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ABSTRACT   

Colorectal and prostate cancers are major causes of cancer-related death, with early detection key to increased survival. 
However, as symptoms occur during advanced stages and current diagnostic methods have limitations, there is a need for 
new fluorescent probes that remain bright, are biocompatible and can be targeted. Conjugated polymer nanoparticles 
have shown great promise in biological imaging due to their unique optical properties. We have synthesised small, 
bright, photo-stable CN-PPV, nanoparticles encapsulated with poloxamer polymer and a thin silica shell. By incubating 
the CN-PPV silica shelled cross-linked (SSCL) nanoparticles in mammalian (HeLa) cells; we were able to show that 
cellular uptake occurred.  Uptake was also shown by incubating the nanoparticles in RWPE-1, WPE1-NB26 and WPE1-
NA22 prostate cancer cell lines. Finally, HEK cells were used to show the particles had limited cytotoxicity. 
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1. INTRODUCTION  
Advancements in imaging have increased the understanding of how biological processes occur, providing greater 
understanding of the link between structure and function 1. By studying how diseases work, and identifying early signs 
and symptoms, it is possible to better treat the condition as well as determine which therapies are most effective.  
 
After cardiovascular disease, cancer is considered one of the leading cause of death worldwide with 8.2 million cancer 
related deaths in 2012 2,3. This global burden is increasing due to a rapidly growing population, as well as people living 
longer leading to an aged population. Factors such as genetics and lifestyle also lead to an increase rates of cancer 4. 
Cancer is a broad term for a diverse group of diseases that affect all tissues within the body, and is understood to be the 
uncontrolled proliferation of cells leading to metastases.  In the UK, prostate and colorectal cancer are the second and 
fourth most common cancers and count for 25% of all new cases 5,6. Diagnosis for both tend to occur late, leading to a 
high fatality rate:  bowel cancer accounts for 10% of all cancer deaths in the UK and prostate cancer accounts for 13% of 
all cancer deaths in men 5,6. While the ultimate goal would be to cure cancer in all its forms, there is a need to develop a 
more efficient and rapid method for diagnosing cancer in the early stages. Several non-invasive imaging methods are 
currently used in the diagnosis, including computed tomography (CT), magnetic resonance (MRI), positron emission 
tomography (PET), and single photon emission CT (SPECT) 7. However, there is no one ideal technique that can be 
substituted for the others, and most diagnoses are obtained from a combination of several different imaging techniques  8. 
 
Current optical imaging techniques use organic fluorescence dyes as probes. These dyes have some drawbacks such as 
unsatisfactory brightness, rapid photo bleaching and small Stokes’ shifts, which cause difficulty in detecting the signal 9. 
Therefore materials that are bright, have greater photo-, bio-, and environmental stability, and a large Stokes shift are 
now being developed for fluorescence microscopy and clinical imaging 10.  
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In recent years there has been a focus on the development of quantum dots (QDs) which are inorganic semiconductors 
with tuneable emission. They have bright fluorescence, excellent photo-stability and narrow emission 11. However, as 
they are normally composed of heavy metals, such as cadmium and selenium, there is a serious concern about the 
toxicity of the nanoparticles to cells 12,13,14.  There is another set of fluorescent particles that have been studied, composed 
of conjugated polymers (CPs) which have gained growing attention due to their attractive optical properties such as 
bright photoluminescence and photo-stability 15–19. CPs are organic semiconductors with backbone of alternating 
multiple and single bonds which exhibit efficient coupling between optoelectronic segments;  electrons can delocalise 
allowing for excitons to diffuse efficiently throughout the polymer chain 20,21.  There are a number of advantages of 
conjugated polymer nanoparticles (CPNs) over QDs, including their ease of processing, large absorption coefficients, 
tuneable optical properties, controllable dimensions and biologically inert components circumventing the issue of heavy 
metal toxicity  of QDs 19,22. It is also possible to obtain conjugated polymers commercially in a range of colours that 
allows the potential for tuneable emission.  
 
Despite the advantages of CPNs, the major limitation is their hydrophobic characteristics. For example, the majority of 
conjugated polymers need to be dissolved in solvents with a surfactant to make CPNs water stable. The nanoparticles are 
synthesised using two methods: mini-emulsion and nanoprecipitation. The mini-emulsion method involves dissolving the 
CP in an aprotic, water immiscible solvent then emulsifying the solution through sheer force in an aqueous solution that 
contains surfactant 23–26.  In contrast, the nano-precipitation method involves dissolving the CP into a water-miscible 
solvent such as THF and then injecting it into a non-solvent (such as water). The mixture is stirred vigorously, normally 
by sonication, and the organic solvent is removed via evaporation leaving behind the dispersed nanoparticles 15,27. With 
both methods, the main driving force for the formation of nanoparticles is the hydrophobic effect 22: the polymer chains 
fold in on themselves to avoid exposure to water. Competition between aggregation and collapse of the polymer chains 
means the size of the nanoparticles can be controlled 28, normally between 5-30 nm. This depends on factors such as 
polymer concentration, solubility, water temperature and strength of sonification 25. 
 
We have developed a number of ways to encapsulate CPs inside micelles of different chemical compositions,  such as 
hydrophobins, and these are then imaged in HeLa cells 29. We have also studied the effect of surface chemistry of CPNs 
and how this affects uptake and internalisation in phagocytic cells 30. We report the possibility of using silica to 
encapsulate a CP/pluronic micelle which is prepared using a modified bioinspired silification approach 31,32. The process 
involves simultaneously encapsulating a conjugated polymer inside the micelles, then forming a silica layer between the 
interface of the core and shell. The optical properties of the CP loaded silica shelled cross-linked (SSCL) micelles are 
shown using a variety of cancer cell lines (HeLa, RWPE-1, WPE1-NB26 and WPE1-NA22) with cytotoxicity 
determined using HEK cells. The ability of these nanoparticles as fluorescent probes is shown via the uptake of the 
particles by the different cells and subsequent imaging with a confocal scanning laser microscope.  
 

2. METHODOLOGY 
2.1 Reagents and Materials 

Poly(2,5-di(hexyloxy)cyanoterephthalylidene) (CN-PPV) (MW=Unknown), pluronic F127 (MW=12.5 kDa avg), 
tetrahydrofuran (with 250 ppm BHT as inhibitor, 99.9%)  (THF) and tetramethyl orthosilicate (99%) (TMOS) were 
purchased from Sigma-Aldrich (England, UK).  Dulbecco’s Modified Eagle Medium (DMEM), fetal bovine serums 
(FBS), Keratinocyte-Serum Free Medium (SFM), bovine pituitary extract (BPE), human recombinant epidermal growth 
factor (EGF) were purchased from Thermofisher Scientific (England, UK). CellTiter-Glo® reagent was purchased from 
Promega (England, UK). 
 
 HeLa cells were supplied by Sergi Garcia-Maynes’ Lab in the Department of Physics at King’s College London. HEK 
cells were supplied by Maryna Panamarova from the Zammit Group in the Randall Division of Cellular and Molecular 
Biophysics, King’s College London. RWPE-1, WPE1-NB26 and WPE1-NA22 were supplied by Ferran Valderamma’s 
Lab at the University of St. George’s, London. 
 
2.2 Instrumentation  

Absorption spectra were measured using a Hitachi U-4100 UV-Visible-NIR spectrometer using a 1 cm path length 
quartz cuvette. Photoluminescence spectra were measured using a Horiba Fluoromax-4 spectrofluorometer. Particle size 
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distributions were obtained using both a Malvern Nanosight (utilising nanoparticle tracking analysis) and a Malvern 
Zetasizer (utilising dynamic light scattering). Zeta potential was obtained on a Malvern Zetasizer. Transmission electron 
microscopy images were acquired on a Hitachi 7100 at St George’s University of London, with a filament electron 
source at 100 kV. Image analysis was performed with ImageJ software. Quantum yields were acquired on a Hamamatsu 
Quantaurus-QY Absolute PL quantum yield spectrometer, with samples excited at 450 nm with a bandwidth of 5-7 nm. 
Cells were imaged on an A1 inverted confocal at the Nikon Centre at King’s College London. 
 
2.3 Synthesis of conjugated polymers loaded into silica-shell cross-linked polymeric micelles (CP-SSCL) 

The bioinspired silification method was adapted from work by 31–33. CN-PPV was prepared in THF by dissolving 1 mg of 
polymer into 1 ml of THF to make a 1 mg/ml polymer solution. The solution was sonicated in a 35 kHz ultrasound bath 
at 7–9 °C, in 30 second bursts for 5 minutes to ensure the polymer was completely dissolved. In a separate flask, 2 mg of 
the pluronic F127 was added to 1 ml of THF (2 mg/ml stock) and sonicated for 5 minutes. 100 µL of the CN-PPV 
polymer solution was added to the F127 solution and left stirring overnight at 45°C. Upon cooling to room temperature, 
100 µl of TMOS was added. The solution was then injected into 13.5 ml of ice-cold deionised water and sonicated for 10 
minutes. The solution was then stirred continuously at 400 rpm, at room temperature, for four days to evaporate off THF 
and to ensure complete hydrolysis of TMOS at the interface between the core and corona of the F127 micelles. Loss of 
water was compensated by readjustment to 10 ml. The nano-suspension (10 µm/ml of CN-PPV or total solid of 210 
µm/ml) was subsequently filtered through a 0.2 µm cellulose acetate Gilson syringe filter. The filtrate was stored at room 
temperature. 
 
2.4 CP-SSCL associated with cells 

HeLa and HEK cells were cultured as separate adherent monolayers DMEM supplemented with 10% heat inactivated 
FBS. HeLa cells were cultured on a sterilised 8 square well microplate, and HEK cells were cultured on a sterilised 96 
well microplate. Cell cultures were kept at physiological temperature ∼37°C, 5% CO2 in a humidified incubator. The 
CN-PPV nanoparticle suspension was serially diluted in DMEM to have a range of polymer concentrations (7.5 µm/ml 
to 0.1 µm/ml). 100 µl of the CN-PPV nanoparticle suspension was added to 200 μL of the aforementioned media (for the 
8 well plate) and 20 µl of the CN-PPV nanoparticle suspension  was added to 100 µl of the aforementioned media (for 
the 96 well plate). These were incubated for 24 hours. RWPE-1, WPE1-NB26 and WPE1-NA22 cells were cultured as 
adherent monolayers in SFM supplemented with 0.05 mg/ml BPE and 5 ng/ml human recombinant EGF, on a sterilised 
24 well plate. Cell cultures were kept at physiological temperature ∼37°C, 5% CO2 in a humidified incubator. The CN-
PPV nanoparticle suspension was serially diluted in the SFM to have a range of polymer concentrations (7.5 µm/ml to 
0.1 µm/ml) and 500 µl of the CN-PPV nanoparticle suspension was added to 2 mL of the aforementioned media and 
incubated for 24 hours. 
 
HeLa, RWPE-1, WPE1-NB26 and WPE1-NA22 cells were fixed in a 4% formaldehyde solution for 15 minutes, and 
then washed with phosphate-buffered saline (pH 7.0) six times. All images were acquired on a Nikon A1 inverted 
confocal using a ×20 dry objective lens of numerical aperture 0.75, with 488 nm excitation. Emission from the CN-PPV 
nanoparticles was collected in two channels, 570–620 nm and 663–738 nm with 2× line averaging. The brightest 
emission was observed in the 570–620 nm channel. Z-stack images were collected every 0.125 μm, with 5.75 μm sample 
depth. All images are displayed with 0.2% saturation pixel thresholding. 
 
For the cytotoxicity study with HEK cells, after the time intervals of 1 hour, 24 hours and 48 hours, 100 μL CellTiter-
Glo® reagent was added and cells were left to lyse for 10 minutes before the luminescence was recorded. 
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3. RESULTS AND DISCUSSION 

 
3.1 Preparation and physical characterization of CP-SSCL 

By using a modified version of the silification method as described by 32, it was possible to encapsulate CN-PPV into 
F127 micelles followed by passivation in silica. This involved dissolving the conjugated polymer, F127 block 
copolymer, and TMOS in THF. The mixture solution was then injected into water under ultrasonication. This change in 
the environment caused the F127 block copolymer to encapsulate the CN-PPV as a micelle (with the poly(propylene 
oxide) (PPO) blocks as the core and poly(ethylene oxide) (PEO) blocks as the shell). As both the TMOS and the 
conjugated polymer are hydrophobic and insoluble in water, they becomes compartmentalised within the PPO core 
which caused hydrolysis and condensation to be confined at the regions between the core and the shell of the F127 
micelles 32. This forms a sol-gel transfer, resulting in a thin silica layer forming around the PPO core of the F127 
micelles.  
 
For the purpose of cell imaging, the red-emitting conjugated polymer, poly(2,5-di(hexyloxy)cyanoterephthalylidene)  
(CN-PPV), was chosen which has a emission wavelength of 550 nm in solvent. The chemical structure of the CN-PPV, 
the structure of the NP and the resultant aqueous suspensions are shown in Figure 1. As can be seen from the figure, the 
suspension is transparent which suggests that the nanoparticles are stable over a period of at least 3 months, with 
aggregation only observed in samples older than 2 months that were left at room temperature. This suggested that the 
conjugated polymer is completely encapsulated by the F127 micelle, and that the suspension emits a bright colour when 
exposed to a UV light (λ=365 nm). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Top, the chemical structures of CN-PPV, F127 AND TMOS and an illustration of the nanoparticle in H2O. Bottom, 
CN-PPV in THF (left) and as nanoparticles in aqueous solution (right) in left hand panel. Samples were excited using an UV 
lamp (λ=365 nm) in right hand panel. 
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The size of the particles was determined using dynamic light scattering (DLS). It was observed that the particles had a 
hydrodynamic diameter of between 40 and 80 nm (figure 2). The DLS also showed a relatively narrow size distribution, 
as shown by a low polydispersity index (PDI) of around 0.16. Transmission electron microscopy (TEM) revealed core-
shell structures, as shown in figure 2, with the silica shell appearing darker (due to higher electron density) compared to 
the PPO blocks of the F127 and the conjugated polymers.  The bright cores are likely the F127 containing the CN-PPV. 
On average, the particle ha a core diameter of 24 nm and an outer diameter of 30 nm, giving a total diameter of between 
50 and 60 nm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
This relatively uniform size suggests that the micelles containing the conjugated polymer are trapped by the cross-linked 
silica layer, preventing the micelles from expanding to accommodate the conjugated polymers. The slight difference 
between the sizes of the particles observed on the TEM vs the DLS measurements is because the DLS measures the 
hydrated size of the particles in water with their extended free PEO chains 32. Both F127 micelles containing no 
conjugated polymer , or conjugated polymer  with no silica, were measured to have diameters of 55 nm, which is within 
the size range observed by 34. This confirms that the silica layer is forming between the core and the shell of the loaded 
F127 micelles, allowing the PEO shell to provide aqueous solubility and stabilisation. Table 1 summarises the physical 

Figure 2: TEM images of the CN-PPV loaded SSCL. A) Taken at 50x resolution (scale bar = 200 nm). B) Close up on one 
nanoparticle at 100x resolution (scale bar = 50nm). The darker outer shell is silica, whereas the lighter inner core is the F127
and CP. C) graph of size vs relative intensity taken from the DLS (n = 4). 
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characteristics of the CN-PPV SSCLs. The zeta potential was also measured using the Malvern zetasizer in deionised 
H2O at 25 ºC. The zeta potential provides indirect information about the nanoparticle surface charge, and the CN-PPV 
loaded SSCL were found to have a neutral zeta potential value (as shown in table 1). When diluted into DMEM there 
was no change in the zeta potential. 
 
   Table 1: Physical characterisation of the CN-PPV SSCL nanoparticles 

 CN-PPV SSCL 

Average core diameter (nm)  24 

Average outer diameter (nm) 30 

Hydrodynamic diameter (nm) 54.53±3.4 

Polydispersity Index (PDI) 0.161±0.015 

Zeta Potential (mV) -12 

 
3.2 Optical properties of CP-SSCL 

The optical properties of conjugated polymers are dependent on; a) the initial concentration of polymer, b) the solvent, 
and c) physical conformation of the chains. It is known that during encapsulation, the conjugated polymer is forced to 
coil and twist, shortening its effective conjugation length. This increases the number of defects, as well as forming 
densely packed micelles, which explains the broadening of the absorption spectrum of the particle compared to the CN-
PPV in THF. Due to this forced coiling, the polymers interact closely with each other causing delocalisation of the π-
electrons leading to an increased inter-chain aggregate state35. While the absorption band broadens due to this, the 
photoluminescence (PL) spectrum is also affected:  a significant red shift occurs, which is likely due to the increased 
inter-chain interactions. This allows rapid energy transfer from high energy to lower energy segments due to the short 
conjugated lengths and weakly emissive aggregates. In addition, numerous groups have reported similar observations 
based on the photo-physical behaviour of water-dispersed conjugated polymer nanoparticles 11,15,36. The normalised 
spectra of absorption and photoluminescence are shown in figure 3 (particles excited at 450 nm). 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3: Normalised absorption spectra of CN-PPV  in THF (dotted black line), of the nanoparticle (dotted red line) and the
photoluminescence spectra of CN-PPV  in THF (black line) and as a nanoparticle (red line).  λem for CN-PPV in THF was 550
nm, whereas λem for the nanoparticles was 623 nm. Sample concentrations were at 10 µm/ml. Excitation was at 450 nm. 
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The nanoparticle photo-stability over a period of 1 month was also studied:  3 mL of the aqueous suspension was stored 
in a quartz cuvette with a sealed lid, and the sample was excited at 450 nm periodically over a 35 day period, with 3 
readings taken at each chosen day. From figure 4 it is shown that  while there was a very small red shift (likely due to 
aggregation of sample), the actual intensity of the sample did not vary significantly over the time period (dropping to 
95% of the initial (t=0) intensity). Quantum yields were approximately 30% when excited at 480 nm using an integrating 
sphere. The decreased quantum yield compared to 52% for the polymer in THF 37. The decreased emission of the CPNs 
relative to the polymer form is due to defects in the polymers entrapped within the micelles. The optical properties are 
summarised in table 2. 

 

 

Table 2: Optical Properties of CN-PPV SSCL 
  CN-PPV in THF CN-PPV SSCL 

Absorption peak (nm) 447 458 

Emission peak (nm) 549 628 

Quantum Yields (QY) (%) 52* 30 

*Taken as a reference point from 37 

 

3.3 In vitro cellular uptake and imaging studies 

The biocompatibility of any new particle used in imaging is important (especially for cellular imaging). In this study, the 
cytotoxicity of the CN-PPV SSCLs were evaluated by measuring the in vitro viability of human embryonic 
kidney cells 293 (HEK293) using CellTiter-Glo® Luminescent Cell Viability Assay (Promega, UK) which  determined 
the number of viable cells in culture based on quantitation of the ATP present, to give an indication of metabolically 
active cells. Figure 5 shows normalised luminescence after 1 hour, 24 hours and 48 hours of exposure to CPNs. These 
were normalised against the control containing no particles, and showed that CN-PPV loaded SSCL have low 
cytotoxicity at low concentrations. However, at higher concentrations of CN-PPV loaded SSCL there was a decrease in 

Figure 4: A) normalised photoluminescence peak of sample at day 0 (black) vs Day 35 (red) (λem = 623). B) The PL peak
intensity at different day intervals over the 35 day period. Error bars are standard deviation of the mean. All samples were
excited at 450 nm. 
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the luminescence in the wells, indicating a decrease in the number of cells. This was particularly the case with the 10 
µg/ml samples, where after 1 hour; all cells appear to have died. It is possible that at higher concentration, the 
nanoparticles aggregate in the DMEM and affect the cellular environment. The bare CN-PPV particles, without pluronic 
or Silica are persistently stable and did not seem to affect cell viability. 
 
To investigate their potential use in biological imaging, the CN-PPV loaded SSCL were initially incubated with HeLa 
cells at a low concentration (1 µg/ml polymer concentration) for 24 hours. After incubation, the cells were washed with 
PBS before being fixed in 10% formalin. The cellular uptake of the CN-PPV loaded SSCL by HeLa cells were evaluated 
by an A1 inverted confocal microscope. From Figure 6 it can be seen that the CN-PPV loaded SSCL (red) are either 
located on the surface of the HeLa cells or has been up-taken by the cells. 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 5: Normalised luminescence of CN-PPV (no surfactant) vs different concentrations of CN-PPV loaded SSCL 
incubated in HEK cells. These were normalised against control wells with no nanoparticles. 
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A Z-stack image was used to visualize whether the CN-PPV loaded SSCL CPNs were internalized by HeLa cells. Z-
Stack images were collected with 37 slices covering a sample depth of ∼5.75 μm, indicating that CPNs were localised 
inside live HeLa cells, (Figure 7) after 24 hours.  
 

 

 

 

 

Figure 6: HeLa cells untreated or treated with CN-PPV loaded SSCL. A)  untreated HeLa cells at 60x magnification. B)  and
C) are treated HeLa cells overlayed over transmission light images of the cells. D) HeLa cells treated with 1 µg/ml of
nanoparticles at 60x magnification. Fluorescence was detected in the 570-620 nm channel. Scale bars =16 µm).  
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As a final study into the uptake of CN-PPV loaded SSCL into cells, three prostate cancer epithelial cell lines were tested. 
Both, WPE1-NB26 and WPE1-NA22 are derived from RWPE-1, with WPE1-NB26 being a more aggressive prostate 
cancer line. These show a common lineage that mimics stages in progression from localised malignancy to invasive 
cancer, and can be used to study carcinogenesis, progression, intervention and chemoprevention 38. These were incubated 
with CN-PPV loaded SSCL at a low concentration (1 µg/ml polymer concentration) for 24 hours. After incubation, the 
cells were washed with PBS before being fixed in 10% formalin. As these were plated and fixed in a 24 well plate, the 
cellular uptake was evaluated at 20x. These cells show less uptake than HeLa cells, which may be because these cells 
need longer to adhere to the plate. It could therefore not be fully determined whether our particles are suitable with this 
particular cell line. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 Z-Stack through a HeLa cell from the bottom of the cells to the top (left to right) at 0.125 μm steps, indicating that
CN-PPV loaded SSCL nanoparticles were internalised by HeLa cells post 1 h incubation. Scale bar = 10 μm. 
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Figure 8 A) RWPE-1 cells untreated or D) treated with CN-PPV loaded SSCL. B) WPE1- NA22 cells untreated or E)
treated with CN-PPV loaded SSCL. C) WPE1-NB26 untreated or F) treated with CN-PPV loaded SSCL. Treated cells
were incubated with 1 µg/ml of nanoparticles at 20x magnification. Fluorescence was detected in the 570-620 nm channel.
Scale bars are 50 µm. 
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4. CONCLUSION 
In conclusion, stable, bright, red-emitting fluorescent nanoparticles were successfully synthesised by encapsulating CN-
PPV in silica-shell cross-linked polymeric micelles (CP-SSCL) using a silification process. By entrapping the CP within 
the micelle, and inhibiting the size of the polymeric micelle using a silica shell it was possible to provide small, 
monodispersed, colloidally stable particles that had high quantum yields and good photo-stability over time. Upon 
incubation with HeLa cells, bright fluorescence was observed within the cells, particularly in the region surrounding the 
nuclei of the cells which suggests that uptake occurred. Some particles were uptaken when incubated with the three 
prostate cancer cell lines, however further work is required with this to ensure optimal uptake. Cytotoxicity studies were 
carried out using HEK cells, indicating that low nanoparticle concentrations were tolerated, but that high concentrations 
were lethal. To further this work, conjugation of the pluronic or the silica will need to be undertaken in order to provide 
target-specific binding and demonstrate usefulness for targeting imaging.   
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