(J)
100 CONTINUE
AI(ISTM1)=0.0
C
C Commence S-N sweep.
DO 1000 J=JSTART,NJM1
C1(JISTM1)=PHI(ISTM1,J)
C
C Commence W-E traverse.
DO 1010 I=ISTART NIM1
C
C Assemble TDMA coefficients.
Al(D=AE(L))
B1(D=AW(L))
CI(D=AN(LJ)*PHI(LJ+1)+AS(L))*PHI(LJ-D+SU(L))
D1()=AP(L))
C
C Calculate coefficients of recurrence formula.
TERM=1./DI1(D)-B1(D)*Al(-1))
Al(D=A1(D)*TERM
1010 C1(D=(C1(H+B1(*C1(I-1))*TERM
C
C Obtain new PHL
DO 1020 II=ISTART,NIM |1
I=NI+ISTART-II
1020 PHI(L)=A1(D*PHI(I+1,))+C1(I)
1000 CONTINUE

2000 CONTINUE
Figure 3.9 : Routine LISOLYV from Serial TEAMKEI] Code.

Chapter 3 69
SUBROUTINE LISOLV(...)
NIM1=NI
NJMI1=NJ
IF (1.GE.CAP_LPHIL.AND.1.LE.CAP_HPHDJSTMI1=JSTART-1
ISTMI1=ISTART-1
DO 2000 IT=1,NSW.1
IF (1.GE.CAP_LPHLAND.1.LE.CAP_HPHDA(JSTM1)=0.0
C
C Commence W-E sweep.
DO 100 I=ISTART,NIM1,1
IF (1.GE.CAP_BLT.AND.1.LE.CAP_BHT)C(JSTM1)=PHI(L,JSTM1)
C
C Commence S-N traverse.
CALL CAP_RECEIVE(A(CAP_BLT-1),1,CAP_LEFT)
CALL CAP_RECEIVE(C(CAP_BLT-1),1,CAP_LEFT)
DO 101 J=MAX(START,JSTART+CAP_LPHI-2), MIN(NJM1,JSTART+CAP_HPHI-2),1
C
C Assemble TDMA coefficients.
A=AN(L)
B(J))=AS(LJ)
C)=AE(L)H*PHI(I+1 . H+AW(1*PHI(-1,1)+SU(LJ)
DJ)=AP(1,))
C
C Calculate coefficients of recurrence formula.
TERM=1./(D(J)-B()*A(J-1))
A=A)*TERM
101 CH=(CIH+BNH*CU-1)*TERM
CALL CAP_SEND(A(CAP_BLT-CAP_LPHI+CAP_HPHI),1,CAP_RIGHT)
CALL CAP_SEND(C(CAP_BHT),1,CAP_RIGHT)
C
C Obtain new PHL
CALL CAP_RECEIVE(PHI(I,CAP_HPHI+1),1,CAP_RIGHT)
DO 102 JJ=MAX(START,JSTART-CAP_HPHI+NJ),MIN(NJM1,JSTART-CAP_LPHI+NJ),1
J=NJ+JSTART-JJ
102 PHK(LJ)=A(J)*PHI(L,J+1)+C(J)
CALL CAP_SEND(PHI(I,CAP_LPHI),1,CAP_LEFT)
100 CONTINUE
CALL CAP_EXCHANGE(PHI(1,CAP_HPHI+1),PHI(1,CAP_LPHI),288,CAP_RIGHT)
A1(ISTM1)=0.0
C
C Commence S-N sweep.
CALL CAP_RECEIVE(PHI(1,CAP_LPHI-1),288,CAP_LEFT)
DO 1000 J=MAX(JSTART,JSTART+CAP_LPHI-2), MIN(NJM1,JSTART+CAP_HPHI-2),1
CI(ISTM1)=PHI(ISTM1.,))
C
C Commence W-E traverse.
DO 1010 I=ISTART,NIM1,1
C
C Assemble TDMA coefficients.
Al(D=AE(,))
B1(D=AW(L))
CH(D=AN(LJ)*PHI(LJ+1)+AS(LI)*PHI(1,J-1)+SU(LJ)
D1(D=APQ1,))
C
C Calculate coefficients of recurrence formula.
TERM=1./(D1(D)-B1()*A1(I-1))
Al(D=A1(D*TERM
1010 CI(D=(C1(D+B1(H*C1({I-1))*TERM
C
C Obtain new PHI.
DO 1020 1I=ISTART NIMI,1
[=ENI+ISTART-II
1020 PHI(L))=A1(I)*PHI(I+1,))+C1(])
1000 CONTINUE
CALL CAP_SEND(PHI(1,CAP_HPHI),288,CAP_RIGHT)
2000 CONTINUE

Figure 3.10

: Routine LISOLYV partitioned in the second dimensional index J.

Chapter 3 70
SUBROUTINE LISOLV(...)
ISTM1=ISTART-1
DO 2000 1T=1,NSW,1
C
C Commence W-E sweep.
DO 100 I=ISTART,NIM1,1
IF (1.GE.CAP_LPHIL.AND.1.LE.CAP_HPHDA(I,JSTM1)=0.0
IF (1.GE.CAP_BLT.AND.I.LE.CAP_BHT)C(I,JSTM1)=PHI(1,ISTM 1)
C
C Commence S-N traverse.
CALL CAP_RECEIVE(BUF,2,CAP_LEFT)
IF (CAP_PROCNUML.NE.1)A(I,CAP_BLT-1)=BUF(1)
IF (CAP_PROCNUM.NE.1)C(I,CAP_BLT-1)=BUF(2)
DO 101 J=MAX(USTART,JSTART+CAP_LPHI-2), MIN(NJM1,JSTART+CAP_HPHI-2),1
C
C Assemble TDMA coefficients.
A(LD=AN())
B(L))=AS(1,))
C(LDH=AE(L*PHI(I+1,.H+AW(,1)*PHI(I-1,)+SUD)
D(L)=AP(L))
C
C Calculate coefficients of recurrence formula.

TERM=1./(D(1.))-B(1L,J)*A(LJ-1))
A(L)=A(L))*TERM
101 C(1LH=(CAH+B(1IH*C(LI-1))*TERM
BUF(1)=A(I,CAP_BHT)
BUF(2)=C(1,CAP_BHT)
CALL CAP_SEND(BUF,2,CAP_RIGHT)

100 CONTINUE
C
C Obtain new PHL

DO 200 I=ISTART,NIM1,1
CALL CAP_RECEIVE(PHI(,CAP_HPHI+1),1,CAP_RIGHT)
DO 102 JJ=MAX(JSTART,JSTART-CAP_HPHI+NJ),MIN(NJM1,JSTART-CAP_LPHI+NJ),1
J=NJ+ISTART-H
102 PHI(LD=A(LI)*PHI(LI+1)+C(1.))
CALL CAP_SEND(PHI(I,CAP_LPHI),1,CAP_LEFT)
200 CONTINUE
CALL CAP_EXCHANGE(PHI(1,CAP_HPHI+1),PHI(1,CAP_LPH1),288 CAP_RIGHT)
CALL CAP_EXCHANGE(PHI(1,CAP_LPHI-1),PHI(1,CAP_HPHI),288,CAP_LEFT)

AI(ISTMD)=0.0
C
C Commence S-N sweep.
DO 1000 J=MAX{ISTART,JSTART+CAP_LPHI-2), MIN(NJM1,JSTART+CAP_HPHI-2),1
C1(ISTM1)=PHI(ISTM1,))
C
C Commence W-E traverse.
DO 1010 I=ISTART,NIM1,1
C
C Assemble TDMA coefficients.
Al(D=AE(LD
BI(D=AW(L,J))
CI(D=AN(LH*PHI(LJ+ D)+AS(LH*PHI(IJ-1)+SU(LJ)
D1(D)=AP(L))
C
C Calculate coefficients of recurrence formula.
TERM=1./(D1(D)-BI(D*A1(-1))
Al(D=A1(D*TERM
1010 C1(D=(C1()+B1(D*C1(I-1))*TERM
C
C Obtain new PHI
DO 1020 II=ISTART NIM1,1
=NI+ISTART-II
1020 PHI(ILNH=ATD)*PHI(I+1,)+C1(]D)
1000 CONTINUE

2000 CONTINUE

Figure 3.11 : Routine LISOLV from TEAMKEI with loop splitting and array expansion.

Chapter 3 72

The DO 101 loop contains two single communications that both communicate only 1
element each for the arrays A and C. On a parallel machine with a very high communication
start-up latency these calls could be very expensive. An obvious optimisation to reduce these
communication start-up latencies is to buffer both the elements into a buffer array before
communicating as a single communication. This leads to a halving of the communication
start up latency for this particular loop. The DO 102 loop also only communicates a single
element of the array PHI. This buffering of the data is applied in the code in Figure 3.11.

The third pipeline consists of the communication of a whole line of data. In this case,
there is no parallel loop surrounding the DO 1000 loop, and therefore the pipeline will
execute serially. This pipeline communication can however be modified in a similar fashion
to the pipeline in FAB (Section 3.2). This may be accomplished by dependence deletion
leading to the replacement of the pipeline communications CAP_RECEIVE/CAP_SEND
with a CAP_EXCHANGE and by extending the coefficient arrays to a second dimension.

The routine MAIN (Figure 3.13) has numerous CAP_EXCHANGE calls. Using the
Communications Browser in CAPTools it is possible to interrogate why these communications
have been placed. On investigation the browser shows that the communications are required for
use in calculation in routines called by the MAIN routine. The communications have been
migrated from the commands that require the communicated data, through any surrounding
loops and any routine boundaries to its optimal point in the code. During this migration
numerous CAP_EXCHANGE calls were migrated to the same point in the code. These
communications may require the communication of the same data but for use in different
routines and statements. Since communications add to the total runtime of a parallel execution
and the data communicated is the same or a subset then it would be of obvious advantage to
merge the communication into one call. An illustration of this communication merging may be
seen in Figure 3.14. The communication browser shows that the CAP_EXCHANGE of the
density array DEN is providing data for 16 statements in 7 different routines (CALCT,
CALCED, CACTE, CALCP2, CALCP1, CALCYV and CALCU)

Chapter 3

PROGRAM TEAM

CALL CAP_EXCHANGE(V(1,CAP_BLT-2/2-1),V(1,-2/2+CAP_BHT),2/2*288+288 ,CAP_LEFT)
CALL CAP_EXCHANGE(U(1,CAP_BHT+1),U(1,CAP_BLT),2/2*288+288,CAP_RIGHT)
CALL CAP_EXCHANGE(U(1,(CAP_BLT+0/2)-2),U(1,(0/2+CAP_BHT)-1),576,CAP_LEFT)
CALL CAP_EXCHANGE(V(1,CAP_BHT+1),V(1,CAP_BLT),576,CAP_RIGHT)
CALL CAP_EXCHANGE(P(1,CAP_BHT+1),P(1,CAP_BLT),288,CAP_RIGHT)
CALL CAP_EXCHANGE(XPLUSE(CAP_BHT+1),XPLUSE(CAP_BLT),1,CAP_RIGHT)
CALL CAP_EXCHANGE(TE(1,(CAP_BLT+0/2)-2),TE(1,(0/2+CAP_BHT)-1),576,CAP_LEFT)
CALL CAP_EXCHANGE(TE(1,CAP_BHT+1),TE(1,CAP_BLT),2/2*288+288,CAP_RIGHT)
CALL CAP_EXCHANGE(ED(1,(CAP_BLT+0/2)-2),ED(1,(0/2+CAP_BHT)-1),576,CAP_LEFT)
CALL CAP_EXCHANGE(ED(1,CAP_BHT+1),ED(1,CAP_BLT),2/2*288+288,CAP_RIGHT)
CALL CAP_EXCHANGE(T(1,(CAP_BLT+0/2)-2),T(1,(0/2+CAP_BHT)-1),576,CAP_LEFT)
CALL CAP_EXCHANGE(T(1,CAP_BHT+1),T(1,CAP_BLT),2/2*288+288,CAP_RIGHT)
C
C ===EDDY VISCOSITY FIELD
C
CALL PROPS(CAP_BLT,CAP_BHT)
CALL CAP_EXCHANGE(VIS(1,CAP_BHT+1),VIS(1,CAP_BLT),288, CAP_RIGHT)
CALL CAP_EXCHANGE(VIS(1,CAP_BLT-1),VIS(1,CAP_BHT),288,CAP_LEFT)
C
C === VELOCITIES AND PRESSURES
C
CALL CALCU(CAP_BLT,CAP_BHT)
CALL CAP_EXCHANGE(U(1,CAP_BHT+1),U(1,CAP_BLT),288,CAP_RIGHT)
CALL CALCV(CAP_BLT,CAP_BHT)
CALL CAP_EXCHANGE(DV(1,CAP_BLT-1),DV(1,CAP_BHT),288, CAP_LEFT)
CALL CAP_EXCHANGE(V(1,CAP_BLT-1),V(1,CAP_BHT),288, CAP_LEFT)
CALL CAP_EXCHANGE(AEV(1,CAP_BLT-1),AEV(1,CAP_BHT),288,CAP_LEFT)
CALL CAP_EXCHANGE(AWV(1,CAP_BLT-1),AWV(1,CAP_BHT),288,CAP_LEFT)
CALL CAP_EXCHANGE(ANV(1,CAP_BLT-1),ANV(1,CAP_BHT),288,CAP_LEFT)
CALL CAP_EXCHANGE(ASV(1,CAP_BLT-1),ASV(1,CAP_BHT),288,CAP_LEFT)
CALL CAP_EXCHANGE(APV(1,CAP_BLT-1),APV(1,CAP_BHT),288,CAP_LEFT)
CALL CAP_EXCHANGE(TAUE(CAP_BLT-1),TAUE(CAP_BHT),I CAP_LEFT)
CALL CALCPI(CAP_BLT,CAP_BHT)
CALL CAP_EXCHANGE(DU(1,CAP_BHT+1),DU(1,CAP_BLT),288,CAP_RIGHT)
CALL CAP_EXCHANGE(DU(1,CAP_BLT-1),DU(1,CAP_BHT),288,CAP_LEFT)
CALL CAP_EXCHANGE(DV(1,CAP_BLT-1),DV(1,CAP_BHT),288,CAP_LEFT)
CALL CAP_EXCHANGE(DV(1,CAP_BHT+1),DV(1,CAP_BLT),288,CAP_RIGHT)
CALL CAP_EXCHANGE(DV(1,CAP_BLT-2),DV(1,CAP_BHT-1),576,CAP_LEFT)
CALL CAP_EXCHANGE(U(1,CAP_BHT+1),U(1,CAP_BLT),288,CAP_RIGHT)
CALL CAP_EXCHANGE(U(1,CAP_BLT-1),U(1,CAP_BHT),288,CAP_LEFT)
CALL CAP_EXCHANGE(V(]1,CAP_BLT-1),V(1,CAP_BHT),288,CAP_LEFT)
CALL CALCP2(CAP_BLT,CAP_BHT)
C
C === TURBULENCE PARAMETERS
CALL CALCTE(CAP_BLT,CAP_BHT)
CALL CALCED(CAP_BLT,CAP_BHT)
C
C === TEMPERATURE
C
CALL CALCT(CAP_BLT,CAP_BHT)

Figure 3.13 : Main Program for the Parallel TEAMKEI Code.

Chapter 3 75

DO 100 [=2,NI,1
DO 100 J=2,NJM1,1 POSSIBLE VALUES :
NSVP=IFIX(SIGN(1.0,CS)) SIGN +1.0 -1.0
. IFIX +1 -1
NSVP +1 -1
222 i(YP:J-NSVP KYP J-1 J+1
LYP=KYP-(1+NSVP)/2 LYP J-2 J+1
SUV(LJ-1)=SUV(1LIJ-1)-TEMPM*V(LLYP)
100 CONTINUE
CONTINUE

Figure 3.15 : Section of a CALC Routine showing the QUICK Algorithm.

No of Processors Time Taken Speed U Efficiency
513.41 - -
2 267.23 1.92 96.1%
4 139.18 3.69 92.2%
8 72.86 7.05 88.1%
16 41.96 12.24 76.5%

‘Table 3.5 : Results for TeamKE1 with synchronous communications for the Transtech

Paramid.

The results in Table 3.5 are for the TeamKEI code for a problem size of 288x288 for 15
iterations. The speed up results were relative good up to eight processors (7.05 out of 8).
However, for 16 processors the efficiency had dropped to 76.5%. This decrease in the speed up
is due to the startup and shutdown idle times of the pipelines (in routine LISOLV) increasing as

the number of processors increase.

34 APPLU.

APPLU is a code from the NASA Parallel (NAS-PAR) benchmark suite [68]. The NAS-
PAR benchmark codes were developed by the NASA Ames Research Center to evaluate the
performance of parallel supercomputers. The APPLU code is the lower diagonal (LU) CFD
application benchmark. However, it does not perform a LU factorization but instead implements
a symmetric successive over-relaxation (SSOR) numerical scheme. This solves a regular-sparse,
block lower and upper triangular system. These systems are obtained from an unfactored

implicit finite difference discretisation of the Navier-Stokes equations in three dimensions.

Chapter 3 76

The algorithm consists of four main steps:

1. Forming the right hand side vector;

2. Forming and solving the lower triangular system of equations;

3. Forming and solving the upper triangular system of equations;

4. Updating the solution.

These four stages are iterated until the problem converges to a solution.

The code consists of approximately 3300 lines of Fortran. The code was partitioned by
means of a one dimensional partition using Computer Aided Parallelisation Tools. The parallel
code obtained consisted of a few essential exchange communications within the main solver.
However, the efficiencies obtained from the code were poor. The reasons for such poor
efficiencies was investigated.

Some of the exchange communications generated were nested within extra generated
loops. These communications were within loops because CAPTools had calculated the
minimum data required to communicate for use in the calculation. Certain sections of an array
were not communicated since they were not required by the calculation. Consider the following

communication from the routine SSOR :

DO CAP_J=2,NY-1

DO CALL CAP_EXCHANGE(U(1,2,CAP_J,CAP_BLA-1),U(1,2,CAP_J.CAP_BHA),NX*10-20,CAP_LEFT)

This communication exchanges 5 sets of double precision data from 2 to NX-1 (a total of
NX*10-20 words) for each CAP_J from 2 to NY-1, i.e. a total of NY-2 calls to the
CAP_EXCHANGE communication. Figure 3.16 shows each of the data blocks to be
communicated from 2 to NY-1 as visualised on a cartesian grid and also how the data blocks
would be stored in memory.

These data blocks, e.g. A, B and C are stored in memory as shown in the second half of
the diagram. In memory either side of the data blocks A, B and C there are shaded areas of the
memory that are not communicated. These regions are not communicated since they are not
required in the calculation that requires the communication. CAPTools has conservatively
determined the minimum amount of data to be communicated. However, due to the
discontinuous nature of the data, the data has to be communicated in more than one
communication call, i.e. a loop surrounding the CAP_EXCHANGE communications. It 1S

however more efficient to communicate all the data, including the data not required for

Chapter 3 81

degradation. The first, is that during the start-up and shutdown of the pipeline some of the
processors will be idle. The second reason is due to the number of communications involved and

their related start-up latencies. These pipelines often consist of a high ratio of communication to

calculation.

No of Processors Time Taken Speed Up Efficiency |
1 345.90) -]
2 274.98 1.26 62.9%
4 240.94 1.43 35.9%
8 231.26 1.50 18.7%
12 236.79 1.46 12.2% ||

Table 3.6 : Results for APPLU with ALL pipelines for the Transtech Paramid (32x32x32

Problem for 50 iterations).

| NoofProcessors | TimeTaken [SpeedUp | Efficiency |
1 345.29 - -
2 187.36 1.84 92.1%
4 114.79 3.01 75.2%
8 74.74 4.62 57.7%
12 63.18 5.46 45.5%

Table 3.7 : Results for APPLU with LINE pipelines for the Transtech Paramid (32x32x32

problem for 50 iterations).

| No of Processors Time Taken Efficiency
1 350.78 - -
2 196.28 1.79 89.3%
4 124.09 2.83 70.7%
8 81.07 4.33 54.1%
12 69.83 5.02 41.9%

Table 3.8 : Results for APPLU with POINT pipelines for the Transtech Paramid (32x32x32

problem for 50 iterations)

The interchanging of the loops surrounding the pipeline did increase the efficiency of the
code somewhat. However, there was still a substantial amount of efficiency lost due to the
communication start-up latency times for communications especially in the pipelines where

there was a great deal of communication involved.

Chapter 3 82

The results for pipelines communicating all, lines and points of data are shown in Table
3.6, Table 3.7 and Table 3.8 respectively. The results are for 32x32x32 problem ran on the
Transtech Paramid machine.

The use of POINT and LINE pipelines is clearly more effective than the ALL pipelines.
The use of ALL pipelines cause the parallel code to be serial in these sections of code and thus
reduces the efficiencies obtainable in the remainder of the parallel code. The use of LINE
communication in the pipelines is clearly more effective than the POINT communications. The
POINT pipelines require more communications than the LINE pipeline and causes more
communication startup latencies.

The APPLU parallel code was also tested on the Parsys SN9500 machine using a LINE
pipeline (Table 3.9) and a POINT pipeline (Table 3.10).

No of Processors Time Taken Speed Up Efficiency |
1 1593.83 - -
2 872.27 1.83 91.4%
3 593.74 2.68 89.5%
4 454.21 3.51 87.7%
5 38141 4.18 83.6%
6 314.28 5.07

Table 3.9 : Results for APPLU with LINE pipelines for the Parsys SN9500 (24x24x24

problem for 50 iterations).

|| No of Processors Time Taken Speed Up | Efficiency |
1 1595.84 - -
2 874.62 1.82 91.2%
3 588.08 2.71 90.4%
4 444 .41 3.59 89.8%
5 372.16 4.29 85.8%
6 300.03

Table 3.10 : Results for APPLU with POINT pipelines for the Parsys SN9500 (24x24x24

problem for 50 iterations).

The results for the Parsys SN9500 show that the use of POINT pipeline is more
advantageous than the LINE pipeline. This shows that the Parsys machine is more effective at
communicating small amounts of data more often than communicating large amounts of data

less often. This is due to the smaller amount of communication startup latency incurred.

Chapter 3 83

The application of Iteration Grouping (discussed in Section 1.9) was also investigated on
the pipelines in APPLU to determine if there was any advantage in their use. The results for the

various number of iterations grouped as one communication, for 4 processors are shown in

Table 3.11.

No No of Time Speed Up Efficiency

of Iterations Taken
Processors Grouped

1 1 350.78 - -
4 1 115.46 3.04 75.9%
4 2 109.81 3.19 79.8%
4 3 107.93 3.25 81.2%
4 5 106.56 3.29 82.3%
4 6 106.25 3.30 82.5%
4 10 105.86 3.313 82.84%
4 15 105.92 3.311 82.79%
4 30 106.90 82.0%

Table 3.11 : Results for APPLU with POINT pipelines and Iteration Grouping for the

Transtech Paramid on 4 processors (32x32x32 problem for 50 iterations).

Number of Processors Number of Iterations Grouped

2 30

’L 3 30
4 10
6 15
7 10 |
8 6
9 10
10 10

Table 3.12 : Number of Iteration Groupings required for varying Number of Processors

for APPLU.

The results show that for 4 processors a much improved efficiency may be obtained
from calculating 10 iterations before grouping the data from these iterations and communicating
to the next processor. The number of iterations to group however varies depending on the

number of processors involved (Table 3.12).

Chapter 3 84

The number of iteration groupings also depends on the problem size, the parallel
machine used and varies from code to code. It is therefore not very easy to determine the most

effective number of iterations to group without first conducting several trial runs.

3.5 ARC3D.
ARC3D i1s a code from the Perfect Club Benchmark Suite [70] of codes and was

developed by the NASA Ames Research Center. It is a three-dimensional Euler code solved
with an implicit algorithm, central differences and full geometry. The code consists of
approximately 3600 lines of code in 25 routines.

This code was also partitioned in the L dimension using CAPTools. During the
parallelisation stage it was necessary to conduct a routine copy for the routines VPENTA and
VPENTAS3 using the Routine Copy transformation in CAPTools (see Section 2.11). The code in
Figure 3.23 shows there are three calls to the routine VPENTA from routine STEPF3D. This
routine 1is called three times, each time with a different orientation of the problem data being
passed into the workspace. The first call operated on the J and K orientation, the second call on
the K and J orientation and the third call on the L and J orientation. The first two calls did not
involve the L-dimension and an execution control mask on their calls is sufficient. The third call
operates on the partitioned L-dimension and it is desirable to allow masks to be applied to
statements within this routine call. The routine VPENTA3 was also called three times by the

routine STEPF3D in a similar fashion and required a routine copy.

DO 241 K=2,KM,I
DO 241 J=2,]M,1
FR({J.K,1)=S(J,K,L,N)
241 CONTINUE
CONTINUE
CALL VPENTA(AR,BR,CR,DR.ER,WR1,WR2,FR,2,]JM,2 KM)

DO 432 K=2,KM,1
DO 432 J=2,JM,1
FR(K,J,1)=S(J,K,.L,N)
432 CONTINUE
CONTINUE
CALL VPENTA(AR,BR,CR,DR . ER,WR1,WR2 FR,2,KM,2,IM)

DO 533 L=2,LM,1
DO 533 J=2,]M,1
FR(L,J,1)=S(J,K,L.N)
533 CONTINUE

CONTINUE
CALL VPENTA(AR,BR,CR,DR,ER,WR1,WR2 FR,2,LM,2,JM)

Figure 3.23 : Section of code from STEPF3D routine of ARC3D code.

Chapter 3 85

The two copied routines CAP_VPENTAl and CAP_VPENTA31 both contain 2
separate pipelines. The original pipelines generated were serial. To overcome this a loop
interchange was applied to both routines such that the DO K was the outermost loop instead of
the DO J loop as shown in Figure 3.24 which shows the pipelines from routine
CAP_VPENTAL. The first pipeline consists of three individual calls that communicate data for
use in the pipeline calculation. To improve the performance of this pipeline, the data from the
three communications was placed in a buffered array (similar to the TEAMKEI optimisation in
Section 3.3) and communicated as a single communication, to reduce the amount of

communication start-up latency. The same was applied to the CAP_VPENTAJ31 routine.

DO 11 K=KL, KU, 1
CALL CAP_RECEIVE(X(CAP_BLS-2 K),2,CAP_LEFT)
CALL CAP_RECEIVE(Y(CAP_BLS-2,K),2,CAP_LEFT)
CALL CAP_RECEIVE(F(CAP_BLS-2,K),2,CAP_LEFT)
DO 3 J=MAX(JL+2,CAP_BLS-2),MIN(JU-2,CAP_BHS-2),1
LD2=A(.K)
LD1=B(},K)-LD2*X(J-2,K)
LD=C(} K)-(LD2*Y(J-2,K)+LD1*X(J-1,K))
LDI=1.DO/LD
F(J.K)=(F(J,K)-LD2*F(J-2,K)-LD1*F(J-1,K))*LDI
X(J,K)=(D(,K)-LDi1*Y(J-1,K)*LDI
Y({J,K)=E(J,K)*LDI
3 CONTINUE
CALL CAP_SEND(X(CAP_BHS-1,K),2,CAP_RIGHT)
CALL CAP_SEND(Y(CAP_BHS-1,K),2,CAP_RIGHT)
CALL CAP_SEND(F(CAP_BHS-1,K),2,CAP_RIGHT)
11 CONTINUE

DO 15 K=KL,KU,1
CALL CAP_RECEIVE(F(CAP_BHS+1,K),2,CAP_RIGHT)
DO 4 J=MAX(2, JU-CAP_BHS), MIN(JU-JL, JU-CAP_BLS), 1
IX=JU-J
F(IX,K)=F(JX,K)-X(JX,K)*F(JX+1,K)-Y(JX,K)*F(JX+2,K)
4 CONTINUE
CALL CAP_SEND(F(CAP_BLS, K),2,CAP_LEFT)
15 CONTINUE

Figure 3.24 : The pipelines in routine CAP_VPENTAI1 in ARC3D code.

For the Transtech Paramid on a problem size of 40x33x40 the time taken on 8 processors
was 398.08 seconds in relation to 1373.95 seconds in serial (Table 3.13). This produced a speed
up of 3.45 on 8 processors equivalent to an efficiency of 43.1%. A timing profile of the pipeline
routines (Table 3.14) revealed that they were slowing down as the number of processor
increased. The time to communicate the data is much more than the calculation time required.
The communications are therefore dominating the runtime in these routines and thus providing
poor efficiencies to the whole program. The removal of the effect of the pipelines provided a

speed up of 4.61 and an efficiency of 57.6% on 8 processors.

Chapter 4

4 Application of Overlapping
Communications for Structured Mesh

Computational Mechanics Codes.

4.1 Introduction

This chapter investigates the methods for applying overlapped communications to
several common circumstances that arise in parallel codes. These methods were tested on the
codes previously parallelised in Chapter 3 by changing the code as necessary by hand. These
methods of changing the code for overlapping communications were then applied as an
automatic generation stage within CAPTools in the chapter that follows.

In all of the codes parallelised by CAPTools (Chapter 3) the communications have been
migrated (Section 2.8.3) to their furthest point from the usage of the communicated data. This
leads to the communications to be moved out of loops and wherever possible merged with other
communications. This has been seen in all of the codes parallelised in Chapter 3.

The code between the communication of data and the calculation using that relevant data
could be used to overlap the communication and thus hide the overheads incurred (Section 4.2).
This chapter discusses methods used to hide these communications and therefore increase the
performance of the parallel codes.

In order to apply overlapped communications to these codes it was first necessary to
investigate the different methods of applying asynchronous communications (Section 4.2)
available. It was also necessary to extend the current CAPLib communication library [48,49] to
include asynchronous communications and their associated synchronisation points (Section 4.4).

The communications considered for overlapping were the CAP_ EXCHANGE (Section
1.6) communications and the pipelines (Section 1.8). The exchange of data is frequently
required and this is often the main method of communication within the codes previously

parallelised in Chapter 3. These exchange communications were often migrated to some

Chapter 4 88

distance from the statements that required the communicated data. They therefore offer good
potential for increasing the efficiency of the code. The pipelines were also selected since they
drastically reduced the performance of several of the parallel codes (Chapter 3). It would
therefore be of great advantage to reduce the degradation of the efficiency of these parallel
codes.

Three different methods were applied to the CAP_EXCHANGE communications:
Simple overlapping (Section 4.5); Partial overlapping with loop unrolling (Section 4.6); and
Partial overlapping using a conditional statement (Section 4.7). These methods will now be
referred to i shorthand as SIMPLE, PARTIAL and UNROLL overlapping communications
respectively.

The methods discussed in this chapter are also summarised in the paper referenced in

[71].

4.2 Communications in Distributed Memory Systems.

Most parallel codes on Distributed Memory Systems (DMS) use communications that
act synchronously. These communications, when initiated, halt computation until the
communication has been completed. In some communications the time taken to move the data
will be minimal and will not affect the total overall execution time drastically. However, as the
amount of data to be communicated increases, so the time spent in this task will increase. Other
factors to be taken into account are parallel systems where the communications have a high
start-up latency. Here the high start-up latency will significantly increase the time taken for the
communication, even if the actual data movement takes only a minimal amount of time.

The above two factors can extend the total execution time of a code considerably as the
total number of communications and the amount of data to be communicated increases. It would
be very advantageous to overcome this handicap if the communications were somehow
concealed into the normal parallel execution time of the code. This can be achieved by using
asynchronous communications. This type of communication allows the code execution to
continue while the communication occurs concurrently. Unfortunately, the communication start
up associated with each communication may not be overlapped.

There are two main methods of employing asynchronous communications in software:

Chapter 4 89

Firstly, where communication occurs at the same time as the calculation, where the latter makes
use of the latest available values, whether or not these are the same as those calculated in the
serial case.

Consider the section of code in Figure 4.1. The values of A(J) are calculated for every
iteration of the loop I before being communicated asynchronously. This form of communication
allows the ‘other code’ to continue execution while the communication is proceeding. If this
other code’ is sufficient to allow the communication to complete before the values of A(J) are
used then the latest values will be used in S;. However, if there is insufficient code between the
assignment and usage of A then the values from previous iterations of loop L; will be used.

This method is based on the original work of Bertsekas and Tsitsiklis [72] and has been

proved successful in increasing the efficiencies of some suitable codes [73, 74, 75, 76].

Initialise values of A(J)

L, DO I= 1, NITER
DOJ= .
A()=...
ENDDO
Asynchronous Communication of A(J)

Other code

DOJ-=..
S, .= AQ)
ENDDO
ENDDO

Figure 4.1 : Pseudo Code of Asynchronous Communication.

However, this method, can affect the convergence rate and properties of a code in a non-
deterministic manner. One of the requirements (Section 1.3) of the parallel code is that the
results should be identical to that obtained by the serial code. It is for this reason that this method
is considered inappropriate for this work, particularly as there is no restriction on the type of
application code algorithms that may be parallelised.

The second method is to use overlapped communications with synchronisation points.
This allows communications to be overlapped with calculations that do not require the use of the
communicated data. Prior to the use of the communicated data within a calculation a

synchronisation point must be set to ensure that the communication has completed before

Chapter 4 90

allowing the calculation to continue. The synchronisation points ensure that the data
communicated is the correct and latest data to be used in the calculation. Synchronisation
compels the communications to be deterministic which allows the code to be reliable and for the
same results as the serial code to be obtained, whilst still improving performance. Kennedy and

Nedeljkovi¢ have done some work in this area [77]. Consider the code in Figure 4.2.

Initialise values of A(J)
DO I=1, NITER
DOJ=...
AQ)=...
ENDDO
Asynchronous Communication of A(J)

Other code

Synchronisation of Communication.
DOJ=..
..=AQ)
ENDDO
ENDDO

Figure 4.2 : Pseudo Code of Asynchronous Communications with Synchronisation Points.

The code is similar to that in Figure 4.1 except that there is now an additional
synchronisation of communication’ to ensure that the communication has completed before
allowing the code to pass that point and for the communicated data to be used. This ensures that
the usage has the most up to date calculated values.

In some cases it may not be possible to overlap the communications with the calculation
because the data being communicated is required immediately afterwards for calculation. Since
the synchronisation can also incur a time penalty then it can be concluded that if the
communication cannot be overlapped with calculation then it should be left synchronous.

There has also been some work involving the use of multiple threads to overlap
computation and calculation [78]. This method requires at least two sub-domains on each
processor to allow two threads of execution to operate concurrently. The first row of processors
in Figure 4.3 shows four sub-domains (A, B, C, D) distributed onto four processors. To
distribute this data onto four processors with two multithreads each requires the sub-domains A,

B, C and D to be split in two and distributed onto different processors (second row in Figure

Chapter 4 91

4.3). When one sub-domain (thread) is communicating or is idle the second thread may execute
and therefore reduce the processor idle time.

This method, however, does double the number of communications and the volume of
data to be communicated. In the first row in Figure 4.3 the four processors have a total of 6
overlap areas of size N to be updated. For a multi-threaded execution (second row of Figure 4.3)
on four processors the number of sub-domains is doubled to 8 and the number of overlap areas
to be updated would be 14. This method is also reliant on context switching systems that are not

widely available and typically incur a heavy overhead.

PROC 1 PROC 2 PROC 3 PROC 4

\B//’\V’\\\a)\»///“Vf_/‘\,//”\f“\\\/)_//’\V’_/

PROC 1 PROC 2 PROC 3 PROC 4

Figure 4.3 : Non-multithreaded and multithread distribution of data.

There has been some research into software-controlled prefetching [79]. This requires
support from both hardware and software. The processor must provide a special prefctch
instruction while the software uses this instruction to inform the hardware that it intends to use a
particular data item. If the data is not currently in the cache memory then it is fetched from
memory. While the memory services the data miss, the computation can continue to execute as
long as it does not need the requested data. The memory accesses are therefore overlapped with
computation. Better improvement may be obtained from using prefetching in conjunction with
other optimisations such as blocking and loop transformations. Blocking, instead of operating on
whole rows or columns of an array, operates on blocks of the array. Loop transformations that

may be used to obtain improvement are loop interchange, loop skewing and loop reversal.

Chapter 4 92

The use of prefetching requires the user or compiler to insert the prefetches in the correct
place in the code. Also to obtain the most from prefetching some form of transformation might
also need to be applied. There are also additional overheads involved with the additional
instructions required in the machine code. This method unfortunately requires specialist
hardware support such as fast context switching and prefetch instructions that may not be

available on all parallel machines.

4.3 Hardware for Asynchronous Communications.

Whether or not asynchronous communications may be used is however hardware
dependent. Many DM parallel systems such as the Intel Paragon [80] and Transtech Paramid
[81] have compute nodes which consist of at least two processors - one for communication and
one or more for computation. The Intel Paragon node consists of two Intel i860XP processors
where one is concerned with the calculation while the other is concerned with communication.
The Transtech Paramid on the other hand consists of two different processors: an Intel i860 for
the computation and a T805 Transputer processor for communicating. This type of architecture
facilitates the communication and calculation to be executed concurrently via the separate
processors.

There are also processors available, such as the Inmos Transputer T9000 [6], as used in
the Parsys SN9500 [82], which have an in-built facility to communicate while also
administering calculation.

Figure 4.4 shows the architecture of a Transputer processor. The calculation is executed in the
processor pipeline while any communication may be executed concurrently in one of the four
link interfaces that connect to other processors.

However, there are DM parallel systems such as a workstation cluster where
asynchronous communication is not available. Other parallel machines, such as the Cray T3D
and the IBM SP2 have the potential of benefitting from asynchronous communication.
Unfortunately, initial investigations displayed little improvement in the performance of parallel
code after the application of asynchronous communications. There is at present little information

on the successful use of asynchronous communication on these parallel systems.

Chapter 4 93

Processor Pipeline
Address
FPU
Workspace Generator 1
Cache Address
Generator 2 ALU
7\
System Services Virtal
) Channel
. Processor
Timers
3) Link O
=
a8
S) Link 1
.=
16 Kbyte 2
Instruction < 3 > :
and Data g Link 2
Cache -
A D, Link 3
o
on
<
q-
Event 0-3
=
[2a)
S
Programmable O
Memory < > CLink O
Interface
CLink 1

Figure 4.4 : The Transputer Architecture.

4.4 Asynchronous Communication Ultilities.

To take advantage of this hardware for asynchronous communications required the
extension of the CAPTools Communication Library (Section 1.6) to include
asynchronous/overlapping communications. The requirements for these
asynchronous/overlapping communications were specified for the developer of the
communication library who then provided these as additional communications within the
communication library.

The overlapping communication calls are very similar to their synchronous counterparts
(Section 1.6) except that they have additional parameters to allow for synchronisation. The calls

and parameter list for the overlapping communications are as follows :

Chapter 4 94

CAP_ASEND(Send Address, Length, Type, Direction, Send Synchronisation)
CAP_ARECEIVE(Receive Address, Length, Type, Direction, Receive Synchronisation)
CAP_AEXCHANGE(Receive Address, Send Address, Length, Type, Direction,
Receive Synchronisation, Send Synchronisation)
where the Send Synchromisation is the synchronisation value for the send, the Receive
Synchronisation is the synchronisation value for the receive.

Synchronisation points may also be required in association with the overlapping
communications to ensure that the communication has completed before allowing the execution
of the program to continue. Once the communication is completed, the synchronisation point
will return and allow the program to continue. The calls and their parameters are as follows :

CAP_SYNC_SEND(Direction, Send Synchronisation)

CAP_SYNC_RECEIVE(Direction, Receive Synchronisation)

CAP_SYNC_EXCHANGE(Direction, Receive Synchronisation, Send Synchronisation)
The synchronisation values are set during the call to the overlapping communication and consist
of a unique number for each communication. These values are used in the synchronisation calls
to ensure that the communication has completed. The value of each synchronisation point is
incremental. This allows the synchronisation point to synchronise on the highest synchronisation
value to ensure that all previous communications in that direction have completed. The
overlapping communications are also flexible enough to allow multiple synchronisation points
for the same synchronisation value. This may reduce the parallel efficiencies obtained but it does
allow the generation of overlapping communications to deal with cases where the communicated
data may be required at different places in the code. If the synchronisation value is set to O then
the synchronisation points will not synchronise. This can be very useful if, for instance, a

synchronisation point is not required on the first iteration of a loop.

4.5 Simple Overlapping of Exchange Communications.

The pseudo code in Figure 4.5a shows an example of a typical synchronous
EXCHANGE communication as generated by CAPTools for a parallel code. The pseudo code
in Figure 4.5b shows the overlapping communication of the same piece of code as modified by
hand to take advantage of the code, that does not use the communicated data, to overlap the

communication.

Chapter 4 95

DO I=1,NITER DO I=1,NITER
CALL CAP_EXCHANGE(A(Cap_H+1),A(Cap_L),..) CALL CAP_AEXCHANGE(A(Cap_H+1),A(Cap_L),..)
{* Other code which does not *} {* Other code which does not *}
{* use communicated data *} {* use communicated data *}

CALL CAP_SYNC_EXCHANGE(..)

{* Calculation using communicated data *} {* Calculation using communicated data *}
ENDDO ENDDO
Figure 4.5a : Synchronous. Figure 4.5b : Overlapping.

Figure 4.5 : Synchronous and overlapping pseudo code illustrating SIMPLE overlapping with

unrelated code.

The application of an overlapping CAP_EXCHANGE to replace the synchronous EXCHANGE
is straight forward, as long as there is code in between the communication start point (i.e. the
CAP_AEXCHANGE call) and the synchronisation point (i.e the CAP_SYNC_EXCHANGE
call) that does not use the data being communicated. CAPTools always generates a
communication at a position as far as possible from the point that the data being communicated
is being used in calculation. This is achieved by the migration of communications (Section
2.8.3). This will often provide an ample amount of code (more precisely the calculation time) to
fully overlap the communication. Consider the routine SSOR of the APPLU code in Figure 4.6.
Using the communication browser (Figure 4.7) the data communicated (the array U) by
the first exchange S; was not required for use in calculation until inside the routine JACLD. In
between this communication call and the call to routine JACLD is a set of four nested loops that
sets the values of the array RSD. These nested loops do not use the communicated data. At
present the communications are synchronous (Section 1.6). These communications wait until
they have completed exchanging their data before allowing the calculation to continue. If the
amount of data to communicate is substantial then the time spent waiting for the completion

could be very costly to the efficiency of the parallel code.

Chapter 4 96

DO ISTEP=1,ITMAX.1
S CALL CAP_EXCHANGE(U(1,1,1,CAP_BLD-1),U(1,1,1,CAP_BHD),1440,CAP_LEFT)
S: CALL CAP_EXCHANGE(U(1,1,1,CAP_BHD+1),U(1,1,1,CAP_BLD),1440,CAP_RIGHT)

IF (MOD(ISTEP,INORM).EQ.0).AND.(IPR.EQ.1)) THEN
IF (CAP_PROCNUM_.EQ.1)WRITE(UNIT=IOUT,FMT=1001)ISTEP
ENDIF

Perform SSOR iteration

oNoR®]

DO K=MAX(2,CAP_LD),MIN(NZ-1,CAP_HD),1
DO J=2NY-1,1
DO I=2,NX-1,1
DO M=1,5,1
RSD(M,1J,K)=DT*RSD(M,L}.K)
ENDDO
ENDDO
ENDDO
ENDDO

Form the lower triangular part of the Jacobian matrix

CALL JACLD(CAP_LD,CAP_HD)

Perform the lower triangular solution

CALL BLTS(ISIZ1,1S1Z22,IS1Z3,NX,NY ,NZ,OMEGA,RSD.A,B,C,D,CAP_LD,CAP_HD)

Form the strictly upper triangular part of the jacobian matrix

nNnoOn a0 o000

CALL JACU(CAP_LD,CAP_HD)

Figure 4.6 : Section of code from routine SSOR in the APPLU code with synchronous

communications.

Chapter 4 98

communication (S;) the CAP_SYNC_EXCHANGE is placed prior to the call to routine JACU
(S4).

DO ISTEP=1,ITMAX,1

S CALL CAP_AEXCHANGE(U(1,1,1,CAP_BLD-1),U(1,1,1,CAP_BHD),1440,CAP_LEFT,
& CAP_SE_SYNC_1,CAP_RE_SYNC_1)
N CALL CAP_AEXCHANGE(U(1,1,1,CAP_BHD+1),U(1,1,1,CAP_BLD),1440,CAP_RIGHT,
& CAP_SE_SYNC_2,CAP_RE_SYNC_2)
C

IF (MOD(ISTEP,INORM).EQ.0). AND.(IPR.EQ.1)) THEN
IF (CAP_PROCNUM.EQ.1)WRITE(UNIT=IOUT,FMT=1001)ISTEP
ENDIF

Perform SSOR iteration

oNoKe

DO K=MAX(2,CAP_LD)MIN(NZ-1,CAP_HD),1
DO J=2NY-I,1
DO 1=2,NX-1,1
DOM=15,1
RSD(M,LJ,K)=DT*RSD(M,LJ,K)
ENDDO
ENDDO
ENDDO
ENDDO

Form the Iower triangular part of the jacobian matrix

oNoNQ]

S3 CALL CAP_SYNC_EXCHANGE(CAP_LEFT,CAP_SE_SYNC_1,CAP_RE_SYNC_1)
CALL JACLD(CAP_LD,CAP_HD)

Perform the lower triangular solution
CALL BLTS(SIZI1,ISIZ2,ISIZ3,NX ,NY ,NZ,OMEGA ,RSD.A,B,C,D,CAP_LD,CAP_HD)

Form the strictly upper triangular part of the jacobian matrix

oloNo RN oNoN!

Ss CALL CAP_SYNC_EXCHANGE(CAP_RIGHT,CAP_SE_SYNC_2,CAP_RE_SYNC_2)
CALL JACU(CAP_LD,CAP_HD)

Figure 4.8 : Section of code from SSOR with an overlapping communication.

In the code in Figure 4.8 the communications were overlapped with calculation prior to
the routine calls. It might be the case that there is more code to overlap inside the routines
themselves. The Communications Browser (Figure 4.7) shows that the first request for the data
in calculation is required at line 99. It may be possible to place the synchronisation call
CAP_SYNC_EXCHANGE immediately prior to this command. However, closer inspection of
the code revealed that this command was within 3 loops. If the synchronisation points was
placed inside these loops, it would be called for every iteration of these loops. This would cause
the CAP_SYNC_EXCHANGE (which incurs a time overhead) to be called many more times
than necessary. It is therefore preferable to place the synchronisation point prior to these loops to
reduce the time overhead. If the synchronisation point was placed prior to these loops then for

this example there would only be three assignment commands from the head of the routine

Chapter 4 99

JACLD to the synchronisation point. The synchronisation point has now gained some additional

code processing to overlap the communication. A similar situation occurs within the JACU call.

4.6 Partial Loop Overlapping using Loop Unrolling.

In the simple overlapping case it was possible to take advantage of sections of code
that did not use the communicated data to overlap the communication and thus hide the
communication time. In some cases, however, this will not be possible.

The use of data in a loop immediately after its communication prohibits simple
overlapping of communications. Loop unrolling [83] may be applied to allow overlapping. If the
data to be exchanged in a communication is to be used in calculation in the first iteration of the
loop then that iteration of the loop may be stripped from the loop. The calculation loop would
then execute from the second to the last iteration of the original loop. After the execution of this
loop a synchronisation point is inserted and the original first iteration is then calculated. It is
essential to ensure that the data assigned in the first iteration is not required in a consequent
iteration of the loop. The left hand side (Figure 4.9a) shows the synchronous exchange as
generated by CAPTools. This is a simplification of a similar code in the routine SOLVER in
FAB (Figure 3.5). The right hand side (Figure 4.9b) shows the overlapping version of the code
modified for partial loop overlapping with loop unrolling.

Figure 4.9 shows that the data being exchanged is being received into A(Cap_L-1). The
calculation involves the statement B(J) = A(J-1) where the range of J will be 1 or Cap_L to 200
or Cap_H, depending on whether it is the first (1 to Cap_H), last (Cap_L to 200) or intermediate
(Cap_L to Cap_H) processor of a 1-D grid of processors. The communicated value of A, i.e.
A(Cap_L-1), is required on the first iteration on each processor, apart from the first processor of
a 1-D grid of processors. The first iteration may then be stripped out of the J loop.

The code in Figure 3.5 shows that the two CAP_EXCHANGE communications are
communicating data which is required immediately within the DO 30 loop. Applying the simple
overlapping strategy (Section 4.5) the synchronisation points would be placed immediately prior
to the DO 30 J loop. This would provide 2 lines of code to overlap the communication. This

clearly is an insufficient amount of calculation to overlap the communication.

Chapter 4 100

DO I=1,NITER DO I=1,NITER
CALL CAP_EXCHANGE(A(Cap_L-1),A(Cap_H),..) CALL CAP_AEXCHANGE(A(Cap_L-1),A(Cap_H)...)
DO J=MAX(1,Cap_L), MIN(200,Cap_H) DO J=MAX(1,Cap_L)+1, MIN(200,Cap_H)
{* Calculation using communicated data *) {* Calculation NOT using communicated data *}
{* on first iteration *}
B(J)=A(J-1) B{J)=AJ-D)
ENDDO ENDDO

CALL CAP_SYNC_EXCHANGE(..)

DO J=MAX(1,Cap_L),MAX(1,Cap_L)
{* Calculation using communicated data *}

B(J) = AJ-1)
ENDDO
ENDDO ENDDO
Figure 4.9a: Synchronous Figure 4.9b: Overlapped

Figure 4.9 : Synchronous and overlapping pseudo code illustrating partial loop overlapping

using loop UNROLLing.

However, the two CAP_EXCHANGE communications exchange data which lies on the
boundary of each processors’ allocated data partition. Removing the very first and last iteration
of the DO 30 loop and placing their calculation immediately after the reduced DO 30 loop
would allow sufficient code to conceal the communication time.

To perform this method of concealing the communication requires loop unrolling or loop
stripping. This is a common optimisation which may be found in many compilers [83]. It is,
however, essential that before administering loop unrolling that the data from the first iteration
of the DO 30 loop is not required in any subsequent iterations of the loop. For the final iteration
of the loop this would also apply. For the DO 30 loop this is not a problem since no
dependencies are carried by that loop (after the dependence deletion) and it is therefore possible
to unroll the first and last iterations. This is illustrated in the code in Figure 4.10.

The original DO 30 loop (Figure 4.10) has now been adjusted (unrolled) such that the
first and last iteration are no longer executed. The code now also contains two copies of the code
within the DO 30 loop to allow the calculation of the stripped loops after synchronisation of the
overlapped communication. When the modified loop has completed its execution, the
overlapped communications are synchronised to ensure that they have completed. It is then legal

to execute the calculation for the first and last iteration of the original loop.

Chapter 4 101

40 CONTINUE
RESID =0.0
IF (ISWEEP .LE. MSWEEP) THEN
CALL CAP_AEXCHANGE(TNEW(Q2,CAP_BHTNEW+1),TNEW(2,CAP_BLTNEW),

+ IN-2,CAP_RIGHT,CAP_SE_SYNC1,CAP_RE_SYNC1)
CALL CAP_AEXCHANGE(TNEW(2,CAP_BLTNEW-1),TNEW(2,CAP_BHTNEW),
+ IN-2,CAP_LEFT,CAP_SE_SYNC2,CAP_RE_SYNC2)
TOP=0.0
BOT=0.0
C
C The first & last iterations have been stripped.
C

DO 30 J=MAX(2,CAP_BLTNEW)+1MIN(JN-1,CAP_BHTNEW)-1,1
DO 10 I=2,IN-1,1

B(D=-(B(H+(TNEW(LJ+1)*SK(LJ+)+TNEW(LJ-1)*SK(LJ))/DR)
10 CONTINUE
CALL TDMA(TNEW,IN,IN-1,J,CAP_LTNEW,CAP_HTNEW)
CALL RESIDUAL (...)
0 CONTINUE

Calculation for the first iteration of the original J loop

OO0 w

CALL CAP_SYNC_EXCHANGE(CAP_LEFT,CAP_SE_SYNC_2,CAP_RE_SYNC _2)
J=MAX(2,CAP_BLTNEW)

DO 110 I=2,IN-1,1

B(D=-(B(D+(TNEW(LJ+1)*SK(LJ+1)+TNEW(LJ-1)*SK(LJ))YDR)
110 CONTINUE
CALL TDMA(TNEW,IN,IN-1,J,CAP_LTNEW,CAP_HTNEW)
CALL RESIDUAL(...)

Calculation for the last iteration of the original J loop

oNeNe!

CALL CAP_SYNC_EXCHANGE(CAP_RIGHT,CAP_SE_SYNC_1,CAP_RE_SYNC_1)
J=MIN(JN-1,CAP_BHTNEW)

DO 210 I=2,IN-1,1

B(D=-(B(D+(TNEW(LJ+1*SK(LJ+1)+TNEW(1,J-1)*SK(LJ))/DR)
210 CONTINUE
CALL TDMA(TNEW,IN,IN-1,J,CAP_LTNEW,CAP_HTNEW)
CALL RESIDUALK...)

CALL CAP_COMMUTATIVE(CAP_TOP,CAP_RADD)
TOP=TOP+CAP_TOP
CALL CAP_COMMUTATIVE(CAP_BOT,CAP_RADD)
BOT=BOT+CAP_BOT
TOP=SQRT(TOP)
BOT=SQRT(BOT)+1.0
RESIDJ=TOP/BOT
RESID=RESIDIJ
ISWEEP=ISWEEP+1
IF (MOD(ISWEEP,10).EQ.0) PRINT *, RESIDUAL = " RESID,ISWEEP
IF(RESID .GT. CON1) THEN
GOTO 40
ELSE
PRINT*, ITERATIONS:",ISWEEP
RETURN
ENDIF
ENDIF

Figure 4.10 : The routine SOLVER in FAB with partial loop overlapping with loop
UNROLLing applied.

Chapter 4 102

4.7 Partial Loop Overlapping with a Conditional Statement.

The application of loop unrolling causes large amounts of additional code to be
generated that breaks the second objective in Section 1.3. If the data being communicated is
not required for calculation until the final few iterations of the loop then it could be possible
to overlap the communication by using a conditional statement. The synchronisation point
would be placed within the loop with a conditional statement that would be applicable only
on the appropriate iteration of that loop. The pseudo code in Figure 4.11a shows the
synchronous exchange as generated by CAPTools. Figure 4.11b shows the overlapping

version of the code modified by hand for Partial Loop Overlapping using a conditional

statement.
DO 1=1,NITER DO I=1,NITER
CALL CAP_EXCHANGE(A(Cap_H+1),A(Cap_L),..) CALL CAP_AEXCHANGE(A(Cap_H+1),A(Cap_L),..)
DO J=MAX(1,Cap_L), MIN(199,Cap_H) DO J=MAX(1,Cap_L), MIN(199,Cap_H)
IF{J .EQ. Cap_H)THEN
CALL CAP_SYNC_EXCHANGE(..)
ENDIF
{* Calculation using communicated *} {* Calculation using communicated *}
{* data only on last iteration *} {* data only on last iteration *}
B{lJ)=AJ+1) B(J) = A(J+1)
ENDDO ENDDO
ENDDO ENDDO
Figure 4.11a: Synchronous Figure 4.11b: Overlapped

Figure 4.11 : Synchronous and overlapping pseudo code illustrating PARTIAL loop

overlapping with a conditional statement.

Figure 4.11 shows that the data being exchanged is being received into A(Cap_H+1).
The calculation involves the statement B(J)= A(J+1) where the range of J will be from 1 or
Cap_L to 199 or Cap_H depending on whether it is the first (1 to Cap_H), last (Cap_L to 199) or
intermediate (Cap_L to Cap_H) processor of a 1-D grid. As such, the communicated value of A,
i.e. A(Cap_H+1), is not required until the last iteration on each processor, apart from the last
processor in a 1-D grid of processors. The conditional statement required for the synchronisation
point ensures that it is the last iteration for that processor before enforcing the synchronisation

point. The code is also similar to the original with only minor changes.

Chapter 4 103

Consider the code in Figure 4.12 from routine CALCU in TEAMKE].

CALL CAP_EXCHANGE(U(1,CAP_BHT+1),U(1,CAP_BLT),288,CAP_RIGHT)

Final Coefficient assembly and residual calculation.

ann

RESORU=0.0

FAC=1.-URFU

CAP_RESORU=0

DO 420 =2,NIM2,1

DO 200 J=MAX(2,CAP_LVIS),MIN(NJM1,CAP_HVIS),I
APU(L)=AWU(LH+AEU(LJ)+ASU(L,J)+ANU(LJ)-SPU(1,J)
DU(LJ)=RSYCV({JYAPU(IL))
S RESOR=ANU(L)*U(LJ+1)+ASU(LJ)*U(L,J-1)+AEU(] J)*
& U(I+1L,H+AWU(LH*U(1-1,3)-APU(L))*U(LJ)+SUU(L,J)
IF (-SPU(LJ).EQ.GREAT) THEN
RESOR=0.0

ENDIF
CAP_RESORU=CAP_RESORU+ABS(RESOR)

Under-relaxation.

aO0n

APU(L))=APU(LJYURFU
SUU(LD=SUU(LI+FAC*APU(LJ)*U(LJ)
DU(1.J)=DU(1,J)*URFU

C
C Solution of difference equations.
C

200 CONTINUE

420 CONTINUE

Figure 4.12 : Subroutine CALCU in TEAMKEI with synchronous communications.

The exchange communication receives the data for use in statement S;. There is clearly
no other code that may be simply overlapped with the communication. The communication
receives all the values of U for the J index CAP_BHT+1 from the next processor in a 1-D grid of
processors. This communicated data in the exchange is not required until the final iteration of
the DO 200 J loop.

The main philosophy of CAPTools is to generate parallel code that is still recognisable
by the original code author with the minimum amount of changes or additional code. Placing a
conditional within the loop that calls the synchronisation point on the last iteration loop prior to
the use of the communicated data (Figure 4.13) reduces the amount of alteration to the code
significantly in comparison with that obtained from loop unrolling. Loop unrolling would have
necessitated a copy of the calculation within the DO 200 J loop being copied and placed
immediately after the loop end.

It follows that the two loops unrolled for FAB in Figure 4.10 were not necessary. The
loop unrolling of the first iteration of the loop was required along with a conditional for the

partial loop overlapping of the data required for the last iteration of the loop.

Chapter 4 104

CALL CAP_AEXCHANGE(U(1,CAP_BHT+1),U(1,CAP_BLT),288,CAP_RIGHT,
& CAP_SE SYNC_1,CAP_RE_SYNC_1)

Final coefficient assembly and residual calculation.

oNoNe!

RESORU=0.0
FAC=1.-URFU
CAP_RESORU=0
DO 420 1=2,NIM2,1
DO 200 J=MAX(2,CAP_LVIS)MIN(NJM!,CAP_HVIS),1
IF (J.GE.CAP_BHT) THEN
CALL CAP_SYNC_EXCHANGE(CAP_RIGHT,CAP_SE_SYNC_1,CAP_RE_SYNC_1)
ENDIF
APU(LNH=AWU(L)+AEU(1,))+ASU(L,))+ANU(LJ)-SPU(L,))
DU(L,)=RSYCV{JYAPU(LJ))
S RESOR=ANU(L})*U(1J+D+ASU(LD)*U(LJ-1)+AEU(L)*U(1+1,0)+AWU(L))*
& U(1-L)-APULD)*U(LIH+SUU(L))
IF (-SPU(1,J).EQ.GREAT) THEN
RESOR=0.0
ENDIF
CAP_RESORU=CAP_RESORU+ABS(RESOR)

Under-relaxation.

O0n

APU(L)=APU(LJYURFU
SUULH=SUU(LI)+FAC*APU(1})*U(LJ)
DU(L.))=DU(LJ)*URFU
C
C
C

200 CONTINUE
420 CONTINUE

Solution of difference equations.

Figure 4.13 : Subroutine CALCU in TEAMKE]1 with overlapped communication.

It is often the case that exchange communications emerge as pairs, requiring the
boundary data of both its neighbouring processors. This is primarily due to the type of
calculation required in Computational Mechanics codes. A certain point on a mesh may have,
for instance, temperature calculated from the temperature of the points surrounding it. For
example, The temperature value of T(I,J) could be dependant on the values of T(I+1,]), T(I-1,J),
T(I,J+1) and T(I,J-1). It will therefore be the case that when two exchanges of boundary data are
placed prior to the loop requiring the communicated data allowing no overlap will require both
the partial loop overlap using loop unrolling and a conditional statement as is the case in Figure
4.14.

Figure 4.15 shows the new calculation order of the loop in Figure 4.14 after applying
loop unrolling and partial overlapping. Originally, for processor 2, the order of the calculation
would have been from J=10 to J=20. Applying the loop unroll strips the first loop, therefore the
calculation now begins at J=11 up until J=20. The J=10 iteration is calculated after J=20. The
J=10 calculation is only calculated after synchronisation point Sync2. Also the calculation of

J=20 and J=10 are only possible after the synchronisation at the point Sync1 in Fi gure 4.15.

Chapter 4 105

40 CONTINUE
IF (ISWEEP .LE. MSWEEP) THEN
CALL CAP_AEXCHANGE(TNEW(2,CAP_BHTNEW+1),TNEW(2,CAP_BLTNEW),
+ IN-2,CAP_RIGHT,CAP_SE_SYNC1,CAP_RE_SYNC1)
CALL CAP_AEXCHANGE(TNEW(2,CAP_BLTNEW-1),TNEW(2,CAP_BHTNEW),
+ IN-2,CAP_LEFT,CAP_SE_SYNC2,CAP_RE_SYNC2)
TOP=0.0
BOT=0.0
DO 30 J=MAX(2,CAP_BLTNEW)+1,MIN(JN-1,CAP_BHTNEW),1
IF (J.GE.CAP_BHTNEW) THEN
Syncl CALL CAP_SYNC_EXCHANGE(CAP_RIGHT,CAP_SE_SYNC_1,CAP_RE_SYNC_1)
ENDIF

DO 10 1=2,IN-1.1
B(I)=-(B(I)}+(TNEW(LJ+1)*SK(LJ+1)+ TNEW(LJ-1y*SK(LJ))/DR)
10 CONTINUE
CALL TDMA(TNEW,IN,IN-1,J,CAP_LTNEW.CAP_HTNEW)

CALL RESIDUAL (...)
30 CONTINUE

C
C Calculation for the first iteration of the original J loop
C

Sync2 CALL CAP_SYNC_EXCHANGE(CAP_LEFT,CAP_SE_SYNC_2,CAP_RE_SYNC_2)
J=MAX(2,CAP_BLTNEW)

DO 110 I=2,IN-1,1
B(D)=-(B(D+(TNEW(LJ+1)*SK(IJ+1)+TNEW(I,J-1)*SK(L]))/DR)
110 CONTINUE

CALL TDMA(TNEW,IN,IN-1,J,CAP_LTNEW,CAP_HTNEW)
CALL RESIDUALK...)

Figure 4.14 : Routine SOLVER in FAB with partial overlapping using loop unrolling and a

conditional statement.

, Order of
Proc 3 ! : Execution
CAP H =20 1 10
... - Syncl
B 9
o 8
BT 7
UL .. 2T 6
Proc 2 NS 5
e B A 4
B 3
e B 2
BN 1
CAP_L J=10 11
SR ro------ <— Sync 2
Proc 1 1 IN,
J
L I

Figure 4.15 : Calculation order of code in Figure 4.14.

Chapter 4 106

4.8 Pipelines.

From the codes that were parallelised in Chapter 3 it is clear that pipelines were
necessary to ensure correct parallel code was generated. Experimentation with placing the
communications surrounding different loops had provided some improvement in efficiencies,
however, this still represents a significant overhead.

To improve these pipeline efficiencies it is necessary to hide the communication time.
Unfortunately, none of the previous examples of overlapping communications are applicable to
pipelines. Instead a different method has to be formulated.

The code for the pipeline communicating a line of data (Figure 3.19) for the BLTS
routine in APPLU is represented diagrammatically in Figure 4.16. The first processor starts the
pipeline by executing the calculation for J=2. The CAP_RECEIVE communication is not
executed on the first processor since it has no processor to its left. When the calculation has
completed a set of lines of data the last line calculated is sent to the next processor to the right.
The first processor then repeats this process for the next J iterations until there is no more
calculation in the pipeline. The next processor in the 1-D grid will start its process by receiving a
line of data from the left. This processor then executes its calculation. When this calculation is
completed the processor then sends data to the next processor to its right. All the intermediate
processors of the 1-D grid will repeat this process for all J iterations until there is no more
calculation to allow communication. The last processor in the 1-D grid will receive the
communicated data from the previous processor and then execute its calculation. This final
processor will not communicate to the right since this is the last in the 1-D grid.

The diagram (Figure 4.16) also shows the idle time the processors incur for the start-up
and shutdown of the pipeline. There is also some idle time present for the first and last processor
of the 1-D grid. It can clearly be seen that the communication extends the total runtime of the
pipeline.

To overlap these communications the pipeline algorithm has be altered to take
advantage of the calculation that is present. In Figure 4.16 the calculation and communication
on each processor is linear, i.e. the send communication does not happen until the calculation
has completed and the calculation does not happen until the receive communication has
completed, etc. From the previous discussion in Section 4.2 these send and receive
communications can occur in tandem (i.e. overlapped) with the calculation. Rearranging these

communications in Figure 4.16 to overlap with the calculation provides us with the diagram in

Chapter 4

109

CALL CAP_ARECEIVE(V(1,2,2,CAP_BLA-1),NX*10-20,CAP_LEFT,CAP_R_SYNC)
DO J=2,NY-1,1

CALL CAP_SYNC_RECEIVE(CAP_LEFT,CAP_R_SYNC)

IF J+1.LE.NY-1) THEN

CALL CAP_ARECEIVE(V(1,2,J+1,CAP_BLA-1),NX*10-20,CAP_LEFT,CAP_R_SYNC)
ENDIF
DO K=MAX(2,CAP_LLDZ)MIN(NZ-1,CAP_HLDZ),1

DO I=2,NX-1,1

Calculation requiring communicated data.

ENDDO

ENDDO
CALL CAP_SYNC_SEND(CAP_RIGHT,CAP_S_SYNC)

CALL CAP_ASEND(V(1,2.J,CAP_BHA) NX*10-20,CAP_RIGHT,CAP_S_SYNC)

ENDDO
CALL CAP_SYNC_SEND(CAP_RIGHT,CAP_S_SYNC)

Figure 4.18 : Overlapping pipeline communicating line data for routine BLTS in APPLU.

These two pipelines were tested to establish how communicating varying amounts of

data affected the obtainable efficiency. The pipelines were tested on the APPLU code for 6 1860

processors on the Transtech Paramid, the results of which are shown in Table 4.1.

r No Overlap in Comms & Calc Overlapping Com; & Calc
Nwords Time Speed Up | Efficiency Time Speed Up | Efficiency

120 41.5 3.49 58.1 29.7 4.87 81.1
360 47.8 3.02 50.4 30.4 4.76 79.4
600 54.2 2.67 44.5 31.0 4.66 77.6
840 60.5 2.39 39.8 31.7 4.56 76.0
960 63.7 2.27 37.9 32.2 4.49 74.8
1200 70.0 2.07 34.4 35.7 4.05 67.5
1440 76.4 1.89 31.6 39.2 3.69 61.5

| I WG A S E—— 1

Table 4.1 : Results showing how the efficiency vary with the amount of data communicated.

The results obtained (Table 4.1) showed that for the synchronous pipeline the

efficiencies were falling dramatically as the amount of data being communicated increased. For

the overlapped pipeline the efficiencies remained fairly constant as the amount of communicated

data increased until the turning point at approximately 940 to 960 words of communicated data.

There is some loss of efficiency up to this turning point due to contention between the two

Chapter 4 110

processors (the 1860 and the transputer) for access to the same data in memory. At the turning
point, the efficiencies begin to fall rapidly for the overlapped pipeline. The graph, in Figure
4.19, clearly shows how the efficiency begins to decrease at this point. Up until the turning point
the amount of time to communicate the data was always less than the time taken to execute the
calculation. The communication time was effectively completely hidden by the calculation time.
After the turning point the time taken to communicate the data was now greater than the
communication time of the pipeline and the efficiencies were falling at the same rate as they
would for a synchronous pipeline. The graph does, however, show that improved efficiencies are
still obtainable for the overlapped pipeline in comparison with the synchronous pipeline even

when the amount of communication is greater than the amount of communication to overlap.

100 — 77—
—— Overlapped Pipeline
90 | Synchronous Pipeline |
80 .
£ 70t]
>
(&)
c
Q2
£ 60]
LU
50 |
40 - .
0 L 1 L | n | A | s I n [n 1 i
0 200 400 600 800 1000 1200 1400
Pipeline Communication Length (Nwords)

Figure 4.19 : Graph of synchronous versus overlapped communications.

The application of the overlapped communications to the two pipeline routines in

APPLU provided a satisfactory increase in the efficiency of the code (see Section 6.4).

Chapter 4 111

4.9 Conclusion.

The methods applied by hand to convert the synchronous communications to be
overlapped proved effective in increasing the efficiencies of the parallel codes. This success
provided the motivation for these methods to be incorporated and automatically generated
within CAPTools. The application of these methods of overlapping the communications is

discussed in the following chapter.

Chapter 5

5 The Automatic Code Generation of
Overlapping Communications for
Structured Mesh Computational

Mechanics Codes.

5.1 Introduction.

The previous chapter demonstrated via manual parallelisation the methods that can be
used to apply overlap communications. This process is now automated such that CAPTools
will accomplish it automatically as an additional stage of the parallelisation. This requires a
generic algorithm that makes use of many of the symbolic algebra tests and symbolic variable
manipulation routines within CAPTools This additional stage is placed immediately after the
Calculation and Generation of Synchronous Communications stage and prior to the Parallel
Code Generation. This placement allows the exploitation of the synchronous communication
information provided by CAPTools to assist in the generation of the overlapping
communications.

The basic algorithm (Figure 5.1) shows how each command of the parallel code is
traversed. Each command is inspected to determine if it is an exchange communication or a
pipeline communication. Depending on the communication type the relevant tests are executed
to discover their suitability for conversion. Synchronisation points and transformation requests
are merged prior to final generation.

The methods discussed in this chapter are also summarised in the paper referenced in

[71].

Chapter 5 113

FOR (every COMMAND in the synchronous parallel code) DO

BEGIN
IF COMMAND = EXCHANGE COMMUNICATION THEN Section 5.2
BEGIN
{* The first stage of calculating CAP_EXCHANGE overlap. *}
IF (test for SIMPLE is true) THEN Section 5.2.2
{* SIMPLE overlap may be applied. *}
ELSE IF (test for PARTIAL is true) THEN Section 5.2.3
{* PARTIAL overlap may be applied. *}
ELSE IF (test for UNROLL is true) THEN Section 5.2.4
{* UNROLL overlap may be applied. *}
ELSE
{* Overlap may not be applied. *}
END
ELSE IF COMMAND = PIPELINE COMMUNICATION THEN Section 5.3
BEGIN
{* Generate Overlapped Pipeline. *} Section 5.3
END
END
{* Merge synchronisation points. *} Section 5.2.5
{* The second stage of generating CAP_EXCHANGE overlap *}
{* Generate UNROLL communications *} Section 5.2.7.1
{* Generate PARTIAL communications *} Section 5.2.7.2
{* Generate SIMPLE communications *} Section 5.2.7.3
Figure 5.1 : The basic algorithm for the automatic generation of overlapping
communications.

5.2 Exchange Communications.

The testing of the overlapped CAP_EXCHANGE communications consists of two
stages. The first stage consists of calculating which CAP_EXCHANGE communications may
be overlapped and which method is the most suitable to be applied. This stage tests which
overlapping communications may be applied in the strict order of SIMPLE (Section 5.2.2),
PARTIAL (Section 5.2.3) and UNROLL (Section 5.2.4). Each of these methods requires
more additional or altered code than the previous method. It is obviously desirable to apply
the simplest method when possible to maintain recognition of the original serial code. The
second stage consists of converting these suitable communications to be overlapped using the
appropriate method. This stage requires the generation of the overlapped communications
methods in a strict order of UNROLL, PARTIAL and then SIMPLE. This method of ordering
prevents any intervention from the previous methods applied. For example, the UNROLL
method is the most disruptive in that it requires the unrolling of a loop. This involves the
copying of the original loop and the adjustment of the both the original and copied loops. If
the other two methods of overlapping had been applied prior to the loop copy then the
situation may arise that any code alterations or additions from these methods will also be

copied causing the algorithm to be incorrect or an unnecessary synchronisation call.

Chapter 5 114

5.2.1 Selection of Overlapping Technique.

This primary stage consists of calculating which method of overlapping may be most
effectively applied to the communications. The three methods of calculating the SIMPLE,
PARTIAL and UNROLL are applied in a strict order. The SIMPLE (Section 5.2.2)
overlapping is tested first since this is as the name suggests, the simplest method to apply and
requires the minimum amount of change to the parallel code. The PARTIAL and UNROLL
methods are tested in tandem. This is because they both involve similar tests. It is however
preferable to use the PARTIAL method where possible since this causes the minimal code
alteration (Section 5.2.3). The UNROLL is only applied when it is not possible to apply the
PARTIAL method (Section 5.2.4)

5.2.2 Calculation of the Legality and Profitability of Simple Overlapping

Communications.

The first test applied to ascertain if the CAP_EXCHANGE communication may be
overlapped with calculation is the SIMPLE method. This is the simplest and most obvious
method of overlapping the communication, if the circumstances allow. It will involve the
least alteration and addition to the synchronous parallel code and can often enable the entire
communication time to be overlapped. This can be achieved as long as there is sufficient
code between the communication and the use of the communicated data.

As discussed in Section 4.5 this method takes advantage of executable code that exists
between the communication and the command that uses the data. Since there is a slight
additional overhead associated with overlapped communications it is essential to ensure that
there is potentially enough calculation code between these two points. The executable code
between these two points must not make use of this communicated data. CAPTools stores for
each communication a list of commands that require the communicated data (Section 2.8.3). It is
therefore possible to use the information from CAPTools and to manipulate it in the calculation
of overlapping communications. This provides the position of the commands that require the
communicated data in relation to its communication.

The position of the CAP_EXCHANGE is referred to as the source command (or source),
while the command using the communicated data is referred to as the sink command (or sink).

Each source command may have several sink commands. This is due to the migration of each

Chapter 5 115

individual communication request from each sink command to the same position and the

subsequent merger into one single communication (Section 2.8.3).

5.2.2.1 Sink Command with No ‘Local’ Surrounding Loops.

For this case the sink command has no ‘local’ surrounding loops. ‘Local’ loops in this
context represent loops that surround only the sink command. It may be the case that both the
sink and source commands also have common surrounding loops but the sink command itself
does not have any ‘local’ loops.

The code in Figure 5.2 consists of an exchange communication which receives the value
of A(CAP_H+1) which is required on this processor for calculation at the sink command. The
sink command does not have any ‘local‘ surrounding loops, but the pseudo code may or may not
be surrounded by additional loops common to both the source and sink commands. Its

associated control flow graph and pre-dominator tree are shown in Figure 5.3 and Figure 5.4

respectively.
CALL CAP_EXCHANGE(A(Cap_H+1)...) } Block] (SOURCE COMMAND Block)
CALL ROUTINEI(....) } Block2
IN1 = IN-1 } Block2
DO I=1,IN1 } Block3
B(.)=C(.) } Block4
ENDDO
CALL INTRINSIC FUNCTION(...) } Block5
IF (INCREASE) THEN } Blocks
ISET = ISET + 1 } Block6
ELSE
ISET = ISET - 1 } Block?
ENDIF
= } Blocks
... = A(Cap_H+1) } Block8 (SINK COMMAND Block)

Figure 5.2 : Pseudo code of a sink command with no surrounding loop.

Chapter 5 116

! START
Block 1

Block 2

Block 3

Block 4

Block 5

Block 6 Block 7 e

Block 8
! STOP

Figure 5.3: Control flow graph for Figure 5.2. Figure 5.4: Predominator tree for Figure 5.2.

The synchronisation point could be placed prior to this sink command. However, to
ensure that the application of overlapping communication is advantageous a further test is
applied to calculate if there is sufficient code between the source and sink command. This is
accomplished by examining each command on the path traversed between the sink and source
commands using an heuristic to determine whether any commands represent a significant
computation overhead referred to in this work as a time consumer. Time consumers are defined
as commands in the control flow graph (Figure 5.3) that are loops or calls to other routines. In
the case of calls to routines, intrinsic routines are not considered, as they are relatively quick
routines that would not provide sufficient code to overlap. Any loops considered as time
consumers must not contain the sink command or source command. Examples of time
consumers in the pseudo code in Figure 5.2 are :

CALL ROUTINEI Block2
DO I=1,IN1 Block3
The algorithm to calculate a time consumer command shown in the function in Fi gure

5.5 simply involves the checking of a command, that is passed in, to see if it is a loop or a call to

Chapter 5 117

a non-intrinsic routine. The function returns true or false depending on if a time consumer has

been found.

FUNCTION IS_THERE_A_TIMECONSUMER(COMMAND)
{* Is this COMMAND a TIMECONSUMER, i.c. is *}
{* this COMMAND a non-intrinsic call or a loop. *}
BEGIN
TIMECONSUMER = FALSE
IF (COMMAND = CALL to non-intrinsic routine) THEN
{* The COMMAND is a CALL to a non-intrinsic routine *}
{* therefore a TIMECONSUMER exists. *}
TIMECONSUMER=TRUE
ELSE IF (COMMAND = LOOP) THEN
IF (SINKCOMMAND not used in loop) THEN
{* The COMMAND is a loop that does not contain the *}
{* SINKCOMMAND therefore a TIMECONSUMER exists. *}
TIMECONSUMER = TRUE
ENDIF
ENDIF
IS_THERE_A_TIMECONSUMER = TIMECONSUMER
END

Figure 5.5 : Pseudo code for detecting a time consumer command.

To find if a time consumer command exists in between the sink command and the source
command requires the searching of each block and its commands between these two points. This
may be performed by a depth first search (Section 2.3.2) up the control flow graph
Figure 5.3), from the sink command block traversing through its predominating blocks (using
the pre-dominator tree in (Figure 5.4) until any time consumers are found or the source
command block is reached. This searches up the sub-graph between a block and its immediate
predominating block. By its definition the predominating block is reached on all paths.

This in essence involves the depth first search of the control flow graph from a block to
its immediate predominating block (the algorithm is shown in Figure 5.6). The predominator
tree (Figure 5.4) is then traversed for each block from the sink command to the source command
(the algorithm is shown in Figure 5.7).

The algorithm shown in Figure 5.6 passes into the function a block (BLOCK) and its
predominating block (BLOCKPREDOM). A depth first search up the control flow graph is
executed by using the HASFATHER (Section 2.3.2) of the BLOCK. This ensures that every
possible route (i.e. every block) from the BLOCK to its BLOCKPREDOM is checked for a time
consumer command. Each command in all the blocks is checked for time consumers using the

algorithm in Figure 5.5.

Chapter 5 118

FUNCTION IS_THERE_TIMECONSUMERS_ON_ALL_ROUTES(BLOCK,BLOCKPREDOM)
{* Check all routes from the current block of commands (BLOCK) to its *}
{* predominating block of commands (BLOCKPREDOM) to see if there are *}
{* any TIMECONSUMERS. All routes must have a TIMECONSUMER. *})
BEGIN
SEARCHED := FALSE
TERMINATE := FALSE
{* Set up the list of the blocks that the control flow came from. *}
CBLOCKLIST:= BLOCKN" HASFATHER
TIMECONSUMER:=CBLOCKLIST <> NIL
{* Check all paths between the BLOCK and BLOCKPREDOM. *}
WHILE (CBLOCKLIST<>NIL) and (TIMECONSUMER) and (NOT TERMINATE) DO
IF (CBLOCKLISTA.BLOCK = SOURCECOMMAND_BLOCK) THEN
{* This BLOCK owns the SOURCECOMMAND. *}
{* Terminate the search for TIMECONSUMERS. *}
{* All routes tested but no TIMECONSUMERS found. *}
TIMECONSUMER = FALSE
TERMINATE = TRUE
ELSE
IF (CBLOCKLIST~.BLOCK <> BLOCKPREDOM) THEN
{* Do NOT search the end pre-dominating block.*}
SEARCHED := TRUE
TIMECONSUMER = FALSE
FOR (each COMMAND in BLOCK) DO
{* Search for TIMECONSUMER. *}
TIMECONSUMER =1S_THERE_A_TIMECONSUMER(COMMAND)
ENDFOR
IF (TIMECONSUMER is not found) THEN
{*Recursively call this function to search up to BLOCKPREDOM. *}
TIMECONSUMER = IS_THERE_TIMECONSUMERS_ON_ALL_ROUTES
(CBLOCKLISTA.BLOCK, BLOCKPREDOM)

ENDIF
ENDIF

ENDIF

CBLOCKLIST:=CBLOCKLISTANEXT
ENDWHILE
{* Set the IS_THERE_TIMECONSUMER_ON_ALL_ROUTES to TRUE if a block *}
{* of commands has been searched and a TIMECONSUMER has been found. *}
IS_THERE_TIMECONSUMER_ON_ALL_ROUTES=TIMECONSUMER AND SEARCHED
END

Figure 5.6 : Pseudo code for detecting time consumers between a block an its predominating

block.

If we consider the code in Figure 5.2 then the first block to be checked would be the
one containing the sink command (which is Block 8) and its predominating block in the
predominator tree (Figure 5.4) would be Block 5. From the control flow graph (Figure 5.3)
the Block 8 possesses two HASFATHER blocks — Block 6 and Block 7. Both routes from
Block 8 to Block 5 via Block 6 or Block 7 are checked for time consumer commands.

The pseudo code in Figure 5.7 shows the algorithm to traverse through all the blocks
between the sink command and the source command. This is achieved by traversing the
predominator tree (Figure 5.3) for each of the blocks from the sink command block to the
source command block. Each block and its predominating block and any blocks in between

are checked for time consumers using the algorithm in Figure 5.6. For the example in Figure

Chapter 5 119

5.2 the starting block will be Block 8; traversing through Blocks 5, 3 and 2 to the source
command block (Block 1).

FUNCTION TIMECONSUMERS_IN_ROUTINE(SINKCOMMAND,SOURCECOMMAND)
{* Searches for a TIMECONSUMER between the SINKCOMMAND *}

{* and the SOURCECOMAND within a ROUTINE. *}

BEGIN

TIMECONSUMER = FALSE

BLOCK = SINKCOMMAND* BLOCK

ENDBLOCK = SOURCECOMMAND”.BLOCK

{* Check for time consumers in commands prior to the sink command in the block that owns the sink command. *}
CCOMMAND = BLOCK*.COMMAND
WHILE (CCOMMAND is not the SINKCOMMAND) DO
TIMECONSUMER = IS_THERE_A_TIMECONSUMER(CCOMMAND)
CCOMMAND = CCOMMANDA NEXT
ENDWHILE

{* Check all routes from the block that owns the sink command. *}
WHILE (BLOCK”PREDOM <> NIL) AND (BLOCK*PREDOM <> ENDBLOCK) AND
(TIMECONSUMER not found) DO
{* Search all routes between a block and its predominating block until a time consumers is found. *}
TIMECONSUMER = IS_THERE_TIMECONSUMERS_ON_ALL_ROUTES(BLOCK,BLOCK" PREDOM)
IF (TIMECONSUMER NOT FOUND) THEN
TIMECONSUMER = FALSE
FOR (each COMMAND in BLOCK) DO
{* Search for TIMECONSUMER *}
TIMECONSUMER = IS_THERE_A_TIMECONSUMER(COMMAND)
ENDFOR
BLOCK = BLOCKA".PREDOM
ENDWHILE

IF (TIMECONSUMER not found) THEN
{* The block containing the SOURCECOMMAND (ENDBLOCK) *}
{* must be checked for TIMECONSUMERS if none already found. *}
{* Check the remaining commands after the SOURCECOMMAND. *}
CCOMMAND = SOURCECOMMANDANEXT
WHILE (CCOMMAND <> NIL) DO
TIMECONSUMER = IS_THERE_A_TIMECONSUMER(CCOMMAND)
CCOMMAND = CCOMMANDANEXT
ENDWHILE
ENDIF

TIMECONSUMERS_IN_ROUTINE = TIMECONSUMER
END

Figure 5.7 : Pseudo code for detecting a time consumer between a sink command and its

source command.

5.2.2.2 Sink Command with Surrounding Loops (Not Common to Source Command).

In the code in Figure 5.2 the sink command did not have any surrounding loops. In
almost all cases in real codes the sink command will have some surrounding loops. Consider the

code in Figure 5.8.

Chapter 5 121

5.2.2.3 Source Command and Sink Command in Different Routines.

The positioning for a synchronisation call must also be determined interprocedurally, 1.€.
where the sink is in a different routine to the source. For example, in the Fortran pseudo code
(Figure 5.9) the sink for the CAP_AEXCHANGE source is in a different routine. Originally, the
synchronisation point was placed at the statement prior to the sink. The synchronisation point
has then traversed all loops surrounding the sink to its present location using the same
communication migration call path as that followed by the communication. This communication
migration call path is stored in the field DEFROUTE of the RECEIVEA.COMMANDLIST data
structure (Section 2.8.3) for each sink of the communication, specifying precisely which call
lead to this instance of the communication.

This 1s achieved by first traversing out of all the loops surrounding the sink in the routine
where the sink exists ensuring any loops traversed do not contain the source command (as in
Section 5.2.2.2). Once these loops have all been exited it is possible to traverse out of any loops
surrounding the call to the sink routine. This will continue for every loop on the communication

migration call path until the routine containing the source command is reached.

Source CALL CAP_AEXCHANGE(A(1,1,Cap_HA+1),A(1,1,Cap_LA), 200, Right, Cap_r_sync, Cap_s_sync)
{* Other Code which does not use communicated data *}
Synch CALL CAP_SYNC_EXCHANGE(Right, Cap_r_sync, Cap_s_sync)
DOI=1, 100
CALL ROUTINEI(,A,B)
ENDDO
END

SUBROUTINE ROUTINEI1(],A,B)
DOJ1=2,28
CALL ROUTINE2(LJ,A,B)

ENDDO

END

SUBROUTINE ROUTINE2(1,J,A,B)

DO K =MAX(1,Cap_L), MIN(98,Cap_H)
Sink1 B(LJ,K) = A(LJK+1)

ENDDO
END

Figure 5.9 : Code fragment showing interprocedural migration of the synchronisation point.

Once the actual placement of the synchronisation point has been determined, the
search for any time consumers is required. The algorithm in Figure 5.7 must now traverse the
pre-dominator tree from the synchronisation point to the communication interprocedurally.
This may be achieved by modifying the function TIMECONSUMERS_IN ROUTINE to

traverse the communication migration call path.

Chapter 5 122

Figure 5.10 shows that each routine in the communication migration call path
(DEFROUTE) i1s traversed starting from the routine containing the synchronisation point
(which 1s passed in as the SINKCOMMAND). When all command blocks in the
synchronisatton point routine have been traversed and no time consumers have been detected
then the next routine in the DEFROUTE is traversed with SINKCOMMAND defined as the
caller to the synchronisation point routine. This is repeated for each routine in DEFROUTE
until: a time consumer is detected, there are no more routines in DEFROUTE or the source
command has been reached.

If the synchronisation call is placed in a different routine to the communication then the
two synchronisation parameters must be passed from the routine containing the communication
via any intermediary routines to the routine containing the synchronisation. These parameters
are passed between these routines by means of the parameter list ensuring that they do not

already exist in the parameter list. The algorithm that allows this is explained in greater detail in

Section 5.2.6.

Chapter 5 123

FUNCTION TIMECONSUMERS_IN_ROUTINE(SINKCOMMAND,SOURCECOMMAND,CROUTE)
{* Searches for a TIMECONSUMER between the SINKCOMMAND *}

{* and the SOURCECOMAND within a ROUTINE. *}

BEGIN

TIMECONSUMER = FALSE

BLOCK = SINKCOMMAND".BLOCK

ENDBLOCK = SOURCECOMMAND”. BLOCK

WHILE (SINKCOMMAND <> NIL) DO

{* Check for time consumers in commands prior to the sink command in the block that owns the sink command. *}
CCOMMAND = BLOCK".COMMAND
WHILE (CCOMMAND is not the SINKCOMMAND) DO
TIMECONSUMER = IS_THERE_A_TIMECONSUMER(CCOMMAND)
CCOMMAND = CCOMMANDA.NEXT
ENDWHILE

{* Check all routes from the block that owns the sink command. *}
WHILE (BLOCKA.PREDOM <> NIL) AND (BLOCK”.PREDOM <> ENDBLOCK) AND
(TIMECONSUMER not found) DO
{* Search all routes between a block and its predominating block until a time consumers is found. *}
TIMECONSUMER = IS_THERE_TIMECONSUMERS_ON_ALL_ROUTES(BLOCK,BLOCK”".PREDOM)
IF (TIMECONSUMER NOT FOUND) THEN
TIMECONSUMER = FALSE
FOR (each COMMAND in BLOCK) DO
{* Search for TIMECONSUMER *}
TIMECONSUMER = IS_THERE_A_TIMECONSUMER(COMMAND)
ENDFOR
BLOCK = BLOCK”*.PREDOM
ENDWHILE

IF (BLOCK = ENDBLOCK) THEN
{* The block containing the SOURCECOMMAND (ENDBLOCK) *}
{* must be checked for TIMECONSUMERS if none already found. *}
{* Check the remaining commands after the SOURCECOMMAND. *}
CCOMMAND = SOURCECOMMANDANEXT
WHILE (CCOMMAND <> NIL) DO
TIMECONSUMER = IS_THERE_A_TIMECONSUMER(CCOMMAND)
CCOMMAND = CCOMMANDAMNEXT
ENDWHILE
ENDIF

IF (TIMECONSUMER not found) AND (CROUTE <> NIL) THEN
{* Time consumer not found *}
{* CROUTE is not nil indicates that the communication is in a routine *}
{* caller. Reassign for the routine caller. *}
SINKCOMMAND = CROUTEA.COMMAND
CROUTE = CROUTEA".NEXT

ELSE
{* Time consumer found or no more routine callers. *}
SINKCOMMAND = NIL

ENDIF

ENDWHILE

TIMECONSUMERS_IN_ROUTINE = TIMECONSUMER
END

Figure 5.10 : Interprocedural algorithm for calculating time consumers.

Chapter 5 124

5.2.2.4 No Time Consumers outside Surrounding Loops.

If the command prior to the synchronisation point is the communication itself or if there
is deemed to be insufficient code to overlap the communication then it would not be possible to
apply simple overlapping. The next logical step would be to apply the PARTIAL and UNROLL
tests. It may however, be possible to try to place the synchronisation point prior to the next
innermost loop. Consider the code in Figure 5.11 where the outermost valid loop is the loop J.
However, there are no time consumers between the source command and the start of the loop J
to allow overlapping to be profitable. In this case there is additional code within this loop J and
its next mnermost loop K to allow the communication to be overlapped. This has the
disadvantage that the synchronisation point will be called for every iteration of the outermost
loop and thus extend the overall runtime of the code. It is however, a less intrusive alternative

than to apply PARTIAL or UNROLL overlap transformations.

DO 1=1,IN
CALL CAP_EXCHANGE(A(1,2,CAP_H+I),......... SOURCE COMMAND
{* NO code to overlap. *}
DO J=2,JN
{* Sufficient code to overlap. *}
CALL CAP_SYNC_EXCHANGE(Right, Cap_re_sync, Cap_se_sync) SYNCH COMMAND
DO K=MAX(1,CAP_L),MIN(KN,CAP_H)

i3(J,K)= A(LLK+1) SINK COMMAND

ENDDO
ENDDO
ENDDO

Figure 5.11 : Code fragment of a synchronisation point within a loop.

Another possibility to allow SIMPLE overlapping to be applied would be to perform a
loop split transformation (Section 2.11). This could allow a communication (source command)
to be split from a loop it shared with its sink command allowing the synchronisation call to
migrate to the outside of a loop. To ensure correct results are obtained from the parallel code an
array expansion (Section 2.11) of some arrays may be required in conjunction with the loop split

transformation.

5.2.2.5 Testing of the Simple Overlapping Method.

The algorithm for the automatic generation of the SIMPLE overlapping was tested on

several small test cases to ensure that the synchronisation points were generated in the most

Chapter 5

125

profitable and correct position in the code. Figure 5.12 shows a few of these smaller tested

cascs.

CALL CAP_AEXCHANGE(AC(..),...)

CALL CAP_SYNC_EXCHANGE()
=A()

Figure 5.12a : No loops

CALL CAP_AEXCHANGE(A(..),...)

CALL CAP_SYNC_EXCHANGE()
DO I= '
DO J=
DO K=
=A()
ENDDO
ENDDO
ENDDO

Figure 5.12b : Loops

CALL CAP_AEXCHANGE(A(..)....)

IF (...) THEN
{* Other code *}
CALL CAP_SYNC_EXCHANGE()
=A)
ENDIF
CALL CAP_SYNC_EXCHANGE()
.=A(.)

Figure 5.12d : Conditionals 2

CALL CAP_AEXCHANGE(A(..),...)

IF (...) THEN
{* Other code *}
CALL CAP_SYNC_EXCHANGE()
=AL)
ELSE
{* Other code *}
CALL CAP_SYNC_EXCHANGE()
=AY
ENDIF

Figure 5.12c : Conditionals 1

CALL CAP_AEXCHANGE(A(..)....)

IF (...) THEN
CALL CAP_SYNC_EXCHANGE()
DO I=
DO J=
=A()
ENDDO
ENDDO
ENDIF
CALL CAP_SYNC_EXCHANGEY)
=A()

Figure 5.12¢e : Loops and
Conditionals

Figure 5.12 : A sample of test cases used for testing.

The test code in Figure 5.12a is the simplest method to test and will simply place the
synchronisation point prior to the sink command. The test code in Figure 5.12b has the sink
command within a set of loops. The synchronisation point is simply migrated out of these loops

and placed prior to the first loop.

Chapter 5 126

Figure 5.12c shows a test code where there are two sink commands each lying within a
separate conditional. Each conditional provides ample additional code to allow the
communication to be overlapped. A synchronisation point is placed prior to each sink command
to ensure that the communication is synchronised for whatever the result of the conditional.

Figure 5.12d shows a test code where there is a sink command within the conditional
and outside the conditional. A synchronisation is required for both sink commands, since the
conditional statement may not be true and the synchronisation point within may not be activated.
A synchronisation is therefore required before the second sink command. If the conditional is
true then both synchronisation points will be activated. As mentioned previously in Section 4.4
the overlapping communications are flexible enough to allow multiple synchronisation points
for the same synchronisation value. This might lead to an additional unnecessary call but deals
with the eventuality of the conditional being false.

The test case in Figure 5.12e is an extension of the previous test case but with the
addition of loops. For this case the synchronisation points are generated much the same as the
previous example. The only difference is that the synchronisation within the conditional has
traversed to be outside the loops.

The test cases in Figure 5.12 are just some of the simple test cases used to ensure that the
synchronisation points were generated in the correct positions for the simple methods. Several
other test cases were also used to ensure that the synchronisation points were generated correctly

interprocedurally such as the example in Figure 5.9 as well for more complex real codes.

3.2.3 Calculation of the Legality and Profitability of Partial Loop Overlapping.
Once simple overlapping is proven non-applicable, the PARTIAL loop overlapping

method is considered. This, as discussed in Section 4.7, involves placing the synchronisation
call within some of the surrounding loops of the sink controlled by a conditional statement.
Of course, this method may only be applied if there are surrounding loops to the sink
command. If there are no surrounding loops present then it may not be possible to overlap the
communication for that particular sink command.

The PARTIAL method is effective if the communicated data is only required during

the final iterations of a surrounding loop. Consider the synchronous code in Figure 5.13.

Chapter 5 128

the relationship between the execution control masks (Section 2.7) of the usage statement, the
partitioned index component of the array usage and the communication control set (Section
2.8.2) that will determine which iteration of the loop will first use the communicated data.

To identify the direction of the movement of the array usage (i.e. is it increasing or
decreasing) requires the symbolic expression (Section 2.5) of the partitioned index to be
symbolically factorised by the execution control mask expression (Section 2.7). It is important
that the remainder of this factorisation is loop invariant otherwise it is not possible to determine
at which iteration the communicated data is required. Consider the formal model for a potential

PARTIAL loop overlapped communication in Figure 5.15.

DO i] = l, uy, 1
DO ig = 1, Us, 1
DO i3 =], U, 1
CALL CAP_EXCHANGE(A(C),)
DOi,=1,u,1
IF (CAP_L <= mg+ myi;+mpi; + msis ... + myi,<= CAP_H) THEN
. A(a0+ali1+a2i2+a3i3+ . 'H:lnin)
ENDIF
ENDDO
ENDDO
ENDDO
ENDDO

Figure 5.15 : Formal model for a potential PARTIAL loop overlapping communication.

From the formal model (Figure 5.15) all the loops are normalised and there are a total of n
surrounding loops from i;, the outermost loop, to i,, the innermost loop.
Let the index expression for A, the usage of the communicated data, to be a linear function of
these loops where a is the loop variable coefficients for each loop:

A=ay+ajij+air+... +a,l,
and the execution control mask expression M where m is a loop variable coefficient of the mask
to be represented as :

M=mg+mi; +mpiz+ ... +myl,

CAP L<=M<=CAP_H
and C represents the partitioned component of the start address of the data that is received. This
can be calculated from the communication control through the bounds of the CAP_USAGE

(Section 2.8.2) variable.

Chapter 5 129

Applying symbolic factorisation of the index expression, A, by the execution control mask
expression, M, provides the factor, f, and remainder, r, such that :

A=Mf+r
Therefore

Aj=fm;, j=1(1)n

ap=fmg+r
Using these definitions it is possible to develop an algorithm (Figure 5.16) to determine if the
array usage is increasing or decreasing for a loop k, which is the outermost loop within which
the execution control mask varies. The execution control mask M is determined depending on
the array accesses using the factor and remainder. The algorithm calculates the first access of the
communication requesting array partitioned component. The tolerance is the minimum number
of iterations required per overlap and multiplying this by the relevant loop variable coefficient,

in this case ay, determines the number of iterations to be overlapped.

IF (f * m¢ >=0) THEN

{* The array access is increasing with i,*}

Myower = Cap_L

ALower = Miower * f+1

Test the Inequality : Crower — ALower >= Tolerance * abs(a,)
ELSE

{* The array access is decreasing with i,*}

Mupper = Cap_H

Aurper = Mupper * £+ 1

Test the Inequality Cupper — Aupper >= — Tolerance * abs(ay)
ENDIF
IF (Inequality Test is TRUE) AND (CLowgruprer — Aoweruprer<>0) THEN

{*Generate PARTIAL overlapping*}
ELSE

{*Test if UNROLL can be applied (See Section 5.2.4) *}
ENDIF

Figure 5.16 : Pseudo code algorithm for determining whether PARTIAL overlap may be
applied.

This algorithm to calculate if PARTIAL overlapping may be applied (Figure 5.16) was
incorporated within CAPTools using several of the symbolic variable manipulation utilities
mentioned in Section 2.5.1. The symbolic factorisation is accomplished using the CAPTools

utility FACTORISE (Section 2.5.1) while the multiplication and addition of the symbolic

Chapter 5 130

variables is accomplished using MULTLISTS and ADDLISTS (Section 2.5.1). The test that
determines if PARTIAL overlap may be applied is achieved using the CAPTools utility
LDISPROVE (Section 2.5.1).

The examples that follow show how this algorithm is used to determine if PARTIAL overlap

may be applied.

Example 1.

Consider the pseudo code in Figure 5.17.

DO IT= 1,NITER,1
Comml CALL CAP_EXCHANGE(A(CAP_BHA+1),A(CAP_BLA),1,2,CAP_RIGHT)
Comm?2 CALL CAP_EXCHANGE(A(CAP_BLA-1),A(CAP_BHA),1,2,CAP_LEFT)
DO J=MAX(1,CAP_BLA),MIN(199,CAP_BHA),1
Sink1 B()=A{J+1)+A(J-1)
ENDDO
DO J=MAX(1,CAP_BLA),MIN(200,CAP_BHA),1
A=B)
ENDDO
ENDDO

Figure 5.17 : Code for Example 1 and Example 2.

Examining the first communication (Comml) for the synchronous code in Figure 5.17 the
communication control set is :

((CAP_USAGE >= CAP_BHA+1) AND (CAP_USAGE <= CAP_BHA+1))
The mask for the sink command (Sink1) is as follows :

(J.GE.CAP_BLA).AND.(J.LE.CAP_BHA)
The value of A, which is the value of the index of the array in the sink command using the
communicated data, in this case 1s J+1. The value of M, which is the mask, in this case is J.
Factorising the A by M provides:

f=1

r=1

e, A=M*f+r

J#1=J*1+1

The value of M is the first iteration that will trigger the sink command, i.e. the lower bound of

the execution control mask :

MLOWER = CAP _BLA

Chapter 5 131

The value of Crower is the data being communicated, i.e. the lower bound of communication
control set :
CrLower = CAP_BHA+1
The test is then executed for the conditional in the algorithm in Figure 5.16 where the array
accesses are increasing :
ALower = Miower™ f+1
=CAP_BLA *1+1
=CAP_BLA +1
Test CLower - ALower >= Tolerance * abs(ay)
CAP_BHA +1-(CAP_BLA+1)>=1%*1
CAP_BHA - CAP_BLA >= 1
CAP_BHA - CAP_BLA-1>=0
This inequality may be proved true by proving the ‘opposite inequality’:
CAP_BHA -CAP_BLA-1<0
is false using the symbolic inequality test (Section 2.4.6) which has known information (Section
2.8.2) that :
CAP_BHA - CAP_BLA - (Minimum SLAB NUMBER) >=0
Using this information it can disprove the above ‘opposite inequality’ proving it to be FALSE.
Since the ‘opposite inequality’ is FALSE then the ‘original inequality’ is TRUE and PARTIAL
overlapping may be applied.

Example 2.

Examining the second communication (Comm?2) the communication control set is :
((CAP_USAGE <= CAP_BLA-1) AND (CAP_USAGE >= CAP_BLA-1))

The mask for the sink command (Sink1) is the same as previously :
(J.GE.CAP_BLA).AND.(J.LE.CAP_BHA)

The value of A, the index of the array in the sink command using the communicated data, is J-1

and the value of M, the execution control mask, is J. Factorising A by M provides :

f=1
r=-1
ie. A=M*f+r

J-1=T*%1+(1)

Chapter 5 132

The value of Miower is the first iteration that will trigger the sink command, since the loops are
increasing for this case it will be the lower bound of the execution control mask:

Mrower = CAP_BLA
The value of Crower is the first value of data being communicated, i.e. the lower bound of
communication control set :

Crower = CAP_BLA-1
The test is then executed for the conditional in the algorithm in Figure 5.16 where the array
accesses are increasing :

ALower = MLower * f +1

=CAP_BLA * 1 +(-1)
=CAP_BLA -1
Test CLower - ALower >= Tolerance * abs(ay)
CAP_BLA -1-(CAP_BLA-1)>=1*1
0>=1
To prove this inequality true requires the testing of its ‘opposite inequality’ :
0<1

to be false using the symbolic inequality test (Section 2.4.6). This ‘opposite inequality’ is proved
to be TRUE therefore proving the ‘original inequality’ to be FALSE which would not allow
PARTIAL overlapping to be applied. Also, the value of CLower - ALower is 0 and signifies that
the synchronisation is required at the start of the loop. This communication will require

additional testing to determine if UNROLL overlapping may be applied (Section 5.2.4).

Example 3.

The example in Figure 5.17 showed the case where the loop was increasing and the usage
indices were also increasing. An example for the loop decreasing while the usage indices were
also decreasing would also be very similar to those in Examples 1 and 2 apart from the fact that
the ‘ELSE’ statements of the algorithm in Figure 5.16 would be executed. A more interesting
example would be where the loop is increasing but the usage indices are decreasing. Consider

the example in Figure 5.18.

Chapter 5 133

DO IT=1,NITER,1
Comml CALL CAP_EXCHANGE(A(CAP_BLA-1),A(CAP_BHA),1,CAP_LEFT)
DO J=MAX(1,200-CAP_BHA),MIN(199,200-CAP_BLA),1
Sinkl B(200-J)=A(200-J-1)
ENDDO
DO J=MAX(1,CAP_BLA),MIN(200,CAP_BHA),1
A(J)=B{J)
ENDDO
ENDDO

Figure 5.18 : Pseudo code for Example 3.

Examining the communication (Comm1) the communication control set is :

((CAP_USAGE <= CAP_BLA-1) AND (CAP_USAGE >= CAP_BLA-1))
The mask for the sink command (Sink1) is as follows :

(200-J.GE.CAP_BLA).AND.(200-J.LE.CAP_BHA)
The value of A, the index of the array in the sink command using the communicated data, in this
case is 200-J-1. The value of M, the execution control mask, in this case is 200-J. Factorising A
by M provides :

f=1

r=-1

ie. A=M*f+r

200-J-1 =(200-J) * 1 + (-1)
The value of M is the first iteration that will trigger the sink command, since the loops are
decreasing for this case it will be the upper bound of the execution control mask:

Mupper = CAP_BHA
The value of Cypper is the data being communicated, i.e. the upper bound of communication
control set :

Cupper = CAP_BLA-1
The algorithm is then executed for the conditional where the array accesses are decreasing :

Aupper = Mupper * f + 1

=CAP_BHA * 1 +(-1)
=CAP_BHA -1
Test Cupper — Aupper >= -Tolerance * abs(ay)
CAP_BLA -1-(CAP_BHA -1)>=-1*1
CAP_BLA -CAP_BHA +1>=0

This inequality may be proved true by proving the ‘opposite inequality’:

Chapter 5 134

CAP_BLA - CAP_BHA +1<0
is false using the symbolic inequality test (Section 2.4.6) which disproves the above ‘opposite
inequality’ proving it to be FALSE. Since the ‘opposite inequality’ is FALSE then the ‘original
inequality’ is TRUE and PARTIAL overlapping may be applied.

5.2.4 Calculation of Partial Loop Overlapping with Loop Unrolling.

If partial overlapping may not be applied it could be due to the use of the
communicated data during the opening iterations of the loop. The test for partial overlapping
using loop unrolling must then be applied.

Consider once again Example 2 in Section 5.2.3. The second communication Comm?2
for the code in Figure 5.17 failed to have partial overlapping applied because the value of
(CLower — ALower) Was not greater or equal than the Tolerance*abs(ax). This signified that the
synchronisation is required at the start of the loop and requires additional testing to determine if
a partial overlap with loop unrolling may be applied.

To determine if loop unrolling is allowed requires that the partitioned loop surrounding
the sink command has no loop carried true dependencies (Section 2.4.1). This ensures that the
data assigned in any iteration is not required in a subsequent iteration of the loop to be unrolled.
If loop unrolling is possible then the number of iterations to be unrolled must be calculated. The
algorithm is shown in Figure 5.19.

Cconsrant = Constant of upper bound of communications control
No_of_Iterations =0

Factorise A by M to obtain the remainder rconstant
IF (Cconstant > 0) and (rconstant < Cconstant) THEN
{* Increasing loop *}
No_of Iterations = CconsTANT - TCONSTANT + 1
ELSE IF (Cconstant < 0) and (rconstant >= Cconstant) THEN
{* Decreasing loop *}
No_of _Iterations = CconsTANT - TCONSTANT + 1
ENDIF

Figure 5.19 : Algorithm to calculate how many iterations to UNROLL.

The communication control set for Comm?2 in Figure 5.17 is :
((CAP_USAGE <= CAP_BLA-1) AND (CAP_USAGE >= CAP_BLA-1))

and the upper bound of the communication control set is :

Chapter 5 135

CAP_BLA-1
which has a Cconstant value of ~1. The value of A, the index of the array in the sink command
using the communicated data, is J-1 which when factorised by the execution control mask for
the sink command (Sink1l) command ;
(J.GE.CAP_BLA).AND.(J.LE.CAP_BHA)
provides the rconstant Of —1
1.6. A=M *f + rconsTANT
J-1=J*1+(-1)
Since the CconstanT 1S negative the value of the No_of Iterations is calculated to be :
No_of_Iterations = CconsTANT — FcoNsTANT + 1
=-1-(-D+1
=1

which represents the number of iterations that are required to be unrolled from the loop.

5.2.5 Merging of Synchronisation Points.

Due to the merging of communications in the generation of synchronous parallel code
(Section 2.8.3) each communication may have several sinks associated with it. During the
calculation stage, a synchronisation point was calculated for each individual sink. It is required
to merge as many of these synchronisation points as possible. This reduces the number of calls
to possible duplicated synchronisation points that are at the same position in the code. This in
turn reduces any latency incurred by these synchronisation calls. It will also, in the case of the
PARTIAL overlapping, allow more efficient and neater code to be generated. In the case of the
UNROLL overlapping the non-merger of these synchronisation points may cause the loop to be
stripped incorrectly.

Prior to the merging of the synchronisation points each one is assigned a unique
synchronisation number that will correspond with the overlapped communication. If the
communication has several usage points due to the merging of communications then it is
essential to ensure that they all have the same synchronisation values.

Figure 5.20 shows a small section of parallel code generated by CAPTools. The code
contains four CAP_EXCHANGE communications. The communication Comm1 receives the
data C(CAP_H+1) from the processor to the right. This data is required in the sink commands

Sink1 and Sink2 for C(I+1). The data is required for use in the sink command Sink! twice and

Chapter 5 137

READ* (A(I),C(I),D(I),I=1,10)
C SIMPLE Overlapped Exchanges.
Comml CALL CAP_AEXCHANGE(C(CAP_H+1),C(CAP_L),2,CAP_RIGHT,CAP_SE_SYNCI1,CAP_RE_SYNCI)
Comm2 CALL CAP_AEXCHANGE(C(CAP_L-1),C(CAP_H),1,CAP_LEFT,CAP_SE_SYNC2,CAP_RE_SYNC2)
Comm3 CALL CAP_AEXCHANGE(D(CAP_L-1),D(CAP_H),1,CAP_LEFT,CAP_SE_SYNC3,CAP_RE_SYNC3)

{* Other code NOT using communicated data *}

Synchl CALL CAP_SYNC_EXCHANGE(CAP_RIGHT,CAP_SE_SYNCI,CAP_RE_SYNCI)
Synch2 CALL CAP_SYNC_EXCHANGE(CAP_RIGHT,CAP_SE_SYNCI1,CAP_RE_SYNC1)
Synch3 CALL CAP_SYNC_EXCHANGE(CAP_RIGHT,CAP_SE_SYNC!,CAP_RE_SYNC1)
Synch4 CALL CAP_SYNC_EXCHANGE(CAP_LEFT,CAP_SE_SYNC2,CAP_RE_SYNC2)
Synch5 CALL CAP_SYNC_EXCHANGE(CAP_LEFT,CAP_SE_SYNC3,CAP_RE_SYNC3)

DO ITER=1,1000, 1
C PARTIAL Overlapped Exchange.
Comm4 CALL CAP_AEXCHANGE(A(CAP_H+1),C(CAP_L),2,CAP_RIGHT,
& CAP_SE_SYNC4,CAP_RE_SYNC4)

DO I=MAX(2,CAP_L),MIN(9,CAP_H)
IF (LGE.CAP_H) THEN

Synch6 CALL CAP_SYNC_EXCHANGE(CAP_RIGHT,CAP_SE_SYNC4,CAP_RE_SYNC4)
ENDIF
IF (.GE.CAP_H) THEN
Synch7 CALL CAP_SYNC_EXCHANGE(CAP_RIGHT,CAP_SE_SYNC4,CAP_RE_SYNC4)
ENDIF
IF (1+1.GE.CAP_H) THEN
Synch8 CALL CAP_SYNC_EXCHANGE(CAP_RIGHT,CAP_SE_SYNC4,CAP_RE_SYNC4)
ENDIF
SinklI B(D=B(D)+A(I+1)+A(+D+A1+2)+CI+D+C(1+1)+C(1-1)
Sink2 B(I)=B()+C(+1)+D(I-1)
ENDDO
DO I=EMAX(1,CAP_L),MIN(10,CAP_H)
Assignl AD=B(D)
ENDDO
ENDDO

Figure 5.21 : Overlapped parallel code with no merged synchronisation points.

For the communication Comm1 there are three synchronisation points, Synchl, Synch2
and Synch3 at the same point in the code. These three synchronisation points are generated for
the two sinks C(I+1) in Sinkl and the one sink C(I+1) in Sink2. Evidently not all three
synchronisation points are required at this point in the code. The last pair is merely repeating the
same synchronisation that the first has already executed. This will add to the total run time of the
parallel code so it is more efficient to merge these three synchronisation points together.

The communication Comm2 has only one synchronisation point (Synch4) since it has
only one usage in the command Sinkl. The communication Comm3 also only has one
synchronisation point (Synch5) which requires the data in the sink command Sink2. Both of
these synchronisation points are synchronising in the same direction, i.e. from the left. Since
they are synchronising in the same direction then one of the synchronisation calls is superfluous.
Only the synchronisation point Synch5 is required since its associated communication Comm3
post-dominates the communication Comm2. The values of the synchronisation variables

CAP_SE_SYNC3 and CAP_RE_SYNC3 will ensure that all prior synchronisation variables for

Chapter 5 138

the left direction are synchronised (Section 4.4). If the synchronisation point Synch4 were
generated then only communications with synchronisation values prior to CAP_SE_SYNC?2 and
CAP_RE_SYNC2 would be synchronised and thus Comm3 would not be synchronised.

For the PARTIAL overlapped communication, Commd, there are three synchronisation
points: Synch6, Synch7 and Synch8. These synchronisation points each require a conditional IF
statement in order to trigger the synchronisation point for the correct iteration of the loop it is
partially overlapping. The synchronisation points Synch6 and Synch7 both have the same
conditional (I.GE.CAP_H) which ensures that this is the last iteration. The second
synchronisation point is therefore redundant and may be merged into the synchronisation point
Synch6. The synchronisation point Synch8 has a conditional statement (I+1.GE.CAP_H) which
ensures that this is the second from last iteration. Since the conditional for Synch8 will cause the
synchronisation to be executed before the merged synchronisation point for Synch6 and Synch7,
they become redundant and may be merged into the synchronisation point Synch8. The
PARTIAL synchronisations may be merged depending on which has the highest number of
iterations to be overlapped, i.e. Synch6 and Synch7 partially overlapped 1 iteration only while
the synchronisation Synch8 partially overlapped 2 iterations.

After the merger of the synchronisation points the code in Figure 5.21 will be generated

as in Figure 5.22.

READ*,(A(1),C(I).D(D),I=1,10)
C SIMPLE Overlapped Exchanges.
Comm! CALL CAP_AEXCHANGE(C(CAP_H+I),C(CAP_L),2,CAP_RIGHT,CAP_SE_SYNCI1,CAP_RE_SYNC1)
Comm?2 CALL CAP_AEXCHANGE(C(CAP_L-1),C(CAP_H),1,CAP_LEFT,CAP_SE_SYNC2,CAP_RE_SYNC2)
Comm?3 CALL CAP_AEXCHANGE(D(CAP_L-1),D(CAP_H),1,CAP_LEFT,CAP_SE_SYNC3,CAP_RE_SYNC3)

.{* Other code NOT using communicated data *}
Synch1/2/3 CALL CAP_SYNC_EXCHANGE(CAP_RIGHT,CAP_SE_SYNC1,CAP_RE_SYNC1)

Synch4/5 CALL CAP_SYNC_EXCHANGE(CAP_LEFT,CAP_SE_SYNC3,CAP_RE_SYNC3)
DO ITER=1,1000,1

C PARTIAL Overlapped Exchange.
Comm4 CALL CAP_AEXCHANGE(A(CAP_H+I1),C(CAP_L),2,CAP_RIGHT,
& CAP_SE_SYNC4,CAP_RE_SYNC4)

DO I=MAX(2,CAP_L),MIN(9,CAP_H)
IF (I+1.GE.CAP_H) THEN

Synch6/7/8 CALL CAP_SYNC_EXCHANGE(CAP_RIGHT.CAP_SE_SYNC4,CAP_RE_SYNC4)
ENDIF

Sinkl B(D=B(D+A(+D+A(H+1)+AI+2)+C(I+1)+C1+1)+C(1-1)
Sink2 B(H=B(D+C(1+1)}+D(I-1)

ENDDO

DO I=MAX(1,CAP_L),MIN(10,CAP_H)
Assignl A(=B(M)

ENDDO

ENDDO

Figure 5.22 : Code from Figure 5.21 after merging synchronisation points.

Chapter 5 139

The code in Figure 5.23 shows another example with the synchronous parallel code
before applying loop unrolling. It consists of an exchange communication involving two data
values from the start address A(CAP_L-2). This is communicating the values of A(CAP_L-2)
and A(CAP_L-1) which are required for calculation during the first two iterations of the loop.
These two values are required since there are two sinks A(I-1) and A(I-2) in the sink command
Sinkl. The sink A(I-1) will require a loop unrolling for the first iteration only while the sink A(I-
2) will require the first and second iteration to be unrolled. If these iterations were stripped from
the oniginal loop independently then the code obtained would be incorrect, since the for the first
iteration would be calculated twice. These two synchronisation points must be merged before
loop unrolling is performed.

READ*,(A(I),I=1,10)
DO ITER=1,1000,1

Comml CALL CAP_EXCHANGE(A(CAP_L-2),A(CAP_H-1),2,CAP_LEFT)
DO I=MAX(2,CAP_L),MIN(9,CAP_H)

SinkI B(D=B()+A(-1)+A(1-2)
ENDDO

DO I=MAX(1,CAP_L),MIN(10,CAP_H)
AM=B()
ENDDO
ENDDO

Figure 5.23 : Synchronous parallel code requiring UNROLL overlapped communication.

The code in Figure 5.24 shows that the loop unrolling is applied only for the sink that
requires the most iterations stripped. The loop unrolling for the other sink, which strips only the
first iteration is not applied since that iteration of the loop has already been unrolled from the

original loop.

READ*,(A(1).1=1,10)
DO ITER=1,1000,1

Comml CALL CAP_AEXCHANGE(A(CAP_L-2),A(CAP_H-1),2,CAP_LEFT,Cap_R_Sync,Cap_S_Sync)
DO I=MAX(2,CAP_L)+2MIN(9,CAP_H)

Sink! B()=B()+A(I-1)+A(I-2)
ENDDO

CALL CAP_SYNC_EXCHANGE(Cap_R_Sync.Cap_S_Sync)

DO I=MAX(2,CAP_L),MIN(9,CAP_H,MAX(2,CAP_L)+1)
B()=B(I)+A(I-1)+A(I-2)

ENDDO

DO I=MAX(1,CAP_L),MIN(10,CAP_H)
A(=B(l)

ENDDO

ENDDO

Figure 5.24 : Code from Figure 5.18 with UNROLL overlapped communications.

Chapter 5 140

The basic algorithm for merging the synchronisation points for PARTIAL and UNROLL

synchronisation is summarised in Figure 5.25.

IF(SYNCH_POINT = PARTIAL) THEN

{* Find MATCHING_SYNCH_POINT which has: *}
{* - same COMMUNICATION DIRECTION; *}
{* - same SURROUNDING LOOP. *}

IF (MATCHING_SYNCH_POINT FOUND) THEN
{* Find the earliest iteration that requires synchronisation *}

IF (LOOP INCREASING) THEN
{* Calculate which SYNCH_POINT has the most number *}
{* of positive iterations to be partially overlapped. *}

ELSE IF (LOOP DECREASING) THEN
{* Calculate which SYNCH_POINT has the most number *}
{* of negative iterations to be partially overlapped. *}
ENDIF
ENDIF
ELSE IF (SYNCH_POINT = UNROLL) THEN
{* Find MATCHING_SYNCH_POINT which has same SURROUNDING LOOP. *}
IF (MATCHING_SYNCH_POINT FOUND) THEN
{* Find the synchronisation that requires the most iteration to be unrolled *}
IF (LOOP INCREASING) THEN
{* Calculate which SYNCH_POINT has the most *)
{* number of positive iterations to be UNROLLED *}
MAX_UNROLL_COMM = comm with most number of iterations to unroll
ELSE IF (LOOP DECREASING) THEN
{* Calculate which SYNCH_POINT has the most *}
{* number of negative iterations to be UNROLLED *}
MAX_UNROLL_COMM = comm with most number of iterations to unroll
ENDIF
ENDIF
ENDIF
{* Remove any duplicate redundant UNROL synchronisations *}

Figure 5.25 : Basic algorithm for merging PARTIAL and UNROLL synchronisation points.

When the PARTIAL and UNROLL synchronisation points have been merged the
SIMPLE synchronisation points may be merged with each other (as previously mentioned in this
Section). Two SIMPLE synchronisations may only be merged together if they are synchronising
in the same direction. If two synchronisation points also have the same unique synchronisation
values set, then evidently they have the same source command communication and may be
merged (cf. Synchl, Synch2 and Synch3 in Figure 5.21).

If, however, there are two synchronisation points at the same point in the code with the
same direction but different unique synchronisation values then their communication call paths
(Section 2.8.3) will have to be traversed. If the call paths are the same or along the same call
path then it may be possible to merge the synchronisation points if one of the communications
post-dominates (Section 2.3.2) the other.

Figure 5.26 has a subroutine SUB3 with two synchronisation points. Traversing the pre-

dominator tree (Section 2.3.2) and the call graph (Section 2.3.1) for Synchl will pass through

Chapter 5 141

subroutine SUB2 to the communication Comm1 in subroutine SUB1. For Synch2 the pre-
dominator tree is traversed to the communication Comm? in subroutine SUB2. This is a subset
of the previous path traversed for the other synchronisation point. The communication Comm1
is clearly post-dominated by the communication Comm?2 and the synchronisation points may be
merged.
SUBROUTINE SUBI
Comml CALL CAP_AEXCHANGE(A(CAP_H+1),A(CAP_L),1.CAP_RIGHT,CAP_SE_SYNCI,CAP_RE_SYNCI)

CALL SUB2(A,B,CAP_SE_SYNCI1,CAP_RE_SYNCI)
END

SUBROUTINE SUB2(A,B,CAP_SE_SYNCI,CAP_RE_SYNC1)

Comm?2 CALL CAP_AEXCHANGE(C(CAP_H+1),C(CAP_L),1,CAP_RIGHT,CAP_SE_SYNC2,CAP_RE_SYNC2)
CALL SUB3(A,B,C,CAP_SE_SYNCI,CAP_RE_SYNC1,CAP_SE_SYNC2,CAP_RE_SYNC2)
END

SUBROUTINE SUB3(A,B,C,CAP_SE_SYNC1,CAP_RE_SYNCI1,CAP_SE_SYNC2,CAP_RE_SYNC2)
Synchl ~ CALL CAP_SYNC_EXCHANGE(CAP_RIGHT,CAP_SE_SYNCI,CAP_RE_SYNC1)
Synch2 CALL CAP_SYNC_EXCHANGE(CAP_RIGHT,CAP_SE_SYNC2,CAP_RE_SYNC2)
DO 1=1,10
B(l)= BUO+A(+A(I+1)+C(1+1)
ENDDO
END

Figure 5.26 : Two synchronisation points with different synchronisation values

5.2.6 Passing of Synchronisation Values between Routines.

If the synchronisation call is placed in a different routine to the communication then the
two synchronisation parameters must be passed from the routine containing the communication
to the routine containing the synchronisation.

The easiest method of achieving this, from an automation point of view, would be to use
COMMON blocks. The disadvantage of this method is that it may make the code less generic.
For example, consider the code example in Figure 5.27 where there is a synchronisation point in
subroutine SUB2 for three separate communications Comml, Comm?2 and Comm3. For this
example each of the communications has different synchronisation point values. If these values
were passed via a Common block then all three pairs of synchronisation values would have to be
passed between subroutine SUB1 and SUB2.

However, the synchronisation values are passed between subroutines using the
parameter list for the subroutine SUB2. This allows only the one pair of synchronisation points

to be passed to the subroutine SUB2 thus preserving the generic nature of the subroutine.

Chapter 5

142

Comml

Comm?2

Comm3

Synch

SUBROUTINE SUBI

CALL CAP_AEXCHANGE(C(CAP_H+1),C(CAP_L),1,CAP_RIGHT,CAP_SE_SYNC1,CAP_RE_SYNC1)
CALL SUB2(A,B,C,CAP_SE_SYNCI1,CAP_RE_SYNC1)

CALL CAP_AEXCHANGE(D(CAP_H+1),D(CAP_L),1,CAP_RIGHT,CAP_SE_SYNC2,CAP_RE_SYNC2)
CALL SUB2(A,B,D,CAP_SE_SYNC2,CAP_RE_SYNC2)

CALL CAP_AEXCHANGE(E(CAP_H+1),E(CAP_L),1,CAP_RIGHT,CAP_SE_SYNC3,CAP_RE_SYNC3)
CALL SUB2(A,B.E ,CAP_SE_SYNC3,CAP_RE_SYNC3)
END

SUBROUTINE SUB2(A,B,C.CAP_SE_SYNCI1,CAP_RE_SYNCI)
CALL CAP_SYNC_EXCHANGE(CAP_RIGHT,CAP_SE_SYNC!,CAP_RE_SYNCI)
DO I=1,10
B(l)= B()+A()+C(I+1)
ENDDO
END

Figure 5.27 : Example showing the passing of synchronisation values between routines.

This method will also require the passing of these parameters through any intermediary

routines. This is accomplished by once again traversing the communication migration path

stored in DEFROUTE (Section 2.8.3).

There is, however, the need to find other calls that are not on the DEFROUTE path to

ensure that the additional dummy parameters are added to all calls of the routines on the

DEFROUTE. Consider the code in Figure 5.28.

Comml
Comm?2

Calll
Call2

Synchl

Synch2

CALL CAP_AEXCHANGE(A(CAP_H+1),A(CAP_L),1,2,CAP_RIGHT,CAP_SE_SYNCI1,CAP_RE_SYNC1)
CALL CAP_AEXCHANGE(C(CAP_H+1),C(CAP_L),1,2,CAP_RIGHT,CAP_SE_SYNC2, CAP_RE_SYNC2)
{* Other code to overlap *}

CALL ASSIGNB(1,A,B,CAP_SE_SYNCI,CAP_RE_SYNCI)

CALL ASSIGNB(2,C.B,CAP_SE_SYNC2, CAP_RE_SYNC2)

SUBROUTINE ASSIGNB(OPTION,X,Y,CAP_SE_SYNC1,CAP_RE_SYNCI,CAP_SE_SYNC2, CAP_RE_SYNC?2)
IF (OPTION.EQ.1) THEN
CALL CAP_SYNC_EXCHANGE(CAP_RIGHT,CAP_SE_SYNC1, CAP_RE_SYNC1))
DOI=1,10
X(h=YMD+Y(I+1)
ENDDO
ELSE IF (OPTION.EQ.2) THEN
CALL CAP_SYNC_EXCHANGE(CAP_RIGHT,CAP_SE_SYNC2, CAP_RE_SYNC2)
DOI=1,10
X(H=X({1+1)+ YD)
ENDDO
ENDIF

Figure 5.28 : Example showing the need to find all callers to a routine.

In Figure 5.28 the first call to the routine ASSIGNB (Calll) passes in the value of the

array A and passes in the parameters for the synchronisation values of its corresponding

exchange communication, Comm1l for use in the synchronisation point Synchl. The second

Chapter 5 143

call to the routine ASSIGNB (Call2) passes in the value of the array C and passes in the
parameters for the synchronisation values of its corresponding exchange communication,
Comm?2 for use in the synchronisation point Synch2.

For the synchronisation point Synchl the DEFROUTE path to Calll places the
synchronisation values at the end of the parameter list. There is however an additional call to
the same routine in Call2 which does not contain the same synchronisation values since they
are in different DEFROUTE paths. It is therefore necessary to ensure that all other calls to the

same routine have the same parameter list.

5.2.7 Generation of Overlapped Communication.

The completion of the calculation of which communications may be overlapped and
the merger of the synchronisation points allows the overlapped communications to be
generated. This generation will be done in the prescribed order mentioned earlier in Section
5.2 - UNROLL, PARTIAL and finally the SIMPLE overlapped communication. The
generation of the communication in this order is vital to ensure that during loop unrolling the
effects of the partial and simple overlapped communication are not also unrolled and
therefore cause synchronisation points and conditional statements to be copied erroneously.

The first task during generation is to convert the present exchange communication
commands to be overlapping communication calls. This requires a simple change of the call
name from CAP_EXCHANGE to CAP_AEXCHANGE (Sections 1.6 and 4.4). Two additional
parameters are also appended to the parameter list. These two parameters are the synchronisation
values for both the receive and send of the exchange communication. These parameters will
take the form of CAP_RE_SYNC_XXX and CAP_SE_SYNC_XXX, where the XXX
represents a number that is uniquely linked to each synchronisation point.

Generating the synchronisation point CAP_SYNC_EXCHANGE requires three
parameters (Section 4.4) - the direction which the communication data is being communicated,
and a synchronisation values for both the receive and send of the exchange communication. The
first parameter can be identified from the exchange communication itself. The other two
parameters are generated for their related communications and will have the same values as all
the relevant communications.

If the synchronisation call is placed in a different routine to the communication then the

two synchronisation parameters must be passed from the routine containing the communication

Chapter 5 144

via any intermediary routines to the routine containing the synchronisation. These parameters
are passed between these routines by means of the parameter list ensuring that they do not
already exist in the parameter list. The algorithm that allows this is explained in greater detail in

Section 5.2.6.

5.2.7.1 Generation of Partial Loop Overlapping with Loop Unrolling.

During the generation of UNROLL overlapped communications the start and end of
the loop to be unrolled must be established and a copy of that loop placed immediately after
the present position of the loop. The loop limits of this loop must then be adjusted. The

algorithm to allow this is summarised in Figure 5.29.

FOR (every UNROLL communication) DO
IF (MAX_UNROLL_COMM) THEN
{* Unroll communication with maximum number of iterations: *}
{* Find start and end of loop to be unrolled. *}
{* Generate the CALL CAP_SYNC_EXCHANGE after original loop end. *}
{* Copy loop and place after the current loop end and the synchronisation call. *}
{* Adjust the loop limits of the original loop: *}
IF (LOOPDIRECTION > 0) THEN
{* Increment lower limit of loop by NO_OF_ITERATIONS. *}
ELSE
{* Decrement lower limit of loop by NO_OF_ITERATIONS. *}
ENDIF
{* Adjust limits of copied loop: *}
{* Copy the upper limit of original loop. *}
{* Add a third parameter to the upper limit of the loop : *}
IF (LOOPDIRECTION > 0) THEN
{* Add lower limit of original loop - I *}
ELSE
{* Add lower limit of original loop + I *}
ENDIF
{* Adjust any loop labels copied to avoid conflict. *}
ELSE
{* Generate CAP_SYNC_EXCHANGE for other UNROLL communications *}
{* whose loops have been already unrotled by the MAX_UNROLL_COMM. *}
ENDIF
ENDFOR

Figure 5.29 : Algorithm to generate partial loop overlapping with loop unrolling.

If the loop has increasing iterations (Figure 5.30) then the lower limit of the original
loop is incremented and the upper limit of the copied loop must be adjusted. The lower limit of
the original loop is adjusted such that it will now start on the first iteration that does not require
the communicated data, in this case MAX(2,CAP_L)+2. The upper limit of the copied loop is
adjusted such that the loop will iterate from the original initial iteration to the final iteration that
requires the communicated data or the last iteration of the original loop, whichever is lowest, in

this case MIN(9,CAP_H,MAX(2,CAP_L)+2-1). This will ensure that the correct loop range is

Chapter 5 145

executed for all loop unrolling cases including the possible case where the values of CAP_L and

CAP_H may be equal.

READ* (A(]),I=1,10)
DO ITER=1,1000,1
Comml CALL CAP_AEXCHANGE(A(CAP_L-2),A(CAP_H-1),2,CAP_LEFT,
& CAP_SE_SYNCI,CAP_RE_SYNC1)
DO 10 I=MAX(2,CAP_L)+2,MIN(9,CAP_H)
Sinkl B()=B(D+A(I-1)+A(I-2)
10 CONTINUE
CALL CAP_SYNC_EXCHANGE(CAP_LEFT,CAP_SE_SYNCI,CAP_RE_SYNCI)
DO 100 I=MAX(2,CAP_L),MIN(9,CAP_HMAX(2,CAP_L)+2-1) } Copied
Sink! B(D=B(D+A(I-1)+A(I-2) } Loop
100 CONTINUE }
DO [=MAX(1,CAP_L)MIN(10,CAP_H)
A(D=B(])
ENDDO
ENDDO

Figure 5.30 : Loop with increasing iterations.

If the loop is decreasing (Figure 5.31) then the low of the original loop MIN(9,CAP_H)-
2 is decreased and the high of the copied loop, MAX(2,CAP_LMIN(9,CAP_H)-2+1) is also

decreased.

READ*,(A(1),I=1,10)
DO ITER=1,1000,1
Comml CALL CAP_AEXCHANGE(A(CAP_H+1),A(CAP_L),2,CAP_LEFT,
& CAP_SE_SYNCI1,CAP_RE_SYNCI)
DO I=MIN(9,CAP_H)-2,MAX(2,CAP_L),-1
Sinkl1 B(DH=B(D+A(+D+A(1+2)
ENDDO
CALL CAP_SYNC_EXCHANGE(CAP_LEFT,CAP_SE_SYNCI1,CAP_RE_SYNC1)
DO I=MIN(9,CAP_H),MAX(2,CAP_LMIN(9,CAP_H)-2+1),-1 } Copied
Sink1 B()=B(D+A(I+1)+A(1+2) } loop
ENDDO }
DO I=MAX(1,CAP_L),MIN(10,CAP_H)
A(D=B(I)
ENDDO
ENDDO

Figure 5.31 : Loop with decreasing iterations.

It is often the case when unrolling loops that the loop labels are copied from the ori ginal
loops. All the labels within this copied loop must be changed to ones that do not already exist in
that routine. These labels may occur for DO, CONTINUE and GOTO commands and their

target commands.

Chapter 5 146

5.2.7.2 Generation of Partial Loop Overlapping

When all the Partial overlapping with Loop Unrolling communications have been
generated the Partial Overlapping communications may be generated. This involves the

generation of a conditional IF statement containing the synchronisation call. The algorithm to

perform this is shown in Figure 5.32.

FOR (Every PARTIAL overlapping communication) DO
{* Create a conditional IF inside partitioned loop. *}
IF (LOOPDIRECTION > 0) THEN
{* Increasing index. *}
{* Set conditional to be .GE. *}
ELSE
{* Decreasing index. *}
{* Set conditional to be .LE. *}
ENDIF
{* Generate r.h.s. of conditional. *}
{* Generate Lh.s. of conditional. *}
{* Generate CAP_SYNC_EXCHANGE. *}
{* Generate ENDIF. *}
ENDFOR

Figure 5.32 : Algorithm to generate the conditional synchronisation call for the partial loop

overlapping.

The conditional command generated will be dependant on whether the surrounding loop
is increasing or decreasing. The conditionals greater than or equal (.GE.) or less than or equal
(.LE.) are used as opposed to the conditional equals to (.EQ.) to ensure that the conditional is
triggered correctly. If the loop has a step of 1 then the .EQ. would be sufficient but if the loop

had any other step then it could be possible that the conditional is not triggered.

DO1=1,50 DO1=1,50
CALL CAP_EXCHANGE(A(Cap_H+1), A(Cap_L),..) CALL CAP_AEXCHANGE(A(Cap_H+1), A(Cap_L),..)
DO J = MAX(2,Cap_L),MIN(59,Cap_H),1 DO J = MAX(2,Cap_L),MIN(59,Cap_H),1

[F (J+2.GE.Cap_H+1) THEN
CALL CAP_SYNC_EXCHANGE(Right,..)

ENDIF
B(J) =AJ+1)+ A(J+2) B(J) = A(J+1) + A(J+2)
ENDDO ENDDO
ENDDO ENDDO
a) Synchronous b) Overlapped

Figure 5.33 : Synchronous and overlapping code applying partial loop overlapping.

In the synchronous pseudo code (left hand side in Figure 5.33) the coefficients of the
partitioned loop variable J are positive in both usages. A synchronisation point is required for

when either of these indices (J+2 or J+1) is greater than or equal to the lower bound of the

Chapter 5 147

communication range (Cap_H+1). The synchronisation point is placed immediately after the
loop head with a conditional for J+2 >= Cap_H+1, as shown in the overlapping code (right hand

side in Figure 5.33).

5.2.7.3 Generation of Simple Overlapping.

Generating the synchronisation call for the Simple Overlapped communication
requires the CAP_SYNC_EXCHANGE to be placed at the most advantageous point as
calculated in Section 5.2.2 and the communication call is changed to be a
CAP_AEXCHANGE as opposed to CAP_EXCHANGE. Two additional synchronisation
values which correspond to those of the CAP_SYNC_EXCHANGE are also added to the

parameter list.

5.2.7.4 Communications with Several Sinks using Different Overlapping Methods.

It is possible for one communication to possess different sinks that requires a
selection of different overlapping methods. As long as every sink may be overlapped then it

is possible to apply the overlapping methods. Consider the code in Figure 5.34.

READ* (A(D,C(I),D(D),I=1,10)
DO ITER=1,1000,1
Comm1 CALL CAP_EXCHANGE(A(CAP_H+1),A(CAP_L),2,2,CAP_RIGHT)
IF (TEST.EQ.1) THEN
{* Lots of code to overlap - SIMPLE *}
DO I=EMAX(2,CAP_L),MIN®Y,CAP_H)
Sink1 B()=B(M+A(1+D+A(I+ D+AI+2)+C(I+1)+C+1)+C(I-1)
ENDDO
DO I=MAX(1,CAP_L),MIN(10,CAP_H)
Assignl AD=B(D)
ENDDO
ELSE IF (TEST.EQ.2) THEN
{* No code to overlap - PARTIAL *}
DO I=MAX(2,CAP_L),MIN(9,CAP_H)

Sink2 B(H=B()+A(I+D+A(+D+A(H+2)+C(I+1)+C(1+1)+C(1-1)
ENDDO
DO I=MAX(1,CAP_L),MIN(10,CAP_H)
Assign2 A=B()
ENDDO
ELSE

{* No code to overlap - UNROLL *}
DO I=MIN(9,CAP_H)MAX(2,CAP_L).-1

Sink3 B(D=B(+A(+1)+A(+ D)+A(1+2)+C(1+1)+C(1+1)+C(I-1)
ENDDO
DO I=MAX(1,CAP_L),MIN(10,CAP_H)
Assign3 A=B()
ENDDO
ENDIF
ENDDO

Figure 5.34 : Communication with several sinks using different overlapping methods.

Chapter 5 148

The code in Figure 5.34 consists of a single communication with three different sink
commands. Either one of these sink commands may be executed depending on the outcome of
the conditional statements. For the first conditional there is ample amount of code to overlap to
allow the SIMPLE method to apply. For the second conditional there is no other code to overlap.
Since the data is not required until the final iteration then the PARTIAL method is applied. In
the final conditional the communicated data is required in the earlier iterations of the loop and
the UNROLL method has to be applied. If for any reason any one of the sink commands could
not be overlapped then none of the other sink commands could be overlapped either. For
instance, if the first two sink commands could be overlapped then if their corresponding
conditionals were triggered then the communication could be synchronised. However, if the
third conditional were true then the overlapped communication could not synchronise and the

sink command could use the incorrect data.

3.2.8 Validation of the Overlapping Communications Generation.

All the methods were tested on small test cases before being tested on real codes. The
results for these real codes are collated and discussed in Chapter 6. No problems were
encountered when running these codes. Correct results were obtained for all the codes apart
from one. Investigation of this code revealed that there was a minor flaw in the generation of

the PARTIAL overlapping. Consider the code in Figure 5.35.

DO ITER = 1, NITER
Comml CALL CAP_AEXCHANGE(A(J,CAP_H+1),A(J,CAP_L),1,CAP_RIGHT,CAP_SE_SYNC1,CAP_RE_SYNC1)
DO K=MAX(2,CAP_L)MIN(KMAX,CAP_H)
IF (K.GE.CAP_H) THEN

Synchl CALL CAP_SYNC_EXCHANGE(CAP_RIGHT,CAP_SE_SYNC1,CAP_RE_SYNC1)
ENDIF
DO J=3,JMAX
Usagel =AJK+])
ENDDO
ENDDO
DO K=MAX(Q2,CAP_L),MIN(KMAX,CAP_H)
DO J=3,JMAX
Assignl A(JK)= ..
ENDDO
ENDDO
ENDDO

Figure 5.35 : Original partial overlapped code generated.

In the code in Figure 5.35 the value of A(J,CAP_H+1) is being communicated by the
communication Comm1. This communication is synchronised within the loop at Synchl before

being used in calculation at the command Usagel. This communication occurs for every

Chapter 5 149

iteration of the loop ITER. Within this same loop the value of the array A is being reassigned at
Assignl. The data being communicated asynchronously could also be overwritten by the
reassignment of the same data. It might be the case, for example that the last processor may not
synchronise due to the original loop limits KMAX being less than CAP_H. This will lead to that
processor arriving at the command Assignl before the communication has been completed. To
avoid this occurrence an additional synchronisation point is placed immediately after the loop
surrounding the partial conditional (Synch2 in Figure 5.36). This ensures that all processors are

synchronised.

DO ITER = 1, NITER
Comm CALL CAP_AEXCHANGE(A(J,CAP_H+1),A(J,CAP_L),1,CAP_RIGHT,CAP_SE_SYNCI,CAP_RE_SYNCI)
DO K=MAX(2,CAP_L), MIN(KMAX,CAP_H)
IF (K.GE.CAP_H) THEN

Synchl CALL CAP_SYNC_EXCHANGE(CAP_RIGHT,CAP_SE_SYNCI,CAP_RE_SYNC1)
ENDIF
DO J=3,JMAX
Usagel «.=AK+1)
ENDDO
ENDDO
Synch2 CALL CAP_SYNC_EXCHANGE(CAP_RIGHT,CAP_SE_SYNCI1,CAP_RE_SYNC1)
DO K=MAX(2,CAP_L),MIN(KMAX,CAP_H)
DO J=3,JMAX
Assignl A(JK)=...
ENDDO
ENDDO
ENDDO

Figure 5.36 : Modified partial overlapped code now generated.

3.3 Pipelines.

From the discussion in Section 4.8 it may be observed that there is a general pattern
for both synchronous and overlapping communication pipelines which may be formulated as
a formal model. To achieve this requires the definition of the functions required for the

formal model. Consider the simple general model in Figure 5.37.
DO il = 1, Ui, 1
DO =1,u, 1
DO iN =], UN, |
A(gl(il,iz iN), gz(il,iz iN),..., gM(il,iz IN)) =....
ENDDO

ENDDO
ENDDO

Figure 5.37 : A simple general model.

Chapter 5 150

From the simple general formal model (Figure 5.37) all the loops had been normalised
and that there were a total of N surrounding loops from ij, the outermost loop, to iy, the
innermost loop. The reference to array A takes the form :

A(g1,82,--8m)

Each array index of the array A is a function of g for all the loop iteration counters from
i) to in. Each index function g is defined as a linear function of these loop iteration counters, €.g.
for an array index g; :

gi(i1,12,..,IN) = gjo + gjal1 + g2i2 + ... + giNin
where gjo represents the constant term and gj; the outermost loop variable coefficient up to gjn
the innermost loop variable coefficient. Each gjx is a constant which can consist of both an
integer part and a symbolic part, e.g.
gik=N*M)+N +5
Where N and M are loop invariant in all the loops in the pipeline.

Using these definitions it is possible to develop a general formal model for both the
synchronous and the overlapping pipeline as can be seen in Figure 5.38 and Figure 5.39
respectively.

In Figure 5.38 the synchronous pipeline is similar to the example of the synchronous
code illustrated in Figure 3.19. Loops have been incorporated into the model to anticipate all
possible loop cases, for example, there are additional loops placed around the communications
due to additional loops within the pipeline surrounding the calculation. The innermost loop of
the pipeline is indicated by PIPELEVEL on the loop Ip. It is outside of this PIPELEVEL loop
that the communications are placed for a synchronous communication pipeline.

The general formal model for the overlapping pipeline in Figure 5.39 follows the same
outline as the overlapping pipeline code illustrated in Figure 4.18. Once again all possible
additional loops have been incorporated into the model. The innermost loop of the pipeline is
also signified by PIPELEVEL on the loop Ip. It is also required to signify the outermost valid
loop of the pipeline denoted by OUTERLEVEL on the loop Ia. Other loops that surround
OUTERLEVEL, which are not valid lobps of an overlapping pipeline are also incorporated.
There is a conditional statement for each loop from the OUTERLEVEL loop to the loop prior to
the PIEPLEVEL loop. Each of the overlapping receive communications within these
conditionals will also possess the same surrounding loops as the overlapping receive prior to the

OUTERLEVEL loop.

Chapter 5

152

DO I|=],U1,]
DO L=1,U,,1

DO IA.1=] ,UA_l,I
DO Ix=1,Hx,1
DO ky=1,Hy,1
Call Cap_AReceive(A(gl(ll,lg,..,lA.l,l,l,l,l,Ip,lp+1,lx,..,ly),..,
gn(ll_[z,..,lA.l,l,l,l,l,lp,lp+1,]x,..,ly)),I,LCﬁ.,Cﬁp_R_S)’DC)
ENDDO(Iy)
ENDDO(Ix)
DO Ix=1,U,4,1 <mameen OUTERLEVEL (A)
DO Ia+1=1,Uas1
DO Ip.>=1,Upa,1
DO Ip..=1,Up.,1
Call Cap_Sync_Receive(Left,Cap_R_Sync)
IF(Iy.,;+1.LE.Up,)THEN
DO Ix=I,Hy,1
DO IY=1 ,Hy,l
Call Cap_AReceive(A(gl(I1,Iz,..,IA.l,IA,IA+1,IP.2,IP_1+1,Ip,lp;,],Ix,..,ly),..,
gn(l|,]2,..,]A.l,IA,IA+|,IP.2,IP.|+1,IP, Ip+1,lx,..,ly)),l ,LCﬁ,Cﬁp_R_S)’DC)
ENDDO(ly)
ENDDO(Ix)
ELSEIF(Ip.;+1.LE.Up;))THEN
DO Ix=I,Hy,1
DO Iy=1,Hy,1
Call Cap_AReceive(A(gl(Il,]2,..,1;\.1,IA,IA+1,IP.2+1,1,IP,IP+1,Ix,..,Iy),..,
gn(ll,]3,..,IA.l,IA,IA“,Ip.z'Fl,l,lp,Ip;,],]x,..,ly)),I,LGft,Cﬂp_R_SynC)
ENDDO(ly)
ENDDO(Ix)
ELSEIF(IA+1+1.LE.UA+|)TI'IEN
DO lx=1 ,Hx,l
DO Iy=I,Hy,1
Call Cap_AReceive(A(g1(11,]2,..,1,\.1,IA,IA+1+1,1,1,lp, [p+|,lx,‘.,ly),..,
gn(ll,lg,..,IA.I,IA,IA+|+1,1,1,Ip,lp+1,lx,..,ly)),],Left,Cap_R_Sync)
ENDDO(Iy)
ENDDO(Ix)
ELSEIF(I1,+1.LE.U,) THEN
DO Ix=1,Hx,1
DO IY=] ,Hy,l
Call Cap_AReceive(A(gl(11,12,..,IA.1,IA+1,1,1,1,lp,lp;,],lx,..,ly),..,
gn(ll,lz,..,IA_l,IA+1,1,1,1,Ip,lp+1,lx,..,ly)),] ,Left,Cap_R_Sync)
ENDDO(ly)
ENDDO(Ix)
ENDIF
DO Ip=1,Up,1 <-=-e-- PIPELEVEL (P)

DO IP»rl=1 ,UPH,I
DO Ix=1,Hy.1
DO IY= I ,Hy,l
(* Pipeline Calculation *)
ENDDO(ly)
ENDDO(Ix)
ENDDO(lp.1)

ENDDO(Ip)
Call Cap_Sync_Send(Right,Cap_S_Sync)
DO [x=],Hx,1
DO ky=1,Hy,1
Call Cap_ASend(A(gi(I1, ... Ja-.IaJasr Ip2. I Ip Ips 1 Ixs I),
gn(ll,Iz,..,[A.l,IA,IA+|,IP.2,IP.|,IP, lp+|,[x,..,ly)), 1 ,Right,Cap_S_Sync)
ENDDO(ly)
ENDDO(Ix)
ENDDO(lp.,)
ENDDO(Ip.,)
ENDDO(Ia+1)
ENDDO(IA)
Call Cap_Sync_Send(Right,Cap_S_Sync)
ENDDO(IA.1)

ENDDO(I>)
ENDDO(I))

Figure 5.39 : Formal model for an overlapped pipeline.

Chapter 5 153

The first conservative test, is to ensure that there are no loop exits from the pipeline
loops. This is achieved by checking that the block of statements inside the loop are
postdominated by the loop head. For example, in Figure 5.40 the statement S; is postdominated
by the loop heads Iy, I; and I,. However, the statement S; is not postdominated by the loop head
I; due to a loop exit within the loop. This loop is thus not a valid loop for incorporation of the

overlapping pipeline and the OUTERLEVEL loop is designated as the previous valid loop L.

DO I]—_—...
DO L=... <---- OUTERLEVEL (A=2)
DO L=...
DO L=... <---- PIPELEVEL (P=4)
{* Pipeline Calculation *}
S =..

ENDDO
IF (true) THEN GOTO 20
ENDDO
20 CONTINUE

Figure 5.40 : Fortran pseudo code illustrating loop exits.

Secondly, to check that the data used in the overlapped calculation is not the same as the
communicated data. There is a danger of the CAP_RECEIVE communication overwriting data
before actually being used in calculation. To avoid this eventuality it is essential to ensure that
the loop does not have any anti dependencies between the communication and the calculation.
For example, in Figure 5.41 there is an anti dependence between statement S; and S, In the
statement S; the value of V(5,J+1,Cap_LV-1) is being communicated while in statement S, the
value V(M,J+1,K-1) is being used in the calculation. There is a potential danger that the data
being used could also be overwritten simultaneously by the communication. For this reason, the

overlapping pipeline code shown in Figure 5.41 would never be generated by CAPTools.

CALL CAP_ARECEIVE(V(1,2,Cap_LV+1),...)

DO J=2,JEND <---- OUTERLEVEL
CALL CAP_SYNC_RECEIVE()
S IF(J+1.LEJEND)CALL CAP_ARECEIVE(V(l J+1,Cap_LV-1),...)
DO K= Max(1,Cap_LV),Min(10,Cap_HV) <---- PIPELEVEL
DO M=1,5
{* Pipeline Calculation *}
S, VIM,JK) = VIM,J K-T) + V(M J+1,K-1)
ENDDO
ENDDO

CALL CAP_SYNC_SEND()
CALL CAP_ASEND(V(1,J,Cap_HV),...)
ENDIF
ENDDO
CALL CAP_SYNC_SEND()

Figure 5.41 : Illegal Fortran pseudo code illustrating an anti-dependence.

Chapter 5 154

Thirdly, to check that the data being assigned in the overlapped calculation is not the
same as that being communicated. There is a danger of overwriting data before it is sent. To
avoid this occurrence it is essential to ensure that there are no output dependencies between the
send communication and the calculation.

These two last rules are very conservative and it could very well be possible that another
technique may be used, 1.e. such as placing the communicated data into a buffer array.

The conversion of the present synchronous communications involves the generation of
new communication calls and conditional statements to ensure that the code achieves its
maximum efficiency. Finally, it is necessary to generate the synchronisation statements at the
correct positions, as designated in the model, to ensure that the correct data values are used in
the pipeline calculation.

The generation of the overlapping communications consists of three stages:
1. The generation of the conditional statements and their related overlapping
RECEIVE communications;
2. The generation of the very first overlapping RECEIVE communication of the
pipeline and the RECEIVE synchronisation point;
3. The generation of the overlapping SEND communication and the two SEND
synchronisation points.

The positions of these communications are summarised in the pseudo code in Figure 5.42.

{* First Overlapping RECEIVE *}

DO I1=... <---- OUTERLEVEL
DO I2=...
DO B3=...
{* RECEIVE Synchronisation Point *}
{* Conditional Overlapping RECEIVES *}

DO K4=...... <---- PIPELEVEL
{* Calculation *}
ENDDO
{* SEND Synchronisation Point *}
{* Overlapping SEND *}
ENDDO
ENDDO
ENDDO

{* SEND Synchronisation Point *}

Figure 5.42 : Fortran pseudo code illustrating the positions of overlapping communications

within a pipeline.

Chapter 5 155

5.3.1 Generation of the Conditional Statements and their Related Overlapped
RECEIVE Communications.

In the overlapping pipeline model (Figure 5.39) there exists a conditional statement
for every loop from loop A to loop P-1 of the pipeline. This ensures that another iteration of a
loop exists and that data for the next iteration is received into the correct data address. The
very first conditional loop ensures that there is another iteration of the innermost loop prior to
the PIPELEVEL loop, 1.e. the Ip; loop. If there is another iteration of that loop then the
model will receive the data for the next iteration into the array address Ip.;+1 for the loop
index Ip;. All other loop iteration counters of the surrounding loops prior to Ip; remain
unchanged. If there is not another iteration of Ip; to be received then the model will execute
the next conditional statement, which ensures that there is another iteration of the loop Ip.. If
there is another iteration of that loop then the model receives the data for the next iteration
into the array address Ip.;+1 for the loop index Ip.;. All subsequent loop iteration counters for
the pipeline loops are reinitialised to 1, i.e. in this case the index Ip.; would be reinitialised to
1 since when Ip_; 1s increased to the next iteration then the iteration of Ip.; will then intuitively
start from 1. All other array index addresses of the surrounding loops prior to the Ip; remain
unchanged. This continues for all the conditionals up to the loop 14 where the array address
for the index Io will be reset to Ia+1 and all subsequent pipeline loops array addresses
reinitialised to 1.

From the general formal model it 1s necessary to create additional specifications for use
in an algorithm for automatic generation of the conditional statements for the overlapping
pipeline. These consist of the specification of the indices for the next iteration of a loop and also
the indices of the first iteration of a loop. These may be defined as follows :

Indices for next iteration of a k loop is :

gi(i1,12,.,ik+]1,..,IN) = g0 + gj1i1 +..+ gj(ik+]l) +..+ ginin

= gi(11,12,-»1k,--»IN) + Zjk

where j= 1 (1) M |
Indices for the first iteration of the kth loop :

gi(ir,12,...1,..,IN) = gjo0 + gj.1l1 + g 212 +..+ gjx +..+ giNIN

= g(i1,12,--,05..,IN) + gk
From the general formal model specification it is possible to obtain an algorithm for the

automatic generation of the conditional statements of the overlapping pipeline (Figure 5.43).

Chapter 5 156

Let P be the Pipelevel
A be the Outerlevel
M be the number of array indices

fork =P-1downto A
{* Process loop k*}
generate "IF (1,+1 .LE. Uy) THEN"
generate "CALL CAP_ARECEIVE()"
generate "converted array indices" as follows:
copy original indices
fory=1toM
{* Process index j *}
{* Increase the loop iteration counter I *}
add g« to constant term
forr=k+1 to P-1
{* set loop iteration counter I to zero *}
add g, to constant term
set g, to zero
endfor
endfor
generate "length" and "direction"
generate "sync_variable"

if (k > A) then
generate "ELSE"
else
generate "ENDIF"
endif
endfor

Figure 5.43 : Pseudo code for the automatic generation of the conditional statements of the

overlapping pipeline.

The algorithm consists of a loop that will generate a conditional statement for each valid
loop of the overlapped pipeline from the loop prior to PIPELEVEL (i.e. P-1) to the
OUTERLEVEL (i.e. A). Each conditional statement generated for each loop k will all generate

the following basic statement:

IF (It+1 .GE. Uy) THEN
CALL CAP_ARECEIVE()

After the statement has been generated the parameter list for the receive communication
is required. The first parameter is the data address to receive the communicated data. This
involves calculating the correct array indices to receive the communicated data into the correct
data address. Initially, this involves copying the original array indices of the synchronous receive
communication. These array indices may then be adjusted to ensure that they receive the data
into the array address of the next iteration. This will involve for each array index gj the adding of
a constant term gjx (where k is the present loop being processed and j the array index). The

adding of this constant term will ensure that for the loop k that data will be received into the data

Chapter 5 157

region of the next iteration of loop k. All array index addresses after the index k are then set to
their lowest value 1. In order to do this it is essential for each loop index from k+1 to P-1
(referred to as r) to add g;, to the constant term and reset g;, to zero.

Consider the generation of the CAP_ARECEIVE statement for the third conditional
statement of the general model of the overlapped pipeline (Figure 5.39). The original indices
copied from the CAP_RECEIVE statement of the general model of the synchronous pipeline
(Figure 5.38) were as follows :

Al L, a1l dassIp2, I Ip Ips 1, Ix - Iy), o
gn(ly, Lo, Ia-1,1a IastsIp 2 Ip.1,Ip,Ips 1, Ix - Iy))
The present loop k being processed for this conditional statement is the loop Ia,,. The constant
term 1s added to give the address of the next iteration of Ia,1, to give the In,+1. All the loop
iteration counters after I5.; index up to and including index Ip.; are then set to their lowest value
1. The indices for the conditional will then be as follows :
A(gi(,L,Ja 18 Ja+ 1,1, 1p,Ip, Ik, Iy), .,
gl L2, Ia 1, 1aJa 1 +1,1,1LIp I, Ix, . Iv))
Once the correct array address of the next iteration has been generated the communication
length, the direction of the communication and the "sync_variable” are appended to the
communication parameters list.

Finally if it is not the first conditional statement then an ELSE should be generated

before the IF statement. An ENDIF statement must also be generated after the final conditional

statement.

3.3.2 Generation of the First Overlapped RECEIVE Communication of the Pipeline
and the RECEIVE Synchronisation Point.

This overlapping RECEIVE communication will be placed before the
OUTERLEVEL loop. If the data being communicated is an array then the indices of this
array, which also correspond to the valid loops of the pipeline, will be adjusted such that each
index will be equal to the value of the first iteration of their corresponding loop. This is
applied to all indices of the array that has a corresponding loop from OUTERLEVEL to the
loop previous to the PIPELEVEL loop. The PIPELEVEL loop is not incorporated since it is

the first loop of the calculation, i.e. the partitioned loop.

Chapter 5 158

The adjustment of all the loop iteration counters to the value of the first iteration of each
corresponding loop, may be applied using the previous specification for calculating the indices
for the first iteration of a loop k. This simple specification is then applied for each array index j
from 1 to M, for each loop index from the OUTERLEVEL loop (A) to the loop prior to the

PIPELEVEL loop (P-1). The algorithm for this is shown in Figure 5.44.
generate "CALL CAP_ARECEIVE()"
generate "array indices"”
copy original indices
forj=1toM
forr=AtoP-1
add g;, to constant term
set g, to zero
endfor
endfor

generate "length” and "direction”
generate "sync_variable"

Figure 5.44 : Pseudo code for the adjustment of the loop iteration counters for the First

Overlapped receive in the pipeline.

It will also be required to generate the synchronisation point for the overlapping
RECEIVE communications. This synchronisation point must be placed prior to the conditional

overlapping RECEIVE communications which are generated before the PIPELEVEL loop.

5.3.3 The Generation of the Overlapping SEND Communication and the SEND

Synchronisation Points.

Now that the overlapping RECEIVE communications and synchronisation points
have all been generated the overlapping SEND communication and related synchronisation
points may be generated. The generation of the overlapping SEND is a straight forward
operation which merely involves changing the name of the synchronous SEND call and the
addition of the “sync_variable” to the parameters list. The generation of a synchronisation
point is needed before the overlapping SEND communication, to ensure that the previous call
to SEND has completed. There is also a need for an additional synchronisation point outside
of the end of the OUTERLEVEL loop. This synchronisation point is necessary for the last
iteration of the pipeline and is required for consistency to avoid potential overwriting of data

still being communicated by the SEND.

Chapter 5 159

5.4 Conclusions

The methods applied by hand in Chapter 4 were incorporated as an additional stage
within CAPTools. This allowed the overlapped communications to be automatically
generated at a fraction of the time it would take by hand. The transformed code generated
was correct and tested on several small test cases before being tested on real codes. The

results for these codes are provided in the next chapter.

Chapter 6

6 Results for Automatic Code Generation
of Overlapping Communications for
Structured Mesh Computational

Mechanics Codes.

6.1 Introduction.

The automatic code generation methods applied within CAPTools (Chapter 5) were
tested on several codes. These codes comprised of the four codes that were parallelised by
hand in Chapter 3 and three additional codes. Two further codes from the NASPAR [68]
benchmark suite of codes : APPSP and APPBT and a real world CFD code from a major
industrial company was also processed.

The asynchronous codes automatically generated form CAPTools were tested on two
parallel machines. These two machines used were the Transtech Paramid [81] and the Parsys

SN9500 [82] whose architecture was briefly discussed in Section 4.3.

6.2 2-D Heat Diffusion Code (FAB).
The FAB code (described in Section 3.2) when parallelised using CAPTools generated

13 synchronous communications, 7 of which were exchange communications. There were no
pipelines in this code. The results for this code utilising synchronous communications are shown
in Table 6.1. The results obtained for synchronous communications are very favourable, with a
speed up of 7.33 obtainable on 8 processors on the Transtech Paramid. This provided a very
healthy efficiency of 91.7%. These results were good due to the small number of

communications and because there were no pipelines to reduce the overall efficiencies.

Chapter 6 161

Number | Overlapped Communications
Of Time Speed | Efficiency Time Speed | Efficiency
Processors Taken Up Taken Up
1 | 127.97 - || 127.97 - - '
2 65.28 1.96 98.0% l 64.74 1.98 98.8% ”
4 33.35 3.84 95.9% " 32.54 3.93 98.3% ”
6 22.83 5.60 93.4% " 21.98 5.82 97.0% ”
8 17.45 7.33 91.7% _162 7.69 96.2% ”

Table 6.1 : Results for FAB with synchronous and overlapped communications for the

Transtech Paramid.

After applying the automatic generation of overlapped communications, five of the
original seven synchronous communications were overlapped. The SIMPLE method of
overlapping was applied to 2 communications; PARTIAL overlapping to 1 communication; and
UNROLL to the remaining 2 communications. Two of the original synchronous exchange
communications were not overlapped. Figure 6.1 shows a fragment of the code in the main
routine FAB where these two communications exist. For the communication Comm1 the data
being communicated has two sinks commands one of which is Sinkl. The other sink for this
communication is in another routine that has sufficient amount of code to overlap the
communication. Unfortunately, Sink1 of this communication has insufficient amount of code to
allow a SIMPLE overlap due to the lack of time co<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>