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Abstract

The confidence level of negative survey is one of the key scientific problem-
s. Present work uses generation function to analyse the confidence level,
and uses a greedy algorithm to calculate that, which is used to evaluate the
dependable level of negative survey. However, the present method is low
efficiency and complex. This study focuses on an efficient approximation
method for calculating the confidence level of negative survey. This approxi-
mation method based on central limit theorem and Bayesian method can get
the results efficiently.
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1. Introduction

Artificial Immune System simulates the mechanism of biology immune
system to model and design effective algorithm for solving some complex
issues. Negative selection principle [1] is one of the unique mechanisms of
biology immune system, and the implication of negative selection principle
is that the immaturity T cell dies if it matches with itself as it grows, and it
survives if it mismatches with itself. Inspired by negative selection principle,
the negative selection algorithm [2] is proposed and can be used for network
security, virus detection [3, 4] and anomaly detection [5].
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Similarly, the negative survey [6], which is inspired by negative selection
principle, is a novel and promising indirect question method for information
security and enhancing privacy in collecting sensitive data and individual
privacy [7]. Negative surveys consist of a question and c(c ≥ 3) categories for
the interviewees to select. In contrast to traditional surveys, the participants
are required to select a category that does not agree with the fact [6, 8],
i.e. randomly select a category from the other c − 1 unreal categories. For
convenience, it defines positive category as the category that agrees with the
fact, while negative category as the other c−1 categories that does not agree
with the fact [6].

The negative survey method can attain privacy protection with lower
power and higher degree, and boost participants’ confidence. The main cal-
culation of collecting sensitive data with negative survey is reconstructing the
corresponding positive survey in the central processor. The privacy preserv-
ing properties of negative survey do not rely on anonymity, cryptography or
any legal contracts, but rather participants not revealing their own privacy
information. And the negative survey method is applicable to collecting data
at a high speed in low-powered mobile devices such as smart phones, tablets
and so on [9].

The positive survey can be reconstructed from a result of negative survey.
For a survey consist of a question and c(c ≥ 3) categories for n interviewees
to select, a negative survey result is R = (r1, r2, ..., rc), where ri is the results
of category i in negative survey. Meanwhile, the original positive survey
is T = (t1, t2, ..., tc), where ti is the number of interviewees belonging to
category i. Define vi,j as the probability that category i is chosen given
that a respondent positively belongs to category j, where

∑c
i=1 vi,j = 1 and

vi,i = 0. Define the probability matrix as V as Formula (1), and R = TV
and T = RV −1. In consequence, the positive survey T can be reconstructed
from a negative survey R.

V =











0 v1,2 · · · v1,c
v2,1 0 · · · v2,c
...

...
. . .

...
vc,1 vc,2 · · · 0











(1)

Generally, vi,j|i 6=j = 1/(c − 1), which means the probability of selecting
negative categories follows uniform distribution [6]. Following the work in
[6], Xie et al. proposed Gaussian Negative Survey (GNS) [10], where the
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probabilities of selecting negative categories (i.e. vi,j) follow a Gaussian dis-
tribution centered at the corresponding positive category. The GNS could
attain higher accuracy but lower ability of privacy protection.

The traditional reconstructing method in [6] may lead the reconstructed
positive survey with negative values. Based on the problem, two method
[11] were proposed for reconstructing positive survey which had no negative
values. In [12], Bao et al. proposed a greedy algorithm for calculating the
confidence level, which is analysed in generating function. But this method is
low efficient and complex, and couldn’t achieve the high efficiency of negative
survey.

In this study, an efficient approximation method is proposed to calculate
the confidence level of negative survey. This work reinforce the efficiency of
negative survey.

In the remainder of this study, Section 2 introduces the related work of
this study. Section 3 describes the problem in this study. Section 4 describes
the efficient approximation method. Section 6 discusses some existing prob-
lems of this approximation method and Section 7 concludes the whole study.

2. Related Work

In this study, the probability of selecting negative categories follows u-
niform distribution (i.e. vi,j |i 6=j = 1/(c − 1)) as general negative survey
in [6, 8, 11, 12]. So in this section, the related work of negative survey
[6, 8, 11, 12] is introduced. For convenience, some definitions are given in
Figure 1.

Define n as the number of interviewees participating the negative survey,
and c as the number of categories. The results of the negative survey are
R = (r1, r2, · · · , rc), where ri(1 ≤ i ≤ c, c ≥ 3) represents the total number
of participants who select the i-th category in the negative survey. Similarly,
the real positive survey is T = (t1, t2, · · · , tc), and n =

∑c
i=1 ri =

∑c
i=1 ti. In

[6, 8], the reconstructed positive survey can be calculated by Formula (2). In
this study, a positive category i, which has n interviewees, c category, and
the proportion of category i is pi, is written as PS(n, c, pi) for simplicity.
And the corresponding negative category is written as NS(n, c, qi).

{

t̂j = n− (c− 1)rj

p̂j = 1− (c− 1)qj
(2)
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n : the number of interviewees for surveys
c : the number of categories in surveys
ri : the number of interviewees selecting category i in negative survey
qi : the proportion of negative category i(1 ≤ i ≤ c), i.e. qi = ri/n
ti : the original number of interviewees in positive category i
t̂i : the estimated number of ti
R : the participant vector, i.e. R = (r1, r2, · · · , rc)
T : the participant vector, i.e. T = (t1, t2, · · · , tc)
pi : the proportion of positive category i(1 ≤ i ≤ c), i.e. pi = ti/n
p̂i : the estimated number of pi, i.e. p̂i = t̂i/n

Figure 1: The definitions in this study

Although p̂j = E(pj), it can be observed that p̂i < 0 when qi > 1/(c− 1)
. Therefore, this traditional method is not practical sometimes.Following the
traditional method in [6, 8], two methods were proposed for reconstructing
positive survey in [11]. Method I [11] uses an iteration method to recon-
struct the positive survey. The advantage of Method I is that no negative
values is in the reconstructed positive survey, i.e. p̂i > 0(1 ≤ i ≤ c). But
this method only use an implicit function to reconstruct the positive survey
approximatively. And the accuracy of this method lacks of theoretical basis.

Method II [11] eliminates the negative values through adjusting the results
of reconstructed positive survey. This method sets the negative value of the
category in the reconstructed positive survey to 0, and then keeps the sum of
the reconstructed positive survey unchanged by the proportion of the values
in the other categories. This method is more efficiency than Method I, but
there is no theoretical analysis of this method. In [12], the confidence level
of negative survey is analysed in generation functions, and calculated in a
greedy algorithm.

3. Problem Formulation

Efficient is one of the greatest advantages in collecting data by the nega-
tive survey method, because each participant only needs to send one of her or
his negative categories (i.e. unreal information). The reconstructed positive
survey from negative survey is non-exact values, so there are two important
issues, which are the confidence level and the efficient, respectively. It is not
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necessary and inefficient to use a generation function method to exactly cal-
culate the confidence level [12] with the non-exact values reconstructed from
negative survey. More importantly, it is so complicated to exactly calculate
the confidence level that a greedy algorithm used [12].

This study proposes an efficient method, which is analysed by central limit
theorem and Bayes method, to calculate the confidence level approximately,
and this approximation method can reinforce the efficiency of negative survey.
The core concept of this approximation method is using Normal Distribution
to approximate the original distribution for fast calculation (more details in
Section 4). The Bayes method is then used to calculate the confidence level
of each category in negative survey, which is studied based on the analysis
of the distribution of possible positive survey results.

4. The Efficient Method of Approximation

This section gives the proposed efficient approximation method for cal-
culating the confidence level. In subsection 4.1, central limit theorem is used
to calculate the approximated distribution of qi. In subsection 4.2, the Bayes
method is used to estimate the probability density function of pi. In subsec-
tion 4.3, the confidence level is calculated based on Bayes method.

4.1. The distribution of negative survey

Theorem 4.1 gives the distribution of category i in negative survey when
that of positive survey is known.

Theorem 4.1. For a given positive category PS(n, c, pi) and the correspond-
ing negative category NS(n, c, qi), So qi approximately follows Normal Dis-
tribution when n goes to infinity.

lim
n→∞

P

(

qi − µ

σ2
≤ x

)

=

∫ x

∞

1

2π
e−

t2

2 dt (3)

where µ = 1−pi
c−1

, and σ2 = (c−2)(1−pi)
n(c−1)2

.

Proof. Consider the negative category i and calculate the probability distri-
bution of ri. In the negative survey, n(1−pi) interviewees are likely to select
the i-th category. Define the random variable Xj(j = 1, 2, · · · , n− ti). If the
j-th interviewee selects the i-th category, Xj = 1, or else Xj = 0. Obviously,
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each Xj is independent and identically distributed, and follows the Binomial

Distribution B(n(1− pi), 1/(c− 1)). Let X =
∑n(1−pi)

j=1 Xj . So ri = X , and

E(ri) =
n(1− pi)

c− 1
, D(ri) =

n(c− 2)(1− pi)

(c− 1)2
. (4)

Owing to the De Moivre − Laplace central limit theorem, ri follows Normal
Distribution as n goes to infinity, i.e.

ri ∼ N

(

n(1− pi)

c− 1
,
n(c− 2)(1− pi)

(c− 1)2

)

(5)

So

qi ∼ N(µ, σ2) = N

(

1− pi
c− 1

,
(c− 2)(1− pi)

n(c− 1)2

)

(6)

In consequence, qi follows the Normal Distribution when n goes to infinity
and Theorem 4.1 and Formula 3 are both valid.

Define P (qi|pi) to be the conditional probability density function for qi
with given pi, so

P (qi|pi) =
(c− 1)

√
nexp

(

−n[qi(c−1)−(1−pi)]
2

2(c−2)(1−pi)

)

√

2π(c− 2)(1− pi)
(7)

Figure 2 illustrates the function cure of Formula (7) varying with pi, c, or n.
According to the character of Normal Distribution, P (|qi − µ| < 3σ) ≈

0.9974. So we can regard that maxqi = µ+ 3σ and minqi = µ− 3σ. Figure 3
illustrates the range of qi for different values of pi when n = 104 and c = 4.

4.2. The distribution of reconstructed positive survey

There are some differences between reconstructing positive survey from a
given negative survey and traditional method for parameter estimating. The
reason is that the given result of negative survey is only one sample for its
original positive survey. In consequence, we use Bayes method to reconstruct
the positive survey. The distribution of the reconstructed pi is given in the
following Theorem 4.2.
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Figure 2: The Function Curve of P (qi|pi) with different values of pi, c, or n

Theorem 4.2. If a negative category is NS(n, c, qi), the probability density
function of corresponding PS(n, c, pi) is

π(pi|qi) =
e
−

n[(c−1)qi−(1−pi)]
2

2(c−2)(1−pi) /
√
1− pi

∫ 1

0
e−

n[(c−1)qi−(1−p)]2

2(c−2)(1−p) /
√
1− pdp

(8)

Proof. Define π(pi) to be the prior probability density function of pi, and
P (qi|pi) is the conditional probability density function for qi. According to
Bayes Function form of probability density function, the probability density
function of pi with given qi is the following Formula (9).

π(pi|qi) =
P (qi|pi)π(pi)

∫ 1

0
P (qi|p)π(p)dp

(9)
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Figure 3: The Range of qi with probability 0.9974 (n = 104, c = 4)

Suppose that we have no knowledge of pi. Based on Bayesian assump-
tion, the prior probability density function π(pi) can be considered as uniform
distribution U(0, 1). On this occasion, the density function π(pi) can be cal-
culated in the following Formula (10). In addition, P (qi|pi) can be calculated
in Formula (7).

{

π(pi) = 1 0 < pi < 1

π(pi) = 0 otherwise
(10)

So the conditional probability density function of pi with given qi is

π(pi|qi) =
P (qi|pi)

∫ 1

0
P (qi|pi)dpi

(11)
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Figure 4: The Function Curve of π(pi|qi) with different values of qi, c, or n

Combing Formula (7) and Formula (11), Formula (8) can be get and
Theorem 4.2 is valid.

Figure 4 illustrates the function curve of π(pi|qi) for different values of
qi, n or c. Figure 4(a) and Figure 4(b) show less qi makes pi centred around
1− (c−1)qi more closely, Figure 4(c) show greater n makes that, and Figure
4(d) shows less c makes that, too. In addition, Figure 4(a) and Figure 4(b)
also show greater qi may lead 1− (c− 1)qi < 0, and the corresponding pi is
0 with a great probability.

4.3. The Confidence Level

In this subsection, an approximation method is used for calculating con-
fidence level of reconstructed positive survey.

9



0 0.05 0.1 0.15 0.2 0.25 0.3
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

q
i

1−
α

The Confidence Level

δ=0.01
δ=0.02
δ=0.03
δ=0.04

(a) n = 104, c = 4

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

q
i

1−
α

The Confidence Level

c=3
c=4
c=5
c=6

(b) n = 104, δ = 0.01

0 0.05 0.1 0.15 0.2 0.25 0.3
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

q
i

1−
α

The Confidence Level

n=2*103

n=4*103

n=6*103

n=8*103

(c) c = 4, δ = 0.01

0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

q
i

1−
α

The Confidence Level

n=2*103

n=4*103

n=6*103

n=8*103

(d) c = 4, δ = 0.01

Figure 5: The confidence level of estimated pi varying with qi, c, or n

Theorem 4.3. If confidence interval length is δ, the confidence level 1 − α
is

1− α =







P (p̂i − δ
2
≤ pi ≤ p̂i +

δ
2
) =

∫ p̂i+
δ
2

p̂i−
δ
2

π(pi|qi)dpi qi <
1−δ/2
c−1

P (0 ≤ pi ≤ δ) =
∫ δ

0
π(pi|qi)dpi qi ≥ 1−δ/2

c−1

(12)

where p̂i = 1− (c− 1)qi, and π(pi|qi) is in Formula (8).

Proof. According to Theorem 4.2, Theorem 4.3 is valid obviously.

Figure 5 illustrates the confidence level varying with qi with different
values of n and c. From this figure, obviously the confidence level has the
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Table 1: The Confidence Level as qi <
1−δ/2
c−1

(δ = 0.1, c = 3)

qi p̂i
Confidence Interval Confidence Level: 1− α
(p̂i − δ/2, p̂i + δ/2) n=100 n=400 n=800 n=1000

0.05 0.9 (0.85, 0.95) 0.8675 0.994 0.9998 1
0.1 0.8 (0.75, 0.85) 0.7354 0.9701 0.9973 0.9991
0.15 0.7 (0.65, 0.75) 0.639 0.9299 0.9887 0.9952
0.2 0.6 (0.55, 0.65) 0.5711 0.8851 0.9735 0.9867
0.25 0.5 (0.45, 0.55) 0.5208 0.8422 0.9537 0.9739
0.3 0.4 (0.35, 0.45) 0.4816 0.803 0.9316 0.9582
0.35 0.3 (0.25, 0.35) 0.4508 0.7679 0.9086 0.9408
0.4 0.2 (0.15, 0.25) 0.4352 0.7364 0.8859 0.9226
0.45 0.1 (0.05, 0.15) 0.4851 0.7257 0.8659 0.9049

following two characters: (1) when qi < (1−δ/2)/(c−1), the confidence level
increases with n (Figure 5(c)), and decreases with qi (Figure 5(a)) or c (Figure
5(b)). (2) when qi ≥ (1− δ/2)/(c− 1), the confidence level increases with qi
firstly (Figure 5(d)). Because in this case, the pi is 0 with a high probability,
the confidence level decreases severely (Figure 5(d)). These values of qi are
nearly impossible because the prior probability to attain such a large value
of qi is very low, and qi may be the survey error (if qi > µ+ 3σ as described
in subsection 4.1).

5. Simulation Experiments

In this section, some examples of negative survey (similar with that in
[12]) are specially designed to verify this approximation method. In Table
1 and Table 2, the confidence level is calculated independently by category
when the confidence interval (abbreviated as CI) length is 0.1. As is indicated

in Table 1, the confidence interval is (p̂i−δ/2, p̂i+δ/2) as qi <
1−δ/2
c−1

= 0.475.
In this case, the confidence level increases with n, and decreases with qi. As
shown in Table 2, the confidence level is diverse and complicated. If p̂i < 0,
then the confidence level is very small as n is large. That means an excessive
rise of qi may even be a survey error because the prior probability to attain
such a greater value of qi is very low. In addition, when p̂i is a negative value,
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Table 2: The Confidence Level as qi ≥ 1−δ/2
c−1

(δ = 0.1, c = 3)

qi p̂i
Confidence Interval Confidence Level: 1− α

(0, δ) n=100 n=400 n=800 n=1000
0.5 0 (0, 0.1) 0.7198 0.9665 0.9973 0.9992
0.55 -0.1 (0, 0.1) 0.8949 0.9995 1 1
0.6 -0.2 (0, 0.1) 0.9674 0.9933 0.2612 0.2115
0.7 -0.4 (0, 0.1) 0.9881 0.2433 0.1336 0.1171
0.8 -0.6 (0, 0.1) 0.5796 0.1568 0.1064 0.1022

Table 3: The Confidence Level as δ = 0.1 and c = 3

(q1, q2, q3) (p̂1, p̂2, p̂3)
Confidence Level: 1− α

n = 100 n = 1000
(0.35,0.35,0.3) (0.3,0.3,0.4) (0.451,0.451,0.482) (0.941,0.941,0.958)
(0.4,0.3,0.3) (0.2,0.4,0.4) (0.435,0.482,0.482) (0.923,0.958,0.958)
(0.45,0.3,0.25) (0.1,0.4,0.5) (0.485,0.482,0.521) (0.905, 0.958, 0.974)
(0.5,0.3,0.2) (0,0.4,0.6) (0.720,0.482,0.571) (0.999, 0.958, 0.987)
(0.6,0.3,0.1) (-0.2,0.4,0.8 ) (0.967,0.482,0.735) (0.212,0.958,0.999)
(0.7,0.2,0.1) (-0.4,0.6,0.8 ) (0.988,0.571,0.735) (0.117,0.987,0.999)
(0.8,0.15,0.05) (-0.6,0.7,0.9 ) (0.580,0.639,0.868) (0.102,0.995,1)

the second method in [11] is needed to correct the reconstructed positive
survey.

Table 3 shows the confidence levels of seven groups of negative survey.
The confidence level includes three values, which is the confidence level of
each category respectively. It is worth reminding that the confidence levels in
the last three groups of negative survey are less when n = 1000. The reason
that the probability to get such a large value of qi is rather low if n = 1000.
When n = 1000, the confidence levels of the last three groups of negative
survey are low, and the survey results may be faulty.

12



6. Discussion

In this study, we propose an efficient approximation method for calcu-
lating the confidence level of negative survey, but there are some work for
future study.

Firstly, this approximation method is based on central limit theorem,
which is valid when n is sufficiently large. However, the degree of ”sufficient-
ly large” (of n) is diverse when pi has various values. So the ”sufficiently
large” cannot only be measured in n, and should be measured in both pi
and n. If npi or n(1 − pi) is smaller in amount, the Poisson Distribution
is the better approximation distribution rather than Normal Distribution.
In addition, Normal Distribution, which is a symmetric distribution, is used
to approximate the original distribution, but the original distribution is not
perfectly symmetrical.

Secondly, this method in this study analyses each category independently.
The correlation of different categories should be taken into account in future
work. For example, the confidence level may be high when qi ≥ 1/(c − 1).
Because the corresponding pi has a high probability to be 0. But in this case,
the sum of all the estimated pi is greater than 1, and the results is needed
for further revision.

Thirdly, the confidence interval is set to be (µ− δ/2, µ+ δ/2) when qi <
1/(c− 1). But strictly, π(pi|qi) is not a completely symmetrical function. So
the confidence interval may not be the smallest one.

Finally, the confidence level calculated in this study is by category inde-
pendently. How to compare the two close confidence levels (such as the first
two examples in Table 3) still needs to be studied further.

7. Conclusions

This study proposes an efficient approximation method for calculating
the confidence level of negative survey. Normal Distribtuion is used to ap-
proximate to the distribution of qi at first, then Bayes method is used for
approximated calculating the confidence level. Depending on the proposed
efficient approximation method, the confidence level of negative survey can
be approximated calculated efficiently.
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