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Abstract. Stochastic reaction-diffusion equations are a popular modelling approach for
studying interacting populations in a heterogeneous environment under the influence of envi-
ronmental fluctuations. Although the theoretical basis of alternative models such as Fokker-
Planck diffusion is not less convincing, movement of populations is most commonly mod-
elled using the diffusion law due to Fick. An interesting feature of Fokker-Planck diffusion is
the fact that for spatially varying diffusion coefficients the stationary solution is not a homo-
geneous distribution—in contrast to Fick’s law of diffusion. Instead, concentration accumu-
lates in regions of low diffusivity and tends to lower levels for areas of high diffusivity. Thus,
we may interpret the stationary distribution of the Fokker-Planck diffusion as a reflection
of different levels of habitat quality. Moreover, the most common model for environmental
fluctuations, linear multiplicative noise, is based on the assumption that individuals respond
independently to stochastic environmental fluctuations. For large population densities the as-
sumption of independence is debatable and the model further implies that noise intensities
can increase to arbitrarily high levels. Therefore, instead of the commonly used linear mul-
tiplicative noise model, we implement environmental variability by an alternative nonlinear
noise term which never exceeds a certain maximum noise intensity. With Fokker-Planck dif-
fusion and the nonlinear noise model replacing the classical approaches we investigate a
simple invasive system based on the Lotka-Volterra competition model. We observe that the
heterogeneous stationary distribution generated by Fokker-Planck diffusion generally facili-
tates the formation of segregated habitats of resident and invader. However, this segregation
can be broken by nonlinear noise leading to coexistence of resident and invader across the
whole spatial domain, an effect that would not be possible in the non-spatial version of the
competition model for the parameters considered here.

1 Introduction

It is needless to give a broad review of the classical publications on spatial and spatiotemporal pattern
formation in non-equilibrium nonlinear systems. However, on occasion of Ulrike’s significant birthday,
one should remember her seminal contributions to the theory of pattern formation in electrochemical
systems from the eighties of last century [5,6,7], of course without forgetting all her impressive later work
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until today. In that mentioned early period of her academic career, one of us (H.M.) had the chance to learn
from and to work with Ulrike in Werner Ebeling’s research group at the Sektion Physik of Humboldt-
Universität zu Berlin [17]. Later on, a theoretical bridging of electrochemical and ecological diffusive
systems was found [16,18]. Ulrike became interested in ecological and environmental dynamics as well,
and from time to time we manage to meet and to chat and sometimes even to work, cf. [1]. Also in the
academic career of I.S., Ulrike Feudel has played an important role—Ulrike kindly served as an external
examiner for his PhD defence. He has fond memories of being quizzed on the Lotka-Volterra competition
model which also plays a central role in the study presented here.
Several important problems in ecology are associated with corresponding phenomena in pattern forma-
tion. For example, the study of biological invasions, the spread of a non-native species (the invader) in
a habitat where a native species (the resident) is possibly considerably reduced or even driven to extinc-
tion, is closely related to the analysis of wave solutions in reaction-diffusion systems. The emergence of
patterns in apparently relatively homogeneous habitats such as, for example, the patchiness of plankton
or complex vegetation patterns is linked to the Turing instability [29] and its many variants involving a
combination of diffusive and advective flows. Several detailed introductions to spatio-temporal patterns
in ecology are available, for example, the classic by Okubo [22,23] or the more recent monograph by
Malchow, Petrovskii and Venturino [20]. Mathematical models for interactions and movements of pop-
ulations X(r, t) = {Xi(r, t); i = 1, 2, . . . , N} in a heterogeneous and variable environment are often
based on stochastic reaction-diffusion equations:

∂Xi(r, t)

∂t
= fi(X(r, t))︸ ︷︷ ︸

reaction

+∇ · (−µ(x, t)Xi(r, t) +∇[D(r, t)Xi(r, t)])︸ ︷︷ ︸
diffusion

+ gi(X(r, t))ξ(r, t)︸ ︷︷ ︸
stochastic

. (1)

Here, the reaction terms fi(X(r, t)) describe the interactions between individuals of a population with
individuals of the same or a different population. This enables us to represent processes as diverse as
transmission of infectious diseases, predator-prey interactions or competition for resources.
The diffusion term is derived from an underlying stochastic model of the movement of individuals. Con-
sider the stochastic differential equation (SDE) for the position Xt ∈ Rd of a particle that moves stochas-
tically in d-dimensional space:

dXt = µ(Xt, t)dt+Σ(Xt, t)dWt (2)

The drift coefficients µ : Rd × R+ → Rd account for deterministic movement of the particle, dWt is
a d-dimensional Wiener process and the matrix-valued intensity coefficients are Σ : Rd × R+ → Rd×d.
An alternative description to the SDE (2) which enables us to calculate the stochastic location Xt of a
particle is the probability density p(x, t) for finding the particle at position x at time t. This analogous
representation of the system is especially suitable for considering a large population of particles because
in this case, the probability density p(x, t) can be interpreted as the fraction of particles that are expected
to be found at a location x at time t. The probability density p(x, t) can be shown to satisfy a deterministic
partial differential equation (PDE), the Kolmogorov forward or Fokker-Planck equation [15], [23, chapter
5]

∂

∂t
p(x, t) = ∇ · (−µ(x, t)p(x, t) +∇[D(x, t)p(x, t)]) (3)

where ∇ is the gradient, (∇·) denotes the divergence operator and D(x, t) is related to the intensi-
ties Σ(x, t) by the standard scalar product 〈·, ·〉:

Di,j(x, t) = 〈Σi,·,Σj,·〉. (4)

Now, choosing
µ(x, t) := α∇D(x, t), α ∈ R, (5)

we obtain several alternative laws for the dynamics of the probability distribution p(x, t) i.e. the collective
movement of the population. First, it is important to note that in this model different choices of the
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parameter α only have an effect for spatially varying diffusion coefficients D(x, t), for D(x, t) := const.
all laws derived for different α coincide. Second, the biological significance of the diffusion coefficients
changes depending on the choice of α. For α = 1 an easy calculation shows that (3) reduces to the
well-known diffusion law due to Fick [8]

∂

∂t
p(x, t) = ∇ · [D(x, t)∇p(x, t)] (6)

which is the diffusion term most commonly used in modelling applications. Here, the fluxD(x, t)∇p(x, t)
is proportional to the gradient of p(x, t) i.e. to local concentrations differences. Thus, for α = 1, the dif-
fusion coefficient D(x, t) simply is the rate at which concentration gradients are equilibrated. In the
terminology of Okubo [23, chapter 5] who provides a mechanistic interpretation of several models pre-
sented in the classical publications by Skellam [27,28], Fick’s law was therefore named “neutral” because
the diffusion coefficients play no active role in determining local concentrations. In contrast, a law known
as Fokker-Planck diffusion [10,24], obtained for α = 0

∂

∂t
p(x, t) = ∆[D(x, t)p(x, t)]. (7)

varying diffusion coefficients D(x, t) increase the flux even for locally homogeneous p(x, t). Thus, for
the Fokker-Planck law the diffusion coefficients D(x, t) can be interpreted as the tendency to leave a par-
ticular spatial location. Thus, this law of diffusion was named “repulsive”. The “attractive” law obtained
for α = 2 (which we will not consider in this paper) was recently investigated by Potapov et al. [25]. In
summary, as explained in more detail in [2], the drift term (5) is not only a phenomenological description
but can be interpreted as the ability of an individual to respond to environmental conditions by “choosing”
its direction of movement accordingly [11].
Third, from the different significances of the diffusion coefficients for different α it is not surprising that
the stationary solution of (3) depends on the choice of this parameter. For “neutral” diffusion according
to Fick’s law (6) it is clear that the homogeneous distribution p(x, t) = 1 is a stationary solution. But it is
obvious that the stationary distribution cannot be homogeneous for the Fokker-Planck law (7) for spatially
varying diffusion coefficientsD(x, t). The reason can be understood by regarding (2). By choosing α = 0
,the movement of individual particles is purely stochastic but nevertheless for spatially inhomogeneous
coefficients, the movement is biased towards directions of larger intensities Σ(x, t). Similarly, we see
that in the situation of Fick’s law (α = 1), the drift term −∇D(x, t) opposes the gradient of D(x, t) and
in this way seems to exactly balance the bias of the movement towards larger diffusivities.
For many physicochemical systems, Fick’s law is the model of choice due to the fact that the particles
move in a purely passive way which is consistent with a flux opposed to the concentration gradient. But for
biological populations whose individuals are able to actively influence their direction of movement, there
is no reason to restrict ourselves to models based on Fick’s law. Instead, it seems more appropriate to start
from a general model for stochastic movement such as (3). However, regardless of possible interpretations
of the stochastic movement of individuals underlying a particular diffusion term, the most important
qualitative feature of the alternative models to Fick’s law presented here is the fact that the stationary
distributions of the populations are in most situations inhomogeneous. Indeed, Bengfort et al. [2] showed
that Fokker-Planck diffusion leads to pattern formation for situations where this would not be expected
for Fickian diffusion.
Whereas Bengfort et al. [2] considered a wide range of deterministic models, most recently we have
also investigated the combined influence of Fokker-Planck diffusion and stochastic environmental fluc-
tuations. In the follow-up paper Bengfort et al. [3] we considered linear multiplicative Gaussian “white”
noise (uncorrelated in space and in time) which is the most common model for fluctuations in environ-
mental conditions such as temperature, nutrient availability etc. over time and/or in space. The general
noise term gi(X) in (1) could, in principle, be used to account for several different sources apart from
environmental noise. For example, by choosing a non-negative process ξ(r, t) and gi(X) = const. the
influence of random immigration might be implemented. From an individual-based model, the branching
process, it can be derived that with gi(X) ∼

√
Xi a model for demographic stochasticity is obtained. In
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this article we will only consider environmental stochasticity. As mentioned above, the classical model
for environmental noise is gi(X) ∼ Xi. One crucial assumption of the branching process with random
environment (BPRE), an individual-based model from which this scaling can be derived, is that environ-
mental fluctuations affect each individual independently. Due to independence, an increase or decrease
of each individual’s likelihood to reproduce results in a proportional increase or decrease in the popula-
tion’s growth rate. In contrast, we have recently proposed an alternative model where the noise intensity
saturates for large population densities [26]:

gi(X) =
ωiXi

γi +Xi
. (8)

In this model, which we proposed in slightly more general form in [26], the noise level gi monotonically
tends to a maximal noise intensity ωi. The half-saturation constant K := γi is the population density Xi

at which half of the maximal noise intensity is reached. It is important to emphasise here that although this
model thus makes a transition from linear multiplicative noise at low population densities to additive noise
at large population densities this should not be interpreted as a transition from environmental stochasticity
to random immigration. Rather, as mentioned above we exclusively consider environmental stochasticity
for which we propose an alternative model where the noise intensity saturates for large densities instead
of increasing linearly.

Like the linear multiplicative noise term, also the model (8) can be justified by underlying processes at
the level of individuals. Let us consider the effect of fluctuations in nutrient abundance under intraspe-
cific competition as a concrete example. For a small population density it is reasonable to assume that
increased nutrient abundance elevates the reproductive success of each individual by a similar amount. In
contrast, for a high population density, due to competition only the reproductive success of the strongest
individuals may increase which leads to saturating growth at the population level. Similarly, if nutrients
are scarce, stronger competitors might be less severely affected so that again at the population level the
influence of decreased nutrient abundance is less than proportional to the population density. Regard-
less of the mechanistic interpretation given above, the most important qualitative difference of (8) to the
multiplicative model is the fact that in the new model (8) the noise intensity is bounded.

The purpose of this study is to examine in more detail the combined effect of Fokker-Planck diffusion (7)
and nonlinear noise (8). This is motivated by our most recent work where we found that by varying
the standard approaches for modelling movement of populations [2] or environmental fluctuations [26],
respectively, a wide range of interesting effects could be observed, even in well-known classical models
such as the Lotka-Volterra competition model. On the one hand, Bengfort et al. revisited a wide range
of classical deterministic reaction-diffusion models under the assumption that the movement of particles
or members of a population was described by Fokker-Planck rather than Fickian diffusion. The greater
propensity of the Fokker-Planck law for pattern formation was demonstrated for several examples [2].
Bengfort et al. [3] extended this study of deterministic systems with Fokker-Planck diffusion by adding
environmental fluctuations modelled by the classical linear multiplicative white noise model. On the
other hand, Siekmann and Malchow [26] investigated alternatives to the multiplicative noise model. They
introduced the non-linear noise term (8) which, to the best of our knowledge, has not previously appeared
in the literature and also studied correlated (coloured) rather than white noise. Siekmann and Malchow
considered only Fickian diffusion with spatially homogeneous diffusion coefficients, so in this study we
study Fokker-Planck diffusion with non-linear environmental noise (8). Like in Bengfort et al. [3] we
model a biological invasion using the classical Lotka-Volterra model which enables us to compare our
results obtained with non-linear noise (8) with the classical linear noise model.
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2 The stochastic competition-diffusion model

The dynamics of a resident species X1 and an invader X2 is described by

∂X1

∂t
=(1−X1)X1 − c12X1X2 + d1∆(X1D

∗(x, y)) + g1(X1)ξ(r, t) , (9)

∂X2

∂t
=(1−X2)X2 − c21X1X2 + d2∆X2 + g2(X2)ξ(r, t) . (10)

The spatial dependency of the resident’s diffusivity is chosen as

D∗(x, y) = D0 +

{
a (sin(20 · r(x/Lx, y/Ly)))

k
, if 20 · r(x/Lx, y/Ly) < 3π ,

a (sin(3π))
k
, else .

(11)

with

r(x, y) =
√
x2 + y2

and Lx and Ly are the side lengths of the spatial domain. The side lengths chosen for this article are
provided in (13). The parameter k is an even number witch controls the steepness of D∗. Throughout
this paper we will use the parameters

D0 = 1 , a = 19 , k = 8.

This functional form of the diffusivity D∗(x, y), see Figure 1 for a plot, is meant to represent the resi-
dent’s varying levels of preference for different areas of the spatial domain. The coefficient D∗(x, y) can
be regarded as being inversely proportional to the resident’s preference for a particular location (x, y).
Namely, the lowerD∗(x, y), the lower the tendency to leave (x, y) which can be interpreted as a high level
of preference. How these preferences for different parts of the habitat affect the stationary distribution of
the resident is fundamentally different for Fickian diffusion and Fokker-Planck diffusion. For Fickian
diffusion the spatially heterogeneous diffusion coefficientD∗(x, y) only affects the transient dynamics of
the resident because the stationary distribution is always homogeneous, regardless of the particular func-
tional form of D∗(x, y). In contrast, for Fokker-Planck diffusion, the stationary solution is approximately
inversely proportional to D∗(x, y) which provides us with a simple model for a fragmented habitat that
mimics the resident’s levels of preference. In the absence of the invader X2, the resident X1 tends to the
distribution shown in the right panel of Figure 1—note that for the initial condition we have always set
the resident’s population to zero within a square with a side length of 50 length units in order to mimic
the onset of a biological invasion.
We ensure that resident and invader do not differ in competitive strength by letting the competition pa-
rameters coincide

c12 = c21 = 1.2

Because both c12 and c21 exceed unity, the system is in the bistable parameter range i.e. in the absence of
diffusion or noise the competitor with the larger initial density will drive its opponent to extinction. For
spatially extended systems, Malchow et al. showed that survival depends on the ratio of the diffusion co-
efficients of invader and resident—in general, the competitor with the larger diffusion coefficient prevails
[19]. Because the spatially varying diffusion coefficient d1 · D∗(x, y) of the resident is larger than the
constant diffusion coefficient d2 of the invader in some areas and smaller in others, it is expected from
Malchow et al. [19] that the spatial domain becomes segregated. Whereas in some regions invasion is
successful due to relatively low diffusivity of the resident, other areas act as barriers for invasion where
the resident’s diffusivity is relatively high. The initial condition is indicated in Figures 1 and 2, the invader
is set to zero and the resident is initialised with the spatially heterogeneous stationary distribution in the
whole spatial domain except for a patch in the upper left. Here, the resident is set to zero whereas the
invader is set to its carrying capacity 1. An exception is one simulation (see Figures 8 and 9) where we
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Fig. 1. Profile of Fokker-Planck diffusion and initial setting for residents
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Fig. 2. 2D projection of initial settings for population densities (green = resident, red = invader), cf. Figure 1.

compare the spatially varying diffusion coefficients D∗(x, y) with homogeneous diffusion coefficients—
there the resident is initialised with a spatially homogeneous distribution.
We numerically solve (9), (10) using an alternating direction implicit (ADI) scheme for efficiently imple-
menting the Crank-Nicholson method [4] as described previously [3]. The stochastic terms for which we
use the Stratonovich interpretations are numerically integrated with the derivative-free Milstein method
[13,21] as explained in [26]. For most simulations the temporal and spatial step sizes ht, hx and hy were

ht = 0.02, hx = hy = 15 (12)

except for Figures 8 and 9 where a smaller temporal step width of ht = 0.002 was required. We chose a
grid with 200 × 200 grid points so that we obtain system lengths Lx = Ly = 3, 000 and assumed that
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the origin is in the centre of the spatial domain so that the spatial range extends from (x0, y)) = −1, 500
to (xmax, ymax) = 1, 500. In summary, the spatial parameters were

x0 = y0 = −1, 500, xmax = ymax = 1, 500, Lx = Ly = 3, 000, Nx = Ny = 200 (13)

for all simulations.

3 Numerical simulations and results

We assess the influence of the non-linear noise model (8) on the success of the invasion by considering
two different scenarios. In Section 3.1 both resident and invader are parametrised so that (8) resembles
linear noise for population densities between zero and around 1 (see Figure 3). In Section 3.2 we lower
the half-saturation constant γ2 so that (8) is clearly non-linear already at low population densities of
the invader while leaving the parameters of the resident unchanged (see Figure 3). This enables us to
distinguish effects that are due to the nonlinearity of (8) from results that mainly depend on the interplay
of noise intensities with other parameters. The model (8) can be seen as a generalisation of the linear
model—whereas the results of Section 3.1 could be obtained with linear noise this is not true for those
from Section 3.2 for reasons to be explained in the Discussion. Parameters for the simulations presented
are summarised in Table 3.

Fig. d1 d2 a ω1 ω2 γ1 γ2

4 5 25 19 1.0 2.0 10.0 10.0
5 25 5 19 1.0 2.0 10.0 10.0
6 25 12.5 19 1.0 2.0 10.0 10.0
7 25 12.5 19 1.0 4.0 10.0 10.0
8 25 12.5 19 1.0 4.0 10.0 1.0
9 25 12.5 0 1.0 4.0 10.0 1.0

Table 1. Parameter values for the simulations presented in Figures 4-9.

3.1 Spatial segregation for approximately linear noise

For parameter sets where (8) resembles linear multiplicative noise with low intensities we observe front
waves. Depending on the velocity of the wave, the invader either succeeds in expanding the initial patch
or it is displaced by the resident. Because it is well-known that the wave speed increases with increasing
diffusion coefficients we investigate the success of invasion depending on various choices of the scaling
parameters d1 and d2 of the resident’s and invader’s diffusivities. The influence of the ratio of d1 and d2
is demonstrated in Figures 4-6. For Figures 4 and 5, the only difference between both parameter sets is
that d1 and d2 are swapped. Consistent with Malchow et al. [19] if d1 is low compared to d2, the invasion
is successful (Figure 4) whereas it fails for d1 much larger than d2 (Figure 5), although the invader initially
seems to be able to enter the realm of the resident (t = 100). Interestingly, Figure 4 shows that even in the
case of successful invasion, the invader is not able to invade the whole spatial domain. Due to the spatially
inhomogeneous stationary distribution of the resident (see Figure 1) its competitive strength varies across
the spatial domain, it is higher for areas where the resident population is high. Thus, the “rings” where the
resident population is low are easier to invade whereas the areas next to these “rings” where the resident
population is relatively high act as barriers that may halt the invasion. Thus, we observe the segregation
of the spatial domain in one habitat inhabited by the invader and one habitat occupied by the resident.
For Figure 6, the diffusivity d2 has been increased in comparison with Figure 5. In contrast to the former
situation, the invader not only manages to enter a ring where the resident population is relatively low
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t = 500 11000 17000 23000 29000

Fig. 4. Successful invasion for a low diffusivity of the resident compared with the invader.

t = 100 500 1000 2000 3000

Fig. 5. Invasion fails if the invader’s diffusivity is low compared with the resident.
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(see Figure 1) but very slowly succeeds in establishing itself by displacing the resident. However, the
invader is displaced from its initial patch. Therefore, like in Figure 4 we end up with spatially segregated
habitats because ultimately, the invader remains “sandwiched” between barriers created by regions where
the resident population is high.

t = 5000 7000 12000 17000 22000

Fig. 6. For an intermediate level of invader’s diffusivity the invader manages to occupy a less preferred area of the
resident’s original habitat.

Increasing the noise intensity of the invader increases its ability to cross invasion barriers caused by large
values of the diffusion coefficient D∗(x, y) of the resident. Consistently, in Figure 7 we observe a similar
situation as in our initial simulation (Figure 4) with low diffusivity of the resident in comparison with the
invader. In contrast to the previous simulation (Figure 6) the invader also manages to expand its initial
patch rather than only establishing itself in an area where the resident population is relatively low.

t = 1000 5000 10000 15000 20000

Fig. 7. Increasing the invader’s noise intensity ω2 has a similar effect as increasing diffusivity, in comparison with
Figure 6 the invader establishes itself in a larger spatial domain.

In summary, for Fokker-Planck diffusion and a noise term (8) in the weakly non-linear parameter regime,
we observe that the strength of a competitor can be elevated by increasing the diffusivity or the noise
intensity. Due to the spatially inhomogeneous diffusion coefficients D∗(x, y) of the resident we observe
segregation of the spatial domain in distinct habitats of invader and resident whose boundaries can be
related to the stationary distribution of the resident (Figure 1).

3.2 Coexistence of resident and invader in mixed habitats for nonlinear noise

Whereas in the previous section we presented results meant to relate the nonlinear noise model (8) to
the classical linear model we now demonstrate that invader and resident can coexist in the whole spatial
domain, a result that cannot be observed for corresponding parameters of the linear model. From the
previous section we expect that increasing the invader’s noise intensity ω2 would increase its competitive
strength so that it can invade the whole spatial domain and displace the resident. This is indeed true (results
not shown) but here we show that we can even achieve coexistence of both population. By time lowering
the half-saturation constant γ2 (which gives (8) a more “nonlinear” shape (Figure 3)) we can compensate



10 Will be inserted by the editor

for the increase of the noise intensity ω2 and avoid displacing the resident. In order to demonstrate that
the emergence of a mixed habitat of resident and invader across the whole spatial domain depends little
on the underlying model of spatio-temporal dispersal but is mostly mediated by the noise term we present
results for both Fokker-Planck diffusion with spatially varying diffusion coefficients D∗x, y as well as
spatially homogeneous diffusion coefficients for which the diffusion laws derived from (2) coincide.
Figure 8 shows that for spatially varying diffusion coefficients both populations quickly mix. The ini-
tial invader patch develops into a mixed front consisting of both resident and invader that replaces the
area formerly occupied only by the resident. Although eventually the whole spatial domain is occupied
by a mixed population of invaders and residents the resident population remains heterogeneous with a
qualitatively similar distribution as in the initial condition (Figure 1).
The behaviour is analogous for spatially homogeneous diffusion coefficients (Figure 9) but in contrast to
the results previously shown (Figure 8) now also the resident population is distributed homogeneously as
expected.

t = 10 40 60 80 120

Fig. 8. Coexistence of resident and invader mediated by noise. In the first row both populations are plotted whereas in
the second plot we only show the resident population in order to make its spatially heterogeneous distribution more
obvious.

t = 10 40 60 80 120

Fig. 9. Coexistence mediated by the nonlinear noise term (8) is also observed for spatially homogeneous diffusion
coefficients. The results look very similar to Figure 8 except (as expected) for the spatial heterogeneities observed in
the previous simulation.
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4 Discussion

We have studied a biological invasion based on a spatio-temporal Lotka-Volterra competition model un-
der the influence of stochastic environmental fluctuations. We found surprisingly rich dynamics after
replacing the two standard models for movement of populations and environmental variability. Instead of
Fickian diffusion, dispersal of the resident was modelled by the so-called Fokker-Planck law of diffusion.
Moreover, we have replaced linear multiplicative noise by a model for which noise intensities saturate
with increasing population densities. This accounts for the fact that for large population densities indi-
viduals are similarly affected by stochastic perturbations rather than responding independently. At the
level of the population the effect of this assumption is that the noise intensity does not exceed a certain
upper bound even for large population densities. Nevertheless, we can also parametrise the model (8) so
that it resembles linear multiplicative noise for a certain range of population densities (Figure 3), thus, it
can be regarded as a generalisation of linear multiplicative noise. In Section 3.1 we chose parameters for
which the noise (8) is approximately linear in the relevant range of population densities which enables
us to compare our new model with the standard model for environmental fluctuations. At the same time,
the results from Section 3.1 help us to explain why the mixed front consisting of residents and invaders
presented in Section 3.2 is an effect that is due to the non-linear noise (8) and not likely to be reproduced
with linear multiplicative noise.
We deliberately chose equal parameters for both competitors which enables us to easily assess the com-
petitive advantage of diffusivity i.e. the speed at which a population moves and the noise intensity i.e.
the susceptibility of a population to environmental fluctuations. In the situation of symmetric competitors
with competition coefficients c12 = c21 = c it is well-known for the non-spatial deterministic version of
the model (9), (10) that the population with the largest initial population displaces its competitor. Thus, it
is plausible that the behaviour of the full stochastic spatio-temporal can be explained to a large extent by
comparing at which speed front waves of each of the populations propagate into empty space. Because
locally the competitor with the larger initial population wins we expect that the population with the ability
to spread faster into a previously uninhabited domain will outcompete the other population. Of course, a
rigorous investigation of this effect would require to quantitatively study front wave solutions of bistable
systems under the influence of noise. A method for this has been developed by Khain et al. [12] but a
more detailed study of the wave solutions is beyond the scope of this article.
In the light of these considerations the results from Section 3.1 shown in Figures 4-7 can be easily inter-
preted. In the absence of the competitor, resident and invader both reduce to the Fisher equation [9,14],
albeit in the case of the resident with a spatially varying diffusion coefficient. For the Fisher equation it
is known that both increasing the diffusivity or the noise intensity increase the front wave speed. Thus,
we expect that the outcome of competition is determined by a combined effect of diffusivity and noise
intensity which is indeed what Figures 4-7 show. It is an interesting additional feature of the results that
the invader is in many situations unable to displace the resident completely from the whole spatial do-
main. Instead, the front wave of the invader stalls and a stationary solution resembling segregated habitats
of resident and invader emerges. The inability of the invader to further propagate into the resident’s do-
main is due to the heterogeneous stationary distribution of the resident which is typical for Fokker-Planck
diffusion. In areas where the diffusion coefficients D∗(x, y) are high, the density of the resident is low.
Because the reaction terms of both competitors are identical, this low resident population provides an
opportunity for the invader to take over these regions (see Figure 6). In contrast, just next to less densely
inhabited rings the resident population reaches their maximum density (see Figure 1), so these parts of
the spatial domain act as barriers for the invader. It follows that the result presented in Figure 6 strongly
depends on the Fokker-Planck model, for Fickian diffusion the invader would go extinct. We remark
that also for solutions resembling spatially segregated habitats, so-called “pinned competitive fronts”,
methods for more detailed analysis have been developed in the physics literature [30].
Because the stationary population density of the resident is low for high values of the spatially varying
diffusion coefficientsD∗(x, y) and high for low values, we interpret the relative magnitude ofD∗(x, y) as
the resident’s propensity for avoiding particular parts of the spatial domain. The spatially heterogeneous
stationary distribution of the resident can therefore be regarded as a habitat which is inhabited according
to the resident’s preference. Thus, Fokker-Planck diffusion naturally allows us to capture varying levels
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of preference for different parts of the environment. This provides additional motivation for using Fokker-
Planck diffusion as a standard model of dispersal alongside classical Fickian diffusion.
The emergence of a mixed front of resident and invader for increased noise intensity of the invader (Fig-
ures 8, 9) is an effect that is primarily due to the nonlinearity of the noise term. From the results presented
in Figures 4-7 it is clear that for linear or approximately linear noise, the invader will eventually outcom-
pete the resident when the noise level is increased beyond the intensity ω2 = 4 of Figure 7 (results not
shown). By lowering γ2 as in Figures 8, 9 we obtain high noise levels at low densities of the invader but
due to saturation noise levels are much lower compared to linear noise at large population densities (see
Figure 3). With very large noise levels for high population densities the invader would reach much higher
maximum population numbers so that it could easily outcompete the resident. This effect is, however,
balanced in the saturated noise model g(X) for ω2 = 4 and γ2 = 1 so that coexistence in a mixed habitat
that eventually covers the whole spatial domain becomes possible. This result is particularly interesting
because in the non-spatial model, coexistence would never be possible for the parameters considered
here. At the same time, we demonstrated that this case depends little on the spatially varying diffusion
coefficients D∗(x, y) or the Fokker-Planck law of diffusion—for spatially homogeneous diffusion co-
efficients the solutions are qualitatively very similar except, of course, the spatial heterogeneity of the
resident population (compare Figures 8 and 9).
In summary, we observe that with the nonlinear noise term (8) we obtain completely different predic-
tions than with linear multiplicative noise, the standard model for environmental fluctuations. Because
it is unclear if a strong underlying assumption of this model—that individuals respond to environmental
fluctuations independently—is still fulfilled for large population densities, in our opinion this strongly
indicates that it is important to extend the modelling approaches for environmental stochasticity beyond
linear multiplicative noise.
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24. Max Planck. Über einen Satz der statistischen Dynamik und seine Erweiterung in der Quantentheorie. Sitzungs-
berichte der Königlich Preussischen Akademie der Wissenschaften, XXIV:324–341 (in German), 1917.
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