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A solution method for the sub-surface stresses and local deflection
of a semi-infinite inhomogeneous elastic medium

S. J. Chidlow1, M. Teodorescu11,2, N.D. Vaughan1

1Department of Automotive Engineering, School of Engineering, Cranfield University, Cranfield, MK43 0AL, UK
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Abstract

This paper proposes analytical Fourier series solutions (based on the Airy stress function) for the
local deflection and subsurface stress field of a two-dimensional graded elastic solid loaded by
a pre-determined pressure distribution. We present a selection of numerical results for a simple
sinusoidal pressure which indicates how the inhomogeneity of the solid affects its behaviour. The
model is then adapted and used to derive an iterative algorithm which may be used to solve for the
contact half width and pressure induced from contact with a rigid punch. Finally, the contact of a
rigid cylindrical stamp is studied and our results compared to those predicted by Hertzian theory.
It is found that solids with a slowly varying elastic modulus produce results in good agreement
with those of Hertz whilst more quickly varying elastic moduli which correspond to solids that
become stiffer below the surface give rise to larger maximum pressures and stresses whilst the
contact pressure is found to act over a smaller area.

Keywords: Contact mechanics, Graded elasticity, Functionally graded materials

1. Introduction

The mechanical properties of a coating are often far from homogeneous. This may be inten-
tional or could occur as a side effect of the manufacturing technique. Additionally, transition zones
whose nature is dependent on the coating technology used may emerge at the interface between
the coating and substrate. Consequently, it is of vital importance to determine the likely effects
of using a particular coating in advance through a combination of experimental testing and mathe-
matical modelling.

One of the earliest attempts made at determining the stress field within an elastic solid was by
Boussinesq [1] who established analytic expressions for the stresses within a three-dimensional ho-
mogeneously elastic solid. This solution was adapted by Flamant [2] to predict the stress field and
deformation due to a point force. However, these solutions do not consider protective layers or take
account of inhomogeneities in material properties. The first generation of models to take account
of a protective layer were either applicable for the idealised conditions of a thin layer (Hannah

1Corresponding author’s email address : mteodorescu@soe.ucsc.edu
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[3], Bentall and Johnson [4]) or a thicker layer with elastic or viscoelastic behaviour (Johnson [5],
O’Sullivan and King [6], Jaffar [7], Barber [8]). Although computationally efficient, these models
assume that the protective coating is homogeneous and are restricted to specific contact geometries
which limits their applicability in many practical problems.

A separate class of surface treatments can achieve better load carrying capacity by gradually
changing material properties with depth. There are several traditional techniques such as heat
treatment or vapour decomposition which ensure a gradual transition from the properties of the
outermost layer to the ones of the base material. Although these are probably the oldest surface
treatments, predictive models for these processes were not attempted until recently. This was partly
due to the mathematical complexity required for such models and partly due to a lack of ability to
manufacture surfaces with a precisely controlled modulus of elasticity. The earliest closed-form
solutions to problems of this kind were given by Gibson [9] and Booker [10]. However, these
investigations were somewhat limited as Gibson considered only deep inhomogeneously elastic
media whilst Booker produced a solution valid for only one particular value of Poisson’s ratio.
Recent advances in fabrication techniques have provided unprecedented control over the chemical
structure and grain size. Consequently, deposition of elastic and viscoelastic nano-scale multi-
layers have become essential for low friction and wear resistant coatings. Suresh et al. [11] [12]
proved that functionally graded materials (FGM) can improve surface resistance to the frictional
sliding contact. However, finding the optimal gradient requires accurate modelling.

A common approach is to assume that both elastic media (layer and substrate) are homoge-
neous in the vicinity of the computational grid point. Therefore, the approach initially proposed by
Sneddon [15], which considers the wave-like nature of the localised deformation can be applied.
The influence of each individual Fourier harmonic is computed and the overall solution is predicted
using Bernoulli’s superposition principle. This general approach proved accurate for homogeneous
layers (e.g. Polansky and Keer [16], Liu and Wang [17], Tripp et al. [18] and Teodorescu et al.
[19]). Xu and Zhou [20] also use this approach in their consideration of an FGM plate of contin-
uously varying thickness which is simply supported at its four edges as they use a Fourier series
expansion in both horizontal coordinates to derive a solution. Another approach that has been
used successfully to compute the pressure and stress fields in an FGM material is to use Fourier
transform techniques. Guler and Erdogan [13] considered a solid comprising an FGM layer with
an exponentially varying shear modulus bonded to an infinitely deep homogeneous substrate. The
surface of this solid was then indented by a sliding rigid punch. The problem was formulated in
terms of the displacement components and the main goal was to study the initiation of fracture.
Ke and Wang [14] consider the same problem as Guler and Erdogan except that they consider
representing the shear modulus as a piecewise linear function over several layers instead of an ex-
ponential function. Their results are in good agreement with Guler and Erdogan but their solution
is perhaps more useful as it can be used to simulate a wider range of shear moduli. The work of
Giannakopoulos and Suresh [22] considers allowing the Young’s modulus of the material under
study to vary both linearly and exponentially with the depth coordinate. They consider applying
a pressure to the surface of the material in the form of a point force and give analytic solutions
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to these problems which are compared with numerical approximations produced using the finite
element method.

In this work, we attempt to model the sub-surface stress field induced within an infinitely deep
inhomogeneously elastic solid under pressure. It is assumed that if the contact footprint is small
relative to the horizontal dimensions of the solid, only a small part of the solid in close proximity
to the contact area is affected by the pressure force. The layout of this paper is as follows. In
section 2, we introduce the mathematical problem and show how it may be solved and in section
3 produce numerical results for a simple symmetrical pressure. In section 4, we show how the
derived expression for the vertical displacement may be used to formulate an algorithm to solve
for the contact half-width and pressure force which results from a punch problem and present a
selection of results for a cylindrical stamp that allows us to compare our results with those of Hertz.
Our conclusions are presented in section 5.

2. Method of solution

We consider a semi-infinite, inhomogeneous, linearly-elastic solid in a state of plane strain.
The solid is deemed to be locally isotropic and has a constant Poisson’s ratio ν .We adopt a carte-
sian coordinate formulation in the (x,y) plane with the y-axis directed positively upwards and let
Young’s modulus be a function of the vertical coordinate. Specifically, we let

E(y) = E0eαy, (1)

where E0 is a constant which represents the value of Young’s modulus on the surface of the solid
and α is a constant which may be positive or negative. Figure 1 shows a logarithmic plot of
Young’s modulus for several arbitrary values of α̂ = αa, where a represents the half-contact width.
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Figure 1: Examples of Young’s modulus for selected values of α̂

In order to model this problem, we use the compatibility condition valid for a two-dimensional
problem in the absence of gravitational body forces to derive a partial differential equation (PDE)
from which we can determine the relevant Airy stress function. Following Sadd [21], we find that
the stress function must satisfy:

∇
4
φ −2α

∂

∂y

(
∇

2
φ
)
+α

2
∇

2
φ − α2

1−ν

∂ 2φ

∂x2 = 0 (2)

where

∇
2 =

∂ 2

∂x2 +
∂ 2

∂y2

is the Laplacian operator. It should be noted that if α = 0, equation (2) reduces to the biharmonic
equation which is to be expected as this value corresponds to a homogeneous material. The stress
function φ is related to the components of stress within the solid via

σyy =
∂ 2φ

∂x2 , σxx =
∂ 2φ

∂y2 , τxy =−
∂ 2φ

∂x∂y
. (3)

The horizontal and vertical displacements within the solid are related to the stress function via

∂u
∂x

=
(1+ν)

E(y)

(
(1−ν)

∂ 2φ

∂y2 −ν
∂ 2φ

∂x2

)
, (4)

∂v
∂y

=
(1+ν)

E(y)

(
(1−ν)

∂ 2φ

∂x2 −ν
∂ 2φ

∂y2

)
. (5)
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The idea in this paper is to solve the contact problem on a finite width interval. In order for this
idea to be utilised effectively, the width of the interval must be chosen to encapsulate the salient
features of the problem whilst at the same time being sufficiently small to keep computational
expense to a minimum.

Let the solid under study occupy the semi-infinite region −∞ < y ≤ 0,−L ≤ x ≤ L so that (2)
must be solved on this domain. It is now left to determine appropriate boundary conditions that
must be applied to the solid. We note that within the contact region, the surface compressive stress
is the same as the applied pressure P(x) whilst outside it is identically zero. The correct surface
boundary conditions are then

∂ 2φ

∂x2 (x,0) =−P(x), (−L < x < L), (6)

∂ 2φ

∂x∂y
(x,0) = 0, (−L < x < L). (7)

which represent a frictionless contact, where P(x) is defined as

P(x) =

{
p(x) |x| ≤ a,
0 |x|> a,

(8)

so that it is non-zero only in an interval −a ≤ x ≤ a. The radiation condition |φ | → 0 as y→−∞

is also imposed to ensure a bounded solution in the region under study.
To fully specify the problem for φ , an additional four boundary conditions are required at x =

±L. As the boundaries x = ±L represent the limits at which the applied pressure is hypothesised
to cease to have an effect on the solid, we stipulate that the normal stresses σxx must vanish there.
We therefore have

∂ 2φ

∂y2 (−L,y) =
∂ 2φ

∂y2 (L,y) = 0. (9)

Additionally, we assume that the vertical displacement of the solid vanishes at x =±L. Therefore,
we also impose v(−L,y) = v(L,y) = 0. The full problem to solve is now

∇
4
φ −2α

∂

∂y
(∇2

φ)+α
2
∇

2
φ − α2

1−ν

∂ 2φ

∂x2 = 0, −L≤ x≤ L,−∞ < y≤ 0, (10)

∂ 2φ

∂x2 +P(x) = 0, y = 0,−L≤ x≤ L, (11)

∂ 2φ

∂x∂y
= 0, y = 0,−L≤ x≤ L, (12)

∂ 2φ

∂y2 = v = 0, x =−L,−∞≤ y < 0, (13)

∂ 2φ

∂y2 = v = 0, x = L,−∞≤ y < 0, (14)

|φ | → 0, y→−∞,−L≤ x≤ L. (15)
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A discussion on the selection of appropriate choices of the interval length L is provided later in
section 3.

In order to solve this PDE, we initially transform the horizontal variable so that the solid occu-
pies the region 0≤ ζ ≤ L,−∞ < y≤ 0. The required transformation is

ζ =
1
2
(x+L), (16)

which allows us to deduce that

∂

∂x
=

∂

∂ζ

dζ

dx
=

1
2

∂

∂ζ
. (17)

The PDE to be solved now for the stress function φ in terms of the new variables is

∂ 4φ

∂ζ 4 +8
∂ 4φ

∂ζ 2∂y2 +16
∂ 4φ

∂y4 −8α
∂

∂y

(
∂ 2φ

∂ζ 2 +4
∂ 2φ

∂y2

)
+4α

2
(

4
∂ 2φ

∂y2 −
ν

1−ν

∂ 2φ

∂ζ 2

)
= 0 (18)

which holds in the region 0≤ ζ ≤ L,−∞ < y≤ 0. The boundary conditions under the transforma-
tion become

∂ 2φ

∂ζ 2 +4P(ζ ) = 0, y = 0,0≤ ζ ≤ L, (19)

∂ 2φ

∂ζ ∂y
= 0, y = 0,0≤ ζ ≤ L, (20)

∂ 2φ

∂y2 = v = 0, ζ = 0,−∞ < y≤ 0, (21)

∂ 2φ

∂y2 = v = 0, ζ = L,−∞ < y≤ 0, (22)

|φ | → 0, y→−∞,0≤ ζ ≤ L, . (23)

We now attempt to solve the transformed problem by seeking separable solutions of the form

φ(ζ ,y) = f (y)(Acos(kζ )+Bsin(kζ )), (24)

for some k > 0, which we insist must satisfy the boundary conditions at ζ = 0 and ζ = L. It is
found that there are an infinite number of functions of the form

φn(ζ ,y) = fn(y)sin
(

nπζ

L

)
(25)

n ∈ N which satisfy the boundary conditions on ζ . As a result, we formulate the solution to this
problem as

φ(ζ ,y) =
∞

∑
n=1

fn(y)sin
(

nπζ

L

)
. (26)
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In order to determine the functions fn(y), we substitute (26) into (18). This yields the fourth order
ODE

d4 fn

dy4 −2α
d3 fn

dy3 +
1
2
(2α

2−β
2
n )

d2 fn

dy2 +
1
2

αβ
2
n

d fn

dy
+

β 2
n

16

(
β

2
n +

4α2ν

1−ν

)
fn = 0, (27)

in which βn = nπ/L has been used as shorthand notation. We note that all coefficients appearing
in this equation are constants. This suggests that we can seek solutions to this equation of the form

fn(y) =Cneλny (28)

where Cn are arbitrary constants. Substituting this expression into (27) gives the quartic equation

λ
4
n −2αλ

3
n +

1
2
(2α

2−β
2
n )λ

2
n +

1
2

αβ
2
n λn +

β 2
n

16

(
β

2
n +

4α2ν

1−ν

)
= 0 (29)

which can be solved to give

λ
(1)
n =

(
1
4
(α2 +β

2
n )+

i
2

βnα

√
ν

1−ν

) 1
2

+
1
2

α, (30)

λ
(2)
n =−

(
1
4
(α2 +β

2
n )+

i
2

βnα

√
ν

1−ν

) 1
2

+
1
2

α, (31)

λ
(3)
n =

(
1
4
(α2 +β

2
n )−

i
2

βnα

√
ν

1−ν

) 1
2

+
1
2

α, (32)

λ
(4)
n =−

(
1
4
(α2 +β

2
n )−

i
2

βnα

√
ν

1−ν

) 1
2

+
1
2

α.. (33)

The general solution of φ(ζ ,y) is then

φ(ζ ,y) =
∞

∑
n=1

(
Aneλ

(1)
n y +Bneλ

(2)
n y +Cneλ

(3)
n y +Dneλ

(4)
n y
)

sin(βnζ ). (34)

In order to satisfy the radiation condition (23), we set Bn = Dn = 0 ∀n ∈ N. Applying the remain-
ing boundary conditions on the surface of the solid (19)-(20) gives the particular solution to the
transformed problem as

φ(ζ ,y) = 4
∞

∑
n=1

Pneψny

µnβ 2
n

(
ψn sin(µny)−µn cos(µny)

)
sin(βnζ ) (35)

where ψn = Re(λ (1)
n ) and µn = Im(λ

(1)
n ), n ∈N. The constants Pn, n ∈N are the coefficients in the

Fourier series representation of the pressure and are defined as

Pn =−
2
L

∫ 1
2 (L+a)

1
2 (L−a)

p(ζ )sin(βnζ )dζ ,

=−1
L

∫ a

−a
p(x)sin

(
1
2

βn(x+L)
)

dx. (36)
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We may now use (35) and (16) to give the solution of the original problem as

φ(x,y) = 4
∞

∑
n=1

Pneψny

µnβ 2
n

(
ψn sin(µny)−µn cos(µny)

)
sin
(

1
2

βn(x+L)
)
. (37)

The sub-surface stresses are now readily calculated and are found to be

σyy =−
∞

∑
n=1

Pneψny

µn

(
ψn sin(µny)−µn cos(µny)

)
sin
(

1
2

βn(x+L)
)
, (38)

σxx = 4
∞

∑
n=1

Pn(ψ
2
n +µ2

n )e
ψny

µnβ 2
n

(
ψn sin(µny)+µn cos(µny)

)
sin
(

1
2

βn(x+L)
)
, (39)

τxy =−2
∞

∑
n=1

Pn(ψ
2
n +µ2

n )e
ψny

µnβn
sin(µny)cos

(
1
2

βn(x+L)
)
. (40)

The vertical deflection may also be calculated by integrating (5) over the interval (−∞,y) which
yields

v(x,y) =−(1+ν)

E0

∞

∑
n=1

Pn

µn

[
(1−ν)

(
ψnI(n)1 (y)−µnI(n)2 (y)

)
(41)

+
4ν(ψ2

n +µ2
n )

β 2
n

(
ψnI(n)1 (y)+µnI(n)2 (y)

)]
sin
(

1
2

βn(x+L)
)
.

where

I(n)1 (y) =
e(ψn−α)y

µ2
n +(ψn−α)2

(
µn sin(µny)+(ψn−α)cos(µny)

)
, (42)

I(n)2 (y) =
e(ψn−α)y

µ2
n +(ψn−α)2

(
(ψn−α)sin(µny)−µn cos(µny)

)
. (43)

2.1. Maximum penetration depth
The radiation boundary condition (23) ensures that each harmonic component (Fourier mode)

vanishes at infinity. However, in practice, the influence of a harmonic component is lost when
the predicted contribution is smaller than computer error. Teodorescu et al. [19] showed that in
a semi-infinite solid split into two distinct yet homogeneous layers, the depth at which the contri-
bution of each individual harmonic becomes negligible is inversely proportional to the harmonic
order. We may perform a similar investigation here by monitoring the exponential term eψny which
is responsible for the decay of the stress components (38), (39), (40) and the vertical displacement
(41). We set a minimum value (κ = 10−10) and assume that when eψny≤ κ , the contribution of that
harmonic component is negligible. Therefore, the maximum penetration depth is ylim = lnκ/ψn.

8



(a)

Figure 2: An investigation into the maximum penetration depth for each harmonic order for five different materials.

Figure 2) shows the maximum penetration depth for the first 100 harmonic components ap-
pearing in the solutions of the stresses and vertical displacement. It is seen that higher harmonic
orders have a shallower penetration than lower harmonic orders. This means that away from the
surface of the solid, the higher frequency wave modes do not affect the solutions of the stresses
and displacement and hence a partial sum of only the first few fourier modes will be sufficient
to accurately describe the behaviour of the stresses far beneath the solid surface. We additionally
note as α̂ becomes increasingly positive, each harmonic component penetrates less into the depth
of the solid. This is indicative that materials which become increasingly soft below the surface
experience stresses which die away much faster in the limit y→−∞.

Figures 3a) and 3b) show the decay of eψny for two representative harmonics (n = 1 and n =
100) subject to different values of α̂ . These results reiterate the previous findings and clearly shows
how softening media dampens the contribution of lower harmonics.

It should be noted that the wavelength of the lowest harmonic captured by this solution depends
on the choice of decomposition interval [−L,L]. As the contact is assumed to be smooth, we do
not account for any waviness of the solid surface. If this model were to be adapted to a rough
contact, the size of the interval should be carefully chosen to ensure that any waviness of the the
solid itself is accurately captured. This requires the wavelength of the lowest harmonic component
to be greater than the largest wavelength of the solid surface. However, this comes at a high
computational cost as our model would need to encompass more Fourier modes to accurately
capture the solution.
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(a) (b)

Figure 3: An investigation into the decay of eψny for five different materials. The pictures show a) the decay rate of the
first harmonic order (n = 1) and b) the decay rate of the hundredth harmonic order (n = 100).

3. Results

To highlight some of the most significant advantages of the current model we consider pro-
ducing results for a simple pressure function. Please note that in practical applications the infinite
summations in equations (38), (39), (40) and (41) are limited by computer capabilities and hence
we must truncate the summations appearing in these equations at some finite value N. Thus, we
now take the solutions for the stresses and vertical displacement as

σyy =−
N

∑
n=1

Pneψny

µn

(
ψn sin(µny)−µn cos(µny)

)
sin
(

1
2

βn(x+L)
)
, (44a)

σxx = 4
N

∑
n=1

Pn(ψ
2
n +µ2

n )e
ψny

µnβ 2
n

(
ψn sin(µny)+µn cos(µny)

)
sin
(

1
2

βn(x+L)
)
, (44b)

τxy =−2
N

∑
n=1

Pn(ψ
2
n +µ2

n )e
ψny

µnβn
sin(µny)cos

(
1
2

βn(x+L)
)
, (44c)

v(x,y) =−(1+ν)

E0

N

∑
n=1

Pn

µn

[
(1−ν)

(
ψnI(n)1 −µnI(n)2

)
(44d)

+
4ν(ψ2

n +µ2
n )

β 2
n

(
ψnI(n)1 +µnI(n)2

)]
sin
(

1
2

βn(x+L)
)
.

3.1. Example 1: Symmetric pressure profile
We consider the pressure function

p(x) = p0 cos
(

πx
2a

)
(45)
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which is symmetric about the origin (see figure 4). As the pressure given here is analytic, we can
readily calculate the coefficients Pn and find that

P2m−1 =
4(−1)maL

π(a2(2m−1)2−L2)
cos
(
(2m−1)πa

2L

)
, (46)

P2m = 0, (47)

for m ≥ 1, so that the stresses and displacements inherent in this problem consist of only odd
numbered Fourier modes.

Figure 4: The pressure function applied in example 1 over the dimensionless contact region [−1,1].

Before we consider presenting numerical results for this problem, we must determine an ap-
propriate value of L. In order to do this, we consider plots of the maximum value of the dimen-
sionless surface deflection (v̂max) and the maximum value of the dimensionless principal stress
(τ̂max) against the non-dimensional variable L/a. We hope that these graphs will show that for suf-
ficiently large values of L, both the maximum surface deflection and principal stress will converge
which indicates that taking increasingly large interval lengths means that we are not gaining any
additional information. Note that for convenience, the notation

v̂max =
1
a

max
(
v(0,0)

)
,

τ̂max =
1
p0

max(τ1)
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has been adopted.
Figure (5) depicts the values of v̂max and τ̂max obtained for six different values of α̂ subject to

the applied pressure given by (45).
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Figure 5: Plots of L/a vs a) v̂max and b) τ̂max for six different values of α̂ corresponding to both hardening and softening
media.

It is easily observed from these results that the maximum surface deflection and maximum
principal stress corresponding to materials that become increasingly hard below the surface (α̂ < 0)
exhibit convergence as L/a increases. Conversely, if α̂ > 0, the maximum surface deflection and
maximum principal stress exhibit no convergence which indicates that this solution method fails
for materials that become increasingly soft below the surface. This observation is not surprising
given the unrealistic physical situation of a material becoming infinitely soft (E→ 0) far below its
surface which is what α̂ > 0 represents.

It should also be noted from figure 5b), that as the results presented are dimensionless, the
choice of the parameter L is insensitive to the load. This seems to indicate that only the growth
rate of the modulus of elasticity is important in determining the interval of decomposition.

Utilising the information in figure 5, we choose L/a = 6, ν = 0.25, N = 200 to produce results
for this example and restrict our attention to materials that exhibit sub-surface stiffening (α̂ <
0). We note that if α = 0, equation (29) does not provide four linearly independent roots and
the analytic approach given above is no longer valid. However, it should be noted that α = 0
corresponds to a homogeneously elastic solid. Therefore, the subsurface stress field and vertical
deflection can be predicted by alternate methods (e.g. Teodorescu et al [19]). In the current study
we use as a control case a semi-infinite solid with a very small growth rate (α̂ = −10−5). We
compare the results with materials with increasing stiffness.
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Figure 6: Contour plots of the non-dimensional principal shear stresses τ1/p0 for a semi-infinite solid with α̂ =−10−5

Figure 6 shows the contour plot of the non-dimensional principal stress τ1/p0 for the control
case and figure 7 shows similar plots for several materials with increasing subsurface stiffness
(α̂ < 0). For clarity, only the stresses in the immediate vicinity of the contact region are presented
(−3≤ x/a≤ 3,−2≤ y/a≤ 0).

It is immediately seen here that as α̂ becomes increasingly negative (material stiffening), the
maximum principal stress increases in magnitude. Additionally, we see that the region in which
the maximum stresses occur moves closer to the solid surface and becomes thinner as the solid
becomes increasingly stiff. This indicates that materials with increasing sub-surface stiffness are
more resistant to the applied pressure than softer materials and will thus experience less vertical
displacement than more pliable materials. We may compare the exponential increase in stiffness
here to that of a thick protective coating. A possible example is that of a journal bearing shell
which requires a soft protective layer on the lubricated side. This encourages local deformation,
increases the lubricant film thickness and reduces friction. However, at the same time a harder
base is necessary to provide the overall stiffness of the shell. The rate with which the local stiff-
ness morphs from one material to the other determines the efficiency of the bearing.
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Figure 7: The influence of elastic gradient on the non-dimensional principal stress field (τ1/p0) for four differents
materials with increasing stiffness.

An alternate way of viewing the behaviour of the sub-surface stresses present in the solid is to
take a cut through the x-axis and investigate how the principal stresses change below a fixed point
on the surface. Figure (8) depicts the principal stresses within the solid beneath the origin (x = 0)
and the edge of the contact region (x = a). It is seen in figure (8a) that the stresses corresponding to
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solids that become increasingly stiff below their surface are larger in magnitude everywhere than
those present within softer materials. This trend can additionally be seen in figure (7).

The results presented in figure (8b) are more interesting. We see here that on the solid surface
the stresses present within the harder solids are larger than those in the softer materials. This is
also the case far below the solid surface. However, we see that between −2 ≤ y/a ≤ −0.1, the
stresses within the softer materials become larger than those in the harder material. They suggest
that the stresses induced within solids that become increasingly stiff below their surface penetrate
further into the solid yet decay more quickly outside of the contact area. This behaviour is not
immediately obvious in figure (7) but is readily seen here.
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Figure 8: Non-dimensional principal stresses τ1/p0 at x/a = 0 and x/a = 1 for several values of α̂ = 0.

Figure 9 shows the influence of the elastic gradient on the dimensionless surface deflection for
the values of α given in figures (6) and (7). It is seen here that the surface deflection decreases as
α̂ becomes increasingly more negative. These results are intuitively correct and are in accord with
literature accepted results [19].

15



-3

-2.5

-2

-1.5

-1

-0.5

 0

-3 -2 -1 0 1 2 3

v
(x

,0
)/

a

x/a

-10
-5

-0.25

-0.5

-0.75

-1

Figure 9: Normalised surface deflections (example 1)

4. Contact by a rigid punch

So far in this paper, we have considered producing results when both the applied pressure and
contact half-width are known. In many contact problems, both of these quantities will be unknown
and need to be determined as part of the solution procedure. In this section, we present an algo-
rithm which may be used to determine the pressure which results from the contact of a rigid punch.
We firstly discuss how approximations to the contact pressure may be derived and then present a
solution technique which allows accurate estimation of the contact half-width.

4.1. Approximations to the contact pressure
We initially see from (41) that the vertical displacement of the solid surface may be written as

v(x,0) = v̂(x) =
∞

∑
n=1

JnPnφn(x) (48)

where

Jn =
−(1+ν)Pn

E0β 2
n (µ

2
n +(ψn−α)2)

(
(1−ν)(α−2ψn)β

2
n −4να(ψ2

n +µ
2
n )

)
(49)

and

φn(x) = sin
(

1
2

βn(x+L)
)

(50)
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for n ∈ N. Taking the derivative of (48) with respect to x gives the gradient of deflection on the
solid surface as

v̂
′
(x) =

∞

∑
n=1

JnPnφ
′
n(x), (−L≤ x≤ L). (51)

If we consider indenting the surface of the solid by a rigid punch, we will know the deflection
gradient on the surface because the shape of the punch will be known. This means that the func-
tion v̂

′
will be known and thus the only unknowns within (51) are the coefficients in the Fourier

representation of the pressure. If we replace all coefficients Pn appearing in (51) using (36) we
obtain

v̂
′
(x) =−1

L

∫ a

−a

∞

∑
n=1

Jnφ
′
n(x)φn(t)p(t)dt (52)

which is a Fredholm integral equation of the first kind. This may also be written in operator form
as

v̂
′
(x) =−1

L
(L p)(x). (53)

As this equation is non-singular, we can approximate the contact pressure using Galerkin’s method.
This involves consideration of the weak form of (52) which is attained by multiplying by the test
functions χ j(x), j = 1, ...,M and integrating over the contact region. The resultant equations are
then

(v̂,χ j) =−
1
L
(L p,χ j), (54)

j = 1, ...,M, where the notation

( f ,g) =
∫ a

−a
f (x)g(x)dx (55)

has been used to simplify this expression. Introducing the approximation

p(x) =
M

∑
i=1

γiχi(x) (56)

allows us to reduce (54) to the system

V =−1
L

∆
T

γ, (57)

where

V =

(
(v̂,χ1),(v̂,χ2), ...,(v̂,χM)

)T

, (58)
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and the entries of matrix ∆ are defined as (∆)i j = (L χi,χ j). Equation (57) can be rearranged to
give

γ =−L∆
−TV (59)

which furnishes us with an analytic approximation to the contact pressure via (56). This approxi-
mation can then be used to compute the Fourier coefficients Pn which in turn allows the determi-
nation of the sub-surface stresses and vertical deflection via (44a)-(44d) as before.

It should be noted that this method can be used to solve for the contact pressure induced by a
punch of arbitrary shape as long as V is not identically zero.

4.2. Approximating the contact half width
In many contact problems, the total applied load (W ) is given rather than the contact half-width.

It is known that increased loads give rise to larger contact regions and thus we may deduce that
each value of W gives rise to a unique contact half-width subject to fixed material parameters (ν ,
E0, α). This enables us to solve for the contact half width using iterative techniques.

The total load and contact pressure are related via

W =
∫ a

−a
p(x)dx ≈

∞

∑
n=1

γi

∫ a

−a
χi(x)dx (60)

which follows from (56). We now define

f (a) =W −
∞

∑
n=1

γi

∫ a

−a
χi(x)dx (61)

which will be vanishingly small provided that the approximation derived above is sufficiently ac-
curate. This equation may be solved iteratively for a using the secant method

an+1 = an−
δ f (an)

f (an +δ )− f (an)
(62)

where δ > 0 is some constant. The total solution procedure is then to determine the contact pressure
(56) for each value of an, determine f (an) and f (an +δ ) and update the approximation to a using
(62) until the desired accuracy has been reached. In this paper, we determine whether or not we
have converged to the contact half-width using the criterion

|an+1−an|
|an+1|

< ε (63)

which provides a measure of the residual error between the current and previous guesses. Within
this work we choose ε = δ = 1× 10−7. Figure (10) gives a flowchart of the steps to be followed
in this solution method.
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Figure 10: Flow chart of the iterative algorithm derived in this section

4.3. Example: Cylindrical punch
We examine the accuracy of the proposed approximations above by considering contact by a

rigid cylindrical punch. Modelling the stamp profile as a quadratic in the vicinity of the contact
gives

v̂(x) =−ε0 +
x2

2R
(64)

where R is the radius of the punch and ε0 is the as yet unknown maximum deflection of the solid
surface. The punch is taken to have radius 10cm and length 20cm and the load resulting from the
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contact is 200N. The other parameters considered are ν = 0.42 and E0 = 69GPa. This physical
situation may be viewed as a space bearing coated by a thick gold layer.

As Hertzian theory provides an analytical solution for this problem when the solid is homo-
geneously elastic, we choose a0 = ah where ah is the contact half width predicted by Hertz. This
value is calculated as

ah =

√
4(1−ν2)WR

πE0
(65)

which in this case gives ah = 17.434µm. We can also compute the predicted maximum Hertzian
pressure which is given by the formula

Ph =
2W
πah

. (66)

In this particular example Ph = 7.303× 106Pa. It will be of primary interest in this example to
determine how sub-surface stiffening affects the predicted pressures and contact half widths and
how accurate Hertzian theory is under such conditions. As a is unknown in this problem prior
to solving for the contact pressure, we cannot fix the parameter α̂ within this example. We can
however fix the parameter αah = −1× 10−4,−0.5− 1,−2 which represent different degrees of
sub-surface stiffening. The first value αah = −1× 10−4 is a control case and should predict a
pressure and contact half width that agrees almost exactly with the results of Hertz.

It is only left to choose χ j(x), j = 1, ...,M for this example. As it is known that the pressure
resulting from contact by a rigid cylindrical punch is identically zero at x = ±a, we choose to
represent the contact pressure using simple linear splines. In order to do this, we split the contact
region into M−1 sub-intervals of width h and thus define

χ j(x) =


x−x j−1
x j−x j−1

, x j−1 ≤ x≤ x j,
x j+1−x
x j+1−x j

, x j ≤ x≤ x j+1,

0, otherwise

(67)

for j = 2, ...,M−1. The functions χ1(x) and χM(x) are omitted from (56) as γ1 = γM = 0 from the
condition that p(±a) = 0. In this particular example, we take M = 52 so that the contact pressure
comprises 50 splines.
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Figure 11: Pressure curves produced using the iterative algorithm given in (61) for αah=−1× 10−4 (blue line), -0.5
(red line), -1 (green line), -2 (black line)

The results produced for this problem are presented in figure (11) and show that as the solid
becomes increasingly hard beneath its surface, the maximum contact pressure induced by the cylin-
drical punch becomes much larger in magnitude whilst the contact region decreases in size. This
can be explained by the solid retaining very high stresses immediately beneath its surface over an
increasingly small region (a trend originally seen in figure (7)). The control case αah =−1×10−4

corresponds to the results given by Hertz exactly as expected and thus validates the predicted
results of our model. Figure (12) illustrates the produced sub-surface stress field for the cases
αah =−1×10−4,−0.5−1,−2. We see here that the maximum principal stress becomes increas-
ingly large as the solid becomes increasingly hard below the surface whilst the region in which
the largest principal stresses occur becomes thinner. These results are intuitively correct given
the applied surface pressure. It should also be noted that the plot produced in figure (12a) corre-
sponds exactly to the sub-surface stress field resultant from the application of Hertzian pressure to
a homogeneously elastic solid.
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Figure 12: Plots of the non-dimensional principal stresses produced subject to the contact pressures produced within
figure (11) for the values of αah given.
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Iteration number Quantity αah =−1×10−4 αah =−0.5 αah =−1 αah =−2
a1 17.627227µm 15.002714µm 14.024444µm 13.213606µm1 RE (%) 1.09 16.208 24.313 31.942

a2 17.628885µm 14.653060µm 13.189098µm 11.620017µm2 RE (%) 0.009 2.386 6.334 13.714

a3 17.628908µm 14.638976µm 13.121974µm 11.354339µm3 RE (%) 1.31×10−4 0.0962 0.512 2.334

a4 17.628908µm 14.638636µm 13.119740µm 11.338914µm4 RE (%) 1.83×10−6 0.00232 0.017 0.136

a5 − 14.638628µm 13.119674µm 11.338318µm5 RE (%) − 5.47×10−5 5.01×10−4 0.005

a6 − 14.638628µm 13.119672µm 11.338296µm6 RE (%) − 1.2856×10−6 1.466×10−5 1.968×10−4

a7 − − 13.119672µm 11.338295µm7 RE (%) − − 4.29×10−7 7.367×10−6

Table 1: Updated guesses to the contact half width produced using (62), the number of iterations required to attain a
to machine accuracy and the residual error between the current iteration and the previous one.

We have already verified that the results computed using this algorithm are accurate by compar-
ing with classical Hertzian results. However, this method is also computationally cheap to apply as
typically only a handful of iterations are needed to compute the contact pressure and contact half
width to machine accuracy. Furthermore each iteration takes approximately a quarter of a second
to compute. Table (1) details the approximations obtained from (62) to a after each iteration and
the residual error between the current and previous guess expressed as a percentage. We note that
at most 7 iterations are required to produce the results appearing in figures (11) and (12) whilst
only 4 are required for the almost homogeneous solid. This method is therefore extremely fast and
computationally efficient to use.

5. Conclusions

We have derived a solution for the stress function which can be used to describe the behaviour
of a semi-infinite functionally graded material under pressure. The original problem is mapped
into an alternate domain and it is found that the stress function can be represented as a half-range
Fourier sine series in these new coordinates. The final solution is then easily computed by rewrit-
ing the solution in terms of the original horizontal variable and analytic expressions were presented
for the stresses within the solid and the deflection of the solid due to an applied pressure. A simple
example pressure was then considered to produce results for this problem and it was found that
solids that stiffen beneath their surface experience larger maximum principal stresses in compari-
son to homogeneous materials.
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This paper concluded with the derivation of an efficient iterative algorithm from which the
applied pressure and contact half-width a may be determined when a functionally graded solid is
contacted by a rigid punch. The accuracy of this method was investigated by considering contact
by a rigid circular punch and it was found that the pressure curve and contact half-width produced
for a material that is almost homogeneous agrees well the predictions of Hertzian theory. It was
further observed that materials that exhibit increased sub-surface stiffness deviate from the predic-
tions of Hertzian theory as the predicted maximum pressure is larger than that of Hertz whilst the
contact half-width is smaller.

In summary, the method proposed in this paper is accurate and computationally cheap to apply
and could provide a useful tool to the practising engineer.
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