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Abstract

Individual-based models (IBM) enable us to investigate the effects of inter-
individual differences within a population much more easily than traditional
modelling approaches based on differential equations. However, the greater
flexibility of IBMs makes it difficult to systematically analyse the param-
eter dependency of the model behaviour so that an IBM may be hard to
interpret. In this article, bifurcation analysis techniques for investigating
models based on ordinary differential equations (ODE) are transferred to
IBMs. For this purpose, we infer stationary solutions of the IBM from the
asymptotic dynamics. The stability of these stationary solutions can then be
studied depending on model parameters. As shown previously for ODE mod-
els (Siekmann et al., 2010; Siekmann, 2013), stationary solutions SS

i can be
used as bifurcation parameters which allows us to predict survival or extinc-
tion of populations by simple algebraic relationships. This is demonstrated
with the example of a simple two-strain infection IBM. Moreover, analysing
model behaviour based on stationary solutions provides a unified represen-
tation of different models that allows us to rigorously compare IBMs with
other modelling frameworks like, for example, ODE models. A comparison
of the IBM to a population-based ODE model of a two-strain infection leads
to similar predictions although both models were built with very different
modelling approaches.
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1. Introduction

The classical framework for models in population dynamics goes back
to Lotka (1925) and Volterra (1926). Neglecting inter-individual differences,
they regarded the members of a population as a collection of “particles” with
identical properties. This allowed them (and others who use the same frame-
work until today) to build elegant mathematical models where all relevant
processes in ecological and epidemiological population dynamics—growth,
death, infection transmission, predation—are translated to contact rates, as
in models of chemical reactions. Thus, the basic unit of models of this type is
the population—in the following we will refer to these models as population-
based.

In contrast, the basic unit of individual-based models (IBM) in popula-
tion dynamics are the states of individuals that form a population. States
may be properties like age, physiological parameters such as size, an indi-
vidual’s spatial location or simple attributes such as “being infected”. Thus,
IBMs have great potential for investigating the influence of inter-individual
differences on the dynamics of the total population—they do not rely on the
strong assumption that population dynamics of heterogeneous populations
will be accurately captured by populations consisting of “representative in-
dividuals” with identical properties. In order to make this more explicit,
let us consider a few representative examples of IBMs from epidemiology.
Eubank et al. (2004) simulate a population and their movement patterns
based on empirical data. The resulting time series of moving individuals is
transformed to a contact graph on which infections can spread. The au-
thors investigate general graph-theoretic properties of the contact network
and develop a model of smallpox transmission. The model is then used for
investigating the effect of different vaccination strategies on smallpox spread.

Ferguson et al. (2005) use similar data as Eubank et al. (2004) as the basis
of their IBM influenza model but without making the intermediate step of
creating a contact network. Instead, the focus is on the geographical spread
of influenza in Thailand. Again, the effectiveness of different interventions
(vaccination, quarantine zones, closing down of schools and workplaces) is
assessed by simulation studies. See Smieszek et al. (2011) for a more recent
study, similar in spirit, where an influenza model is validated with empirical
data of an influenza epidemic in Switzerland.

Rolls et al. (2012) consider the spread of hepatitis C infections in a social
rather than a transport network. Because hepatitis C is highly prevalent in
injecting drug users and is often transmitted via needle sharing the authors
use an interaction network of injecting drug users that was derived from
empirical data in a previous study.
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In this article a simple two-strain infection model will be studied. An
example for a very detailed multi-strain model of influenza is Roche et al.
(2011). The authors validate the population dynamics of their very detailed
IBM by comparison with traditional population-based multi-strain models
based on differential equations, see the relevant chapters in Brauer et al.
(2008) or Keeling and Rohani (2008). Cisternas et al. (2004) present a
less detailed multi-strain model for influenza. This study is interesting be-
cause the authors use “equation-free” modelling, an approach that can be
used for computational analysis of IBMs. I will review “equation-free” mod-
elling and “coarse” bifurcation analysis—a numerical framework developed
by Kevrekidis and co-workers in the last 15 years—in more detail in the
discussion. Common to all IBMs presented here is that they allow us to
investigate how dynamics observed at the population level arises from indi-
vidual interactions. However, the detailed representation of the individual
level makes it difficult to analyse IBMs systematically.

In contrast to IBMs, the analysis of population-based models is a routine
exercise, thanks to the well-developed methods of nonlinear dynamics such
as linear stability analysis and bifurcation theory, see, for example Wiggins
(2003); Kuznetsov (1995). Population-based models are usually formulated
by a system of ordinary differential equations (or, analogously, difference
equations) of the form

dP(t)

dt
= f(P(t), λ), P(0) = P0. (1)

Here, P is the vector (P1, . . . , Pn) of n interacting populations and λ is a
vector of parameters. The question under which conditions a population Pi

survives or goes extinct can be answered by analysing the stationary solu-
tions Ps of (1) which are obtained from the system of nonlinear equations

f(PS, λ) = 0. (2)

Choosing a suitable bifurcation parameter is an important modelling de-
cision. Usually, a specific parameter (such as a predator mortality or the
transmission rate of an infection) is selected. This type of bifurcation anal-
ysis reveals the influence of a particular process on the system behaviour.
In contrast, Siekmann et al. (2010) and Siekmann (2013) have shown that
choosing the stationary solutions SS

i of a resource S as bifurcation parame-
ters gives insight into the effect of simultaneously varying all parameters, or,
in other words, the response of the system under the influence of all relevant
processes. For example, if two consumers compete indirectly via depleting
a shared resource S the consumer that reduces the resource to the lower
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steady state level drives its competitor to extinction (exploitative competi-
tion). Thus, consumer 1 survives if SS

1 < SS
2 holds and consumer 2 displaces

consumer 1 if this inequality is reversed. Similar survival conditions were
found for the most common example systems in ecology and epidemiology
including food chains, competition models and intraguild predation. A great
advantage of choosing stationary solutions SS

i as aggregated bifurcation pa-
rameters is that unlike in a classical bifurcation study we do not have to
restrict our attention to one process related to a specific model parameter.
Moreover, stability conditions depending on stationary solutions are not spe-
cific for ecological or epidemiological systems so that Siekmann et al. (2010)
and Siekmann (2013) could use this approach for comparing the complete
parameter space of seemingly different systems from ecology, epidemiology
and eco-epidemiology. It was shown that specific stability conditions are as-
sociated with different types of interactions like food chains, various forms
of competition and intraguild predation. This implies that for two different
system that are characterised by the same type of interaction the parameter
spaces are structured in a similar way. Therefore qualitatively similar dynam-
ics is expected when two predators compete for the same prey or when two
disease strains compete for the same host because both systems are examples
for exploitative competition. Since the qualitative dynamics observed thus
to a large extent depends on the type of interaction rather than on the un-
derlying system I proposed to refer to these patterns as “motifs” (Siekmann,
2013). Whereas in previous publications all models were based on differential
equations, I will show in this article that the approach can also be applied for
comparing models constructed with different modelling frameworks, namely
stochastic IBMs and deterministic differential equations.

Analysing system behaviour by choosing stationary solutions as bifur-
cation parameters allows us to carry out a bifurcation analysis of an IBM.
Because IBMs are not implemented as a system of equations, stationary
solutions cannot be calculated as in (2). Nevertheless, stable stationary
solutions—in the following denoted steady states—can be obtained by simu-
lating an IBM for a sufficient number of iterations. In this article we demon-
strate how this approach can be implemented in practice by investigating a
simple example of an individual-based two-strain infection model, see Fig-
ure 1 for a schematic representation of the model structure.

Our model, which is an extension of the Virus model (Wilensky, 1998)
provided with NetLogo (Wilensky, 1999), is an example for an exploita-
tive competition system because both strains compete for a population of
susceptibles without interacting directly with each other. I deliberately
chose this very simple model in order to make the workflow as clear as
possible. Moreover, I have made available the code for download from

4



S

I1 I2

R

1Figure 1: Model structure of the individual-based two-strain infection model
and the ODE model (3)-(5) analysed in this article. Solid arrows stand for
state transitions from susceptibles S to one of the strains I1 or I2, and from
infected to resistant R. The dashed arrow accounts for susceptible offspring
produced by the resistant population.

https://github.com/merlinthemagician/2strainIBM so that readers can
follow the steps of the analysis as described in this article and reproduce the
results.

After a short description of the two-strain model in Section 2, the one-
strain version of the model is thoroughly analysed by determining the (stochas-
tic) steady state S∗ depending on the parameters infectiousness, duration
and chance-recover. Representing these results as a bifurcation study with
bifurcation parameter S∗ enables us to compare the IBM with a population-
based two-strain infection model based on ordinary differential equations
(ODE), see (3)-(5).

In Section 4 we show that the two-strain IBM behaves according to the
exploitative competition motif so that survival and extinction only depend on
the simple condition SS

1 ≶ SS
2 where SS

i , i = 1, 2 are the stationary solutions
for the susceptible population if only strain 1 or 2 are present, respectively.
Based on this condition we can also infer for a given parameter set how much
the competition of the two strains will be influenced by stochastic events. We
discuss our results in Section 5 and give an outlook to future work.

2. A simple individual-based infection model

The two-strain infection model investigated in this article (see Figure 1
for a schematic representation) extends the example Virus (Wilensky, 1998)
provided with the NetLogo software (Wilensky, 1999). Virus is a stochastic
spatio-temporal model of how an infectious disease spreads in a population.
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The population consists of susceptible, infected and resistant individuals that
move randomly on a spatial grid.

2.1. Growth

Only susceptible and resistant members of the population can reproduce.
At each time step, there is a 4% chance of producing offspring, in this case
a new-born susceptible is placed next to its “mother”. All members have a
limited lifespan—in the absence of infection they die after exactly 100 time
units. In order to avoid unlimited growth, no more offspring are produced if
the total population has reached a carrying-capacity of 750.

2.2. Infection transmission

It is assumed that infection is transmitted by contacts between suscepti-
bles and infected. When a susceptible is closer than a certain critical distance
to an infected individual (in NetLogo terms this means that the susceptible
has entered the “patch” of the infected) the infection is transmitted with
probability infectiousness. As mentioned above, infected lose the capabil-
ity of producing offspring.

2.3. Immunity or dying from infection?

Infection continues for at least duration time steps. When the infection
ends depends on the number of time steps that an infected individual has
been sick (sick-count). By sampling at each time step

x ∼ U(0, sick− count− 1)

and requiring

x > duration

for the infection to end, the probability that the infection ends increases
with sick-count. Infections can end with immunity or death; which of the
two occurs depends on the probability chance-recover.

2.4. Two-strain model

For the purpose of this article this model is extended by a second strain of
the disease. The two strains A and B each have parameters infectiousness a,
duration a, chance-recover a and infectiousness b, duration b, chance-recover b,
respectively. I further assume cross-immunity, i.e. that carriers of strain A
cannot be infected by strain B and vice versa. For simplicity, it is assumed
that infected of any strain that gain immunity are protected against the other
strain as well. The current version of the NetLogo source code is provided
under the link https://github.com/merlinthemagician/2strainIBM.
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Figure 2: Simulations of the same parameter set but for different seeds of the
random number generator lead to qualitatively similar asymptotic dynamics.
(a) shows an example where the solutions tend towards a stochastic steady
state. The trajectories are already very close in the transient phase for t <
200 and seem to approach the same stochastic steady state. The mean for the
last 1,000 time points of the red population is marked by the bold black line,
the grey area indicates deviations of one standard deviation. Parameters:
β = 23%, τ = 9, ρ = 0%. (b) For different parameters (β = 50%, τ =
10, ρ = 10%), the solutions exhibit complex dynamics similar to chaotic
oscillations. Nevertheless, all trajectories seem to stay in the same range.
Here, mean and standard deviation were calculated from the last 4,000 time
points of the red population.
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3. Asymptotic dynamics of the one-strain model

Our analysis of the IBM is based on asymptotic dynamics, i.e. for be-
haviour that is observed after running the IBM sufficiently long to reach
a stochastic steady state. It is striking that although individual trajecto-
ries for the susceptibles population are clearly stochastic, the time course
of different realisations (different initial conditions, different seeds for the
random number generator) for the same parameter set are nevertheless very
similar. In particular, all trajectories approach the same stochastic steady
state (Figure 2). One remark that has to be made here is that our model
has absorbing states like extinction of the infection or even the total pop-
ulation. For k → ∞ the system must tend towards one of the absorbing
states. However, the expected number of iterations it takes for reaching an
absorbing state may be very large. Thus, technically, whenever I refer to
“steady states” what, in fact, is meant is a quasi-steady state. Having said
this, absorbing states are always available to the system and become relevant
if fluctuations drive populations close to extinction.

The asymptotic dynamics was characterised by computing the arithmetic
mean of populations Sk for an appropriate number of subsequent iterations k;
standard deviations were calculated in order to obtain an estimate of the
magnitude of fluctuations. For some parameter regions the populations do
not tend towards a stochastic steady state but show regular or even chaotic
oscillations. However, especially for small amplitude fluctuations it is hard to
distinguish between deterministic and stochastic sources of variability. For
this reason, I decided not to treat oscillatory behaviour and steady states
differently—the standard deviation accounts for the magnitude of stochastic
noise as well as deterministic fluctuations. By comparing several realisations
for each parameter set, multi-stability could be excluded.

The one-strain version of the model was systematically simulated for 10
different levels of infectiousness—β = 10%− 90%, 7 levels of duration—
τ = 10−70 and 5 levels of chance-recover—ρ = 10%, 30%, 50%, 70%, 90%.
Each simulation was repeated with three different seed values for the NetLogo
random number generator. Because we are interested in dynamics where
the infection is present, the population was initialised at its carrying capac-
ity P = 750; this usually ensures that the infection persists. All simulations
were run for at least 10,000 iterations.

3.1. Steady state S∗ unaffected by chance-recover ρ

A first observation from our parameter study is that chance-recover ρ
hardly influences the mean value of the susceptibles S. Nevertheless ρ plays
an important role in determining if susceptibles tend towards a steady state
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or oscillate. Increasing ρ decreases fluctuations, so higher levels of ρ stabilise
the system (Figure 3).
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Figure 3: Dependency of the average asymptotic level of susceptibles S∗ on
the duration τ for three different levels of chance-recover ρ. Standard
deviations (indicated by error bars) indicate the magnitude of fluctuations
caused by noise or oscillations. At low values of ρ = 10% the susceptible
population oscillates for the whole range of durations so that the standard
deviation is large. Already for ρ = 30%, the standard deviation drops for τ
between 20 and 50 time units which means that the variability of the average
is mainly due to noise rather than oscillatory dynamics. The dynamics is
further stabilised for ρ = 90% but interestingly, the mean values are very
close to those for ρ = 30%. These results (which are similar for other levels of
infectiousness β fixed at 50% for this figure) suggest that ρ influences the
level of deterministic or stochastic fluctuations but hardly affect the average
asymptotic level of susceptibles S∗.

3.2. A bifurcation diagram depending on duration τ

The bifurcation diagram shown in Figure 4 indicates how the spread of
the infection depends on the parameter duration τ , see Wiggins (2003);
Kuznetsov (1995) for an introduction to bifurcation theory. For low dura-
tions the infection is unable to spread (labelled I∗ = 0 in Figure 4) because
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infected do not carry the disease long enough for transmitting it to sufficiently
many susceptible hosts. For an intermediate range of the duration τ , the
infection is endemic without reducing the size of the total population P ∗

(labelled P ∗ = K). The reason presumably is that recovery of infected and
transition to the resistant class is fast enough that the resistant and suscepti-
ble populations produce enough offspring to balance disease-induced deaths.
For high values of duration τ the stationary solution P ∗ = K is destabilised
(labelled P ∗ < K), i.e. the disease reduces the total population below its
carrying capacity. Interestingly, only then it is possible to observe oscillations
that can be distinguished from noise—the higher variability of the solutions
is reflected by increased standard deviations. For very high values of τ the
amplitudes of the fluctuations increase and the minima of the infected pop-
ulation approach zero which strongly increases the risk that the infected
population goes extinct. Alternatively, the infection may also drive the total
population to extinction—if the disease is transmitted to all members of the
population and infected die before they become resistant (this may be the
case either for a high duration τ or a low chance-recover ρ).

3.3. Dependency of S∗ on infectiousness β and duration τ

Because chance-recover ρ has little influence on the magnitude of S∗

we continue our analysis for a fixed value ρ = 50%. Figure 5 shows that for
increasing values of infectiousness β and duration τ the population of
susceptibles S∗ decreases. This indicates that the strength of the infection
increases with β and τ . In the next section it will be demonstrated that
Figure 5 gives us a comprehensive understanding of the parameter space of
the two-strain model. For given values of infectiousness and duration

for both strains, SS
1 = S∗(β1, τ1) and SS

2 = S∗(β2, τ2) can be looked up in
Figure 5. Applying the results from Siekmann et al. (2010); Siekmann (2013)
the behaviour of the two-strain model can then be determined.

3.4. Comparison of the IBM to an ODE model

A very useful feature of analysing model behaviour depending on station-
ary solutions is that it is possible to compare completely different models.
This is especially valuable because all modelling methods have particular
strengths and shortcomings—therefore, general insights into the behaviour
of a system can be gained best by comparing a large number of different
models.

In order to demonstrate this, we write down a population-based multi-
strain infection model that takes into account the same processes (see Fig-
ure 1) as the IBM described in Section 2.
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Figure 4: Mean and standard deviations of all subpopulations S∗, I∗, R∗

and the total population P ∗ depending on the duration τ of the infection.
The parameters chosen for this bifurcation diagram are infectiousness β =
70%, chance-recover ρ = 50%. For other choices of β and ρ the diagram
may differ in that P ∗ < K for the whole range of duration τ (for low values
of ρ) or that there are no oscillations (for high values of ρ).
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1
Figure 5: Comparison of the one-strain versions of the IBM described in
Section 2 and the ODE model (3)-(5). (a) and (b) illustrate the depen-
dency of the arithmetic mean of susceptibles S∗ on infectiousness β and
duration τ , chance-recover ρ was fixed at a value of 50%. (a) shows a
surface plot of S∗ in the IBM depending on infectiousness and duration of
the disease. Contours indicating different levels of S∗ are superimposed on
the surface and in the β/τ plane. (b) gives a view from above of the con-
tours in the β/τ plane. Analogous plots for the ODE model are provided in
(c) and (d). Interestingly, the dependency of S∗ on the transmission rate β
and τ = (m+ α+ γ)−1 (which can be interpreted as the average duration of
the infection) is qualitatively very similar.
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dS

dt
= r(S +R)

(
1− S +R +

∑n
k=1 Ik

K

)
−

n∑
k=1

βkSIk, (3)

dIk
dt

= βkSIk − (m+ αk + γk)Ik = βkIk(S − SS
k ), (4)

dR

dt
=

n∑
k=1

γkIk −mR. (5)

The susceptible population S grows logistically and can be infected by
members of the populations Ik carrying one of the k different strains with a
rate βSIk. Infected suffer from a strain-specific mortality αk named virulence
in addition to the natural mortality m and become resistant at a rate γk. As
in the IBM it is assumed that once resistant, an individual is resistant to
all strains. Members of the resistant population (in contrast to the infected)
can reproduce but immunity is not inherited, so their offspring are suscep-
tible. Similar to the IBM this model is meant to be a simple example for
a population-based multi-strain model, for an introduction to population-
based multi-strain models, see, for example, the relevant chapters in Keeling
and Rohani (2008) and Brauer et al. (2008).

From (4) it is easily seen that the stationary solutions for susceptible
hosts are

SS
k =

m+ αk + γk
βk

=
1

βkτk
(6)

where

τk =
1

m+ αk + γk
(7)

is the average duration of an infection with strain k. Thus, the stationary
solutions for susceptibles SS

k depend on the transmission rate β and the dura-
tion τ which have interpretations that are very similar to the corresponding
parameters infectiousness and duration of the individual-based model.
Figures 5a and 5c clearly demonstrate that the dependency of the stationary
solution of susceptibles of the one-strain models S∗ is qualitatively similar.
Thus, despite the fact that the models are based on completely different mod-
elling methods, they make analogous predictions about epidemic spread.

From (4) it also follows (using the same arguments as in Siekmann (2013))
that stable stationary coexistence of multiple strains is impossible. Moreover,
analysis of the one-strain version of (3)-(5) strongly indicates that oscillatory
solutions do not exist at least for small values of the recovery rate γ (this
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is different from the IBM where both regular as well as chaotic oscillations
can be observed). Thus, coexistence cannot be achieved either by oscillatory
solutions (Armstrong and McGehee, 1976a,b). As explained in Siekmann
et al. (2010); Siekmann (2013), the behaviour of (3)-(5) can in a next step
be represented in a competition diagram (Figure 7a) that indicates for all
possible parameter sets which of the strains is the superior competitor.

4. Analysis of the two-strain model

By taking advantage of the results from Siekmann (2013) the effort for
analysing the two-strain model can be considerably reduced. But more im-
portantly, our new approach gives additional insights into the model be-
haviour that cannot be obtained from traditional methods for investigating
IBMs.

4.1. Additional analysis of the two-strain model is not required

From the description of the model in Section 2 it is obvious that the two
strains only influence each other indirectly via depletion of a resource—in this
case, the population of susceptible hosts S. Thus, the model is characterised
by the “exploitative competition motif” (Siekmann, 2013). In models of this
type usually one of the competitors is outcompeted by the other. Which
of the two strains will drive the other to extinction can be determined by
comparing SS

1 = S∗(β1, τ1) and SS
2 = S∗(β2, τ2). If

SS
1 < SS

2 ,

strain 1 displaces strain 2 whereas strain 2 prevails if this inequality is
reversed. From an ecological point of view, this stability condition just means
that the strain that reduces the host population to the lowest level is the
strongest competitor. For this reason, additional analysis of the two-strain
model is not required because for a given parameter set, SS

1 = S∗(β1, τ1)
and SS

2 = S∗(β2, τ2) can simply be looked up in Figure 5. Thus, rather than
explicitly investigating the full model, analysis of the one-strain submodel,
or in other words: half of the parameter space, is sufficient.

4.2. Extent to which parameter sets are characterised by stochasticity

In contrast to the deterministic situation of a model like (3)-(5) we cannot
expect that our stochastic model will always behave as predicted by SS

1 ≶ SS
2 .

Instead, how likely it is that, say, strain 1 outcompetes strain 2 also depends
on the distance ∆ = |SS

1 − SS
2 | rather than just on which of the SS

i , i = 1, 2
is smaller. Figure 6a gives an example for a parameter set where SS

1 � SS
2 —

thus it is expected that I1 will nearly always outcompete I2 independent from
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the initial conditions and stochastic events. In a situation where SS
1 ≈ SS

2

the strength of both strains is similar, so depending on initial conditions
and stochastic effects both strains have a chance to survive. Thus, due to
stochastic effects in this parameter region the system is bistable, see Fig-
ures 6b,c. We have systematically confirmed these results for a large number
of parameter sets.
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Figure 6: Two-strain dynamics can be predicted from the parameter study of
the one-strain model. (a) For this parameter set, SS

1 and SS
2 are sufficiently

different so that in most cases I1 outcompetes I2. Parameters: β1 = 30%,
τ1 = 50, ρ1 = 50%, β2 = 70%, τ2 = 15, ρ2 = 50%, initial population: 300.
seed: 815. (b) and (c) If SS

1 and SS
2 are very similar it depends on stochastic

effects which of the two strains displaces the other. For both simulations,
the same parameters were chosen except for the seeds of the random number
generator. Parameters: β1 = 30%, τ1 = 50, ρ1 = 20%, β2 = 70%, τ2 = 21,
ρ2 = 50%, initial population: 300, seeds: (b) 42, (c) 4711

The behaviour of the model depending on SS
1 and SS

2 (i.e. for any pos-
sible combination of parameters) and the extent to which the outcome is
modulated by stochastic effects are graphically represented in a competition
diagram (Figure 7b). Also compare with the competition diagram for the
deterministic ODE model (3)-(5) (Figure 7a).
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1Figure 7: Competition diagrams for the population-based and the individual-
based two-strain infection models. (a) In the deterministic model for param-
eter sets located above the diagonal (blue), strain 1 survives and displaces
strain 2 whereas below the diagonal, strain 2 (green) prevails. (b) Unlike
in the deterministic situation, the outcome of a particular realisation not
only depends on the location in parameter space but also on stochastic ef-
fects. If ∆ = |SS

1 − SS
2 | is large, the stronger strain will displace the weaker

strain with a high probability. But if ∆ ≈ 0 or analogously, SS
1 ≈ SS

2 the
model behaviour strongly depends on stochastic effects. Thus, we refer to
parameter sets close to the diagonal as stochastically bistable. The influence
of stochasticity is accounted for in the diagram by a colour gradient where
the region near the upper left and the lower right corner are plotted in blue
and green respectively, whereas regions close to the diagonal are coloured
blue-green indicating that both strains have a chance for survival. It has to
be noted here that this graphical representation is not meant to make any
quantitative statement about the actual probability which of the strains goes
extinct—this would require further simulation studies.
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4.3. Long-term stationary coexistence is very unlikely

Finally, let us consider the problem of coexistence. It is well-known that
for exploitative competition, coexistence of all competitors is very uncommon
(Hardin, 1960; Armstrong and McGehee, 1980). Stationary coexistence is im-
possible because it violates the stability condition SS

1 ≶ SS
2 but in models

based upon deterministic differential equations we often observe oscillatory
coexistence, first shown by Armstrong and McGehee (1976a,b). Due to the
stochastic nature of our model it is likely that fluctuations will drive the so-
lutions away from the coexistence attractor. In Figure 8 we show an example
where the underlying deterministic dynamics is probably chaotic. The two
strains of the disease initially seem to coexist until the weaker strain I1 is
eventually driven to extinction at about 3,500 time units.
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Figure 8: Two strains coexist for a long time before the weaker strain I1
eventually goes extinct. This examples illustrates that coexistence may be
less common in stochastic IBMs than in deterministic models because noise
may always drive the solution off the coexistence attractor to an absorbing
solution where one strain goes extinct. Parameters: β1 = 20%, τ1 = 70%,
ρ1 = 10%, β2 = 70%, τ2 = 20, ρ2 = 10%, initial population: 200. seed: 666.
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5. Discussion

In this study I have shown how bifurcation theory methods that are widely
and successfully used for analysing deterministic models based on differen-
tial equations can be transferred to IBMs. The new approach increases the
efficiency of model analysis, has a rigorous mathematical basis and leads to
results that cannot be obtained with established methods for investigating
IBMs. For a simple two-strain infection model it was demonstrated that the
system behaviour depends on only two aggregated parameters, the station-
ary population of susceptibles SS

i , i = 1, 2, for strain 1 and 2 of the infection.
One of the useful aspects of the representation of the model behaviour de-
pending on SS

1 and SS
2 (Figure 7b) is that regions of parameter space that are

characterised by stochastic bistability can be easily identified. In contrast,
for the ODE model, the condition SS

1 ≶ SS
2 holds deterministically. This

result cannot be obtained with traditional methods for analysing IBMs.
The bifurcation parameters SS

i are not only mathematically convenient
but (as explained previously in Siekmann et al. (2010); Siekmann (2013))
have a clear biological interpretation. In the situation of exploitative com-
petition for susceptible hosts, the steady state of the susceptible population
simply is an aggregated measure for the strength of the infection represented
by a particular parameter set. Figure 5 shows that S∗ decreases mono-
tonically for both infectiousness and duration, i.e. the strength of an
infection increases with both of these parameters. Interestingly, the role
of chance-recover is more subtle: at first sight it seems counter-intuitive
that this parameter has no appreciable effect on S∗. One may expect that
more susceptible offspring is produced because a larger proportion of in-
fected becomes resistant and the resistant population produces susceptible
offspring. However, most of these additional susceptibles eventually will be-
come infected—thus, for the asymptotic dynamics, the most important effect
of increasing the value of chance-recover seems to be that the resource pool
of susceptibles available to the infected is replenished. The fact that immu-
nity is not passed from members of the resistant population to their offspring
explains why increasing the chance of recovery even stabilises the infection. In
fact, the parameter range for duration and infectiousness where the total
population reaches its carrying capacity K increases with chance-recover.
As mentioned in Section 3.2, oscillations that eventually lead to extinction
of the infection are only observed when the total population P ∗ decreases
below K.

The ability to compare models as different as ODE models and IBMs
has great potential for gaining deeper insight into the underlying processes
of many ecological and epidemiological systems. Few modellers would argue
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that the goal of modelling is not to find the perfect model of a particular
system but instead to obtain a comprehensive understanding by comparing
many imperfect models that all come with their own sets of simplifying as-
sumptions and shortcomings. In this study, it has been demonstrated that
choosing stationary solutions as bifurcation parameters enables us to com-
pare models that were built using completely different modelling frameworks
such as ODE models and IBMs. Grimm and Railsback (2005) are pessimistic
that such a comparison was possible in a meaningful way—they make a good
point that in many cases when this has been done, an IBM was specifically
constructed for such a comparison and that this restricts the flexibility of
representing processes at the individual level in detail. However, the method
outlined here does not require us to vary “similar” parameters in the IBM and
the ODE model and compare the resulting behaviour in both models. Instead
(as shown in Figure 5) we can compare the effects of independently varying
all parameters that appear in the stationary solutions. For the one-strain
versions of the ODE model (3)-(5) and the IBM described in Section 2 this
comparison clearly reveals which parameters of the two models correspond
to each other rather than forcing us to start from parameters with similar
significance in the first place. Interestingly, for both models the stationary
solution S∗ exhibits a similar dependency on infectiousness and duration of
the infection. A clear difference between ODE model and IBM is that the
coexistence steady state of the former cannot be destabilised by a Hopf bifur-
cation whereas the population dynamics of the IBM shows periodic and prob-
ably also chaotic fluctuations. The predictions from the two-strain versions
of both models are also similar—both exhibit the exploitative competition
motif where long-term coexistence of both infection strains is impossible.

Whereas we have demonstrated how bifurcation analysis can be imple-
mented for a simple IBM, the ultimate goal is to apply this approach to more
detailed models. For more complex IBMs that take into account interactions
of individuals via transport and social networks, see for example Eubank
et al. (2004); Ferguson et al. (2005), it is common practice to study the sys-
tem behaviour for reference parameter sets for which many realisations are
generated by simulating the models starting from different initial conditions.
The accuracy of results obtained in this way is unclear because exploring the
sensitivity of these models by exhaustive simulations even for a subset of the
parameter space is not only inefficient but for the most detailed models sim-
ply infeasible. Here, it is again valuable to consider how this problem is dealt
with for models that are based upon differential equations. For systems of
differential equations where the symbolic calculations required for bifurcation
analysis are intractable or cumbersome, numerical continuation techniques
are now widely used and software tools, for example, AUTO (Doedel, 2007)
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and MATCONT (Dhooge et al., 2006a,b), are available. Continuation allows
us to track a stationary solution as it varies depending on model parame-
ters. This is obviously more efficient than simulating a model until it has
reached a steady state but, more importantly, continuation can also track
unstable stationary solutions. Continuation techniques cannot be directly
applied to simulation models like IBMs but in the last 15 years—starting
from Theodoropoulos et al. (2000)— Kevrekidis and co-workers have devel-
oped their framework of “equation-free” modelling and “coarse” bifurcation
analysis, see Kevrekidis and Samaey (2009) for a review. The approach has
mostly been applied to complex physical and chemical systems in engineer-
ing applications but there are a few recent examples where equation-free
modelling has been used for analysing IBMs, see Cisternas et al. (2004);
Tsoumanis et al. (2010) and Siettos (2011). In future work we will combine
these techniques with our approach in order to systematically analyse more
detailed IBMs.
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