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Abstract

The demand for increasingly small and lightweight products require micro-scale com- 
ponents made of materials which are durable and light. Polymers have therefore 
become a popular choice since they can be used to produce materials which meet 
industrial requirements. Many of these polymers are viscoelastic fluids. The reduc- 
tion in the sizes of components make physical experimentation difficult and costly. 
Therefore computational tools are being sought to replace old methods of testing.

This research has been concerned with the development of a finite volume algorithm 
for viscoelastic flow which can be readily applied to real world applications.

A major part of the research involved the implementation of the Oldroyd-B constitu- 
tive equations and associated solution methods, in the 3-D multi-physics software en- 
vironment PHYSICA+. This provides an unstructured finite volume solution technique 
for viscoelastic flow. This algorithm is validated using the 4:1 planar contraction and 
results are reported.

The developed viscoelastic algorithm has also been coupled with two interface track- 
ing techniques one of which includes surface tension effects. These techniques are 
the Scalar Equation Algorithm (SEA) and the Level Set Method (LSM). With both 
techniques the algorithms are able to take into account flow effects from both flu- 
ids (ie. air and polymer) in a two-fluid system. The LSM technique maintains a 
sharp interface overcoming the smearing of the interface which generally affects in- 
terface tracking techniques on Eulerian fixed grids, for example SEA, and enables the 
curvature of the interface to be calculated accurately to implement surface tension 
effects.

This integrated viscoelastic flow solver and free surface algorithm is then illustrated 
by predicting two industrial flow processes as used in the electronic packaging indus- 
try.
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Chapter 1

Introduction

1.1 Introduction to Viscoelastic Fluids

The balance laws in solid and fluid mechanics usually define the relationship between 

externally applied forces and the resulting deformation of a given medium.

If the deformation of the medium is characterized by stress and strain, then in a 

Newtonian fluid under shear as shown in Figure 1.1 a), the shear stress and 

strain rate are related by Newton's law

(1.1)

since the force per unit area is proportional to shear rate and 

The constant of proportionality 770 is the viscosity of the fluid.

For a Hookean elastic solid if the upper plane undergoes an infinitesimal displacement 

-D(t0 , as shown in Figure 1.1 b), the displacement of the material may be assumed 

to be a linear function of the distance Then the displacement at any position 

is given by

to, *) = (1.2) 

where is the shear strain. The shear stress is given by

(1.3) 

where is the rigidity modulus.
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a)

b)

Figure 1.1: Newtonian fluid and Hookean elastic solid.

From Eqn(l.l) for a Newtonian fluid the stress at a given time is proportional to 

the rate of strain at the same time. From Eqn(1.3) for a Hookean solid the stress at 

a given time is proportional to strain at time with reference to the isotropic stress 

at time £0 - Therefore a Hookean solid "remembers" where it was at a previous time 

whereas a Newtonian fluid has no memory of the past.

Substances which appear fluid like yet show the characteristics of a spring are an 

integral part of our lives. These materials whether natural or manmade cannot be 

classified as Newtonian fluids or elastic solids since their behaviour lies somewhere 

between the two extremes. Therefore they fall under the large umbrella of non- 

Newtonian materials.

The extrudate swell of a solution of polymethylmethacrylate in dimethylphthalate 

(when emerging from a capillary tube) and the elastic recoil of the upper half of



3

a falling column of Aluminium soap solution when the column is cut in midstream 

[1] are two examples which clearly demonstrate the peculiar behaviour of such fluids 

which depart from that of Newtonian fluids such as water. Rheometrical experiments 

have shown that this behaviour of polymers is a manifestation of fluid-memory effects. 

That is, even though the substances appear like viscous fluids, if a force is applied 

and then removed the material attempts to return to its original condition thereby 

exhibiting elastic solid like behaviour to a certain degree. Materials which display 

both viscous and elastic behaviour range from naturally occuring fluids such as blood, 

mineral oils, rubber fluids, etc., to manmade polymer compounds such as plastic 

fluids, underfill, etc. The applications which involve such materials are wide and 

increasingly growing. Polymer materials, for example, are used extensively in many 

complex industrial processes since their chemical composition enables the formation 

of new compounds which are stronger and lighter and therefore highly suitable for 

the manufacturing of articles which range from snowboards to microscale electronic 

components. Therefore the study of these types of non-Newtonian fluids is a very 

important area for investigation.

1.1.1 Non-Newtonian Fluids

For a Newtonian fluid the viscosity at a given temperature and pressure is a constant 

independent of rate of shear. The curve relating shear stress to rate of shear is 

therefore a straight line.

For non-Newtonian fluids the relationship between shear stress and rate of shear is 

non-linear. The viscosity is not only dependent upon temperature and pressure but 

also on factors such as rate of shear, the type of apparatus holding fluid, the previous 

history of the fluid etc.

Non-Newtonian fluids are broadly categorised as follows:

1. Time-independent fluids

Fluids for which the shear rate at any point is some function of the shear stress 

at that point and nothing else.

(a) Bingham plastics (eg. toothpaste, oil paints etc.)
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(b) pseudo-plastic fluids (eg. 1% poly(ethylene-oxide) in water, Polystyrene 

at a temperature of 

(c) dilatant fluids (eg. starch pastes)

Figure 1.2: Flow curves for time-independent non-Newtonian fluids.

Figure 1.2 shows the flow curves for each type of fluid mentioned above. The 

dashed line shows the Newtonian flow curve. These fluids are modelled using 

the generalised Newtonian fluid model which is a modification of the Newtonian 

fluid through the use of models such as the Power-law model to express shear 

rate dependent viscosity.

2. Time-dependent fluids

Fluids for which the relation between shear stress and shear rate depend on 

the time the fluid has been sheared.

Figure 1.3: Flow curves for time-dependent non-Newtonian fluids.
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(a) thixotropic fluids

Materials whose structure breaksdown with shear. Once the shearing 

is stopped the structure begins to reform over time. After shearing is 

stopped the material shows flow curves as shown in Figure 1.3 over time. 

The direction of the arrow indicates the direction of increasing time the 

material has been in recovery. The lowest curve corresponds to the time 

immediately after the shearing was stopped.

(b) rheopectic fluids

Material whose structure is gradually formed by shear. For example if 

42% gypsum paste in water is shaken and left to rest then it takes 40 

minutes to resolidify where as if the container is gently rolled between the 

hands then the material resolidifies in 20 seconds.

3. Viscoelastic fluids

Fluids which exhibit partial elastic recovery after deformation. Polymer mate- 

rials mentioned in the previous section fall into this category. The behaviour 

of viscoelastic fluids may be illustrated through the stress relaxation and creep 

tests as shown in Figures 1.4 and 1.5 respectively.

In the stress relaxation experiment the material is subjected to a strain for 

time > 0. If the material is a fluid then based on Newton's law it will show 

a response given in Figure 1.4 b). A viscoelastic material shows the response 

shown by Figure 1.4 c).

In the creep test if a step stress is applied for times > 0 a Newtonian fluid 

will show a response as in Figure 1.5 b) and a viscoelastic fluid responds as 

shown in Figure 1.5 c).



a)
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b) 

c)

Figure 1.4: Step shear strain applied at 0.

1.1.2 Rheology and Viscoelasticity

Rheology is The term "Rheology" 

was proposed by Professor Bingham when the American Society of Rheology was 

founded in 1929 [2].

According to Newton's law a fluid is viscous and Hookes law states that a solid 

is elastic. As pointed out above polymer materials display both types of behaviour 

simultaneously. Rheometrical experiments have shown solids to have liquid-like prop- 

erties and liquids to have solid-like properties, which point to the fact that viscous 

and elastic properties coexist in all materials and which property dominates is de-



a) r.

b)

Figure 1.5: Creep test response with shear stress applied.

termined by the applied stress and duration of the experiment.

Therefore rheologists prefer to classify rheological behaviour. This allows a material 

to be included in more than one classification depending on experimental conditions 

and it also allows for the mathematical description of rheology as the mathematics 

of a set of behaviours rather than of a set of materials. Even though the definition 

of the discipline includes the classical extremes of Newtonian fluids and Hookean 

elastic solids, rheology is confined to the study of non-Newtonian materials.

As a means of determining the response a material displays, Reiner [3, 4] introduced 

a non-dimensional number called the "Deborah number" which is the ratio of
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characteristic time of a material to a characteristic time of observation of flow.

A (1.4)
J-o

where A is a characteristic time of the material and is the time of observation. 

Given this assumption a material will display Newtonian or Hookean behaviour or a 

combination of both based on a given situation.

For a Newtonian fluid A = 0 and for a Hookean solid A oo. For a viscoelastic 

material 0 < A < oo. Solid materials with viscoelasticity are called viscoelastic 

solids and liquids with viscoelastic behaviour are called viscoelastic fluids.

In section 2 of this chapter some of the constitutive models which have been developed 

to model viscoelastic effects in fluids will be discussed. The numerical methods which 

have been used to solve viscoelastic flow are reviewed in section 5. Section 6 presents 

a brief review of process modelling. The motivation for this research project and the 

objectives are presented in sections 7 and 8 followed by the research strategy and 

outline of this thesis in sections 9 and 10.

1.2 Linear Viscoelastic Models

1.2.1 Roots

Even though rheology is a relatively new discipline the recognition of the viscoelastic 

nature of materials and attempts at expressing such behaviour through a single 

equation can be traced back to the century.

In 1865 Thomson (who later became Lord Kelvin) did experiments on the damping 

of metals and introduced the term 'viscosity of metals' [5].

In 1867/68 James Clerk Maxwell presented an equation relating stress to strain which 

also involved the Young's modulus and a time constant and used it to study gases 

as he believed gases to be viscoelastic [5].

The next theoretical work combining viscous and elastic behaviour appears to have 

been in 1874 by Oskar E. Meyer who assumed that stress and strain may be repre- 

sented by an equation which involved material constants such as the rigidity modulus
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and viscosity [5]. The concept behind this equation was the same as implied by Lord 

Kelvin in his experiments on metals and in the years 1889-1892 Voigt generalised this 

theory to encompass anisotropic materials and it is now known has the Kelvin-Voigt 

body [5].

The most significant of contributions to the mathematical theory of linear viscoelas- 

ticity was made in 1874 by Ludwig Boltzmann who in an attempt to generalise Meyers 

theory presented a general theory for linear viscoelasticity which related stress at a 

given time not only to strain at that time but also to past times [5]. It was also as- 

sumed explicitly that the longer the time interval between the present and past time 

the smaller the contribution would be to the stress from the strain which presented 

the principle Boltzmann's theory was based on the assumption of 

linear superposition and he pointed out that the principle of superposition will only 

hold for small displacements.

1.2.2 The General Differential Equation

The linear viscoelastic models are based on the "superposition principle" mentioned 

in the section above which implies that the strain at any given time is directly 

proportional to the value of stress at that time. This leads to linear differential 

equations. The coefficients of the time differentials are material parameters such as 

the coefficient of viscosity and the rigidity modulus, etc., and they are independent 

of variables such as strain or strain rate. The time derivatives are ordinary partial 

derivatives. The general differential equation for linear viscoelasticity is therefore

/ / T

Q 92 dm\ U-

where and are functions of time. Although Eqn (1.5) has been expressed in terms 

of shear stress and strain other types of deformation can be easily included with 

the stress and strain pertaining to the deformation process. Consequently the scalar 

variables and may be replaced by the tensors and 

When is the only non-zero parameter Eqn(1.3) is obtained which is Hooke's law 

for an elastic solid. If ft is the only non-zero variable the equation for Newton's law
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(Eqn 1.1) for a Newtonian viscous fluid is obtained.

In the following sections two models derived from Eqn(1.5) are used to illustrate how 

the ideas of lasticity and viscosity are displayed by a single constitutive equation.

1.2.3 The Maxwell Model

In the general equation (Eqn(1.5)) if and ft = 770 while all other constants 

are zero, this gives the linear viscoelastic model called the Maxwell model mentioned 

in the section above given by

If a particular stain is applied at 0 and held for > 0 by integrating Eqn(1.6) 

and applying limits [4] it can be shown that

-t\ ft n\ -), (1.7)

where AI = The result above indicates that the stress undergoes an exponential 

relaxation from its initial equilibrium value to zero as shown in Figure 1.6 (note this 

result is similar to stress behaviour shown in Figure 1.4 c) ). The material constant 

AI is therefore referred to as the "relaxation time". The relaxation time for water 

is about 10~12 seconds while for a low density polyethylene it is around 10 seconds 

and materials such as glass have relaxation times amounting to days [4]. Table 1.1 

lists relaxation times for a few materials as given by Tanner [6].

1.2.4 The Kelvin Model

If and are non-zero while all the other constants are zero in the general linear 

equation (Eqn(1.5)) then the Kelvin- Voigt model is obtained which is of the form

(1.8)

If a stress is applied at time 0 and held constant for 0 then by integrating 

the linear differential equation (1.8) the following result is obtained

l, (1.9)
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T,

Figure 1.6: Relaxation of shear stress with the Maxwell model.

where the material parameter A2 = From Eqn(1.9) it can be seen that, unlike 

an elastic solid the strain does not reach a value of instantaneously at 0, 

the time at which the constant stress is applied (see Figure 1.7). Instead the 

growth of the strain occurs over a longer period of time. The time taken by the 

material to reach a strain of (1   e"1 ) of its final value of is A2 . Alternatively, 

if a constant stress which has been applied is suddenly removed then it can be 

shown that A 2 is the time taken for the shear to reduce to of its original value. 

Since the growth or the decay of strain is retarded over time A2 it is called the 

"retardation time" .

Figure 1.7: Growth of strain with the Kelvin model.

More complex linear viscoleastic models may be obtained from Eqn(1.5) by setting 

more material constants to non-zero. This would lead to constitutive equations
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Material

Water

Mineral oil

Low-density polyethylene

High-density polyethylene

High-impact polystyrene

0.5% Hydroxyethyl-cellulose in water

2% Polyisobutylene solution in Primol oil

Glass

Temperature(A')

293

303

388

513

453

493

443

483

300

300

300

Ax (s)

~ io-12
7 x IO- 10

10

0.1

0.07

0.05

7

3

0.1

100

> IO5

Table 1.1: Relaxation times (Ai) for some materials.

for materials with a of relaxation and retardation times and viscosities. 

However all of these models can be generalised as Maxwell or Kelvin type models.

1.3 Normal Stresses

Consider a Newtonian fluid under shear as shown in Figure 1.1 a). If the distance H 

is infinitesimally small and the viscosity 770 is very large then the velocity distribution 

of the x-component is a linear function of given as

(1.10)

Then the velocity field is

(1.11)

The stress distribution may be written as

  "5

0, (1-12)

= 0,
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where is the 3x3 Cauchy stress tensor. For a non-Newtonian fluid undergoing 

the same shear flow the components of the Cauchy stress tensor are such that

",

(1-13)

It can be seen from Eqns(1.12) and (1.13) that the differences between the normal 

stresses are zero in the case of Newtonian fluids while they are functions of shear rate 

for non-Newtonian fluids. These functions denoted by and 7V2 are 

which are referred to as the first and second normal stress differences 

respectively.

Experiments have shown that there are very high non-zero first and second normal 

stress differences when viscoelastic fluids exhibit phenomena such as "die swell" and 

rod climbing effects [2].

1.4 Oldroyd/Maxwell Type Models

In section 1.2 we discussed viscoelastic constitutive equations which model the elas- 

tic effects in viscoelastic fluids. These models are restricted to flows with very small 

displacement gradients since time derivatives are ordinary partial derivatives and 

they do not provide insight into behaviour induced by normal stress effects. There- 

fore non-linear constitutive models were developed which could explain non-linear 

behaviour and normal stress effects and be used to model high shear rate flows.

The "retarded-motion expansion" models for viscoelastic flow presented by Coleman 

and Noll [7, 4] are an example of such models. These equations are polynomial 

expansions about the Newtonian fluid which account for the deviations from the 

Newtonian behaviour due to elastic effects. Different constitutive equations are ob- 

tained by truncating the expansion. Although the models account for normal stress 

effects they have been found to be suitable only for slightly elastic fluids with very 

low Deborah numbers under slow and slowly varying conditions [4, 2] .

Since retarded motion equations cannot be applied to arbitrary flows due to the 

limitations associated with them, constitutive equations were sought which could
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model arbitrary flows. The Oldroyd/Maxwell type models were developed in an effort 

to generalise the linear viscoelastic models to be valid under varying conditions of 

stress and motion. The general Oldroyd model has a differential as well as integral 

representation. Here the differential model is presented as this study employs a 

model derived from this equation.

In rectangular Cartesian coordinates the general Oldroyd model is given by

+ AI +^0(tr + 
D (1.14)

where is the rate of deformation tensor given by

^(Vu + VtxT). (1.15)

In the equation above is the velocity vector and the symbol D above a tensor 

denotes a derivative of the form

n v A
(1.16)

The coefficient a is a constant which governs whether the upper or lower-convected 

derivatives are recovered. For a tensor 6 the upper-convected derivative is

V7 £^ E*.

6=   + V6 -   (Vu)T , (1.17)

and the lower-convected derivative is

6= ^ V6 + + Vw   6. (1.18)
OTJ

Many constitutive models used for modelling are derived from Eqn(1.14), some of 

which are listed in Table 1.2.

Apart from the constitutive models contained in this equation, various other dif- 

ferential, integral and kinetic theory constitutive equations have been developed in 

an attempt to produce constitutive models which can more accurately model mate- 

rial behaviour [1]. The Oldroyd-B model for example depicts a constant viscosity 

fluid and has very limited applications (eg. Boger fluids). The Phan-Thien- Tanner 

(PTT) model on the other hand has been found to be better suited to model low 

density fluids such as low density polyethylene melts [8]. Currently no one particular
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//! A2 A*2 

0 AI 0 0 0 0 Upper-convected Maxwell + AI 

2 AI 0 0 0 0 Lower-convected Maxwell r + AI 
A A 

2 AI 0 0 A 2 0 Oldroyd liquid A + AI + A 2 D)
v v 

0 AI 0 0 A 2 0 Oldroyd liquid B + A 2 

Table 1.2: Some constitutive equations derived from the general Oldroyd model 

Eqn(1.14).

model is as yet valid for all viscoelastic flows. Therefore, the type of constitutive 

equation has to be chosen according to material properties and flow characteristics 

of the material being considered.

Having developed more advanced viscoelastic models they then need to be solved 

in order to find solutions to applications which involve viscoelastic fluids. Finding 

theoretical solutions to such problems has always been associated with difficulties. 

However, the development of faster computers with large memory capabilities in the 

recent years, has enabled the numerical prediction of viscoelastic flows in complex 

geometries through computational modelling.

To test the accuracy and capability of the numerical methods and to address the issue 

of difficulties which arise when viscoelastic fluids meet complex geometries, several 

benchmark test problems were proposed at the Fifth Workshop on Numerical Meth- 

ods in Non-Newtonian Flow (1987) [5]. Among the benchmark problems proposed 

were the 4:1 planar contraction problem and the flow past a sphere or cylinder prob- 

lem. The planar contraction problem for example is considered a difficult problem to 

model as the geometry contains a point of singularity at the re-entrant corner which 

is thought to cause many numerical methods to fail due to high stress build up in 

the region as elasticity is increased. This results in limiting the range of Weissenberg 

numbers for which stable numerical convergence may be achieved. Therefore proving
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a good test for the robustness of any algorithm. The other benchmark problem which 

has raised considerable interest is the flow past cylinder in a channel. Even though 

the geometry has no point of singularity, the presence of steep stress boundary layers 

and the normal stress wake at high elasticity affect the convergence of numerical 

methods.

Many of the solution algorithms which have been developed to solve viscoelastic 

flow are based on one of the commonly used numerical techniques: finite difference, 

finite element, finite volume and spectral methods. In some cases a hybrid of these 

techniques is used.

This technique transforms a Partial Differential Equation (PDE) into a system of 

first-order algebraic equations by replacing the derivatives in the PDE by their finite 

difference approximations. The solution domain is covered by a rectangular grid and 

the unknowns are solved at the grid points which are distributed along families of 

non-intersecting lines. The finite difference approximations of the derivatives are 

obtained from truncated Taylor series expansions and form a stencil which relates 

the unknowns at each grid point to the neighbouring points. A detailed account of 

the method can be found in Smith [9] and Twizell [10].

The advantage of the method is in being able to use higher order approximations 

on structured grids. However the method is restricted to simple regular goemetries 

which is a drawback as most problems involve complex flows.

With this method the solution domain is discretized into elements of arbitrary shape 

and size. Since all polygonal elements can be reduced to triangular or quadrilateral 

shapes, these are used as the basis element shapes. The elements cannot overlap 

and they have to cover the whole computational domain. For each element a certain
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number of points are defined either within the cell or on the sides. The unknown 

functions and their derivatives will be solved at these points. Simple piecewise func- 

tions are used to approximate the local variations of the unknown variables. The 

substitution of the piecewise approximations of the unknowns into the governing 

equation will give rise to an error. A residual is defined to measure the error and 

the residuals are minimised by means of multiplying by a set of weighting functions 

and integrating. This gives a set of algebraic equations for the unknown coefficients 

of the approximating functions. An in depth account of the technique is found in 

Zienkiewicz and Taylor [11].

The finite element method is a popular choice as it can accommodate irregular ge- 

ometries and local mesh refinement.

Spectral methods are global methods. The interpolation functions are defined on the 

whole domain using trigonometric functions which lead to a Fourier or Chebyshev 

series. The functions can therefore be orthogonal polynomials of Legendre or Cheby- 

shev types. The discrete equations consist of relationships between unknowns which 

may not be local. Once the approximation is done a weighted residual technique, 

as with finite elements, is carried out to obtain a set of algebraic equations for the 

coefficients of the unknowns. The advantage of the method is that it gives higher 

order approximations to the differentials than other discretization techniques. The 

reader is referred to Gottlieb and Orszag [12] for a comprehensive account.

In this method the solution domain is discretized into control volumes and there are 

a large numbers of options for the definition of the control volume (ie. any type 

of polygonal shape). The conservation laws are expressed around these arbitrary 

control volumes. The technique consists of three main steps:

  The formal integration of the governing equations over all the control volumes.

  The conversion of the integrated equations into a set of algebraic equations
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using finite difference type approximations. 

  The solution of the system of algebraic equations by an iterative method.

The direct discretization of the integral forms of the conservation equations ensures 

that mass, momentum and energy is conserved at the discrete level. The method 

also has low storage requirements compared to other schemes. A detailed description 

of the technique is given by Patankar [13].

An important dimensionless group in the non-dimensional analysis of viscoelastic 

flow is the "Weissenberg number" denned as

(1.19)

where A is a characteristic time of the material, is a characteristic velocity and L is 

a characteristic length. The existence of this group was first demonstrated by White 

[5] and is the ratio of elastic to viscous effects. For a Newtonian liquid 0.

Sometimes in the non-dimensional analysis of viscoelastic fluids the ratio of elastic to 

viscous effects are defined as the Deborah number instead of the Weissenberg 

number. A list of definitions used by different research groups for the 4:1 planar con- 

traction benchmark problem are given in Table 1.3 (where the characteristic velocity 

and length are the downstream average velocity and half channel width and 7 

is the shear rate on the downstream wall).

The earliest numerical algorithms for non-linear higher order numerical models (whether 

differential or integral) failed to converge beyond a relatively low range of elasticity. 

The range for which convergence was achieved was only marginally above the range 

for which the order-fluids were valid. This problem came to be known as the 

The high Weissenberg number problem affects the 

numerical simulation of flow even in simple geometries. Therefore it is particularly
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Paper Definition of or 

Sato and Richardson [14] 

Carew et al. [15] = 

Matallah et al. [16] 

Marchal and Crochet[17] 

Yoo and Na [18] = - /3)

Phillips and Williams [19] 

Aboubacar et al. [20] 

Oliveira et al. [21] 

Alves et al. [22] 

Table 1.3: Definitions of the and numbers for the 4:1 planar contraction.

difficult to model geometries which contain points of singularity or give rise to steep 

stress boundary layers. In the late 1980s Marchal and Crochet [17] introduced a 

finite element scheme based on Hermitian finite elements to model viscoelastic flow 

with which they were able to extend the range of convergence up to a Weissenberg 

number of 2.19 for creeping flow of a Oldroyd-B fluid in a 4:1 contraction geometry.

Various other stable numerical methods have since been developed to model vis- 

coelastic flow which have been able to further increase the range of Weissenberg 

numbers for which converged solutions can be obtained. Matallah et al. [16] were 

able to achieve converged solutions for up to a number of 24 using recovery and 

stress-splitting schemes within a finite element formulation. Phillips and Williams 

were able to achieve convergence up to a Weissenberg number of 2.5 for both creep- 

ing and inertial flows of the Oldroyd-B fluid in a 4:1 contraction geometry with a 

semi-Lagrangian finite volume method [19].

Alves et al. [22] used a semi-structured finite volume method for the Upper Con- 

vected Maxwell fluid in a contraction geometry. Their method proved to be stable up 

to 3 on meshes with very high refinement at the re-entrant corner. Aboubacar 

et al. [20, 23] introduced a cell-vertex hybrid finite volume/element scheme based on 

triangular meshes to solve both sharp and rounded re-entrant corner, planar contrac- 

tion problems. For the Oldroyd-B model in the rounded corner geometry converged
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solutions were obtained for Weissenberg numbers less than 4.4 whereas with the PTT 

model they were able to attain convergence of up to 20.

Hua-Shu Dou and Nhan Phan-Thien [24] used a parallel unstructured finite volume 

method to simulate the flow of an Oldroyd-B fluid past a cylinder and managed to 

achieve convergence up to Deborah number 1.8. Sun et al. [25] with their DAVSS- 

G/DG finite element scheme managed to achieve convergence for up to a Deborah 

number of 12.35 thereby exceeding previously attained values of elasticity for the 

benchmark of flow past a cylinder in a channel. Baaijens et al. [8] have used a 

variation of the discontinuous Galerkin method to study the capabilities of consti- 

tutive models such as the PTT and Giesekus models for the flow past a cylinder 

problem. With the Giesekus model they were able to obtain converged solutions up 

to a Deborah number of 4.6 while the PTT model converged up to Deborah number 

8.9.

Research into viscoelastic flow was initiated partly as a result of challenges encoun- 

tered in industrial processes. Consequently a large amount of work has also been 

carried out on process modelling. A small selection of recently published work is 

presented below to highlight the type of processes that have been investigated, the 

complex physics which govern the processes and the computational methods used.

Optical fibers are used in numerous applications such as communications systems, 

imaging processes and medical science. Organic polymers are used to manufacture 

these fibres through process which involves momentum, heat and mass transfer and 

free surface flows. This is one of the processes which has been investigated using 

numerical techniques by Tsai and co-workers [26]. The computational method is 

based on the finite element method with the streamline upwind scheme for solution 

of momentum, mass and energy transfer and the spine method to track the free 

surface.

Cable coating is another industrial process that has been researched in a viscoelastic 

context. The simulation of viscoelastic flows on cable coating carried out by Mutlu
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et al. [27] where changes in velocity, stress distribution and pressure loss are in- 

vestigated using finite element techniques is an example of work carried out in this 

area.

The issue of natural convection heat transfer in enclosed spaces has been addressed 

by Demir and co-workers in their recent publications [28, 29] using viscoelastic flow 

and a finite difference formulation. This is a topic which has wide applications such as 

double glazed windows technology, solar collectors technology, cooling of radioactive 

waste containers etc..

The effects of viscous heating on the stability of a viscoelastic flow without externally 

imposed heating has been studied by Becker et al. [30] using a spectral method. The 

investigation was motivated by the fact that poor heat conductance in polymers 

cause significant temperature gradients within flowing polymers even in the absence 

of externally applied heat sources due to frictional dissipation and this exponentially 

reduces local viscosity and polymer elasticity.

Wachs et al. have also carried out nonisothermal viscoelastic flow computations 

[31]. In this particular paper they investigate the various effects that occur under 

thermal conditions related to external cooling operations particularly in the presence 

of geometrical singularities using a solution algorithm based on a velocity-pressure- 

stress-temperature finite volume method.

Other recent work includes a finite element code by Pillapakkam and Singh [32] 

based on the level-set method to model the motion of viscoelastic two-phase flows 

and a boundary element based algorithm by Khayat [33] where lubrication theory is 

extended to simulate the transient free surface flow of Oldroyd-B type fluids inside 

thin cavities.

The small sample of work detailed above show the diversity of applications involving 

viscoelastic flow.

In addition to algorithms of the type described above there are also commercial codes 

avialable for modelling polymers such as Polyflow [34] and CMOLD [35]. These 

codes are used widely by industry as well as researchers. For example Sun et al. 

[36] implemented a nonisothermal formulation for viscoelastic flow within Polyflow 

to model nonisothermal meltspinning with ongoing crystallization.
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Both Polyflow and CMOLD use solution techniques based on finite element methods. 

CMOLD uses the Cross-exp model which is a modified Newtonian model to predict 

polymer behaviour. Polyflow has an extensive library of viscoelastic models to choose 

from ranging from differential to kinetic theory models. The free surfaces are tracked 

using mesh adapting techniques.

Several sections in this chapter have focused on reviewing the complex nature of 

viscoelastic fluids, the challenges associated with finding numerical solutions to such 

flow, the complexity of the industrial processes which involve viscoelastic fluids and 

the algorithms that have been developed in an attempt to find accurate solutions. 

Even though great strides have been made in this field during the last 20 years it 

is clear that the work is by no means complete. In many industrial processes vis- 

coelastic fluids are still being treated as Newtonian or modified Newtonian models to 

avoid the difficulties associated with solving viscoelastic constitutive equations when 

developing algorithms for process modelling. The following are a list of persisting is- 

sues surrounding the numerical modelling of viscoelastic fluids and gaps in currently 

available software.

  The high Weissenberg number problem.

  The lack of fully unstructured finite volume algorithms for viscoelastic flow in 

spite of the robustness of the technique with regard to conservation and low 

memory requirements.

  The lack of viscoelastic flow algorithms which can be used as a predictive 

tool with interface tracking capability on Eulerian fixed meshes that take into 

account effects from both fluids, maintains the interface as sharp front and 

takes surface tension effects into account.

This research project aims to address the issues identified above using a novel com- 

putational fluid dynamics algorithm for viscoelastic flow.
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CHAPTER 5. APPLICATIONS
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