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 39 
ABSTRACT  40 

Endothelial dysfunction is observed in patients with abdominal aortic aneurysm (AAA), who 41 

have increased risk of cardiovascular events and mortality. This study aimed to assess the acute 42 

effects of moderate and higher-intensity exercise on endothelial function, as assessed by flow-43 

mediated-dilation (FMD), in AAA patients (n=22; 74±6 y) and healthy adults (n=22; 72±5y). 44 

Participants undertook three randomised visits, including moderate-intensity continuous exercise 45 

(40% peak power output, PPO), higher-intensity interval exercise (70% PPO), and a no-exercise 46 

control. Brachial artery FMD was assessed at baseline, 10- and 60-min after each condition. 47 

Baseline FMD was lower in AAA patients compared to healthy adults [by 1.10%, (95% CI, 0.72 48 

to 1.81), P=0.044]. There were no group differences in the FMD responses after each condition 49 

(P=0.397). FMD did not change after the control condition, but increased by 1.21% (95% CI, 50 

0.69 to 1.73, P<0.001) 10 min after moderate-intensity continuous exercise in both groups, and 51 

returned to baseline levels after 60-min. Conversely, FMD decreased by 0.93% (95% CI, 0.41 to 52 

1.44, P<0.001) 10-min after higher-intensity interval exercise in both groups, and remained 53 

decreased after 60 min. This study found that the acute response of endothelial function to 54 

exercise is intensity-dependent and similar between AAA patients and healthy adults. This 55 

provides evidence that regular exercise may improve vascular function in AAA, as it does in 56 

healthy adults. Improved FMD following moderate-intensity exercise may provide short-term 57 

benefit. Whether the decrease in FMD following higher-intensity exercise represents additional 58 

risk and/or a greater stimulus for vascular adaptation remains to be elucidated.  59 

 60 

 61 

 62 

 63 
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NEW AND NOTEWORTHY 64 

Abdominal aortic aneurysm (AAA) patients have vascular dysfunction. We observed a short-65 

term increase in vascular function after moderate-intensity exercise. Conversely, higher-intensity 66 

exercise induced a prolonged reduction in vascular function which may be associated with both 67 

short-term increases in cardiovascular risk, and signalling for longer term vascular adaptation in 68 

AAA patients.  69 

 70 
 71 
KEY WORDS 72 

Abdominal aortic aneurysm; exercise; endothelial function; flow-mediated dilation; 73 

cardiovascular risk 74 

  75 
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INTRODUCTION   76 
Abdominal aortic aneurysm (AAA) is characterized by the abnormal progressive dilatation of the 77 

abdominal aorta, and is usually diagnosed when maximum abdominal aortic diameter is ≥30 mm 78 

(106). Screening studies suggest 1-4% of men and 0.5-1% of women aged over 60 years have an 79 

AAA  (19, 79). AAA is responsible for ~2% of all deaths (30, 65, 83) and these patients are at 80 

high risk of cardiovascular events, such as myocardial infarction and stroke, and mortality 81 

compared to age-matched healthy adults (13, 14, 66). These patients also have a risk of aortic 82 

rupture due to the weakening of the aortic wall at the site of the aneurysm (25, 63). Currently the 83 

only treatment for the weakened aorta is surgical repair, however there is no treatment-related 84 

survival benefit in patients with small AAA (<55mm) (27). Screening reduces AAA-related 85 

mortality by 50%, yet has no impact on all-cause mortality (29, 105). With AAA there is an 86 

increased prevalence of cardiovascular comorbidities, including ischemic heart disease (~45%), 87 

myocardial infarction (~27%) and stroke (~14%) (13, 14), and the risk of cardiovascular 88 

mortality increases by 3% each year after diagnosis of small AAA (13). Patients with small 89 

AAA s are monitored by regular imaging, but up to 70% progress to a diameter ≥55mm 90 

necessitating surgical repair (63), with the associated perioperative mortality and morbidity risk 91 

(52, 89), and cost. Novel therapies are needed which reduce both the risk of cardiovascular 92 

events and the progression of aortic weakening in AAA patients. 93 

 94 

Alterations in the connective tissue of the aortic wall, including an imbalance between 95 

diminished elastin concentration and collagen proteolysis, is the hallmark of AAA disease.  AAA 96 

pathogenesis is not well understood, however endothelial dysfunction is suggested to contribute 97 

to AAA development via increased oxidative stress, inflammation and impaired NO 98 

bioavailability [see recent detailed review (87)]. Thus, treatment that targets endothelial 99 
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dysfunction may benefit patients with AAA . Systemic vascular endothelial dysfunction is 100 

observed in patients with AAA and has been implicated in AAA growth. For example, reduced 101 

bioavailability and sensitivity to nitric-oxide (NO) has been reported in experimental and human 102 

AAA  (53, 107). Endothelial function, as assessed by flow-mediated dilation (FMD), has been 103 

reported to be reduced in patients with AAA  compared to healthy adults which is,  in part, NO-104 

mediated (35, 58, 112). Importantly, brachial artery FMD is associated with AAA size, future 105 

aneurysm growth, and is improved following surgical repair of AAA (58, 61, 93). FMD is also 106 

strongly associated with the general risk of cardiovascular-related events and mortality in healthy 107 

individuals and those with cardiovascular disease (37, 59). Thus, improving endothelial function 108 

could be a valuable treatment target for reducing cardiovascular risk, and possibly limiting 109 

aneurysm growth, in patients with AAA. 110 

  111 

Brachial FMD improves after regular exercise in patients with known cardiovascular disease and 112 

established endothelial dysfunction, including in individuals with coronary and peripheral artery 113 

disease (21, 70, 108), suggesting that exercise might be a possible treatment option to reverse 114 

endothelial dysfunction in patients with AAA. Vascular improvements with exercise training 115 

depend somewhat on the intensity of exercise (76, 84). An important contribution to the 116 

beneficial effect of exercise on arterial remodelling has been attributed to the repetitive, acute 117 

increases in blood flow and shear stress observed during a single-bout of exercise (36), which 118 

have also been suggested to be beneficial for preventing AAA growth at the site of the aorta (3). 119 

In healthy adults, endothelial function is reported to increase after low and moderate-intensity 120 

exercise, but decrease after higher-intensity exercise (10, 15, 24, 49). The effect of exercise on 121 

FMD in individuals with underlying endothelial dysfunction may be augmented (22) compared 122 
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to healthy adults (51). However, the effect of exercise intensity on endothelial function in 123 

patients with established cardiovascular disease is less clear, with transient increases (23) and 124 

decreases (51, 60, 88, 104) in FMD reported after both moderate and higher-intensity exercise. 125 

Whether increased exercise intensity has a negative influence at the site of the aneurysm is 126 

unclear. However, aortic wall shear stress has been reported to increase during mild and 127 

moderate-intensity exercise. and decreases aortic flow stasis associated with aneurysm 128 

progression in patients with AAA (91). 129 

 130 

To date, exercise therapy in patients with AAA has been prescribed using a relatively low- to 131 

moderate-intensity continuous exercise (11, 12, 55, 64, 95, 110). Higher-intensity interval 132 

exercise enables a greater volume of exercise to be achieved with shorter bouts, and may have 133 

additional cardiovascular benefits in clinical groups, including increases in endothelial function, 134 

compared to moderate-intensity continuous exercise (76). Higher-intensity interval exercise has 135 

been suggested as an alternative method of training for patients with AAA , but has not been 136 

thoroughly investigated (109). A better understanding of the acute effect of different exercise 137 

intensities on endothelial function in patients with AAA could provide insight in to the potential 138 

role of exercise training in reducing cardiovascular risk and for limiting AAA growth in these 139 

individuals. We therefore aimed to determine the effect of a single-bout of moderate- and higher-140 

intensity cycling exercise on FMD in patients with AAA and healthy older adults. We 141 

hypothesized that exercise intensity would alter the post-exercise FMD response in both groups, 142 

and that the overall FMD response to exercise would be augmented in patients with AAA 143 

compared to healthy older adults 144 

 145 
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METHODS 146 

Participants 147 

All study participants (patients with AAA  and healthy adults) were included if they were 60-86 148 

years old, able to exercise and did not have medically untreated, or uncontrolled hypertension 149 

(defined as an average SBP ≥140 mmHg and/or an average DBP ≥90 mmHg). For all 150 

participants, the exclusion criteria included a BMI over 39, reversible or inducible myocardial 151 

ischemia during exercise stress testing for which a cardiologist judged they were not suitable for 152 

exercise or diagnosed uncontrolled cardiac arrhythmia with recurrent episodes or symptoms on 153 

exertion. Further exclusion included documented medical history of the following; chronic heart 154 

failure, severe aortic stenosis, ankylosing spondylitis or chronic obstructive pulmonary disease. 155 

Participants with documented peripheral neuropathy, venous insufficiency or any concomitant 156 

vascular disease (e.g. Raynaud’s or vasculitis) were also excluded prior to study entry.  157 

Additional to the above study exclusion criteria, healthy control participants were excluded if 158 

they had a family history of AAA or known aneurysmal disease. 159 

 160 

Twenty-two males with small AAA (30-45 mm maximal diameter) were recruited from public 161 

and private vascular units on the Sunshine Coast, Australia. All patients were under current 162 

clinical surveillance and AAA size was confirmed with ultrasound by a trained vascular 163 

sonographer at study entry. Twenty-two healthy males were recruited as control participants 164 

through local advertisement and from a University of the Sunshine Coast Alumni group. During 165 

the study, participants continued to take all prescribed medication.  All participants provided 166 

written informed consent. The study conformed to the Declaration of Helsinki and was approved 167 
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by the human research ethics committees of the Prince Charles Hospital, Brisbane 168 

(HREC/12/QPCH/13), and the University of the Sunshine Coast. 169 

 170 

Research Design 171 

This was a cross-sectional, randomized cross-over study. AAA and healthy participants 172 

underwent four visits on separate days to the clinical exercise physiology laboratory at the 173 

University of the Sunshine Coast. Participants refrained from alcohol and exercise for 24h and 174 

caffeine for 12h before each visit (97). Visit 1 consisted of measurement of height, body mass, 175 

and estimation of body composition using bio-impedance scales (BC 545N, Tanita, Australia). 176 

Participants then underwent a maximal incremental cycling test for the determination of VO2peak 177 

and peak power output (PPO). Experimental visits (2-4) were conducted in a randomised, 178 

counter-balanced order and consisted of two separate acute cycling exercise conditions 179 

(moderate-intensity continuous vs. higher-intensity intervals) or a no-exercise control condition 180 

(Figure 1). Blood pressure and brachial artery FMD were assessed following 20 min of supine 181 

rest at baseline, 10-min and 60-min into recovery after exercise or control conditions. Each 182 

experimental visit followed an overnight fast with a standardised breakfast (oat biscuits) 3 hours 183 

prior. To control for diurnal variation in blood pressure and vascular function each visit was 184 

performed at the same time of day (50). Visits were >3 days apart to ensure recovery between 185 

them. All visits were conducted in a mean laboratory temperature of 23 ± 0.9 °C. 186 

 187 

Maximal incremental cycling test for determination of cardiorespiratory fitness   188 

After pre-exercise measures, the test commenced with a 3-min warm up at 0W on a cycle 189 

ergometer (Lode Corival, Groningen, Netherlands). Intensity then increased to 20W for 1 min, 190 
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and by a further 10 W/min until volitional cessation. Participants were required to self-select and 191 

maintain a pedal cadence between 60 and 90 RPM throughout the test. Expired gases were 192 

continuously collected (Parvo Medics, UT, USA) for the determination of oxygen uptake (V̇O2), 193 

and carbon dioxide production (V̇CO2), and the respiratory exchange ratio (RER: V̇CO2/V̇O2), 194 

which were averaged every 15 s. Heart rate was measured continuously using 12-lead ECG 195 

(Mortara Inc., WI, USA) and was recorded alongside ratings of perceived effort (RPE) in the 196 

final 10 s of each stage. VO2peak was determined as the highest 15s average during the final 60 s 197 

of peak exercise. Peak power output (PPO) was used to establish cycling intensity during the 198 

subsequent experimental visits.  199 

 200 

Experimental exercise and control conditions (visits 2-4) 201 

The experimental protocol is summarised in Figure 1. Following pre-exercise measurements of 202 

blood pressure and FMD, participants undertook 27 mins of either: 1) moderate-intensity 203 

continuous cycling, 2) higher-intensity interval cycling, or 3) seated-rest as a no-exercise control. 204 

Both exercise conditions commenced with a 3-min warm-up at 0W, followed by 24 mins of i) 205 

moderate-intensity continuous cycling exercise at 40% PPO, or ii)  higher-intensity interval 206 

cycling exercise incorporating 12 x 60 s bouts at 70% PPO, each separated by 60 s at 10% PPO. 207 

The moderate-intensity continuous and higher-intensity interval cycling exercise conditions were 208 

matched for total duration and work, for each individual. Heart rate (12-lead ECG) and rating of 209 

perceived exertion (RPE) (18) were recorded at 60 s intervals throughout each condition. Blood 210 

pressure was monitored and recorded every 6-min using a manual sphygmomanometer. During 211 

higher-intensity interval exercise, this was performed during the 60s of the high-intensity 212 
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intervals. Immediately following each exercise/control condition, participants returned to the 213 

supine position for measurement of blood pressure and FMD at 10 and 60 min post. 214 

 215 

Measurement of brachial artery FMD 216 

Brachial blood pressure was obtained from the right arm, ≥5 min prior to each brachial artery 217 

FMD measurement, and all FMD measurements were performed in line with recent technical 218 

recommendations (17, 39, 97). FMD was performed with participants in the supine position, on 219 

the right arm with the cuff placed distal to the olecranon process. A 12-MHz multi-frequency 220 

linear array probe, attached to a high-resolution duplex ultrasound machine (T3000; Terason, 221 

Burlington, MA), was used to image the brachial artery in the distal third of the upper arm to 222 

simultaneously record the longitudinal B-mode image and Doppler blood velocity trace. The 223 

Doppler angle of insonation was maintained at 60º. Images were optimised, and the settings 224 

(depth, focus position and gain) were maintained between FMD assessments within each test 225 

visit, as was the location of the probe which was marked on the skin using sweat-resistant ink. 226 

Following a 60-s recording period of diameter and velocity, the cuff was rapidly inflated (220 227 

mmHg) and maintained for 5 mins (D.E. Hokanson, Bellevue, WA).  Diameter and velocity 228 

recordings resumed 30s prior to rapid cuff deflation (<2s) and continued for 3 mins thereafter. 229 

 230 

Analysis of brachial artery diameter was performed using custom-designed edge-detection and 231 

wall-tracking software, which is largely independent of investigator bias. Recent papers contain 232 

detailed descriptions of the analysis approach (17, 97). FMD was calculated as [(peak diameter-233 

baseline diameter) / baseline diameter] and expressed as a percent change in vessel diameter. 234 

From synchronised diameter and velocity data, blood flow (the product of lumen cross- sectional 235 
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area and Doppler velocity) was calculated at 30 Hz. Shear rate was calculated as 4 times mean 236 

blood velocity/vessel diameter (expressed as s-1). The coefficient of variation (CV) for baseline 237 

FMD% across the three visits in this study was 12.1±2.7 %, which is similar to those previously 238 

reported (10.1-14.7%) (101, 111). Using FMD data from our control condition (baseline and 10 239 

min post control) we established that the within-day CV for FMD% was 9.50±4.37 %.  240 

 241 

Statistical analysis  242 

Continuous data were normally distributed as assessed by Shapiro-Wilks test. A students t-test 243 

was used to assess differences in baseline continuous data between patients with AAA and 244 

healthy adults. Pearson’s Chi Squared test was used to assess differences in categorical data 245 

between patients with AAA and healthy adults. A three-way (group*condition*time) linear 246 

mixed model (LMM) analysis was used to analyse changes in FMD parameters [brachial 247 

diameter, peak diameter and FMD (mm), FMD (%), time to peak, shear rate area-under-the-248 

curve (SRauc), blood flow,] and blood pressure between the two groups (AAA and healthy), 249 

across “time” (baseline, 10- and 60-min post) during each condition (control, moderate- and 250 

higher-intensity exercise). This LMM analysis allows for random factor subjects and fixed 251 

factors of group, condition and time. Absolute FMD (mm) was analysed using a LMM analysis. 252 

In line with recent recommendations (9), and to account for the influence of baseline artery 253 

diameter on FMD% (5, 7, 8) FMD% was assessed using allometric scaling of logarithmically 254 

transformed absolute diameter change (difference between peak artery diameter and baseline 255 

diameter in mm). Logarithmically transformed baseline diameter and shear rate were also 256 

included as covariates specific to each FMD% test. For each group, condition and time-point, the 257 

logged absolute diameter changes were back-transformed and interpreted in the conventional 258 
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manner to obtain allometrically scaled FMD (percent diameter change) for comparative purposes 259 

in line with recent recommendations (4, 10, 86, 102). All other FMD parameters were not logged 260 

for LMM analysis.  261 

To further explore the magnitude and direction of change in FMD% following exercise and 262 

control, we used a three-way (group*condition*time) LMM to analyse delta changes from 263 

baseline in FMD% (again, with baseline diameter and shear rate specific to each time-point 264 

included as covariates). Based on our previous study in healthy older adults (10), we aimed to 265 

detect a minimum absolute difference of 1.5% FMD (representing the difference between the 266 

change in FMD after moderate and higher-intensity exercise). We required 19 participants per 267 

group to detect this difference within and between each group, assuming a 3% standard deviation 268 

of the change, and an alpha level of 0.05with a statistical power of 80% (10).  269 

 270 

Three-way LMM analysis was also used to detect any differences in heart rate, blood pressure 271 

and perceived exertion in response to the acute protocols between the two groups (AAA and 272 

healthy adults), across time (at 2 and 6 min intervals for HR/RPE and BP, respectively) during 273 

each protocol (control, moderate- and high-intensity exercise). Statistically significant 274 

interactions were further investigated with multiple comparisons using the least significant 275 

difference approach (71, 82). The strength of the association between AAA diameter, VO2peak 276 

and FMD% were assessed using Pearson correlation coefficient. Analyses were conducted using 277 

the Statistical Package for Social Sciences (Version 22; IBM SPSS Inc., Chicago, IL). Statistical 278 

significance was defined at P<0.05 and exact P values are cited (P values of “0.000” are reported 279 

as “<0.001”). Data are presented in the text as mean (95% confidence interval, 95%CI) unless 280 

otherwise stated. 281 
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 282 

Results  283 

Participant characteristics 284 

Participant characteristics are presented in Table 1. Mean age was similar in AAA  and healthy 285 

adults (P=0.200). Mean resting blood pressure was similar in patients with AAA and healthy 286 

adults. Cardiorespiratory fitness, measured as VO2peak, was significantly lower in patients with 287 

AAA  compared to healthy adults [mean difference 5.5 ml·kg-1·min-1 (3.4 to 7.3), P<0.001]. Heart 288 

rate at peak exercise during the cardiorespiratory fitness test was significantly lower in patients 289 

with AAA compared to healthy adults [mean difference of 22 bpm (1 to 31), P<0.001]. 290 

 291 

Heart rate, blood pressure and perceived exertion during experimental conditions 292 

There were no significant differences between patients with AAA and healthy adults in heart 293 

rate, blood pressure and RPE throughout each condition (P>0.05). Heart rate responses during 294 

exercise were normalised for the peak heart rate obtained during the cardiorespiratory fitness test 295 

in visit 1. Across both groups (P=0.213), heart rate was highest during higher-intensity interval 296 

exercise [mean 68 %HRpeak (64 to 71 %)] compared to moderate-intensity continuous exercise 297 

[mean 62 %HRpeak (59 to 64%, P<0.01)], and lowest during control [mean 42 %HRpeak (95% CI, 298 

39 to 44), P<0.01]. The increase in mean arterial pressure during higher-intensity interval 299 

exercise [mean change of 14 mmHg (12 to 17)] was similar during moderate-intensity 300 

continuous exercise [mean change of 14 mmHg (11 to 16), P=0.720], whilst increases in mean 301 

arterial pressure responses during both exercise conditions were higher compared to control 302 

[mean change 10 mmHg (8 to 13), P<0.05]. RPE was higher during higher-intensity interval 303 
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exercise [mean RPE 4 AU (3 to 4)] compared to during moderate-intensity continuous exercise 304 

[mean RPE 3 AU (2 to 3, P <0.001)].  305 

 306 

Effect of exercise on endothelial function 307 

Baseline brachial FMD 308 

Brachial FMD was 1.10% (0.72 to 1.81; P=0.044) lower in patients with AAA compared to 309 

healthy adults. No differences in baseline brachial artery diameter were observed between groups 310 

(P=0.604). SRAUC after cuff deflation was higher in healthy adults compared to patients with 311 

AAA  [mean difference of 5.7 103·s-1 (95% CI, 2.4 to 9.1), P=0.001]. Time to peak diameter was 312 

longer in patients with AAA compared to healthy adults [mean difference 14 s (95% CI, 1 to 27), 313 

P=0.044]. Baseline FMD and VO2peak were moderately correlated in the combined group of 314 

participants (r=0.655, P = 0.006; Figure 2). In patients with AAA, there was a modest, but non-315 

significant inverse correlation between maximum AAA diameter and VO2peak (r=-0.356, 316 

P=0.103). There was no significant correlation between maximum AAA diameter and baseline 317 

FMD (r=-0.041, P=0.429).  318 

 319 

FMD responses after exercise and control conditions 320 

Baseline and recovery (10 and 60 min post) brachial FMD% and associated variables are shown 321 

in Table 2. The (delta) changes in FMD% from baseline to recovery (10- and 60-min post 322 

condition) are shown in Figure 3.  323 

 324 

Brachial FMD increased after moderate-intensity continuous exercise, but decreased after 325 

higher-intensity interval exercise in both patients with AAA and healthy adults (Figure 3, Table 326 
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2). Overall, there were no differences in the magnitude of the FMD response over time between 327 

patients with AAA and the healthy older adults (P=0.154). FMD tended to decrease from 328 

baseline after control [at 60-min by 0.43 % (95% CI, -1.10 to 0.96, P=0.115)], but this was not 329 

significant. FMD increased from baseline by 1.21% (0.69 to 1.73), P<0.001) at 10-min after 330 

moderate-intensity continuous exercise, which then returned to near baseline FMD at 60-min. 331 

Conversely, FMD decreased from baseline at 10- and 60-min after higher-intensity interval 332 

exercise, by 0.93% (0.41 to 1.44, P<0.001), and 0.51% (0.01 to 1.02, P=0.040)], respectively.  333 

Thus, the FMD 10-min after the cessation of exercise was significantly higher after moderate-334 

intensity continuous exercise compared with after control (mean difference in FMD of 1.21 % 335 

(95% CI, 0.63 to 1.75, p<0.001) and higher-intensity interval exercise (mean difference of 1.87 336 

% (95% CI, 1.36 to 2.39). At 60-min after exercise, FMD was significantly lower after higher-337 

intensity interval compared to moderate-intensity continuous exercise (mean difference of 0.60 338 

% [95% CI, 0.06 to 1.13], P=0.028). The different responses of FMD% between moderate-339 

intensity continuous and higher-intensity interval exercise were also observed for absolute FMD 340 

(mm) (P=0.024; Table 2). 341 

 342 

To account for differences in FMD% at baseline between AAA and healthy adults, we calculated 343 

the delta change in FMD% after exercise and control (Figure 3). Outcomes of this analysis were 344 

consistent with the analysis based on absolute FMD% in Table 2, and we found an intensity*time 345 

interaction on delta FMD% (p=0.033), but no differences between groups in the delta FMD % 346 

responses after each condition (p=0.522).  347 

 348 

Blood flow and shear rate responses after exercise and control 349 
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Brachial blood flow and shear rate responses are displayed in Table 2. Resting blood flow was 350 

significantly elevated 10 min following both exercise conditions compared to control (P<0.01), 351 

and was greater following higher-intensity compared with moderate-intensity exercise [mean 352 

difference of 0.38 mL.s-1 (95% CI, -0.08 to 0.68), P=0.014] (Table 2). Overall, shear rate was 353 

higher in healthy older adults compared to patients with AAA (mean difference of 4.78 s-1 (95% 354 

CI, 2.21 to 7.35), P=0.002), but was similarly altered by exercise in AAA and healthy adults 355 

(P=0.760). Shear rate was elevated 10 min after both exercise protocols compared with control 356 

(Table 2, P=0.005), and was similar after higher-intensity interval compared to moderate-357 

intensity continuous exercise [mean difference of 1.14 103 s-1 (95% CI, -1.22 to 3.16), P=0.342].  358 

 359 

Heart rate and blood pressure responses after exercise 360 

There was a condition*time interaction for HR, SBP and MAP (P<0.001, see Table 2) where the 361 

mean changes in HR (increase), SBP and MAP (decrease) were larger after exercise compared to 362 

those observed after control. Moreover, no group differences were observed for the HR 363 

(P=0.885) and blood pressure (P=0.553) responses following each condition. Overall, MAP 364 

decreased by 3 mmHg (95% CI, 1 to 5, P<0.004) and 4 mmHg (95% CI, 2 to 6, P<0.001) 60-365 

min after moderate- and high-intensity exercise, respectively, compared to control. 366 

 367 

Discussion  368 

To our knowledge, this is the first study to assess the response of endothelial function during 369 

early recovery from different exercise intensities in patients with AAA. The main finding of this 370 

study was that the response of FMD to a single bout of cycling exercise was similar in patients 371 

with AAA compared to healthy adults of the same age and sex. For both groups, we observed an 372 
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immediate increase in FMD following moderate-intensity continuous exercise, which returned to 373 

near-baseline levels after one hour of recovery. In contrast, FMD decreased immediately 374 

following higher-intensity interval exercise and remained decreased after one hour in both 375 

groups.  376 

 377 

Basal FMD in patients with AAA 378 

In this study, we observed reduced basal FMD in patients with AAA compared to healthy adults, 379 

which is consistent with previous reports (61, 94). Previous studies assessing FMD in AAA fail 380 

to report cardiorespiratory fitness levels, which may also contribute to differences in FMD%. 381 

Poor fitness has previously been shown to be associated with impaired FMD (62), and we 382 

observed a significant relationship between resting FMD and VO2peak in this study.  383 

 384 

Impaired FMD is independently associated with an increased risk of cardiovascular events and 385 

mortality (37, 48, 54, 92), and may contribute to the high burden of cardiovascular disease and 386 

the observation that ~70% of cardiovascular events and mortality in patients that have small 387 

AAA s is independent of aneurysm-related complications (57, 66, 72). As expected, there was a 388 

higher prevalence of comorbidities amongst the patients with AAA compared to the healthy 389 

adults, such as hypertension and dyslipidaemia, which may have contributed to the impairment 390 

of endothelial function identified (26, 96). Patients with AAA also have a higher prevalence of 391 

comorbidities compared to other surgical populations including cardiac (60-70%), respiratory 392 

(50%), and kidney and metabolic disease (10-12%) , all of which are associated with vascular 393 

dysfunction (28, 44, 68, 77). Poor endothelial function in patients with AAA might contribute to 394 
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their elevated cardiovascular risk, and is likely to be exacerbated by the presence of 395 

comorbidities, which reinforces the potential of FMD as a treatment target for this population. 396 

 397 

Time course of FMD response to exercise  398 

The increase in FMD after moderate-intensity exercise in this study has been observed in some 399 

(10, 20, 49, 80), but not all (22, 114) previous studies of healthy adults and those with 400 

cardiovascular disease. Similarly, the observed decrease in FMD after higher-intensity exercise 401 

has been reported in some (15, 51), but not all  (23) studies. Discrepancies between studies may 402 

be related to the timing of measurements after exercise as the FMD response to acute exercise is 403 

suggested to be bi-phasic, with an immediate decrease followed by an increase or return to 404 

baseline FMD after a further period of recovery (1-24h) (24). In this study, we attempted to 405 

capture the bi-phasic response by measuring FMD immediately, and then one hour after exercise. 406 

We found an immediate increase in FMD that then returned to baseline one hour after moderate-407 

intensity continuous exercise, but an immediate and prolonged decrease in FMD after higher-408 

intensity interval exercise. These responses are in line with our previous findings in older adults 409 

that have a poor cardiorespiratory fitness (10), and in patients with peripheral arterial disease 410 

(51). It is possible that we may have observed an improvement in FMD with an extended 411 

recovery period after the higher-intensity exercise, as other studies in individuals with 412 

established endothelial dysfunction have demonstrated a delayed increase in FMD 1-4 hours 413 

after exercise (20, 40). 414 

 415 

Our findings of no difference in the FMD response after exercise between AAA and healthy 416 

adults in this study were somewhat unexpected. It has previously been suggested that a 417 
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“basement effect” exists in older adults with poor endothelial function, where there is an 418 

incapacity for a decrease in FMD after exercise (78). In patients with coronary artery disease 419 

who exhibit severe endothelial dysfunction an increase, not a decrease, was observed in FMD 420 

after exercise, yet no direct comparisons were made to healthy adults of similar age (22). In this 421 

study, both the patients with AAA and the healthy older adults exhibited a degree of endothelial 422 

dysfunction at rest compared with values reported in healthy younger adults (16), potentially due 423 

to older age (99). Despite differences in fitness between groups in this study and its relationship 424 

with endothelial function, the fitness of both groups was “poor” based on normative values for 425 

healthy older adults (1). Further, despite observing no differences in the FMD response between 426 

normotensive and controlled hypertensive individuals in this study (data not shown), we cannot 427 

rule out the potential confounding influence of other known comorbidities and antihypertensive-, 428 

statin- and β-blocker medication on the FMD responses. Nonetheless, cardiovascular risk factors 429 

such as hypertension and known cardiovascular disease, including coronary heart disease, stroke 430 

and previous myocardial infarction are highly prevalent in patients with small AAA (13, 14) and 431 

as such our findings are likely to be generalizable to this patient group. Including a comparative 432 

group with known cardiovascular risk factors and disease may allow for the influence of AAA to 433 

be separated from the influence of other cardiovascular comorbidities. The similar responses in 434 

FMD after exercise in both groups in this study suggests the exercise stimulus per se affects the 435 

endothelium in older-aged individuals in a similar way, irrespective of the resting level of 436 

endothelial function, disease status, medication use or known cardiovascular risk factors.  437 

 438 

Shear rate was lower throughout all conditions and time-points in patients with AAA compared 439 

with healthy older adults. Shear stress is proposed as the primary stimulus for FMD (75, 97), and 440 
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may therefore have contributed to the lower FMD in patients with AAA. Whilst simple 441 

normalization of FMD to shear rate is sometimes utilised (74), we found no linear relationship 442 

between FMD and shear rate (P=0.271, r= 0.21), and therefore used a recommended statistical 443 

model that controlled for shear rate and baseline diameter (6, 9). Given we observed no group 444 

differences in brachial artery diameter, the lower shear rate is likely a consequence of the 445 

decreased reactive hyperaemia in patients with AAA in this study, which may be indicative of 446 

microvascular impairment. As peak reactive hyperaemia is also predictive of future 447 

cardiovascular events in vascular patients (45), further studies investigating microvascular 448 

function in patient with AAA are warranted. 449 

 450 

As we did not directly assess all the mechanisms responsible for exercise-intensity dependent 451 

changes in FMD, we can only speculate on the possible causes, which are suggested to include  452 

changes in blood pressure, shear stress, reactive oxygen species and sympathetic nervous activity 453 

(24). Blood pressure did not differ significantly during and after moderate- and higher-intensity 454 

exercise, and is therefore unlikely to explain the observed differences in FMD responses. NO 455 

bioavailability has been shown to be impaired in patients with AAA (53, 87), and therefore 456 

altered NO bioavailability after moderate-intensity exercise may explain the increase in FMD. 457 

Blood flow patterns during exercise, including increased antegrade flow and shear stress, 458 

enhances NO availability and increases FMD (98, 101, 103). Conversely increases in exercise 459 

intensity and oscillatory shear and/or retrograde flow increase reactive oxygen species, including 460 

superoxide anions (32, 47), which are capable of scavenging NO. This is suggested to reduce 461 

FMD in atherosclerotic-prone arteries (85), which may include and be acutely detrimental to the 462 

aorta, however this is unknown. The observed decrease in brachial FMD following higher-463 
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intensity interval-based exercise in this study may be attributed to repeated and abrupt increases 464 

in brachial artery oscillatory flow (101) observed at the onset of cycling exercise (34), whereas 465 

continuous rhythmic exercise elevates antegrade blood flow and increases FMD (100, 103). 466 

There is also evidence to suggest that FMD may not be solely NO-mediated (69, 73, 112), and 467 

hence other factors should also be considered. Reductions in FMD after higher-intensity, but not 468 

moderate-intensity exercise, may be due to a dose-dependent increase in oxidative stress (32), 469 

endothelin-1 expression (42), or increased sympathetic nervous activity (41), that negatively 470 

impacts endothelial function. 471 

 472 

If the changes in brachial artery FMD responses to exercise mirror changes in the aorta, it is 473 

possible that different exercise intensities may have differing effects on aortic remodelling, and 474 

potentially AAA growth and rupture risk. This, however, remains to be investigated. 475 

Interestingly, aortic blood flow increases during steady-state moderate-intensity cycling exercise 476 

in patients with AAA, enhances wall shear stress and decreases platelet aggregation which has 477 

been suggested to be conducive to preventing AAA progression (43). Whether this proposed 478 

benefit remains during higher-intensity interval exercise warrants investigation, although 479 

exercise-induced increases in shear stress may enhance eNOS expression and vascular repair 480 

mechanisms (81), including the mobilisation of endothelial progenitor cells (113). We did not 481 

measure the effect of exercise on aortic endothelial function in this study, however it has recently 482 

been reported that brachial artery FMD is improved following surgical repair of AAA (58), 483 

suggesting a direct association between aortic and systemic endothelial health in patients with 484 

AAA .  485 

 486 
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FMD responses and potential adaptations with exercise training 487 

The rationale for assessing the time-course of responses in endothelial function after a single 488 

bout of exercise relates to the potential impact of repeated bouts on vascular adaptation with 489 

exercise training (38). FMD is improved following exercise training in sedentary elderly 490 

individuals (56), and the similar acute FMD responses between patients with AAA and healthy 491 

adults in this study suggest a capacity for vascular adaptation in AAA patients. Importantly, 492 

FMD may be further improved after higher-intensity compared to moderate-intensity exercise 493 

training in older adults and in individuals with cardiovascular disease (33, 76, 84). Whether the 494 

difference in the acute FMD responses between moderate- and higher-intensity exercise is 495 

important for future vascular adaptation in patients with AAA is currently unknown. A reduction 496 

in FMD for 60 minutes after higher-intensity interval exercise observed in this study may be 497 

linked to vascular remodelling after a period of exercise training (67). Myers et al (2014) 498 

reported no significant effect on AAA size after a two year exercise therapy intervention, despite  499 

a tendency for a slower aneurysm growth rate after exercise training compared to usual care (64). 500 

That study only used low-to-moderate intensity exercise, and this raises the possibility that any 501 

potential benefit of exercise on vascular function and AAA growth may be dependent on higher-502 

intensity exercise that promotes a greater perturbation in arterial haemodynamics and endothelial 503 

function.  504 

 505 

Exercise and CV risk in patients with AAA 506 

While the absolute risk of exercise is low, acute cardiovascular events induced by a single-bout 507 

of exercise are more common in the elderly and those with atherosclerotic disease (2). Exercise 508 

studies in patients with AAA to date have adopted a conservative approach, potentially due to 509 



Bailey et al.        Exercise and endothelial function in AAA 23 

 23 

concerns over the safety of higher-intensity exercise in patients deemed high-risk. Higher 510 

intensity interval exercise is increasingly being prescribed for patients with cardiovascular 511 

disease and other chronic conditions (21, 46, 76, 84, 90, 114), and our study is the first to report 512 

the short-term vascular effects of higher-intensity exercise in patients with AAA. Long-term, a 513 

decrease in FMD of 1% has been associated with a 9-17% increase in cardiovascular event rate 514 

(37, 48). Whether the acute decreases in FMD (of ~1.0% after higher-intensity interval exercise 515 

in this study) are associated with increased risk of acute events, or conversely are important in 516 

triggering the benefits of exercise, is not known (31, 67). The use of higher-intensity exercise in 517 

patients with AAA needs to consider the short-term, potentially harmful, reduction in endothelial 518 

function and the possible benefits of improved cardiorespiratory fitness and endothelial function 519 

in the longer term. A recent hospital-based study using high-intensity exercise in patients with 520 

AAA reported no detrimental effects, although measures of cardiovascular function were not 521 

reported (109). 522 

 523 

This study has some limitations that should be noted. Since AAA is asymptomatic it is possible 524 

that some of the healthy controls could have had an AAA, although given the low prevalence of 525 

AAA , this is unlikely. We only recruited men and therefore the findings may not be generalised 526 

to women with AAA. We cannot rule out the potential influence of cardiovascular risk reducing 527 

medication on the current findings, including antihypertensive and statin therapy, and further 528 

research is needed to understand the direct impact of medication use on the FMD response to 529 

exercise in patients with cardiovascular disease. Nonetheless, this is the first study to investigate 530 

the acute effects of different exercise-intensities on endothelial function in patients with AAA 531 

compared to healthy adults. Further studies are required to more fully explore the interaction 532 
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between exercise intensity, endothelial function and cardiovascular risk in patients with AAA. 533 

Investigations of the longer-term benefits of higher-intensity exercise training in patients with an 534 

AAA  are warranted. 535 

 536 

 537 

Conclusions  538 

The present study suggests that the acute FMD responses to exercise in patients with AAA are 539 

similar to healthy adults of similar age. We show that FMD transiently improves after moderate-540 

intensity continuous exercise whereas decreases in FMD are observed for up to one hour after 541 

higher-intensity interval exercise. Future studies on the effects of exercise training will be 542 

important to better understand the role of transient changes in endothelial function with acute 543 

exercise on AAA growth and cardiovascular risk. 544 

  545 
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Table Legend 912 

Table 1. Characteristics of patients with AAA and healthy adults 913 

Data are displayed as mean±SD or number (%). BMI, body mass index; AAA, abdominal aortic aneurysm; MI, 914 

myocardial infarction; CABG, coronary artery bypass graft; ARB, Angiotensin II receptor blockers; ACE, 915 

angiotensin converting enzyme; SBP, systolic blood pressure; DBP, diastolic blood pressure; VO2, oxygen uptake; 916 

RER, respiratory exchange ratio.  917 

 918 

Table 2. Flow-mediated dilation and hemodynamic indices at rest and following acute exercise in 919 

healthy adults and patients with AAA 920 

Data are displayed as mean±SD. Absolute FMD (mm) was not logged for analysis. For conventional presentation of 921 

FMD%, absolute FMD data was logged for LMM analysis, back-transformed and interpreted as % change. For 922 

clarity, post-hoc p values are reported in the text only. For FMD% significant group (p=0.044), time (p<0.001), and 923 

intensity effects (p<0.001), and an intensity x time interaction (p<0.001) were observed. There were no group x time 924 

(p=0.154) or group x intensity x time (p=0.697) interactions. *significantly different to baseline #significantly 925 

different to seated rest (control condition) αsignificantly different between moderate- and high-intensity exercise. 926 

FMD, flow-mediated dilation; SRauc, shear rate area-under-the-curve; TTP, time to peak diameter; SBP, systolic 927 

blood pressure; DBP, diastolic blood pressure; MAP, mean arterial pressure.  928 

 929 

Figure Legend 930 

Figure 1. Study protocol for patients with AAA and healthy adults. 931 

Rest, supine position; FMD, flow-mediated dilation; Condition, control (no exercise seated rest), moderate-intensity 932 

continuous cycling (40% peak power-output), higher-intensity interval cycling (12x1 min at 70% peak power-933 

output, separated by 1 min 10% peak power-output); Rest/Recovery, supine position 934 

 935 

Figure 2. Relationship between VO2peak (ml.kg-1.min-1) and basal flow-mediated dilation including 936 
both abdominal aortic aneurysm patients (squares) and healthy older adults (triangles). 937 
 938 
 939 
Figure 3. Mean (black circles) and individual (lines) ∆FMD (%) from baseline at 10 and 60 min 940 

after control, moderate- and higher-intensity exercise in healthy adults (left panels) and patients 941 

with AAA  (right panels). 942 

Data are displayed as mean±95% CI. Significant intensity effect (p<0.001), time effect (p=0.028), intensity x time 943 

interaction (p=0.033). No group effect (p=0.128), or group x intensity x time interaction (p=0.522). *significantly 944 

different to baseline #significantly different to moderate-intensity exercise ≠significantly different to control 945 
βsignificantly different to 10-min post. AAA, abdominal aortic aneurysm; FMD, flow-mediated dilation.  946 

 947 
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Table 1. 
 

AAA patients 
(n=22) 

Healthy adults 
 (n=22) 

 
P value 

 
Age, years 74±6 72±6 0.200 

Male, % 100 100 - 

Height, m 1.73±0.07 1.75±0.07 0.463 

Weight, kg 83.8±15.7 79.1±11.3 0.264 

BMI, kg.m-2 27.9±3.9 26.1±3.5 0.100 

Clinical information    
Maximum AAA diameter (mm) 36±5 - - 

Hypertension, N (%) 15 (68) 5 (22) 0.006 

Dyslipidaemia, N (%)  18 (82) 8 (36) 0.005 

Diabetes 2 (9) 0 (0) 0.478 

Smoking, current N (%) 2 (9) 1 (5) 0.697 

Smoking, previous N (%) 12 (55) 11 (50) 0.701 

Previous stroke, N (%) 2 (9) 0 (0) 0.488 

Previous MI, N (%) 6 (27) 1 (5) 0.021 

Previous CABG, N (%) 11 (50) 1 (5) 0.002 

Medication   

ARB/ACE inhibitors, N (%) 9 (40) 4 (18) 0.140 

Anti-platelet, N (%) 13 (60) 2 (9) 0.003 

Beta-blockers, N (%) 9 (40) 2 (9) 0.034 

Calcium channel blockers, N (%) 4 (18) 1 (5) 0.345 

Statins, N (%) 20 (90) 9 (40) 0.001 
Hemodynamic variables  

Resting heart rate, bpm 59±8 57±8 0.354 

Brachial SBP, mmHg 129±13 124±11 0.206 

Brachial DBP, mmHg 73±7 73±9 0.970 

Peak Cardiorespiratory fitness  

Absolute VO2, L.min-1 1.58±0.36 1.94±0.35 0.002 

Relative VO2, mL.kg-1.min-1 19.03±3.54 24.47±2.78 <0.001 

Peak heart rate, bpm 
Age-predicted peak heart rate, % 

126±15 
86±10 

148±16 
97±11 

<0.001 
<0.001 

Peak RER, AU 1.17±0.10 1.19±0.11 0.575 

Peak Power, Watts 120±20 150±30 <0.001 

 



 

Table 2    
  Control (No Exercise)        Moderate-intensity continuous exercise 

 
   Higher-intensity interval exercise 

 Baseline Post, 10 min Post, 60 min Baseline Post, 10 min Post, 60 min 
 

Baseline Post, 10 min Post, 60 min 

Flow-mediated dilation                                                                                                                  Healthy adults 
 
Artery diameter, mm 4.75±0.50 4.67±0.56 4.63±0.53* 4.78±0.56 4.74±0.54# 4.75±0.52 4.85±0.50 4.90±0.53*# α 4.87±0.55 
FMD, mm 0.02±0.01 0.02±0.01 0.02±0.01 0.02±0.01 0.03±0.01*#α 0.02±0.01 0.02±0.01 0.02±0.01 0.02±0.01 

Rest blood flow, mL.s-1 1.25±0.70 1.12±0.54 0.98±0.67* 1.34±0.61 1.69±1.02*# 0.97±0.67* 1.44±0.68 2.16±1.43*# 0.99±0.56* 

Peak blood flow, mL.s-1 5.25±1.95 4.88±2.36 4.23±2.36* 4.92±2.14 5.42±2.14*# 5.03±2.70 5.28±3.02 6.45±2.46*# α 5.35±2.84# 

SRAUC, 103 s-1 14.03±5.42 13.85±8.58 13.37±7.31* 14.32±8.38 16.90±8.22*# 13.98±7.84 16.20±7.32 17.55±7.94*# α 14.61±6.50* 
TTP diameter, s 64±23 58±24 70±31 62±31 66±25 63±30 65±32 69±28 63±22# 
FMD, % 5.06±1.50 5.12±1.10 4.75±1.10 5.20±1.58 6.14±1.94*# α 5.30±1.30 4.96±1.09 3.84±1.95*# α 4.00±1.43* α 
Heart rate and blood pressure 
Heart rate, bpm 59±10 56±9 54±7 58±8 71±15*# 59±9 58±7 68±10* 58±6 

Systolic BP, mmHg 123±15 130±15* 128±15* 126±13 132±13* 127±15 123±11 130±13* 123±11 
Diastolic BP, mmHg 72±10 76±10 74±10 74.10± 76±8 75±11 73±9 76±9 75±10 
MAP, mmHg 87±11 91±11* 90±11* 89±10 93±9* 86±10 87±9 92±11* 88±9 

Flow-mediated dilation                                                                                                   Abdominal aortic aneurysm patients 
 
Artery diameter, mm 4.90±0.38 4.90±0.40 4.80±0.44* 4.81±0.52 4.77±0.53# 4.76±0.54 4.94±0.50 4.95±0.46 4.93±0.43 
FMD, mm 0.02±0.01 0.02±0.01 0.02±0.01 0.02±0.01 0.03±0.01*# α 0.02±0.01 0.02±0.01 0.01±0.01* 0.02±0.01 
Rest blood flow, mL.s-1 1.14±0.78 0.85±0.57 0.60±0.47* 0.95±0.60 1.44±1.01*# α 0.88±0.92 1.10±0.63 1.69±1.38* 1.14±0.85# 
Peak blood flow, mL.s-1 4.28±1.89 3.78±1.49 2.76±1.36* 3.77±1.74 4.89±2.26*# 4.19±1.78# 3.94±1.92 4.73±1.57* 4.45±2.23# 
SRAUC, 103 s-1 10.26±6.17 9.33±5.50 7.26±3.89* 9.83±5.70 12.46±7.58*# 10.72±6.77# 9.86±5.90 13.50±5.95* 11.01±4.35* 
TTP diameter, s 56±29 53±23 54±26 55±31 56±26 61±24 59±36 70±27* α 56±28 
FMD, % 3.94±1.29 4.01±1.51 3.73±1.71 3.73±1.06 4.97±1.49*#  4.28±1.69 4.02±1.39 3.00±1.39* α 3.91±1.67* α 
Heart rate and blood pressure 
Heart rate, bpm 59±9 56±8 56±10 60±9 68±11*# 58±8 59±9 69±11*# 60±8 
Systolic BP, mmHg 127±11 136±14* 135±18* 130±15 133±16* 130±15 129±15 133±14* 127±13 
Diastolic BP, mmHg 72±6 76±7 75±9 74±9 74±8 73±8 73±8 69±8 73±8 
MAP, mmHg 88±7 93±9* 94±12* 90±9 92±9* 89±10 89±9 90±10* 89±9 

 


	Article File
	Figure 1
	Figure 2
	Figure 3
	Table 1
	Table 2

