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Everything as a Resource:
Foundations and Illustration through Internet-of-Things

Blind Review

Abstract

This paper presents Everything-as-a-Resource (*aaR) as a paradigm for de-
signing collaborative applications on the Web. Abstracting these applications’
various physical and logical entities, resources are defined in a way that permits
their discovery, composition, and participation in business scenarios. Compared
to Everything-as-a-Service (*aaS), resources are categorized into computational,
consumed, and produced, have trackable lifecycles as per their respective cat-
egory, and are customized in order to consider the characteristics of future
resource-based collaborative applications to develop. From a capacity perspec-
tive, a computational resource processes data, a produced resource abstracts
data, and a consumed resource captures data. Along with their capacities, re-
sources expose methods that other resources and/or applications’ stakeholders
call. The proper call of methods is ensured through restrictions like limited and
non-shareable. This paper exemplifies the *aaR paradigm with a case study that
revolves around the use of Internet-of-Things (IoT) in the healthcare domain.
The case study is implemented in a RESTful fashion along with some standard
Web technologies and protocols. The evaluation of IoTR4HealthCare system is
benchmarked against two existing systems using cost and latency criteria.

Keywords: Everything-as-a-Service, Everything-as-a-Resource, Internet of
Things, Healthcare, Resource, Restriction.

1. Introduction

In the Information & Communication Technologies (ICT) community, *aaS
is a well-known acronym standing for Everything-as-a-Service [12]. Everything
(i.e., thing as a general term) could be software, platform, infrastructure, com-
munication, data, just name it1. Exposing things as services has different ad-
vantages such as abstracting the complexity of the digital and physical worlds,
complying with the separation-of-concerns principle [35], and shifting the burden
of managing things internally to external bodies (e.g., cloud providers) in-return

∗Corresponding author; x@x.com
1Software, platform, and infrastructure are the essence of cloud computing.
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of a fee. In this paper, we promote a broader vision of things by treating them
as Resources (Everything-as-a-Resource *aaR). Contrarily to services that act as
proxies over things independently of these things’ characteristics like types and
roles, we (i) make resources the pillars of an ecosystem that capture stake-
holders’ needs, requirements, and concerns, (ii) categorize (specialize) resources
into computational, consumed, and produced, (iii) associate resources with sep-
arate lifecycles that stress out their differences from an operation perspective,
and finally, (iv) customize the ecosystem’s resources and stakeholders with re-
spect to the characteristics of the future resource-based applications that can
be developed upon this ecosystem. Resources are more than proxies but active
components that can be specialized and customized. The connection between
the three categories of resources is straightforward: a computational resource
that is invoked at run-time, could consume (existing) resources and/or produce
(not necessarily new) resources. Examples of resources include REpresentational
State Transfer (RESTful) service as a computational resource, XML document
as a consumed resource, and txt file as a produced resource.

The concept of resource is not new in the literature and has been used in
different disciplines like distributed artificial intelligence (e.g., resource logic
for multi-agent planning [10]) and service computing (e.g., RDF for interop-
erability [41] and REST for building applications (Web, Intranet, and Web
services) [13]). While some disciplines consider that resources (whether logical
or physical) are abundant, we argue the opposite. According to Dimick, all
resources are expected to decline [11]. To deal with the non-abundance con-
cern and to ensure proper use of resources, we define restrictions over resources
and specialize these restrictions into limited (versus unlimited), non-shareable
(versus shareable), and non-renewable (versus renewable). Restrictions permit
to differentiate resources from services further and to have a better control
over resource engagement in future resource-based applications. In this paper,
our objectives are: (i) develop an *aaR framework that provides the necessary
guidelines for setting-up and managing an ecosystem of resources, (ii) define
both resources and restrictions regardless of the applications to deploy over
this ecosystem, and (iii) exemplify the *aaR framework with a resource-based
Internet-of-Things (IoT) case-study.

There are no doubts that Mark Weiser’s statement about ubiquitous com-
puting, “The most profound technologies are those that disappear. They weave
themselves into the fabric of everyday life until they are indistinguishable from
it” [46], has become a reality thanks to IoT and other forms of computing like
ubiquitous [3]. Network high-connectivity and -bandwidth have allowed various
digital devices, whether wearable or not, to form an ecosystem that includes
other non-digital devices like white goods and medical equipment. According to
Gartner2, 6.4 billion connected things were in use in 2016, up 3% from 2015, and
will reach 20.8 billion by 2020. In response to IoT intrinsic characteristics like
ubiquitous sensing, thing diversity, dynamicity, and integration of the physical-

2www.gartner.com/newsroom/id/3165317.
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and cyber-worlds together [2], we demonstrate how our ecosystem of resources
transparently accommodates these characteristics. To this end, we propose a
three-layer representation for the *aaR framework: application, resource, and
infrastructure. The layers feature building blocks and operation modules that
are necessary for setting-up and functioning both the ecosystem and the future
IoT applications. It is worth mentioning that non-IoT applications could be
considered without impact on the *aaR framework’s concepts and principles.

The remainder of this paper is organized as follows. Section 2 is an overview
of the fields of resource and IoT. Section 3 details the *aaR framework in terms
of representation, resource categories, and restrictions over resources. Section 4
implements the *aaR framework through a healthcare-driven case study and
evaluates the implemented system against two IoT healthcare systems. Finally,
Section 5 concludes the paper along with discussing some future work.

2. Background

This section provides an overview of the concept of resource along with some
definitions and examples of IoT uses. Then, it concludes with some highlights
of the *aaR framework.

2.1. What is resource?

In ICT disciplines like computer science, information technology, and soft-
ware engineering, resource means different things. It refers to hardware and
software (e.g., network, server, storage, application, and service) in cloud com-
puting [37], person/machine who execute tasks in business processes [32], Web
content in the (Semantic) Web architecture [4, 13], etc. Despite the multiple
uses of resources, they abstract some entities, whether physical or logical, that
could be discovered, composed, and consumed so that certain business goals are
achieved. It is worth noting that such entities might not be abundant and thus,
restrictions on their use are deemed necessary.

Fielding proposes REST as a style for designing and developing distributed
hypermedia systems like the Web that would comply with Resource-Oriented
Architecture (ROA) principles [13]. According to Lucchim et al., resources
are directly-accessible components handled through a standard common inter-
face [27]. This interface is a set of stateless operations (e.g., HTTP methods).
Systems that comply with Fielding’s REST style are called RESTful. Resource
has become prevalent when RESTful services have overtaken SOAP-based Web
services [1, 36]. The former expose their operations as resources that are ac-
cessed through Uniform Resource Identifiers (URI)s and thus, are better suited
for the adhoc deployment of systems over the Web. The latter suffer from
the complexity of their protocol stack (UDDI/WSDL/SOAP to facilitate dis-
covery/publication/invocation) and excessive number of standards (WS-∗) [43].
According to Richardson and Ruby, ROA allows different representations of a
resource through different URIs. This allows clients and servers to communicate
through these representations [38].
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Xu et al. adopt REST principles and service-oriented architecture3 to use
resources in business processes [47]. For instance, they model business processes,
instances, tasks, and states as URL identifiable resources, also model control
flows and state transitions as links between connected resources, and finally
use micro-formats and URL templates for dynamic process coordination. For
Xu et al., resources increase process visibility and interoperability, and links
could represent control/data flows for possible next-step actions.

Karkkäinen et al. propose an approach for managing information on prod-
ucts using a peer-to-peer architecture in association with a centralized data
repository [24]. Data (seen as a consumed resource) gathered from different
stakeholders is processed into information on products and then, shared with
the whole supply network of partners. However, building a centralized reposi-
tory to integrate a wide variety of data could become costly along with using a
lot of (computational) resources.

2.2. What is Internet of things?

Connecting the Web and physical objects together is not new. For instance,
attaching physical tokens (e.g., bar-codes) to objects allows to redirect users
to a specific page(s) that contains object-related information [45]. The pages
were first available on static Web servers, then developed further to enable low-
power devices to be part of wider networks, so that gateway systems can access
these pages [40]. Mapping physical objects onto virtual counterparts makes
these objects accessible from and controllable over the Web [17]. Främling et al.
propose first, a globally unique product identifier [16] to identify product items
during their lifecycles and second, a dedicated product agent [15] to manage
these items. In a similar vein, managing IoT devices requires unique identifica-
tion and interfacing. As stated in Section 2.1, ROA adopts objects’ URIs in a
bid to build a reference model that would make each resource a directly accessi-
ble distributed component via a standard uniform interface [27]. This interface
facilitates interaction with physical objects, connected to resources in the Web,
through four primitives - create, read, update, and delete - which are mapped
onto HTTP methods: PUT to create a resource, GET to read a resource, POST
to update a resource, and DELETE to delete a resource [34].

ROA principles have also been supportive of the Web-of-Things (WoT) that
results from the convergence of cloud computing and IoT [20]. WoT proposes
methods for accessing smart devices through existing Web-based technologies
such as Web services and RESTful services. WoT offers a solution to manage
and use IoT resources in a service-oriented fashion.

Mayer et al. propose AutoWoT as a toolkit for virtualizing and manag-
ing IoT devices on the Web [29]. AutoWoT defines these devices’ hierarchi-
cal structure and properties and integrate them into the WoT as automati-
cally generated RESTful services. The authors adapt hRESTS microformat of
Kopecky et al. [25] to describe the RESTful services for interoperability and

3Micro-services could also be represented as resources.
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discovery purposes. In the same vein, Mayer et al. present an open semantic
framework for the Industrial IoT [30]. The objective is to support thing interac-
tion using semantic technologies. In [34], Paganelli et al. propose a framework
targeting developers who wish to integrate IoT devices into the WoT as RESTful
services as well. The framework proposes tools for creating and composing these
services. To represent resources, aggregation and reference relations are used.
Nastic et al. encapsulate fine-grained IoT devices into software-defined APIs
so that an IoT cloud-system is created [31]. The necessary software-defined
APIs encapsulate IoT devices and their functionalities in the IoT cloud in or-
der to abstract their access, configuration, provisioning, and governance in the
IoT cloud systems.

Last but not least, in another initiative, the Open Group in [19] and
Robert et al. in [39] present a standard communication interface, Open Mes-
saging Interface (O-MI) [18], and a standard data format, Open Data For-
mat (O-DF), respectively, to bridge the interoperability gap among IoT-based
objects/devices and stakeholders. O-MI fulfils the same purpose of the HTTP
for the Internet, but for IoT objects. Indeed, O-MI allows transporting a variety
of data in almost any format (e.g., JSON, CSV, and XML) over these objects.

2.3. Highlights of the *aaR framework

To wrap up this section, we note as per Section 2.1 the restrictive use of
resources as either a modeling concept or an operation to trigger. Contrarily,
we advocate for a different role for resources by first, specializing them into
computational, consumed, and produced, so that applications’ needs are consid-
ered and second, allowing them to engage together in collaborative scenarios.
Moreover, we note that the *aaR framework’s motivations are inline with those
of [5, 31, 34, 29]: connecting the Web/cloud and physical devices together. For
instance, Botta et al. identify some gaps that the integration of cloud into IoT
could fill out [5]. Healthcare domain has been used to illustrate the tangible
benefits of such integration. Everything-as-a-resource has also been used by Hof-
man as a base for building seamless interoperable platforms in the world of
IoT [21]. Each resource (e.g., truck and smart object) has goals and capabilities
and may have an owner, user, and virtual representation.

Like [34, 29], we embrace ROA principles to virtualize and manage IoT de-
vices on the Web through appropriate resources. This happens since the *aaR
framework is flexible supporting resource specialization. Also, like [31, 34], we
consider that compositions of atomic (or fine-grained) IoT devices are deemed
necessary when building IoT applications and thus, composition is supported by
the *aaR framework. Our main contributions are threefold: (i) the *aaR frame-
work considers IoT devices as well as other resources (e.g., Web services), (ii) re-
sources in the *aaR framework are categorized into computational, produced, and
consumed; each exposes different capabilities that are mapped onto methods,
and (iii) resources’ methods might have restrictions that need to be satisfied
prior to their use (e.g., a sensor whose data is available only at a certain time).
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3. Everything as a resource framework

This section presents the *aaR framework’s foundations and principles that
shape the design of and define the functioning of the ecosystem and future
resource-based (e.g., IoT) applications. Categorizing resources and defining their
lifecycles are, also, presented in this section along with a discussion about re-
strictions over and descriptors4 of resources.

3.1. Framework representation

The *aaR framework guides the architecture and management of first, the
ecosystem of resources (called ecosystem perspective in the rest of the paper)
and second, future resource-based applications (called application perspective
in the rest of the paper). These applications could (if necessary) “adjust” the
ecosystem in order to consider their structural and functional characteristics/re-
quirements (e.g., IoT).

The framework offers providers and engineers building blocks (like reposito-
ries) to architect the ecosystem and applications, and operation modules (like
discovery) for managing the ecosystem and applications. By block we mean any-
thing that structures the ecosystem and/or an application. And, by module we
mean anything that acts upon certain building blocks and/or interacts with cer-
tain modules to ensure the functioning of the ecosystem and/or an application.
It is worth noting that the adjustment of the ecosystem of resources results into
dedicated blocks and modules that respond to the applications’ specific needs.

To represent the *aaR framework, we use three layers that permit to separate
the concerns between the different blocks and modules and to confine these
blocks/modules’ particular duties into each layer. The layers are application,
resource, and infrastructure (Fig. 1).

- The application layer is at the top of the *aaR framework acting as an in-
terface between all resources and any potential stakeholder who will set-up
the ecosystem and/or configure (i.e., adjusting if necessary) the ecosystem
when she is about to develop a resource-based application. Two categories
of stakeholders are identified in the framework: resource providers who
are linked to the ecosystem and application engineers who are linked to
(IoT) applications.

– From an ecosystem perspective, there are not any building blocks
to report in the application layer. Contrarily, there is one operation
module that is description. This module assists both providers and
engineers define resources for the ecosystem and applications, respec-
tively.

– From an application perspective, there is one building block that is
repository of business scenarios. These scenarios guide the develop-
ment of resource-based applications in terms of what resources are

4Descriptors are documents describing resources (Appendix 1).
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needed and how to assemble the necessary resources together. The
operation modules include definition, composition, discovery, and ex-
ecution. The definition module supports engineers specify business
scenarios5 that are stored in the appropriate repository. The compo-
sition module6 identifies (one or many) resources according to busi-
ness scenarios and with the assistance of the discovery module7 that
consults the resource layer’s repository of resources. Last but not
least, the execution module implements the business scenarios as per
the request of the composition module and once the resources are
confirmed for involvement in these scenarios. Confirmation means
satisfying restrictions (Section 3.3).

- The resource layer sits between the infrastructure and application layers
assisting stakeholders either in deploying resources on the infrastructure
(for the benefit of providers and engineers) as per the request of the appli-
cation layer’s description module or in confirming resources for business
scenarios (for the benefit of engineers) as per the request of the application
layer’s discovery module.

– From an ecosystem perspective, there is one building block that is
repository of resources. It contains the description of the ecosystem’s
and applications’ resources along with their lifecycles and restrictions.
There is one operation module that is installer. It deploys resources
on the infrastructure layer by mapping them onto specific concrete
entities in the resource layer.

– From an application perspective, there are not any building blocks to
report in this layer. Contrarily, the operation modules include con-
troller and invoker. The controller module tracks a resource’s lifecy-
cle according to changes/events that happen/arise in the ecosystem
and/or applications. This module also allows the *aaR framework’s
stakeholders (i.e., providers and engineers) to enforce restrictions over
resources at run-time. The invoker module involves entities in the
execution of business scenarios upon the approval of the controller
module.

• The infrastructure layer is at the bottom of the *aaR framework hosting
two types of entities: support and domain-related.

– From an ecosystem perspective, support entities act on behalf of hard-
ware (e.g., servers) and software (e.g., OS) components that are as-

5Existing techniques like BPMN could be adopted (and/or adapted) but this does not fall
into the scope of this work.

6Existing composition techniques like BPEL [8] could be adopted (and/or adapted) but
this does not fall into the scope of this work.

7Existing discovery techniques based on broker/matchmaker [44] and meeting infrastruc-
ture [28] could be adopted but this does not fall into the scope of this work.
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sociated with the ecosystem’s/applications’ building blocks and op-
eration modules.

– From an application perspective, domain-related entities act on be-
half of specialized hardware (e.g., sensors) and software (e.g., temper-
ature controller) components associated with future resource-based
applications.

Different cross-layer interactions are represented in Fig. 1 using dashed lines
and are summarized below:

1. The application layer’s description module interacts with the resource
layer’s repository of resources in order to save resources’ descriptors, life-
cycles, and restrictions.

2. The application layer’s discovery module interacts with the resource layer’s
repository of resources in order to consult the necessary resources with
respect to the needs of business scenarios.

3. The application layer’s execution module interacts with the resource layer’s
controller module to ensure that resources’ restrictions are satisfied prior
to using these resources during business-scenario execution.

4. The resource layer’s installer module interacts with the infrastructure layer
in order to deploy support/domain-related entities associated with the
ecosystem’s/applications’ hardware and software components.

5. The resource layer’s invoker module interacts with the infrastructure
layer in order to involve appropriate hardware and software components,
through their respective entities, when operating the ecosystem and/or
applications.

3.2. Categories of resources

We categorize resources into computational, consumed, and produced. We
define a computational resource as a software program that processes inputs and
produces outputs, although both are not compulsory (e.g., a regulator receiving
a room’s temperature and adjusting the heater accordingly). We also define a
consumed/produced resource as an input(s)/output(s) that could be linked to
a computational resource at run-time (e.g., room’s temperature that a sensor
produces is consumed by a regulator).

For a better understanding of how resources are used and operate in both
the ecosystem and the resource-based applications, we define their behaviors
using statecharts (Fig. 2). Behavior is a lifecycle that indicates the permissible
states that a resource takes along with the possible overlaps between resources
(e.g., a produced resource could become a consumed one).

• States of a computational resource include not-booked (i.e., idle), booked
(i.e., confirmed for activation), activated (i.e., under activation), done
(i.e., successful activation), failed (i.e., unsuccessful activation), and
withdrawn (i.e., no-longer available). Some transitions include booked
invocation−−−−−−−→ activated and failed

unavailable−−−−−−−→ withdrawn.
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• States of a consumed resource include made-available (i.e., announced for
possible consumption), booked (i.e., confirmed for consumption by a com-
putational resource), consumed (i.e., under the consumption of a computa-
tional resource), and withdrawn (i.e., no-longer available). Some transitions

include consumed
extension−−−−−−→ booked and booked

consumption−−−−−−−−→ consumed.

• States of a produced resource include produced (i.e., resulted from the ac-
tivation of a computational resource), hidden (i.e., made unavailable tem-
porarily), made-available8 (i.e., announced for possible consumption), and
withdrawn (i.e., no-longer available). Some transitions include produced
hiding−−−−→ hidden and hidden

unavailable−−−−−−−→ withdrawn.

request
arrival

failure

service

Withdrawn
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Not booked

release

Booked invocation Activated request
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Done

Failedunavailable

cancellation
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release
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Hidden
conversion

Made availablehidingProduced
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un
av

ai
la

bl
e

Withdrawn

conversion

*

(c) Produced

Figure 2: Resources’ lifecycles represented as statecharts

We rely on transitions between states to define the necessary methods for
operating resources (i.e., to ensure resource inclusion in business scenarios). In
the following, we list these methods and mention the transition’s name next to
each method’s name (Fig. 2, trs stands for transition).

8Asterisk in Fig. 2c indicates that a produced resource could become a consumed one.
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Computational resource - we list the following methods (Fig. 2a):

- Book(trs:request arrival) allows to schedule the invocation of a com-
putational resource.

- Activate(trs:invocation) allows to invoke (bind) a computational re-
source by either another computational resource or a third-party ap-
plication.

- Release(trs:release) allows to make a computational resource available
for forthcoming activations.

- Cancel(trs:cancellation) allows to drop the booking of a computational
resource after booking confirmation.

- Withdraw(trs:unavailable) allows to make a computational resource un-
available for invocation.

- Service(trs:service) allows to maintain and/or fix a computational re-
source as part of preventive and corrective strategies. Maintenance
could also concern revising methods and/or restrictions in response
to certain changes (e.g., new activation fees).

Consumed resource - we list the following methods (Fig. 2b):

- Offer(trs:available) allows to make a consumed resource available to
computational resources.

- Consume(trs:consumption) allows a computational resource to use a
consumed resource.

- Book(trs:booking) allows a computational resource to request the use
of a consumed resource. This helps the consumed resource respond
to other computational resources’ booking requests.

- Cancel(trs:cancellation) allows a computational resource to drop the
request of using a consumed resource. This helps the consumed re-
source respond to other computational resources’ booking requests.

- Release(trs: release) allows a computational resource to make a con-
sumed resource available after use for other computational resources.
This helps the resource respond to other computational resources’
booking requests.

- Extend(trs:extension) allows a computational resource to adjust the
booking of a consumed resource due to some time and/or computing
constraints (e.g., expiry date).

- Withdraw(trs:unavailable) allows to make a consumed resource un-
available to computational resources. This unavailability could be
used for revising methods and/or restrictions in response to certain
changes.

Produced resource - we list the following methods (Fig. 2c):
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- Convert(trs:conversion) allows to make a produced resource available
to other computational resources (asterisk in Fig. 2c). The produced
resource will be treated as a consumed resource.

- Hide(trs:hidding) allows to suspend the availability of a produced re-
source temporality prior to making this resource totally either un-
available or available as a consumed resource.

- Withdraw(trs:unavailable) allows to make a produced resource unavail-
able (e.g., retire).

In the *aaR framework, resources’ lifecycles are tracked so that the controller
module enforces restrictions over these resources (i.e., only the allowed transi-
tions according to statecharts). The definition of restrictions is presented in the
next section.

3.3. Restrictions over resources’ methods

A reader could raise the question of why we apply restrictions to methods
of a resource and not the entire resource. We respond as follows:

1. Restrictions over methods permit a better fine-tuning of how to manage
and operate a resource in a specific context. For instance, a method is dis-
abled in a non-secure environment but enabled in a secure one. Otherwise,
the entire resource is either enabled or disabled.

2. Restrictions over methods are revisited throughout the lifecycle of a re-
source without impacting all restrictions nor all methods. For instance,
only certain restrictions are revisited when a resource is in a specific state.

We propose the following restrictions over the methods of a resource with
the assumption that, unless stated, a method is by default unlimited (ul) and/or
shareable (s):

• limited (l): when the calls to a method are subject to a thresh-
old (e.g., maximum number) and/or a specific time frame (e.g., before
June 2017). The main motive of limited is to ensure resource performance
and/or availability. Limited could be relaxed a bit through limited-but-
renewable (lr), which permits to extend the calls to a method in return of
a fee, for example.

• non-shareable (ns): when the concurrent calls to a method are not allowed
so coordinating these calls becomes necessary. The main motive of non-
shareable is to ensure resource consistency.

The satisfaction of restrictions over methods happens as follows. Before the
execution module calls any method of a resource, it requests the assistance of the
controller module that proceeds with analyzing this resource’s descriptor stored
in the repository of resources (Section 3.4). If there are restrictions (needless
to discuss the opposite), the controller module analyzes the nature of these
restrictions. In the case of limited, the controller module evaluates whether the
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call respects a specific threshold or falls into a specific time frame, for example.
Otherwise (i.e., non-shareable), the controller module checks if there are not
any ongoing calls associated with the method.

Table 1 lists computational and consumed resources’ methods along with
restrictions. Produced resources are dropped from the table since they do not
get involved in any business scenarios unless they become consumed. Because
some methods (e.g., hide and service) are reserved for internal use by providers
and/or engineers, only, they are free of restrictions and hence, not reported in
Table 1.

Table 1: Application of restrictions to methods of resources

Resource category Resource method Restrictions
(l,ns.lr)

Computational activate l:applicable
ns:applicable
lr:applicable

release l:not-applicable
ns:not-applicable
lr:not-applicable

book l:applicable
ns:not-applicable
lr:applicable

cancel l:not-applicable
ns:not-applicable
lr:not-applicable

Consumed book l:applicable
ns:applicable
lr:applicable

cancel l:not-applicable
ns:not-applicable
lr:not-applicable

release l:not-applicable
ns:not-applicable
lr:not-applicable

extend l:applicable
ns:applicable
lr:applicable

consume l:applicable
ns:applicable
lr:applicable

3.4. Resource descriptor

In Section 3.1, we mention that providers and application engineers describe
resources. To support both, we propose a resource’s descriptor model (non-UML
model) and use some of XML terminologies when discussing this model. The
use of these terminologies also helps in converting the model into an XML doc-
ument. In Fig. 3, a resource consists of a unique identifier (e.g., URI), name,
category, and two recursive relations (i.e., “consumes” and “produces”) that re-
fer to the potential connections between resources. In addition, a resource has
two elements that are capacity and method. Each element consists of a name
and description. The multiple descriptions offer a human-readable content that
permits to ease the search of the necessary resources over the repository of re-
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sources. In the descriptor model, some methods are associated with restrictions
that consist of a name, type, and value.

- URI: String
- name: String
- category: ResourceCategory

Resource

1

- name: String
- description: String

Capacity

1

has

- name: String
- description: String

Method

1

consumes produces

0
..n

1

has

- name: String
- l-type: String
- l-value: String

Restriction
0..nhas

1..n

0
..
n

0..n0..n

1..n

Figure 3: Descriptor model of a resource

In Fig. 3, capacity is a way of describing the role of a resource in either
the ecosystem or an application. Capacity is to process (e.g., analyzing a blood
sample) for a computational resource, to abstract (e.g., storing a sensor’s data)
for a produced resource, and to capture (e.g., converting a text file into an XML
document) for a consumed resource. Examples of resource descriptors are given
in Appendix 1.

4. Implementation

Section 1 suggests IoT as a potential application domain that would call for
adjusting the *aaR framework. This adjustment means including extra building
blocks and operation modules in the framework to meet IoT-specific require-
ments. In this part of the paper, we present an IoT-driven case-study along
with its implementation and evaluation.

4.1. Case study

The market for health monitoring systems is currently over stuffed by
application-specific solutions and tools that are disconnected from each other
(i.e., silos) as they are made up of diverse architectures and technologies. Hence,
achieving a cost-effective way that supports the cooperation/interoperability of
these systems and tools is a challenge along with ensuring efficient data ex-
change using standards, for example [23]. For illustration, we study Blue Cross
Blue Shield Association (BCBSA), a US national healthcare federation of thirty
six independent and community-based companies [6]. BCBSA needs to adapt
to the US rapidly changing healthcare business by creating a more dynamic
and responsive system. This system will help quickly analyze the large volume
of data collected/generated from patients (e.g., sensors in rooms), and make it
accessible in different formats when deemed necessary. BCBSA would like to
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ensure that its affiliates (e.g., clinics, practitioners, physicians, and hospitals)
provide safe and efficient care while keeping healthcare cost affordable to the US
population, hence enabling healthier living and communities. In this regard, IoT
is a good candidate for supporting

1. Develop programs, in the form of computational resources, that might pro-
cess inputs and produces outputs, for allowing BCBSA system to connect
to patients’ data sources.

2. Allow BCBSA to use consumed resources to capture the data obtained
from (i) internal systems’ affiliates, (ii) patients’ sensors, (iii) ambient
sensors, and (iv) any other local and national agencies, where potential
patients live.

3. Generate comprehensive patients’ reports/files in the form of produced
resources. These reports/files can be self-updated with the latest data and
news collected from the aforementioned data sources, and made available
in different file formats (e.g., flat files), that other affiliates will use as
consumed resources for further processing.

4.2. System development

Fig. 4 illustrates the architecture of our IoTR4HealthCare system that demon-
strates how the *aaR framework is used for developing a resource-based appli-
cation. IoTR4HealthCare is implemented in a RESTful fashion and uses stan-
dard Web technologies (e.g., HTML5, PHP, and JavaScript) and HTTPS pro-
tocol9. The latter secures communications between IoTR4HealthCare and any
real information-systems like those mentioned in the case study. Additional
components of the system include a secure gateway that wraps sensors and a
Google cloud-based platform upon which some modules of the framework are de-
ployed. Two short videos of IoTR4HealthCare in action are available at social.
connect.rs/resources/admin.mp4 to create gateways and bind them to the
system’s main dashboard and social.connect.rs/resources/doctor.mp4 to
show how a doctor monitors patients.

In the application layer, engineers (i.e., resource providers) access
IoTR4HealthCare through the description module in order to specify their re-
sources along with possible restrictions over the methods of these resources (Ta-
ble 1). This module is under-development and will be a Web application that
generates resource descriptors to store in the resource layer’s repository of re-
sources. For the sake of demonstration, we manually define some necessary
resource descriptors (Appendix 1). Still in the application layer, the compo-
sition module allows the medical staff (e.g., doctors and nurses) and system
administrators to trigger business scenarios (e.g., HeartDiseaseAnalysis and Pa-
tientRecordBackup) stored in the repository of business scenarios with respect to
their needs. The triggering happens through dedicated PHP-based dashboards
and/or RESTful APIs. When a trigger happens, the composition module seeks

9WebSockets, MQTT, or COAP could also be used instead of HTTP protocol.
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Figure 4: Deployment architecture of the IoTR4HealthCare system
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the assistance of the discovery module, developed as PHP scripts, to look for the
necessary resources. To this end, the discovery module uses HTTPS requests
and RESTful get to consult the resource layer’s repository of resources that is
implemented as a Google Cloud SQL database. When a resource is identified,
the execution module carries out the business scenarios under the controller
module’s supervision. For the sake of demonstration too, a business scenario is
described in a simple XML-based data-oriented workflow language proposed by
Sellami et al. [42] and refers in a static way to the necessary resources.

In the resource layer, a token-based strategy is adopted to implement and
validate restrictions over resources’ methods. We assign a token per user who
will involve resources in her business scenario. To this end, we instantiate10 the
*aaR framework’s controller and invoker modules into token-based controller
(authorizes connections to the infrastructure layer’s entities) and token-based in-
voker (involves the infrastructure layer’s entities in business scenarios upon the
token-based controller ’s approval), respectively. In IoTR4HealthCare, the follow-
ing are examples of implemented resources:

• ProcessAmbientData and ProcessPatientData as computational resources
that are automatically triggered to check sensors’ data prior to taking
actions like adjusting the room temperature or calling a nurse.

• ReportPatientHealth as a computational resource that doctors use to pro-
duce and/or consult patients’ medical reports.

• ProcessAmbientData as a computational resource that consumes Gate-
wayConvertedAmbientData like room temperature and produces Gateway-
StoredPatientData like new temperature.

• ProcessPatientData as a computational resource that consumes Gateway-
ConvertedPatientData like heart beat and produces GatewayStoredPatient-
Data like drug levels to patient’s health.

The infrastructure layer includes different IoT-related entities and support en-
tities. In IoTR4HealthCare, some IoT-related entities include patient simulated
sensors for heart beats and ambient sensors for room temperatures (Fig. 5),
actuators like air conditioners that are started/triggered according to ambi-
ent temperatures, and gateway that parses collected data from sensors into
JSON files. Some support entities include Linux CentOS7, Apache 2.2.29, and
PHP 5.6. Acting as a proxy over the IoT-related entities, a gateway receives the
data as consumed resources, labeled as GatewayStoredData, and generates pro-
duced resources, labeled as GatewayConvertedData. Data are stored in a Google
Cloud SQL database.

10Instantiation is an example of adjusting the *aaR framework in response to certain needs
and requirements.
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Figure 5: Collected temperature and humidity data in IoTR4HealthCare using sensors
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4.3. System evaluation

To evaluate IoTR4HealthCare’s cost and latency (i.e., end-to-end delay) met-
rics, we deemed necessary benchmarking them against two well-established so-
lutions namely OASIS Devices Profile for Web Services-Enabled dEvices Plat-
form (DPWS-DEEP) [7, 33] and ROA Event Manager (ROAEM) [9].

• DEEP allows the management of multiple DPWS-described IoT devices
and supports the development of IoT applications by connecting these
devices together via a Raspberry Pi gateway. This gateway transforms the
messages/data received from sensors to DPWS-compliant services (built
over a TCP/IP stack) so that devices are represented as services.

• ROAEM is deployed on top of Publish/Subscribe Applied to Distributed
Resource Scheduling middleware (PADRES) [22] so that it connects event
publishers and subscribers together.

For experimentation purposes, we connect IoTR4HealthCare gateway to a set
of simulated sensors so that it receives their generated data as flat files (txt).
These files are treated as produced resources to become consumed resources at
a later stage. In the following we discuss cost and latency in the context of
IoTR4HealthCare, DEEP, and ROAEM.

• Cost(IoTR4HealthCare,DEEP): in DEEP, the cost of read/write opera-
tions (Table 2) is based on Google resource billing rates available at
cloud.google.com/appengine/pricing. We adopt the same rates for
IoTR4HealthCare in terms of number of sensors, 300 listed patients per
day, and 100 patients with connected sensors who were monitored for
15s per day.

Table 2: Cost estimation of operations performed in DEEP [7]

Operation Read Write Cost per Cost per
operation ($) each 100k ($)

Register patient 1 2 2.50000E-06 0.25
Remove patient 0 2 1.80000E-06 0.18
List patients 1 0 1.20000E-06 0.12
List sensors 1 0 6.00000E-07 0.06
Register sensor 1 2 2.50000E-06 0.25
Remove sensor 1 2 2.40000E-06 0.24
Recover patient
data

1 0 7.00000E-07 0.07

Update value of a
sensor

0 1 1.90000E-06 0.19

The cost of the IoTR4HealthCare gateway operations (Table 3) indicates
that it successfully surpassed DEEP in maintaining lower cost per opera-
tion across the entire simulation period. This is simply due to the way that
IoTR4HealthCare gateway writes collected data sensors (serialized as a sin-
gle JSON file) to the Google cloud-based MySQL database, which charges
per number of write, read, and delete operations. For example, if there
are 100 sensors sending data formatted into one JSON file via the gateway,
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then Google will charge one write operation on the database. Contrarily,
DEEP sends 100 data sensors in any format separately, hence it is charged
for 100 write operations.

Table 3: Cost of operations performed in IoTR4HealthCare

Operation Read Write Cost per Cost per
operation ($) each 100k ($)

Register patient 0 1 1.80000E-06 0.18
Remove patient 0 0 0.20000E-06 0.02
List patients 1 0 0.60000E-06 0.06
List sensor 1 0 0.60000E-06 0.06
Register sensor 1 0 0.60000E-06 0.06
Remove sensor 1 0 0.60000E-06 0.06
Recover Patients
details

1 0 0.60000E-06 0.06

Update patient’s
values (all sen-
sors)

1 1 2.40000E-06 0.24

Fig. 6 illustrates the monthly average number of read/write per opera-
tion in both DEEP and IoTR4HealthCare. Thanks to 45000 monitoring
operations, 9000 values have been calculated based on (100 patients × 15
seconds monitoring per day × 1 data refresh per second × 30 days). We
notice that the number of read/write operations of the same number of
sensors via IoTR4HealthCare gateway is exactly twenty times less than the
number of operations made by DEEP Raspberry Pi gateway.
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Figure 6: Average number of monthly operations for 9000 listed patients

• Latency (IoTR4HealthCare,ROAEM): measuring latency depends on both
the number of connected sensors and the size of the created JSON file
to be sent to the Google cloud-based platform located in the resource
layer. In ROAEM, experiments were performed using both real and sim-
ulated devices. For the sake of consistency, only the simulated results of
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IoTR4HealthCare and ROAEM are compared. In both cases, 30 sensors
were considered using cooja simulator [9].

Fig. 7 illustrates how the latency in ROAEM and IoTR4HealthCare’s gate-
way increases in a linear way with the increase of sensors. However, the
plain- and dashed-trend lines show that latency in ROAEM increased much
faster than in IoTR4HealthCare. This is due to the fact IoTR4HealthCare’s
gateway sends one JSON file to the cloud despite of the number of con-
nected sensors, as such the delay is completely reliant on the size of
the JSON file that is influenced directly by the number of sensors. Con-
trarily, data in ROAEM is sent separately, per each sensor, by the event
manager that in turn needs a lot more time to process the collected data
individually. Latency has helped demonstrate IoTR4HealthCare scalability
when the number of sensors increases, which as mentioned before, was
limited to 30 sensors in this experiment to compare to ROAEM.
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Figure 7: Latency analysis in in IoTR4HealthCare versus ROAEM

5. Conclusion

In this paper, we discussed Everything-as-as-Resource (*aaR) as a paradigm
for designing collaborative systems on the Web. In this paradigm, resources are
part of an ecosystem that features different stakeholders, are categorized into
computational, consumed, and produced, are associated with trackable lifecycles
that stress out their differences from an operation perspective, and finally, are
customized so they accommodate the intrinsic characteristics of future resource-
based applications. The connection between the three categories of resources
is straightforward: a computational resource that is invoked at run-time, could
consume (existing) resources and/or produce (not necessarily new) resources.
Although resources have been widely used in different ICT-related domains, we
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analyzed resources from two perspectives, capacity so that computational re-
sources process data, produced resources abstract data, and consumed resources
capture data, and restriction so that access to resources is controlled in terms
of limitedness, shareability, and renewability. We exemplified *aaR with an
Internet-of-Things (IoT)-based healthcare case-study along with an online appli-
cation referred to as IoTR4HealthCare that uses different technologies such as
JSON and Google cloud. IoTR4HealthCare has been compared to two existing
systems, DEEP and ROAEM, in terms of cost and latency. The obtained results
show that IoTR4HealthCare is less costly and faster than DEEP and ROAEM,
respectively. In term of future work, we will develop an automatic resource
discovery mechanism, complete the implementation of certain modules like de-
scription and definition, and consider the adoption of smart fabrics and net-
worked clothing as discussed in [14]. We will also explore the opportunities of
applying *aaR to other application domains such as sport events [26].

References

[1] P. Adamczyk, P.H. Smith, R.E. Johnson, and M. Hafiz. REST and Web Services:
In theory and In Practice. In E. Wilde and C. Pautasso, editors, REST From
Research to Practice. Springer, 2011.

[2] P.M. Barnaghi and A.P. Sheth. On Searching the Internet of Things: Require-
ments and Challenges. IEEE Intelligent Systems, 31(6), 2016.

[3] P. Bellavista, A. Corradi, and C. Stefanelli. The Ubiquitous Provisioning of Inter-
net Services to Portable Devices. IEEE Pervasive Computing, 1(3), July/Septem-
ber 2002.

[4] T. Berners-Lee, J. Handler, and O. Lassila. The Semantic Web. Scientific Amer-
ican, 284(5), May 2001.

[5] A. Botta, W. de Donato, V. Persico, and A. Pescapé. Integration of Cloud Com-
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Appendix 1

Descriptors of ProcessAmbientData (CMR1) and GatewayStoredPatient-
Data (PR4) according to the *aaR descriptor model (Section 3.4) are provided
in Listing 1 and Listing 2, respectively. For the sake of readability, a simplistic
human readable syntax (YAML11) is used for the descriptors. However, JSON

11YAML Ain’t Markup Language, yaml.org.
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is used for the descriptor representation in the system. Lines 3-4 of Listing 1
describe a computational resource known as CMR1:ProcessAmbientData. This
resource’s role is given in lines 5-8 while its produced resource PR4 is detailed in
lines 9-12. The last element of the descriptor that is method (lines 13-29) repre-
sents CMR1’ methods. Lines 18-21 show how limited restriction (l) is applied to
the activate method so that the call to this method is restricted to authorized
users, only.

Listing 1: Descriptor of the computational resource CMR1

1 ---
2 URI: h t t p s : // s o c i a l . c o n n e c t . r s / r e s o u r c e s / p r o c e s s Amb i e n tD a t a
3 name: p r o c e s s amb i e n t d a t a
4 category : c o m p u t a t i o n a l
5 Capacity :
6 name: s t o r eR o omTemp e r a t u r e
7 de s c r i p t i o n : " S t o r e s ␣ s e n s o r ’ s ␣ d a t a "

8 " D a t a ␣ is ␣ s t o r e d ␣ as ␣ g a t e w a y ␣ s t o r e d ␣ p a t i e n t ␣ d a t a ␣ ( p r o d u c e d ␣ r e s o u r c e ). "

9 produces :
10 URI: h t t p s :// s o c i a l . c o n n e c t . r s / r e s o u r c e s / g a t e w a y S t o r e d P a t i e n t D a t a
11 name: g a t eway s t o r e d p a t i e n t d a t a
12 category : p r o d u c e d
13 method:
14 − name: book
15 de s c r i p t i o n : " s c h e d u l e ␣ the ␣ i n v o c a t i o n "

16 − name: a c t i v a t e
17 de s c r i p t i o n : " b i n d ␣ the ␣ r e s o u r c e "

18 r e s t r i c t i o n :
19 - name: l
20 l−type : A u t h o r i z e d U s e r s
21 l−value : [ u1 , u3 , u10 ]
22 − name: r e l e a s e
23 de s c r i p t i o n : " m a k e ␣ the ␣ r e s o u r c e ␣ a v a i l a b l e "

24 − name: c a n c e l
25 de s c r i p t i o n : " D r o p ␣ the ␣ b o o k i n g ␣ of ␣ the ␣ r e s o u r c e "

26 − name: w i t h d r aw
27 de s c r i p t i o n : " M a k e ␣ the ␣ r e s o u r c e ␣ u n a v a i l a b l e "

28 − name: s e r v i c e
29 de s c r i p t i o n : " M a i n t a i n ␣ and / or ␣ fix ␣ the ␣ f a i l e d ␣ r e s o u r c e "

30 ---

Line 4 of Listing 2 shows the descriptor of a produced resource known as
PR4:GatewayStoredPatientData. As per Listing 1:lines 9-12, CMR1 produces
PR4 that can be consumed as well with respect to its capacity element (lines 5-
8). PR4’s methods are described in lines 9-15.

Listing 2: Descriptor of the produced resource PR4

1 ---
2 URI: h t t p s : // s o c i a l . c o n n e c t . r s / r e s o u r c e s / g a t e w a y S t o r e d P a t i e n t D a t a
3 name: g a t eway s t o r e d p a t i e n t d a t a
4 category : p r o d u c e d
5 Capacity :
6 − name: p a t i e n t d a t a
7 de s c r i p t i o n : " P a t i e n t ’ s ␣ c o l l e c t e d ␣ d a t a ␣ to ␣ be ␣ c o n s u m e d ␣ by ␣ a n o t h e r "

8 " c o m p u t a t i o n a l ␣ r e s o u r c e "
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9 Method:
10 − name: h i d e
11 de s c r i p t i o n : " h i d e ␣ r e s o u r c e ␣ for ␣ i n t e r n a l ␣ use "

12 − name: c o n v e r t
13 de s c r i p t i o n : " m a k e ␣ r e s o u r c e ␣ a v a i l a b l e ␣ as ␣ a ␣ c o n s u m e d ␣ r e s o u r c e "

14 − name: d e s t r o y
15 de s c r i p t i o n : " d e s t r o y ␣ r e s o u r c e "

16 ---
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