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Abstract 
This article presents an artificial neural network (ANN) for prediction of peak outflow from 

breached embankment dams based on considering height and volume of water behind the 

dam at the time of failure. Two different algorithms are used for training the ANN. They are 

Imperialist Competitive Algorithm (ICA) as a new evolutionary algorithm and Levenberg-

Marquardt (LM) algortihm. The comparison of results between the proposed method and 

those conventional approaches which are based on regression analysis shows a better 

performance of the ANN based models. To evaluate the uncertainty of the two training 

algorithms, a Monte-Carlo simulation is used to sample 1000 sets from the database of 

historical dam failures for different sets of training and test in the ANN model. Three 

statistical measures ( i.e. 95PPU, d-factor, and DDR) are used to compare the uncertainty 

analysis. The obtained results indicate a better performance of ICA compared to LM 

algorithm. 
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1. Introduction 
Prediction of peak outflow (Qp) from breached embankment dams is an important procedure 

for emergency action plan preparation and risk assessment [1]. Therefore, developing a 

simple and friendly approach to deal with such problems has been the focus of a multitude of 

contributions to the literature in the last decades [2,3,4,5,6,7]. In spite of analyzing a wide 

range of reliable experimental and case studies, the problem of breach outflow prediction is 

still debatable. It seems that this is, partly, due to the complexity of the phenomenon and low 

accuracy of data driven from historical dam failures [8], and all the more reason because of 

the limitation of the analytical tool commonly used by most of the earlier investigators, 

namely traditional statistical regression. In the regression based method, historical datasets 

have usually been applied to develop relations between Qp and height and/or volume of water 

behind the dam [2,3,4,5,6,7]. The uncertainty of these relations was specifically quantified by 

Wahl (2004). He declared that the uncertainties of peak outflow predictions were large for all 

considered relations, hence predictions of peak outflow had uncertainty of about ±0.5 to ±1 

order of magnitude, except the Froehlich peak flow equation (Froehlich 1995), which had an 

uncertainty of about ±1/3 order of magnitude. 

Froehlich (2008) evaluated parameters needed in the relations of breach formation that 

consider the breach to form in the shape of a trapezoid. Taking into account the uncertain 
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nature of the breach model, expressions for expected values of breach parameters and their 

variances were used in a stochastic model of dam breach flooding that evaluates the 

variability of peak stages and peak outflow rates using a Monte-Carlo simulation approach.  

As an alternative to the traditional statistical approach, some researchers used artificial neural 

network (ANN) (Hooshyari and Tahershamsi, 2012; Nourani et al., 2012) due to its data-

driven nature, model–free form of predictions, and tolerance to data errors 

[9,10,11,12,13,14]. The investigations have demonstrated the higher performance of the new 

approach compared to the other traditional methods. The objective of this study is to 

reanalyze the available datasets using ANN considering artificial intelligence approach in the 

network-training phase as well as evaluation of the model’s uncertainty. The rest of the paper 

is organized as follows: Section 2 contains a description of the datasets; section 3 is a brief 

description of the methodology that was employed for data analysis; and sections 4 and 5 

deal with summary of the results and conclusions, respectively. 

 

2. Database collection 
The proposed methodology uses a database containg 93 actual embankment dam failures 

collected by Hooshyaripor and Tahershamsi (2012) from numerous sources [1,5,7,15,16,17]. 

These datasets have previously been applied to develop equations for estimation of breach 

parameters and especially peak outflow. For example, Froehlich in 1995 and 2008 assembled 

data from 22 and 74 embankment dam failures respectively [5, 28]. In 1995 he developed a 

new empirical relation based on multiple regression analysis for rapidly estimation of peak 

outflow from a breached embankment dam as 
1.24 0.2950.607p w wQ H V  (1) 

where Qp= predicted peak outflow (m3/s); Hw = height of water in the reservoir at the time of 

failure (m), and Vw= reservoir volume at the time of failure (m3). 

 

3. Artificial Neural network (ANN) model 

3.1. Architecture of ANN 

Neural Networks are typically thought of as black boxes trained to a specific task on a large 

number of data samples. A typical network would consist of three layers of neurons namely, 

input, hidden, and output. Many theoretical and experimental works have shown that single 

hidden layer is sufficient for ANNs to approximate any complex nonlinear function [19,20].  

3.2. Training of ANN  

To achieve an efficient model, the ANN needs to be trained with sufficient data to minimize 

the error between the actual and network response. There are different training algorithms in 

the literature. Here, the algorithms used for ANN training are LM and ICA which are 

outlined below. 

LM method developed by Levenberg [22] and Marquardt [23], provides a numerical solution 

to the problem of minimizing a nonlinear function over a space of parameters of the function. 

These minimization problems arise, particularly, in least squares curve fitting and nonlinear 

programming. LM interpolates between the Gauss–Newton algorithm and the method of 

gradient descent. This method is a very popular curve-fitting algorithm used in many 

software applications for solving generic curve-fitting problems; however, it finds only a 

local minimum, not a global minimum. On the other hand, ICA is a new progressive meta-

heuristic algorithm for optimization. This algorithm starts with an initial population, namely 

country. In ICA, some of the best countries in the population are selected to be the 
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imperialists and the rest form the colonies of these imperialists. When the competition starts, 

the imperialists attempt to achieve more colonies and the colonies start to move toward their 

imperialists. Thus, during the competition, the powerful imperialists will survive and the 

weak ones will collapse. The algorithm would terminate when only one imperialist is left. 

Moving colonies toward imperialists are continued and imperialistic competition and 

implementations are performed during the search process. More details about this algorithm 

are presented in Atashpaz-Gargari and Lucas [24], Atashpaz-Gargari et al. [25], Kaveh and 

Talatahari [26], Tahershamsi and Sheikholeslami [27], and Hooshyaripor and Tahershamsi 

(2012). 

 

3.3. Uncertainty analysis of ANN 

To compare the performance of the two algorithms od ANN models, an uncertainty analyze 

is carried out by using a Monte-Carlo simulation. To do so, input parameters are fist 

characterized using a probability density function (PDF). Then a single set of input data for 

input layer of the ANN model is randomly selected from the PDFs of the parameters. The 

ANN model is then trained and tested with the selected set of input data and consequently the 

generated output for peak outflow is saved as the result of the ANN model. This procedure is 

repeated frequently for many times. Theoretically, the multiple runs must carry out as long as 

the results of a new run do not affect the probability distribution of the output variable. Here 

it is assumed that 1000 times are sufficient for multiple runs of the randomly generated ANN 

model. Finally, the resulting statistical performances (e.g. mean, median, variance, and 

percentiles) are collected, tabulated and their distributions are plotted. In the present work, 

the above method is adapted by using random samples instead of random data which is 

relatively similar to Bootstrap pairs re-sampling method (Tibshirani, 1995). In this method, 

the database is needed to be randomly re-sampled without replacement several times, 

maintaining the ratio between the training and validation sets.  

 

3.4. Evaluation of the models  

In order to compare the performance of the ANN models and regression techniques, a 

number of error quantification measures are used here as follows: (1) coefficient of 

determination (R2) representing the association degree between predicted and observed 

values; (2) average error (AE) as a parameter commonly used in engineering applications 

equal to algebraic difference between predicted and observed values; (3) mean absolute error 

(MAE); and (4) root mean square error (RMSE).  

To quantify the uncertainty of the two algorithms of ANN training, three techniques are used 

here: (1) the 95 percent prediction uncertainties (95PPU) and (2) d-factor; (3) developed 

discrepancy ratio (DDR). These techniques are outlined in the following. 

 95PPU is calculated as:  

1
Bracketed by 95PPU ( ) 100L Ucount X X X X

n
     (2) 

where n is the number of observed data points, X is the predicted variable and XL and XU are, 

respectively, 2.5th and 97.5th percentiles of the cumulative distribution of every simulated 

point. Thus, the goodness of fit is assessed by the uncertainty measures calculated from 

percentage of measured data bracketed by the 95PPU band.  

In the second method, the distance between upper and lower bound is used for uncertainty 

evaluation. Therefore, the average distance Xd  between the upper and the lower 95PPU (or 

the degree of uncertainty) calculated as follow (Abbaspour et al., 2007): 
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The best result is that Xd  is equal to zero when 100% of the measurements are bracketed by 

the 95PPU. A dimensionless measure of the d-factor can be expressed as (Abbaspour et al., 

2007): 

factor
X

X

d
d


 

 

(4) 

where X  is the standard deviation of the measured variable X. The values less than 1 are 

desirable measures for d-factor (Abbaspour et al., 2007), and the best value theoretically is 

zero. Obviously, the less d-factor value, the less the uncertainty is expected.  

The statistical measures defined by Eqs. 2 and 4 only show the average accuracy in a model 

operation and they do not give any information about the predicts distribution. To overcome 

this disadvantage, another proper measure, developed discrepancy ratio (DDR) which was 

introduced by Noori et al. (2010), was used to be better checked the model’s robustness. 

DDR can be calculated as follow (Noori et al. 2010): 

Predicted Value
DDR 1

Observed Value

 
  
 

 (5) 

Here, according to 1000 predictions for an embankment dam from randomly generated sets of 

input data, 1000 DDR values were calculated. For a better judgment and visualization, the 

Gaussian function of DDR values could be calculated and illustrated in a standard normal 

distribution format. Therefore, DDR values are standardized and then, normalized values of 

DDR (QDDR) are calculated using Gaussian function. Then, QDDR is plotted versus 

standardized DDR (ZDDR) to illustrate prediction distribution. The same procedure is repeated 

for all 93 datasets and related 68% confidence intervals are calculated and compared. In the 

obtained figures, more tendencies to the centerline as well as larger value of the maximum 

QDDR assess as more accuracy and less uncertainty of a model.  

 

4. Results and discussion 

4.1. development of ANN models 

To develop the ANN models, 85% of the total observations of embankment dam failure are 

assigned for ANN training and the rest 15% is kept for test which are used for the 

performance evaluation of the ANN model and the Froehlich relation. Note that these test 

data are not used for derivation of neither ANN model nor the empirical relations. According 

to Cybenko (1989), here a three-layer network is employed in which mean square error 

(MSE) is used as the performance function. In the first model, to check the over-fitting 

problem in the training step, stop training algorithm method [21] is utilized, while in the 

second model when the number of iterations reached a pre-defined value, the search process 

was stopped. Furthermore, the tangent-sigmoid and linear functions are chosen as the 

activation function respectively in the hidden and output layers. Table 1 shows a quantitative 

comparison between the models. 
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Table 1: Comparison of the models performance 

Training 

algorithm/ 

relation 

Step 

Statistical indices 

R2 

 

AE  

(%) 

MAE 

(m3/s) 

RMSE 

(m3/s) 

LM 
train 0.90 621.3 1756 3276 

test 0.93 149.1 3449 7331 

ICA 
train 0.89 503.1 1763 3497 

test 0.96 100 2032 3839 

Froehlich 
train 0.54 417.8 2473 7974 

test 0.85 21.5 3938 8236 

 

As it can be seen in the Table, although the peak-outflow prediction for Froehlich relation 

outperform the ANN models with respect to the average error (AE), the performance of the 

ANN models is better for the coefficient of determination (R2) and absolute deviation and 

RMSE indicating that the prediction made using the statistical technique may be viewed with 

skepticism. Overall, the performance of the ANN model with ICA training with respect to all 

statistical indices indicates a higher performance compared to other models.  

 
Fig. 1 shows LM results in both training and test steps. It is noticed that most of prediction 

values are approximately coincided with their corresponding observed values while there are 
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discrepancies among others which are marked in 

 
Fig. 1 with circles and squares for calibration and testing steps, alternatively. As it is 

illustrated, there are 10 points in calibration step (12.6% of calibration datasets) and 3 points 

in the testing step (21.4% of testing datasets) which are not predicted satisfactorily. 

Considering the percentage of the badly predicted points, one can clarify the reason of high 

error measures of LM in the testing step. In additon, most of the badly predicted points are 

related to extream values (large dams). Accordingly, it can strongly be concluded that 

insufficient data and/or lack of historical data of large breached embankment dams could be 

the main reason of weak performance of ANN.  

 

 
Fig. 1. Results of ANN model trained with LM algorithm 
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Fig. 2 illustrates ICA performance in training and testing steps. As it is illustrated, there are 

some imprecise predicted values in the training (marked with circles) and testing (marked 

with square) steps. They consist of 8 points in the training step (10.1% of training datasets) 

and one point in the testing step (7.1% of testing datasets). A comparison of the percentage of 

imprecissions in ANN models shows that ICA has more efficiency than LM. This is due to 

the fact that LM algorithm finds local minimum while ICA, as an evolutionary algorithm, 

does not trap in local optimum and will be stopped when a certain number of iterations is 

achieved. 

 

 
Fig. 2. Results of ANN model trained with ICA  

 

The information on number of nodes, number of epochs required to achieve the error goal, 

and the CPU time taken in the case of each training scheme are presented in Table 2. A PC 

with characteristics of Pentium IV processor (CPU: Core i5, 2.53 GHz), was utilized in this 

study. It is remarkable that the information is the average of 50 iterations for each model. 

 

Table 2. Network architecture. 

 Algorithm 

 LM ICA 
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node 

Input  2 2 

Hidden layer  4 3 

output  1 1 

Epoch No.  215 70 

CPU time (sec)  3 55 

 

As a matter of fact, it is noticeable that ICA, in a larger time scale, trains the network with 

fewer epochs compared to LM algorithm.  

Fig. 3 presents a comparison between performance of ANN models and Froehlich (Table 2). 

Froehlich formula has a very poor performance for testing data (R2=0.54) and relatively good 

performance for testing data (R2=0.85). On the other hand, high prediction error 

(RMSE=8236) implies that this formula migth not be reliable in engineering application. 

Moreover, as it has been illustrated Fig. 3, the Froehlich formula underestimates the observed 

values, this is typically shown in Fig. 3a; the observed peak outflow of Banqiao dam failure is 

78100 m3/s while Froehlich formula gives it as 16735 m3/s which is 78% less than that of 

observed value.  

 

 
 

Fig. 3. Comparison of the models’ performance in; (a) Training step; and (b) Test step 

 

In the case of Liujiatai dam failure (Fig. 3b) the observed value is 28000 m3/s, while the 

estimated value by Froehlich Formula is 9032 m3/s (about 67% less than the observed value). 

The main cause of this event is refered to the low impact of Vw on Qp in Froehlich formula. 

Thus, Froehlich formula dosen’t cover all ranges of effective parameters (Vw and Hw) and it 

could only be applicable to a limited range of  the parameters variations.  

 

4.2. Results of uncertainty analysis 

As described earlier, the database was randomly sampled without replacement for 1000 

times, assigning 90% for training and the remaining 10% for test. Hence, an uncertainty 

analysis of 1000 developed ANN models were carried out by the aforementioned indicators 

(i.e 95 PPU and d-factor) presented in Table 3. average values of R2, MAE, and RMSE are 

also provided in the table for the two ANN models. The result of LM algorithm outperforms 

those of ICA ( 2R  for LM algorithm is 26% better and also the MAE and RMSE values of 

this algorithm are 15% and 24% respectively worse than those of ICA. The LM algorithm 

(a)                                               (b)  
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shows to outperform the ICA algorithm with respect to uncertainty analysis of multiple runs 

although the best ANN model could be developed using ICA algorithm as shown previously.  
 

Table 3. The results of uncertainty analysis of the two ANN models 

Training algorithm 2R  MAE  
(m3/s) 

RMSE  

(m3/s) 

d-factor 95PPU 

LM 0.85 2586 5118 0.53 68.8 

ICA 0.67 3023 6716 0.75 66.7 

 

Additionally, assessment of 95PPU and d-factor indices in Table 3 reflect relatively lower 

uncertainty of LM algorithm. d-factor of LM algorithm is 29% less than that of ICA, which 

demonstrates more limited non-dimensional uncertainty bounds of this algorithm in 

comparison with ICA.  

As the amount of uncertainty indices are almost close together, another index, DDR, is 

applied to get a better comparison. So, DDR for all predictions were calculated, standardized, 

and normalized. Fig. 4 illustrates normal distributions fitted to the obtained results for 9 

embankment dams. The obtained distributions for the other embankment dams were 

presented in appendix Ι. According to Noori et al. 2010 the more maximum QDDR the more 

bell-shaped distribution would happen and the less prediction error is expected accordingly. It 

can be seen that the distributions related to ICA are often higher than those of LM algorithm. 

.  
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Fig. 4. normal distributions fitted to the standardized DDR values for the results of; (a) ICA; 

and (b) LM algorithm 

Maximum QDDR values of 9 considered embankment dams are presented in Table 4. The 

maximum QDDR values related to the other embankment dams are available in appendix ΙΙ. 

According to Table 4 the average of maximum QDDR related to ICA is 38% more than that of 

LM algorithm, which demonstrates less uncertainty of ICA in comparison with LM 

algorithm. Just in the case of Buffalo Creek dam the maximum QDDR value of LM algorithm 

is 8% higher than ICA and out of 84 other embankment dams only 8 cases are confronted 

with similar situation. 

 
 

Table 4. Maximum QDDR value of the evaluated dams 

Dam Name Location LM ICA 

Apishapa USA 1.47 2.63 

Armando de Salles Oliveira Brazil 0.97 2.03 

(a) 

 

 

 

 

 

 

 

 

 

 

 

 

(b)
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Baldwin Hills USA 0.66 0.71 

Big Bay  USA 2.05 2.44 

Boydstown Unknown  0.04 0.05 

Bradfield England 0.23 0.39 

Break Neck Run  USA 0.01 0.01 

Buffalo Creek USA 0.80 0.74 

Butler USA 0.49 0.69 

 

The value of upper bound, lower bound, and average of the thousand predictions are 

illustrated in Fig. 5a and b. The best fitted linear curve on the data are also provided in the 

figures. It can be observed that data dispersion is more in the case of LM algorithm which 

confirms that uncertainty of LM algorithm is greater than that of ICA. Furthermore, the 

figures show that ICA is somewhat underestimating the real values. Fig. 5 confirms the 

results of DDR parameter. 
 

 
Fig. 5. dispersion of the predictions in the case of (a) ICA; and (b) LM algorithm  

 

5. Summary and conclusion 
This investigation focused on evaluating the ICA and LM performance on ANN modeling. 

ICA is a new evolutionary algorithm, in the evolutionary computation field, based on the 

human's socio-political evolution and the LM algorithm is a common method of training 

ANNs called multi-stage dynamic system optimization method. The problem of peak outflow 

prediction from breached embankment dams was undertaken and 93 case study data were 

collected from the literatures. According to the results, a three-layer ANN model with three 

and four neurons in the hidden layer, respectively, for ICA and LM was appropriate for 

modeling the phenomenon. By considering the statistic indices as well as CPU time taken in 

the case of each training algorithm, ICA was recognized as the best training algorithm. 

Although LM usually resulted in satisfactory R2 values, its error indices were high to some 

extent that made it not quite reliable. Besides, the ANN performance was compared to an 

empirical formula (i.e. Froehlich formula). The results indicated that although the Froehlich 

formula was simply applicable, it led to unsatisfactory results, particularly, for large 

embankment dams.  

Afterward the uncertainty of the ANN models in the developing procedure was evaluated. 

Monte-Carlo simulation was applied and considering each training algorithm so many models 

were developed. For each model, initially two sets of data were randomly selected for 

(a)                                               (b)  

http://en.wikipedia.org/wiki/Artificial_neural_network
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training and validation steps and then an ANN model was developed. This procedure was 

repeated thousand times and the outputs were stored in each time. Then 95PPU and d-factor 

parameters were calculated and compared with each other. The quantities showed that the 

results of LM algorithm is a little better than ICA. So, DDR parameter was applied and 

quantified, standardized, and normalized. Comparing the results showed that ICA has more 

acceptable performance than LM algorithm and in total ICA’s uncertainty is less than that of 

LM algorithm. 
 

6. References 
1. Singh VP, Scarlatos PD. Analysis of gradual earth dam failure, J. Hydraul. Eng 1988; 

114(1): 21–42. 

2. US Bureau of Reclamation Guidelines for defining inundated areas downstream from 

bureau of reclamation dams. Reclamation Planning Instruction, 1982; No. 82-11. 

3. Singh KP, Snorrason A. Sensitivity of outflow peaks and flood stages to the selection of 

dam breach parameters and simulation models, J. Hydrol 1984; 68: 295–310. 

4. MacDonald TC, Langridge-Monopolis J. Breaching characteristics of dam failures, J. 

Hydraul. Eng 1984; 110(5): 567–586. 

5. Froehlich DC. Peak outflow from breached embankment dam, J. Water Resour. Plann. 

Manage 1995; 121(1): 90–97. 

6. Coleman S, Andrews D, Webby MG. Overtopping breaching of noncohesive 

homogeneous embankments. J. Hydraul. Eng 2002; 128(9): 829–838. 

7. Xu Y, Zhang LM. Breaching parameters for earth and rockfill dams, J. Geotech. 

Geoenviron. Eng 2009; 135(12): 1957-1970. 

8. Fread DL. Some limitations of dam-break flood routing models. Preprint, American 

Society of Civil Engineers, Fall Convention, St. Louis, Mo. 1981. 

9. Avarideh F, Banyhabib MA, Taher-shamsi A. Application of artificial neural networks in 

river Sediment estimation, 3th Iran Hydraulic Conference, Kerman, Iran, 2001; 269-275. 

10. Azmatullah HMd, Deo MC, Deolalikar PB. Neural networks for estimation of scour 

downstream of a ski-jump bucket, J. Hydraul. Eng 2005; 131(10): 898–908. 

11. Bateni SM, Jeng DS. Estimation of pile group scour using adaptive neuro-fuzzy approach, 

Ocean Engineering 2006; 34(8-9): 1344–1354. 

12. Taher-shamsi A, Menhaj MB, Ahmadian R. Sediment loads prediction using multilayer 

feedforward neural networks, Amirkabir Journal of Science and Technology 2006; 16(63): 

103-110. 

13. Zounemat-Kermani M, Beheshti A, Ataie-Ashtiani B, Sabbagh-Yazdi S. Estimation of 

current-induced scour depth around pile groups using neural network and adaptive neuro-

fuzzy inference system, Appl. Soft Comput 2009; 9(2): 746–755.  

14. Azamathulla HMd, Ghani A. ANFIS-based approach for Predicting the scour depth at 

culvert outlets, J. Pipeline. Syst. Eng. Pract 2011; 2(1): 35-40. 

15. Taher-shamsi A, Shetty AV, Ponce VM. Embankment Dam Breaching: Geometry and 

Peak Outflow Charactristic, Dam Engineering 2004; 14(2): 73-87. 

16. Wahl TL. Prediction of embankment dam breach parameters, A literature review and 

needs assessment. Bureau of Reclamation, U.S. Department of the Interior, Denver, 1998; 

60, Rep. No. DSO-98-004. 

17. Pierce MW, Thornton CI, Abt SR. Predicting peak outflow from breached embankment 

dams, J. Hydrol. Eng 2010; 15(5): 338–349. 

18. Lek S, Guegan JF. Artificial neural networks as a tool in ecological modelling, an 

introduction, Ecol. Model 1999; 120(2-3): 65-73. 



13 

 

19. Cybenko G. Approximation by superposition of a sigmoidal function, Math. Cont. Sig. 

Syst 1989; 2(4): 303-314. 

20. Noori R, Karbassi AR, Mehdizadeh H, Sabahi MS. A framework development for 

predicting the longitudinal dispersion coefficient in natural streams using artificial neural 

network, Environ. Prog. Sustain. Energ 2011; 30(3): 439-449. 

21. Coulibaly p, Anctil F, Bobe´e B. Daily reservoir inflow forecasting using artificial neural 

networks with stopped training approach, J. Hydrol 2000; 230(3-4): 244–257. 

22. Levenberg K. A method for the solution of certain non-linear problems in least squares, 

Quart. Appl. Math 1944; 2(2): 164–168. 

23. Marquardt DW. An algorithm for least-squares estimation of nonlinear parameters, J. Soc. 

Ind. Appl. Math 1963; 11(2): 431–441. 

24. Atashpaz-Gargari E, Lucas C. Imperialist competitive algorithm: An algorithm for 

optimization inspired by imperialistic competition, In IEEE Congress on Evolutionary 

Computation, 2007; 4661–4667. 

25. Atashpaz-Gargari E, Hashemzadeh F, Rajabioun R, Lucas C. Colonial competitive 

algorithm, a novel approach for PID controller design in MIMO distillation column 

process, Int. J. Intelligent Computing and Cybernetics 2008; 1(3): 337–355. 

26. Kaveh A, Talatahari S. Optimum Design of Skeletal Structures Using Imperialist 

Competitive Algorithm, Computers and Structures 2010; 88(21-22):1220-1229. 

27. Tahershamsi A, Sheikholeslami R. Optimization to Identify Muskingum Model 

Parameters Using Imperialist Competitive Algorithm, Int. J. Optim. Civil Eng 2011; 1(3): 

473-482. 

28. Froehlich, D. (2008).”Embankment Dam Breach Parameters and Their Uncertainties.” J. 

Hydraul. Eng., 134(12), 1708–1721. 

29. Hooshyaripor, F., Tahershamsi, A., 2012. Comparing the Performance of Neural Networks 

for Predicting Peak Outflow from Breached Embankments when Back Propagation 

Algorithms meet Evolutionary Algorithms. Int. J. Hydraul. Eng., 1(6), December 2012. 

30. Nourani, V., Hakimzadeh, H., Babaeyan Amini, A., 2012. Implementation of artificial 

neural network technique in the simulation of dam breach hydrograoh. Journal of 

Hydroinformatics. 14(2), 478–496. 

31. Abbaspour, K.C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., Zobrist, J., 

Srinivasan, R., 2007. Modeling hydrology and water quality in the pre-alpine/alpine Thur 

watershed using SWAT. J. Hydrol. 333, 413-430. 

32. Tibshirani, R., 1994. A Comparison of Some Error Estimates for Neural Network Models. 

Technical Working Paper No. 94-100, Department of Statistics, University of Toronto. 

33. Noori R., Khakpour A., Omidvar B., and Farokhnia A. 2010 Comparison of ANN and 

principal component analysis-multivariate linear regression models for predicting the river 

flow based on developed discrepancy ratio statistic. Expert Systems with Applications, 

Vol. 37, 5856–5862 

34.  
35.  



14 

 

Appendix І 

  

  

  

  



15 

 

  

  

  

  



16 

 

  

  

Appendix ІІ 
 

Dam Name LM ICA Dam Name LM ICA Dam Name LM ICA 

Caney Coon Creek 0.01 0.01 Frias 0.22 0.20 Kodaganar 0.71 0.88 

Castlewood 1.57 1.35 
Goose Creek 

Dam 
0.11 0.22 lake Avalon 0.85 1.28 

Cherokee Sandy 0.00 0.01 Grand Rapids 0.00 0.01 Lake Latonka 0.16 0.25 

Colonial #4 0.01 0.01 Hatchtown 1.41 1.45 Lake Tanglewood 0.68 0.65 

Dam near Frankfurt 0.05 0.06 Hatfield 1.90 3.32 Laurel Run 0.59 0.54 

Dam Site #8 0.03 0.04 Haymaker 0.01 0.02 Lawn Lake 0.30 0.45 

Davis Reservior 0.12 0.19 Hell Hole 1.03 1.98 Lily Lake 0.03 0.04 

Dells 2.36 2.37 Horse Creek 2.16 3.84 Little Deer Creek 0.48 0.46 

DMAD 0.39 0.73 Horse Creek #2 0.18 0.19 Little Wewoka 0.03 0.03 

Fred Burr 0.40 0.48 Ireland No. 5 0.05 0.07 Lower Latham 0.19 0.29 

French Landing 0.57 0.76 Johnstown 2.25 2.92 Lower Reservoir 0.10 0.11 

Frenchman Dam 0.75 1.09 Kelly Barnes 0.41 0.46 
Lower Two 

Medicine 
0.88 1.32 

         
Dam Name LM ICA Dam Name LM ICA Dam Name LM ICA 

Mammoth 0.91 1.03 Site Y-36–25 0.00 0.00 Eigiau 0.25 0.27 

Middle Clear Boggy 0.02 0.03 Site Y-31 A–5 0.02 0.03 
Upper Red Rock, 

Okla. 
0.00 0.01 

Mill River 0.95 0.93 
Sinker Creek 

Dam 
0.40 0.34 Weatland Number 0.32 0.36 

Murnion 0.01 0.01 South Fork 2.36 3.41 
Martin Cooling 

Pond Dike 
0.22 0.44 

Nanaksagar Dam 0.75 0.88 
South Fork 

Tributary 
0.04 0.06 Knife Lake Dam 0.62 1.00 
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North Branch 0.02 0.02 Stevens Dam 0.00 0.00 
Puddingstone 

Dam 
0.26 0.23 

Oros 0.25 0.81 
Taum Sauk 

Reservoir 
1.33 2.53 Swift 1.80 2.97 

Otto Run 0.03 0.05 Shimantan 1.51 3.55 Elk City 0.37 0.46 

Owl Creek 0.02 0.02 
Upper Clear 

Boggy 
0.04 0.06 Salles Oliveira 0.67 1.03 

Peter Green 0.00 0.00 Banqiao 1.28 6.79 Zhugou 3.34 4.54 

Schaeffer Reservoir 0.82 1.49 Dongchuankou 3.03 7.17 Sandy Run 0.27 0.34 

Site Y-30–95 0.09 0.12 Zuocun 2.88 5.73 Prospect 0.03 0.06 

         Dam Name LM ICA  
  

Quail Creek 1.05 1.46 
   

Qielinggou 0.90 0.88 
   

Mahe 1.69 2.16 
   

Liujiatai 3.66 6.46 
   

Lijiaju 0.78 1.01 
   

Huqitang 0.03 0.04 
   

Gouhou 0.19 0.31 
   

Danghe 0.75 0.96 
   

Chenying 0.71 0.70 
   

Teton 0.75 2.16 
   

Bayi 1.07 1.91 
   

Hemet Dam 0.91 1.45 
   

 

 


