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Abstract — The objective of this paper is to present a speed-up method to improve the rendering speed of ray casting at the same 
time obtaining high-quality images. Ray casting is the most commonly used volume rendering algorithm, and suitable for parallel 
processing. In order to improve the efficiency of parallel processing, the latest platform-Compute Unified Device Architecture 
(CUDA) is used. The speed-up method uses improved workload allocation and sampling strategies according to CUDA features. To 
implement this method, the optimal number of segments of each ray is dynamically selected based on the change of the 
corresponding visual angle, and each segment is processed by a distinct thread processor. In addition, for each segment, we apply 
different sampling quantity and density according to the distance weight. Rendering speed results show that our method achieves 
an average 70% improvement in terms of speed, and even 145% increase in some special cases, compared to conventional ray 
casting on Graphics Processing Unit (GPU). Speed-up ratio shows that this method can effectively improve the factors that 
influence efficiency of rendering. Excellent rendering performance makes this method contribute to real-time 3-D reconstruction. 
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I. INTRODUCTION 

Volume rendering [1] is an important branch of image 
visualization which is usually used in medical image 
visualization [2,3], meteorological analysis [4,5], molecular 
modeling [6], and so on. Among all the rendering algorithms, 
ray casting [7] stands out because of its simple principle and 
good image quality. The principle of ray casting makes it 
very suitable for parallel processing, for the reason that each 
ray can be independent and unrelated from others. K. L. Ma 
et al. [8] utilized computer clusters to realize the parallel 
processing in 1990s, they divide the original dataset into 
many sub-blocks, but it still takes tens of seconds. A similar 
distributed rendering method is accomplished using clusters 
of personal computers [9]. But when using computer 
clusters, communication capacity between computers is 
extremely limited, what’s more, the connection between 
borders of sub-blocks needs extra data loading, leading to 
extra time consumption.  

GPU (graphics processing unit) can solve the problems 
mentioned above, because it owns hundreds of processing 
cores and provides hardware interpolation [10] functions. 
More and more volume renderings on GPU appear after the 
emergence of GPU programming [11-14]. Klar O et al. [15] 
propose an improved parallel processing method in 2006 by 
dividing a volume dataset into parts, which are dynamically 
swapped in and out, rendering speed can reach over 10 fps 
(frames per second). Similar improvements are proposed by 
others [13,16]. But if the data is large enough that can’t be 
loaded in the memory of a single GPU, multi-GPU approach 
is widely used [17].  

Workload reduction is another effective method to 
improve rendering speed. One way is to reduce the sampling 
number directly, like empty-space skipping [18], early ray 

termination [19]and multiresolution algorithm [20,21], but 
the texture organization is complicated in multiresolution 
method, and the multidimensional transfer function design is 
hard [22], in addition, boundary fusion between different 
resolutions needs extra processing [23]. Another way is value 
estimation, for example, Zhang et al. [24] presents a strategy 
using cubic B-spline method to estimate sampling values 
from neighboring samples with rendering speed 17 to 34 fps, 
and T. L. Falch et al. [25] directly use scattered point data to 
estimate all the sampling values of volume dataset. Although 
workload reduction can realize speed-up, but in some cases, 
insufficient sampling rates may degrade image quality.  

Until now, CUDA [10] has become the most widely used 
parallel processing platform on GPU. In addition to using 
powerful parallel processing performance provided by 
CUDA to accelerate the speed [26-28], researchers begin to 
study the effect of inherent features of CUDA on rendering 
performance. Sugimoto et al. [29] study the impact of TB 
(thread block) shape and texture organization on volume 
rendering speed, and they proposed a method which can 
dynamically determine the optimal TB shape to increase 
rendering speed. In this paper, we propose an improvement 
method to promote the rendering efficiency of ray casting 
implemented on CUDA. The method can not only improve 
the degree of parallel processing, but also reduce the 
workload, which will be helpful for high quality 
visualization and real-time 3-D reconstruction [26,30,31].  

II. METHOD IMPROVEMENT  

Figure 1a illustrates the geometry of ray casting. Let V be 
the volume to be rendered which is a cubic of X × Y × Z 
voxels (X, Y, Z represent length, width, and height, 
respectively), and (x, y, z) be the voxel coordinates. Pixel 
value accumulation is done as follow, 
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where ie represents the ith penetrated voxel along ray R, n 

denotes the total number of penetrated voxels, )( ieC and

)( ie are the color and opacity values, respectively. 

Moreover, this accumulation procedure could be divided into 
two parts, one from samples 1 to k (0 < k < n), the other from 
samples k+1 to n, shown as 
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Figure 1b illustrates the situation when divided into three 
parts, in which three segments are represented by three 
different colors. After accumulation operation, each segment 
becomes a voxel, in this way, segmentation method changes 
into nested ray casting. 

Theoretically, parallelism is proportional to the number 
of segments. However, more segments also cost more time 
inevitably during intermediate results merging period, 
therefore, we propose a method which automatically 
determines the number of segments according to rotation 
angle illustrated in Figure 2, where the cube represents 
volume dataset, the top row is for rotations about the z-axis, 
and the bottom row stands for pattern about arbitrary angles. 
The number in Fig. 2 represents the number of segments of 
respective rays.  

Length calculation is needed to determine the optimal 
number more accurately, as shown in Fig. 3a. The longest 
one is r3 (length of diagonal), which is calculated in advance 
according to dataset information on CPU, usually 
proportional to the size of dataset. The number of segments 
on each ray is calculated on GPU by ray length. We define 
the thresholds as 0.5×r3 and 0.8×r3, when ray length larger 
than 0.8×r3, the ray is split into three segments, like r3 in 
Fig .3b; when ray length larger than 0.5×r3 but smaller than 
0.8×r3, the ray is split into two segments, like r2 in Fig .3b; 
when ray length smaller than 0.5×r3, no segmentation is 
necessary, like r1 in Fig .3b. All rays are split equally 
according to the number, see more in Fig .3c. After 
segmentation, each segment of is processed by an individual 
thread in the same TB, as shown in Fig .3b. In this way, no 
matter how visual angle changes, corresponding optimal 
segmentation pattern can be determined automatically.  

To take advantage of the segmentation method, we adopt 
distance-weight sampling strategy, i.e., for every segment, its 
depth determines its sampling density, as shown in Figs. 3b 
r1, r2 and r3. Besides, both starting and ending locations of 
each segment should be recorded to solve the boundary 
sampling problem, sampling begins at the starting location 
(e.g., points a and b in Fig. 3c) and ends before the ending 
location to avoid overlapping. This sampling strategy has the 

advantage of reducing the amount of sampling at the same 
time avoiding image distortion. Empty space skipping and 
early ray termination algorithms can also be added into this 
strategy to further improve performance. 

III. MAIN RESULTS 

Experiments are conducted on a desktop PC with a 
GeForce GTX 980 graphics card, which has 2048 CUDA 
cores and 1.28 GHz clock rate. The machine runs on 
Windows 7 and CUDA 6.5 platform. For comparison, we 
implement conventional ray casting as the control group, 
each thread is responsible for handling one ray and the 
sampling interval is fixed. The experiments are carried out 
on six datasets, namely bucky (32×32×32, resolution is 
32×32, 32 slices), spinal vascular (125×154×145), aneurysm 
(256×256×256), foot (256×256×256), head (256×256×256) 
and skull (256×256×256). bucky datasets is supplied by “The 
Volume Libraty” (http://www9.informatik.uni-
erlangen.de/External/vollib/), all the others are downloaded 
for free from the “Volren” (http://www.volren.org). The 
display window is composed of 512×512 pixels, i.e., W = H 
= 512. 

Figure 4 shows the image quality of our proposed 
method, it can be seen that even though the number of 
sampling has decreased caused by distance-weight sampling 
strategy, the image quality is still visually acceptable.  

A table about PSNR (Peak Signal to Noise Ratio) values 
is shown in Table 1, in which PSNR values of six datasets 
from three different viewing angles are recorded. In most 
cases, PSNR values are above 40, which means the image 
quality of our method is almost equal to that of original ray 
casting method.  

Previous research has demonstrated that the TB shape 
influences the rendering performance [29], we thus adopt 
variable TB shapes and rotation angles in both the 
experimental and control groups. The TB shapes vary from 
2×128 to 128×2 (W×H). For rotation angle, we use x-
rotation and z-rotation, ranging from 0 to 180 degrees. In this 
way, we can evaluate the rendering speed in different 
workload distributions.   

Figure 5 illustrates the significant improvement of 
rendering speed (fps) using our method, no matter what the 
TB shapes or visual angles are. In these experiments, we use 
‘head’ dataset (Fig .4d). Figures 5a, b, c, d are control group, 
where Figs. 5a, b depict the results of convent- 

Table 1. Results of PSNR/dB 

Image Name 
Front View Top View Side View 

PSNR/dB PSNR/dB PSNR/dB 

Aneurysm 50.798 44.340 47.846 

Spinal Vascular 43.010 47.225 39.645 

Foot 47.586 49.607 41.364 

Head 42.321 35.839 40.894 

Skull 44.534 42.361 40.412 

Bucky 41.648 41.436 42.814 
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Figure 1. Illustration of (a) ray casting and (b) segmentation method 

 

Figure 2. Automatic segmentation patterns based on rotation angles 
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Figure 3. Illustration of automatic segmentation method 

 

 

 

Figure 4. Image quality results of (a) aneurysm; (b) spinal vascular; (c) foot; (d) head; (e) skull and (f) bucky 
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Figure 5. Relationship between rendering speed (fps) and rotation angle with different TB shapes using head dataset 
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Figure 6. Instructions per warp (IPW) performance of both control and experimental groups 
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Figure 7. Relationship between rendering speed (fps) and rotation angle with different TB shapes using spinal vascular dataset 

 
ional ray casting with only empty space skipping without 

early termination method, and Figs. 5c, d depict the results 
with both empty space skipping and early termination 
methods. Figs. 5e, f are experimental group using our 
methods. 

FPS in Figs .5c, d is larger than the one in Figs .5a, b, 
because early termination method can reduce sampling 
number tremendously. Detailed explanation is shown in 
Fig .6, in which Fig .6c represents IPW (instructions per 
warp) when using both empty space skipping and early 
termination methods, but Fig. 6a represents IPW when using 
empty space skipping only. We can see that instructions in a 
warp dramatically decreases after applying early termination 
method. Warp mentioned here is the most basic scheduling 
unit on CUDA that consists 32 threads which run the same 
instruction at one time. FPS is promoted further after 

applying our method, see more in Figs .5e and f, the main 
reason is the reduction of sampling numbers and workload 
imbalance, details are also shown in Fig .6e, in which 
instructions number decreases further and workload 
distribution is much more balanced compared to Figs .6a and 
c.   

In addition, Fig. 5 gives the relationship between frame 
rate and TB shape. Here, various TB shapes are used, like 
W×H=4×64 (red line) and 64×4 (orange line) in Fig. 5a. The 
results show that the vertical TB shapes (W<H), like 
W×H=4×64 and 8×32, mostly outperform those horizontal 
sizes (W>H), like W×H=64×4 and 32×8, when using the 
original ray casting method 

(see Figs. 5a, b). This is due to the impact of TB shape on 
cache hit rate, i.e., warp size varies according to TB shape 
[29]. 
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Another experiment is done using ‘spinal vascular’ 
dataset. Results are shown in Fig .7, in which similar results 
emerge that frame rate is greatly promoted when using our 
method no matter how rotation angle or TB shape changes, 
and vertical TB shapes (W<H), like W×H=4×64 (red line) 
and 8×32 (green line), mostly outperform those horizontal 
sizes (W>H), like W×H=64×4 (orange line) and 32×8 
(blue line). The reason is also explained in Fig .6, where 
Figs .6b, d and f represent the performance of IPW when 
using spinal vascular dataset, tremendous decrease of 
instruction number is obvious and improvement of workload 
balance is also distinct. 

Speed-up ratio, defined as (new fps - old fps)/old fps 
where new fps represents fps using our method, old fps 
represents fps using conventional ray casting with both 
empty space skipping and early termination methods, can 
reach average 70% promotion when using ‘spinal vascular’ 
dataset (shown in Fig. 5), in particular, when TB shape is W
×H=32×8 and rotation angle is 90 degree, the speed-up 
ratio can reach 145%. On the whole, the speed-up ratio is 
higher where the original frame rate is lower, and vice versa, 
especially when TB shape is W×H=32×8, speed-up reaches 
highest among all TB shapes. In addition, speed-up ratio is 
much higher when rotation angles are around 90 degree 
compared to other situations.  

IV. DISCUSSION 

Image quality results have proved that this improved 
method can guarantee visual effect, the main reason is that 
although sampling strategy is applied based on distance 
weight, but among segments with closer distance to screen, 
intensive sampling interval has guaranteed image quality, 
sampling workload is reduced in further segments. But there 
is one situation where sampling regions clustered in the 
further areas from screen, artifact may occur because of low 
sampling frequency. In our experiments, this kind of 
situation appears only once, where the lowest PSNR value 
occurs in Table 1. 

The workload of ray casting algorithm can be reflected 
by instruction numbers. The results in Figs .5, 7 have shown 
great promotion in rendering speed, reasons are shown in 
Fig .6. The IPW is largest when just using empty space 
skipping without early termination method, which means the 
sampling and instruction numbers are huge, uneven 
distribution of instructions is also obvious; after applying 
early termination method, the IPW is reduced dramatically, 
and workload distribution gains improvement; IPW is further 
reduced after applying our method. Instructions in one warp 
are now distributed to 2 or 3 warps after segmentation, the 
drop of instruction divergence and sampling number 
contributes to IPW decrease, as shown in Figs .6e, f, and 
GPU processing efficiency. The difference of instruction 
number between ‘head’ and ‘spinal vascular’ datasets in 
Figs .6c, d, e, f is because of the degree distribution of data 
opacity, early termination occurs in different timing.  

Influencing factors like TB shape and data distribution 
are also improved by using our method, as shown in speed-
up ratio results. Calculation results show that the speed-up 

ratio is higher where the original frame rate is lower, and 
vice versa, like TB shape W×H=32×8 and rotation angle 
around 90 degree when using ‘spinal vascular’ dataset. The 
reason for explaining this phenomenon is that our method 
can weaken the effect of these factors by optimizing 
workload distribution and balance.   

V. CONCLUSION 

In this paper, an improved method using automatic 
segmentation and modified sampling strategy is proposed 
using CUDA, in which the integrity of ray casting algorithm 
is preserved. Automatic segmentation utilizes features of 
CUDA like thread communication through shared memory 
and task switching mechanism, improving the degree of 
parallelism. Sampling strategy based on distance weight is 
mainly used to reduce sampling workload. Easy to 
implement, low cost and good performance make this 
method have broad prospects, which will contribute to real-
time 3-D reconstruction in all disciplines. Future work will 
include improving sampling strategy to achieve better 
display results, refinement of ray intersection and practical 
implementation combined to MRI machine, where original 
MRI data flow, other than intermediate RAW image files, 
will be used. 
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