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Predicting the deflection and sub-surface stress field within
two-dimensional inhomogeneously elastic bonded layered solids

under pressure

S. J. Chidlow∗, M. Teodorescu1∗+, N.D. Vaughan∗
∗Department of Automotive Engineering, School of Engineering, Cranfield University, Cranfield, MK43 0AL, UK

+Baskin School of Engineering, University of California at Santa Cruz, Santa Cruz, CA USA

Abstract

This paper describes a Fourier series based solution method for the displacements and sub-surface

stresses within a graded elastic layered solid under pressure. The solid is assumed to be in a state

of plane strain and thus the derived solution is valid for two-dimensional problems. Whilst this

method provides a fully analytic solution when the contact pressure is known exactly, it may also

be used when the contact pressure is only known numerically (see section 4). The solution given

in this paper is generic and easily utilised to solve real problems as it requires only known physical

characteristics of the solid under study and an applied surface pressure.

The solid consists of two distinct regions which are considered to be perfectly bonded. These

comprise a graded elastic coating whose shear modulus varies exponentially with the depth coor-

dinate and a homogeneously elastic substrate. As the stresses and displacements induced by the

applied pressure decay very quickly outside of the contact region, the contact problem need only

be solved in a small piece of the solid as the remainder is unaffected. It is found that accurate

results are obtained when the contact problem is solved over a region of the solid ten times larger

1Corresponding author’s email address : m.s.teodorescu@cranfield.ac.uk
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than the contact region. This method as a result is computationally cheap to use as the number of

Fourier modes needed to accurately capture the solution is small.

Keywords: Contact mechanics, Layered solids, Graded elasticity coatings, Functionally graded

materials

1. Introduction

Protective coatings are often used in engineering applications where motion and force is trans-

mitted through direct contact. These coatings are usually deposited over a base material and may

consist of one or more layers whose mechanical properties (e.g. hard or soft, thick or thin) are

carefully tailored for the intended purpose and environment they must operate in. Finding the ideal

coating requires a good understanding of the physical context of the application as well as the me-

chanical properties of both the coating and substrate.

Often, the mechanical properties of these coatings are far from homogeneous. It is common to

see either a transition zone where the mechanical properties of the layer progressively morph into

the ones of the substrate (e.g. Shulha et al., 2004) or coatings that are engineered in such a way

that their properties continuously change throughout their thickness (Uozato et al., 2005; Barbezat,

2008). The latter materials are usually termed functionally graded (FGMs) and are a relatively new

concept in material design (Suresh et al., 1999, 1998).

Existing models that seek to approximate the contact problem involving FGMs tend to assume

that the material is split into two distinct regions corresponding to the coating and substrate. The

modulus of elasticity within the coating is assumed to depend on the depth coordinate in some pre-
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determined way whilst the substrate is assumed to be homogeneous. Common approximations let

the modulus of elasticity within the coating follow either a simple power law (e.g. Giannakopoulos

and Suresh, 1997) or an exponential variation (e.g. Guler and Erdogan, 2004).

Attempts to model the contact problem involving inhomogeneous materials have proved diffi-

cult as the fully three-dimensional problem tends to be resistant to analytical approaches. Gian-

nakopoulos and Suresh, 1997 presented some simple analytical models for the determination of the

stresses and displacement within an inhomogeneous three-dimensional medium subject to a point

force using both power law and exponential variations of the modulus of elasticity. The model

solutions produced were then compared to numerical solutions obtained using the finite element

method. A numerical method based on the Fast Fourier Transform (FFT) was proposed by Wang

et al., 2010 to investigate partial slip contacts again in a three-dimensional context, however these

authors give no clear picture how the elasticity within the coating is modelled. Zhong and Shang,

2008 detail an analytic solution for the stresses and displacements present in three-dimensional

functionally graded plates of finite depth. Their solution comprises a double Fourier series in the

horizontal variables and is valid for shear moduli following both the power law and exponential

variations but the pressure distributions considered are specially chosen so that the solutions of the

stresses and displacements comprise of only a single Fourier mode and are thus limited.

Instead of solving the fully three dimensional contact problem, the plane strain/plane stress as-

sumption can be invoked in some cases. The resulting two-dimensional problem is simpler to study

and has the advantage of reducing the number of equations that must be solved to fully determine

the stress field and deflections induced by the contact. Sadd, 2010 presents some simple solutions
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for the stresses and displacements within an inhomogeneous solid using an Airy stress function.

These solutions tend to be somewhat limited as the stress functions considered are in general con-

sidered to satisfy the biharmonic equation which is not true in the majority of problems involving

inhomogeneous media. Teodorescu et al., 2009; Teodorescu and Rahnejat, 2007 solve the contact

problem using Fourier series decomposition and present an iterative algorithm for determining the

contact footprint resulting from a rigid indenter. This method has the advantage that all quantities

appearing in the solution may be evaluated analytically but the layers comprising the solid are

taken to be homogeneous which is often not the case. Guler and Erdogan, 2004 and Ke and Wang,

2007 take the alternate approach of solving the contact problem using Fourier transform methods.

These methods do in theory solve the contact problem exactly but typically determination of the

integrals appearing in the solution can only be achieved using numerical methods. Chidlow et al.,

2010 presented analytical solutions for the sub-surface stresses and deflection induced by pressure

functions applied normally to the surface of semi-infinite graded elastic solids. Under the assump-

tion that the stresses and displacements induced by contact pressure die very quickly outside of the

contact, they formulated the contact problem in terms of an Airy stress function which was solved

in a small region of the solid. The solution presented within this work was found to be computa-

tionally cheap to apply but was limited by the assumptions made about the modulus of elasticity

to solids that become increasingly stiff below their surface.

The model presented in this paper builds on the work of Teodorescu et al., 2009 and Chidlow

et al., 2011 to solve for the stresses and deflections resulting from the contact problem in graded

elastic bonded layered solids. The modulus of elasticity within the coating is assumed to vary
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exponentially with the depth coordinate whilst the substrate is considered to be homogeneously

elastic. The knowledge that outside of the contact region the stresses and deflections induced by

the applied surface pressure decay very quickly is used to show how the contact problem may be

solved only in a small part of the solid rather than the solid as a whole. Unlike the previous inves-

tigation by Chidlow et al., 2010, the contact problem solved in this work is formulated in terms of

the displacements within the problem. This has the advantage that the underlying matching condi-

tions between the coating and substrate which ensure perfect bonding are more easily dealt with.

The layout of this paper is as follows. In Section 2, we describe the mathematical formulation

of the contact problem whilst in Section 3 we describe the solution method used to analytically de-

termine the sub-surface stresses and deflection and consider some special limiting cases in which

the solution may be simplified. In Section 4 we discuss some of the practical issues that need to

be considered when using this solution method and produce numerical results using our model in

Section 5. This paper concludes with a summary of our findings in Section 6.

2. Formulation of the problem

This work predicts the subsurface stresses and deformation of a linearly elastic inhomogeneous

bonded layered solid loaded by a pressure acting normally to the solid surface. A cartesian coordi-

nate system in the (x,y) plane is used to describe the position of the solid with the y-axis directed

positively upwards.
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Figure 1: A definition sketch of the problem.

The solid under study is considered in a state of plane strain, occupies−L≤ x≤ L,−∞ < y≤ 0

and is split in two distinct regions. The upper region −L ≤ x ≤ L,−h ≤ y ≤ 0 represents an

inhomogeneously elastic coating with a shear modulus that varies with the vertical coordinate

but is assumed locally isotropic in the horizontal direction, whilst the lower region −L ≤ x ≤

L,−∞ < y < −h represents a homogeneous elastic substrate. The shear modulus within the solid
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is represented as

µ(y) =


µ1eαy, −h≤ y≤ 0,

µ0, −∞ < y <−h

(1)

It is assumed here that the shear modulus is continuous across the interface between the two layers

and thus a simple calculation gives µ1 = µ0eαh. The Poisson ratio denoted ν is assumed constant

and equivalent in both the coating and the substrate.

The governing equations in this problem are the equilibrium equations in the absence of body

forces which are stated below in terms of the stresses present in the solid for brevity (see for

example Timoshenko and Goodier, 1961).

∂σxx

∂x
+

∂σxy

∂y
= 0, (2a)

∂σxy

∂x
+

∂σyy

∂y
= 0. (2b)

As the pressure force is applied normally to the solid surface, the boundary conditions applied on

the solid surface are:

σyy(x,0) =−P(x),

σxy(x,0) = 0, (3)

are applied which specify a frictionless contact. The pressure function in this problem is of the

form

P(x) =


p(x) |x| ≤ a,

0 |x| ≥ a,

(4)
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so that the pressure is non-zero only in some small interval (−a,a) where a is referred to as the

contact radius.

The boundaries x = ±L are deemed to represent the distance at which the applied pressure

force ceases to effect the solid and thus we stipulate that

σxx(−L,y) = v(−L,y) = 0,

σxx(L,y) = v(L,y) = 0, (5)

so that both the horizontal stresses and vertical displacement vanish. A discussion of how to

determine an appropriate choice of L is conducted in section 5.1.

In addition to the boundary conditions already applied, we stipulate that the displacements u

and v remain bounded everywhere. The application of the radiation conditions

u(x,−∞),v(x,−∞)→ 0 (6)

ensure that the displacements decay far below the solid surface.

It should be noted that matching conditions across the interface y =−h are required to uniquely

determine the solution of the problem. As the coating and substrate are considered to be perfectly

bonded, the conditions

σ (c)
yy = σ (s)

yy , (7a)

σ (c)
xy = σ (s)

xy , (7b)

u(c) = u(s), (7c)

v(c) = v(s), (7d)
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which represent continuity of stress and displacement across the interface are applied.

The contact problem under study is now fully specified. However, it will be convenient to

non-dimensionalise the independent variables x and y and solve an equivalent dimensionless prob-

lem. With this in mind, we introduce the variables x = aX , y = aY which corresponds to non-

dimensionalising the independent variables with respect to the contact radius a and note that

∂
∂x

=
∂

∂X
dX
dx

=
1
a

∂
∂X

, (8a)

∂
∂y

=
∂

∂Y
dY
dy

=
1
a

∂
∂Y

. (8b)

Our aim in this paper is to solve the contact problem in terms of the dimensionless displacements

u and v. However, before we can do this, we need to re-write the equations of equilibrium in terms

of the dimensionless displacements u(X ,Y ) and v(X ,Y ). It may be easily verified from Hooke’s

law that

σxx =
2µ(Y )

a(1−2ν)

(
(1−ν)

∂u
∂X

+ν
∂v
∂Y

)
, (9a)

σyy =
2µ(Y )

a(1−2ν)

(
(1−ν)

∂v
∂Y

+ν
∂u
∂X

)
, (9b)

σxy =
µ(Y )

a

(
∂u
∂Y

+
∂v
∂X

)
. (9c)

Substituting equations (9a)-(9c) into (2a) and (2b) yields the coupled system

∂
∂X

(
2µ(Y )
1−2ν

{
(1−ν)

∂u
∂X

+ν
∂v
∂Y

})
+

∂
∂Y

(
µ(Y )

{
∂u
∂Y

+
∂v
∂X

})
= 0, (10)

∂
∂X

(
µ(Y )

{
∂u
∂Y

+
∂v
∂X

})
+

∂
∂Y

(
2µ(Y )
1−2ν

{
ν

∂u
∂X

+(1−ν)
∂v
∂Y

})
= 0, (11)

which are the equilibrium equations written in terms of the displacements. These equations take
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different forms in each layer. It may be seen that in the coating

2(1−ν)
∂ 2u(c)

∂X2 +(1−2ν)
∂ 2u(c)

∂Y 2 +
∂ 2v(c)

∂X∂Y
+ α̂(1−2ν)

∂u(c)

∂Y
+ α̂(1−2ν)

∂v(c)

∂X
= 0, (12a)

(1−2ν)
∂ 2v(c)

∂X2 +2(1−ν)
∂ 2v(c)

∂Y 2 +
∂ 2u(c)

∂X∂Y
+2α̂ν

∂u(c)

∂X
+2α̂(1−ν)

∂v(c)

∂Y
= 0, (12b)

which hold for −L̂≤ X ≤ L̂,−ĥ≤ Y ≤ 0, whilst in the substrate

2(1−ν)
∂ 2u(s)

∂X2 +(1−2ν)
∂ 2u(s)

∂Y 2 +
∂ 2v(s)

∂X∂Y
= 0, (13a)

(1−2ν)
∂ 2v(s)

∂X2 +2(1−ν)
∂ 2v(s)

∂Y 2 +
∂ 2u(s)

∂X∂Y
= 0, (13b)

which hold for −L̂≤ X ≤ L̂,−∞ < Y <−ĥ. It should be observed that the notation

α̂ = aα, ĥ = h/a, L̂ = L/a

has been used above and that the shear modulus in the coating is now defined as

µ(Y ) = µ0eα̂Y .

A further transformation of the horizontal variable at this point is preferable so that the solid is

mapped to the region 0≤ ζ ≤ L̂,−∞ < Y ≤ 0. The requisite mapping here is

ζ =
1
2
(X + L̂) (14)

and as a consequence

∂
∂X

=
∂

∂ζ
dζ
dX

=
1
2

∂
∂ζ

. (15)

The PDE’s to be solved in this problem now become

1
2
(1−ν)

∂ 2u
∂ζ 2 +

1
2

∂ 2v
∂ζ ∂Y

+(1−2ν)
∂ 2u
∂Y 2 + α̂(1−2ν)

∂u
∂Y

+
1
2

α̂(1−2ν)
∂v
∂ζ

= 0, (16a)

1
2

∂ 2u
∂ζ ∂Y

+
1
4
(1−2ν)

∂ 2v
∂ζ 2 + α̂ν

∂u
∂ζ

+2α̂(1−ν)
∂v
∂Y

+2(1−ν)
∂ 2v
∂Y 2 = 0 (16b)
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which must hold in the region (0≤ ζ ≤ L̂,−ĥ≤ Y ≤ 0) and

1
2
(1−ν)

∂ 2u
∂ζ 2 +

1
2

∂ 2v
∂ζ ∂Y

+(1−2ν)
∂ 2u
∂Y 2 = 0, (17a)

1
4
(1−2ν)

∂ 2v
∂ζ 2 +

1
2

∂ 2u
∂ζ ∂Y

+2(1−ν)
∂ 2v
∂Y 2 = 0, (17b)

which must hold in (0 ≤ ζ ≤ L̂,−∞ < y < −ĥ). Under the transformation, the relevant boundary

conditions can be written in terms of the displacements as

(1−ν)
∂v
∂Y

+
1
2

ν
∂u
∂ζ
− a(1−2ν)

2µ0
P(ζ ) = 0, (Y = 0), (18a)

∂u
∂Y

+
1
2

∂v
∂ζ

= 0, (Y = 0), (18b)

1
2
(1−ν)

∂u
∂ζ

+ν
∂v
∂Y

= v = 0, (ζ = 0), (18c)

1
2
(1−ν)

∂u
∂ζ

+ν
∂v
∂Y

= v = 0, (ζ = L̂), (18d)

(18e)

whilst the relevant matching conditions yield

1
2

ν
∂u(c)

∂ζ
+(1−ν)

∂v(c)

∂Y
−
(

1
2

ν
∂u(s)

∂ζ
+(1−ν)

∂v(s)

∂Y

)
= 0, (Y =−ĥ), (19a)

∂u(c)

∂Y
+

1
2

∂v(c)

∂ζ
−
(

∂u(s)

∂Y
+

1
2

∂v(s)

∂ζ

)
= 0, (Y =−ĥ), (19b)

u(c)−u(s) = 0, (Y =−ĥ), (19c)

v(c)− v(s) = 0, (Y =−ĥ). (19d)

The problem is fully specified by imposing the radiation conditions u,v→ 0 as Y →−∞.

11



3. Method of solution

We look for simple separable solutions of the form

u(ζ ,Y ) = A(Y )cos(lζ )+B(Y )sin(lζ ), (20a)

v(ζ ,Y ) = C(Y )cos(kζ )+D(Y )sin(kζ ), (20b)

for l,k > 0 which we insist must satisfy the boundary conditions at ζ = 0 and ζ = L̂. It is easily

seen that there are an infinite number of solutions of the form

v(ζ ,Y ) = B̂n(Y )sin
(

nπζ
L̂

)
(21)

where n ∈N which satisfy v(0,Y ) = v(L̂,Y ) = 0. It is now seen that the other boundary conditions

are satisfied if

∂u
∂ζ

(0,Y ) =
∂u
∂ζ

(L̂,Y ) = 0,

thus we see that taking

u(ζ ,Y ) = Ân(Y )cos
(

nπζ
L̂

)
+gn(Y ). (22)

where n ∈ N ensures that the remaining conditions are satisfied. We note that as the boundary

conditions on ζ = 0, L̂ are the same in the coating and the substrate, we may form the solution of

the displacements in each region as

u(ζ ,Y ) =
∞

∑
n=1

Ân(Y )cos(βnζ )+g(ζ ), (23a)

v(ζ ,Y ) =
∞

∑
n=1

B̂n(Y )sin(βnζ ). (23b)

12



Note that the shorthand notation

βn =
nπ
L̂

has been used above for convenience.

It is now left to determine the Y -dependence of the displacements in both regions.

3.1. The coating

Substituting (23a) and (23b) into (16a) and (16b) yields the 2nd order ordinary differential

equation (ODE)

g
′′
+ α̂g

′
= 0, (24)

which admits the solution

g(y) = A(1)
0 +A(2)

0 e−α̂Y (25)

and the 2nd order ODE system 1−2ν 0

0 2(1−ν)


 Â

′′
n

B̂
′′
n

+

 α̂(1−2ν) 1
2βn

−1
2βn 2α̂(1−ν)


 Â

′
n

B̂
′
n

 (26)

+

 −1
2(1−ν)β 2

n
1
2 α̂(1−2ν)βn

−α̂νβn −1
4(1−2ν)β 2

n


 Ân

B̂n

= 0,

where ′ denotes differentiation with respect to Y and n ∈ N. Assuming that n is fixed, letting

F = (Ân, B̂n)T , G = (Â
′
n, B̂

′
n)

T and Z = (F , G)T allows us to write (26) as the first order system

Z
′
= MZ (27)

13



where M is the 4×4 block matrix

M =

 0 I

−T −S

 .

Note that 0 and I denote the 2× 2 zero matrix and identity matrix respectively, whilst the other

matrices are defined as

S =

 α̂ βn
2(1−2ν)

− βn
4(1−ν) α̂



T =

 − (1−ν)β 2
n

2(1−2ν)
1
2 α̂βn

− α̂νβn
2(1−ν) − (1−2ν)β 2

n
8(1−ν) .

 .

This system may be solved by seeking solutions of the form

Z = CeλY, (28)

which when substituted into (27) gives

(M−λ I)CeλY = 0. (29)

It is immediately seen that Det(M−λ I) = 0 in order to obtain non-trivial solutions to this problem

and thus we seek the eigenvalues λ of M. Some straightforward calculations show that λ satisfies

the quartic equation

λ 4 +2α̂λ 3 +
(

α̂2− 1
2

β 2
n

)
λ 2− 1

2
α̂β 2

n λ +
β 2

n
16

(β 2
n +4α̂2ρ) = 0, (30)
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where ρ = ν/(1−ν). The roots of this equation are found to be

λ1,n =

√
1
4
(α̂2 +β 2

n )+
i
2

α̂βn
√

ρ− 1
2

α̂, (31a)

λ2,n =−
√

1
4
(α̂2 +β 2

n )+
i
2

α̂βn
√

ρ− 1
2

α̂, (31b)

λ3,n =

√
1
4
(α̂2 +β 2

n )− i
2

α̂βn
√

ρ− 1
2

α̂, (31c)

λ4,n =−
√

1
4
(α̂2 +β 2

n )− i
2

α̂βn
√

ρ− 1
2

α̂, (31d)

so we see that λ3,n = λ̄1,n, λ4,n = λ̄2,n. We can now write down explicitly the solutions of Ân(Y )

and B̂n(Y ) as

Ân(Y ) = A(1)
n eλ1,nY +A(2)

n eλ2,nY +A(3)
n eλ3,nY +A(4)

n eλ4,nY , (32)

B̂n(Y ) = B(1)
n eλ1,nY +B(2)

n eλ2,nY +B(3)
n eλ3,nY +B(4)

n eλ4,nY , (33)

which are valid in the region (−ĥ≤ Y ≤ 0). Combining all individual solutions allows us to form

the general solutions

u(c)(ζ ,Y ) = A(1)
0 +A(2)

0 e−α̂Y +
∞

∑
n=1

(A(1)
n eλ1,nY +A(2)

n eλ2,nY +A(3)
n eλ3,nY +A(4)

n eλ4,nY )cos(βnζ ),

(34a)

v(c)(ζ ,Y ) =
∞

∑
n=1

(B(1)
n eλ1,nY +B(2)

n eλ2,nY +B(3)
n eλ3,nY +B(4)

n eλ4,nY )sin(βζ ), (34b)

valid in the region (0 ≤ ζ ≤ L̂,−ĥ ≤ Y ≤ 0). Substituting (34a) and (34b) into (16a) and (16b)

reveals that the constants A(n)
j and B(n)

j are dependent and related via

B(n)
j =−γ j,nA(n)

j (35)

where

γ j,n =
2
(
(1−2ν)λ 2

j,n + α̂(1−2ν)λ j,n− 1
2(1−ν)β 2

n

)
βn
(
λ j,n + α̂(1−2ν)

) , (36)
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j = 1, ...,4,n ∈ N.

3.2. The substrate

Substituting (23a), (23b) into (17a) and (17b) yields the 2nd order differential equation

(1−2ν)g
′′
2 = 0 (37)

and the coupled system of 2nd order differential equations 1−2ν 0

0 2(1−ν)


 Â

′′
n

B̂
′′
n

+

 0 1
2βn

−1
2βn


 Â

′
n

B̂
′
n



−

 1
2(1−ν)β 2

n 0

0 1
4(1−2ν)β 2

n


 Ân

B̂n

= 0, (38)

where n ∈ N. Following the solution method outlined in the previous section, we find that in the

region (−∞ < Y <−ĥ)

u(s)(ζ ,Y ) = C(1)
0 +C(2)

0 Y +
∞

∑
n=1

{(
C(1)

n +C(2)
n Y

)
e

1
2 βnY +

(
C(3)

n +C(4)
n Y

)
e−

1
2 βnY

}
cos(βnζ ),

(39a)

v(s)(ζ ,Y ) =
∞

∑
n=1

{(
D(1)

n +D(2)
n Y

)
e

1
2 βnY +

(
D(3)

n +D(4)
n Y

)
e−

1
2 βnY

}
sin(βnζ ). (39b)

It should immediately be noticed that in order to obtain a bounded solution to this problem as Y →

−∞, we must set C(2)
0 = C(3)

n = C(4)
n = D(3)

n = D(4)
n = 0 ∀n ∈ N. Additionally, we can only satisfy

the condition u→ 0 as Y →−∞ if C(1)
0 = 0. The revised general solution of the displacements in

16



the substrate are now

u(s)(ζ ,Y ) =
∞

∑
n=1

(
C(1)

n +C(2)
n Y

)
e

1
2 βnY cos(βnζ ), (40a)

v(s)(ζ ,Y ) =
∞

∑
n=1

(
D(1)

n +D(2)
n Y

)
e

1
2 βnY sin(βnζ ). (40b)

Note that the constants in this solution are related via

D(1)
n = C(1)

n −δnC(2)
n , (41a)

D(2)
n = C(2)

n , (41b)

where

δn =
2(3−4ν)

βn
. (42)

We exploit the constant relationships in both the coating and the substrate in the next section.

3.3. Determination of the final solution

It is now left to determine the remaining constants in the problem. Applying the matching

conditions given in (19) and using (34a), (34b), (40a) and (40b) gives the relations C(1)
n

C(2)
n

=
e

1
2 βnĥ

δn

Z1,nK1,n

 A(1)
n

A(3)
n

+Z2,nK2,n

 A(2)
n

A(4)
n


 , (43)

 A(2)
n

A(4)
n

=−K −1
2,n

(
N2,n +

1
δn

M2,n

)−1(
N1,n +

1
δn

M1,n

)
K1,n

 A(1)
n

A(3)
n

 , (44)
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where

K j,n =

 e−λ j,nĥ 0

0 e−λ j+2,nĥ

 , (45a)

Z j,n =

 δn + ĥτ j,n δn + ĥτ j+2,n

τ j,n τ j+2,n

 , (45b)

M j,n =

 1
2(1−2ν)

(
4(1−ν)τ j,n−βnδn

) 1
2(1−2ν)

(
4(1−ν)τ j+2,n−βnδn

)
2(1−2ν)τ j,n−βnδn 2(1−2ν)τ j+2,n−βnδn

 , (45c)

N j,n =

 −
(1

2νβn +(1−ν)λ j,nγ j,n
) −(1

2νβn +(1−ν)λ j+2,nγ j+2,n
)

λ j,n− 1
2βnγ j,n λ j+2,n− 1

2βnγ j+2,n

 , (45d)

for j = 1,2 and

τ j,n = 1+ γ j,n (46)

for j = 1,2,3,4. It is now only left to apply the surface conditions at Y = 0. Substituting (34a),

(34b), (40a) and (40b) into the boundary conditions applied on Y = 0 in equation (18) gives

N1,n

 A(1)
n

A(3)
n

+N2,n

 A(2)
n

A(4)
n

=

 a(1−2ν)
2µ0

Pn

0

 . (47)

The coefficients Pn, n ∈ N define the coefficients in the Fourier sine series of P(ζ ) and are defined

as

Pn =−2
L̂

∫ 1
2 (L̂+1)

1
2 (L̂−1)

p(ζ )sin(βnζ )dζ . (48)

Combining (44) and (47) reveals that A(1)
n

A(3)
n

= W−1
n

 a(1−2ν)
2µ0

Pn

0

 , (49)
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with

Wn = N1,n−N2,n(T2,nK2,n)−1T1,nK1,n, (50)

Tj,n =
(

N j,n +
1
δn

M j,n

)
(51)

for j = 1,2. Further use of (43) and (44) yields A(2)
n

A(4)
n

=−(T2,nK2,n)−1T1,nK1,nW−1
n

 a(1−2ν)
2µ0

Pn

0

 , (52)

 C(1)
n

C(2)
n

=
e

1
2 βnĥ

δn

(
Z1,n−Z2,nT−1

2,n T1,n

)
K1,nW−1

n

 a(1−2ν)
2µ0

Pn

0

 . (53)

As we have now determined all of the constants appearing in this problem, we may now construct

the final solution of the displacements in the transformed problem as

u(ζ ,Y ) =
∞

∑
n=1

ξ T
n (Y )Ωn

 a(1−2ν)
2µ0

Pn

0

cos(βnζ ), (54a)

v(ζ ,Y ) =−
∞

∑
n=1

ξ T
n (Y )ΓnΩn

 a(1−2ν)
2µ0

Pn

0

sin(βnζ ) (54b)

which holds in the region 0≤ ζ ≤ L̂,−ĥ≤ Y ≤ 0 and

u(ζ ,Y ) =
∞

∑
n=1

ϕT (Y )Θn

 a(1−2ν
2µ0

Pn

0

 e
1
2 βn(Y+ĥ)

δn
cos(βnζ ), (55a)

v(ζ ,Y ) =
∞

∑
n=1

ϕT (Y )JnΘn

 a(1−2ν)
2µ0

Pn

0

 e
1
2 βn(Y+ĥ)

δn
sin(βnζ ), (55b)
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which is valid for 0≤ ζ ≤ L̂,−∞ < Y <−ĥ. The quantities appearing in the above equations are

ϕ(Y ) = (1, Y )T , (56a)

ξ n(y) =
(

eλ1,ny, eλ3,ny, eλ2,ny, eλ4,ny
)T

, (56b)

Γn = diag(γ1,n,γ3,n,γ2,n,γ4,n), (56c)

Ωn =

 W−1
n

−(T2,nK2,n)−1T1,nK1,nW−1
n

 , (56d)

Θn =
(

Z1,n−Z2,nT−1
2,n T1,n

)
K1,nW−1

n , (56e)

Jn =

 1 −δn

0 1

 , (56f)

for n ∈ N.

Re-writing (54a), (54b), (55a) and (55b) in terms of the X-coordinate gives the solution of the

original problem as

u(X ,Y ) =
∞

∑
n=1

ξ T
n (Y )Ωn

 a(1−2ν)
2µ0

Pn

0

cos
(

1
2

βn(X + L̂)
)

, (57a)

v(X ,Y ) =−
∞

∑
n=1

ξ T
n (Y )ΓnΩn

 a(1−2ν)
2µ0

Pn

0

sin
(

1
2

βn(X + L̂)
)

(57b)
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in (−ĥ≤ Y ≤ 0,−L̂≤ X ≤ L̂) and

u(X ,Y ) =
∞

∑
n=1

ϕT (Y )Θn

 a(1−2ν)
2µ0

Pn

0

 e
1
2 βn(Y+ĥ)

δn
cos
(

1
2

βn(X + L̂)
)

, (58a)

v(X ,Y ) =
∞

∑
n=1

ϕT (Y )JnΘn

 a(1−2ν)
2µ0

Pn

0

 e
1
2 βn(Y+ĥ)

δn
sin
(

1
2

βn(X + L̂)
)

, (58b)

in (−∞ < Y <−ĥ,−L̂≤ X ≤ L̂).

Using (54a), (54b), (55a) and (55b), we can calculate the partial derivatives necessary to use in

(9a)-(9c) and thus determine the stresses within the solid. In particular, the principal stress defined

as

τ1 =
1
2

√
(σxx−σyy)2 +4σ2

xy (59)

will be investigated extensively in Section 5.

3.4. Limiting cases

The solutions for the displacements given above are valid for all possible values of ĥ. It is

noticeable however that the expressions for the constants in both the coating and substrate are

somewhat cumbersome and it is difficult to determine to what extent ĥ affects the stresses and

displacements within the problem. This issue can be simplified if the coating is considered to be

very thick (ĥ→ ∞).

We initially note that in the coating, only the matrices K1,n and K2,n depend on ĥ. Denoting
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Rn = T−1
2,n T1,n where n ∈ N, we see that

K −1
2.n RnK1,n =

 R11
n e(λ2,n−λ1,n)ĥ R12

n e(λ2,n−λ3,n)ĥ

R21
n e(λ4,n−λ1,n)ĥ R22

n e(λ4,n−λ3,n)ĥ

→ 0, ĥ→ 0,

where the superscript notation indicates the position of each entry in matrix Rn. We can use this

information to determine that Wn→ N1,n as ĥ→ ∞ and further that A(1)
n ,

A(3)
n

→ N−1
1,n

 a(1−2ν)
2µ0

Pn

0


 A(2)

n ,

A(4)
n

→ 0

as ĥ→ ∞. The resulting solutions in the coating are

u(X ,Y ) =
∞

∑
n=1

(eλ1,nY ,eλ3,nY )N−1
1,n

 a(1−2ν)
2µ0

Pn

0

cos
(

1
2

βn(X + L̂)
)

, (60)

v(X ,Y ) =−
∞

∑
n=1

(eλ1,nY ,eλ3,nY )

 γ1.n 0

0 γ3,n

N−1
1,n

 a(1−2ν)
2µ0

Pn

0

sin
(

1
2

βn(X + L̂)
)

. (61)

It can be verified that this solution corresponds to the contact problem of a pressure force being

applied normally to the surface of a semi-infinite graded elastic solid and is equivalent to the

solution presented by Chidlow et al., 2010

A further simplification of this solution is possible if α̂ � 1. In this situation, we can seek

asymptotic approximations to the roots λ j.n in the form

λ j,n =
∞

∑
m=0

λ j,n
m α̂m, (62)
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where λ j,n
m are (possibly complex) constant coefficients. Substituting (62) into (30) yields the

expressions

λ1,n =
1
2

(βn− (1− i
√

ρ)α̂)+O(α̂2), (63a)

λ3,n =
1
2

(βn− (1+ i
√

ρ)α̂)+O(α̂2), (63b)

which can be further used to give

γ1,n =−1− α̂
βn

(
1+ i
√

ρ(3−4ν)
)
+O(α̂2),

γ3,n =−1− α̂
βn

(
1− i
√

ρ(3−4ν)
)
+O(α̂2),

and thus

N1,n =

 1
2(1−2ν)(βn +2i(1−ν)

√ρα̂) 1
2(1−2ν)(βn−2i(1−ν)

√ρα̂)

βn + i(1−2ν)
√ρα̂ βn− i(1−2ν)

√ρα̂

+O(α̂2).

Substituting these results into (60) and (61) yields the asymptotic solutions

u(X ,Y ) =−
∞

∑
n=1

aPn

µ0
√ρβnα̂

e
1
2 (βn−α̂)Y

(
βn sin

(
1
2
√

ρα̂Y
)

+(1−2ν)
√

ρα̂ cos
(

1
2
√

ρα̂Y
)

+O(α̂2)
)

cos
(

1
2

βn(X + L̂)
)

,

v(X ,Y ) =−
∞

∑
n=1

aPn

µ0
√ρβnα̂

e
1
2 (βn−α̂)y

(
(βn + α̂)sin

(
1
2
√

ρα̂Y
)

−2(1−ν)
√

ρα̂ cos
(

1
2
√

ρα̂Y
)

+O(α̂2)
)

sin
(

1
2

βn(X + L̂)
)

.

Provided that Y 6= O(1/α̂) which is certainly true close to the solid surface, we can replace the

functions involving α̂ by their taylor series and thus we find that

u(X ,Y ) =−
∞

∑
n=1

aPn

βnµ0
e

1
2 βnY

(
(1−2ν)+

1
2

βnY
)

cos
(

1
2

βn(X + L̂)
)

+O(α̂),

v(X ,Y ) =
∞

∑
n=1

aPn

µ0
e

1
2 βnY

(
2(1−ν)− 1

2
βnY

)
sin
(

1
2

βn(X + L̂)
)

+O(α̂).
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These solutions correspond to the contact problem involving a homogeneously stiff media with

small correction terms of 0(α̂) detailing the effects of the inhomogeneity of the solid.

4. Implementation - Analytical and Discrete Pressure functions

The solutions presented in the previous section for the dimensionless displacements u(X ,Y ),

v(X ,Y ) and consequently the stresses present in the solid resulting from the applied surface pres-

sure involve infinite summations. However, in practice, we are restricted to summing only finitely

many Fourier modes. As a result, we re-define the solution of the displacements as

u(X ,Y ) =
N

∑
n=1

ξ T
n (Y )Ωn

 a(1−2ν)
2µ0

Pn

0

cos
(

1
2

βn(X + L̂)
)

, (64a)

v(X ,Y ) =−
N

∑
n=1

ξ T
n (Y )ΓnΩn

 a(1−2ν)
2µ0

Pn

0

sin
(

1
2

βn(X + L̂)
)

(64b)

in (−ĥ≤ Y ≤ 0,−L̂≤ X ≤ L̂) and

u(X ,Y ) =
N

∑
n=1

ϕT (Y )Θn

 a(1−2ν)
2µ0

Pn

0

 e
1
2 βn(Y+ĥ)

δn
cos
(

1
2

βn(X + L̂)
)

, (65a)

v(X ,Y ) =
N

∑
n=1

ϕT (Y )JnΘn

 a(1−2ν)
2µ0

Pn

0

 e
1
2 βn(Y+ĥ)

δn
sin
(

1
2

βn(X + L̂)
)

, (65b)

in (−∞ < Y < −ĥ,−L̂ ≤ X ≤ L̂). The number N is a positive integer which is determined at the

start of the analysis by the user.

The solution detailed in this paper is valid for any pressure function p(x) which obeys the

criteria for having a Fourier series decomposition in−a≤ x≤ a. However, the principal advantage
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of this method is that if the applied pressure is known exactly then the solution of the displacements

given above is analytic. Typically though, the pressure applied to the surface of the solid will not be

known exactly and will probably have been determined numerically. This could potentially mean

that the given pressure is discrete and only known at finitely many points (which may or may not

be equidistant).

In such a situation, the method given outlined in this paper may still be used to solve the contact

problem provided that the pressure function is made continuous. A good way of doing this is to

fit a polynomial spline to the discrete pressure data. Assuming that the pressure inputted into the

problem is known at M points in the interval [−a,a] where x1 = −a, xM = a and p(x j) ≈ p j for

j = 1, ...,M, the simplest choice is to fit a linear spline (see Suli and Mayers, 2003, for example)

so that

p(x) =
M

∑
j=1

p jφ j(x). (66)

The functions φ j(x) are chosen such that

φ j(x) =


1, xi = x j,

0, xi 6= x j

(67)

where i, j = 1, ..,M. The Fourier coefficients can still be calculated from here as

Pn =−1
L

∫ a

−a
p(x)sin

(nπ
2L

(x+L)
)

dx,

=−1
L

M

∑
j=1

p j

∫ a

−a
φ j(x)sin

(nπ
2L

(x+L)
)

dx (68)

for n = 1, ...N.

Figure (2) outlines the main steps required to compute the sub-surface stresses and displace-
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ments using this method. This roadmap should help anyone aiming to implement this solution

technique in a practical problem.

Input Pressure P(x)

is Pressure
Continuous ?

Fit linear
Spline to P(x)

Compute Fourier
coefficients

Pn using (68)

Compute Fourier
coefficients Pn

exactly using (48)

Compute constants in (31), (36), (42), (46)
λ j,n,γ j,n,δnτ j,n; j = 1..4

Compute Matrices in (45), (50)
K j,n,Mj,n,Nj,n,Z j,n,Wn j = 1..4

Calculate Coefficients in (49), (52), (53)
A(1..4)

n ,C(1..2)
n

Construct u,v using (64), (65)

Determine σxx,σyy,σxy us-
ing (9) and τ1 using (59)

No Yes

Figure 2: Flow chart of the solution method

5. Numerical results and discussions

We consider a pressure function which is very simple in form to produce results for the contact
problem. The chosen pressure is defined as

p(x) = p0 sin
�

(x+a)π
2a

�
(69)

18

Figure 2: Flow chart of the Solution Method
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5. Numerical results and discussions

We consider a pressure function which is very simple in form to produce results for the contact

problem. The chosen pressure is defined as

p(x) = p0 sin
(

(x+a)π
2a

)
(69)

which is symmetric about x = 0 and is continuous at x = ±a. The corresponding dimensionless

version of (69) can be easily verified as

p(X) = p0 sin
(

(X +1)π
2

)
(70)

which is presented in figure (3). The principal advantage of the method outlined in this paper is

that provided the pressure applied to the solid is analytic, the Fourier coefficients Pn, n ∈ N can

be calculated exactly and thus the displacements u and v are given analytically. In this particular

example,the Fourier coefficients can be readily calculated as

P2m−1 =
4L̂(−1)m

π
(
(2m−1)2− L̂2

) cos
(

(2m−1)π
2L̂

)
, (71)

P2m = 0, (72)

for m ≥ 1, so that the stresses and displacements inherent in this problem consist of only odd

numbered Fourier modes.

Our aim in this example is to investigate the impact of different coatings on the sub-surface

stress field resulting from the contact problem and thus the parameter values α̂ and ĥ will be

allowed to vary between problems. The value ν = 0.25 will remain fixed throughout this example.
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Figure 3: Applied pressure p(x) over the dimensionless contact region [−3,3]

5.1. Choosing the optimal value for L̂

The ability to choose a suitable length interval over which to solve the contact problem is vital

to the success of this method. The underlying assumption in the derivation of this model is that

the stresses within the solid resulting from the application of surface pressure decay very quickly

away from the contact region and hence only a small piece of the solid is affected by the contact

pressure. We have taken the dimensionless length of this piece of the solid to be 2L̂.

The greatest challenge in implementing the solution method described here is determining an

appropriate value of L̂. It should be observed that whilst the predicted solution is likely to become

more accurate as L̂ increases, the computational time will increase as well. Therefore, the optimal

value of L̂ is a compromise between accuracy and computational expense.

Figure (4) shows the maximum dimensionless principal stress max(τ1/p0) plotted against L̂ for

three different coatings µ1/µ0 = 0.25,0.5,2 of three different thicknesses ĥ = 0.2,0.5,1. It may be

seen that max(τ1/p0) converges as L̂ increases and in particular choosing L̂ = 8 leads to solutions
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with error of less than 2%, whilst choosing L̂ = 10 gives solutions with an error of less than 1%.

The choice L̂ = 10 will be used in all of the results that follow.
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a) ĥ = 0.2 (thin coating), b) ĥ = 0.5 (medium coating) and c) ĥ = 1 (thick coating). d) shows the percentage error

between the results produced using different values of L̂ and the reference value L̂ = 20.
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Figure 5: Surface deflection v(x,0) over the dimensionless contact region [−3,3]

Figure (5a) shows the surface deflection v(X ,0) for the soft coating µ1/µ0 = 0.25 and fig-

ure (5b) shows the deflection for the hard coating µ1/µ0 = 2 subject to the different thicknesses

ĥ = 0.1,0.5,1. These graphs show that the softer coating experiences a greater deflection than the

harder coating which becomes more exaggerated as the thickness of the coating increases. Con-

versely, the harder coating experiences less deflection as coating thickness increases. These results

are intuitively correct and serve as an initial check on the behaviour of the solutions given in this

work.

5.2. Convergence study

In addition to determining an appropriate value of L̂, we must determine a suitable value of N

so as to ensure that our obtained solution is accurate. In order to do this, we consider plots of the
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maximum amplitude of the coefficients Pn, Un and Vn where

Un =
4

∑
j=1

A(n)
j , (73)

Vn =−
4

∑
j=1

γ j,nA(n)
j (74)

n ∈ N denote the maximum amplitude of the Fourier modes that comprise the horizontal and ver-

tical deflection in the coating respectively. We note in this example that as P2n = 0, all coefficients

U2n and V2n will vanish as a consequence of (64a), (64b) and thus we plot |P2n−1|, |U2n−1| and

|V2n−1| here. These results are presented in figure (6). It is readily observed that the amplitude

of the coefficients U2n−1 and V2n−1 die more quickly than the amplitude of P2n−1 as n becomes

large. Whilst the magnitude of the coefficients U2n−1 and V2n−1 increases as ĥ increases when n

is small, the coating thickness does not change how quickly the amplitudes die. This allows us to

conclude that if the chosen value of N is sufficiently large enough to ensure that the Fourier series

representation of the pressure converges, both the horizontal and vertical displacements will also

converge. Thus the subsurface stress field obtained will be accurate.
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Figure 6: Plots of the magnitude of the coefficients a) P2n−1, b) U2n−1 and c) V2n−1 for the values of ĥ and µ1/µ0 given.

Table (1) details the maximum residual error in the Fourier representation of the pressure func-

tion using different values of N. It is seen that in order to obtain approximations that are accurate

to within 1% of the true pressure, we must choose N = 200. Choosing N = 400 ensures that the

maximum residual error is about 0.27% which is a reasonable improvement on the approximation

returned with N = 200. A subsequent increase in the number of Fourier modes does not make

32



much difference to the maximum residual error and hence increases the computational expense of

the approximation to the sub-surface stress field without providing much of an increase in accuracy.

We therefore take N = 400 in this example.

The maximum residual error in Fourier approximations to the true pressure

N 10 20 50 100 200 400 600 800 1000

RE 41% 17.71% 5.6% 2.47% 0.89% 0.27% 0.18% 0.137% 0.11%

Table 1: A comparison of the maximum residual error in the Fourier series approximation to the pressure function in

example 1 using increasing numbers of modes.

5.3. Subsurface stress field

Figure (7) depicts the principal stress field (59) computed in the interval −3 ≤ X ≤ 3,−2 ≤

Y ≤ 0 for the soft coatings µ1/µ0 = 0.25 and 0.5. We are mainly interested in the effect of the

coating thickness on the sub-surface stress field so we consider producing results for the three

coating thicknesses ĥ = 0.2,0.5 and 1.

It is immediately seen that the maximum principal stress is highly dependent on ĥ. Within

thin layers, the maximum principal stress occurs in the substrate (figure (7a) and (7d), but steadily

moves toward the interface as the layer becomes thicker (7b) and (7e) and finally transfers into the

coating as the layer becomes thick (figures (7c) and (7f). It is also seen that a local island of high

stresses could appear in the coating when the layer is thin (this will discussed in section 5.4).
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(a) µ1/µ0 = 0.25; ĥ = 0.2 (b) µ1/µ0 = 0.25; ĥ = 0.5 (c) µ1/µ0 = 0.25; ĥ = 1

(d) µ1/µ0 = 0.5; ĥ = 0.2 (e) µ1/µ0 = 0.5; ĥ = 0.5 (f) µ1/µ0 = 0.5; ĥ = 1

Figure 7: Contour plots of the sub-surface stress field for soft coatings that harden beneath the surface

The results presented in figure (8) for the hard coatings tend to follow the same general trend

as those produced in figure (7) for soft coatings, but there are significant differences. In both

cases, the maximum principal stress clearly transitions from the substrate into the coating as the

coating progressively thickens. We note however that the magnitude of the maximum principal

stress becomes larger as the coating thickness increases. This is in contrast to the results produced

for the softer coating. Additionally, there seems to be a local island of very low stress within the

coating very near the solid surface. This observation is very different to that made for the softer
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coating.
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 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

x/a
y

/a
-3 -1.5 0 1.5 3

x/a

-2

-1.5

-1

-0.5

0

y
/a

(b) µ1/µ0 = 1.5; ĥ = 0.5
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Figure 8: Contour plots of the sub-surface stress field for hard coatings that soften beneath the surface

5.4. Determining the magnitude and location of the maximum principal stress

It was observed in figures (7) and (8) that the position of the maximum principal stress is highly

dependent on the thickness of the coating. In order to investigate this phenomena more closely, we

plot in figure (9) the local maxima max(τ1/p0) within the substrate and coating together with the

global maximum against ĥ ∈ (0,1] for the case µ1/µ0 = 0.25. Additionally, we plot the depth at

which the local maximum occurs within the coating and substrate. It should be noted in figure (9b)
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that the diagonal line y =−ĥ represents the coating-substrate interface.

It is seen that when the coating is very thin, the global maximum of τ1/p0 occurs within the

substrate, whilst the local maximum within the coating occurs very close to the surface (figure

(9b) and (10a)). As the coating begins to thicken, a small island emerges in the coating and the

local maximum migrates below the surface (10a-b). In thicker coatings, this ridge expands and

joins the region of high stress occuring in the substrate lying directly beneath the coating-substrate

interface. Consequently, the local maximum in τ1/p0 occurs on the coating-subsurface interface

(figure (10c). As the coating becomes thicker still, the global maximum value of τ1/p0 transfers

into the coating and the local maximum principal stress within the substrate lies on the coating-

substrate interface.
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(a) ĥ = 0.2 (b) ĥ = 0.42 (c) ĥ = 0.59

Figure 10: Subsurface stress field µ1/µ0 = 0.25

The main goal of this paper is to propose a generic algorithm for determining the sub-surface

stress field and localised deflection in a graded elastic bonded layered solid. However, this work

can also provide a foundation for future failure mode prediction. Usually a hard material fails ac-

cording to the Tresca criterion and a soft one according to the von Mises criterion. It is of particular

interest in a practical problem to predict when the relevant criterion (depending on the problem)

is met. As the coating and the substrate have different mechanical properties, it is possible that

one of the materials will fail due to a local maximum in the stress field even if the global maxi-

mum occurs in the other region. Additionally, in many industrial applications, high stresses at the

coating-substrate interface can induce local failure which will lead to exfoliation of the protective

layer.

Figure (11) shows the global maximum of τ1/p0 and the location within the solid that it occurs

for a variety of different coatings both hard and soft. It should be noted that both the magnitude of

the global maximum of τ1/p0 and its position change significantly with layer thickness. Although

there is always a noticeable change in the magnitude of the maximum stress when it migrates from
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the substrate to the coating, this becomes more pronounced as the layer becomes softer. A similar

trend is noted in the position of the maximum, as its jump in location from the substrate to the

coating becomes sharper as the coating becomes softer.

The sudden jumps observed in the position of the maxima correspond to the layer thickness at

which the local maxima within the coating overtake those in the substrate (see figure (7) and (8)).

These results indicate that the mechanical properties of the coating/substrate must be optimised for

each practical application in order to preserve the integrity of the system.
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Figure 11: The behaviour of the maximum principal stress for a variety of coatings vs. ĥ

5.5. Comparison study

The solution propounded in this paper is valid only when the solid is inhomogeneously elastic.

This is due to the necessity of having four distinct roots of (30) which is not the case if the solid

is homogeneously elastic. There is however no restriction on the ratio µ1/µ0 as long as it is not
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identically equal to one and thus we can take α̂ arbitrarily close to zero which corresponds to a

solid which is almost homogeneous. It is then of interest to determine if a suitably small value of

α can accurately model the stress field within a homogeneous solid.

In this example we choose

p(X) = p0

√
1−X2 (75)

which corresponds to the non-dimensional Hertzian pressure distribution and attempt to replicate

the stress field computed using Hertzian theory (see Johnson (1985) for example) . The parameter

values ν = 0.25 and N = 400 remain fixed in this example whilst µ1/µ0 = 1.1,1.01,0.9,0.99,ĥ =

0.1,1,10. Table (2) presents the maximum principal stresses max)τ1/P0 ( denotedτmax) and the

location that they are found (Ymax) for these examples. It is found that all of the values of µ1/µ0

given above produce results that are in good agreement with those predicted by Hertzian theory

(τmax = 0.3,Ymax =−0.78). The predicted maximum stresses are almost all within 1% of the pre-

dicted Hertzian maximum pressure. The only exceptions occur when µ1/µ0 = 1.1 and µ1/µ0 = 0.9

which is to be expected as these cases do not correspond to a solids which is almost homogeneous.

The depth at which the predicted values of max(τ1/P0) occur agree to within a 2% accuracy

of the prediction obtained from Hertzian theory. In this case we see that the error in the approx-

imation produced when µ1/µ0 = 1.01 and µ1/µ0 = 0.99 is 1.38%. However, as the error here

becomes smaller as |α| decreases in magnitude, we conclude that in the limit |α| → 0, our model

is capable of accurately modelling a homogeneously elastic solid. As a final check in this section,

the principal stress field produced for this problem is depicted in figure (5.5) and is identical to the

results presented by Johnson (1985).
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The residual error in the predicted values of max(τ1/P0) and the depth at which they occur

µ1/µ0 Quantity ĥ = 0.1 ĥ = 1 ĥ = 10

τmax 0.67% 1.23% 0.27%
µ1/µ0 = 1.1 Ymax 1.13% 0.87% 2.15%

τmax 0.63% 0.7% 0.7%
µ1/µ0 = 1.01 Ymax 1.38% 1.38% 1.38%

τmax 0.6% 0.02% 1.6%
µ1/µ0 = 0.9 Ymax 1.9% 1.9% 0.62%

τmax 0.63% 0.57% 0.73%
µ1/µ0 = 0.99 Ymax 1.38% 1.38% 1.38%

Table 2: A comparison of the predicted maximum dimensionless principal stress for four solids that are almost homo-

geneously elastic subject to three different coating thicknesses.
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Figure 12: The stress field produced for the dimensionless Hertzian pressure given by

(75).

6. Conclusions

The derivation of a solution used to determine the stresses and deflection resulting from a con-

tact problem is presented. The original problem is re-scaled and mapped to an alternate domain

where the displacements within the problem prove receptive to solution by the separation of vari-

ables technique. As a result, the stresses and displacement within this problem may be represented

in terms of Fourier series.

A simple surface pressure was considered within the confines of the contact problem to gen-

erate results using this model. A selection of coatings of different thicknesses and moduli of

elasticity were considered and it was found that in general the thickness of the coating affects both

the magnitude and position of the maximum principal stress within the solid. Further investigation
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into this phenomena showed how the maximum principal stress induced by the applied surface

pressure transitions from the substrate into the coating as coating thickness increases. This trend

provides potentially valuable information in the manufacture of functionally graded materials.

The principal advantage of this method is that if the pressure applied in the contact problem

is known, the solution detailed is analytic and requires no additional numerical calculations. This

method is still valid for pressures that have been determined approximately but requires the nu-

merical determination of the Fourier coefficients in the series expansion of the pressure. Overall,

the computational expense using this model is kept to a minimum and provides fast yet accurate

solutions to the contact problem.
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