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Abstract 
Divergent selection has created rat phenotypes of high- and low-capacity runners (HCR 

and LCR, respectively) that have differences in aerobic capacity and correlated traits such 

as adiposity. We analysed visceral adipose tissue of HCR and LCR using label-free 

HDMSE profiling. The running capacity of HCR was 9-fold greater than LCR. Proteome 

profiling encompassed 448 proteins and detected 30 significant (p <0.05; false discovery 

rate <10%, calculated using q-values) differences. Approximately half of the proteins 

analysed were of mitochondrial origin, but there were no significant differences in the 

abundance of proteins involved in aerobic metabolism. Instead, adipose tissue of LCR rats 

exhibited greater abundances of proteins associated with adipogenesis (e.g. cathepsin D), 

endoplasmic reticulum stress (e.g. 78 kDa glucose response protein) and inflammation 

(e.g. Ig gamma-2B chain C region). Whereas the abundance anti-oxidant enzymes such 

as superoxide dismutase [Cu-Zn] was greater in HCR tissue. Putative adipokines were 

also detected, in particular protein S100-B, was 431 % more abundant in LCR adipose 

tissue. These findings reveal low running capacity is associated with a pathological profile 

in visceral adipose tissue proteome despite no detectable differences in mitochondrial 

protein abundance.



 

 

 

Introduction 
Worldwide the levels of obesity have almost doubled since 1980 and approximately 3.4 

million adults die each year as a result of being overweight or obese. In particular, 

abdominal obesity is associated with a heightened risk of cardiovascular disease and type 

2 diabetes mellitus (T2DM) and is a cardinal feature of the metabolic syndrome. Indeed, 

almost half of the worldwide diabetes burden and one-quarter of the ischaemic heart 

disease burden is attributable to overweight and obesity.  

Diet-induced models of obesity are common as are targeted and spontaneous genetic 

models such as the Zucker fatty rat [1]. However, in addition to diet and energy intake, 

physical activity and energy expenditure also impact on whole body energy balance and 

composition. We have used divergent artificial selection on running capacity to create high-

capacity runner (HCR) and low-capacity runner (LCR) rats that have profound differences 

in running capacity and exhibit numerous correlated traits relevant to human disease. 

While HCR animals are relatively lean and have a low disease-risk profile, LCR rats are 

overweight [2], hypertensive [3], insulin resistant [4] and have a significantly shorter life 

expectancy [5]. Moreover, in response to a high fat diet, LCR are more prone to 

exacerbation of this insulin resistant condition whereas HCR are protected despite their 

low levels of habitual activity and relatively greater calorific intake [2].  

Biochemical assessment of carcass composition [6] reveals the percentage body fat of 

adult LCR (~36 %) is more than double that (~16 %) of HCR. More specifically, the greater 

adiposity of LCR is due to the increased masses of retroperitoneal, omental and 

periretroproductive fat pads [7], and enlargement of such visceral adipose depots, in 

particular, is intimately associated with cardiometabolic disease risk [8]. In striated muscle, 



 

 

the weight of evidence from our HCR/LCR model points to mechanistic links between low 

respiratory capacity and mitochondrial dysfunction associated with defects in contractile 

function and substrate metabolism. In contrast, recent examination of visceral adipose 

tissue of LCR/HCR [9] reported no major differences in mitochondrial enzyme content 

despite overt differences in running capacity and adipose tissue mass. It seems unlikely 

artificial selection has left adipose tissue unaffected but as yet the nature of the effect in 

adipose tissue is unknown at the molecular level. 

Herein, we use label-free proteomic profiling as a non-targeted approach to discover 

differences between HCR and LCR. This approach is designed to highlight candidate 

biomarkers or direct future research regarding the greater adiposity and enhanced rate of 

adipogenesis of LCR in response to environmental stresses such as a high-fat diet. We 

used a quadrupole time-of-flight (Q-TOF) mass spectrometer operated in data-

independent acquisition (DIA) mode, which affords more detailed detection of peak profiles 

and improves measurement precision compared to classic data-dependent acquisitions 

[10]. Relative expression data generated by this instrument was analysed using the “Hi-3” 

method wherein label-free quantitation is performed on the summed ion counts from the 3 

most intense peptides from each protein normalised to an exogenous protein spiked in to 

each sample [11]. This approach affords robust differential analysis based on the 

normalised abundance of proteins and was performed on biological replicates of HCR and 

LCR animals. 

 

 



 

 

 

Method 

2.1 Animal model and tissue collection  

The inception of HCR-LCR strains from a founder population of genetically heterogeneous 

N:NIH rats has been described in detail [12]. Animals were housed (two per cage) in 

accordance with the University of Michigan Committee guidelines on the use and care of 

animals. Environmental conditions were 20-21 ºC, 40-50 % relative humidity with a 12 h 

light (0600-1800) and dark cycle, and food and water were available ad libitum. 

Rats from generation 26 of selection were used in the current work. Consistent with our 

standard selection procedures [12], HCR and LCR animals were phenotyped by their 

maximum running capacity at 10 wk of age. Briefly, endurance trials were performed on an 

inclined (15 degrees) motorised treadmill (Columbus Instruments, OH) on 5 consecutive 

days. The treadmill velocity began at 10 m/min and was increased by 1 m/min every 2 min 

until exhaustion. Exhaustion was operationally defined as the third time a rat could no 

longer keep pace with the speed of the treadmill and remained on the shock grid for 2 s. At 

this point the total distance (m) run was recorded. The single best distance of the 5 trials 

was considered as the performance indicator most closely associated with the heritable 

component of endurance running capacity. Other than the aforementioned phenotyping 

trials, rats used in the current report were sedentary and did not perform exercise training. 

Therefore, the difference in running capacity between HCR and LCR is primarily an innate 

response to selection.  

Two weeks after completing the exercise trials male HCR and LCR rats (n = 6, of each) 

were weighed and anesthetised using sodium pentobarbital (60 mg/kg body mass). 



 

 

Retroperitoneal fat pads were surgically excised then freeze-clamped in liquid nitrogen and 

stored at -80 °C as part of our routine tissue archiving procedure.  

2.2 Sample preparation 

Visceral fat samples (~100 mg) were homogenised on ice in 10 volumes of 1 % (v/v) Triton 

x-100, 250 mM sucrose, 100 mM NaCl, 5 mM EDTA, 25 mM Tris, pH 7.4, at 4 ºC, 

containing Complete protease inhibitor (Roche Diagnostics). After centrifugation at 12,000 

g, 4 ºC for 45 min supernatants were decanted and an aliquot containing 100 μg protein 

precipitated in 5 volumes of acetone for 1 h at -20 ºC. Pellets were resuspended in 1% 

(w/v) SDS and incubated at 90 ºC for 30 min before being washed twice through 5 kDa 

molecular weight cut-off spin columns (Vivaspin; Sigma-Aldrich, Gillingham, UK) using 

0.1% (w/v) Rapigest SF (Waters; Milford, MA) in 50 mM ammonium bicarbonate (500 μL 

per wash). Protein suspensions were concentrated to 50 μL then incubated at 80 ºC for 15 

min. DTT was added (final concentration 1 mM) and incubated at 60 ºC for 15 min followed 

by incubation whilst protected from light in the presence of 5 mM iodoacetamide at 4 ºC. 

Sequencing grade trypsin (Promega; Madison, WI) was added at a protein ratio of 1:50 

and digestion allowed to proceed at 37 ºC overnight. Digestion was terminated by the 

addition of 2 μL concentrated TFA and peptide solutions were cleared by centrifugation at 

13 000 g for 5 min. Samples were diluted 1:1 with a tryptic digest of yeast alcohol 

dehydrogenase (100 fmol/ μL) to enable the amount of each identified protein to be 

quantified, as described previously using a “Hi 3” methodology [11]. 

2.3 HDMSE 

Tryptic peptide mixtures were analysed by nanoscale ultra-performance liquid 

chromatography (nanoACQUITY, Waters, Milford, MA) and online nano electrospray 



 

 

ionisation (ESI) ion-mobility mass spectrometry (HDMSE; SYNAPT G2-S, Waters, 

Manchester, UK). Samples (200 ng tryptic peptides) were loaded in aqueous 0.1% (v/v) 

formic acid via a Symmetry C18 5 μm, 5 mm x 300 μm pre-column (Waters, Milford, MA). 

Separation was conducted at 35 ºC through a HSS T3 C18 3 μm, 15 cm x 75 μm analytical 

reverse phase column (Waters, Milford, MA). Peptides were eluted using a gradient rising 

to 40 % acetonitrile 0.1% (v/v) formic acid over 90 min at a flow rate of 300 nL/min. 

Additionally, a Lockmass reference (100 fmol/ μL Glu-1-fibrinopeptide B) was delivered to 

the NanoLockSpray source of the mass spectrometer at a flow rate of 500 nL/ min, and 

was sampled at 60 s intervals.  

For all measurements, the mass spectrometer was operated in a data-independent 

positive ESI mode at a resolution of >20,000 FWHM. Prior to analysis, the time of flight 

analyser was calibrated with a NaCsI mixture from m/z 50 to 1990. HDMSE analyses were 

conducted within the Triwave ion guide. Accumulated ions were separated according to 

their drift time characteristics in the N2 gas-filled mobility cell prior to collision induced 

dissociation (CID) alternating between low (4 eV) and elevated (14-40 eV) collision 

energies at a scan speed of 0.9 s per function over 50-2000 m/z. 

Each biological sample was analysed in replicate. Analytical data were LockMass 

corrected post-acquisition using the doubly charged monoisotopic ion of the Glu-1-

fibrinopeptide B. Charge reduction and deconvolution of potential parent-fragment 

correlation was achieved in the first instance by means of retention and drift time 

alignment, as described previously [13]. Briefly, protein identifications and quantification 

information were extracted using the dedicated algorithms employed in ProteinLynx 

GlobalSERVER (PLGS) v2.5 (Waters, Milford, MA). Peak lists were searched against the 

Uniprot database (date 18th Jan 2012) restricted to ‘Rattus’ (7500 entries). The enzyme 

specificity was trypsin allowing one missed cleavage, carbamidomethyl modification of 



 

 

cysteine (fixed), oxidation of methionine (variable) and the parent and fragment ion ppm 

error automatically calculated from the data. Decoy databases were employed to allow the 

calculation of identification error rates and scoring of the database searches was refined 

by correlation of physicochemical properties of fragmented peptides from theoretical and 

experimental data. Data were uploaded and checked in PRIDE converter and inspector 

[14]. Functional enrichment testing was performed using the Database for Annotation, 

Visualisation and Integrated Discovery (DAVID v6.7; [15, 16]) and protein interactions 

were investigated using the search tool for interacting genes/proteins (STRING v9.1; [17]). 



 

 

 

Results 

3.1 Exercise capacity of HCR and LCR rats 

Proteome profiling was performed on retroperitoneal fat from male HCR and LCR of 

generation 26. The average running capacity of HCR (1926 ± 160 m) was ~9-fold greater 

(P <0.0001) than LCR (216 ± 34 m), whereas the average body weight of LCR (329 ± 23 

g) was ~50 % greater (P <0.0001) than HCR (242 ± 13 g). Fat pad masses were not 

recorded during the tissue archiving procedure, but as a point of reference, Table 1 in 

Demarco et al., [7] reports the masses of retroperitoneal, perireproductive and omental fat 

depots in male and female HCR and LCR rats from generation 27 at 30 wk of age. 

Consistent with a number of earlier studies (e.g. [2, 18-21]), Demarco et al., [7] reports 

retroperitoneal mass in male LCR (11.14 ± 1.2 g) was more than double (P <0.005) that of 

HCR (4.2 ± 0.5 g). 

3.2 HDMSE analysis of visceral fat proteins 

HDMSE analysis of replicate adipose tissue homogenates from 6 HCR and 6 LCR rats 

produced a non-redundant list of 1,023 proteins at a false positive rate of <4 %. This 

number is close to the 1,493 proteins identified in Xie et al., [22] using LC-MS/MS analysis 

of 20 molecular weight fractions (i.e. GeLC-MS/MS) of adipocytes isolated from human 

subcutaneous adipose tissue. Adachi et al., [23] reports a more comprehensive catalogue 

(total 3,287 proteins) of adipocyte proteins, which was achieved by fractionating 3T3-L1 

adipocytes to nuclear, mitochondrial, membrane and cytosolic components followed by 

GeLC-MS/MS to culminate in a total of 45 fractions per sample. MS data of technical 

replicates of each HCR and LCR sample is available in the PRoteomics IDEntification 



 

 

(PRIDE) database (www.ebi.ac.uk/pride/). Supplementary table S1 reports the identity and 

relative abundance of a subset of 448 proteins that were replicated in at least 4 out of the 

6 samples from each group and were used in differential statistical analysis of the HCR 

and LCR groups. Table S1 also includes data extracted from Adachi et al., [23]  reporting 

homologues of proteins identified in the mouse adipocyte proteome. 

Based on the estimated protein abundance on-column, the dynamic range of the current 

analysis spanned 3 orders of magnitude. Amongst the most abundant (amount on column) 

proteins identified were serum albumin (~75 pg), carbonic anhydrase (~28 pg) and fatty 

acid ethyl ester synthase (~26 pg), which is a major lipase in white adipose tissue. The 

least abundant (amount on column) proteins meeting the inclusion criteria for statistical 

analysis were galectin-5 (0.06 pg), dimethylarginine dimethylaminohydrolase 1 (0.063 pg) 

and mitochondrial fusion protein 1 (0.076 pg). Supplementary table S1 reports the protein 

scores, number of peptides, sequence coverage, estimated abundance, and differences in 

relative abundance between HCR and LCR for the 448 proteins included in the statistical 

analysis.  

Gene ontology analysis performed using DAVID found the majority of proteins were of 

cytosolic (130 proteins) or mitochondrial (128 proteins) origin. Prominent Biological 

Processes included: alcohol catabolic process (30 proteins) and glucose catabolic process 

(27 proteins). While the main Molecular Functions related to GTP binding (50 proteins) and 

nucleotide binding (172 proteins). When clustered according to associations in the Kyoto 

Encyclopaedia of Genes and Genomes (KEGG; http://www.genome.jp/kegg/), the top 

ranking pathway was Glycolysis/gluconeogensis, which encompassed 27 proteins 

representing 6.2 % of the documented pathway. Other prominent pathways included Fatty 

acid metabolism (18 proteins) and Glutathione metabolism (19 proteins). 



 

 

A total of 79 statistically significant (P<0.05) differences in protein abundance were 

detected between HCR and LCR adipose samples and after correction (q-value) for 

multiple testing, 30 significant differences exhibited a false discovery rate of less than 10 

% (q<0.1). Table 1 reports the protein identity and differences in abundance between HCR 

and LCR for the top-ranked (P<0.05, FDR <10 %) 30 proteins. A number of the proteins 

that differed between HCR and LCR have previously been associated with adipogenesis or 

adipocyte differentiation in vitro. Proteins associated with antioxidant or cellular stress 

response, immune cell function and energy metabolism were other prominent features. 

Amongst the most abundant of the differentially expressed proteins were serotransferrin 

(~29 pg on column) and long-chain fatty acid CoA-ligase 1 (~15 pg on column) while the 

least abundant (>0.5 pg on column) differentially expressed proteins detected included 

sulfotransferase 1A1, IgG2B C-chain and mitogen-activated protein kinase 3. 

The search tool for the retrieval of interacting genes/proteins (STRING) was used to 

construct a graphical network (Figure 1) based on evidence of co-expression, protein-

protein interaction, co-occurrence in KEGG pathways and literature mining. The network 

constructed from 15 proteins that matched to the STRING DB and were significantly 

(P<0.05, FDR <10 %) more abundant in LCR included protein-protein interactions between 

Mapk3 and Hspa5, Aldh2, TF, Acsl1, Tpi1 and Gapdh. Protein-protein interactions were 

also found between Aldh2 and Tpi1, and for Acsl1 and Hspa5. Co-expression was 

reported between Tf and Hpx, Tpi1 and Gapdh, Acsl1 and Ctsd, Mapk3 and Ctsd, Igg-2a 

and 678757 (IgG-2B chain C region). In addition links were drawn based on co-occurrence 

in KEGG pathways and text mining. 

Fewer interactions were found within the 13 proteins that were significantly (P<0.05, FDR 

<10 %) more abundant in HCR. The only notable evidence being co-expression of 

peroxiredoxin 6 and selenium-binding protein in 1 proteomic profiling experiment.



 

 

 

Discussion 
Despite a 9-fold difference in innate running capacity there was no difference in the 

abundance of mitochondrial proteins between HCR and LCR visceral adipose tissue. 

Instead, our non-targeted analysis highlighted significant differences in putative adipokines 

and proteins involved in adipogenesis, oxidative stress and inflammation. Our label-free 

profiling encompassed 448 proteins and detected 30 statistically significant (P<0.05, FDR 

<10 %) differences in protein abundance. The majority of these proteins have previously 

been detected in proteomic analyses of adipocytes isolated from human [22] or mouse [23] 

adipose tissues. Notable exceptions include IgG and MHC proteins that were significantly 

more abundant in LCR. This may indicate greater infiltration of inflammatory cells in LCR 

visceral adipose tissue. 

The role of macrophages and T lymphocytes in adipose tissue inflammation has long been 

recognised, whereas the role of B lymphocytes has more recently come to light. Herein we 

report the pro-inflammatory IgG-2B Chain C isotope, which is produced by B cells was 362 

% more abundant in LCR visceral adipose tissue. The accumulation of B cells in adipose 

tissue is an early event in diet-induced obesity that precedes T cell infiltration, the onset of 

insulin resistance and macrophage accumulation [24]. During obesity, B cells within 

adipose tissue may instigate inflammation both by presenting antigen via MHC I to activate 

CD8+ (i.e. cytotoxic) T cells and through the production of pro-inflammatory IgG2c [25]. 

When studied in vtiro, B cells modulate T cell release of pro-inflammatory cytokines [26] 

and our data suggests low aerobic capacity may also be associated with similar pro-

inflammatory interactions.  



 

 

ER stress associated with adipocyte enlargement is another early mechanism associated 

with inflammatory responses such as the production of TNF-α and infiltration of 

macrophages to adipose tissue [27]. The 78 kDa glucose-regulated protein (GRP-78, also 

known as BiP) was more abundant in LCR and is a recognised marker of ER stress that is 

induced by the unfolded protein response associated with adipogenesis [28] and 

pharmacological agents such as tunicamycin [29]. ER stress can occur due to the 

accumulation of unfolded proteins caused by oxidative stress-related protein damage. 

Accordingly, anti-oxidant enzymes, including superoxide dismutase, peroxiredoxin 6 and 

glutathione S-transferase were significantly less abundant in LCR. This finding is 

consistent with the greater oxidative stress reported in the kidneys [30], liver [21], skeletal 

muscle [31] and heart  [32] of LCR rats and further highlights oxidative stress as a 

common process associated with low aerobic capacity. Herein non-targeted proteomics 

also detected a significantly greater (43 %) abundance of mitogen-activated protein kinase 

3 (ERK1), which is commonly activated in adipocytes exposed to pharmacologically 

induced ER stress [33] or inflammatory cytokines [34]. This finding adds weight to the 

hypothesis that low innate aerobic capacity per se is sufficient to predispose animals to 

obesity and adipose tissue inflammation. 

Adipose tissue is recognised as an endocrine organ that secretes adipokines that affect 

tissues such as the hypothalamus, liver and skeletal muscle. In addition to well described 

adipokines, such as leptin, proteomic studies (e.g. [35-37]) point to a broad array of 

putative adipokines that may be released or secreted from adipocytes in vitro. In addition, 

comprehensive mining of the 3T3-L1 adipocyte proteome by Adachi et al [23] highlighted 

554 adipocyte proteins with signal peptides for the ER-Gologi export pathway. Five of the 

proteins that differed in abundance between HCR and LCR (Table 1) either have a signal 

peptide or have been reported as secreted from adipocytes in vitro. Putative adipokines 



 

 

that were more abundant in LCR visceral adipose tissue include S100-B, cathepsin D, 

serotransferrin and GRP-78/ BiP, whereas sulfotransferase 1A1 and galectin-1 were more 

abundant in HCR. The majority of the above proteins have been associated with obesity, 

metabolic syndrome or type 2 diabetes. For example mRNA expression of cathepsin D is 

up-regulated in adipose tissue of mice exposed to a high-fat diet and in obese humans, 

and studies in vitro suggest differentiation of pre-adipocytes is dependent upon cathepsin 

D expression [38]. Sulfotransferase 1A1 does not have a signal peptide for the golgi 

excretory pathway but has previously been highlighted as a gene associated with T2DM 

by genome-wide scans. Indeed, sulfotransferase 1A1 mRNA expression is down regulated 

in response to HFD alongside other candidates close to genetic loci for obesity [39]. 

Galectin-1 also lacks a signal peptide but is reported to be more abundant in plasma of 

T2DM patients, which contrasts with our findings. However, galectin-1 is highly expressed 

in skeletal muscle [40] and exposure of skeletal muscle to glucose increases galectin-1 

[41]. Thus, the elevations in plasma galectin-1 in T2DM patients may primarily arise from 

skeletal muscle rather than adipose tissue. 

S100-B does not have a canonical signal peptide but is relatively abundant in adipose 

tissue (HCR 0.37 ±	  0.28; LCR 1.7 ±	  0.57 pg on coulmn) and is widely documented as a 

secreted protein. Circulating levels of S100-B correlate positively with BMI [42] and 

visceral obesity [43] but this is not evident in all studies (e.g [44]) and because S100-B is 

also released from brain astrocytes it is also regarded as a biomarker of blood-brain 

barrier permeability. Nonetheless, the current finding that an estimated 100 % difference in 

adipose tissue mass is associated with a >400 % increase in S100-B abundance supports 

the role of this protein as a sensitive biomarker of adiposity. Furthermore, S100-B has 

recently been implicated mechanistically in the interaction between adipocytes and 

macrophages in vitro. Fujiya et al.,  [45] report S100-B stimulates the release of TNF-α 



 

 

from RAW macrophages and primary monocytes, and up-regulates markers of M1 

macrophages. Correspondingly, TNF-α	  augments S100-B secretion from 3T3-L1 

adipocytes creating a reciprocal interaction that may amplify the inflammatory response of 

adipose tissues in obese subjects.	  

When fed a high-fat diet (HFD), LCR gain significantly more weight than HCR despite the 

fact that HCR consume a greater amount of calories relative to body mass [2] In the 

current work, many of the proteins that were more abundant in LCR visceral adipose tissue 

are also recognised markers of adipocyte differentiation. For example the greater 

abundances of glycerol-3-phosphate dehydrogenase and long chain fatty acid CoA ligase 

may contribute to the relatively greater propensity for obesity in LCR rats. Our non-

targeted analysis was able to detect important adipose tissue proteins highlighted through 

hypothesis-led research, including lipoprotein lipase, fatty acid translocase, adipose fatty 

acid binding protein, adipose triglyceride lipase (ATGL), hormone sensitive lipase, fatty 

acid synthase, perilipin 1 and retinol binding protein 4. However, the abundances of these 

proteins were not significantly different between HCR and LCR visceral adipose tissue. 

Interestingly, LCR did exhibit lesser abundance (P<0.05, FDR >10 %) of comparative gene 

identification-58, which enhances the lipase activity of ATGL [46] and has previously been 

reported to be less abundant in LCR adipose tissue [9]. 

 



 

 

 

Summary 
Whilst adiposity is a correlated trait of selection on running capacity, it is not associated 

with overt differences in the profile of enzymes of aerobic metabolism in adipose tissue. 

Instead, our non-targeted proteomic analysis has revealed LCR visceral adipose tissue 

has relatively poor defences against oxidative stress and exhibits markers of adipocyte 

differentiation, ER stress and inflammation. Moreover, several putative adipokines differed 

in abundance between HCR and LCR. In particular S100-B protein, which has recently 

been mechanistically linked in adipose tissue inflammation was 431 % more abundant in 

LCR and may represent candidate biomarker of clinical relevance. 
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Figure Legend 

Figure 1- Association network drawn from proteins that differed in abundance in HCR and 

LCR visceral adipose tissue. 

Proteins that exhibited statistically significant (P<0.05, FDR <10 %) differences in 

abundance (Table 1) were imported to the statistical tool for the retrieval of interacting 

genes/proteins (STRING). Nodes represent individual proteins annotated with common 

gene names: 678757, Ig kappa chain C region, B allele; Acsl1, long-chain fatty acid Co-A 

ligase 1; Aldh2, aldehyde dehydrogenase 2; Ctsd, cathepsin D; Gapdh, glyceraldehyde-

3-phosphate dehydrogenase; Gpd1, glycerol-3-phosphate dehydrogenase [NAD+] 

cytosolic; Hpx, Hemopexin; Hspa5, 78-kDa glucose-regulated protein; Hspb1, heat shock 

protein beta-1; IgG-2a, Ig gamma-2B Chain C region; Kng1|1, T-kininogen 2; Mapk3, 

mitogen-activate protein kinase 3; Pfn1, profilin-1; Pgk1, phosphoglycerate kinase; Prdx6, 

peroxiredoxin-6; Selenbp1, selenium binding protein-1; Slc25a4, ADP/ATP translocase 1; 

Sod1, superoxide dismutase [Cu-Zn]; Tf, serotransferrin; Tpi1, triosephosphate 

isomerase. 

Vectors between nodes are colour coded to represent different levels of information, 

including: evidence of co-expression (black), protein-protein interaction (pink), concurrence 

in databases such as the Kyoto encyclopaedia of genes and genomes (KEGG; blue) or 

PubMed abstracts (green). A medium confidence cut-off was used and no additional 

interactions were added. 

 


