
DUN ZHOU et al: IMPROVING EFFICIENCY FOR CUDA-BASED VOLUME RENDERING BY COMBINING …

DOI 10.5013/ IJSSST.a.17.42.32 32.1 ISSN: 1473-804x online, 1473-8031 print

Improving Efficiency for CUDA-based Volume Rendering by Combining

Segmentation and Modified Sampling Strategies

Dun ZHOU*, Hongwei Du*, Feng Zhao**, Hongxing Kan*, Geng Li*, and Bensheng Qiu*

* Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China.
** School of Computer Science, University of Lincoln, Lincoln, LN6 7TS, United Kingdom.

Abstract — The objective of this paper is to present a speed-up method to improve the rendering speed of ray casting at the same
time obtaining high-quality images. Ray casting is the most commonly used volume rendering algorithm, and suitable for parallel
processing. In order to improve the efficiency of parallel processing, the latest platform-Compute Unified Device Architecture
(CUDA) is used. The speed-up method uses improved workload allocation and sampling strategies according to CUDA features. To
implement this method, the optimal number of segments of each ray is dynamically selected based on the change of the
corresponding visual angle, and each segment is processed by a distinct thread processor. In addition, for each segment, we apply
different sampling quantity and density according to the distance weight. Rendering speed results show that our method achieves
an average 70% improvement in terms of speed, and even 145% increase in some special cases, compared to conventional ray
casting on Graphics Processing Unit (GPU). Speed-up ratio shows that this method can effectively improve the factors that
influence efficiency of rendering. Excellent rendering performance makes this method contribute to real-time 3-D reconstruction.

Keywords - parallel processing; CUDA; ray segmentation; workload balance; distance weight

I. INTRODUCTION

Volume rendering [1] is an important branch of image
visualization which is usually used in medical image
visualization [2,3], meteorological analysis [4,5], molecular
modeling [6], and so on. Among all the rendering algorithms,
ray casting [7] stands out because of its simple principle and
good image quality. The principle of ray casting makes it
very suitable for parallel processing, for the reason that each
ray can be independent and unrelated from others. K. L. Ma
et al. [8] utilized computer clusters to realize the parallel
processing in 1990s, they divide the original dataset into
many sub-blocks, but it still takes tens of seconds. A similar
distributed rendering method is accomplished using clusters
of personal computers [9]. But when using computer
clusters, communication capacity between computers is
extremely limited, what’s more, the connection between
borders of sub-blocks needs extra data loading, leading to
extra time consumption.

GPU (graphics processing unit) can solve the problems
mentioned above, because it owns hundreds of processing
cores and provides hardware interpolation [10] functions.
More and more volume renderings on GPU appear after the
emergence of GPU programming [11-14]. Klar O et al. [15]
propose an improved parallel processing method in 2006 by
dividing a volume dataset into parts, which are dynamically
swapped in and out, rendering speed can reach over 10 fps
(frames per second). Similar improvements are proposed by
others [13,16]. But if the data is large enough that can’t be
loaded in the memory of a single GPU, multi-GPU approach
is widely used [17].

Workload reduction is another effective method to
improve rendering speed. One way is to reduce the sampling
number directly, like empty-space skipping [18], early ray

termination [19]and multiresolution algorithm [20,21], but
the texture organization is complicated in multiresolution
method, and the multidimensional transfer function design is
hard [22], in addition, boundary fusion between different
resolutions needs extra processing [23]. Another way is value
estimation, for example, Zhang et al. [24] presents a strategy
using cubic B-spline method to estimate sampling values
from neighboring samples with rendering speed 17 to 34 fps,
and T. L. Falch et al. [25] directly use scattered point data to
estimate all the sampling values of volume dataset. Although
workload reduction can realize speed-up, but in some cases,
insufficient sampling rates may degrade image quality.

Until now, CUDA [10] has become the most widely used
parallel processing platform on GPU. In addition to using
powerful parallel processing performance provided by
CUDA to accelerate the speed [26-28], researchers begin to
study the effect of inherent features of CUDA on rendering
performance. Sugimoto et al. [29] study the impact of TB
(thread block) shape and texture organization on volume
rendering speed, and they proposed a method which can
dynamically determine the optimal TB shape to increase
rendering speed. In this paper, we propose an improvement
method to promote the rendering efficiency of ray casting
implemented on CUDA. The method can not only improve
the degree of parallel processing, but also reduce the
workload, which will be helpful for high quality
visualization and real-time 3-D reconstruction [26,30,31].

II. METHOD IMPROVEMENT

Figure 1a illustrates the geometry of ray casting. Let V be
the volume to be rendered which is a cubic of X × Y × Z
voxels (X, Y, Z represent length, width, and height,
respectively), and (x, y, z) be the voxel coordinates. Pixel
value accumulation is done as follow,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by LJMU Research Online

https://core.ac.uk/display/96565156?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DUN ZHOU et al: IMPROVING EFFICIENCY FOR CUDA-BASED VOLUME RENDERING BY COMBINING …

DOI 10.5013/ IJSSST.a.17.42.32 32.2 ISSN: 1473-804x online, 1473-8031 print

1

1 0

S(u,v)= (()* ()* (1 ()))
in

i i j
i j

e C e e

 (1)

where ie represents the ith penetrated voxel along ray R, n

denotes the total number of penetrated voxels,)(ieC and

)(ie are the color and opacity values, respectively.

Moreover, this accumulation procedure could be divided into
two parts, one from samples 1 to k (0 < k < n), the other from
samples k+1 to n, shown as

1

1 0

1 1

1 0

S(u,v)= (() * () * (1 ()))

(() * () * (1 ())) * ((1 ()))

ik

i i j
i j

i kn

i i j j
i k j k j

e C e e

e C e e e

 (2)

Figure 1b illustrates the situation when divided into three
parts, in which three segments are represented by three
different colors. After accumulation operation, each segment
becomes a voxel, in this way, segmentation method changes
into nested ray casting.

Theoretically, parallelism is proportional to the number
of segments. However, more segments also cost more time
inevitably during intermediate results merging period,
therefore, we propose a method which automatically
determines the number of segments according to rotation
angle illustrated in Figure 2, where the cube represents
volume dataset, the top row is for rotations about the z-axis,
and the bottom row stands for pattern about arbitrary angles.
The number in Fig. 2 represents the number of segments of
respective rays.

Length calculation is needed to determine the optimal
number more accurately, as shown in Fig. 3a. The longest
one is r3 (length of diagonal), which is calculated in advance
according to dataset information on CPU, usually
proportional to the size of dataset. The number of segments
on each ray is calculated on GPU by ray length. We define
the thresholds as 0.5×r3 and 0.8×r3, when ray length larger
than 0.8×r3, the ray is split into three segments, like r3 in
Fig .3b; when ray length larger than 0.5×r3 but smaller than
0.8×r3, the ray is split into two segments, like r2 in Fig .3b;
when ray length smaller than 0.5×r3, no segmentation is
necessary, like r1 in Fig .3b. All rays are split equally
according to the number, see more in Fig .3c. After
segmentation, each segment of is processed by an individual
thread in the same TB, as shown in Fig .3b. In this way, no
matter how visual angle changes, corresponding optimal
segmentation pattern can be determined automatically.

To take advantage of the segmentation method, we adopt
distance-weight sampling strategy, i.e., for every segment, its
depth determines its sampling density, as shown in Figs. 3b
r1, r2 and r3. Besides, both starting and ending locations of
each segment should be recorded to solve the boundary
sampling problem, sampling begins at the starting location
(e.g., points a and b in Fig. 3c) and ends before the ending
location to avoid overlapping. This sampling strategy has the

advantage of reducing the amount of sampling at the same
time avoiding image distortion. Empty space skipping and
early ray termination algorithms can also be added into this
strategy to further improve performance.

III. MAIN RESULTS

Experiments are conducted on a desktop PC with a
GeForce GTX 980 graphics card, which has 2048 CUDA
cores and 1.28 GHz clock rate. The machine runs on
Windows 7 and CUDA 6.5 platform. For comparison, we
implement conventional ray casting as the control group,
each thread is responsible for handling one ray and the
sampling interval is fixed. The experiments are carried out
on six datasets, namely bucky (32×32×32, resolution is
32×32, 32 slices), spinal vascular (125×154×145), aneurysm
(256×256×256), foot (256×256×256), head (256×256×256)
and skull (256×256×256). bucky datasets is supplied by “The
Volume Libraty” (http://www9.informatik.uni-
erlangen.de/External/vollib/), all the others are downloaded
for free from the “Volren” (http://www.volren.org). The
display window is composed of 512×512 pixels, i.e., W = H
= 512.

Figure 4 shows the image quality of our proposed
method, it can be seen that even though the number of
sampling has decreased caused by distance-weight sampling
strategy, the image quality is still visually acceptable.

A table about PSNR (Peak Signal to Noise Ratio) values
is shown in Table 1, in which PSNR values of six datasets
from three different viewing angles are recorded. In most
cases, PSNR values are above 40, which means the image
quality of our method is almost equal to that of original ray
casting method.

Previous research has demonstrated that the TB shape
influences the rendering performance [29], we thus adopt
variable TB shapes and rotation angles in both the
experimental and control groups. The TB shapes vary from
2×128 to 128×2 (W×H). For rotation angle, we use x-
rotation and z-rotation, ranging from 0 to 180 degrees. In this
way, we can evaluate the rendering speed in different
workload distributions.

Figure 5 illustrates the significant improvement of
rendering speed (fps) using our method, no matter what the
TB shapes or visual angles are. In these experiments, we use
‘head’ dataset (Fig .4d). Figures 5a, b, c, d are control group,
where Figs. 5a, b depict the results of convent-

Table 1. Results of PSNR/dB

Image Name
Front View Top View Side View

PSNR/dB PSNR/dB PSNR/dB

Aneurysm 50.798 44.340 47.846

Spinal Vascular 43.010 47.225 39.645

Foot 47.586 49.607 41.364

Head 42.321 35.839 40.894

Skull 44.534 42.361 40.412

Bucky 41.648 41.436 42.814

DUN ZHOU et al: IMPROVING EFFICIENCY FOR CUDA-BASED VOLUME RENDERING BY COMBINING …

DOI 10.5013/ IJSSST.a.17.42.32 32.3 ISSN: 1473-804x online, 1473-8031 print

Figure 1. Illustration of (a) ray casting and (b) segmentation method

Figure 2. Automatic segmentation patterns based on rotation angles

DUN ZHOU et al: IMPROVING EFFICIENCY FOR CUDA-BASED VOLUME RENDERING BY COMBINING …

DOI 10.5013/ IJSSST.a.17.42.32 32.4 ISSN: 1473-804x online, 1473-8031 print

Figure 3. Illustration of automatic segmentation method

Figure 4. Image quality results of (a) aneurysm; (b) spinal vascular; (c) foot; (d) head; (e) skull and (f) bucky

DUN ZHOU et al: IMPROVING EFFICIENCY FOR CUDA-BASED VOLUME RENDERING BY COMBINING …

DOI 10.5013/ IJSSST.a.17.42.32 32.5 ISSN: 1473-804x online, 1473-8031 print

Figure 5. Relationship between rendering speed (fps) and rotation angle with different TB shapes using head dataset

DUN ZHOU et al: IMPROVING EFFICIENCY FOR CUDA-BASED VOLUME RENDERING BY COMBINING …

DOI 10.5013/ IJSSST.a.17.42.32 32.6 ISSN: 1473-804x online, 1473-8031 print

Figure 6. Instructions per warp (IPW) performance of both control and experimental groups

DUN ZHOU et al: IMPROVING EFFICIENCY FOR CUDA-BASED VOLUME RENDERING BY COMBINING …

DOI 10.5013/ IJSSST.a.17.42.32 32.7 ISSN: 1473-804x online, 1473-8031 print

Figure 7. Relationship between rendering speed (fps) and rotation angle with different TB shapes using spinal vascular dataset

ional ray casting with only empty space skipping without

early termination method, and Figs. 5c, d depict the results
with both empty space skipping and early termination
methods. Figs. 5e, f are experimental group using our
methods.

FPS in Figs .5c, d is larger than the one in Figs .5a, b,
because early termination method can reduce sampling
number tremendously. Detailed explanation is shown in
Fig .6, in which Fig .6c represents IPW (instructions per
warp) when using both empty space skipping and early
termination methods, but Fig. 6a represents IPW when using
empty space skipping only. We can see that instructions in a
warp dramatically decreases after applying early termination
method. Warp mentioned here is the most basic scheduling
unit on CUDA that consists 32 threads which run the same
instruction at one time. FPS is promoted further after

applying our method, see more in Figs .5e and f, the main
reason is the reduction of sampling numbers and workload
imbalance, details are also shown in Fig .6e, in which
instructions number decreases further and workload
distribution is much more balanced compared to Figs .6a and
c.

In addition, Fig. 5 gives the relationship between frame
rate and TB shape. Here, various TB shapes are used, like
W×H=4×64 (red line) and 64×4 (orange line) in Fig. 5a. The
results show that the vertical TB shapes (W<H), like
W×H=4×64 and 8×32, mostly outperform those horizontal
sizes (W>H), like W×H=64×4 and 32×8, when using the
original ray casting method

(see Figs. 5a, b). This is due to the impact of TB shape on
cache hit rate, i.e., warp size varies according to TB shape
[29].

DUN ZHOU et al: IMPROVING EFFICIENCY FOR CUDA-BASED VOLUME RENDERING BY COMBINING …

DOI 10.5013/ IJSSST.a.17.42.32 32.8 ISSN: 1473-804x online, 1473-8031 print

Another experiment is done using ‘spinal vascular’
dataset. Results are shown in Fig .7, in which similar results
emerge that frame rate is greatly promoted when using our
method no matter how rotation angle or TB shape changes,
and vertical TB shapes (W<H), like W×H=4×64 (red line)
and 8×32 (green line), mostly outperform those horizontal
sizes (W>H), like W×H=64×4 (orange line) and 32×8
(blue line). The reason is also explained in Fig .6, where
Figs .6b, d and f represent the performance of IPW when
using spinal vascular dataset, tremendous decrease of
instruction number is obvious and improvement of workload
balance is also distinct.

Speed-up ratio, defined as (new fps - old fps)/old fps
where new fps represents fps using our method, old fps
represents fps using conventional ray casting with both
empty space skipping and early termination methods, can
reach average 70% promotion when using ‘spinal vascular’
dataset (shown in Fig. 5), in particular, when TB shape is W
×H=32×8 and rotation angle is 90 degree, the speed-up
ratio can reach 145%. On the whole, the speed-up ratio is
higher where the original frame rate is lower, and vice versa,
especially when TB shape is W×H=32×8, speed-up reaches
highest among all TB shapes. In addition, speed-up ratio is
much higher when rotation angles are around 90 degree
compared to other situations.

IV. DISCUSSION

Image quality results have proved that this improved
method can guarantee visual effect, the main reason is that
although sampling strategy is applied based on distance
weight, but among segments with closer distance to screen,
intensive sampling interval has guaranteed image quality,
sampling workload is reduced in further segments. But there
is one situation where sampling regions clustered in the
further areas from screen, artifact may occur because of low
sampling frequency. In our experiments, this kind of
situation appears only once, where the lowest PSNR value
occurs in Table 1.

The workload of ray casting algorithm can be reflected
by instruction numbers. The results in Figs .5, 7 have shown
great promotion in rendering speed, reasons are shown in
Fig .6. The IPW is largest when just using empty space
skipping without early termination method, which means the
sampling and instruction numbers are huge, uneven
distribution of instructions is also obvious; after applying
early termination method, the IPW is reduced dramatically,
and workload distribution gains improvement; IPW is further
reduced after applying our method. Instructions in one warp
are now distributed to 2 or 3 warps after segmentation, the
drop of instruction divergence and sampling number
contributes to IPW decrease, as shown in Figs .6e, f, and
GPU processing efficiency. The difference of instruction
number between ‘head’ and ‘spinal vascular’ datasets in
Figs .6c, d, e, f is because of the degree distribution of data
opacity, early termination occurs in different timing.

Influencing factors like TB shape and data distribution
are also improved by using our method, as shown in speed-
up ratio results. Calculation results show that the speed-up

ratio is higher where the original frame rate is lower, and
vice versa, like TB shape W×H=32×8 and rotation angle
around 90 degree when using ‘spinal vascular’ dataset. The
reason for explaining this phenomenon is that our method
can weaken the effect of these factors by optimizing
workload distribution and balance.

V. CONCLUSION

In this paper, an improved method using automatic
segmentation and modified sampling strategy is proposed
using CUDA, in which the integrity of ray casting algorithm
is preserved. Automatic segmentation utilizes features of
CUDA like thread communication through shared memory
and task switching mechanism, improving the degree of
parallelism. Sampling strategy based on distance weight is
mainly used to reduce sampling workload. Easy to
implement, low cost and good performance make this
method have broad prospects, which will contribute to real-
time 3-D reconstruction in all disciplines. Future work will
include improving sampling strategy to achieve better
display results, refinement of ray intersection and practical
implementation combined to MRI machine, where original
MRI data flow, other than intermediate RAW image files,
will be used.

ACKNOWLEDGMENTS

This work was supported by National Science
Foundation of China (Grant number: 81371537, 91432301),
Major State Basic Research Development Program of China
(973 Program) (Grant number: 2013CB733803), and
Fundamental Research Funds for the Central Universities of
China (Grant number: WK2070000033). The authors would
also like to thank Haiyan Zheng, Yuchuan Jia, Chang Zhai,
Chunxiao Wang for their help on paper revision.

REFERENCES
[1] Drebin R A, Carpenter L, Hanrahan P, Volume rendering, ACM

Siggraph Computer Graphics, vol.22, no.4, pp.65-74, 1988.

[2] Yong H W, Bade A, Muniandy R K, 3D RECONSTRUCTION OF
BREAST CANCER FROM MAMMOGRAMS USING VOLUME
RENDERING TECHNIQUES, Jurnal Teknologi, vol.75, no.2, 2015.

[3] Preim B, Baer A, Cunningham D, et al., A Survey of Perceptually
Motivated 3D Visualization of Medical Image Data, Computer
Graphics Forum, vol.35, no.3, 2016.

[4] Liu P, Gong J, Yu M, Visualizing and analyzing dynamic
meteorological data with virtual globes: A case study of tropical
cyclones, Environmental Modelling & Software, vol.64, pp.80-93,
2015.

[5] Liu P, Gong J, Yu M, Graphics processing unit-based dynamic
volume rendering for typhoons on a virtual globe, International
Journal of Digital Earth, vol.8, no.6, pp.431-450, 2015.

[6] M. Krone et al., Fast visualization of gaussian density surfaces for
molecular dynamics and particle system trajectories, EuroVis-Short
Papers, vol.1, pp.67-71, 2012.

[7] H. Ray et al., Ray casting architectures for volume visualization,
Visualization and Computer Graphics, IEEE Transactions, vol.5,
no.3, pp.210-223, 1999.

[8] K. L. Ma et al., A data distributed, parallel algorithm for ray-traced
volume rendering, Proceedings of the 1993 symposium on Parallel
rendering, pp.15-22, 1993.

DUN ZHOU et al: IMPROVING EFFICIENCY FOR CUDA-BASED VOLUME RENDERING BY COMBINING …

DOI 10.5013/ IJSSST.a.17.42.32 32.9 ISSN: 1473-804x online, 1473-8031 print

[9] Rodrigues J, Balan A, Zaina L, et al., A Survey on Distributed
Visualization Techniques over Clusters of Personal Computers, arXiv
preprint arXiv:1506.06968, 2015.

[10] Nvidia C, Nvidia cuda c programming guide, Nvidia Corporation,
2011.

[11] Liang R, Wu Y, Dong F, et al., Accumulation of local maximum
intensity for feature enhanced volume rendering, The Visual
Computer, vol.28, no.6-8, pp.625-633, 2012.

[12] Gobbetti E, Marton F, Guitián J A I, A single-pass GPU ray casting
framework for interactive out-of-core rendering of massive
volumetric datasets, The Visual Computer, vol.24, no.7-9, pp.797-
806, 2008.

[13] Rodríguez M B, Gobbetti E, Guitián J I, et al., A survey of
compressed GPU-based direct volume rendering, Proc. Eurographics,
vol.13, 2013.

[14] Bozorgi M, Lindseth F, GPU-based multi-volume ray casting within
VTK for medical applications, International journal of computer
assisted radiology and surgery, vol.10, no.3, pp.293-300, 2015.

[15] Klar O, Interactive GPU based segmentation of large medical volume
data with level sets, CESCG 2007, 2006.

[16] A. Maximo et al., Memory Efficient GPU-Based Ray Casting for
Unstructured Volume Rendering, Volume Graphics, pp.155-162,
2008.

[17] Fogal T, Childs H, Shankar S, et al., Large data visualization on
distributed memory multi-GPU clusters, Proceedings of the
Conference on High Performance Graphics, Eurographics
Association, pp.57-66, 2010.

[18] Lee E S, Lee J H, Shin B S, A bimodal empty space skipping of ray
casting for terrain data, The Journal of Supercomputing, pp.1-15,
2015.

[19] Fogal T, Schiewe A, Krüger J, An analysis of scalable GPU-based
ray-guided volume rendering, IEEE Symposium on Large-Scale Data
Analysis and Visualization, NIH Public Access, pp.43, 2013.

[20] Boada I, Navazo I, Scopigno R, Multiresolution volume visualization
with a texture-based octree, The visual computer, vol.17, no.3,
pp.185-197, 2001.

[21] Suter S K, Makhynia M, Pajarola R, Tamresh–tensor approximation
multiresolution hierarchy for interactive volume visualization,
Computer Graphics Forum, Blackwell Publishing Ltd, vol.32,
no.3pt2, pp.151-160, 2013.

[22] Cai L, Nguyen B P, Chui C K, et al., A two-level clustering approach
for multidimensional transfer function specification in volume
visualization, The Visual Computer, pp.1-15, 2015.

[23] P. Ljung, C. Lundström, and A. Ynnerman, Multiresolution
interblock interpolation in direct volume rendering, Lisbon, Portugal,
pp.259-266, 2006.

[24] Zhang C, Xi P, Zhang C, CUDA-based volume ray-casting using
cubic B-spline, Virtual Reality and Visualization (ICVRV), 2011
International Conference on, IEEE, pp.84-88, 2011.

[25] T. L. Falch et al., GPU-Accelerated Visualization of Scattered Point
Data, IEEE Access, vol.1, pp.564-576, 2013.

[26] Y. Zhao, X. Cui, and Y. Cheng, High-performance and real-time
volume rendering in CUDA, Biomedical Engineering and
Informatics, BMEI'09. 2nd International Conference, pp.1-4, 2009.

[27] Kumar P, Agrawal A, CUDA based interactive volume rendering of
3D medical data, Intelligent Interactive Technologies and
Multimedia, Springer Berlin Heidelberg, pp.123-132, 2013.

[28] Shi Z, Jinyi C, Improved algorithm of volume rendering combined
texture mapping with ray casting based on CUDA, Application
Research of Computers, vol.6, pp.66, 2015.

[29] Sugimoto, Yuki, Fumihiko Ino, and Kenichi Hagihara., Improving
cache locality for GPU-based volume rendering, Parallel Computing,
vol.40, no.5, pp.59-69, 2014.

[30] M. Nießner et al., Real-time 3d reconstruction at scale using voxel
hashing, ACM Transactions on Graphics (TOG), vol.32, no.6, pp.169,
2013.

[31] J. Vlietinck, Method and system for real-time volume rendering on
thin clients via render server, Google Patents, 2013.

[32] Lv, Z., Yin, T., Song, H., & Chen, G. (2016). Virtual Reality Smart
City Based on WebVRGIS. IEEE Internet of Things Journal.

[33] Li, X., Lv, Z., Hu, J., Zhang, B., Shi, L., & Feng, S. (2015, June).
Xearth: A 3d gis platform for managing massive city information. In
2015 IEEE International Conference on Computational Intelligence
and Virtual Environments for Measurement Systems and Applications
(CIVEMSA) (pp. 1-6). IEEE.

[34] Jiang, D., Xu, Z., & Lv, Z. (2015). A multicast delivery approach
with minimum energy consumption for wireless multi-hop networks.
Telecommunication systems, 1-12.

.

